Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: LGPL-2.1
   2/*
   3 *
   4 *   Copyright (C) International Business Machines  Corp., 2002,2008
   5 *   Author(s): Steve French (sfrench@us.ibm.com)
   6 *
   7 */
   8
   9#include <linux/slab.h>
  10#include <linux/ctype.h>
  11#include <linux/mempool.h>
  12#include <linux/vmalloc.h>
  13#include "cifspdu.h"
  14#include "cifsglob.h"
  15#include "cifsproto.h"
  16#include "cifs_debug.h"
  17#include "smberr.h"
  18#include "nterr.h"
  19#include "cifs_unicode.h"
  20#include "smb2pdu.h"
  21#include "cifsfs.h"
  22#ifdef CONFIG_CIFS_DFS_UPCALL
  23#include "dns_resolve.h"
  24#endif
  25#include "fs_context.h"
  26#include "cached_dir.h"
  27
  28extern mempool_t *cifs_sm_req_poolp;
  29extern mempool_t *cifs_req_poolp;
  30
  31/* The xid serves as a useful identifier for each incoming vfs request,
  32   in a similar way to the mid which is useful to track each sent smb,
  33   and CurrentXid can also provide a running counter (although it
  34   will eventually wrap past zero) of the total vfs operations handled
  35   since the cifs fs was mounted */
  36
  37unsigned int
  38_get_xid(void)
  39{
  40	unsigned int xid;
  41
  42	spin_lock(&GlobalMid_Lock);
  43	GlobalTotalActiveXid++;
  44
  45	/* keep high water mark for number of simultaneous ops in filesystem */
  46	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
  47		GlobalMaxActiveXid = GlobalTotalActiveXid;
  48	if (GlobalTotalActiveXid > 65000)
  49		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
  50	xid = GlobalCurrentXid++;
  51	spin_unlock(&GlobalMid_Lock);
  52	return xid;
  53}
  54
  55void
  56_free_xid(unsigned int xid)
  57{
  58	spin_lock(&GlobalMid_Lock);
  59	/* if (GlobalTotalActiveXid == 0)
  60		BUG(); */
  61	GlobalTotalActiveXid--;
  62	spin_unlock(&GlobalMid_Lock);
  63}
  64
  65struct cifs_ses *
  66sesInfoAlloc(void)
  67{
  68	struct cifs_ses *ret_buf;
  69
  70	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
  71	if (ret_buf) {
  72		atomic_inc(&sesInfoAllocCount);
  73		spin_lock_init(&ret_buf->ses_lock);
  74		ret_buf->ses_status = SES_NEW;
  75		++ret_buf->ses_count;
  76		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
  77		INIT_LIST_HEAD(&ret_buf->tcon_list);
  78		mutex_init(&ret_buf->session_mutex);
  79		spin_lock_init(&ret_buf->iface_lock);
  80		INIT_LIST_HEAD(&ret_buf->iface_list);
  81		spin_lock_init(&ret_buf->chan_lock);
  82	}
  83	return ret_buf;
  84}
  85
  86void
  87sesInfoFree(struct cifs_ses *buf_to_free)
  88{
  89	struct cifs_server_iface *iface = NULL, *niface = NULL;
  90
  91	if (buf_to_free == NULL) {
  92		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
  93		return;
  94	}
  95
  96	atomic_dec(&sesInfoAllocCount);
  97	kfree(buf_to_free->serverOS);
  98	kfree(buf_to_free->serverDomain);
  99	kfree(buf_to_free->serverNOS);
 100	kfree_sensitive(buf_to_free->password);
 101	kfree(buf_to_free->user_name);
 102	kfree(buf_to_free->domainName);
 103	kfree_sensitive(buf_to_free->auth_key.response);
 104	spin_lock(&buf_to_free->iface_lock);
 105	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
 106				 iface_head)
 107		kref_put(&iface->refcount, release_iface);
 108	spin_unlock(&buf_to_free->iface_lock);
 109	kfree_sensitive(buf_to_free);
 110}
 111
 112struct cifs_tcon *
 113tconInfoAlloc(void)
 114{
 115	struct cifs_tcon *ret_buf;
 116
 117	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
 118	if (!ret_buf)
 119		return NULL;
 120	ret_buf->cfids = init_cached_dirs();
 121	if (!ret_buf->cfids) {
 122		kfree(ret_buf);
 123		return NULL;
 124	}
 125
 126	atomic_inc(&tconInfoAllocCount);
 127	ret_buf->status = TID_NEW;
 128	++ret_buf->tc_count;
 129	spin_lock_init(&ret_buf->tc_lock);
 130	INIT_LIST_HEAD(&ret_buf->openFileList);
 131	INIT_LIST_HEAD(&ret_buf->tcon_list);
 132	spin_lock_init(&ret_buf->open_file_lock);
 133	spin_lock_init(&ret_buf->stat_lock);
 134	atomic_set(&ret_buf->num_local_opens, 0);
 135	atomic_set(&ret_buf->num_remote_opens, 0);
 136
 137	return ret_buf;
 138}
 139
 140void
 141tconInfoFree(struct cifs_tcon *tcon)
 142{
 143	if (tcon == NULL) {
 144		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
 145		return;
 146	}
 147	free_cached_dirs(tcon->cfids);
 148	atomic_dec(&tconInfoAllocCount);
 149	kfree(tcon->nativeFileSystem);
 150	kfree_sensitive(tcon->password);
 151	kfree(tcon);
 152}
 153
 154struct smb_hdr *
 155cifs_buf_get(void)
 156{
 157	struct smb_hdr *ret_buf = NULL;
 158	/*
 159	 * SMB2 header is bigger than CIFS one - no problems to clean some
 160	 * more bytes for CIFS.
 161	 */
 162	size_t buf_size = sizeof(struct smb2_hdr);
 163
 164	/*
 165	 * We could use negotiated size instead of max_msgsize -
 166	 * but it may be more efficient to always alloc same size
 167	 * albeit slightly larger than necessary and maxbuffersize
 168	 * defaults to this and can not be bigger.
 169	 */
 170	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
 171
 172	/* clear the first few header bytes */
 173	/* for most paths, more is cleared in header_assemble */
 174	memset(ret_buf, 0, buf_size + 3);
 175	atomic_inc(&buf_alloc_count);
 176#ifdef CONFIG_CIFS_STATS2
 177	atomic_inc(&total_buf_alloc_count);
 178#endif /* CONFIG_CIFS_STATS2 */
 179
 180	return ret_buf;
 181}
 182
 183void
 184cifs_buf_release(void *buf_to_free)
 185{
 186	if (buf_to_free == NULL) {
 187		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
 188		return;
 189	}
 190	mempool_free(buf_to_free, cifs_req_poolp);
 191
 192	atomic_dec(&buf_alloc_count);
 193	return;
 194}
 195
 196struct smb_hdr *
 197cifs_small_buf_get(void)
 198{
 199	struct smb_hdr *ret_buf = NULL;
 200
 201/* We could use negotiated size instead of max_msgsize -
 202   but it may be more efficient to always alloc same size
 203   albeit slightly larger than necessary and maxbuffersize
 204   defaults to this and can not be bigger */
 205	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
 206	/* No need to clear memory here, cleared in header assemble */
 207	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
 208	atomic_inc(&small_buf_alloc_count);
 209#ifdef CONFIG_CIFS_STATS2
 210	atomic_inc(&total_small_buf_alloc_count);
 211#endif /* CONFIG_CIFS_STATS2 */
 212
 213	return ret_buf;
 214}
 215
 216void
 217cifs_small_buf_release(void *buf_to_free)
 218{
 219
 220	if (buf_to_free == NULL) {
 221		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
 222		return;
 223	}
 224	mempool_free(buf_to_free, cifs_sm_req_poolp);
 225
 226	atomic_dec(&small_buf_alloc_count);
 227	return;
 228}
 229
 230void
 231free_rsp_buf(int resp_buftype, void *rsp)
 232{
 233	if (resp_buftype == CIFS_SMALL_BUFFER)
 234		cifs_small_buf_release(rsp);
 235	else if (resp_buftype == CIFS_LARGE_BUFFER)
 236		cifs_buf_release(rsp);
 237}
 238
 239/* NB: MID can not be set if treeCon not passed in, in that
 240   case it is responsbility of caller to set the mid */
 241void
 242header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
 243		const struct cifs_tcon *treeCon, int word_count
 244		/* length of fixed section (word count) in two byte units  */)
 245{
 246	char *temp = (char *) buffer;
 247
 248	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
 249
 250	buffer->smb_buf_length = cpu_to_be32(
 251	    (2 * word_count) + sizeof(struct smb_hdr) -
 252	    4 /*  RFC 1001 length field does not count */  +
 253	    2 /* for bcc field itself */) ;
 254
 255	buffer->Protocol[0] = 0xFF;
 256	buffer->Protocol[1] = 'S';
 257	buffer->Protocol[2] = 'M';
 258	buffer->Protocol[3] = 'B';
 259	buffer->Command = smb_command;
 260	buffer->Flags = 0x00;	/* case sensitive */
 261	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
 262	buffer->Pid = cpu_to_le16((__u16)current->tgid);
 263	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
 264	if (treeCon) {
 265		buffer->Tid = treeCon->tid;
 266		if (treeCon->ses) {
 267			if (treeCon->ses->capabilities & CAP_UNICODE)
 268				buffer->Flags2 |= SMBFLG2_UNICODE;
 269			if (treeCon->ses->capabilities & CAP_STATUS32)
 270				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
 271
 272			/* Uid is not converted */
 273			buffer->Uid = treeCon->ses->Suid;
 274			if (treeCon->ses->server)
 275				buffer->Mid = get_next_mid(treeCon->ses->server);
 276		}
 277		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
 278			buffer->Flags2 |= SMBFLG2_DFS;
 279		if (treeCon->nocase)
 280			buffer->Flags  |= SMBFLG_CASELESS;
 281		if ((treeCon->ses) && (treeCon->ses->server))
 282			if (treeCon->ses->server->sign)
 283				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
 284	}
 285
 286/*  endian conversion of flags is now done just before sending */
 287	buffer->WordCount = (char) word_count;
 288	return;
 289}
 290
 291static int
 292check_smb_hdr(struct smb_hdr *smb)
 293{
 294	/* does it have the right SMB "signature" ? */
 295	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
 296		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
 297			 *(unsigned int *)smb->Protocol);
 298		return 1;
 299	}
 300
 301	/* if it's a response then accept */
 302	if (smb->Flags & SMBFLG_RESPONSE)
 303		return 0;
 304
 305	/* only one valid case where server sends us request */
 306	if (smb->Command == SMB_COM_LOCKING_ANDX)
 307		return 0;
 308
 309	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
 310		 get_mid(smb));
 311	return 1;
 312}
 313
 314int
 315checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
 316{
 317	struct smb_hdr *smb = (struct smb_hdr *)buf;
 318	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
 319	__u32 clc_len;  /* calculated length */
 320	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
 321		 total_read, rfclen);
 322
 323	/* is this frame too small to even get to a BCC? */
 324	if (total_read < 2 + sizeof(struct smb_hdr)) {
 325		if ((total_read >= sizeof(struct smb_hdr) - 1)
 326			    && (smb->Status.CifsError != 0)) {
 327			/* it's an error return */
 328			smb->WordCount = 0;
 329			/* some error cases do not return wct and bcc */
 330			return 0;
 331		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
 332				(smb->WordCount == 0)) {
 333			char *tmp = (char *)smb;
 334			/* Need to work around a bug in two servers here */
 335			/* First, check if the part of bcc they sent was zero */
 336			if (tmp[sizeof(struct smb_hdr)] == 0) {
 337				/* some servers return only half of bcc
 338				 * on simple responses (wct, bcc both zero)
 339				 * in particular have seen this on
 340				 * ulogoffX and FindClose. This leaves
 341				 * one byte of bcc potentially unitialized
 342				 */
 343				/* zero rest of bcc */
 344				tmp[sizeof(struct smb_hdr)+1] = 0;
 345				return 0;
 346			}
 347			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
 348		} else {
 349			cifs_dbg(VFS, "Length less than smb header size\n");
 350		}
 351		return -EIO;
 352	}
 353
 354	/* otherwise, there is enough to get to the BCC */
 355	if (check_smb_hdr(smb))
 356		return -EIO;
 357	clc_len = smbCalcSize(smb);
 358
 359	if (4 + rfclen != total_read) {
 360		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
 361			 rfclen);
 362		return -EIO;
 363	}
 364
 365	if (4 + rfclen != clc_len) {
 366		__u16 mid = get_mid(smb);
 367		/* check if bcc wrapped around for large read responses */
 368		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
 369			/* check if lengths match mod 64K */
 370			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
 371				return 0; /* bcc wrapped */
 372		}
 373		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
 374			 clc_len, 4 + rfclen, mid);
 375
 376		if (4 + rfclen < clc_len) {
 377			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
 378				 rfclen, mid);
 379			return -EIO;
 380		} else if (rfclen > clc_len + 512) {
 381			/*
 382			 * Some servers (Windows XP in particular) send more
 383			 * data than the lengths in the SMB packet would
 384			 * indicate on certain calls (byte range locks and
 385			 * trans2 find first calls in particular). While the
 386			 * client can handle such a frame by ignoring the
 387			 * trailing data, we choose limit the amount of extra
 388			 * data to 512 bytes.
 389			 */
 390			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
 391				 rfclen, mid);
 392			return -EIO;
 393		}
 394	}
 395	return 0;
 396}
 397
 398bool
 399is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
 400{
 401	struct smb_hdr *buf = (struct smb_hdr *)buffer;
 402	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
 403	struct TCP_Server_Info *pserver;
 404	struct cifs_ses *ses;
 405	struct cifs_tcon *tcon;
 406	struct cifsInodeInfo *pCifsInode;
 407	struct cifsFileInfo *netfile;
 408
 409	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
 410	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
 411	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
 412		struct smb_com_transaction_change_notify_rsp *pSMBr =
 413			(struct smb_com_transaction_change_notify_rsp *)buf;
 414		struct file_notify_information *pnotify;
 415		__u32 data_offset = 0;
 416		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
 417
 418		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
 419			data_offset = le32_to_cpu(pSMBr->DataOffset);
 420
 421			if (data_offset >
 422			    len - sizeof(struct file_notify_information)) {
 423				cifs_dbg(FYI, "Invalid data_offset %u\n",
 424					 data_offset);
 425				return true;
 426			}
 427			pnotify = (struct file_notify_information *)
 428				((char *)&pSMBr->hdr.Protocol + data_offset);
 429			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
 430				 pnotify->FileName, pnotify->Action);
 431			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
 432				sizeof(struct smb_hdr)+60); */
 433			return true;
 434		}
 435		if (pSMBr->hdr.Status.CifsError) {
 436			cifs_dbg(FYI, "notify err 0x%x\n",
 437				 pSMBr->hdr.Status.CifsError);
 438			return true;
 439		}
 440		return false;
 441	}
 442	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
 443		return false;
 444	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
 445		/* no sense logging error on invalid handle on oplock
 446		   break - harmless race between close request and oplock
 447		   break response is expected from time to time writing out
 448		   large dirty files cached on the client */
 449		if ((NT_STATUS_INVALID_HANDLE) ==
 450		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
 451			cifs_dbg(FYI, "Invalid handle on oplock break\n");
 452			return true;
 453		} else if (ERRbadfid ==
 454		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
 455			return true;
 456		} else {
 457			return false; /* on valid oplock brk we get "request" */
 458		}
 459	}
 460	if (pSMB->hdr.WordCount != 8)
 461		return false;
 462
 463	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
 464		 pSMB->LockType, pSMB->OplockLevel);
 465	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
 466		return false;
 467
 468	/* If server is a channel, select the primary channel */
 469	pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
 470
 471	/* look up tcon based on tid & uid */
 472	spin_lock(&cifs_tcp_ses_lock);
 473	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
 474		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
 475			if (tcon->tid != buf->Tid)
 476				continue;
 477
 478			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
 479			spin_lock(&tcon->open_file_lock);
 480			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
 481				if (pSMB->Fid != netfile->fid.netfid)
 482					continue;
 483
 484				cifs_dbg(FYI, "file id match, oplock break\n");
 485				pCifsInode = CIFS_I(d_inode(netfile->dentry));
 486
 487				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
 488					&pCifsInode->flags);
 489
 490				netfile->oplock_epoch = 0;
 491				netfile->oplock_level = pSMB->OplockLevel;
 492				netfile->oplock_break_cancelled = false;
 493				cifs_queue_oplock_break(netfile);
 494
 495				spin_unlock(&tcon->open_file_lock);
 496				spin_unlock(&cifs_tcp_ses_lock);
 497				return true;
 498			}
 499			spin_unlock(&tcon->open_file_lock);
 500			spin_unlock(&cifs_tcp_ses_lock);
 501			cifs_dbg(FYI, "No matching file for oplock break\n");
 502			return true;
 503		}
 504	}
 505	spin_unlock(&cifs_tcp_ses_lock);
 506	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
 507	return true;
 508}
 509
 510void
 511dump_smb(void *buf, int smb_buf_length)
 512{
 513	if (traceSMB == 0)
 514		return;
 515
 516	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
 517		       smb_buf_length, true);
 518}
 519
 520void
 521cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
 522{
 523	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
 524		struct cifs_tcon *tcon = NULL;
 525
 526		if (cifs_sb->master_tlink)
 527			tcon = cifs_sb_master_tcon(cifs_sb);
 528
 529		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
 530		cifs_sb->mnt_cifs_serverino_autodisabled = true;
 531		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
 532			 tcon ? tcon->tree_name : "new server");
 533		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
 534		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
 535
 536	}
 537}
 538
 539void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
 540{
 541	oplock &= 0xF;
 542
 543	if (oplock == OPLOCK_EXCLUSIVE) {
 544		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
 545		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
 546			 &cinode->netfs.inode);
 547	} else if (oplock == OPLOCK_READ) {
 548		cinode->oplock = CIFS_CACHE_READ_FLG;
 549		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
 550			 &cinode->netfs.inode);
 551	} else
 552		cinode->oplock = 0;
 553}
 554
 555/*
 556 * We wait for oplock breaks to be processed before we attempt to perform
 557 * writes.
 558 */
 559int cifs_get_writer(struct cifsInodeInfo *cinode)
 560{
 561	int rc;
 562
 563start:
 564	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
 565			 TASK_KILLABLE);
 566	if (rc)
 567		return rc;
 568
 569	spin_lock(&cinode->writers_lock);
 570	if (!cinode->writers)
 571		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
 572	cinode->writers++;
 573	/* Check to see if we have started servicing an oplock break */
 574	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
 575		cinode->writers--;
 576		if (cinode->writers == 0) {
 577			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
 578			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
 579		}
 580		spin_unlock(&cinode->writers_lock);
 581		goto start;
 582	}
 583	spin_unlock(&cinode->writers_lock);
 584	return 0;
 585}
 586
 587void cifs_put_writer(struct cifsInodeInfo *cinode)
 588{
 589	spin_lock(&cinode->writers_lock);
 590	cinode->writers--;
 591	if (cinode->writers == 0) {
 592		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
 593		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
 594	}
 595	spin_unlock(&cinode->writers_lock);
 596}
 597
 598/**
 599 * cifs_queue_oplock_break - queue the oplock break handler for cfile
 600 * @cfile: The file to break the oplock on
 601 *
 602 * This function is called from the demultiplex thread when it
 603 * receives an oplock break for @cfile.
 604 *
 605 * Assumes the tcon->open_file_lock is held.
 606 * Assumes cfile->file_info_lock is NOT held.
 607 */
 608void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
 609{
 610	/*
 611	 * Bump the handle refcount now while we hold the
 612	 * open_file_lock to enforce the validity of it for the oplock
 613	 * break handler. The matching put is done at the end of the
 614	 * handler.
 615	 */
 616	cifsFileInfo_get(cfile);
 617
 618	queue_work(cifsoplockd_wq, &cfile->oplock_break);
 619}
 620
 621void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
 622{
 623	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
 624	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
 625}
 626
 627bool
 628backup_cred(struct cifs_sb_info *cifs_sb)
 629{
 630	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
 631		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
 632			return true;
 633	}
 634	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
 635		if (in_group_p(cifs_sb->ctx->backupgid))
 636			return true;
 637	}
 638
 639	return false;
 640}
 641
 642void
 643cifs_del_pending_open(struct cifs_pending_open *open)
 644{
 645	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
 646	list_del(&open->olist);
 647	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
 648}
 649
 650void
 651cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
 652			     struct cifs_pending_open *open)
 653{
 654	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
 655	open->oplock = CIFS_OPLOCK_NO_CHANGE;
 656	open->tlink = tlink;
 657	fid->pending_open = open;
 658	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
 659}
 660
 661void
 662cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
 663		      struct cifs_pending_open *open)
 664{
 665	spin_lock(&tlink_tcon(tlink)->open_file_lock);
 666	cifs_add_pending_open_locked(fid, tlink, open);
 667	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
 668}
 669
 670/*
 671 * Critical section which runs after acquiring deferred_lock.
 672 * As there is no reference count on cifs_deferred_close, pdclose
 673 * should not be used outside deferred_lock.
 674 */
 675bool
 676cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
 677{
 678	struct cifs_deferred_close *dclose;
 679
 680	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
 681		if ((dclose->netfid == cfile->fid.netfid) &&
 682			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
 683			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
 684			*pdclose = dclose;
 685			return true;
 686		}
 687	}
 688	return false;
 689}
 690
 691/*
 692 * Critical section which runs after acquiring deferred_lock.
 693 */
 694void
 695cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
 696{
 697	bool is_deferred = false;
 698	struct cifs_deferred_close *pdclose;
 699
 700	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
 701	if (is_deferred) {
 702		kfree(dclose);
 703		return;
 704	}
 705
 706	dclose->tlink = cfile->tlink;
 707	dclose->netfid = cfile->fid.netfid;
 708	dclose->persistent_fid = cfile->fid.persistent_fid;
 709	dclose->volatile_fid = cfile->fid.volatile_fid;
 710	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
 711}
 712
 713/*
 714 * Critical section which runs after acquiring deferred_lock.
 715 */
 716void
 717cifs_del_deferred_close(struct cifsFileInfo *cfile)
 718{
 719	bool is_deferred = false;
 720	struct cifs_deferred_close *dclose;
 721
 722	is_deferred = cifs_is_deferred_close(cfile, &dclose);
 723	if (!is_deferred)
 724		return;
 725	list_del(&dclose->dlist);
 726	kfree(dclose);
 727}
 728
 729void
 730cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
 731{
 732	struct cifsFileInfo *cfile = NULL;
 733	struct file_list *tmp_list, *tmp_next_list;
 734	struct list_head file_head;
 735
 736	if (cifs_inode == NULL)
 737		return;
 738
 739	INIT_LIST_HEAD(&file_head);
 740	spin_lock(&cifs_inode->open_file_lock);
 741	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
 742		if (delayed_work_pending(&cfile->deferred)) {
 743			if (cancel_delayed_work(&cfile->deferred)) {
 744				cifs_del_deferred_close(cfile);
 745
 746				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
 747				if (tmp_list == NULL)
 748					break;
 749				tmp_list->cfile = cfile;
 750				list_add_tail(&tmp_list->list, &file_head);
 751			}
 752		}
 753	}
 754	spin_unlock(&cifs_inode->open_file_lock);
 755
 756	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
 757		_cifsFileInfo_put(tmp_list->cfile, true, false);
 758		list_del(&tmp_list->list);
 759		kfree(tmp_list);
 760	}
 761}
 762
 763void
 764cifs_close_all_deferred_files(struct cifs_tcon *tcon)
 765{
 766	struct cifsFileInfo *cfile;
 767	struct file_list *tmp_list, *tmp_next_list;
 768	struct list_head file_head;
 769
 770	INIT_LIST_HEAD(&file_head);
 771	spin_lock(&tcon->open_file_lock);
 772	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
 773		if (delayed_work_pending(&cfile->deferred)) {
 774			if (cancel_delayed_work(&cfile->deferred)) {
 775				cifs_del_deferred_close(cfile);
 776
 777				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
 778				if (tmp_list == NULL)
 779					break;
 780				tmp_list->cfile = cfile;
 781				list_add_tail(&tmp_list->list, &file_head);
 782			}
 783		}
 784	}
 785	spin_unlock(&tcon->open_file_lock);
 786
 787	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
 788		_cifsFileInfo_put(tmp_list->cfile, true, false);
 789		list_del(&tmp_list->list);
 790		kfree(tmp_list);
 791	}
 792}
 793void
 794cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
 795{
 796	struct cifsFileInfo *cfile;
 797	struct file_list *tmp_list, *tmp_next_list;
 798	struct list_head file_head;
 799	void *page;
 800	const char *full_path;
 801
 802	INIT_LIST_HEAD(&file_head);
 803	page = alloc_dentry_path();
 804	spin_lock(&tcon->open_file_lock);
 805	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
 806		full_path = build_path_from_dentry(cfile->dentry, page);
 807		if (strstr(full_path, path)) {
 808			if (delayed_work_pending(&cfile->deferred)) {
 809				if (cancel_delayed_work(&cfile->deferred)) {
 810					cifs_del_deferred_close(cfile);
 811
 812					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
 813					if (tmp_list == NULL)
 814						break;
 815					tmp_list->cfile = cfile;
 816					list_add_tail(&tmp_list->list, &file_head);
 817				}
 818			}
 819		}
 820	}
 821	spin_unlock(&tcon->open_file_lock);
 822
 823	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
 824		_cifsFileInfo_put(tmp_list->cfile, true, false);
 825		list_del(&tmp_list->list);
 826		kfree(tmp_list);
 827	}
 828	free_dentry_path(page);
 829}
 830
 831/* parses DFS referral V3 structure
 832 * caller is responsible for freeing target_nodes
 833 * returns:
 834 * - on success - 0
 835 * - on failure - errno
 836 */
 837int
 838parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
 839		    unsigned int *num_of_nodes,
 840		    struct dfs_info3_param **target_nodes,
 841		    const struct nls_table *nls_codepage, int remap,
 842		    const char *searchName, bool is_unicode)
 843{
 844	int i, rc = 0;
 845	char *data_end;
 846	struct dfs_referral_level_3 *ref;
 847
 848	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
 849
 850	if (*num_of_nodes < 1) {
 851		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
 852			 *num_of_nodes);
 853		rc = -EINVAL;
 854		goto parse_DFS_referrals_exit;
 855	}
 856
 857	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
 858	if (ref->VersionNumber != cpu_to_le16(3)) {
 859		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
 860			 le16_to_cpu(ref->VersionNumber));
 861		rc = -EINVAL;
 862		goto parse_DFS_referrals_exit;
 863	}
 864
 865	/* get the upper boundary of the resp buffer */
 866	data_end = (char *)rsp + rsp_size;
 867
 868	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
 869		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
 870
 871	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
 872				GFP_KERNEL);
 873	if (*target_nodes == NULL) {
 874		rc = -ENOMEM;
 875		goto parse_DFS_referrals_exit;
 876	}
 877
 878	/* collect necessary data from referrals */
 879	for (i = 0; i < *num_of_nodes; i++) {
 880		char *temp;
 881		int max_len;
 882		struct dfs_info3_param *node = (*target_nodes)+i;
 883
 884		node->flags = le32_to_cpu(rsp->DFSFlags);
 885		if (is_unicode) {
 886			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
 887						GFP_KERNEL);
 888			if (tmp == NULL) {
 889				rc = -ENOMEM;
 890				goto parse_DFS_referrals_exit;
 891			}
 892			cifsConvertToUTF16((__le16 *) tmp, searchName,
 893					   PATH_MAX, nls_codepage, remap);
 894			node->path_consumed = cifs_utf16_bytes(tmp,
 895					le16_to_cpu(rsp->PathConsumed),
 896					nls_codepage);
 897			kfree(tmp);
 898		} else
 899			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
 900
 901		node->server_type = le16_to_cpu(ref->ServerType);
 902		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
 903
 904		/* copy DfsPath */
 905		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
 906		max_len = data_end - temp;
 907		node->path_name = cifs_strndup_from_utf16(temp, max_len,
 908						is_unicode, nls_codepage);
 909		if (!node->path_name) {
 910			rc = -ENOMEM;
 911			goto parse_DFS_referrals_exit;
 912		}
 913
 914		/* copy link target UNC */
 915		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
 916		max_len = data_end - temp;
 917		node->node_name = cifs_strndup_from_utf16(temp, max_len,
 918						is_unicode, nls_codepage);
 919		if (!node->node_name) {
 920			rc = -ENOMEM;
 921			goto parse_DFS_referrals_exit;
 922		}
 923
 924		node->ttl = le32_to_cpu(ref->TimeToLive);
 925
 926		ref++;
 927	}
 928
 929parse_DFS_referrals_exit:
 930	if (rc) {
 931		free_dfs_info_array(*target_nodes, *num_of_nodes);
 932		*target_nodes = NULL;
 933		*num_of_nodes = 0;
 934	}
 935	return rc;
 936}
 937
 938struct cifs_aio_ctx *
 939cifs_aio_ctx_alloc(void)
 940{
 941	struct cifs_aio_ctx *ctx;
 942
 943	/*
 944	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
 945	 * to false so that we know when we have to unreference pages within
 946	 * cifs_aio_ctx_release()
 947	 */
 948	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
 949	if (!ctx)
 950		return NULL;
 951
 952	INIT_LIST_HEAD(&ctx->list);
 953	mutex_init(&ctx->aio_mutex);
 954	init_completion(&ctx->done);
 955	kref_init(&ctx->refcount);
 956	return ctx;
 957}
 958
 959void
 960cifs_aio_ctx_release(struct kref *refcount)
 961{
 962	struct cifs_aio_ctx *ctx = container_of(refcount,
 963					struct cifs_aio_ctx, refcount);
 964
 965	cifsFileInfo_put(ctx->cfile);
 966
 967	/*
 968	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
 969	 * which means that iov_iter_get_pages() was a success and thus that
 970	 * we have taken reference on pages.
 971	 */
 972	if (ctx->bv) {
 973		unsigned i;
 974
 975		for (i = 0; i < ctx->npages; i++) {
 976			if (ctx->should_dirty)
 977				set_page_dirty(ctx->bv[i].bv_page);
 978			put_page(ctx->bv[i].bv_page);
 979		}
 980		kvfree(ctx->bv);
 981	}
 982
 983	kfree(ctx);
 984}
 985
 986#define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
 987
 988int
 989setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
 990{
 991	ssize_t rc;
 992	unsigned int cur_npages;
 993	unsigned int npages = 0;
 994	unsigned int i;
 995	size_t len;
 996	size_t count = iov_iter_count(iter);
 997	unsigned int saved_len;
 998	size_t start;
 999	unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
1000	struct page **pages = NULL;
1001	struct bio_vec *bv = NULL;
1002
1003	if (iov_iter_is_kvec(iter)) {
1004		memcpy(&ctx->iter, iter, sizeof(*iter));
1005		ctx->len = count;
1006		iov_iter_advance(iter, count);
1007		return 0;
1008	}
1009
1010	if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1011		bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1012
1013	if (!bv) {
1014		bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1015		if (!bv)
1016			return -ENOMEM;
1017	}
1018
1019	if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1020		pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1021
1022	if (!pages) {
1023		pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1024		if (!pages) {
1025			kvfree(bv);
1026			return -ENOMEM;
1027		}
1028	}
1029
1030	saved_len = count;
1031
1032	while (count && npages < max_pages) {
1033		rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start);
1034		if (rc < 0) {
1035			cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1036			break;
1037		}
1038
1039		if (rc > count) {
1040			cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1041				 count);
1042			break;
1043		}
1044
1045		count -= rc;
1046		rc += start;
1047		cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1048
1049		if (npages + cur_npages > max_pages) {
1050			cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1051				 npages + cur_npages, max_pages);
1052			break;
1053		}
1054
1055		for (i = 0; i < cur_npages; i++) {
1056			len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1057			bv[npages + i].bv_page = pages[i];
1058			bv[npages + i].bv_offset = start;
1059			bv[npages + i].bv_len = len - start;
1060			rc -= len;
1061			start = 0;
1062		}
1063
1064		npages += cur_npages;
1065	}
1066
1067	kvfree(pages);
1068	ctx->bv = bv;
1069	ctx->len = saved_len - count;
1070	ctx->npages = npages;
1071	iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1072	return 0;
1073}
1074
1075/**
1076 * cifs_alloc_hash - allocate hash and hash context together
1077 * @name: The name of the crypto hash algo
1078 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1079 *
1080 * The caller has to make sure @sdesc is initialized to either NULL or
1081 * a valid context. It can be freed via cifs_free_hash().
1082 */
1083int
1084cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1085{
1086	int rc = 0;
1087	struct crypto_shash *alg = NULL;
1088
1089	if (*sdesc)
1090		return 0;
1091
1092	alg = crypto_alloc_shash(name, 0, 0);
1093	if (IS_ERR(alg)) {
1094		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1095		rc = PTR_ERR(alg);
1096		*sdesc = NULL;
1097		return rc;
1098	}
1099
1100	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1101	if (*sdesc == NULL) {
1102		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1103		crypto_free_shash(alg);
1104		return -ENOMEM;
1105	}
1106
1107	(*sdesc)->tfm = alg;
1108	return 0;
1109}
1110
1111/**
1112 * cifs_free_hash - free hash and hash context together
1113 * @sdesc: Where to find the pointer to the hash TFM
1114 *
1115 * Freeing a NULL descriptor is safe.
1116 */
1117void
1118cifs_free_hash(struct shash_desc **sdesc)
1119{
1120	if (unlikely(!sdesc) || !*sdesc)
1121		return;
1122
1123	if ((*sdesc)->tfm) {
1124		crypto_free_shash((*sdesc)->tfm);
1125		(*sdesc)->tfm = NULL;
1126	}
1127
1128	kfree_sensitive(*sdesc);
1129	*sdesc = NULL;
1130}
1131
1132/**
1133 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1134 * @rqst: The request descriptor
1135 * @page: The index of the page to query
1136 * @len: Where to store the length for this page:
1137 * @offset: Where to store the offset for this page
1138 */
1139void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page,
1140			  unsigned int *len, unsigned int *offset)
1141{
1142	*len = rqst->rq_pagesz;
1143	*offset = (page == 0) ? rqst->rq_offset : 0;
1144
1145	if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1146		*len = rqst->rq_tailsz;
1147	else if (page == 0)
1148		*len = rqst->rq_pagesz - rqst->rq_offset;
1149}
1150
1151void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1152{
1153	const char *end;
1154
1155	/* skip initial slashes */
1156	while (*unc && (*unc == '\\' || *unc == '/'))
1157		unc++;
1158
1159	end = unc;
1160
1161	while (*end && !(*end == '\\' || *end == '/'))
1162		end++;
1163
1164	*h = unc;
1165	*len = end - unc;
1166}
1167
1168/**
1169 * copy_path_name - copy src path to dst, possibly truncating
1170 * @dst: The destination buffer
1171 * @src: The source name
1172 *
1173 * returns number of bytes written (including trailing nul)
1174 */
1175int copy_path_name(char *dst, const char *src)
1176{
1177	int name_len;
1178
1179	/*
1180	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1181	 * will truncate and strlen(dst) will be PATH_MAX-1
1182	 */
1183	name_len = strscpy(dst, src, PATH_MAX);
1184	if (WARN_ON_ONCE(name_len < 0))
1185		name_len = PATH_MAX-1;
1186
1187	/* we count the trailing nul */
1188	name_len++;
1189	return name_len;
1190}
1191
1192struct super_cb_data {
1193	void *data;
1194	struct super_block *sb;
1195};
1196
1197static void tcp_super_cb(struct super_block *sb, void *arg)
1198{
1199	struct super_cb_data *sd = arg;
1200	struct TCP_Server_Info *server = sd->data;
1201	struct cifs_sb_info *cifs_sb;
1202	struct cifs_tcon *tcon;
1203
1204	if (sd->sb)
1205		return;
1206
1207	cifs_sb = CIFS_SB(sb);
1208	tcon = cifs_sb_master_tcon(cifs_sb);
1209	if (tcon->ses->server == server)
1210		sd->sb = sb;
1211}
1212
1213static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1214					    void *data)
1215{
1216	struct super_cb_data sd = {
1217		.data = data,
1218		.sb = NULL,
1219	};
1220	struct file_system_type **fs_type = (struct file_system_type *[]) {
1221		&cifs_fs_type, &smb3_fs_type, NULL,
1222	};
1223
1224	for (; *fs_type; fs_type++) {
1225		iterate_supers_type(*fs_type, f, &sd);
1226		if (sd.sb) {
1227			/*
1228			 * Grab an active reference in order to prevent automounts (DFS links)
1229			 * of expiring and then freeing up our cifs superblock pointer while
1230			 * we're doing failover.
1231			 */
1232			cifs_sb_active(sd.sb);
1233			return sd.sb;
1234		}
1235	}
1236	return ERR_PTR(-EINVAL);
1237}
1238
1239static void __cifs_put_super(struct super_block *sb)
1240{
1241	if (!IS_ERR_OR_NULL(sb))
1242		cifs_sb_deactive(sb);
1243}
1244
1245struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1246{
1247	return __cifs_get_super(tcp_super_cb, server);
1248}
1249
1250void cifs_put_tcp_super(struct super_block *sb)
1251{
1252	__cifs_put_super(sb);
1253}
1254
1255#ifdef CONFIG_CIFS_DFS_UPCALL
1256int match_target_ip(struct TCP_Server_Info *server,
1257		    const char *share, size_t share_len,
1258		    bool *result)
1259{
1260	int rc;
1261	char *target;
1262	struct sockaddr_storage ss;
1263
1264	*result = false;
1265
1266	target = kzalloc(share_len + 3, GFP_KERNEL);
1267	if (!target)
1268		return -ENOMEM;
1269
1270	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1271
1272	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1273
1274	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1275	kfree(target);
1276
1277	if (rc < 0)
1278		return rc;
1279
1280	spin_lock(&server->srv_lock);
1281	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1282	spin_unlock(&server->srv_lock);
1283	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1284	return 0;
1285}
1286
1287int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1288{
1289	kfree(cifs_sb->prepath);
1290
1291	if (prefix && *prefix) {
1292		cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1293		if (!cifs_sb->prepath)
1294			return -ENOMEM;
1295
1296		convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1297	} else
1298		cifs_sb->prepath = NULL;
1299
1300	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1301	return 0;
1302}
1303#endif