Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crash_dump.h>
  12#include <linux/crc32.h>
  13#include <linux/kernel.h>
  14#include <linux/initrd.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
  19#include <linux/of_reserved_mem.h>
  20#include <linux/sizes.h>
  21#include <linux/string.h>
  22#include <linux/errno.h>
  23#include <linux/slab.h>
  24#include <linux/libfdt.h>
  25#include <linux/debugfs.h>
  26#include <linux/serial_core.h>
  27#include <linux/sysfs.h>
  28#include <linux/random.h>
  29
  30#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  31#include <asm/page.h>
  32
  33#include "of_private.h"
  34
  35/*
 
 
 
 
 
 
 
  36 * of_fdt_limit_memory - limit the number of regions in the /memory node
  37 * @limit: maximum entries
  38 *
  39 * Adjust the flattened device tree to have at most 'limit' number of
  40 * memory entries in the /memory node. This function may be called
  41 * any time after initial_boot_param is set.
  42 */
  43void __init of_fdt_limit_memory(int limit)
  44{
  45	int memory;
  46	int len;
  47	const void *val;
  48	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  49	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  50	const __be32 *addr_prop;
  51	const __be32 *size_prop;
  52	int root_offset;
  53	int cell_size;
  54
  55	root_offset = fdt_path_offset(initial_boot_params, "/");
  56	if (root_offset < 0)
  57		return;
  58
  59	addr_prop = fdt_getprop(initial_boot_params, root_offset,
  60				"#address-cells", NULL);
  61	if (addr_prop)
  62		nr_address_cells = fdt32_to_cpu(*addr_prop);
  63
  64	size_prop = fdt_getprop(initial_boot_params, root_offset,
  65				"#size-cells", NULL);
  66	if (size_prop)
  67		nr_size_cells = fdt32_to_cpu(*size_prop);
  68
  69	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
  70
  71	memory = fdt_path_offset(initial_boot_params, "/memory");
  72	if (memory > 0) {
  73		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  74		if (len > limit*cell_size) {
  75			len = limit*cell_size;
  76			pr_debug("Limiting number of entries to %d\n", limit);
  77			fdt_setprop(initial_boot_params, memory, "reg", val,
  78					len);
  79		}
  80	}
  81}
  82
  83static bool of_fdt_device_is_available(const void *blob, unsigned long node)
  84{
  85	const char *status = fdt_getprop(blob, node, "status", NULL);
  86
  87	if (!status)
  88		return true;
  89
  90	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  91		return true;
  92
  93	return false;
  94}
  95
  96static void *unflatten_dt_alloc(void **mem, unsigned long size,
  97				       unsigned long align)
  98{
  99	void *res;
 100
 101	*mem = PTR_ALIGN(*mem, align);
 102	res = *mem;
 103	*mem += size;
 104
 105	return res;
 106}
 107
 108static void populate_properties(const void *blob,
 109				int offset,
 110				void **mem,
 111				struct device_node *np,
 112				const char *nodename,
 113				bool dryrun)
 114{
 115	struct property *pp, **pprev = NULL;
 116	int cur;
 117	bool has_name = false;
 118
 119	pprev = &np->properties;
 120	for (cur = fdt_first_property_offset(blob, offset);
 121	     cur >= 0;
 122	     cur = fdt_next_property_offset(blob, cur)) {
 123		const __be32 *val;
 124		const char *pname;
 125		u32 sz;
 126
 127		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 128		if (!val) {
 129			pr_warn("Cannot locate property at 0x%x\n", cur);
 130			continue;
 131		}
 132
 133		if (!pname) {
 134			pr_warn("Cannot find property name at 0x%x\n", cur);
 135			continue;
 136		}
 137
 138		if (!strcmp(pname, "name"))
 139			has_name = true;
 140
 141		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 142					__alignof__(struct property));
 143		if (dryrun)
 144			continue;
 145
 146		/* We accept flattened tree phandles either in
 147		 * ePAPR-style "phandle" properties, or the
 148		 * legacy "linux,phandle" properties.  If both
 149		 * appear and have different values, things
 150		 * will get weird. Don't do that.
 151		 */
 152		if (!strcmp(pname, "phandle") ||
 153		    !strcmp(pname, "linux,phandle")) {
 154			if (!np->phandle)
 155				np->phandle = be32_to_cpup(val);
 156		}
 157
 158		/* And we process the "ibm,phandle" property
 159		 * used in pSeries dynamic device tree
 160		 * stuff
 161		 */
 162		if (!strcmp(pname, "ibm,phandle"))
 163			np->phandle = be32_to_cpup(val);
 164
 165		pp->name   = (char *)pname;
 166		pp->length = sz;
 167		pp->value  = (__be32 *)val;
 168		*pprev     = pp;
 169		pprev      = &pp->next;
 170	}
 171
 172	/* With version 0x10 we may not have the name property,
 173	 * recreate it here from the unit name if absent
 174	 */
 175	if (!has_name) {
 176		const char *p = nodename, *ps = p, *pa = NULL;
 177		int len;
 178
 179		while (*p) {
 180			if ((*p) == '@')
 181				pa = p;
 182			else if ((*p) == '/')
 183				ps = p + 1;
 184			p++;
 185		}
 186
 187		if (pa < ps)
 188			pa = p;
 189		len = (pa - ps) + 1;
 190		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 191					__alignof__(struct property));
 192		if (!dryrun) {
 193			pp->name   = "name";
 194			pp->length = len;
 195			pp->value  = pp + 1;
 196			*pprev     = pp;
 197			memcpy(pp->value, ps, len - 1);
 198			((char *)pp->value)[len - 1] = 0;
 199			pr_debug("fixed up name for %s -> %s\n",
 200				 nodename, (char *)pp->value);
 201		}
 202	}
 203}
 204
 205static int populate_node(const void *blob,
 206			  int offset,
 207			  void **mem,
 208			  struct device_node *dad,
 209			  struct device_node **pnp,
 210			  bool dryrun)
 211{
 212	struct device_node *np;
 213	const char *pathp;
 214	int len;
 215
 216	pathp = fdt_get_name(blob, offset, &len);
 217	if (!pathp) {
 218		*pnp = NULL;
 219		return len;
 220	}
 221
 222	len++;
 223
 224	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 225				__alignof__(struct device_node));
 226	if (!dryrun) {
 227		char *fn;
 228		of_node_init(np);
 229		np->full_name = fn = ((char *)np) + sizeof(*np);
 230
 231		memcpy(fn, pathp, len);
 232
 233		if (dad != NULL) {
 234			np->parent = dad;
 235			np->sibling = dad->child;
 236			dad->child = np;
 237		}
 238	}
 239
 240	populate_properties(blob, offset, mem, np, pathp, dryrun);
 241	if (!dryrun) {
 242		np->name = of_get_property(np, "name", NULL);
 243		if (!np->name)
 244			np->name = "<NULL>";
 245	}
 246
 247	*pnp = np;
 248	return 0;
 249}
 250
 251static void reverse_nodes(struct device_node *parent)
 252{
 253	struct device_node *child, *next;
 254
 255	/* In-depth first */
 256	child = parent->child;
 257	while (child) {
 258		reverse_nodes(child);
 259
 260		child = child->sibling;
 261	}
 262
 263	/* Reverse the nodes in the child list */
 264	child = parent->child;
 265	parent->child = NULL;
 266	while (child) {
 267		next = child->sibling;
 268
 269		child->sibling = parent->child;
 270		parent->child = child;
 271		child = next;
 272	}
 273}
 274
 275/**
 276 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 277 * @blob: The parent device tree blob
 278 * @mem: Memory chunk to use for allocating device nodes and properties
 279 * @dad: Parent struct device_node
 280 * @nodepp: The device_node tree created by the call
 281 *
 282 * Return: The size of unflattened device tree or error code
 283 */
 284static int unflatten_dt_nodes(const void *blob,
 285			      void *mem,
 286			      struct device_node *dad,
 287			      struct device_node **nodepp)
 288{
 289	struct device_node *root;
 290	int offset = 0, depth = 0, initial_depth = 0;
 291#define FDT_MAX_DEPTH	64
 292	struct device_node *nps[FDT_MAX_DEPTH];
 293	void *base = mem;
 294	bool dryrun = !base;
 295	int ret;
 296
 297	if (nodepp)
 298		*nodepp = NULL;
 299
 300	/*
 301	 * We're unflattening device sub-tree if @dad is valid. There are
 302	 * possibly multiple nodes in the first level of depth. We need
 303	 * set @depth to 1 to make fdt_next_node() happy as it bails
 304	 * immediately when negative @depth is found. Otherwise, the device
 305	 * nodes except the first one won't be unflattened successfully.
 306	 */
 307	if (dad)
 308		depth = initial_depth = 1;
 309
 310	root = dad;
 311	nps[depth] = dad;
 312
 313	for (offset = 0;
 314	     offset >= 0 && depth >= initial_depth;
 315	     offset = fdt_next_node(blob, offset, &depth)) {
 316		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 317			continue;
 318
 319		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 320		    !of_fdt_device_is_available(blob, offset))
 321			continue;
 322
 323		ret = populate_node(blob, offset, &mem, nps[depth],
 324				   &nps[depth+1], dryrun);
 325		if (ret < 0)
 326			return ret;
 327
 328		if (!dryrun && nodepp && !*nodepp)
 329			*nodepp = nps[depth+1];
 330		if (!dryrun && !root)
 331			root = nps[depth+1];
 332	}
 333
 334	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 335		pr_err("Error %d processing FDT\n", offset);
 336		return -EINVAL;
 337	}
 338
 339	/*
 340	 * Reverse the child list. Some drivers assumes node order matches .dts
 341	 * node order
 342	 */
 343	if (!dryrun)
 344		reverse_nodes(root);
 345
 346	return mem - base;
 347}
 348
 349/**
 350 * __unflatten_device_tree - create tree of device_nodes from flat blob
 351 * @blob: The blob to expand
 352 * @dad: Parent device node
 353 * @mynodes: The device_node tree created by the call
 354 * @dt_alloc: An allocator that provides a virtual address to memory
 355 * for the resulting tree
 356 * @detached: if true set OF_DETACHED on @mynodes
 357 *
 358 * unflattens a device-tree, creating the tree of struct device_node. It also
 359 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 360 * walking functions can be used.
 361 *
 362 * Return: NULL on failure or the memory chunk containing the unflattened
 363 * device tree on success.
 364 */
 365void *__unflatten_device_tree(const void *blob,
 366			      struct device_node *dad,
 367			      struct device_node **mynodes,
 368			      void *(*dt_alloc)(u64 size, u64 align),
 369			      bool detached)
 370{
 371	int size;
 372	void *mem;
 373	int ret;
 374
 375	if (mynodes)
 376		*mynodes = NULL;
 377
 378	pr_debug(" -> unflatten_device_tree()\n");
 379
 380	if (!blob) {
 381		pr_debug("No device tree pointer\n");
 382		return NULL;
 383	}
 384
 385	pr_debug("Unflattening device tree:\n");
 386	pr_debug("magic: %08x\n", fdt_magic(blob));
 387	pr_debug("size: %08x\n", fdt_totalsize(blob));
 388	pr_debug("version: %08x\n", fdt_version(blob));
 389
 390	if (fdt_check_header(blob)) {
 391		pr_err("Invalid device tree blob header\n");
 392		return NULL;
 393	}
 394
 395	/* First pass, scan for size */
 396	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 397	if (size <= 0)
 398		return NULL;
 399
 400	size = ALIGN(size, 4);
 401	pr_debug("  size is %d, allocating...\n", size);
 402
 403	/* Allocate memory for the expanded device tree */
 404	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 405	if (!mem)
 406		return NULL;
 407
 408	memset(mem, 0, size);
 409
 410	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 411
 412	pr_debug("  unflattening %p...\n", mem);
 413
 414	/* Second pass, do actual unflattening */
 415	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 416
 417	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 418		pr_warn("End of tree marker overwritten: %08x\n",
 419			be32_to_cpup(mem + size));
 420
 421	if (ret <= 0)
 422		return NULL;
 423
 424	if (detached && mynodes && *mynodes) {
 425		of_node_set_flag(*mynodes, OF_DETACHED);
 426		pr_debug("unflattened tree is detached\n");
 427	}
 428
 429	pr_debug(" <- unflatten_device_tree()\n");
 430	return mem;
 431}
 432
 433static void *kernel_tree_alloc(u64 size, u64 align)
 434{
 435	return kzalloc(size, GFP_KERNEL);
 436}
 437
 438static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 439
 440/**
 441 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 442 * @blob: Flat device tree blob
 443 * @dad: Parent device node
 444 * @mynodes: The device tree created by the call
 445 *
 446 * unflattens the device-tree passed by the firmware, creating the
 447 * tree of struct device_node. It also fills the "name" and "type"
 448 * pointers of the nodes so the normal device-tree walking functions
 449 * can be used.
 450 *
 451 * Return: NULL on failure or the memory chunk containing the unflattened
 452 * device tree on success.
 453 */
 454void *of_fdt_unflatten_tree(const unsigned long *blob,
 455			    struct device_node *dad,
 456			    struct device_node **mynodes)
 457{
 458	void *mem;
 459
 460	mutex_lock(&of_fdt_unflatten_mutex);
 461	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 462				      true);
 463	mutex_unlock(&of_fdt_unflatten_mutex);
 464
 465	return mem;
 466}
 467EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 468
 469/* Everything below here references initial_boot_params directly. */
 470int __initdata dt_root_addr_cells;
 471int __initdata dt_root_size_cells;
 472
 473void *initial_boot_params __ro_after_init;
 
 474
 475#ifdef CONFIG_OF_EARLY_FLATTREE
 476
 477static u32 of_fdt_crc32;
 478
 479static int __init early_init_dt_reserve_memory(phys_addr_t base,
 480					       phys_addr_t size, bool nomap)
 481{
 482	if (nomap) {
 483		/*
 484		 * If the memory is already reserved (by another region), we
 485		 * should not allow it to be marked nomap, but don't worry
 486		 * if the region isn't memory as it won't be mapped.
 487		 */
 488		if (memblock_overlaps_region(&memblock.memory, base, size) &&
 489		    memblock_is_region_reserved(base, size))
 490			return -EBUSY;
 491
 492		return memblock_mark_nomap(base, size);
 493	}
 494	return memblock_reserve(base, size);
 495}
 496
 497/*
 498 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
 499 */
 500static int __init __reserved_mem_reserve_reg(unsigned long node,
 501					     const char *uname)
 502{
 503	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
 504	phys_addr_t base, size;
 505	int len;
 506	const __be32 *prop;
 507	int first = 1;
 508	bool nomap;
 509
 510	prop = of_get_flat_dt_prop(node, "reg", &len);
 511	if (!prop)
 512		return -ENOENT;
 513
 514	if (len && len % t_len != 0) {
 515		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
 516		       uname);
 517		return -EINVAL;
 518	}
 519
 520	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
 521
 522	while (len >= t_len) {
 523		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 524		size = dt_mem_next_cell(dt_root_size_cells, &prop);
 525
 526		if (size &&
 527		    early_init_dt_reserve_memory(base, size, nomap) == 0)
 528			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
 529				uname, &base, (unsigned long)(size / SZ_1M));
 530		else
 531			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
 532			       uname, &base, (unsigned long)(size / SZ_1M));
 533
 534		len -= t_len;
 535		if (first) {
 536			fdt_reserved_mem_save_node(node, uname, base, size);
 537			first = 0;
 538		}
 539	}
 540	return 0;
 541}
 542
 543/*
 544 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
 545 * in /reserved-memory matches the values supported by the current implementation,
 546 * also check if ranges property has been provided
 547 */
 548static int __init __reserved_mem_check_root(unsigned long node)
 549{
 550	const __be32 *prop;
 551
 552	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 553	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
 554		return -EINVAL;
 555
 556	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 557	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
 558		return -EINVAL;
 559
 560	prop = of_get_flat_dt_prop(node, "ranges", NULL);
 561	if (!prop)
 562		return -EINVAL;
 563	return 0;
 564}
 565
 566/*
 567 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
 568 */
 569static int __init fdt_scan_reserved_mem(void)
 570{
 571	int node, child;
 572	const void *fdt = initial_boot_params;
 573
 574	node = fdt_path_offset(fdt, "/reserved-memory");
 575	if (node < 0)
 576		return -ENODEV;
 577
 578	if (__reserved_mem_check_root(node) != 0) {
 579		pr_err("Reserved memory: unsupported node format, ignoring\n");
 580		return -EINVAL;
 581	}
 582
 583	fdt_for_each_subnode(child, fdt, node) {
 584		const char *uname;
 585		int err;
 586
 587		if (!of_fdt_device_is_available(fdt, child))
 588			continue;
 589
 590		uname = fdt_get_name(fdt, child, NULL);
 591
 592		err = __reserved_mem_reserve_reg(child, uname);
 593		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
 594			fdt_reserved_mem_save_node(child, uname, 0, 0);
 595	}
 596	return 0;
 597}
 598
 599/*
 600 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 601 *
 602 * This function reserves the memory occupied by an elf core header
 603 * described in the device tree. This region contains all the
 604 * information about primary kernel's core image and is used by a dump
 605 * capture kernel to access the system memory on primary kernel.
 606 */
 607static void __init fdt_reserve_elfcorehdr(void)
 608{
 609	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 610		return;
 611
 612	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 613		pr_warn("elfcorehdr is overlapped\n");
 614		return;
 615	}
 616
 617	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 618
 619	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 620		elfcorehdr_size >> 10, elfcorehdr_addr);
 621}
 622
 623/**
 624 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 625 *
 626 * This function grabs memory from early allocator for device exclusive use
 627 * defined in device tree structures. It should be called by arch specific code
 628 * once the early allocator (i.e. memblock) has been fully activated.
 629 */
 630void __init early_init_fdt_scan_reserved_mem(void)
 631{
 632	int n;
 633	u64 base, size;
 634
 635	if (!initial_boot_params)
 636		return;
 637
 
 
 
 638	/* Process header /memreserve/ fields */
 639	for (n = 0; ; n++) {
 640		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 641		if (!size)
 642			break;
 643		memblock_reserve(base, size);
 644	}
 645
 646	fdt_scan_reserved_mem();
 647	fdt_reserve_elfcorehdr();
 648	fdt_init_reserved_mem();
 649}
 650
 651/**
 652 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 653 */
 654void __init early_init_fdt_reserve_self(void)
 655{
 656	if (!initial_boot_params)
 657		return;
 658
 659	/* Reserve the dtb region */
 660	memblock_reserve(__pa(initial_boot_params),
 661			 fdt_totalsize(initial_boot_params));
 662}
 663
 664/**
 665 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 666 * @it: callback function
 667 * @data: context data pointer
 668 *
 669 * This function is used to scan the flattened device-tree, it is
 670 * used to extract the memory information at boot before we can
 671 * unflatten the tree
 672 */
 673int __init of_scan_flat_dt(int (*it)(unsigned long node,
 674				     const char *uname, int depth,
 675				     void *data),
 676			   void *data)
 677{
 678	const void *blob = initial_boot_params;
 679	const char *pathp;
 680	int offset, rc = 0, depth = -1;
 681
 682	if (!blob)
 683		return 0;
 684
 685	for (offset = fdt_next_node(blob, -1, &depth);
 686	     offset >= 0 && depth >= 0 && !rc;
 687	     offset = fdt_next_node(blob, offset, &depth)) {
 688
 689		pathp = fdt_get_name(blob, offset, NULL);
 690		rc = it(offset, pathp, depth, data);
 691	}
 692	return rc;
 693}
 694
 695/**
 696 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 697 * @parent: parent node
 698 * @it: callback function
 699 * @data: context data pointer
 700 *
 701 * This function is used to scan sub-nodes of a node.
 702 */
 703int __init of_scan_flat_dt_subnodes(unsigned long parent,
 704				    int (*it)(unsigned long node,
 705					      const char *uname,
 706					      void *data),
 707				    void *data)
 708{
 709	const void *blob = initial_boot_params;
 710	int node;
 711
 712	fdt_for_each_subnode(node, blob, parent) {
 713		const char *pathp;
 714		int rc;
 715
 716		pathp = fdt_get_name(blob, node, NULL);
 717		rc = it(node, pathp, data);
 718		if (rc)
 719			return rc;
 720	}
 721	return 0;
 722}
 723
 724/**
 725 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 726 *
 727 * @node: the parent node
 728 * @uname: the name of subnode
 729 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 730 */
 731
 732int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 733{
 734	return fdt_subnode_offset(initial_boot_params, node, uname);
 735}
 736
 737/*
 738 * of_get_flat_dt_root - find the root node in the flat blob
 739 */
 740unsigned long __init of_get_flat_dt_root(void)
 741{
 742	return 0;
 743}
 744
 745/*
 746 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 747 *
 748 * This function can be used within scan_flattened_dt callback to get
 749 * access to properties
 750 */
 751const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 752				       int *size)
 753{
 754	return fdt_getprop(initial_boot_params, node, name, size);
 755}
 756
 757/**
 758 * of_fdt_is_compatible - Return true if given node from the given blob has
 759 * compat in its compatible list
 760 * @blob: A device tree blob
 761 * @node: node to test
 762 * @compat: compatible string to compare with compatible list.
 763 *
 764 * Return: a non-zero value on match with smaller values returned for more
 765 * specific compatible values.
 766 */
 767static int of_fdt_is_compatible(const void *blob,
 768		      unsigned long node, const char *compat)
 769{
 770	const char *cp;
 771	int cplen;
 772	unsigned long l, score = 0;
 773
 774	cp = fdt_getprop(blob, node, "compatible", &cplen);
 775	if (cp == NULL)
 776		return 0;
 777	while (cplen > 0) {
 778		score++;
 779		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 780			return score;
 781		l = strlen(cp) + 1;
 782		cp += l;
 783		cplen -= l;
 784	}
 785
 786	return 0;
 787}
 788
 789/**
 790 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 791 * @node: node to test
 792 * @compat: compatible string to compare with compatible list.
 793 */
 794int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 795{
 796	return of_fdt_is_compatible(initial_boot_params, node, compat);
 797}
 798
 799/*
 800 * of_flat_dt_match - Return true if node matches a list of compatible values
 801 */
 802static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 803{
 804	unsigned int tmp, score = 0;
 805
 806	if (!compat)
 807		return 0;
 808
 809	while (*compat) {
 810		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 811		if (tmp && (score == 0 || (tmp < score)))
 812			score = tmp;
 813		compat++;
 814	}
 815
 816	return score;
 817}
 818
 819/*
 820 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 821 */
 822uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 823{
 824	return fdt_get_phandle(initial_boot_params, node);
 825}
 826
 827const char * __init of_flat_dt_get_machine_name(void)
 828{
 829	const char *name;
 830	unsigned long dt_root = of_get_flat_dt_root();
 831
 832	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 833	if (!name)
 834		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 835	return name;
 836}
 837
 838/**
 839 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 840 *
 841 * @default_match: A machine specific ptr to return in case of no match.
 842 * @get_next_compat: callback function to return next compatible match table.
 843 *
 844 * Iterate through machine match tables to find the best match for the machine
 845 * compatible string in the FDT.
 846 */
 847const void * __init of_flat_dt_match_machine(const void *default_match,
 848		const void * (*get_next_compat)(const char * const**))
 849{
 850	const void *data = NULL;
 851	const void *best_data = default_match;
 852	const char *const *compat;
 853	unsigned long dt_root;
 854	unsigned int best_score = ~1, score = 0;
 855
 856	dt_root = of_get_flat_dt_root();
 857	while ((data = get_next_compat(&compat))) {
 858		score = of_flat_dt_match(dt_root, compat);
 859		if (score > 0 && score < best_score) {
 860			best_data = data;
 861			best_score = score;
 862		}
 863	}
 864	if (!best_data) {
 865		const char *prop;
 866		int size;
 867
 868		pr_err("\n unrecognized device tree list:\n[ ");
 869
 870		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 871		if (prop) {
 872			while (size > 0) {
 873				printk("'%s' ", prop);
 874				size -= strlen(prop) + 1;
 875				prop += strlen(prop) + 1;
 876			}
 877		}
 878		printk("]\n\n");
 879		return NULL;
 880	}
 881
 882	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 883
 884	return best_data;
 885}
 886
 887static void __early_init_dt_declare_initrd(unsigned long start,
 888					   unsigned long end)
 889{
 890	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
 891	 * enabled since __va() is called too early. ARM64 does make use
 892	 * of phys_initrd_start/phys_initrd_size so we can skip this
 893	 * conversion.
 894	 */
 895	if (!IS_ENABLED(CONFIG_ARM64)) {
 
 896		initrd_start = (unsigned long)__va(start);
 897		initrd_end = (unsigned long)__va(end);
 898		initrd_below_start_ok = 1;
 899	}
 900}
 901
 902/**
 903 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 904 * @node: reference to node containing initrd location ('chosen')
 905 */
 906static void __init early_init_dt_check_for_initrd(unsigned long node)
 907{
 908	u64 start, end;
 909	int len;
 910	const __be32 *prop;
 911
 912	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 913		return;
 914
 915	pr_debug("Looking for initrd properties... ");
 916
 917	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 918	if (!prop)
 919		return;
 920	start = of_read_number(prop, len/4);
 921
 922	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 923	if (!prop)
 924		return;
 925	end = of_read_number(prop, len/4);
 926	if (start > end)
 927		return;
 928
 929	__early_init_dt_declare_initrd(start, end);
 930	phys_initrd_start = start;
 931	phys_initrd_size = end - start;
 932
 933	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 934}
 935
 936/**
 937 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 938 * tree
 939 * @node: reference to node containing elfcorehdr location ('chosen')
 940 */
 941static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 942{
 943	const __be32 *prop;
 944	int len;
 945
 946	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 947		return;
 948
 949	pr_debug("Looking for elfcorehdr property... ");
 950
 951	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 952	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 953		return;
 954
 955	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 956	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 957
 958	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 959		 elfcorehdr_addr, elfcorehdr_size);
 960}
 961
 962static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 963
 964/*
 965 * The main usage of linux,usable-memory-range is for crash dump kernel.
 966 * Originally, the number of usable-memory regions is one. Now there may
 967 * be two regions, low region and high region.
 968 * To make compatibility with existing user-space and older kdump, the low
 969 * region is always the last range of linux,usable-memory-range if exist.
 970 */
 971#define MAX_USABLE_RANGES		2
 972
 973/**
 974 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 975 * location from flat tree
 976 */
 977void __init early_init_dt_check_for_usable_mem_range(void)
 978{
 979	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 980	const __be32 *prop, *endp;
 981	int len, i;
 982	unsigned long node = chosen_node_offset;
 983
 984	if ((long)node < 0)
 985		return;
 986
 987	pr_debug("Looking for usable-memory-range property... ");
 988
 989	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 990	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 991		return;
 992
 993	endp = prop + (len / sizeof(__be32));
 994	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 995		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 996		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 997
 998		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
 999			 i, &rgn[i].base, &rgn[i].size);
1000	}
1001
1002	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1003	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1004		memblock_add(rgn[i].base, rgn[i].size);
1005}
1006
1007#ifdef CONFIG_SERIAL_EARLYCON
1008
1009int __init early_init_dt_scan_chosen_stdout(void)
1010{
1011	int offset;
1012	const char *p, *q, *options = NULL;
1013	int l;
1014	const struct earlycon_id *match;
1015	const void *fdt = initial_boot_params;
1016	int ret;
1017
1018	offset = fdt_path_offset(fdt, "/chosen");
1019	if (offset < 0)
1020		offset = fdt_path_offset(fdt, "/chosen@0");
1021	if (offset < 0)
1022		return -ENOENT;
1023
1024	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1025	if (!p)
1026		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1027	if (!p || !l)
1028		return -ENOENT;
1029
1030	q = strchrnul(p, ':');
1031	if (*q != '\0')
1032		options = q + 1;
1033	l = q - p;
1034
1035	/* Get the node specified by stdout-path */
1036	offset = fdt_path_offset_namelen(fdt, p, l);
1037	if (offset < 0) {
1038		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1039		return 0;
1040	}
1041
1042	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1043		if (!match->compatible[0])
1044			continue;
1045
1046		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1047			continue;
1048
1049		ret = of_setup_earlycon(match, offset, options);
1050		if (!ret || ret == -EALREADY)
1051			return 0;
1052	}
1053	return -ENODEV;
1054}
1055#endif
1056
1057/*
1058 * early_init_dt_scan_root - fetch the top level address and size cells
1059 */
1060int __init early_init_dt_scan_root(void)
1061{
1062	const __be32 *prop;
1063	const void *fdt = initial_boot_params;
1064	int node = fdt_path_offset(fdt, "/");
1065
1066	if (node < 0)
1067		return -ENODEV;
1068
1069	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1070	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1071
1072	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1073	if (prop)
1074		dt_root_size_cells = be32_to_cpup(prop);
1075	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1076
1077	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1078	if (prop)
1079		dt_root_addr_cells = be32_to_cpup(prop);
1080	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1081
1082	return 0;
1083}
1084
1085u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1086{
1087	const __be32 *p = *cellp;
1088
1089	*cellp = p + s;
1090	return of_read_number(p, s);
1091}
1092
1093/*
1094 * early_init_dt_scan_memory - Look for and parse memory nodes
1095 */
1096int __init early_init_dt_scan_memory(void)
1097{
1098	int node, found_memory = 0;
1099	const void *fdt = initial_boot_params;
1100
1101	fdt_for_each_subnode(node, fdt, 0) {
1102		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1103		const __be32 *reg, *endp;
1104		int l;
1105		bool hotpluggable;
1106
1107		/* We are scanning "memory" nodes only */
1108		if (type == NULL || strcmp(type, "memory") != 0)
1109			continue;
1110
1111		if (!of_fdt_device_is_available(fdt, node))
1112			continue;
1113
1114		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1115		if (reg == NULL)
1116			reg = of_get_flat_dt_prop(node, "reg", &l);
1117		if (reg == NULL)
1118			continue;
1119
1120		endp = reg + (l / sizeof(__be32));
1121		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1122
1123		pr_debug("memory scan node %s, reg size %d,\n",
1124			 fdt_get_name(fdt, node, NULL), l);
1125
1126		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1127			u64 base, size;
1128
1129			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1130			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1131
1132			if (size == 0)
1133				continue;
1134			pr_debug(" - %llx, %llx\n", base, size);
1135
1136			early_init_dt_add_memory_arch(base, size);
1137
1138			found_memory = 1;
1139
1140			if (!hotpluggable)
1141				continue;
1142
1143			if (memblock_mark_hotplug(base, size))
1144				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1145					base, base + size);
1146		}
1147	}
1148	return found_memory;
1149}
1150
1151int __init early_init_dt_scan_chosen(char *cmdline)
1152{
1153	int l, node;
1154	const char *p;
1155	const void *rng_seed;
1156	const void *fdt = initial_boot_params;
1157
1158	node = fdt_path_offset(fdt, "/chosen");
1159	if (node < 0)
1160		node = fdt_path_offset(fdt, "/chosen@0");
1161	if (node < 0)
1162		/* Handle the cmdline config options even if no /chosen node */
1163		goto handle_cmdline;
1164
1165	chosen_node_offset = node;
1166
1167	early_init_dt_check_for_initrd(node);
1168	early_init_dt_check_for_elfcorehdr(node);
1169
1170	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1171	if (rng_seed && l > 0) {
1172		add_bootloader_randomness(rng_seed, l);
1173
1174		/* try to clear seed so it won't be found. */
1175		fdt_nop_property(initial_boot_params, node, "rng-seed");
1176
1177		/* update CRC check value */
1178		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1179				fdt_totalsize(initial_boot_params));
1180	}
1181
1182	/* Retrieve command line */
1183	p = of_get_flat_dt_prop(node, "bootargs", &l);
1184	if (p != NULL && l > 0)
1185		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1186
1187handle_cmdline:
1188	/*
1189	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1190	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1191	 * is set in which case we override whatever was found earlier.
1192	 */
1193#ifdef CONFIG_CMDLINE
1194#if defined(CONFIG_CMDLINE_EXTEND)
1195	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1196	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1197#elif defined(CONFIG_CMDLINE_FORCE)
1198	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199#else
1200	/* No arguments from boot loader, use kernel's  cmdl*/
1201	if (!((char *)cmdline)[0])
1202		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1203#endif
1204#endif /* CONFIG_CMDLINE */
1205
1206	pr_debug("Command line is: %s\n", (char *)cmdline);
1207
1208	return 0;
1209}
1210
1211#ifndef MIN_MEMBLOCK_ADDR
1212#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1213#endif
1214#ifndef MAX_MEMBLOCK_ADDR
1215#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1216#endif
1217
1218void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1219{
1220	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1221
1222	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1223		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1224			base, base + size);
1225		return;
1226	}
1227
1228	if (!PAGE_ALIGNED(base)) {
1229		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1230		base = PAGE_ALIGN(base);
1231	}
1232	size &= PAGE_MASK;
1233
1234	if (base > MAX_MEMBLOCK_ADDR) {
1235		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1236			base, base + size);
1237		return;
1238	}
1239
1240	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1241		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1242			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1243		size = MAX_MEMBLOCK_ADDR - base + 1;
1244	}
1245
1246	if (base + size < phys_offset) {
1247		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1248			base, base + size);
1249		return;
1250	}
1251	if (base < phys_offset) {
1252		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1253			base, phys_offset);
1254		size -= phys_offset - base;
1255		base = phys_offset;
1256	}
1257	memblock_add(base, size);
1258}
1259
1260static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1261{
1262	void *ptr = memblock_alloc(size, align);
1263
1264	if (!ptr)
1265		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1266		      __func__, size, align);
1267
1268	return ptr;
1269}
1270
1271bool __init early_init_dt_verify(void *params)
1272{
1273	if (!params)
1274		return false;
1275
1276	/* check device tree validity */
1277	if (fdt_check_header(params))
1278		return false;
1279
1280	/* Setup flat device-tree pointer */
1281	initial_boot_params = params;
 
1282	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1283				fdt_totalsize(initial_boot_params));
 
 
 
 
1284	return true;
1285}
1286
1287
1288void __init early_init_dt_scan_nodes(void)
1289{
1290	int rc;
1291
1292	/* Initialize {size,address}-cells info */
1293	early_init_dt_scan_root();
1294
1295	/* Retrieve various information from the /chosen node */
1296	rc = early_init_dt_scan_chosen(boot_command_line);
1297	if (rc)
1298		pr_warn("No chosen node found, continuing without\n");
1299
1300	/* Setup memory, calling early_init_dt_add_memory_arch */
1301	early_init_dt_scan_memory();
1302
1303	/* Handle linux,usable-memory-range property */
1304	early_init_dt_check_for_usable_mem_range();
1305}
1306
1307bool __init early_init_dt_scan(void *params)
1308{
1309	bool status;
1310
1311	status = early_init_dt_verify(params);
1312	if (!status)
1313		return false;
1314
1315	early_init_dt_scan_nodes();
1316	return true;
1317}
1318
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319/**
1320 * unflatten_device_tree - create tree of device_nodes from flat blob
1321 *
1322 * unflattens the device-tree passed by the firmware, creating the
1323 * tree of struct device_node. It also fills the "name" and "type"
1324 * pointers of the nodes so the normal device-tree walking functions
1325 * can be used.
1326 */
1327void __init unflatten_device_tree(void)
1328{
1329	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330				early_init_dt_alloc_memory_arch, false);
1331
1332	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1333	of_alias_scan(early_init_dt_alloc_memory_arch);
1334
1335	unittest_unflatten_overlay_base();
1336}
1337
1338/**
1339 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1340 *
1341 * Copies and unflattens the device-tree passed by the firmware, creating the
1342 * tree of struct device_node. It also fills the "name" and "type"
1343 * pointers of the nodes so the normal device-tree walking functions
1344 * can be used. This should only be used when the FDT memory has not been
1345 * reserved such is the case when the FDT is built-in to the kernel init
1346 * section. If the FDT memory is reserved already then unflatten_device_tree
1347 * should be used instead.
1348 */
1349void __init unflatten_and_copy_device_tree(void)
1350{
1351	int size;
1352	void *dt;
1353
1354	if (!initial_boot_params) {
1355		pr_warn("No valid device tree found, continuing without\n");
1356		return;
1357	}
1358
1359	size = fdt_totalsize(initial_boot_params);
1360	dt = early_init_dt_alloc_memory_arch(size,
1361					     roundup_pow_of_two(FDT_V17_SIZE));
1362
1363	if (dt) {
1364		memcpy(dt, initial_boot_params, size);
1365		initial_boot_params = dt;
1366	}
1367	unflatten_device_tree();
1368}
1369
1370#ifdef CONFIG_SYSFS
1371static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1372			       struct bin_attribute *bin_attr,
1373			       char *buf, loff_t off, size_t count)
1374{
1375	memcpy(buf, initial_boot_params + off, count);
1376	return count;
1377}
1378
1379static int __init of_fdt_raw_init(void)
1380{
1381	static struct bin_attribute of_fdt_raw_attr =
1382		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1383
1384	if (!initial_boot_params)
1385		return 0;
1386
1387	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1388				     fdt_totalsize(initial_boot_params))) {
1389		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1390		return 0;
1391	}
1392	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1393	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1394}
1395late_initcall(of_fdt_raw_init);
1396#endif
1397
1398#endif /* CONFIG_OF_EARLY_FLATTREE */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions for working with the Flattened Device Tree data format
   4 *
   5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
   6 * benh@kernel.crashing.org
   7 */
   8
   9#define pr_fmt(fmt)	"OF: fdt: " fmt
  10
  11#include <linux/crash_dump.h>
  12#include <linux/crc32.h>
  13#include <linux/kernel.h>
  14#include <linux/initrd.h>
  15#include <linux/memblock.h>
  16#include <linux/mutex.h>
  17#include <linux/of.h>
  18#include <linux/of_fdt.h>
 
  19#include <linux/sizes.h>
  20#include <linux/string.h>
  21#include <linux/errno.h>
  22#include <linux/slab.h>
  23#include <linux/libfdt.h>
  24#include <linux/debugfs.h>
  25#include <linux/serial_core.h>
  26#include <linux/sysfs.h>
  27#include <linux/random.h>
  28
  29#include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
  30#include <asm/page.h>
  31
  32#include "of_private.h"
  33
  34/*
  35 * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
  36 * cmd_wrap_S_dtb in scripts/Makefile.dtbs
  37 */
  38extern uint8_t __dtb_empty_root_begin[];
  39extern uint8_t __dtb_empty_root_end[];
  40
  41/*
  42 * of_fdt_limit_memory - limit the number of regions in the /memory node
  43 * @limit: maximum entries
  44 *
  45 * Adjust the flattened device tree to have at most 'limit' number of
  46 * memory entries in the /memory node. This function may be called
  47 * any time after initial_boot_param is set.
  48 */
  49void __init of_fdt_limit_memory(int limit)
  50{
  51	int memory;
  52	int len;
  53	const void *val;
  54	int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55
  56	memory = fdt_path_offset(initial_boot_params, "/memory");
  57	if (memory > 0) {
  58		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
  59		if (len > limit*cell_size) {
  60			len = limit*cell_size;
  61			pr_debug("Limiting number of entries to %d\n", limit);
  62			fdt_setprop(initial_boot_params, memory, "reg", val,
  63					len);
  64		}
  65	}
  66}
  67
  68bool of_fdt_device_is_available(const void *blob, unsigned long node)
  69{
  70	const char *status = fdt_getprop(blob, node, "status", NULL);
  71
  72	if (!status)
  73		return true;
  74
  75	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
  76		return true;
  77
  78	return false;
  79}
  80
  81static void *unflatten_dt_alloc(void **mem, unsigned long size,
  82				       unsigned long align)
  83{
  84	void *res;
  85
  86	*mem = PTR_ALIGN(*mem, align);
  87	res = *mem;
  88	*mem += size;
  89
  90	return res;
  91}
  92
  93static void populate_properties(const void *blob,
  94				int offset,
  95				void **mem,
  96				struct device_node *np,
  97				const char *nodename,
  98				bool dryrun)
  99{
 100	struct property *pp, **pprev = NULL;
 101	int cur;
 102	bool has_name = false;
 103
 104	pprev = &np->properties;
 105	for (cur = fdt_first_property_offset(blob, offset);
 106	     cur >= 0;
 107	     cur = fdt_next_property_offset(blob, cur)) {
 108		const __be32 *val;
 109		const char *pname;
 110		u32 sz;
 111
 112		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
 113		if (!val) {
 114			pr_warn("Cannot locate property at 0x%x\n", cur);
 115			continue;
 116		}
 117
 118		if (!pname) {
 119			pr_warn("Cannot find property name at 0x%x\n", cur);
 120			continue;
 121		}
 122
 123		if (!strcmp(pname, "name"))
 124			has_name = true;
 125
 126		pp = unflatten_dt_alloc(mem, sizeof(struct property),
 127					__alignof__(struct property));
 128		if (dryrun)
 129			continue;
 130
 131		/* We accept flattened tree phandles either in
 132		 * ePAPR-style "phandle" properties, or the
 133		 * legacy "linux,phandle" properties.  If both
 134		 * appear and have different values, things
 135		 * will get weird. Don't do that.
 136		 */
 137		if (!strcmp(pname, "phandle") ||
 138		    !strcmp(pname, "linux,phandle")) {
 139			if (!np->phandle)
 140				np->phandle = be32_to_cpup(val);
 141		}
 142
 143		/* And we process the "ibm,phandle" property
 144		 * used in pSeries dynamic device tree
 145		 * stuff
 146		 */
 147		if (!strcmp(pname, "ibm,phandle"))
 148			np->phandle = be32_to_cpup(val);
 149
 150		pp->name   = (char *)pname;
 151		pp->length = sz;
 152		pp->value  = (__be32 *)val;
 153		*pprev     = pp;
 154		pprev      = &pp->next;
 155	}
 156
 157	/* With version 0x10 we may not have the name property,
 158	 * recreate it here from the unit name if absent
 159	 */
 160	if (!has_name) {
 161		const char *p = nodename, *ps = p, *pa = NULL;
 162		int len;
 163
 164		while (*p) {
 165			if ((*p) == '@')
 166				pa = p;
 167			else if ((*p) == '/')
 168				ps = p + 1;
 169			p++;
 170		}
 171
 172		if (pa < ps)
 173			pa = p;
 174		len = (pa - ps) + 1;
 175		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
 176					__alignof__(struct property));
 177		if (!dryrun) {
 178			pp->name   = "name";
 179			pp->length = len;
 180			pp->value  = pp + 1;
 181			*pprev     = pp;
 182			memcpy(pp->value, ps, len - 1);
 183			((char *)pp->value)[len - 1] = 0;
 184			pr_debug("fixed up name for %s -> %s\n",
 185				 nodename, (char *)pp->value);
 186		}
 187	}
 188}
 189
 190static int populate_node(const void *blob,
 191			  int offset,
 192			  void **mem,
 193			  struct device_node *dad,
 194			  struct device_node **pnp,
 195			  bool dryrun)
 196{
 197	struct device_node *np;
 198	const char *pathp;
 199	int len;
 200
 201	pathp = fdt_get_name(blob, offset, &len);
 202	if (!pathp) {
 203		*pnp = NULL;
 204		return len;
 205	}
 206
 207	len++;
 208
 209	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
 210				__alignof__(struct device_node));
 211	if (!dryrun) {
 212		char *fn;
 213		of_node_init(np);
 214		np->full_name = fn = ((char *)np) + sizeof(*np);
 215
 216		memcpy(fn, pathp, len);
 217
 218		if (dad != NULL) {
 219			np->parent = dad;
 220			np->sibling = dad->child;
 221			dad->child = np;
 222		}
 223	}
 224
 225	populate_properties(blob, offset, mem, np, pathp, dryrun);
 226	if (!dryrun) {
 227		np->name = of_get_property(np, "name", NULL);
 228		if (!np->name)
 229			np->name = "<NULL>";
 230	}
 231
 232	*pnp = np;
 233	return 0;
 234}
 235
 236static void reverse_nodes(struct device_node *parent)
 237{
 238	struct device_node *child, *next;
 239
 240	/* In-depth first */
 241	child = parent->child;
 242	while (child) {
 243		reverse_nodes(child);
 244
 245		child = child->sibling;
 246	}
 247
 248	/* Reverse the nodes in the child list */
 249	child = parent->child;
 250	parent->child = NULL;
 251	while (child) {
 252		next = child->sibling;
 253
 254		child->sibling = parent->child;
 255		parent->child = child;
 256		child = next;
 257	}
 258}
 259
 260/**
 261 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
 262 * @blob: The parent device tree blob
 263 * @mem: Memory chunk to use for allocating device nodes and properties
 264 * @dad: Parent struct device_node
 265 * @nodepp: The device_node tree created by the call
 266 *
 267 * Return: The size of unflattened device tree or error code
 268 */
 269static int unflatten_dt_nodes(const void *blob,
 270			      void *mem,
 271			      struct device_node *dad,
 272			      struct device_node **nodepp)
 273{
 274	struct device_node *root;
 275	int offset = 0, depth = 0, initial_depth = 0;
 276#define FDT_MAX_DEPTH	64
 277	struct device_node *nps[FDT_MAX_DEPTH];
 278	void *base = mem;
 279	bool dryrun = !base;
 280	int ret;
 281
 282	if (nodepp)
 283		*nodepp = NULL;
 284
 285	/*
 286	 * We're unflattening device sub-tree if @dad is valid. There are
 287	 * possibly multiple nodes in the first level of depth. We need
 288	 * set @depth to 1 to make fdt_next_node() happy as it bails
 289	 * immediately when negative @depth is found. Otherwise, the device
 290	 * nodes except the first one won't be unflattened successfully.
 291	 */
 292	if (dad)
 293		depth = initial_depth = 1;
 294
 295	root = dad;
 296	nps[depth] = dad;
 297
 298	for (offset = 0;
 299	     offset >= 0 && depth >= initial_depth;
 300	     offset = fdt_next_node(blob, offset, &depth)) {
 301		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
 302			continue;
 303
 304		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
 305		    !of_fdt_device_is_available(blob, offset))
 306			continue;
 307
 308		ret = populate_node(blob, offset, &mem, nps[depth],
 309				   &nps[depth+1], dryrun);
 310		if (ret < 0)
 311			return ret;
 312
 313		if (!dryrun && nodepp && !*nodepp)
 314			*nodepp = nps[depth+1];
 315		if (!dryrun && !root)
 316			root = nps[depth+1];
 317	}
 318
 319	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
 320		pr_err("Error %d processing FDT\n", offset);
 321		return -EINVAL;
 322	}
 323
 324	/*
 325	 * Reverse the child list. Some drivers assumes node order matches .dts
 326	 * node order
 327	 */
 328	if (!dryrun)
 329		reverse_nodes(root);
 330
 331	return mem - base;
 332}
 333
 334/**
 335 * __unflatten_device_tree - create tree of device_nodes from flat blob
 336 * @blob: The blob to expand
 337 * @dad: Parent device node
 338 * @mynodes: The device_node tree created by the call
 339 * @dt_alloc: An allocator that provides a virtual address to memory
 340 * for the resulting tree
 341 * @detached: if true set OF_DETACHED on @mynodes
 342 *
 343 * unflattens a device-tree, creating the tree of struct device_node. It also
 344 * fills the "name" and "type" pointers of the nodes so the normal device-tree
 345 * walking functions can be used.
 346 *
 347 * Return: NULL on failure or the memory chunk containing the unflattened
 348 * device tree on success.
 349 */
 350void *__unflatten_device_tree(const void *blob,
 351			      struct device_node *dad,
 352			      struct device_node **mynodes,
 353			      void *(*dt_alloc)(u64 size, u64 align),
 354			      bool detached)
 355{
 356	int size;
 357	void *mem;
 358	int ret;
 359
 360	if (mynodes)
 361		*mynodes = NULL;
 362
 363	pr_debug(" -> unflatten_device_tree()\n");
 364
 365	if (!blob) {
 366		pr_debug("No device tree pointer\n");
 367		return NULL;
 368	}
 369
 370	pr_debug("Unflattening device tree:\n");
 371	pr_debug("magic: %08x\n", fdt_magic(blob));
 372	pr_debug("size: %08x\n", fdt_totalsize(blob));
 373	pr_debug("version: %08x\n", fdt_version(blob));
 374
 375	if (fdt_check_header(blob)) {
 376		pr_err("Invalid device tree blob header\n");
 377		return NULL;
 378	}
 379
 380	/* First pass, scan for size */
 381	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
 382	if (size <= 0)
 383		return NULL;
 384
 385	size = ALIGN(size, 4);
 386	pr_debug("  size is %d, allocating...\n", size);
 387
 388	/* Allocate memory for the expanded device tree */
 389	mem = dt_alloc(size + 4, __alignof__(struct device_node));
 390	if (!mem)
 391		return NULL;
 392
 393	memset(mem, 0, size);
 394
 395	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
 396
 397	pr_debug("  unflattening %p...\n", mem);
 398
 399	/* Second pass, do actual unflattening */
 400	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
 401
 402	if (be32_to_cpup(mem + size) != 0xdeadbeef)
 403		pr_warn("End of tree marker overwritten: %08x\n",
 404			be32_to_cpup(mem + size));
 405
 406	if (ret <= 0)
 407		return NULL;
 408
 409	if (detached && mynodes && *mynodes) {
 410		of_node_set_flag(*mynodes, OF_DETACHED);
 411		pr_debug("unflattened tree is detached\n");
 412	}
 413
 414	pr_debug(" <- unflatten_device_tree()\n");
 415	return mem;
 416}
 417
 418static void *kernel_tree_alloc(u64 size, u64 align)
 419{
 420	return kzalloc(size, GFP_KERNEL);
 421}
 422
 423static DEFINE_MUTEX(of_fdt_unflatten_mutex);
 424
 425/**
 426 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
 427 * @blob: Flat device tree blob
 428 * @dad: Parent device node
 429 * @mynodes: The device tree created by the call
 430 *
 431 * unflattens the device-tree passed by the firmware, creating the
 432 * tree of struct device_node. It also fills the "name" and "type"
 433 * pointers of the nodes so the normal device-tree walking functions
 434 * can be used.
 435 *
 436 * Return: NULL on failure or the memory chunk containing the unflattened
 437 * device tree on success.
 438 */
 439void *of_fdt_unflatten_tree(const unsigned long *blob,
 440			    struct device_node *dad,
 441			    struct device_node **mynodes)
 442{
 443	void *mem;
 444
 445	mutex_lock(&of_fdt_unflatten_mutex);
 446	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
 447				      true);
 448	mutex_unlock(&of_fdt_unflatten_mutex);
 449
 450	return mem;
 451}
 452EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
 453
 454/* Everything below here references initial_boot_params directly. */
 455int __initdata dt_root_addr_cells;
 456int __initdata dt_root_size_cells;
 457
 458void *initial_boot_params __ro_after_init;
 459phys_addr_t initial_boot_params_pa __ro_after_init;
 460
 461#ifdef CONFIG_OF_EARLY_FLATTREE
 462
 463static u32 of_fdt_crc32;
 464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465/*
 466 * fdt_reserve_elfcorehdr() - reserves memory for elf core header
 467 *
 468 * This function reserves the memory occupied by an elf core header
 469 * described in the device tree. This region contains all the
 470 * information about primary kernel's core image and is used by a dump
 471 * capture kernel to access the system memory on primary kernel.
 472 */
 473static void __init fdt_reserve_elfcorehdr(void)
 474{
 475	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
 476		return;
 477
 478	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
 479		pr_warn("elfcorehdr is overlapped\n");
 480		return;
 481	}
 482
 483	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
 484
 485	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
 486		elfcorehdr_size >> 10, elfcorehdr_addr);
 487}
 488
 489/**
 490 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
 491 *
 492 * This function grabs memory from early allocator for device exclusive use
 493 * defined in device tree structures. It should be called by arch specific code
 494 * once the early allocator (i.e. memblock) has been fully activated.
 495 */
 496void __init early_init_fdt_scan_reserved_mem(void)
 497{
 498	int n;
 499	u64 base, size;
 500
 501	if (!initial_boot_params)
 502		return;
 503
 504	fdt_scan_reserved_mem();
 505	fdt_reserve_elfcorehdr();
 506
 507	/* Process header /memreserve/ fields */
 508	for (n = 0; ; n++) {
 509		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
 510		if (!size)
 511			break;
 512		memblock_reserve(base, size);
 513	}
 
 
 
 
 514}
 515
 516/**
 517 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
 518 */
 519void __init early_init_fdt_reserve_self(void)
 520{
 521	if (!initial_boot_params)
 522		return;
 523
 524	/* Reserve the dtb region */
 525	memblock_reserve(__pa(initial_boot_params),
 526			 fdt_totalsize(initial_boot_params));
 527}
 528
 529/**
 530 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
 531 * @it: callback function
 532 * @data: context data pointer
 533 *
 534 * This function is used to scan the flattened device-tree, it is
 535 * used to extract the memory information at boot before we can
 536 * unflatten the tree
 537 */
 538int __init of_scan_flat_dt(int (*it)(unsigned long node,
 539				     const char *uname, int depth,
 540				     void *data),
 541			   void *data)
 542{
 543	const void *blob = initial_boot_params;
 544	const char *pathp;
 545	int offset, rc = 0, depth = -1;
 546
 547	if (!blob)
 548		return 0;
 549
 550	for (offset = fdt_next_node(blob, -1, &depth);
 551	     offset >= 0 && depth >= 0 && !rc;
 552	     offset = fdt_next_node(blob, offset, &depth)) {
 553
 554		pathp = fdt_get_name(blob, offset, NULL);
 555		rc = it(offset, pathp, depth, data);
 556	}
 557	return rc;
 558}
 559
 560/**
 561 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
 562 * @parent: parent node
 563 * @it: callback function
 564 * @data: context data pointer
 565 *
 566 * This function is used to scan sub-nodes of a node.
 567 */
 568int __init of_scan_flat_dt_subnodes(unsigned long parent,
 569				    int (*it)(unsigned long node,
 570					      const char *uname,
 571					      void *data),
 572				    void *data)
 573{
 574	const void *blob = initial_boot_params;
 575	int node;
 576
 577	fdt_for_each_subnode(node, blob, parent) {
 578		const char *pathp;
 579		int rc;
 580
 581		pathp = fdt_get_name(blob, node, NULL);
 582		rc = it(node, pathp, data);
 583		if (rc)
 584			return rc;
 585	}
 586	return 0;
 587}
 588
 589/**
 590 * of_get_flat_dt_subnode_by_name - get the subnode by given name
 591 *
 592 * @node: the parent node
 593 * @uname: the name of subnode
 594 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
 595 */
 596
 597int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
 598{
 599	return fdt_subnode_offset(initial_boot_params, node, uname);
 600}
 601
 602/*
 603 * of_get_flat_dt_root - find the root node in the flat blob
 604 */
 605unsigned long __init of_get_flat_dt_root(void)
 606{
 607	return 0;
 608}
 609
 610/*
 611 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
 612 *
 613 * This function can be used within scan_flattened_dt callback to get
 614 * access to properties
 615 */
 616const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
 617				       int *size)
 618{
 619	return fdt_getprop(initial_boot_params, node, name, size);
 620}
 621
 622/**
 623 * of_fdt_is_compatible - Return true if given node from the given blob has
 624 * compat in its compatible list
 625 * @blob: A device tree blob
 626 * @node: node to test
 627 * @compat: compatible string to compare with compatible list.
 628 *
 629 * Return: a non-zero value on match with smaller values returned for more
 630 * specific compatible values.
 631 */
 632static int of_fdt_is_compatible(const void *blob,
 633		      unsigned long node, const char *compat)
 634{
 635	const char *cp;
 636	int cplen;
 637	unsigned long l, score = 0;
 638
 639	cp = fdt_getprop(blob, node, "compatible", &cplen);
 640	if (cp == NULL)
 641		return 0;
 642	while (cplen > 0) {
 643		score++;
 644		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
 645			return score;
 646		l = strlen(cp) + 1;
 647		cp += l;
 648		cplen -= l;
 649	}
 650
 651	return 0;
 652}
 653
 654/**
 655 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
 656 * @node: node to test
 657 * @compat: compatible string to compare with compatible list.
 658 */
 659int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 660{
 661	return of_fdt_is_compatible(initial_boot_params, node, compat);
 662}
 663
 664/*
 665 * of_flat_dt_match - Return true if node matches a list of compatible values
 666 */
 667static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
 668{
 669	unsigned int tmp, score = 0;
 670
 671	if (!compat)
 672		return 0;
 673
 674	while (*compat) {
 675		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
 676		if (tmp && (score == 0 || (tmp < score)))
 677			score = tmp;
 678		compat++;
 679	}
 680
 681	return score;
 682}
 683
 684/*
 685 * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
 686 */
 687uint32_t __init of_get_flat_dt_phandle(unsigned long node)
 688{
 689	return fdt_get_phandle(initial_boot_params, node);
 690}
 691
 692const char * __init of_flat_dt_get_machine_name(void)
 693{
 694	const char *name;
 695	unsigned long dt_root = of_get_flat_dt_root();
 696
 697	name = of_get_flat_dt_prop(dt_root, "model", NULL);
 698	if (!name)
 699		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
 700	return name;
 701}
 702
 703/**
 704 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
 705 *
 706 * @default_match: A machine specific ptr to return in case of no match.
 707 * @get_next_compat: callback function to return next compatible match table.
 708 *
 709 * Iterate through machine match tables to find the best match for the machine
 710 * compatible string in the FDT.
 711 */
 712const void * __init of_flat_dt_match_machine(const void *default_match,
 713		const void * (*get_next_compat)(const char * const**))
 714{
 715	const void *data = NULL;
 716	const void *best_data = default_match;
 717	const char *const *compat;
 718	unsigned long dt_root;
 719	unsigned int best_score = ~1, score = 0;
 720
 721	dt_root = of_get_flat_dt_root();
 722	while ((data = get_next_compat(&compat))) {
 723		score = of_flat_dt_match(dt_root, compat);
 724		if (score > 0 && score < best_score) {
 725			best_data = data;
 726			best_score = score;
 727		}
 728	}
 729	if (!best_data) {
 730		const char *prop;
 731		int size;
 732
 733		pr_err("\n unrecognized device tree list:\n[ ");
 734
 735		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
 736		if (prop) {
 737			while (size > 0) {
 738				printk("'%s' ", prop);
 739				size -= strlen(prop) + 1;
 740				prop += strlen(prop) + 1;
 741			}
 742		}
 743		printk("]\n\n");
 744		return NULL;
 745	}
 746
 747	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
 748
 749	return best_data;
 750}
 751
 752static void __early_init_dt_declare_initrd(unsigned long start,
 753					   unsigned long end)
 754{
 755	/*
 756	 * __va() is not yet available this early on some platforms. In that
 757	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
 758	 * and does the VA conversion itself.
 759	 */
 760	if (!IS_ENABLED(CONFIG_ARM64) &&
 761	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
 762		initrd_start = (unsigned long)__va(start);
 763		initrd_end = (unsigned long)__va(end);
 764		initrd_below_start_ok = 1;
 765	}
 766}
 767
 768/**
 769 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
 770 * @node: reference to node containing initrd location ('chosen')
 771 */
 772static void __init early_init_dt_check_for_initrd(unsigned long node)
 773{
 774	u64 start, end;
 775	int len;
 776	const __be32 *prop;
 777
 778	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
 779		return;
 780
 781	pr_debug("Looking for initrd properties... ");
 782
 783	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
 784	if (!prop)
 785		return;
 786	start = of_read_number(prop, len/4);
 787
 788	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
 789	if (!prop)
 790		return;
 791	end = of_read_number(prop, len/4);
 792	if (start > end)
 793		return;
 794
 795	__early_init_dt_declare_initrd(start, end);
 796	phys_initrd_start = start;
 797	phys_initrd_size = end - start;
 798
 799	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
 800}
 801
 802/**
 803 * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
 804 * tree
 805 * @node: reference to node containing elfcorehdr location ('chosen')
 806 */
 807static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
 808{
 809	const __be32 *prop;
 810	int len;
 811
 812	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
 813		return;
 814
 815	pr_debug("Looking for elfcorehdr property... ");
 816
 817	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
 818	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
 819		return;
 820
 821	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
 822	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
 823
 824	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
 825		 elfcorehdr_addr, elfcorehdr_size);
 826}
 827
 828static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
 829
 830/*
 831 * The main usage of linux,usable-memory-range is for crash dump kernel.
 832 * Originally, the number of usable-memory regions is one. Now there may
 833 * be two regions, low region and high region.
 834 * To make compatibility with existing user-space and older kdump, the low
 835 * region is always the last range of linux,usable-memory-range if exist.
 836 */
 837#define MAX_USABLE_RANGES		2
 838
 839/**
 840 * early_init_dt_check_for_usable_mem_range - Decode usable memory range
 841 * location from flat tree
 842 */
 843void __init early_init_dt_check_for_usable_mem_range(void)
 844{
 845	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
 846	const __be32 *prop, *endp;
 847	int len, i;
 848	unsigned long node = chosen_node_offset;
 849
 850	if ((long)node < 0)
 851		return;
 852
 853	pr_debug("Looking for usable-memory-range property... ");
 854
 855	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
 856	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
 857		return;
 858
 859	endp = prop + (len / sizeof(__be32));
 860	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
 861		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
 862		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
 863
 864		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
 865			 i, &rgn[i].base, &rgn[i].size);
 866	}
 867
 868	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
 869	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
 870		memblock_add(rgn[i].base, rgn[i].size);
 871}
 872
 873#ifdef CONFIG_SERIAL_EARLYCON
 874
 875int __init early_init_dt_scan_chosen_stdout(void)
 876{
 877	int offset;
 878	const char *p, *q, *options = NULL;
 879	int l;
 880	const struct earlycon_id *match;
 881	const void *fdt = initial_boot_params;
 882	int ret;
 883
 884	offset = fdt_path_offset(fdt, "/chosen");
 885	if (offset < 0)
 886		offset = fdt_path_offset(fdt, "/chosen@0");
 887	if (offset < 0)
 888		return -ENOENT;
 889
 890	p = fdt_getprop(fdt, offset, "stdout-path", &l);
 891	if (!p)
 892		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
 893	if (!p || !l)
 894		return -ENOENT;
 895
 896	q = strchrnul(p, ':');
 897	if (*q != '\0')
 898		options = q + 1;
 899	l = q - p;
 900
 901	/* Get the node specified by stdout-path */
 902	offset = fdt_path_offset_namelen(fdt, p, l);
 903	if (offset < 0) {
 904		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
 905		return 0;
 906	}
 907
 908	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
 909		if (!match->compatible[0])
 910			continue;
 911
 912		if (fdt_node_check_compatible(fdt, offset, match->compatible))
 913			continue;
 914
 915		ret = of_setup_earlycon(match, offset, options);
 916		if (!ret || ret == -EALREADY)
 917			return 0;
 918	}
 919	return -ENODEV;
 920}
 921#endif
 922
 923/*
 924 * early_init_dt_scan_root - fetch the top level address and size cells
 925 */
 926int __init early_init_dt_scan_root(void)
 927{
 928	const __be32 *prop;
 929	const void *fdt = initial_boot_params;
 930	int node = fdt_path_offset(fdt, "/");
 931
 932	if (node < 0)
 933		return -ENODEV;
 934
 935	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 936	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
 937
 938	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 939	if (!WARN(!prop, "No '#size-cells' in root node\n"))
 940		dt_root_size_cells = be32_to_cpup(prop);
 941	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
 942
 943	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 944	if (!WARN(!prop, "No '#address-cells' in root node\n"))
 945		dt_root_addr_cells = be32_to_cpup(prop);
 946	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 947
 948	return 0;
 949}
 950
 951u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
 952{
 953	const __be32 *p = *cellp;
 954
 955	*cellp = p + s;
 956	return of_read_number(p, s);
 957}
 958
 959/*
 960 * early_init_dt_scan_memory - Look for and parse memory nodes
 961 */
 962int __init early_init_dt_scan_memory(void)
 963{
 964	int node, found_memory = 0;
 965	const void *fdt = initial_boot_params;
 966
 967	fdt_for_each_subnode(node, fdt, 0) {
 968		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 969		const __be32 *reg, *endp;
 970		int l;
 971		bool hotpluggable;
 972
 973		/* We are scanning "memory" nodes only */
 974		if (type == NULL || strcmp(type, "memory") != 0)
 975			continue;
 976
 977		if (!of_fdt_device_is_available(fdt, node))
 978			continue;
 979
 980		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
 981		if (reg == NULL)
 982			reg = of_get_flat_dt_prop(node, "reg", &l);
 983		if (reg == NULL)
 984			continue;
 985
 986		endp = reg + (l / sizeof(__be32));
 987		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
 988
 989		pr_debug("memory scan node %s, reg size %d,\n",
 990			 fdt_get_name(fdt, node, NULL), l);
 991
 992		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
 993			u64 base, size;
 994
 995			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
 996			size = dt_mem_next_cell(dt_root_size_cells, &reg);
 997
 998			if (size == 0)
 999				continue;
1000			pr_debug(" - %llx, %llx\n", base, size);
1001
1002			early_init_dt_add_memory_arch(base, size);
1003
1004			found_memory = 1;
1005
1006			if (!hotpluggable)
1007				continue;
1008
1009			if (memblock_mark_hotplug(base, size))
1010				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1011					base, base + size);
1012		}
1013	}
1014	return found_memory;
1015}
1016
1017int __init early_init_dt_scan_chosen(char *cmdline)
1018{
1019	int l, node;
1020	const char *p;
1021	const void *rng_seed;
1022	const void *fdt = initial_boot_params;
1023
1024	node = fdt_path_offset(fdt, "/chosen");
1025	if (node < 0)
1026		node = fdt_path_offset(fdt, "/chosen@0");
1027	if (node < 0)
1028		/* Handle the cmdline config options even if no /chosen node */
1029		goto handle_cmdline;
1030
1031	chosen_node_offset = node;
1032
1033	early_init_dt_check_for_initrd(node);
1034	early_init_dt_check_for_elfcorehdr(node);
1035
1036	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1037	if (rng_seed && l > 0) {
1038		add_bootloader_randomness(rng_seed, l);
1039
1040		/* try to clear seed so it won't be found. */
1041		fdt_nop_property(initial_boot_params, node, "rng-seed");
1042
1043		/* update CRC check value */
1044		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1045				fdt_totalsize(initial_boot_params));
1046	}
1047
1048	/* Retrieve command line */
1049	p = of_get_flat_dt_prop(node, "bootargs", &l);
1050	if (p != NULL && l > 0)
1051		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1052
1053handle_cmdline:
1054	/*
1055	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1056	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1057	 * is set in which case we override whatever was found earlier.
1058	 */
1059#ifdef CONFIG_CMDLINE
1060#if defined(CONFIG_CMDLINE_EXTEND)
1061	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1062	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1063#elif defined(CONFIG_CMDLINE_FORCE)
1064	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1065#else
1066	/* No arguments from boot loader, use kernel's  cmdl*/
1067	if (!((char *)cmdline)[0])
1068		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069#endif
1070#endif /* CONFIG_CMDLINE */
1071
1072	pr_debug("Command line is: %s\n", (char *)cmdline);
1073
1074	return 0;
1075}
1076
1077#ifndef MIN_MEMBLOCK_ADDR
1078#define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1079#endif
1080#ifndef MAX_MEMBLOCK_ADDR
1081#define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1082#endif
1083
1084void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1085{
1086	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1087
1088	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1089		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1090			base, base + size);
1091		return;
1092	}
1093
1094	if (!PAGE_ALIGNED(base)) {
1095		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1096		base = PAGE_ALIGN(base);
1097	}
1098	size &= PAGE_MASK;
1099
1100	if (base > MAX_MEMBLOCK_ADDR) {
1101		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1102			base, base + size);
1103		return;
1104	}
1105
1106	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1107		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1108			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1109		size = MAX_MEMBLOCK_ADDR - base + 1;
1110	}
1111
1112	if (base + size < phys_offset) {
1113		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1114			base, base + size);
1115		return;
1116	}
1117	if (base < phys_offset) {
1118		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1119			base, phys_offset);
1120		size -= phys_offset - base;
1121		base = phys_offset;
1122	}
1123	memblock_add(base, size);
1124}
1125
1126static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1127{
1128	void *ptr = memblock_alloc(size, align);
1129
1130	if (!ptr)
1131		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1132		      __func__, size, align);
1133
1134	return ptr;
1135}
1136
1137bool __init early_init_dt_verify(void *dt_virt, phys_addr_t dt_phys)
1138{
1139	if (!dt_virt)
1140		return false;
1141
1142	/* check device tree validity */
1143	if (fdt_check_header(dt_virt))
1144		return false;
1145
1146	/* Setup flat device-tree pointer */
1147	initial_boot_params = dt_virt;
1148	initial_boot_params_pa = dt_phys;
1149	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1150				fdt_totalsize(initial_boot_params));
1151
1152	/* Initialize {size,address}-cells info */
1153	early_init_dt_scan_root();
1154
1155	return true;
1156}
1157
1158
1159void __init early_init_dt_scan_nodes(void)
1160{
1161	int rc;
1162
 
 
 
1163	/* Retrieve various information from the /chosen node */
1164	rc = early_init_dt_scan_chosen(boot_command_line);
1165	if (rc)
1166		pr_warn("No chosen node found, continuing without\n");
1167
1168	/* Setup memory, calling early_init_dt_add_memory_arch */
1169	early_init_dt_scan_memory();
1170
1171	/* Handle linux,usable-memory-range property */
1172	early_init_dt_check_for_usable_mem_range();
1173}
1174
1175bool __init early_init_dt_scan(void *dt_virt, phys_addr_t dt_phys)
1176{
1177	bool status;
1178
1179	status = early_init_dt_verify(dt_virt, dt_phys);
1180	if (!status)
1181		return false;
1182
1183	early_init_dt_scan_nodes();
1184	return true;
1185}
1186
1187static void *__init copy_device_tree(void *fdt)
1188{
1189	int size;
1190	void *dt;
1191
1192	size = fdt_totalsize(fdt);
1193	dt = early_init_dt_alloc_memory_arch(size,
1194					     roundup_pow_of_two(FDT_V17_SIZE));
1195
1196	if (dt)
1197		memcpy(dt, fdt, size);
1198
1199	return dt;
1200}
1201
1202/**
1203 * unflatten_device_tree - create tree of device_nodes from flat blob
1204 *
1205 * unflattens the device-tree passed by the firmware, creating the
1206 * tree of struct device_node. It also fills the "name" and "type"
1207 * pointers of the nodes so the normal device-tree walking functions
1208 * can be used.
1209 */
1210void __init unflatten_device_tree(void)
1211{
1212	void *fdt = initial_boot_params;
1213
1214	/* Save the statically-placed regions in the reserved_mem array */
1215	fdt_scan_reserved_mem_reg_nodes();
1216
1217	/* Populate an empty root node when bootloader doesn't provide one */
1218	if (!fdt) {
1219		fdt = (void *) __dtb_empty_root_begin;
1220		/* fdt_totalsize() will be used for copy size */
1221		if (fdt_totalsize(fdt) >
1222		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1223			pr_err("invalid size in dtb_empty_root\n");
1224			return;
1225		}
1226		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1227		fdt = copy_device_tree(fdt);
1228	}
1229
1230	__unflatten_device_tree(fdt, NULL, &of_root,
1231				early_init_dt_alloc_memory_arch, false);
1232
1233	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1234	of_alias_scan(early_init_dt_alloc_memory_arch);
1235
1236	unittest_unflatten_overlay_base();
1237}
1238
1239/**
1240 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1241 *
1242 * Copies and unflattens the device-tree passed by the firmware, creating the
1243 * tree of struct device_node. It also fills the "name" and "type"
1244 * pointers of the nodes so the normal device-tree walking functions
1245 * can be used. This should only be used when the FDT memory has not been
1246 * reserved such is the case when the FDT is built-in to the kernel init
1247 * section. If the FDT memory is reserved already then unflatten_device_tree
1248 * should be used instead.
1249 */
1250void __init unflatten_and_copy_device_tree(void)
1251{
1252	if (initial_boot_params)
1253		initial_boot_params = copy_device_tree(initial_boot_params);
1254
 
 
 
 
 
 
 
 
 
 
 
 
 
1255	unflatten_device_tree();
1256}
1257
1258#ifdef CONFIG_SYSFS
1259static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1260			       struct bin_attribute *bin_attr,
1261			       char *buf, loff_t off, size_t count)
1262{
1263	memcpy(buf, initial_boot_params + off, count);
1264	return count;
1265}
1266
1267static int __init of_fdt_raw_init(void)
1268{
1269	static struct bin_attribute of_fdt_raw_attr =
1270		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1271
1272	if (!initial_boot_params)
1273		return 0;
1274
1275	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1276				     fdt_totalsize(initial_boot_params))) {
1277		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1278		return 0;
1279	}
1280	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1281	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1282}
1283late_initcall(of_fdt_raw_init);
1284#endif
1285
1286#endif /* CONFIG_OF_EARLY_FLATTREE */