Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * ARM CoreSight Architecture PMU driver.
4 *
5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7 * like other uncore PMUs, it does not support process specific events and
8 * cannot be used in sampling mode.
9 *
10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11 * generic implementation to operate the PMU according to CoreSight PMU
12 * architecture and ACPI ARM PMU table (APMT) documents below:
13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14 * - APMT document number: ARM DEN0117.
15 *
16 * The user should refer to the vendor technical documentation to get details
17 * about the supported events.
18 *
19 * Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20 *
21 */
22
23#include <linux/acpi.h>
24#include <linux/cacheinfo.h>
25#include <linux/ctype.h>
26#include <linux/interrupt.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/module.h>
29#include <linux/perf_event.h>
30#include <linux/platform_device.h>
31#include <acpi/processor.h>
32
33#include "arm_cspmu.h"
34#include "nvidia_cspmu.h"
35
36#define PMUNAME "arm_cspmu"
37#define DRVNAME "arm-cs-arch-pmu"
38
39#define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
41 (unsigned long)_config)
42
43/*
44 * CoreSight PMU Arch register offsets.
45 */
46#define PMEVCNTR_LO 0x0
47#define PMEVCNTR_HI 0x4
48#define PMEVTYPER 0x400
49#define PMCCFILTR 0x47C
50#define PMEVFILTR 0xA00
51#define PMCNTENSET 0xC00
52#define PMCNTENCLR 0xC20
53#define PMINTENSET 0xC40
54#define PMINTENCLR 0xC60
55#define PMOVSCLR 0xC80
56#define PMOVSSET 0xCC0
57#define PMCFGR 0xE00
58#define PMCR 0xE04
59#define PMIIDR 0xE08
60
61/* PMCFGR register field */
62#define PMCFGR_NCG GENMASK(31, 28)
63#define PMCFGR_HDBG BIT(24)
64#define PMCFGR_TRO BIT(23)
65#define PMCFGR_SS BIT(22)
66#define PMCFGR_FZO BIT(21)
67#define PMCFGR_MSI BIT(20)
68#define PMCFGR_UEN BIT(19)
69#define PMCFGR_NA BIT(17)
70#define PMCFGR_EX BIT(16)
71#define PMCFGR_CCD BIT(15)
72#define PMCFGR_CC BIT(14)
73#define PMCFGR_SIZE GENMASK(13, 8)
74#define PMCFGR_N GENMASK(7, 0)
75
76/* PMCR register field */
77#define PMCR_TRO BIT(11)
78#define PMCR_HDBG BIT(10)
79#define PMCR_FZO BIT(9)
80#define PMCR_NA BIT(8)
81#define PMCR_DP BIT(5)
82#define PMCR_X BIT(4)
83#define PMCR_D BIT(3)
84#define PMCR_C BIT(2)
85#define PMCR_P BIT(1)
86#define PMCR_E BIT(0)
87
88/* Each SET/CLR register supports up to 32 counters. */
89#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
90#define ARM_CSPMU_SET_CLR_COUNTER_NUM \
91 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
92
93/* Convert counter idx into SET/CLR register number. */
94#define COUNTER_TO_SET_CLR_ID(idx) \
95 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
96
97/* Convert counter idx into SET/CLR register bit. */
98#define COUNTER_TO_SET_CLR_BIT(idx) \
99 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
100
101#define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
102#define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
103
104/* Check if field f in flags is set with value v */
105#define CHECK_APMT_FLAG(flags, f, v) \
106 ((flags & (ACPI_APMT_FLAGS_ ## f)) == (ACPI_APMT_FLAGS_ ## f ## _ ## v))
107
108/* Check and use default if implementer doesn't provide attribute callback */
109#define CHECK_DEFAULT_IMPL_OPS(ops, callback) \
110 do { \
111 if (!ops->callback) \
112 ops->callback = arm_cspmu_ ## callback; \
113 } while (0)
114
115/*
116 * Maximum poll count for reading counter value using high-low-high sequence.
117 */
118#define HILOHI_MAX_POLL 1000
119
120/* JEDEC-assigned JEP106 identification code */
121#define ARM_CSPMU_IMPL_ID_NVIDIA 0x36B
122
123static unsigned long arm_cspmu_cpuhp_state;
124
125/*
126 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
127 * counter register. The counter register can be implemented as 32-bit or 64-bit
128 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
129 * single-copy 64-bit atomic support is implementation defined. APMT node flag
130 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
131 * single copy atomic is not supported, the driver treats the register as a pair
132 * of 32-bit register.
133 */
134
135/*
136 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
137 */
138static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
139{
140 u32 val_lo, val_hi;
141 u64 val;
142
143 /* Use high-low-high sequence to avoid tearing */
144 do {
145 if (max_poll_count-- == 0) {
146 pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
147 return 0;
148 }
149
150 val_hi = readl(addr + 4);
151 val_lo = readl(addr);
152 } while (val_hi != readl(addr + 4));
153
154 val = (((u64)val_hi << 32) | val_lo);
155
156 return val;
157}
158
159/* Check if PMU supports 64-bit single copy atomic. */
160static inline bool supports_64bit_atomics(const struct arm_cspmu *cspmu)
161{
162 return CHECK_APMT_FLAG(cspmu->apmt_node->flags, ATOMIC, SUPP);
163}
164
165/* Check if cycle counter is supported. */
166static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
167{
168 return (cspmu->pmcfgr & PMCFGR_CC);
169}
170
171/* Get counter size, which is (PMCFGR_SIZE + 1). */
172static inline u32 counter_size(const struct arm_cspmu *cspmu)
173{
174 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
175}
176
177/* Get counter mask. */
178static inline u64 counter_mask(const struct arm_cspmu *cspmu)
179{
180 return GENMASK_ULL(counter_size(cspmu) - 1, 0);
181}
182
183/* Check if counter is implemented as 64-bit register. */
184static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
185{
186 return (counter_size(cspmu) > 32);
187}
188
189ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
190 struct device_attribute *attr, char *buf)
191{
192 struct dev_ext_attribute *eattr =
193 container_of(attr, struct dev_ext_attribute, attr);
194 return sysfs_emit(buf, "event=0x%llx\n",
195 (unsigned long long)eattr->var);
196}
197EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
198
199/* Default event list. */
200static struct attribute *arm_cspmu_event_attrs[] = {
201 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
202 NULL,
203};
204
205static struct attribute **
206arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
207{
208 struct attribute **attrs;
209
210 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
211 sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
212
213 return attrs;
214}
215
216static umode_t
217arm_cspmu_event_attr_is_visible(struct kobject *kobj,
218 struct attribute *attr, int unused)
219{
220 struct device *dev = kobj_to_dev(kobj);
221 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
222 struct perf_pmu_events_attr *eattr;
223
224 eattr = container_of(attr, typeof(*eattr), attr.attr);
225
226 /* Hide cycle event if not supported */
227 if (!supports_cycle_counter(cspmu) &&
228 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
229 return 0;
230
231 return attr->mode;
232}
233
234ssize_t arm_cspmu_sysfs_format_show(struct device *dev,
235 struct device_attribute *attr,
236 char *buf)
237{
238 struct dev_ext_attribute *eattr =
239 container_of(attr, struct dev_ext_attribute, attr);
240 return sysfs_emit(buf, "%s\n", (char *)eattr->var);
241}
242EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_format_show);
243
244static struct attribute *arm_cspmu_format_attrs[] = {
245 ARM_CSPMU_FORMAT_EVENT_ATTR,
246 ARM_CSPMU_FORMAT_FILTER_ATTR,
247 NULL,
248};
249
250static struct attribute **
251arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
252{
253 struct attribute **attrs;
254
255 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
256 sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
257
258 return attrs;
259}
260
261static u32 arm_cspmu_event_type(const struct perf_event *event)
262{
263 return event->attr.config & ARM_CSPMU_EVENT_MASK;
264}
265
266static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
267{
268 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
269}
270
271static u32 arm_cspmu_event_filter(const struct perf_event *event)
272{
273 return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
274}
275
276static ssize_t arm_cspmu_identifier_show(struct device *dev,
277 struct device_attribute *attr,
278 char *page)
279{
280 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
281
282 return sysfs_emit(page, "%s\n", cspmu->identifier);
283}
284
285static struct device_attribute arm_cspmu_identifier_attr =
286 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
287
288static struct attribute *arm_cspmu_identifier_attrs[] = {
289 &arm_cspmu_identifier_attr.attr,
290 NULL,
291};
292
293static struct attribute_group arm_cspmu_identifier_attr_group = {
294 .attrs = arm_cspmu_identifier_attrs,
295};
296
297static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
298{
299 const char *identifier =
300 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
301 cspmu->impl.pmiidr);
302 return identifier;
303}
304
305static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
306 "mc",
307 "smmu",
308 "pcie",
309 "acpi",
310 "cache",
311};
312
313static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
314{
315 struct device *dev;
316 struct acpi_apmt_node *apmt_node;
317 u8 pmu_type;
318 char *name;
319 char acpi_hid_string[ACPI_ID_LEN] = { 0 };
320 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
321
322 dev = cspmu->dev;
323 apmt_node = cspmu->apmt_node;
324 pmu_type = apmt_node->type;
325
326 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
327 dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
328 return NULL;
329 }
330
331 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
332 memcpy(acpi_hid_string,
333 &apmt_node->inst_primary,
334 sizeof(apmt_node->inst_primary));
335 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
336 arm_cspmu_type_str[pmu_type],
337 acpi_hid_string,
338 apmt_node->inst_secondary);
339 } else {
340 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
341 arm_cspmu_type_str[pmu_type],
342 atomic_fetch_inc(&pmu_idx[pmu_type]));
343 }
344
345 return name;
346}
347
348static ssize_t arm_cspmu_cpumask_show(struct device *dev,
349 struct device_attribute *attr,
350 char *buf)
351{
352 struct pmu *pmu = dev_get_drvdata(dev);
353 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
354 struct dev_ext_attribute *eattr =
355 container_of(attr, struct dev_ext_attribute, attr);
356 unsigned long mask_id = (unsigned long)eattr->var;
357 const cpumask_t *cpumask;
358
359 switch (mask_id) {
360 case ARM_CSPMU_ACTIVE_CPU_MASK:
361 cpumask = &cspmu->active_cpu;
362 break;
363 case ARM_CSPMU_ASSOCIATED_CPU_MASK:
364 cpumask = &cspmu->associated_cpus;
365 break;
366 default:
367 return 0;
368 }
369 return cpumap_print_to_pagebuf(true, buf, cpumask);
370}
371
372static struct attribute *arm_cspmu_cpumask_attrs[] = {
373 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
374 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
375 NULL,
376};
377
378static struct attribute_group arm_cspmu_cpumask_attr_group = {
379 .attrs = arm_cspmu_cpumask_attrs,
380};
381
382struct impl_match {
383 u32 pmiidr;
384 u32 mask;
385 int (*impl_init_ops)(struct arm_cspmu *cspmu);
386};
387
388static const struct impl_match impl_match[] = {
389 {
390 .pmiidr = ARM_CSPMU_IMPL_ID_NVIDIA,
391 .mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
392 .impl_init_ops = nv_cspmu_init_ops
393 },
394 {}
395};
396
397static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
398{
399 int ret;
400 struct acpi_apmt_node *apmt_node = cspmu->apmt_node;
401 struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
402 const struct impl_match *match = impl_match;
403
404 /*
405 * Get PMU implementer and product id from APMT node.
406 * If APMT node doesn't have implementer/product id, try get it
407 * from PMIIDR.
408 */
409 cspmu->impl.pmiidr =
410 (apmt_node->impl_id) ? apmt_node->impl_id :
411 readl(cspmu->base0 + PMIIDR);
412
413 /* Find implementer specific attribute ops. */
414 for (; match->pmiidr; match++) {
415 const u32 mask = match->mask;
416
417 if ((match->pmiidr & mask) == (cspmu->impl.pmiidr & mask)) {
418 ret = match->impl_init_ops(cspmu);
419 if (ret)
420 return ret;
421
422 break;
423 }
424 }
425
426 /* Use default callbacks if implementer doesn't provide one. */
427 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_event_attrs);
428 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_format_attrs);
429 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_identifier);
430 CHECK_DEFAULT_IMPL_OPS(impl_ops, get_name);
431 CHECK_DEFAULT_IMPL_OPS(impl_ops, is_cycle_counter_event);
432 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_type);
433 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_filter);
434 CHECK_DEFAULT_IMPL_OPS(impl_ops, event_attr_is_visible);
435
436 return 0;
437}
438
439static struct attribute_group *
440arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
441{
442 struct attribute_group *event_group;
443 struct device *dev = cspmu->dev;
444 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
445
446 event_group =
447 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
448 if (!event_group)
449 return NULL;
450
451 event_group->name = "events";
452 event_group->is_visible = impl_ops->event_attr_is_visible;
453 event_group->attrs = impl_ops->get_event_attrs(cspmu);
454
455 if (!event_group->attrs)
456 return NULL;
457
458 return event_group;
459}
460
461static struct attribute_group *
462arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
463{
464 struct attribute_group *format_group;
465 struct device *dev = cspmu->dev;
466
467 format_group =
468 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
469 if (!format_group)
470 return NULL;
471
472 format_group->name = "format";
473 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
474
475 if (!format_group->attrs)
476 return NULL;
477
478 return format_group;
479}
480
481static struct attribute_group **
482arm_cspmu_alloc_attr_group(struct arm_cspmu *cspmu)
483{
484 struct attribute_group **attr_groups = NULL;
485 struct device *dev = cspmu->dev;
486 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
487 int ret;
488
489 ret = arm_cspmu_init_impl_ops(cspmu);
490 if (ret)
491 return NULL;
492
493 cspmu->identifier = impl_ops->get_identifier(cspmu);
494 cspmu->name = impl_ops->get_name(cspmu);
495
496 if (!cspmu->identifier || !cspmu->name)
497 return NULL;
498
499 attr_groups = devm_kcalloc(dev, 5, sizeof(struct attribute_group *),
500 GFP_KERNEL);
501 if (!attr_groups)
502 return NULL;
503
504 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
505 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
506 attr_groups[2] = &arm_cspmu_identifier_attr_group;
507 attr_groups[3] = &arm_cspmu_cpumask_attr_group;
508
509 if (!attr_groups[0] || !attr_groups[1])
510 return NULL;
511
512 return attr_groups;
513}
514
515static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
516{
517 u32 pmcr = 0;
518
519 pmcr |= PMCR_P;
520 pmcr |= PMCR_C;
521 writel(pmcr, cspmu->base0 + PMCR);
522}
523
524static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
525{
526 writel(PMCR_E, cspmu->base0 + PMCR);
527}
528
529static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
530{
531 writel(0, cspmu->base0 + PMCR);
532}
533
534static void arm_cspmu_enable(struct pmu *pmu)
535{
536 bool disabled;
537 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
538
539 disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
540 cspmu->num_logical_ctrs);
541
542 if (disabled)
543 return;
544
545 arm_cspmu_start_counters(cspmu);
546}
547
548static void arm_cspmu_disable(struct pmu *pmu)
549{
550 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
551
552 arm_cspmu_stop_counters(cspmu);
553}
554
555static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
556 struct perf_event *event)
557{
558 int idx;
559 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
560
561 if (supports_cycle_counter(cspmu)) {
562 if (cspmu->impl.ops.is_cycle_counter_event(event)) {
563 /* Search for available cycle counter. */
564 if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
565 hw_events->used_ctrs))
566 return -EAGAIN;
567
568 return cspmu->cycle_counter_logical_idx;
569 }
570
571 /*
572 * Search a regular counter from the used counter bitmap.
573 * The cycle counter divides the bitmap into two parts. Search
574 * the first then second half to exclude the cycle counter bit.
575 */
576 idx = find_first_zero_bit(hw_events->used_ctrs,
577 cspmu->cycle_counter_logical_idx);
578 if (idx >= cspmu->cycle_counter_logical_idx) {
579 idx = find_next_zero_bit(
580 hw_events->used_ctrs,
581 cspmu->num_logical_ctrs,
582 cspmu->cycle_counter_logical_idx + 1);
583 }
584 } else {
585 idx = find_first_zero_bit(hw_events->used_ctrs,
586 cspmu->num_logical_ctrs);
587 }
588
589 if (idx >= cspmu->num_logical_ctrs)
590 return -EAGAIN;
591
592 set_bit(idx, hw_events->used_ctrs);
593
594 return idx;
595}
596
597static bool arm_cspmu_validate_event(struct pmu *pmu,
598 struct arm_cspmu_hw_events *hw_events,
599 struct perf_event *event)
600{
601 if (is_software_event(event))
602 return true;
603
604 /* Reject groups spanning multiple HW PMUs. */
605 if (event->pmu != pmu)
606 return false;
607
608 return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
609}
610
611/*
612 * Make sure the group of events can be scheduled at once
613 * on the PMU.
614 */
615static bool arm_cspmu_validate_group(struct perf_event *event)
616{
617 struct perf_event *sibling, *leader = event->group_leader;
618 struct arm_cspmu_hw_events fake_hw_events;
619
620 if (event->group_leader == event)
621 return true;
622
623 memset(&fake_hw_events, 0, sizeof(fake_hw_events));
624
625 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
626 return false;
627
628 for_each_sibling_event(sibling, leader) {
629 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
630 sibling))
631 return false;
632 }
633
634 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
635}
636
637static int arm_cspmu_event_init(struct perf_event *event)
638{
639 struct arm_cspmu *cspmu;
640 struct hw_perf_event *hwc = &event->hw;
641
642 cspmu = to_arm_cspmu(event->pmu);
643
644 /*
645 * Following other "uncore" PMUs, we do not support sampling mode or
646 * attach to a task (per-process mode).
647 */
648 if (is_sampling_event(event)) {
649 dev_dbg(cspmu->pmu.dev,
650 "Can't support sampling events\n");
651 return -EOPNOTSUPP;
652 }
653
654 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
655 dev_dbg(cspmu->pmu.dev,
656 "Can't support per-task counters\n");
657 return -EINVAL;
658 }
659
660 /*
661 * Make sure the CPU assignment is on one of the CPUs associated with
662 * this PMU.
663 */
664 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
665 dev_dbg(cspmu->pmu.dev,
666 "Requested cpu is not associated with the PMU\n");
667 return -EINVAL;
668 }
669
670 /* Enforce the current active CPU to handle the events in this PMU. */
671 event->cpu = cpumask_first(&cspmu->active_cpu);
672 if (event->cpu >= nr_cpu_ids)
673 return -EINVAL;
674
675 if (!arm_cspmu_validate_group(event))
676 return -EINVAL;
677
678 /*
679 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
680 * The physical counter id is tracked with hw_perf_event.idx.
681 * We don't assign an index until we actually place the event onto
682 * hardware. Use -1 to signify that we haven't decided where to put it
683 * yet.
684 */
685 hwc->idx = -1;
686 hwc->extra_reg.idx = -1;
687 hwc->config = cspmu->impl.ops.event_type(event);
688
689 return 0;
690}
691
692static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
693{
694 return (PMEVCNTR_LO + (reg_sz * ctr_idx));
695}
696
697static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
698{
699 u32 offset;
700 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
701
702 if (use_64b_counter_reg(cspmu)) {
703 offset = counter_offset(sizeof(u64), event->hw.idx);
704
705 writeq(val, cspmu->base1 + offset);
706 } else {
707 offset = counter_offset(sizeof(u32), event->hw.idx);
708
709 writel(lower_32_bits(val), cspmu->base1 + offset);
710 }
711}
712
713static u64 arm_cspmu_read_counter(struct perf_event *event)
714{
715 u32 offset;
716 const void __iomem *counter_addr;
717 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
718
719 if (use_64b_counter_reg(cspmu)) {
720 offset = counter_offset(sizeof(u64), event->hw.idx);
721 counter_addr = cspmu->base1 + offset;
722
723 return supports_64bit_atomics(cspmu) ?
724 readq(counter_addr) :
725 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
726 }
727
728 offset = counter_offset(sizeof(u32), event->hw.idx);
729 return readl(cspmu->base1 + offset);
730}
731
732/*
733 * arm_cspmu_set_event_period: Set the period for the counter.
734 *
735 * To handle cases of extreme interrupt latency, we program
736 * the counter with half of the max count for the counters.
737 */
738static void arm_cspmu_set_event_period(struct perf_event *event)
739{
740 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
741 u64 val = counter_mask(cspmu) >> 1ULL;
742
743 local64_set(&event->hw.prev_count, val);
744 arm_cspmu_write_counter(event, val);
745}
746
747static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
748{
749 u32 reg_id, reg_bit, inten_off, cnten_off;
750
751 reg_id = COUNTER_TO_SET_CLR_ID(idx);
752 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
753
754 inten_off = PMINTENSET + (4 * reg_id);
755 cnten_off = PMCNTENSET + (4 * reg_id);
756
757 writel(BIT(reg_bit), cspmu->base0 + inten_off);
758 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
759}
760
761static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
762{
763 u32 reg_id, reg_bit, inten_off, cnten_off;
764
765 reg_id = COUNTER_TO_SET_CLR_ID(idx);
766 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
767
768 inten_off = PMINTENCLR + (4 * reg_id);
769 cnten_off = PMCNTENCLR + (4 * reg_id);
770
771 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
772 writel(BIT(reg_bit), cspmu->base0 + inten_off);
773}
774
775static void arm_cspmu_event_update(struct perf_event *event)
776{
777 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
778 struct hw_perf_event *hwc = &event->hw;
779 u64 delta, prev, now;
780
781 do {
782 prev = local64_read(&hwc->prev_count);
783 now = arm_cspmu_read_counter(event);
784 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
785
786 delta = (now - prev) & counter_mask(cspmu);
787 local64_add(delta, &event->count);
788}
789
790static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
791 struct hw_perf_event *hwc)
792{
793 u32 offset = PMEVTYPER + (4 * hwc->idx);
794
795 writel(hwc->config, cspmu->base0 + offset);
796}
797
798static inline void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
799 struct hw_perf_event *hwc,
800 u32 filter)
801{
802 u32 offset = PMEVFILTR + (4 * hwc->idx);
803
804 writel(filter, cspmu->base0 + offset);
805}
806
807static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
808{
809 u32 offset = PMCCFILTR;
810
811 writel(filter, cspmu->base0 + offset);
812}
813
814static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
815{
816 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
817 struct hw_perf_event *hwc = &event->hw;
818 u32 filter;
819
820 /* We always reprogram the counter */
821 if (pmu_flags & PERF_EF_RELOAD)
822 WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
823
824 arm_cspmu_set_event_period(event);
825
826 filter = cspmu->impl.ops.event_filter(event);
827
828 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
829 arm_cspmu_set_cc_filter(cspmu, filter);
830 } else {
831 arm_cspmu_set_event(cspmu, hwc);
832 arm_cspmu_set_ev_filter(cspmu, hwc, filter);
833 }
834
835 hwc->state = 0;
836
837 arm_cspmu_enable_counter(cspmu, hwc->idx);
838}
839
840static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
841{
842 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
843 struct hw_perf_event *hwc = &event->hw;
844
845 if (hwc->state & PERF_HES_STOPPED)
846 return;
847
848 arm_cspmu_disable_counter(cspmu, hwc->idx);
849 arm_cspmu_event_update(event);
850
851 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
852}
853
854static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
855{
856 return (idx == cspmu->cycle_counter_logical_idx) ?
857 ARM_CSPMU_CYCLE_CNTR_IDX : idx;
858}
859
860static int arm_cspmu_add(struct perf_event *event, int flags)
861{
862 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
863 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
864 struct hw_perf_event *hwc = &event->hw;
865 int idx;
866
867 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
868 &cspmu->associated_cpus)))
869 return -ENOENT;
870
871 idx = arm_cspmu_get_event_idx(hw_events, event);
872 if (idx < 0)
873 return idx;
874
875 hw_events->events[idx] = event;
876 hwc->idx = to_phys_idx(cspmu, idx);
877 hwc->extra_reg.idx = idx;
878 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
879
880 if (flags & PERF_EF_START)
881 arm_cspmu_start(event, PERF_EF_RELOAD);
882
883 /* Propagate changes to the userspace mapping. */
884 perf_event_update_userpage(event);
885
886 return 0;
887}
888
889static void arm_cspmu_del(struct perf_event *event, int flags)
890{
891 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
892 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
893 struct hw_perf_event *hwc = &event->hw;
894 int idx = hwc->extra_reg.idx;
895
896 arm_cspmu_stop(event, PERF_EF_UPDATE);
897
898 hw_events->events[idx] = NULL;
899
900 clear_bit(idx, hw_events->used_ctrs);
901
902 perf_event_update_userpage(event);
903}
904
905static void arm_cspmu_read(struct perf_event *event)
906{
907 arm_cspmu_event_update(event);
908}
909
910static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
911{
912 struct acpi_apmt_node *apmt_node;
913 struct arm_cspmu *cspmu;
914 struct device *dev;
915
916 dev = &pdev->dev;
917 apmt_node = *(struct acpi_apmt_node **)dev_get_platdata(dev);
918 if (!apmt_node) {
919 dev_err(dev, "failed to get APMT node\n");
920 return NULL;
921 }
922
923 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
924 if (!cspmu)
925 return NULL;
926
927 cspmu->dev = dev;
928 cspmu->apmt_node = apmt_node;
929
930 platform_set_drvdata(pdev, cspmu);
931
932 return cspmu;
933}
934
935static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
936{
937 struct device *dev;
938 struct platform_device *pdev;
939 struct acpi_apmt_node *apmt_node;
940
941 dev = cspmu->dev;
942 pdev = to_platform_device(dev);
943 apmt_node = cspmu->apmt_node;
944
945 /* Base address for page 0. */
946 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
947 if (IS_ERR(cspmu->base0)) {
948 dev_err(dev, "ioremap failed for page-0 resource\n");
949 return PTR_ERR(cspmu->base0);
950 }
951
952 /* Base address for page 1 if supported. Otherwise point to page 0. */
953 cspmu->base1 = cspmu->base0;
954 if (CHECK_APMT_FLAG(apmt_node->flags, DUAL_PAGE, SUPP)) {
955 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
956 if (IS_ERR(cspmu->base1)) {
957 dev_err(dev, "ioremap failed for page-1 resource\n");
958 return PTR_ERR(cspmu->base1);
959 }
960 }
961
962 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
963
964 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
965
966 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
967
968 if (supports_cycle_counter(cspmu)) {
969 /*
970 * The last logical counter is mapped to cycle counter if
971 * there is a gap between regular and cycle counter. Otherwise,
972 * logical and physical have 1-to-1 mapping.
973 */
974 cspmu->cycle_counter_logical_idx =
975 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
976 cspmu->num_logical_ctrs - 1 :
977 ARM_CSPMU_CYCLE_CNTR_IDX;
978 }
979
980 cspmu->num_set_clr_reg =
981 DIV_ROUND_UP(cspmu->num_logical_ctrs,
982 ARM_CSPMU_SET_CLR_COUNTER_NUM);
983
984 cspmu->hw_events.events =
985 devm_kcalloc(dev, cspmu->num_logical_ctrs,
986 sizeof(*cspmu->hw_events.events), GFP_KERNEL);
987
988 if (!cspmu->hw_events.events)
989 return -ENOMEM;
990
991 return 0;
992}
993
994static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
995 u32 *pmovs)
996{
997 int i;
998 u32 pmovclr_offset = PMOVSCLR;
999 u32 has_overflowed = 0;
1000
1001 for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1002 pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1003 has_overflowed |= pmovs[i];
1004 writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1005 pmovclr_offset += sizeof(u32);
1006 }
1007
1008 return has_overflowed != 0;
1009}
1010
1011static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1012{
1013 int idx, has_overflowed;
1014 struct perf_event *event;
1015 struct arm_cspmu *cspmu = dev;
1016 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1017 bool handled = false;
1018
1019 arm_cspmu_stop_counters(cspmu);
1020
1021 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1022 if (!has_overflowed)
1023 goto done;
1024
1025 for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1026 cspmu->num_logical_ctrs) {
1027 event = cspmu->hw_events.events[idx];
1028
1029 if (!event)
1030 continue;
1031
1032 if (!test_bit(event->hw.idx, pmovs))
1033 continue;
1034
1035 arm_cspmu_event_update(event);
1036 arm_cspmu_set_event_period(event);
1037
1038 handled = true;
1039 }
1040
1041done:
1042 arm_cspmu_start_counters(cspmu);
1043 return IRQ_RETVAL(handled);
1044}
1045
1046static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1047{
1048 int irq, ret;
1049 struct device *dev;
1050 struct platform_device *pdev;
1051 struct acpi_apmt_node *apmt_node;
1052
1053 dev = cspmu->dev;
1054 pdev = to_platform_device(dev);
1055 apmt_node = cspmu->apmt_node;
1056
1057 /* Skip IRQ request if the PMU does not support overflow interrupt. */
1058 if (apmt_node->ovflw_irq == 0)
1059 return 0;
1060
1061 irq = platform_get_irq(pdev, 0);
1062 if (irq < 0)
1063 return irq;
1064
1065 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1066 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1067 cspmu);
1068 if (ret) {
1069 dev_err(dev, "Could not request IRQ %d\n", irq);
1070 return ret;
1071 }
1072
1073 cspmu->irq = irq;
1074
1075 return 0;
1076}
1077
1078static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1079{
1080 u32 acpi_uid;
1081 struct device *cpu_dev = get_cpu_device(cpu);
1082 struct acpi_device *acpi_dev = ACPI_COMPANION(cpu_dev);
1083
1084 if (!cpu_dev)
1085 return -ENODEV;
1086
1087 while (acpi_dev) {
1088 if (!strcmp(acpi_device_hid(acpi_dev),
1089 ACPI_PROCESSOR_CONTAINER_HID) &&
1090 !kstrtouint(acpi_device_uid(acpi_dev), 0, &acpi_uid) &&
1091 acpi_uid == container_uid)
1092 return 0;
1093
1094 acpi_dev = acpi_dev_parent(acpi_dev);
1095 }
1096
1097 return -ENODEV;
1098}
1099
1100static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1101{
1102 struct device *dev;
1103 struct acpi_apmt_node *apmt_node;
1104 int affinity_flag;
1105 int cpu;
1106
1107 dev = cspmu->pmu.dev;
1108 apmt_node = cspmu->apmt_node;
1109 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1110
1111 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1112 for_each_possible_cpu(cpu) {
1113 if (apmt_node->proc_affinity ==
1114 get_acpi_id_for_cpu(cpu)) {
1115 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1116 break;
1117 }
1118 }
1119 } else {
1120 for_each_possible_cpu(cpu) {
1121 if (arm_cspmu_find_cpu_container(
1122 cpu, apmt_node->proc_affinity))
1123 continue;
1124
1125 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1126 }
1127 }
1128
1129 if (cpumask_empty(&cspmu->associated_cpus)) {
1130 dev_dbg(dev, "No cpu associated with the PMU\n");
1131 return -ENODEV;
1132 }
1133
1134 return 0;
1135}
1136
1137static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1138{
1139 int ret, capabilities;
1140 struct attribute_group **attr_groups;
1141
1142 attr_groups = arm_cspmu_alloc_attr_group(cspmu);
1143 if (!attr_groups)
1144 return -ENOMEM;
1145
1146 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1147 &cspmu->cpuhp_node);
1148 if (ret)
1149 return ret;
1150
1151 capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1152 if (cspmu->irq == 0)
1153 capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1154
1155 cspmu->pmu = (struct pmu){
1156 .task_ctx_nr = perf_invalid_context,
1157 .module = THIS_MODULE,
1158 .pmu_enable = arm_cspmu_enable,
1159 .pmu_disable = arm_cspmu_disable,
1160 .event_init = arm_cspmu_event_init,
1161 .add = arm_cspmu_add,
1162 .del = arm_cspmu_del,
1163 .start = arm_cspmu_start,
1164 .stop = arm_cspmu_stop,
1165 .read = arm_cspmu_read,
1166 .attr_groups = (const struct attribute_group **)attr_groups,
1167 .capabilities = capabilities,
1168 };
1169
1170 /* Hardware counter init */
1171 arm_cspmu_stop_counters(cspmu);
1172 arm_cspmu_reset_counters(cspmu);
1173
1174 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1175 if (ret) {
1176 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1177 &cspmu->cpuhp_node);
1178 }
1179
1180 return ret;
1181}
1182
1183static int arm_cspmu_device_probe(struct platform_device *pdev)
1184{
1185 int ret;
1186 struct arm_cspmu *cspmu;
1187
1188 cspmu = arm_cspmu_alloc(pdev);
1189 if (!cspmu)
1190 return -ENOMEM;
1191
1192 ret = arm_cspmu_init_mmio(cspmu);
1193 if (ret)
1194 return ret;
1195
1196 ret = arm_cspmu_request_irq(cspmu);
1197 if (ret)
1198 return ret;
1199
1200 ret = arm_cspmu_get_cpus(cspmu);
1201 if (ret)
1202 return ret;
1203
1204 ret = arm_cspmu_register_pmu(cspmu);
1205 if (ret)
1206 return ret;
1207
1208 return 0;
1209}
1210
1211static int arm_cspmu_device_remove(struct platform_device *pdev)
1212{
1213 struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1214
1215 perf_pmu_unregister(&cspmu->pmu);
1216 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1217
1218 return 0;
1219}
1220
1221static struct platform_driver arm_cspmu_driver = {
1222 .driver = {
1223 .name = DRVNAME,
1224 .suppress_bind_attrs = true,
1225 },
1226 .probe = arm_cspmu_device_probe,
1227 .remove = arm_cspmu_device_remove,
1228};
1229
1230static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1231{
1232 cpumask_set_cpu(cpu, &cspmu->active_cpu);
1233 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1234}
1235
1236static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1237{
1238 struct arm_cspmu *cspmu =
1239 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1240
1241 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1242 return 0;
1243
1244 /* If the PMU is already managed, there is nothing to do */
1245 if (!cpumask_empty(&cspmu->active_cpu))
1246 return 0;
1247
1248 /* Use this CPU for event counting */
1249 arm_cspmu_set_active_cpu(cpu, cspmu);
1250
1251 return 0;
1252}
1253
1254static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1255{
1256 int dst;
1257 struct cpumask online_supported;
1258
1259 struct arm_cspmu *cspmu =
1260 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1261
1262 /* Nothing to do if this CPU doesn't own the PMU */
1263 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1264 return 0;
1265
1266 /* Choose a new CPU to migrate ownership of the PMU to */
1267 cpumask_and(&online_supported, &cspmu->associated_cpus,
1268 cpu_online_mask);
1269 dst = cpumask_any_but(&online_supported, cpu);
1270 if (dst >= nr_cpu_ids)
1271 return 0;
1272
1273 /* Use this CPU for event counting */
1274 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1275 arm_cspmu_set_active_cpu(dst, cspmu);
1276
1277 return 0;
1278}
1279
1280static int __init arm_cspmu_init(void)
1281{
1282 int ret;
1283
1284 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1285 "perf/arm/cspmu:online",
1286 arm_cspmu_cpu_online,
1287 arm_cspmu_cpu_teardown);
1288 if (ret < 0)
1289 return ret;
1290 arm_cspmu_cpuhp_state = ret;
1291 return platform_driver_register(&arm_cspmu_driver);
1292}
1293
1294static void __exit arm_cspmu_exit(void)
1295{
1296 platform_driver_unregister(&arm_cspmu_driver);
1297 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1298}
1299
1300module_init(arm_cspmu_init);
1301module_exit(arm_cspmu_exit);
1302
1303MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * ARM CoreSight Architecture PMU driver.
4 *
5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7 * like other uncore PMUs, it does not support process specific events and
8 * cannot be used in sampling mode.
9 *
10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11 * generic implementation to operate the PMU according to CoreSight PMU
12 * architecture and ACPI ARM PMU table (APMT) documents below:
13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14 * - APMT document number: ARM DEN0117.
15 *
16 * The user should refer to the vendor technical documentation to get details
17 * about the supported events.
18 *
19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20 *
21 */
22
23#include <linux/acpi.h>
24#include <linux/cacheinfo.h>
25#include <linux/ctype.h>
26#include <linux/interrupt.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/module.h>
29#include <linux/mutex.h>
30#include <linux/of.h>
31#include <linux/perf_event.h>
32#include <linux/platform_device.h>
33
34#include "arm_cspmu.h"
35
36#define PMUNAME "arm_cspmu"
37#define DRVNAME "arm-cs-arch-pmu"
38
39#define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
41 (unsigned long)_config)
42
43/*
44 * CoreSight PMU Arch register offsets.
45 */
46#define PMEVCNTR_LO 0x0
47#define PMEVCNTR_HI 0x4
48#define PMEVTYPER 0x400
49#define PMCCFILTR 0x47C
50#define PMEVFILTR 0xA00
51#define PMCNTENSET 0xC00
52#define PMCNTENCLR 0xC20
53#define PMINTENSET 0xC40
54#define PMINTENCLR 0xC60
55#define PMOVSCLR 0xC80
56#define PMOVSSET 0xCC0
57#define PMCFGR 0xE00
58#define PMCR 0xE04
59#define PMIIDR 0xE08
60
61/* PMCFGR register field */
62#define PMCFGR_NCG GENMASK(31, 28)
63#define PMCFGR_HDBG BIT(24)
64#define PMCFGR_TRO BIT(23)
65#define PMCFGR_SS BIT(22)
66#define PMCFGR_FZO BIT(21)
67#define PMCFGR_MSI BIT(20)
68#define PMCFGR_UEN BIT(19)
69#define PMCFGR_NA BIT(17)
70#define PMCFGR_EX BIT(16)
71#define PMCFGR_CCD BIT(15)
72#define PMCFGR_CC BIT(14)
73#define PMCFGR_SIZE GENMASK(13, 8)
74#define PMCFGR_N GENMASK(7, 0)
75
76/* PMCR register field */
77#define PMCR_TRO BIT(11)
78#define PMCR_HDBG BIT(10)
79#define PMCR_FZO BIT(9)
80#define PMCR_NA BIT(8)
81#define PMCR_DP BIT(5)
82#define PMCR_X BIT(4)
83#define PMCR_D BIT(3)
84#define PMCR_C BIT(2)
85#define PMCR_P BIT(1)
86#define PMCR_E BIT(0)
87
88/* Each SET/CLR register supports up to 32 counters. */
89#define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
90#define ARM_CSPMU_SET_CLR_COUNTER_NUM \
91 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
92
93/* Convert counter idx into SET/CLR register number. */
94#define COUNTER_TO_SET_CLR_ID(idx) \
95 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
96
97/* Convert counter idx into SET/CLR register bit. */
98#define COUNTER_TO_SET_CLR_BIT(idx) \
99 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
100
101#define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
102#define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
103
104/*
105 * Maximum poll count for reading counter value using high-low-high sequence.
106 */
107#define HILOHI_MAX_POLL 1000
108
109static unsigned long arm_cspmu_cpuhp_state;
110
111static DEFINE_MUTEX(arm_cspmu_lock);
112
113static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
114 struct hw_perf_event *hwc, u32 filter);
115
116static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
117{
118 struct acpi_apmt_node **ptr = dev_get_platdata(dev);
119
120 return ptr ? *ptr : NULL;
121}
122
123/*
124 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
125 * counter register. The counter register can be implemented as 32-bit or 64-bit
126 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
127 * single-copy 64-bit atomic support is implementation defined. APMT node flag
128 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
129 * single copy atomic is not supported, the driver treats the register as a pair
130 * of 32-bit register.
131 */
132
133/*
134 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
135 */
136static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
137{
138 u32 val_lo, val_hi;
139 u64 val;
140
141 /* Use high-low-high sequence to avoid tearing */
142 do {
143 if (max_poll_count-- == 0) {
144 pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
145 return 0;
146 }
147
148 val_hi = readl(addr + 4);
149 val_lo = readl(addr);
150 } while (val_hi != readl(addr + 4));
151
152 val = (((u64)val_hi << 32) | val_lo);
153
154 return val;
155}
156
157/* Check if cycle counter is supported. */
158static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
159{
160 return (cspmu->pmcfgr & PMCFGR_CC);
161}
162
163/* Get counter size, which is (PMCFGR_SIZE + 1). */
164static inline u32 counter_size(const struct arm_cspmu *cspmu)
165{
166 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
167}
168
169/* Get counter mask. */
170static inline u64 counter_mask(const struct arm_cspmu *cspmu)
171{
172 return GENMASK_ULL(counter_size(cspmu) - 1, 0);
173}
174
175/* Check if counter is implemented as 64-bit register. */
176static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
177{
178 return (counter_size(cspmu) > 32);
179}
180
181ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
184 struct perf_pmu_events_attr *pmu_attr;
185
186 pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
187 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
188}
189EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
190
191/* Default event list. */
192static struct attribute *arm_cspmu_event_attrs[] = {
193 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
194 NULL,
195};
196
197static struct attribute **
198arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
199{
200 struct attribute **attrs;
201
202 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
203 sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
204
205 return attrs;
206}
207
208static umode_t
209arm_cspmu_event_attr_is_visible(struct kobject *kobj,
210 struct attribute *attr, int unused)
211{
212 struct device *dev = kobj_to_dev(kobj);
213 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
214 struct perf_pmu_events_attr *eattr;
215
216 eattr = container_of(attr, typeof(*eattr), attr.attr);
217
218 /* Hide cycle event if not supported */
219 if (!supports_cycle_counter(cspmu) &&
220 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
221 return 0;
222
223 return attr->mode;
224}
225
226static struct attribute *arm_cspmu_format_attrs[] = {
227 ARM_CSPMU_FORMAT_EVENT_ATTR,
228 ARM_CSPMU_FORMAT_FILTER_ATTR,
229 NULL,
230};
231
232static struct attribute **
233arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
234{
235 struct attribute **attrs;
236
237 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
238 sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
239
240 return attrs;
241}
242
243static u32 arm_cspmu_event_type(const struct perf_event *event)
244{
245 return event->attr.config & ARM_CSPMU_EVENT_MASK;
246}
247
248static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
249{
250 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
251}
252
253static u32 arm_cspmu_event_filter(const struct perf_event *event)
254{
255 return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
256}
257
258static ssize_t arm_cspmu_identifier_show(struct device *dev,
259 struct device_attribute *attr,
260 char *page)
261{
262 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
263
264 return sysfs_emit(page, "%s\n", cspmu->identifier);
265}
266
267static struct device_attribute arm_cspmu_identifier_attr =
268 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
269
270static struct attribute *arm_cspmu_identifier_attrs[] = {
271 &arm_cspmu_identifier_attr.attr,
272 NULL,
273};
274
275static struct attribute_group arm_cspmu_identifier_attr_group = {
276 .attrs = arm_cspmu_identifier_attrs,
277};
278
279static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
280{
281 const char *identifier =
282 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
283 cspmu->impl.pmiidr);
284 return identifier;
285}
286
287static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
288 "mc",
289 "smmu",
290 "pcie",
291 "acpi",
292 "cache",
293};
294
295static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
296{
297 struct device *dev;
298 struct acpi_apmt_node *apmt_node;
299 u8 pmu_type;
300 char *name;
301 char acpi_hid_string[ACPI_ID_LEN] = { 0 };
302 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
303
304 dev = cspmu->dev;
305 apmt_node = arm_cspmu_apmt_node(dev);
306 if (!apmt_node)
307 return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
308 atomic_fetch_inc(&pmu_idx[0]));
309
310 pmu_type = apmt_node->type;
311
312 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
313 dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
314 return NULL;
315 }
316
317 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
318 memcpy(acpi_hid_string,
319 &apmt_node->inst_primary,
320 sizeof(apmt_node->inst_primary));
321 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
322 arm_cspmu_type_str[pmu_type],
323 acpi_hid_string,
324 apmt_node->inst_secondary);
325 } else {
326 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
327 arm_cspmu_type_str[pmu_type],
328 atomic_fetch_inc(&pmu_idx[pmu_type]));
329 }
330
331 return name;
332}
333
334static ssize_t arm_cspmu_cpumask_show(struct device *dev,
335 struct device_attribute *attr,
336 char *buf)
337{
338 struct pmu *pmu = dev_get_drvdata(dev);
339 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
340 struct dev_ext_attribute *eattr =
341 container_of(attr, struct dev_ext_attribute, attr);
342 unsigned long mask_id = (unsigned long)eattr->var;
343 const cpumask_t *cpumask;
344
345 switch (mask_id) {
346 case ARM_CSPMU_ACTIVE_CPU_MASK:
347 cpumask = &cspmu->active_cpu;
348 break;
349 case ARM_CSPMU_ASSOCIATED_CPU_MASK:
350 cpumask = &cspmu->associated_cpus;
351 break;
352 default:
353 return 0;
354 }
355 return cpumap_print_to_pagebuf(true, buf, cpumask);
356}
357
358static struct attribute *arm_cspmu_cpumask_attrs[] = {
359 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
360 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
361 NULL,
362};
363
364static struct attribute_group arm_cspmu_cpumask_attr_group = {
365 .attrs = arm_cspmu_cpumask_attrs,
366};
367
368static struct arm_cspmu_impl_match impl_match[] = {
369 {
370 .module_name = "nvidia_cspmu",
371 .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA,
372 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
373 .module = NULL,
374 .impl_init_ops = NULL,
375 },
376 {
377 .module_name = "ampere_cspmu",
378 .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE,
379 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
380 .module = NULL,
381 .impl_init_ops = NULL,
382 },
383
384 {0}
385};
386
387static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
388{
389 struct arm_cspmu_impl_match *match = impl_match;
390
391 for (; match->pmiidr_val; match++) {
392 u32 mask = match->pmiidr_mask;
393
394 if ((match->pmiidr_val & mask) == (pmiidr & mask))
395 return match;
396 }
397
398 return NULL;
399}
400
401#define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name
402
403static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
404{
405 int ret = 0;
406 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
407 struct arm_cspmu_impl_match *match;
408
409 /* Start with a default PMU implementation */
410 cspmu->impl.module = THIS_MODULE;
411 cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
412 cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
413 DEFAULT_IMPL_OP(get_event_attrs),
414 DEFAULT_IMPL_OP(get_format_attrs),
415 DEFAULT_IMPL_OP(get_identifier),
416 DEFAULT_IMPL_OP(get_name),
417 DEFAULT_IMPL_OP(is_cycle_counter_event),
418 DEFAULT_IMPL_OP(event_type),
419 DEFAULT_IMPL_OP(event_filter),
420 DEFAULT_IMPL_OP(set_ev_filter),
421 DEFAULT_IMPL_OP(event_attr_is_visible),
422 };
423
424 /* Firmware may override implementer/product ID from PMIIDR */
425 if (apmt_node && apmt_node->impl_id)
426 cspmu->impl.pmiidr = apmt_node->impl_id;
427
428 /* Find implementer specific attribute ops. */
429 match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
430
431 /* Load implementer module and initialize the callbacks. */
432 if (match) {
433 mutex_lock(&arm_cspmu_lock);
434
435 if (match->impl_init_ops) {
436 /* Prevent unload until PMU registration is done. */
437 if (try_module_get(match->module)) {
438 cspmu->impl.module = match->module;
439 cspmu->impl.match = match;
440 ret = match->impl_init_ops(cspmu);
441 if (ret)
442 module_put(match->module);
443 } else {
444 WARN(1, "arm_cspmu failed to get module: %s\n",
445 match->module_name);
446 ret = -EINVAL;
447 }
448 } else {
449 request_module_nowait(match->module_name);
450 ret = -EPROBE_DEFER;
451 }
452
453 mutex_unlock(&arm_cspmu_lock);
454 }
455
456 return ret;
457}
458
459static struct attribute_group *
460arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
461{
462 struct attribute_group *event_group;
463 struct device *dev = cspmu->dev;
464 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
465
466 event_group =
467 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
468 if (!event_group)
469 return NULL;
470
471 event_group->name = "events";
472 event_group->is_visible = impl_ops->event_attr_is_visible;
473 event_group->attrs = impl_ops->get_event_attrs(cspmu);
474
475 if (!event_group->attrs)
476 return NULL;
477
478 return event_group;
479}
480
481static struct attribute_group *
482arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
483{
484 struct attribute_group *format_group;
485 struct device *dev = cspmu->dev;
486
487 format_group =
488 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
489 if (!format_group)
490 return NULL;
491
492 format_group->name = "format";
493 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
494
495 if (!format_group->attrs)
496 return NULL;
497
498 return format_group;
499}
500
501static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
502{
503 const struct attribute_group **attr_groups = cspmu->attr_groups;
504 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
505
506 cspmu->identifier = impl_ops->get_identifier(cspmu);
507 cspmu->name = impl_ops->get_name(cspmu);
508
509 if (!cspmu->identifier || !cspmu->name)
510 return -ENOMEM;
511
512 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
513 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
514 attr_groups[2] = &arm_cspmu_identifier_attr_group;
515 attr_groups[3] = &arm_cspmu_cpumask_attr_group;
516
517 if (!attr_groups[0] || !attr_groups[1])
518 return -ENOMEM;
519
520 return 0;
521}
522
523static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
524{
525 writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
526}
527
528static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
529{
530 writel(PMCR_E, cspmu->base0 + PMCR);
531}
532
533static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
534{
535 writel(0, cspmu->base0 + PMCR);
536}
537
538static void arm_cspmu_enable(struct pmu *pmu)
539{
540 bool disabled;
541 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
542
543 disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
544 cspmu->num_logical_ctrs);
545
546 if (disabled)
547 return;
548
549 arm_cspmu_start_counters(cspmu);
550}
551
552static void arm_cspmu_disable(struct pmu *pmu)
553{
554 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
555
556 arm_cspmu_stop_counters(cspmu);
557}
558
559static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
560 struct perf_event *event)
561{
562 int idx, ret;
563 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
564
565 if (supports_cycle_counter(cspmu)) {
566 if (cspmu->impl.ops.is_cycle_counter_event(event)) {
567 /* Search for available cycle counter. */
568 if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
569 hw_events->used_ctrs))
570 return -EAGAIN;
571
572 return cspmu->cycle_counter_logical_idx;
573 }
574
575 /*
576 * Search a regular counter from the used counter bitmap.
577 * The cycle counter divides the bitmap into two parts. Search
578 * the first then second half to exclude the cycle counter bit.
579 */
580 idx = find_first_zero_bit(hw_events->used_ctrs,
581 cspmu->cycle_counter_logical_idx);
582 if (idx >= cspmu->cycle_counter_logical_idx) {
583 idx = find_next_zero_bit(
584 hw_events->used_ctrs,
585 cspmu->num_logical_ctrs,
586 cspmu->cycle_counter_logical_idx + 1);
587 }
588 } else {
589 idx = find_first_zero_bit(hw_events->used_ctrs,
590 cspmu->num_logical_ctrs);
591 }
592
593 if (idx >= cspmu->num_logical_ctrs)
594 return -EAGAIN;
595
596 if (cspmu->impl.ops.validate_event) {
597 ret = cspmu->impl.ops.validate_event(cspmu, event);
598 if (ret)
599 return ret;
600 }
601
602 set_bit(idx, hw_events->used_ctrs);
603
604 return idx;
605}
606
607static bool arm_cspmu_validate_event(struct pmu *pmu,
608 struct arm_cspmu_hw_events *hw_events,
609 struct perf_event *event)
610{
611 if (is_software_event(event))
612 return true;
613
614 /* Reject groups spanning multiple HW PMUs. */
615 if (event->pmu != pmu)
616 return false;
617
618 return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
619}
620
621/*
622 * Make sure the group of events can be scheduled at once
623 * on the PMU.
624 */
625static bool arm_cspmu_validate_group(struct perf_event *event)
626{
627 struct perf_event *sibling, *leader = event->group_leader;
628 struct arm_cspmu_hw_events fake_hw_events;
629
630 if (event->group_leader == event)
631 return true;
632
633 memset(&fake_hw_events, 0, sizeof(fake_hw_events));
634
635 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
636 return false;
637
638 for_each_sibling_event(sibling, leader) {
639 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
640 sibling))
641 return false;
642 }
643
644 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
645}
646
647static int arm_cspmu_event_init(struct perf_event *event)
648{
649 struct arm_cspmu *cspmu;
650 struct hw_perf_event *hwc = &event->hw;
651
652 cspmu = to_arm_cspmu(event->pmu);
653
654 if (event->attr.type != event->pmu->type)
655 return -ENOENT;
656
657 /*
658 * Following other "uncore" PMUs, we do not support sampling mode or
659 * attach to a task (per-process mode).
660 */
661 if (is_sampling_event(event)) {
662 dev_dbg(cspmu->pmu.dev,
663 "Can't support sampling events\n");
664 return -EOPNOTSUPP;
665 }
666
667 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
668 dev_dbg(cspmu->pmu.dev,
669 "Can't support per-task counters\n");
670 return -EINVAL;
671 }
672
673 /*
674 * Make sure the CPU assignment is on one of the CPUs associated with
675 * this PMU.
676 */
677 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
678 dev_dbg(cspmu->pmu.dev,
679 "Requested cpu is not associated with the PMU\n");
680 return -EINVAL;
681 }
682
683 /* Enforce the current active CPU to handle the events in this PMU. */
684 event->cpu = cpumask_first(&cspmu->active_cpu);
685 if (event->cpu >= nr_cpu_ids)
686 return -EINVAL;
687
688 if (!arm_cspmu_validate_group(event))
689 return -EINVAL;
690
691 /*
692 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
693 * The physical counter id is tracked with hw_perf_event.idx.
694 * We don't assign an index until we actually place the event onto
695 * hardware. Use -1 to signify that we haven't decided where to put it
696 * yet.
697 */
698 hwc->idx = -1;
699 hwc->extra_reg.idx = -1;
700 hwc->config = cspmu->impl.ops.event_type(event);
701
702 return 0;
703}
704
705static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
706{
707 return (PMEVCNTR_LO + (reg_sz * ctr_idx));
708}
709
710static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
711{
712 u32 offset;
713 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
714
715 if (use_64b_counter_reg(cspmu)) {
716 offset = counter_offset(sizeof(u64), event->hw.idx);
717
718 if (cspmu->has_atomic_dword)
719 writeq(val, cspmu->base1 + offset);
720 else
721 lo_hi_writeq(val, cspmu->base1 + offset);
722 } else {
723 offset = counter_offset(sizeof(u32), event->hw.idx);
724
725 writel(lower_32_bits(val), cspmu->base1 + offset);
726 }
727}
728
729static u64 arm_cspmu_read_counter(struct perf_event *event)
730{
731 u32 offset;
732 const void __iomem *counter_addr;
733 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
734
735 if (use_64b_counter_reg(cspmu)) {
736 offset = counter_offset(sizeof(u64), event->hw.idx);
737 counter_addr = cspmu->base1 + offset;
738
739 return cspmu->has_atomic_dword ?
740 readq(counter_addr) :
741 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
742 }
743
744 offset = counter_offset(sizeof(u32), event->hw.idx);
745 return readl(cspmu->base1 + offset);
746}
747
748/*
749 * arm_cspmu_set_event_period: Set the period for the counter.
750 *
751 * To handle cases of extreme interrupt latency, we program
752 * the counter with half of the max count for the counters.
753 */
754static void arm_cspmu_set_event_period(struct perf_event *event)
755{
756 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
757 u64 val = counter_mask(cspmu) >> 1ULL;
758
759 local64_set(&event->hw.prev_count, val);
760 arm_cspmu_write_counter(event, val);
761}
762
763static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
764{
765 u32 reg_id, reg_bit, inten_off, cnten_off;
766
767 reg_id = COUNTER_TO_SET_CLR_ID(idx);
768 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
769
770 inten_off = PMINTENSET + (4 * reg_id);
771 cnten_off = PMCNTENSET + (4 * reg_id);
772
773 writel(BIT(reg_bit), cspmu->base0 + inten_off);
774 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
775}
776
777static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
778{
779 u32 reg_id, reg_bit, inten_off, cnten_off;
780
781 reg_id = COUNTER_TO_SET_CLR_ID(idx);
782 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
783
784 inten_off = PMINTENCLR + (4 * reg_id);
785 cnten_off = PMCNTENCLR + (4 * reg_id);
786
787 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
788 writel(BIT(reg_bit), cspmu->base0 + inten_off);
789}
790
791static void arm_cspmu_event_update(struct perf_event *event)
792{
793 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
794 struct hw_perf_event *hwc = &event->hw;
795 u64 delta, prev, now;
796
797 do {
798 prev = local64_read(&hwc->prev_count);
799 now = arm_cspmu_read_counter(event);
800 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
801
802 delta = (now - prev) & counter_mask(cspmu);
803 local64_add(delta, &event->count);
804}
805
806static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
807 struct hw_perf_event *hwc)
808{
809 u32 offset = PMEVTYPER + (4 * hwc->idx);
810
811 writel(hwc->config, cspmu->base0 + offset);
812}
813
814static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
815 struct hw_perf_event *hwc,
816 u32 filter)
817{
818 u32 offset = PMEVFILTR + (4 * hwc->idx);
819
820 writel(filter, cspmu->base0 + offset);
821}
822
823static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
824{
825 u32 offset = PMCCFILTR;
826
827 writel(filter, cspmu->base0 + offset);
828}
829
830static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
831{
832 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
833 struct hw_perf_event *hwc = &event->hw;
834 u32 filter;
835
836 /* We always reprogram the counter */
837 if (pmu_flags & PERF_EF_RELOAD)
838 WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
839
840 arm_cspmu_set_event_period(event);
841
842 filter = cspmu->impl.ops.event_filter(event);
843
844 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
845 arm_cspmu_set_cc_filter(cspmu, filter);
846 } else {
847 arm_cspmu_set_event(cspmu, hwc);
848 cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
849 }
850
851 hwc->state = 0;
852
853 arm_cspmu_enable_counter(cspmu, hwc->idx);
854}
855
856static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
857{
858 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
859 struct hw_perf_event *hwc = &event->hw;
860
861 if (hwc->state & PERF_HES_STOPPED)
862 return;
863
864 arm_cspmu_disable_counter(cspmu, hwc->idx);
865 arm_cspmu_event_update(event);
866
867 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
868}
869
870static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
871{
872 return (idx == cspmu->cycle_counter_logical_idx) ?
873 ARM_CSPMU_CYCLE_CNTR_IDX : idx;
874}
875
876static int arm_cspmu_add(struct perf_event *event, int flags)
877{
878 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
879 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
880 struct hw_perf_event *hwc = &event->hw;
881 int idx;
882
883 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
884 &cspmu->associated_cpus)))
885 return -ENOENT;
886
887 idx = arm_cspmu_get_event_idx(hw_events, event);
888 if (idx < 0)
889 return idx;
890
891 hw_events->events[idx] = event;
892 hwc->idx = to_phys_idx(cspmu, idx);
893 hwc->extra_reg.idx = idx;
894 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
895
896 if (flags & PERF_EF_START)
897 arm_cspmu_start(event, PERF_EF_RELOAD);
898
899 /* Propagate changes to the userspace mapping. */
900 perf_event_update_userpage(event);
901
902 return 0;
903}
904
905static void arm_cspmu_del(struct perf_event *event, int flags)
906{
907 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
908 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
909 struct hw_perf_event *hwc = &event->hw;
910 int idx = hwc->extra_reg.idx;
911
912 arm_cspmu_stop(event, PERF_EF_UPDATE);
913
914 hw_events->events[idx] = NULL;
915
916 clear_bit(idx, hw_events->used_ctrs);
917
918 perf_event_update_userpage(event);
919}
920
921static void arm_cspmu_read(struct perf_event *event)
922{
923 arm_cspmu_event_update(event);
924}
925
926static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
927{
928 struct acpi_apmt_node *apmt_node;
929 struct arm_cspmu *cspmu;
930 struct device *dev = &pdev->dev;
931
932 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
933 if (!cspmu)
934 return NULL;
935
936 cspmu->dev = dev;
937 platform_set_drvdata(pdev, cspmu);
938
939 apmt_node = arm_cspmu_apmt_node(dev);
940 if (apmt_node) {
941 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
942 } else {
943 u32 width = 0;
944
945 device_property_read_u32(dev, "reg-io-width", &width);
946 cspmu->has_atomic_dword = (width == 8);
947 }
948
949 return cspmu;
950}
951
952static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
953{
954 struct device *dev;
955 struct platform_device *pdev;
956
957 dev = cspmu->dev;
958 pdev = to_platform_device(dev);
959
960 /* Base address for page 0. */
961 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
962 if (IS_ERR(cspmu->base0)) {
963 dev_err(dev, "ioremap failed for page-0 resource\n");
964 return PTR_ERR(cspmu->base0);
965 }
966
967 /* Base address for page 1 if supported. Otherwise point to page 0. */
968 cspmu->base1 = cspmu->base0;
969 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
970 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
971 if (IS_ERR(cspmu->base1)) {
972 dev_err(dev, "ioremap failed for page-1 resource\n");
973 return PTR_ERR(cspmu->base1);
974 }
975 }
976
977 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
978
979 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
980
981 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
982
983 if (supports_cycle_counter(cspmu)) {
984 /*
985 * The last logical counter is mapped to cycle counter if
986 * there is a gap between regular and cycle counter. Otherwise,
987 * logical and physical have 1-to-1 mapping.
988 */
989 cspmu->cycle_counter_logical_idx =
990 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
991 cspmu->num_logical_ctrs - 1 :
992 ARM_CSPMU_CYCLE_CNTR_IDX;
993 }
994
995 cspmu->num_set_clr_reg =
996 DIV_ROUND_UP(cspmu->num_logical_ctrs,
997 ARM_CSPMU_SET_CLR_COUNTER_NUM);
998
999 cspmu->hw_events.events =
1000 devm_kcalloc(dev, cspmu->num_logical_ctrs,
1001 sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1002
1003 if (!cspmu->hw_events.events)
1004 return -ENOMEM;
1005
1006 return 0;
1007}
1008
1009static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1010 u32 *pmovs)
1011{
1012 int i;
1013 u32 pmovclr_offset = PMOVSCLR;
1014 u32 has_overflowed = 0;
1015
1016 for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1017 pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1018 has_overflowed |= pmovs[i];
1019 writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1020 pmovclr_offset += sizeof(u32);
1021 }
1022
1023 return has_overflowed != 0;
1024}
1025
1026static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1027{
1028 int idx, has_overflowed;
1029 struct perf_event *event;
1030 struct arm_cspmu *cspmu = dev;
1031 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1032 bool handled = false;
1033
1034 arm_cspmu_stop_counters(cspmu);
1035
1036 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1037 if (!has_overflowed)
1038 goto done;
1039
1040 for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1041 cspmu->num_logical_ctrs) {
1042 event = cspmu->hw_events.events[idx];
1043
1044 if (!event)
1045 continue;
1046
1047 if (!test_bit(event->hw.idx, pmovs))
1048 continue;
1049
1050 arm_cspmu_event_update(event);
1051 arm_cspmu_set_event_period(event);
1052
1053 handled = true;
1054 }
1055
1056done:
1057 arm_cspmu_start_counters(cspmu);
1058 return IRQ_RETVAL(handled);
1059}
1060
1061static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1062{
1063 int irq, ret;
1064 struct device *dev;
1065 struct platform_device *pdev;
1066
1067 dev = cspmu->dev;
1068 pdev = to_platform_device(dev);
1069
1070 /* Skip IRQ request if the PMU does not support overflow interrupt. */
1071 irq = platform_get_irq_optional(pdev, 0);
1072 if (irq < 0)
1073 return irq == -ENXIO ? 0 : irq;
1074
1075 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1076 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1077 cspmu);
1078 if (ret) {
1079 dev_err(dev, "Could not request IRQ %d\n", irq);
1080 return ret;
1081 }
1082
1083 cspmu->irq = irq;
1084
1085 return 0;
1086}
1087
1088#if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1089#include <acpi/processor.h>
1090
1091static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1092{
1093 struct device *cpu_dev;
1094 struct acpi_device *acpi_dev;
1095
1096 cpu_dev = get_cpu_device(cpu);
1097 if (!cpu_dev)
1098 return -ENODEV;
1099
1100 acpi_dev = ACPI_COMPANION(cpu_dev);
1101 while (acpi_dev) {
1102 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1103 return 0;
1104
1105 acpi_dev = acpi_dev_parent(acpi_dev);
1106 }
1107
1108 return -ENODEV;
1109}
1110
1111static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1112{
1113 struct acpi_apmt_node *apmt_node;
1114 int affinity_flag;
1115 int cpu;
1116
1117 apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1118 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1119
1120 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1121 for_each_possible_cpu(cpu) {
1122 if (apmt_node->proc_affinity ==
1123 get_acpi_id_for_cpu(cpu)) {
1124 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1125 break;
1126 }
1127 }
1128 } else {
1129 for_each_possible_cpu(cpu) {
1130 if (arm_cspmu_find_cpu_container(
1131 cpu, apmt_node->proc_affinity))
1132 continue;
1133
1134 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1135 }
1136 }
1137
1138 return 0;
1139}
1140#else
1141static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1142{
1143 return -ENODEV;
1144}
1145#endif
1146
1147static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1148{
1149 struct of_phandle_iterator it;
1150 int ret, cpu;
1151
1152 of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1153 cpu = of_cpu_node_to_id(it.node);
1154 if (cpu < 0)
1155 continue;
1156 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1157 }
1158 return ret == -ENOENT ? 0 : ret;
1159}
1160
1161static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1162{
1163 int ret = 0;
1164
1165 if (arm_cspmu_apmt_node(cspmu->dev))
1166 ret = arm_cspmu_acpi_get_cpus(cspmu);
1167 else if (device_property_present(cspmu->dev, "cpus"))
1168 ret = arm_cspmu_of_get_cpus(cspmu);
1169 else
1170 cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1171
1172 if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1173 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1174 ret = -ENODEV;
1175 }
1176 return ret;
1177}
1178
1179static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1180{
1181 int ret, capabilities;
1182
1183 ret = arm_cspmu_alloc_attr_groups(cspmu);
1184 if (ret)
1185 return ret;
1186
1187 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1188 &cspmu->cpuhp_node);
1189 if (ret)
1190 return ret;
1191
1192 capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1193 if (cspmu->irq == 0)
1194 capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1195
1196 cspmu->pmu = (struct pmu){
1197 .task_ctx_nr = perf_invalid_context,
1198 .module = cspmu->impl.module,
1199 .parent = cspmu->dev,
1200 .pmu_enable = arm_cspmu_enable,
1201 .pmu_disable = arm_cspmu_disable,
1202 .event_init = arm_cspmu_event_init,
1203 .add = arm_cspmu_add,
1204 .del = arm_cspmu_del,
1205 .start = arm_cspmu_start,
1206 .stop = arm_cspmu_stop,
1207 .read = arm_cspmu_read,
1208 .attr_groups = cspmu->attr_groups,
1209 .capabilities = capabilities,
1210 };
1211
1212 /* Hardware counter init */
1213 arm_cspmu_reset_counters(cspmu);
1214
1215 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1216 if (ret) {
1217 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1218 &cspmu->cpuhp_node);
1219 }
1220
1221 return ret;
1222}
1223
1224static int arm_cspmu_device_probe(struct platform_device *pdev)
1225{
1226 int ret;
1227 struct arm_cspmu *cspmu;
1228
1229 cspmu = arm_cspmu_alloc(pdev);
1230 if (!cspmu)
1231 return -ENOMEM;
1232
1233 ret = arm_cspmu_init_mmio(cspmu);
1234 if (ret)
1235 return ret;
1236
1237 ret = arm_cspmu_request_irq(cspmu);
1238 if (ret)
1239 return ret;
1240
1241 ret = arm_cspmu_get_cpus(cspmu);
1242 if (ret)
1243 return ret;
1244
1245 ret = arm_cspmu_init_impl_ops(cspmu);
1246 if (ret)
1247 return ret;
1248
1249 ret = arm_cspmu_register_pmu(cspmu);
1250
1251 /* Matches arm_cspmu_init_impl_ops() above. */
1252 if (cspmu->impl.module != THIS_MODULE)
1253 module_put(cspmu->impl.module);
1254
1255 return ret;
1256}
1257
1258static void arm_cspmu_device_remove(struct platform_device *pdev)
1259{
1260 struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1261
1262 perf_pmu_unregister(&cspmu->pmu);
1263 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1264}
1265
1266static const struct platform_device_id arm_cspmu_id[] = {
1267 {DRVNAME, 0},
1268 { },
1269};
1270MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1271
1272static const struct of_device_id arm_cspmu_of_match[] = {
1273 { .compatible = "arm,coresight-pmu" },
1274 {}
1275};
1276MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1277
1278static struct platform_driver arm_cspmu_driver = {
1279 .driver = {
1280 .name = DRVNAME,
1281 .of_match_table = arm_cspmu_of_match,
1282 .suppress_bind_attrs = true,
1283 },
1284 .probe = arm_cspmu_device_probe,
1285 .remove = arm_cspmu_device_remove,
1286 .id_table = arm_cspmu_id,
1287};
1288
1289static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1290{
1291 cpumask_set_cpu(cpu, &cspmu->active_cpu);
1292 if (cspmu->irq)
1293 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1294}
1295
1296static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1297{
1298 struct arm_cspmu *cspmu =
1299 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1300
1301 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1302 return 0;
1303
1304 /* If the PMU is already managed, there is nothing to do */
1305 if (!cpumask_empty(&cspmu->active_cpu))
1306 return 0;
1307
1308 /* Use this CPU for event counting */
1309 arm_cspmu_set_active_cpu(cpu, cspmu);
1310
1311 return 0;
1312}
1313
1314static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1315{
1316 unsigned int dst;
1317
1318 struct arm_cspmu *cspmu =
1319 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1320
1321 /* Nothing to do if this CPU doesn't own the PMU */
1322 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1323 return 0;
1324
1325 /* Choose a new CPU to migrate ownership of the PMU to */
1326 dst = cpumask_any_and_but(&cspmu->associated_cpus,
1327 cpu_online_mask, cpu);
1328 if (dst >= nr_cpu_ids)
1329 return 0;
1330
1331 /* Use this CPU for event counting */
1332 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1333 arm_cspmu_set_active_cpu(dst, cspmu);
1334
1335 return 0;
1336}
1337
1338static int __init arm_cspmu_init(void)
1339{
1340 int ret;
1341
1342 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1343 "perf/arm/cspmu:online",
1344 arm_cspmu_cpu_online,
1345 arm_cspmu_cpu_teardown);
1346 if (ret < 0)
1347 return ret;
1348 arm_cspmu_cpuhp_state = ret;
1349 return platform_driver_register(&arm_cspmu_driver);
1350}
1351
1352static void __exit arm_cspmu_exit(void)
1353{
1354 platform_driver_unregister(&arm_cspmu_driver);
1355 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1356}
1357
1358int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1359{
1360 struct arm_cspmu_impl_match *match;
1361 int ret = 0;
1362
1363 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1364
1365 if (match) {
1366 mutex_lock(&arm_cspmu_lock);
1367
1368 if (!match->impl_init_ops) {
1369 match->module = impl_match->module;
1370 match->impl_init_ops = impl_match->impl_init_ops;
1371 } else {
1372 /* Broken match table may contain non-unique entries */
1373 WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1374 match->module_name,
1375 match->pmiidr_val,
1376 match->pmiidr_mask);
1377
1378 ret = -EINVAL;
1379 }
1380
1381 mutex_unlock(&arm_cspmu_lock);
1382
1383 if (!ret)
1384 ret = driver_attach(&arm_cspmu_driver.driver);
1385 } else {
1386 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1387 impl_match->pmiidr_val);
1388
1389 ret = -EINVAL;
1390 }
1391
1392 return ret;
1393}
1394EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1395
1396static int arm_cspmu_match_device(struct device *dev, const void *match)
1397{
1398 struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1399
1400 return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1401}
1402
1403void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1404{
1405 struct device *dev;
1406 struct arm_cspmu_impl_match *match;
1407
1408 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1409
1410 if (WARN_ON(!match))
1411 return;
1412
1413 /* Unbind the driver from all matching backend devices. */
1414 while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1415 match, arm_cspmu_match_device)))
1416 device_release_driver(dev);
1417
1418 mutex_lock(&arm_cspmu_lock);
1419
1420 match->module = NULL;
1421 match->impl_init_ops = NULL;
1422
1423 mutex_unlock(&arm_cspmu_lock);
1424}
1425EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1426
1427module_init(arm_cspmu_init);
1428module_exit(arm_cspmu_exit);
1429
1430MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1431MODULE_LICENSE("GPL v2");