Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/dma-mapping.h>
19#include <linux/crc7.h>
20#include <linux/crc-itu-t.h>
21#include <linux/scatterlist.h>
22
23#include <linux/mmc/host.h>
24#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
25#include <linux/mmc/slot-gpio.h>
26
27#include <linux/spi/spi.h>
28#include <linux/spi/mmc_spi.h>
29
30#include <asm/unaligned.h>
31
32
33/* NOTES:
34 *
35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
36 * controller, although some of them do have hardware support for
37 * SPI protocol. The main reason for such configs would be mmc-ish
38 * cards like DataFlash, which don't support that "native" protocol.
39 *
40 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41 * switch between driver stacks, and in any case if "native" mode
42 * is available, it will be faster and hence preferable.
43 *
44 * - MMC depends on a different chipselect management policy than the
45 * SPI interface currently supports for shared bus segments: it needs
46 * to issue multiple spi_message requests with the chipselect active,
47 * using the results of one message to decide the next one to issue.
48 *
49 * Pending updates to the programming interface, this driver expects
50 * that it not share the bus with other drivers (precluding conflicts).
51 *
52 * - We tell the controller to keep the chipselect active from the
53 * beginning of an mmc_host_ops.request until the end. So beware
54 * of SPI controller drivers that mis-handle the cs_change flag!
55 *
56 * However, many cards seem OK with chipselect flapping up/down
57 * during that time ... at least on unshared bus segments.
58 */
59
60
61/*
62 * Local protocol constants, internal to data block protocols.
63 */
64
65/* Response tokens used to ack each block written: */
66#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
67#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
68#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
69#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70
71/* Read and write blocks start with these tokens and end with crc;
72 * on error, read tokens act like a subset of R2_SPI_* values.
73 */
74#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
75#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
76#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77
78#define MMC_SPI_BLOCKSIZE 512
79
80#define MMC_SPI_R1B_TIMEOUT_MS 3000
81#define MMC_SPI_INIT_TIMEOUT_MS 3000
82
83/* One of the critical speed parameters is the amount of data which may
84 * be transferred in one command. If this value is too low, the SD card
85 * controller has to do multiple partial block writes (argggh!). With
86 * today (2008) SD cards there is little speed gain if we transfer more
87 * than 64 KBytes at a time. So use this value until there is any indication
88 * that we should do more here.
89 */
90#define MMC_SPI_BLOCKSATONCE 128
91
92/****************************************************************************/
93
94/*
95 * Local Data Structures
96 */
97
98/* "scratch" is per-{command,block} data exchanged with the card */
99struct scratch {
100 u8 status[29];
101 u8 data_token;
102 __be16 crc_val;
103};
104
105struct mmc_spi_host {
106 struct mmc_host *mmc;
107 struct spi_device *spi;
108
109 unsigned char power_mode;
110 u16 powerup_msecs;
111
112 struct mmc_spi_platform_data *pdata;
113
114 /* for bulk data transfers */
115 struct spi_transfer token, t, crc, early_status;
116 struct spi_message m;
117
118 /* for status readback */
119 struct spi_transfer status;
120 struct spi_message readback;
121
122 /* underlying DMA-aware controller, or null */
123 struct device *dma_dev;
124
125 /* buffer used for commands and for message "overhead" */
126 struct scratch *data;
127 dma_addr_t data_dma;
128
129 /* Specs say to write ones most of the time, even when the card
130 * has no need to read its input data; and many cards won't care.
131 * This is our source of those ones.
132 */
133 void *ones;
134 dma_addr_t ones_dma;
135};
136
137
138/****************************************************************************/
139
140/*
141 * MMC-over-SPI protocol glue, used by the MMC stack interface
142 */
143
144static inline int mmc_cs_off(struct mmc_spi_host *host)
145{
146 /* chipselect will always be inactive after setup() */
147 return spi_setup(host->spi);
148}
149
150static int
151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
152{
153 int status;
154
155 if (len > sizeof(*host->data)) {
156 WARN_ON(1);
157 return -EIO;
158 }
159
160 host->status.len = len;
161
162 if (host->dma_dev)
163 dma_sync_single_for_device(host->dma_dev,
164 host->data_dma, sizeof(*host->data),
165 DMA_FROM_DEVICE);
166
167 status = spi_sync_locked(host->spi, &host->readback);
168
169 if (host->dma_dev)
170 dma_sync_single_for_cpu(host->dma_dev,
171 host->data_dma, sizeof(*host->data),
172 DMA_FROM_DEVICE);
173
174 return status;
175}
176
177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
178 unsigned n, u8 byte)
179{
180 u8 *cp = host->data->status;
181 unsigned long start = jiffies;
182
183 do {
184 int status;
185 unsigned i;
186
187 status = mmc_spi_readbytes(host, n);
188 if (status < 0)
189 return status;
190
191 for (i = 0; i < n; i++) {
192 if (cp[i] != byte)
193 return cp[i];
194 }
195
196 /* If we need long timeouts, we may release the CPU */
197 cond_resched();
198 } while (time_is_after_jiffies(start + timeout));
199 return -ETIMEDOUT;
200}
201
202static inline int
203mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
204{
205 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
206}
207
208static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
209{
210 return mmc_spi_skip(host, timeout, 1, 0xff);
211}
212
213
214/*
215 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
216 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
217 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
218 *
219 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
220 * newer cards R7 (IF_COND).
221 */
222
223static char *maptype(struct mmc_command *cmd)
224{
225 switch (mmc_spi_resp_type(cmd)) {
226 case MMC_RSP_SPI_R1: return "R1";
227 case MMC_RSP_SPI_R1B: return "R1B";
228 case MMC_RSP_SPI_R2: return "R2/R5";
229 case MMC_RSP_SPI_R3: return "R3/R4/R7";
230 default: return "?";
231 }
232}
233
234/* return zero, else negative errno after setting cmd->error */
235static int mmc_spi_response_get(struct mmc_spi_host *host,
236 struct mmc_command *cmd, int cs_on)
237{
238 unsigned long timeout_ms;
239 u8 *cp = host->data->status;
240 u8 *end = cp + host->t.len;
241 int value = 0;
242 int bitshift;
243 u8 leftover = 0;
244 unsigned short rotator;
245 int i;
246 char tag[32];
247
248 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s",
249 cmd->opcode, maptype(cmd));
250
251 /* Except for data block reads, the whole response will already
252 * be stored in the scratch buffer. It's somewhere after the
253 * command and the first byte we read after it. We ignore that
254 * first byte. After STOP_TRANSMISSION command it may include
255 * two data bits, but otherwise it's all ones.
256 */
257 cp += 8;
258 while (cp < end && *cp == 0xff)
259 cp++;
260
261 /* Data block reads (R1 response types) may need more data... */
262 if (cp == end) {
263 cp = host->data->status;
264 end = cp+1;
265
266 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
267 * status byte ... and we already scanned 2 bytes.
268 *
269 * REVISIT block read paths use nasty byte-at-a-time I/O
270 * so it can always DMA directly into the target buffer.
271 * It'd probably be better to memcpy() the first chunk and
272 * avoid extra i/o calls...
273 *
274 * Note we check for more than 8 bytes, because in practice,
275 * some SD cards are slow...
276 */
277 for (i = 2; i < 16; i++) {
278 value = mmc_spi_readbytes(host, 1);
279 if (value < 0)
280 goto done;
281 if (*cp != 0xff)
282 goto checkstatus;
283 }
284 value = -ETIMEDOUT;
285 goto done;
286 }
287
288checkstatus:
289 bitshift = 0;
290 if (*cp & 0x80) {
291 /* Houston, we have an ugly card with a bit-shifted response */
292 rotator = *cp++ << 8;
293 /* read the next byte */
294 if (cp == end) {
295 value = mmc_spi_readbytes(host, 1);
296 if (value < 0)
297 goto done;
298 cp = host->data->status;
299 end = cp+1;
300 }
301 rotator |= *cp++;
302 while (rotator & 0x8000) {
303 bitshift++;
304 rotator <<= 1;
305 }
306 cmd->resp[0] = rotator >> 8;
307 leftover = rotator;
308 } else {
309 cmd->resp[0] = *cp++;
310 }
311 cmd->error = 0;
312
313 /* Status byte: the entire seven-bit R1 response. */
314 if (cmd->resp[0] != 0) {
315 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
316 & cmd->resp[0])
317 value = -EFAULT; /* Bad address */
318 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
319 value = -ENOSYS; /* Function not implemented */
320 else if (R1_SPI_COM_CRC & cmd->resp[0])
321 value = -EILSEQ; /* Illegal byte sequence */
322 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
323 & cmd->resp[0])
324 value = -EIO; /* I/O error */
325 /* else R1_SPI_IDLE, "it's resetting" */
326 }
327
328 switch (mmc_spi_resp_type(cmd)) {
329
330 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
331 * and less-common stuff like various erase operations.
332 */
333 case MMC_RSP_SPI_R1B:
334 /* maybe we read all the busy tokens already */
335 while (cp < end && *cp == 0)
336 cp++;
337 if (cp == end) {
338 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
339 MMC_SPI_R1B_TIMEOUT_MS;
340 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
341 }
342 break;
343
344 /* SPI R2 == R1 + second status byte; SEND_STATUS
345 * SPI R5 == R1 + data byte; IO_RW_DIRECT
346 */
347 case MMC_RSP_SPI_R2:
348 /* read the next byte */
349 if (cp == end) {
350 value = mmc_spi_readbytes(host, 1);
351 if (value < 0)
352 goto done;
353 cp = host->data->status;
354 end = cp+1;
355 }
356 if (bitshift) {
357 rotator = leftover << 8;
358 rotator |= *cp << bitshift;
359 cmd->resp[0] |= (rotator & 0xFF00);
360 } else {
361 cmd->resp[0] |= *cp << 8;
362 }
363 break;
364
365 /* SPI R3, R4, or R7 == R1 + 4 bytes */
366 case MMC_RSP_SPI_R3:
367 rotator = leftover << 8;
368 cmd->resp[1] = 0;
369 for (i = 0; i < 4; i++) {
370 cmd->resp[1] <<= 8;
371 /* read the next byte */
372 if (cp == end) {
373 value = mmc_spi_readbytes(host, 1);
374 if (value < 0)
375 goto done;
376 cp = host->data->status;
377 end = cp+1;
378 }
379 if (bitshift) {
380 rotator |= *cp++ << bitshift;
381 cmd->resp[1] |= (rotator >> 8);
382 rotator <<= 8;
383 } else {
384 cmd->resp[1] |= *cp++;
385 }
386 }
387 break;
388
389 /* SPI R1 == just one status byte */
390 case MMC_RSP_SPI_R1:
391 break;
392
393 default:
394 dev_dbg(&host->spi->dev, "bad response type %04x\n",
395 mmc_spi_resp_type(cmd));
396 if (value >= 0)
397 value = -EINVAL;
398 goto done;
399 }
400
401 if (value < 0)
402 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
403 tag, cmd->resp[0], cmd->resp[1]);
404
405 /* disable chipselect on errors and some success cases */
406 if (value >= 0 && cs_on)
407 return value;
408done:
409 if (value < 0)
410 cmd->error = value;
411 mmc_cs_off(host);
412 return value;
413}
414
415/* Issue command and read its response.
416 * Returns zero on success, negative for error.
417 *
418 * On error, caller must cope with mmc core retry mechanism. That
419 * means immediate low-level resubmit, which affects the bus lock...
420 */
421static int
422mmc_spi_command_send(struct mmc_spi_host *host,
423 struct mmc_request *mrq,
424 struct mmc_command *cmd, int cs_on)
425{
426 struct scratch *data = host->data;
427 u8 *cp = data->status;
428 int status;
429 struct spi_transfer *t;
430
431 /* We can handle most commands (except block reads) in one full
432 * duplex I/O operation before either starting the next transfer
433 * (data block or command) or else deselecting the card.
434 *
435 * First, write 7 bytes:
436 * - an all-ones byte to ensure the card is ready
437 * - opcode byte (plus start and transmission bits)
438 * - four bytes of big-endian argument
439 * - crc7 (plus end bit) ... always computed, it's cheap
440 *
441 * We init the whole buffer to all-ones, which is what we need
442 * to write while we're reading (later) response data.
443 */
444 memset(cp, 0xff, sizeof(data->status));
445
446 cp[1] = 0x40 | cmd->opcode;
447 put_unaligned_be32(cmd->arg, cp + 2);
448 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
449 cp += 7;
450
451 /* Then, read up to 13 bytes (while writing all-ones):
452 * - N(CR) (== 1..8) bytes of all-ones
453 * - status byte (for all response types)
454 * - the rest of the response, either:
455 * + nothing, for R1 or R1B responses
456 * + second status byte, for R2 responses
457 * + four data bytes, for R3 and R7 responses
458 *
459 * Finally, read some more bytes ... in the nice cases we know in
460 * advance how many, and reading 1 more is always OK:
461 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
462 * - N(RC) (== 1..N) bytes of all-ones, before next command
463 * - N(WR) (== 1..N) bytes of all-ones, before data write
464 *
465 * So in those cases one full duplex I/O of at most 21 bytes will
466 * handle the whole command, leaving the card ready to receive a
467 * data block or new command. We do that whenever we can, shaving
468 * CPU and IRQ costs (especially when using DMA or FIFOs).
469 *
470 * There are two other cases, where it's not generally practical
471 * to rely on a single I/O:
472 *
473 * - R1B responses need at least N(EC) bytes of all-zeroes.
474 *
475 * In this case we can *try* to fit it into one I/O, then
476 * maybe read more data later.
477 *
478 * - Data block reads are more troublesome, since a variable
479 * number of padding bytes precede the token and data.
480 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
481 * + N(AC) (== 1..many) bytes of all-ones
482 *
483 * In this case we currently only have minimal speedups here:
484 * when N(CR) == 1 we can avoid I/O in response_get().
485 */
486 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
487 cp += 2; /* min(N(CR)) + status */
488 /* R1 */
489 } else {
490 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
491 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
492 cp++;
493 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
494 cp += 4;
495 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
496 cp = data->status + sizeof(data->status);
497 /* else: R1 (most commands) */
498 }
499
500 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
501 cmd->opcode, maptype(cmd));
502
503 /* send command, leaving chipselect active */
504 spi_message_init(&host->m);
505
506 t = &host->t;
507 memset(t, 0, sizeof(*t));
508 t->tx_buf = t->rx_buf = data->status;
509 t->tx_dma = t->rx_dma = host->data_dma;
510 t->len = cp - data->status;
511 t->cs_change = 1;
512 spi_message_add_tail(t, &host->m);
513
514 if (host->dma_dev) {
515 host->m.is_dma_mapped = 1;
516 dma_sync_single_for_device(host->dma_dev,
517 host->data_dma, sizeof(*host->data),
518 DMA_BIDIRECTIONAL);
519 }
520 status = spi_sync_locked(host->spi, &host->m);
521
522 if (host->dma_dev)
523 dma_sync_single_for_cpu(host->dma_dev,
524 host->data_dma, sizeof(*host->data),
525 DMA_BIDIRECTIONAL);
526 if (status < 0) {
527 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
528 cmd->error = status;
529 return status;
530 }
531
532 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
533 return mmc_spi_response_get(host, cmd, cs_on);
534}
535
536/* Build data message with up to four separate transfers. For TX, we
537 * start by writing the data token. And in most cases, we finish with
538 * a status transfer.
539 *
540 * We always provide TX data for data and CRC. The MMC/SD protocol
541 * requires us to write ones; but Linux defaults to writing zeroes;
542 * so we explicitly initialize it to all ones on RX paths.
543 *
544 * We also handle DMA mapping, so the underlying SPI controller does
545 * not need to (re)do it for each message.
546 */
547static void
548mmc_spi_setup_data_message(
549 struct mmc_spi_host *host,
550 bool multiple,
551 enum dma_data_direction direction)
552{
553 struct spi_transfer *t;
554 struct scratch *scratch = host->data;
555 dma_addr_t dma = host->data_dma;
556
557 spi_message_init(&host->m);
558 if (dma)
559 host->m.is_dma_mapped = 1;
560
561 /* for reads, readblock() skips 0xff bytes before finding
562 * the token; for writes, this transfer issues that token.
563 */
564 if (direction == DMA_TO_DEVICE) {
565 t = &host->token;
566 memset(t, 0, sizeof(*t));
567 t->len = 1;
568 if (multiple)
569 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
570 else
571 scratch->data_token = SPI_TOKEN_SINGLE;
572 t->tx_buf = &scratch->data_token;
573 if (dma)
574 t->tx_dma = dma + offsetof(struct scratch, data_token);
575 spi_message_add_tail(t, &host->m);
576 }
577
578 /* Body of transfer is buffer, then CRC ...
579 * either TX-only, or RX with TX-ones.
580 */
581 t = &host->t;
582 memset(t, 0, sizeof(*t));
583 t->tx_buf = host->ones;
584 t->tx_dma = host->ones_dma;
585 /* length and actual buffer info are written later */
586 spi_message_add_tail(t, &host->m);
587
588 t = &host->crc;
589 memset(t, 0, sizeof(*t));
590 t->len = 2;
591 if (direction == DMA_TO_DEVICE) {
592 /* the actual CRC may get written later */
593 t->tx_buf = &scratch->crc_val;
594 if (dma)
595 t->tx_dma = dma + offsetof(struct scratch, crc_val);
596 } else {
597 t->tx_buf = host->ones;
598 t->tx_dma = host->ones_dma;
599 t->rx_buf = &scratch->crc_val;
600 if (dma)
601 t->rx_dma = dma + offsetof(struct scratch, crc_val);
602 }
603 spi_message_add_tail(t, &host->m);
604
605 /*
606 * A single block read is followed by N(EC) [0+] all-ones bytes
607 * before deselect ... don't bother.
608 *
609 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
610 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
611 * collect that single byte, so readblock() doesn't need to.
612 *
613 * For a write, the one-byte data response follows immediately, then
614 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
615 * Then single block reads may deselect, and multiblock ones issue
616 * the next token (next data block, or STOP_TRAN). We can try to
617 * minimize I/O ops by using a single read to collect end-of-busy.
618 */
619 if (multiple || direction == DMA_TO_DEVICE) {
620 t = &host->early_status;
621 memset(t, 0, sizeof(*t));
622 t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
623 t->tx_buf = host->ones;
624 t->tx_dma = host->ones_dma;
625 t->rx_buf = scratch->status;
626 if (dma)
627 t->rx_dma = dma + offsetof(struct scratch, status);
628 t->cs_change = 1;
629 spi_message_add_tail(t, &host->m);
630 }
631}
632
633/*
634 * Write one block:
635 * - caller handled preceding N(WR) [1+] all-ones bytes
636 * - data block
637 * + token
638 * + data bytes
639 * + crc16
640 * - an all-ones byte ... card writes a data-response byte
641 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
642 *
643 * Return negative errno, else success.
644 */
645static int
646mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
647 unsigned long timeout)
648{
649 struct spi_device *spi = host->spi;
650 int status, i;
651 struct scratch *scratch = host->data;
652 u32 pattern;
653
654 if (host->mmc->use_spi_crc)
655 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
656 if (host->dma_dev)
657 dma_sync_single_for_device(host->dma_dev,
658 host->data_dma, sizeof(*scratch),
659 DMA_BIDIRECTIONAL);
660
661 status = spi_sync_locked(spi, &host->m);
662
663 if (status != 0) {
664 dev_dbg(&spi->dev, "write error (%d)\n", status);
665 return status;
666 }
667
668 if (host->dma_dev)
669 dma_sync_single_for_cpu(host->dma_dev,
670 host->data_dma, sizeof(*scratch),
671 DMA_BIDIRECTIONAL);
672
673 /*
674 * Get the transmission data-response reply. It must follow
675 * immediately after the data block we transferred. This reply
676 * doesn't necessarily tell whether the write operation succeeded;
677 * it just says if the transmission was ok and whether *earlier*
678 * writes succeeded; see the standard.
679 *
680 * In practice, there are (even modern SDHC-)cards which are late
681 * in sending the response, and miss the time frame by a few bits,
682 * so we have to cope with this situation and check the response
683 * bit-by-bit. Arggh!!!
684 */
685 pattern = get_unaligned_be32(scratch->status);
686
687 /* First 3 bit of pattern are undefined */
688 pattern |= 0xE0000000;
689
690 /* left-adjust to leading 0 bit */
691 while (pattern & 0x80000000)
692 pattern <<= 1;
693 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
694 pattern >>= 27;
695
696 switch (pattern) {
697 case SPI_RESPONSE_ACCEPTED:
698 status = 0;
699 break;
700 case SPI_RESPONSE_CRC_ERR:
701 /* host shall then issue MMC_STOP_TRANSMISSION */
702 status = -EILSEQ;
703 break;
704 case SPI_RESPONSE_WRITE_ERR:
705 /* host shall then issue MMC_STOP_TRANSMISSION,
706 * and should MMC_SEND_STATUS to sort it out
707 */
708 status = -EIO;
709 break;
710 default:
711 status = -EPROTO;
712 break;
713 }
714 if (status != 0) {
715 dev_dbg(&spi->dev, "write error %02x (%d)\n",
716 scratch->status[0], status);
717 return status;
718 }
719
720 t->tx_buf += t->len;
721 if (host->dma_dev)
722 t->tx_dma += t->len;
723
724 /* Return when not busy. If we didn't collect that status yet,
725 * we'll need some more I/O.
726 */
727 for (i = 4; i < sizeof(scratch->status); i++) {
728 /* card is non-busy if the most recent bit is 1 */
729 if (scratch->status[i] & 0x01)
730 return 0;
731 }
732 return mmc_spi_wait_unbusy(host, timeout);
733}
734
735/*
736 * Read one block:
737 * - skip leading all-ones bytes ... either
738 * + N(AC) [1..f(clock,CSD)] usually, else
739 * + N(CX) [0..8] when reading CSD or CID
740 * - data block
741 * + token ... if error token, no data or crc
742 * + data bytes
743 * + crc16
744 *
745 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
746 * before dropping chipselect.
747 *
748 * For multiblock reads, caller either reads the next block or issues a
749 * STOP_TRANSMISSION command.
750 */
751static int
752mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
753 unsigned long timeout)
754{
755 struct spi_device *spi = host->spi;
756 int status;
757 struct scratch *scratch = host->data;
758 unsigned int bitshift;
759 u8 leftover;
760
761 /* At least one SD card sends an all-zeroes byte when N(CX)
762 * applies, before the all-ones bytes ... just cope with that.
763 */
764 status = mmc_spi_readbytes(host, 1);
765 if (status < 0)
766 return status;
767 status = scratch->status[0];
768 if (status == 0xff || status == 0)
769 status = mmc_spi_readtoken(host, timeout);
770
771 if (status < 0) {
772 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
773 return status;
774 }
775
776 /* The token may be bit-shifted...
777 * the first 0-bit precedes the data stream.
778 */
779 bitshift = 7;
780 while (status & 0x80) {
781 status <<= 1;
782 bitshift--;
783 }
784 leftover = status << 1;
785
786 if (host->dma_dev) {
787 dma_sync_single_for_device(host->dma_dev,
788 host->data_dma, sizeof(*scratch),
789 DMA_BIDIRECTIONAL);
790 dma_sync_single_for_device(host->dma_dev,
791 t->rx_dma, t->len,
792 DMA_FROM_DEVICE);
793 }
794
795 status = spi_sync_locked(spi, &host->m);
796 if (status < 0) {
797 dev_dbg(&spi->dev, "read error %d\n", status);
798 return status;
799 }
800
801 if (host->dma_dev) {
802 dma_sync_single_for_cpu(host->dma_dev,
803 host->data_dma, sizeof(*scratch),
804 DMA_BIDIRECTIONAL);
805 dma_sync_single_for_cpu(host->dma_dev,
806 t->rx_dma, t->len,
807 DMA_FROM_DEVICE);
808 }
809
810 if (bitshift) {
811 /* Walk through the data and the crc and do
812 * all the magic to get byte-aligned data.
813 */
814 u8 *cp = t->rx_buf;
815 unsigned int len;
816 unsigned int bitright = 8 - bitshift;
817 u8 temp;
818 for (len = t->len; len; len--) {
819 temp = *cp;
820 *cp++ = leftover | (temp >> bitshift);
821 leftover = temp << bitright;
822 }
823 cp = (u8 *) &scratch->crc_val;
824 temp = *cp;
825 *cp++ = leftover | (temp >> bitshift);
826 leftover = temp << bitright;
827 temp = *cp;
828 *cp = leftover | (temp >> bitshift);
829 }
830
831 if (host->mmc->use_spi_crc) {
832 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
833
834 be16_to_cpus(&scratch->crc_val);
835 if (scratch->crc_val != crc) {
836 dev_dbg(&spi->dev,
837 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
838 scratch->crc_val, crc, t->len);
839 return -EILSEQ;
840 }
841 }
842
843 t->rx_buf += t->len;
844 if (host->dma_dev)
845 t->rx_dma += t->len;
846
847 return 0;
848}
849
850/*
851 * An MMC/SD data stage includes one or more blocks, optional CRCs,
852 * and inline handshaking. That handhaking makes it unlike most
853 * other SPI protocol stacks.
854 */
855static void
856mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
857 struct mmc_data *data, u32 blk_size)
858{
859 struct spi_device *spi = host->spi;
860 struct device *dma_dev = host->dma_dev;
861 struct spi_transfer *t;
862 enum dma_data_direction direction = mmc_get_dma_dir(data);
863 struct scatterlist *sg;
864 unsigned n_sg;
865 bool multiple = (data->blocks > 1);
866 const char *write_or_read = (direction == DMA_TO_DEVICE) ? "write" : "read";
867 u32 clock_rate;
868 unsigned long timeout;
869
870 mmc_spi_setup_data_message(host, multiple, direction);
871 t = &host->t;
872
873 if (t->speed_hz)
874 clock_rate = t->speed_hz;
875 else
876 clock_rate = spi->max_speed_hz;
877
878 timeout = data->timeout_ns / 1000 +
879 data->timeout_clks * 1000000 / clock_rate;
880 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
881
882 /* Handle scatterlist segments one at a time, with synch for
883 * each 512-byte block
884 */
885 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
886 int status = 0;
887 dma_addr_t dma_addr = 0;
888 void *kmap_addr;
889 unsigned length = sg->length;
890 enum dma_data_direction dir = direction;
891
892 /* set up dma mapping for controller drivers that might
893 * use DMA ... though they may fall back to PIO
894 */
895 if (dma_dev) {
896 /* never invalidate whole *shared* pages ... */
897 if ((sg->offset != 0 || length != PAGE_SIZE)
898 && dir == DMA_FROM_DEVICE)
899 dir = DMA_BIDIRECTIONAL;
900
901 dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
902 PAGE_SIZE, dir);
903 if (dma_mapping_error(dma_dev, dma_addr)) {
904 data->error = -EFAULT;
905 break;
906 }
907 if (direction == DMA_TO_DEVICE)
908 t->tx_dma = dma_addr + sg->offset;
909 else
910 t->rx_dma = dma_addr + sg->offset;
911 }
912
913 /* allow pio too; we don't allow highmem */
914 kmap_addr = kmap(sg_page(sg));
915 if (direction == DMA_TO_DEVICE)
916 t->tx_buf = kmap_addr + sg->offset;
917 else
918 t->rx_buf = kmap_addr + sg->offset;
919
920 /* transfer each block, and update request status */
921 while (length) {
922 t->len = min(length, blk_size);
923
924 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
925
926 if (direction == DMA_TO_DEVICE)
927 status = mmc_spi_writeblock(host, t, timeout);
928 else
929 status = mmc_spi_readblock(host, t, timeout);
930 if (status < 0)
931 break;
932
933 data->bytes_xfered += t->len;
934 length -= t->len;
935
936 if (!multiple)
937 break;
938 }
939
940 /* discard mappings */
941 if (direction == DMA_FROM_DEVICE)
942 flush_dcache_page(sg_page(sg));
943 kunmap(sg_page(sg));
944 if (dma_dev)
945 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
946
947 if (status < 0) {
948 data->error = status;
949 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
950 break;
951 }
952 }
953
954 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
955 * can be issued before multiblock writes. Unlike its more widely
956 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
957 * that can affect the STOP_TRAN logic. Complete (and current)
958 * MMC specs should sort that out before Linux starts using CMD23.
959 */
960 if (direction == DMA_TO_DEVICE && multiple) {
961 struct scratch *scratch = host->data;
962 int tmp;
963 const unsigned statlen = sizeof(scratch->status);
964
965 dev_dbg(&spi->dev, " STOP_TRAN\n");
966
967 /* Tweak the per-block message we set up earlier by morphing
968 * it to hold single buffer with the token followed by some
969 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
970 * "not busy any longer" status, and leave chip selected.
971 */
972 INIT_LIST_HEAD(&host->m.transfers);
973 list_add(&host->early_status.transfer_list,
974 &host->m.transfers);
975
976 memset(scratch->status, 0xff, statlen);
977 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
978
979 host->early_status.tx_buf = host->early_status.rx_buf;
980 host->early_status.tx_dma = host->early_status.rx_dma;
981 host->early_status.len = statlen;
982
983 if (host->dma_dev)
984 dma_sync_single_for_device(host->dma_dev,
985 host->data_dma, sizeof(*scratch),
986 DMA_BIDIRECTIONAL);
987
988 tmp = spi_sync_locked(spi, &host->m);
989
990 if (host->dma_dev)
991 dma_sync_single_for_cpu(host->dma_dev,
992 host->data_dma, sizeof(*scratch),
993 DMA_BIDIRECTIONAL);
994
995 if (tmp < 0) {
996 if (!data->error)
997 data->error = tmp;
998 return;
999 }
1000
1001 /* Ideally we collected "not busy" status with one I/O,
1002 * avoiding wasteful byte-at-a-time scanning... but more
1003 * I/O is often needed.
1004 */
1005 for (tmp = 2; tmp < statlen; tmp++) {
1006 if (scratch->status[tmp] != 0)
1007 return;
1008 }
1009 tmp = mmc_spi_wait_unbusy(host, timeout);
1010 if (tmp < 0 && !data->error)
1011 data->error = tmp;
1012 }
1013}
1014
1015/****************************************************************************/
1016
1017/*
1018 * MMC driver implementation -- the interface to the MMC stack
1019 */
1020
1021static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1022{
1023 struct mmc_spi_host *host = mmc_priv(mmc);
1024 int status = -EINVAL;
1025 int crc_retry = 5;
1026 struct mmc_command stop;
1027
1028#ifdef DEBUG
1029 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1030 {
1031 struct mmc_command *cmd;
1032 int invalid = 0;
1033
1034 cmd = mrq->cmd;
1035 if (!mmc_spi_resp_type(cmd)) {
1036 dev_dbg(&host->spi->dev, "bogus command\n");
1037 cmd->error = -EINVAL;
1038 invalid = 1;
1039 }
1040
1041 cmd = mrq->stop;
1042 if (cmd && !mmc_spi_resp_type(cmd)) {
1043 dev_dbg(&host->spi->dev, "bogus STOP command\n");
1044 cmd->error = -EINVAL;
1045 invalid = 1;
1046 }
1047
1048 if (invalid) {
1049 dump_stack();
1050 mmc_request_done(host->mmc, mrq);
1051 return;
1052 }
1053 }
1054#endif
1055
1056 /* request exclusive bus access */
1057 spi_bus_lock(host->spi->master);
1058
1059crc_recover:
1060 /* issue command; then optionally data and stop */
1061 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1062 if (status == 0 && mrq->data) {
1063 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1064
1065 /*
1066 * The SPI bus is not always reliable for large data transfers.
1067 * If an occasional crc error is reported by the SD device with
1068 * data read/write over SPI, it may be recovered by repeating
1069 * the last SD command again. The retry count is set to 5 to
1070 * ensure the driver passes stress tests.
1071 */
1072 if (mrq->data->error == -EILSEQ && crc_retry) {
1073 stop.opcode = MMC_STOP_TRANSMISSION;
1074 stop.arg = 0;
1075 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1076 status = mmc_spi_command_send(host, mrq, &stop, 0);
1077 crc_retry--;
1078 mrq->data->error = 0;
1079 goto crc_recover;
1080 }
1081
1082 if (mrq->stop)
1083 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1084 else
1085 mmc_cs_off(host);
1086 }
1087
1088 /* release the bus */
1089 spi_bus_unlock(host->spi->master);
1090
1091 mmc_request_done(host->mmc, mrq);
1092}
1093
1094/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1095 *
1096 * NOTE that here we can't know that the card has just been powered up;
1097 * not all MMC/SD sockets support power switching.
1098 *
1099 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1100 * this doesn't seem to do the right thing at all...
1101 */
1102static void mmc_spi_initsequence(struct mmc_spi_host *host)
1103{
1104 /* Try to be very sure any previous command has completed;
1105 * wait till not-busy, skip debris from any old commands.
1106 */
1107 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1108 mmc_spi_readbytes(host, 10);
1109
1110 /*
1111 * Do a burst with chipselect active-high. We need to do this to
1112 * meet the requirement of 74 clock cycles with both chipselect
1113 * and CMD (MOSI) high before CMD0 ... after the card has been
1114 * powered up to Vdd(min), and so is ready to take commands.
1115 *
1116 * Some cards are particularly needy of this (e.g. Viking "SD256")
1117 * while most others don't seem to care.
1118 *
1119 * Note that this is one of the places MMC/SD plays games with the
1120 * SPI protocol. Another is that when chipselect is released while
1121 * the card returns BUSY status, the clock must issue several cycles
1122 * with chipselect high before the card will stop driving its output.
1123 *
1124 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1125 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1126 * inverted by gpiolib, so if we want to ascertain to drive it high
1127 * we should toggle the default with an XOR as we do here.
1128 */
1129 host->spi->mode ^= SPI_CS_HIGH;
1130 if (spi_setup(host->spi) != 0) {
1131 /* Just warn; most cards work without it. */
1132 dev_warn(&host->spi->dev,
1133 "can't change chip-select polarity\n");
1134 host->spi->mode ^= SPI_CS_HIGH;
1135 } else {
1136 mmc_spi_readbytes(host, 18);
1137
1138 host->spi->mode ^= SPI_CS_HIGH;
1139 if (spi_setup(host->spi) != 0) {
1140 /* Wot, we can't get the same setup we had before? */
1141 dev_err(&host->spi->dev,
1142 "can't restore chip-select polarity\n");
1143 }
1144 }
1145}
1146
1147static char *mmc_powerstring(u8 power_mode)
1148{
1149 switch (power_mode) {
1150 case MMC_POWER_OFF: return "off";
1151 case MMC_POWER_UP: return "up";
1152 case MMC_POWER_ON: return "on";
1153 }
1154 return "?";
1155}
1156
1157static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1158{
1159 struct mmc_spi_host *host = mmc_priv(mmc);
1160
1161 if (host->power_mode != ios->power_mode) {
1162 int canpower;
1163
1164 canpower = host->pdata && host->pdata->setpower;
1165
1166 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1167 mmc_powerstring(ios->power_mode),
1168 ios->vdd,
1169 canpower ? ", can switch" : "");
1170
1171 /* switch power on/off if possible, accounting for
1172 * max 250msec powerup time if needed.
1173 */
1174 if (canpower) {
1175 switch (ios->power_mode) {
1176 case MMC_POWER_OFF:
1177 case MMC_POWER_UP:
1178 host->pdata->setpower(&host->spi->dev,
1179 ios->vdd);
1180 if (ios->power_mode == MMC_POWER_UP)
1181 msleep(host->powerup_msecs);
1182 }
1183 }
1184
1185 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1186 if (ios->power_mode == MMC_POWER_ON)
1187 mmc_spi_initsequence(host);
1188
1189 /* If powering down, ground all card inputs to avoid power
1190 * delivery from data lines! On a shared SPI bus, this
1191 * will probably be temporary; 6.4.2 of the simplified SD
1192 * spec says this must last at least 1msec.
1193 *
1194 * - Clock low means CPOL 0, e.g. mode 0
1195 * - MOSI low comes from writing zero
1196 * - Chipselect is usually active low...
1197 */
1198 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1199 int mres;
1200 u8 nullbyte = 0;
1201
1202 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1203 mres = spi_setup(host->spi);
1204 if (mres < 0)
1205 dev_dbg(&host->spi->dev,
1206 "switch to SPI mode 0 failed\n");
1207
1208 if (spi_write(host->spi, &nullbyte, 1) < 0)
1209 dev_dbg(&host->spi->dev,
1210 "put spi signals to low failed\n");
1211
1212 /*
1213 * Now clock should be low due to spi mode 0;
1214 * MOSI should be low because of written 0x00;
1215 * chipselect should be low (it is active low)
1216 * power supply is off, so now MMC is off too!
1217 *
1218 * FIXME no, chipselect can be high since the
1219 * device is inactive and SPI_CS_HIGH is clear...
1220 */
1221 msleep(10);
1222 if (mres == 0) {
1223 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1224 mres = spi_setup(host->spi);
1225 if (mres < 0)
1226 dev_dbg(&host->spi->dev,
1227 "switch back to SPI mode 3 failed\n");
1228 }
1229 }
1230
1231 host->power_mode = ios->power_mode;
1232 }
1233
1234 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1235 int status;
1236
1237 host->spi->max_speed_hz = ios->clock;
1238 status = spi_setup(host->spi);
1239 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1240 host->spi->max_speed_hz, status);
1241 }
1242}
1243
1244static const struct mmc_host_ops mmc_spi_ops = {
1245 .request = mmc_spi_request,
1246 .set_ios = mmc_spi_set_ios,
1247 .get_ro = mmc_gpio_get_ro,
1248 .get_cd = mmc_gpio_get_cd,
1249};
1250
1251
1252/****************************************************************************/
1253
1254/*
1255 * SPI driver implementation
1256 */
1257
1258static irqreturn_t
1259mmc_spi_detect_irq(int irq, void *mmc)
1260{
1261 struct mmc_spi_host *host = mmc_priv(mmc);
1262 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1263
1264 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1265 return IRQ_HANDLED;
1266}
1267
1268#ifdef CONFIG_HAS_DMA
1269static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1270{
1271 struct spi_device *spi = host->spi;
1272 struct device *dev;
1273
1274 if (!spi->master->dev.parent->dma_mask)
1275 return 0;
1276
1277 dev = spi->master->dev.parent;
1278
1279 host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1280 DMA_TO_DEVICE);
1281 if (dma_mapping_error(dev, host->ones_dma))
1282 return -ENOMEM;
1283
1284 host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1285 DMA_BIDIRECTIONAL);
1286 if (dma_mapping_error(dev, host->data_dma)) {
1287 dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1288 DMA_TO_DEVICE);
1289 return -ENOMEM;
1290 }
1291
1292 dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1293 DMA_BIDIRECTIONAL);
1294
1295 host->dma_dev = dev;
1296 return 0;
1297}
1298
1299static void mmc_spi_dma_free(struct mmc_spi_host *host)
1300{
1301 if (!host->dma_dev)
1302 return;
1303
1304 dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1305 DMA_TO_DEVICE);
1306 dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1307 DMA_BIDIRECTIONAL);
1308}
1309#else
1310static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1311static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1312#endif
1313
1314static int mmc_spi_probe(struct spi_device *spi)
1315{
1316 void *ones;
1317 struct mmc_host *mmc;
1318 struct mmc_spi_host *host;
1319 int status;
1320 bool has_ro = false;
1321
1322 /* We rely on full duplex transfers, mostly to reduce
1323 * per-transfer overheads (by making fewer transfers).
1324 */
1325 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1326 return -EINVAL;
1327
1328 /* MMC and SD specs only seem to care that sampling is on the
1329 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1330 * should be legit. We'll use mode 0 since the steady state is 0,
1331 * which is appropriate for hotplugging, unless the platform data
1332 * specify mode 3 (if hardware is not compatible to mode 0).
1333 */
1334 if (spi->mode != SPI_MODE_3)
1335 spi->mode = SPI_MODE_0;
1336 spi->bits_per_word = 8;
1337
1338 status = spi_setup(spi);
1339 if (status < 0) {
1340 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1341 spi->mode, spi->max_speed_hz / 1000,
1342 status);
1343 return status;
1344 }
1345
1346 /* We need a supply of ones to transmit. This is the only time
1347 * the CPU touches these, so cache coherency isn't a concern.
1348 *
1349 * NOTE if many systems use more than one MMC-over-SPI connector
1350 * it'd save some memory to share this. That's evidently rare.
1351 */
1352 status = -ENOMEM;
1353 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1354 if (!ones)
1355 goto nomem;
1356 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1357
1358 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1359 if (!mmc)
1360 goto nomem;
1361
1362 mmc->ops = &mmc_spi_ops;
1363 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1364 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1365 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1366 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1367
1368 mmc->caps = MMC_CAP_SPI;
1369
1370 /* SPI doesn't need the lowspeed device identification thing for
1371 * MMC or SD cards, since it never comes up in open drain mode.
1372 * That's good; some SPI masters can't handle very low speeds!
1373 *
1374 * However, low speed SDIO cards need not handle over 400 KHz;
1375 * that's the only reason not to use a few MHz for f_min (until
1376 * the upper layer reads the target frequency from the CSD).
1377 */
1378 mmc->f_min = 400000;
1379 mmc->f_max = spi->max_speed_hz;
1380
1381 host = mmc_priv(mmc);
1382 host->mmc = mmc;
1383 host->spi = spi;
1384
1385 host->ones = ones;
1386
1387 dev_set_drvdata(&spi->dev, mmc);
1388
1389 /* Platform data is used to hook up things like card sensing
1390 * and power switching gpios.
1391 */
1392 host->pdata = mmc_spi_get_pdata(spi);
1393 if (host->pdata)
1394 mmc->ocr_avail = host->pdata->ocr_mask;
1395 if (!mmc->ocr_avail) {
1396 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1397 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1398 }
1399 if (host->pdata && host->pdata->setpower) {
1400 host->powerup_msecs = host->pdata->powerup_msecs;
1401 if (!host->powerup_msecs || host->powerup_msecs > 250)
1402 host->powerup_msecs = 250;
1403 }
1404
1405 /* preallocate dma buffers */
1406 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1407 if (!host->data)
1408 goto fail_nobuf1;
1409
1410 status = mmc_spi_dma_alloc(host);
1411 if (status)
1412 goto fail_dma;
1413
1414 /* setup message for status/busy readback */
1415 spi_message_init(&host->readback);
1416 host->readback.is_dma_mapped = (host->dma_dev != NULL);
1417
1418 spi_message_add_tail(&host->status, &host->readback);
1419 host->status.tx_buf = host->ones;
1420 host->status.tx_dma = host->ones_dma;
1421 host->status.rx_buf = &host->data->status;
1422 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1423 host->status.cs_change = 1;
1424
1425 /* register card detect irq */
1426 if (host->pdata && host->pdata->init) {
1427 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1428 if (status != 0)
1429 goto fail_glue_init;
1430 }
1431
1432 /* pass platform capabilities, if any */
1433 if (host->pdata) {
1434 mmc->caps |= host->pdata->caps;
1435 mmc->caps2 |= host->pdata->caps2;
1436 }
1437
1438 status = mmc_add_host(mmc);
1439 if (status != 0)
1440 goto fail_glue_init;
1441
1442 /*
1443 * Index 0 is card detect
1444 * Old boardfiles were specifying 1 ms as debounce
1445 */
1446 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1447 if (status == -EPROBE_DEFER)
1448 goto fail_gpiod_request;
1449 if (!status) {
1450 /*
1451 * The platform has a CD GPIO signal that may support
1452 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1453 * if polling is needed or not.
1454 */
1455 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1456 mmc_gpiod_request_cd_irq(mmc);
1457 }
1458 mmc_detect_change(mmc, 0);
1459
1460 /* Index 1 is write protect/read only */
1461 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1462 if (status == -EPROBE_DEFER)
1463 goto fail_gpiod_request;
1464 if (!status)
1465 has_ro = true;
1466
1467 dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1468 dev_name(&mmc->class_dev),
1469 host->dma_dev ? "" : ", no DMA",
1470 has_ro ? "" : ", no WP",
1471 (host->pdata && host->pdata->setpower)
1472 ? "" : ", no poweroff",
1473 (mmc->caps & MMC_CAP_NEEDS_POLL)
1474 ? ", cd polling" : "");
1475 return 0;
1476
1477fail_gpiod_request:
1478 mmc_remove_host(mmc);
1479fail_glue_init:
1480 mmc_spi_dma_free(host);
1481fail_dma:
1482 kfree(host->data);
1483fail_nobuf1:
1484 mmc_spi_put_pdata(spi);
1485 mmc_free_host(mmc);
1486nomem:
1487 kfree(ones);
1488 return status;
1489}
1490
1491
1492static void mmc_spi_remove(struct spi_device *spi)
1493{
1494 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1495 struct mmc_spi_host *host = mmc_priv(mmc);
1496
1497 /* prevent new mmc_detect_change() calls */
1498 if (host->pdata && host->pdata->exit)
1499 host->pdata->exit(&spi->dev, mmc);
1500
1501 mmc_remove_host(mmc);
1502
1503 mmc_spi_dma_free(host);
1504 kfree(host->data);
1505 kfree(host->ones);
1506
1507 spi->max_speed_hz = mmc->f_max;
1508 mmc_spi_put_pdata(spi);
1509 mmc_free_host(mmc);
1510}
1511
1512static const struct spi_device_id mmc_spi_dev_ids[] = {
1513 { "mmc-spi-slot"},
1514 { },
1515};
1516MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1517
1518static const struct of_device_id mmc_spi_of_match_table[] = {
1519 { .compatible = "mmc-spi-slot", },
1520 {},
1521};
1522MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1523
1524static struct spi_driver mmc_spi_driver = {
1525 .driver = {
1526 .name = "mmc_spi",
1527 .of_match_table = mmc_spi_of_match_table,
1528 },
1529 .id_table = mmc_spi_dev_ids,
1530 .probe = mmc_spi_probe,
1531 .remove = mmc_spi_remove,
1532};
1533
1534module_spi_driver(mmc_spi_driver);
1535
1536MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1537MODULE_DESCRIPTION("SPI SD/MMC host driver");
1538MODULE_LICENSE("GPL");
1539MODULE_ALIAS("spi:mmc_spi");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Access SD/MMC cards through SPI master controllers
4 *
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
12 */
13#include <linux/sched.h>
14#include <linux/delay.h>
15#include <linux/slab.h>
16#include <linux/module.h>
17#include <linux/bio.h>
18#include <linux/crc7.h>
19#include <linux/crc-itu-t.h>
20#include <linux/scatterlist.h>
21
22#include <linux/mmc/host.h>
23#include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
24#include <linux/mmc/slot-gpio.h>
25
26#include <linux/spi/spi.h>
27#include <linux/spi/mmc_spi.h>
28
29#include <linux/unaligned.h>
30
31
32/* NOTES:
33 *
34 * - For now, we won't try to interoperate with a real mmc/sd/sdio
35 * controller, although some of them do have hardware support for
36 * SPI protocol. The main reason for such configs would be mmc-ish
37 * cards like DataFlash, which don't support that "native" protocol.
38 *
39 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
40 * switch between driver stacks, and in any case if "native" mode
41 * is available, it will be faster and hence preferable.
42 *
43 * - MMC depends on a different chipselect management policy than the
44 * SPI interface currently supports for shared bus segments: it needs
45 * to issue multiple spi_message requests with the chipselect active,
46 * using the results of one message to decide the next one to issue.
47 *
48 * Pending updates to the programming interface, this driver expects
49 * that it not share the bus with other drivers (precluding conflicts).
50 *
51 * - We tell the controller to keep the chipselect active from the
52 * beginning of an mmc_host_ops.request until the end. So beware
53 * of SPI controller drivers that mis-handle the cs_change flag!
54 *
55 * However, many cards seem OK with chipselect flapping up/down
56 * during that time ... at least on unshared bus segments.
57 */
58
59
60/*
61 * Local protocol constants, internal to data block protocols.
62 */
63
64/* Response tokens used to ack each block written: */
65#define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
66#define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
67#define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
68#define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
69
70/* Read and write blocks start with these tokens and end with crc;
71 * on error, read tokens act like a subset of R2_SPI_* values.
72 */
73#define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
74#define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
75#define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
76
77#define MMC_SPI_BLOCKSIZE 512
78
79#define MMC_SPI_R1B_TIMEOUT_MS 3000
80#define MMC_SPI_INIT_TIMEOUT_MS 3000
81
82/* One of the critical speed parameters is the amount of data which may
83 * be transferred in one command. If this value is too low, the SD card
84 * controller has to do multiple partial block writes (argggh!). With
85 * today (2008) SD cards there is little speed gain if we transfer more
86 * than 64 KBytes at a time. So use this value until there is any indication
87 * that we should do more here.
88 */
89#define MMC_SPI_BLOCKSATONCE 128
90
91/****************************************************************************/
92
93/*
94 * Local Data Structures
95 */
96
97/* "scratch" is per-{command,block} data exchanged with the card */
98struct scratch {
99 u8 status[29];
100 u8 data_token;
101 __be16 crc_val;
102};
103
104struct mmc_spi_host {
105 struct mmc_host *mmc;
106 struct spi_device *spi;
107
108 unsigned char power_mode;
109 u16 powerup_msecs;
110
111 struct mmc_spi_platform_data *pdata;
112
113 /* for bulk data transfers */
114 struct spi_transfer token, t, crc, early_status;
115 struct spi_message m;
116
117 /* for status readback */
118 struct spi_transfer status;
119 struct spi_message readback;
120
121 /* buffer used for commands and for message "overhead" */
122 struct scratch *data;
123
124 /* Specs say to write ones most of the time, even when the card
125 * has no need to read its input data; and many cards won't care.
126 * This is our source of those ones.
127 */
128 void *ones;
129};
130
131
132/****************************************************************************/
133
134/*
135 * MMC-over-SPI protocol glue, used by the MMC stack interface
136 */
137
138static inline int mmc_cs_off(struct mmc_spi_host *host)
139{
140 /* chipselect will always be inactive after setup() */
141 return spi_setup(host->spi);
142}
143
144static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
145{
146 if (len > sizeof(*host->data)) {
147 WARN_ON(1);
148 return -EIO;
149 }
150
151 host->status.len = len;
152
153 return spi_sync_locked(host->spi, &host->readback);
154}
155
156static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
157 unsigned n, u8 byte)
158{
159 u8 *cp = host->data->status;
160 unsigned long start = jiffies;
161
162 do {
163 int status;
164 unsigned i;
165
166 status = mmc_spi_readbytes(host, n);
167 if (status < 0)
168 return status;
169
170 for (i = 0; i < n; i++) {
171 if (cp[i] != byte)
172 return cp[i];
173 }
174
175 /* If we need long timeouts, we may release the CPU */
176 cond_resched();
177 } while (time_is_after_jiffies(start + timeout));
178 return -ETIMEDOUT;
179}
180
181static inline int
182mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
183{
184 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
185}
186
187static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
188{
189 return mmc_spi_skip(host, timeout, 1, 0xff);
190}
191
192
193/*
194 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
195 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
196 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
197 *
198 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
199 * newer cards R7 (IF_COND).
200 */
201
202static char *maptype(struct mmc_command *cmd)
203{
204 switch (mmc_spi_resp_type(cmd)) {
205 case MMC_RSP_SPI_R1: return "R1";
206 case MMC_RSP_SPI_R1B: return "R1B";
207 case MMC_RSP_SPI_R2: return "R2/R5";
208 case MMC_RSP_SPI_R3: return "R3/R4/R7";
209 default: return "?";
210 }
211}
212
213/* return zero, else negative errno after setting cmd->error */
214static int mmc_spi_response_get(struct mmc_spi_host *host,
215 struct mmc_command *cmd, int cs_on)
216{
217 unsigned long timeout_ms;
218 u8 *cp = host->data->status;
219 u8 *end = cp + host->t.len;
220 int value = 0;
221 int bitshift;
222 u8 leftover = 0;
223 unsigned short rotator;
224 int i;
225
226 /* Except for data block reads, the whole response will already
227 * be stored in the scratch buffer. It's somewhere after the
228 * command and the first byte we read after it. We ignore that
229 * first byte. After STOP_TRANSMISSION command it may include
230 * two data bits, but otherwise it's all ones.
231 */
232 cp += 8;
233 while (cp < end && *cp == 0xff)
234 cp++;
235
236 /* Data block reads (R1 response types) may need more data... */
237 if (cp == end) {
238 cp = host->data->status;
239 end = cp+1;
240
241 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
242 * status byte ... and we already scanned 2 bytes.
243 *
244 * REVISIT block read paths use nasty byte-at-a-time I/O
245 * so it can always DMA directly into the target buffer.
246 * It'd probably be better to memcpy() the first chunk and
247 * avoid extra i/o calls...
248 *
249 * Note we check for more than 8 bytes, because in practice,
250 * some SD cards are slow...
251 */
252 for (i = 2; i < 16; i++) {
253 value = mmc_spi_readbytes(host, 1);
254 if (value < 0)
255 goto done;
256 if (*cp != 0xff)
257 goto checkstatus;
258 }
259 value = -ETIMEDOUT;
260 goto done;
261 }
262
263checkstatus:
264 bitshift = 0;
265 if (*cp & 0x80) {
266 /* Houston, we have an ugly card with a bit-shifted response */
267 rotator = *cp++ << 8;
268 /* read the next byte */
269 if (cp == end) {
270 value = mmc_spi_readbytes(host, 1);
271 if (value < 0)
272 goto done;
273 cp = host->data->status;
274 end = cp+1;
275 }
276 rotator |= *cp++;
277 while (rotator & 0x8000) {
278 bitshift++;
279 rotator <<= 1;
280 }
281 cmd->resp[0] = rotator >> 8;
282 leftover = rotator;
283 } else {
284 cmd->resp[0] = *cp++;
285 }
286 cmd->error = 0;
287
288 /* Status byte: the entire seven-bit R1 response. */
289 if (cmd->resp[0] != 0) {
290 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
291 & cmd->resp[0])
292 value = -EFAULT; /* Bad address */
293 else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
294 value = -ENOSYS; /* Function not implemented */
295 else if (R1_SPI_COM_CRC & cmd->resp[0])
296 value = -EILSEQ; /* Illegal byte sequence */
297 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
298 & cmd->resp[0])
299 value = -EIO; /* I/O error */
300 /* else R1_SPI_IDLE, "it's resetting" */
301 }
302
303 switch (mmc_spi_resp_type(cmd)) {
304
305 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
306 * and less-common stuff like various erase operations.
307 */
308 case MMC_RSP_SPI_R1B:
309 /* maybe we read all the busy tokens already */
310 while (cp < end && *cp == 0)
311 cp++;
312 if (cp == end) {
313 timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
314 MMC_SPI_R1B_TIMEOUT_MS;
315 mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
316 }
317 break;
318
319 /* SPI R2 == R1 + second status byte; SEND_STATUS
320 * SPI R5 == R1 + data byte; IO_RW_DIRECT
321 */
322 case MMC_RSP_SPI_R2:
323 /* read the next byte */
324 if (cp == end) {
325 value = mmc_spi_readbytes(host, 1);
326 if (value < 0)
327 goto done;
328 cp = host->data->status;
329 end = cp+1;
330 }
331 if (bitshift) {
332 rotator = leftover << 8;
333 rotator |= *cp << bitshift;
334 cmd->resp[0] |= (rotator & 0xFF00);
335 } else {
336 cmd->resp[0] |= *cp << 8;
337 }
338 break;
339
340 /* SPI R3, R4, or R7 == R1 + 4 bytes */
341 case MMC_RSP_SPI_R3:
342 rotator = leftover << 8;
343 cmd->resp[1] = 0;
344 for (i = 0; i < 4; i++) {
345 cmd->resp[1] <<= 8;
346 /* read the next byte */
347 if (cp == end) {
348 value = mmc_spi_readbytes(host, 1);
349 if (value < 0)
350 goto done;
351 cp = host->data->status;
352 end = cp+1;
353 }
354 if (bitshift) {
355 rotator |= *cp++ << bitshift;
356 cmd->resp[1] |= (rotator >> 8);
357 rotator <<= 8;
358 } else {
359 cmd->resp[1] |= *cp++;
360 }
361 }
362 break;
363
364 /* SPI R1 == just one status byte */
365 case MMC_RSP_SPI_R1:
366 break;
367
368 default:
369 dev_dbg(&host->spi->dev, "bad response type %04x\n",
370 mmc_spi_resp_type(cmd));
371 if (value >= 0)
372 value = -EINVAL;
373 goto done;
374 }
375
376 if (value < 0)
377 dev_dbg(&host->spi->dev,
378 " ... CMD%d response SPI_%s: resp %04x %08x\n",
379 cmd->opcode, maptype(cmd), cmd->resp[0], cmd->resp[1]);
380
381 /* disable chipselect on errors and some success cases */
382 if (value >= 0 && cs_on)
383 return value;
384done:
385 if (value < 0)
386 cmd->error = value;
387 mmc_cs_off(host);
388 return value;
389}
390
391/* Issue command and read its response.
392 * Returns zero on success, negative for error.
393 *
394 * On error, caller must cope with mmc core retry mechanism. That
395 * means immediate low-level resubmit, which affects the bus lock...
396 */
397static int
398mmc_spi_command_send(struct mmc_spi_host *host,
399 struct mmc_request *mrq,
400 struct mmc_command *cmd, int cs_on)
401{
402 struct scratch *data = host->data;
403 u8 *cp = data->status;
404 int status;
405 struct spi_transfer *t;
406
407 /* We can handle most commands (except block reads) in one full
408 * duplex I/O operation before either starting the next transfer
409 * (data block or command) or else deselecting the card.
410 *
411 * First, write 7 bytes:
412 * - an all-ones byte to ensure the card is ready
413 * - opcode byte (plus start and transmission bits)
414 * - four bytes of big-endian argument
415 * - crc7 (plus end bit) ... always computed, it's cheap
416 *
417 * We init the whole buffer to all-ones, which is what we need
418 * to write while we're reading (later) response data.
419 */
420 memset(cp, 0xff, sizeof(data->status));
421
422 cp[1] = 0x40 | cmd->opcode;
423 put_unaligned_be32(cmd->arg, cp + 2);
424 cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
425 cp += 7;
426
427 /* Then, read up to 13 bytes (while writing all-ones):
428 * - N(CR) (== 1..8) bytes of all-ones
429 * - status byte (for all response types)
430 * - the rest of the response, either:
431 * + nothing, for R1 or R1B responses
432 * + second status byte, for R2 responses
433 * + four data bytes, for R3 and R7 responses
434 *
435 * Finally, read some more bytes ... in the nice cases we know in
436 * advance how many, and reading 1 more is always OK:
437 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
438 * - N(RC) (== 1..N) bytes of all-ones, before next command
439 * - N(WR) (== 1..N) bytes of all-ones, before data write
440 *
441 * So in those cases one full duplex I/O of at most 21 bytes will
442 * handle the whole command, leaving the card ready to receive a
443 * data block or new command. We do that whenever we can, shaving
444 * CPU and IRQ costs (especially when using DMA or FIFOs).
445 *
446 * There are two other cases, where it's not generally practical
447 * to rely on a single I/O:
448 *
449 * - R1B responses need at least N(EC) bytes of all-zeroes.
450 *
451 * In this case we can *try* to fit it into one I/O, then
452 * maybe read more data later.
453 *
454 * - Data block reads are more troublesome, since a variable
455 * number of padding bytes precede the token and data.
456 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
457 * + N(AC) (== 1..many) bytes of all-ones
458 *
459 * In this case we currently only have minimal speedups here:
460 * when N(CR) == 1 we can avoid I/O in response_get().
461 */
462 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
463 cp += 2; /* min(N(CR)) + status */
464 /* R1 */
465 } else {
466 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
467 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */
468 cp++;
469 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */
470 cp += 4;
471 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */
472 cp = data->status + sizeof(data->status);
473 /* else: R1 (most commands) */
474 }
475
476 dev_dbg(&host->spi->dev, " CMD%d, resp %s\n",
477 cmd->opcode, maptype(cmd));
478
479 /* send command, leaving chipselect active */
480 spi_message_init(&host->m);
481
482 t = &host->t;
483 memset(t, 0, sizeof(*t));
484 t->tx_buf = t->rx_buf = data->status;
485 t->len = cp - data->status;
486 t->cs_change = 1;
487 spi_message_add_tail(t, &host->m);
488
489 status = spi_sync_locked(host->spi, &host->m);
490 if (status < 0) {
491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status);
492 cmd->error = status;
493 return status;
494 }
495
496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 return mmc_spi_response_get(host, cmd, cs_on);
498}
499
500/* Build data message with up to four separate transfers. For TX, we
501 * start by writing the data token. And in most cases, we finish with
502 * a status transfer.
503 *
504 * We always provide TX data for data and CRC. The MMC/SD protocol
505 * requires us to write ones; but Linux defaults to writing zeroes;
506 * so we explicitly initialize it to all ones on RX paths.
507 */
508static void
509mmc_spi_setup_data_message(struct mmc_spi_host *host, bool multiple, bool write)
510{
511 struct spi_transfer *t;
512 struct scratch *scratch = host->data;
513
514 spi_message_init(&host->m);
515
516 /* for reads, readblock() skips 0xff bytes before finding
517 * the token; for writes, this transfer issues that token.
518 */
519 if (write) {
520 t = &host->token;
521 memset(t, 0, sizeof(*t));
522 t->len = 1;
523 if (multiple)
524 scratch->data_token = SPI_TOKEN_MULTI_WRITE;
525 else
526 scratch->data_token = SPI_TOKEN_SINGLE;
527 t->tx_buf = &scratch->data_token;
528 spi_message_add_tail(t, &host->m);
529 }
530
531 /* Body of transfer is buffer, then CRC ...
532 * either TX-only, or RX with TX-ones.
533 */
534 t = &host->t;
535 memset(t, 0, sizeof(*t));
536 t->tx_buf = host->ones;
537 /* length and actual buffer info are written later */
538 spi_message_add_tail(t, &host->m);
539
540 t = &host->crc;
541 memset(t, 0, sizeof(*t));
542 t->len = 2;
543 if (write) {
544 /* the actual CRC may get written later */
545 t->tx_buf = &scratch->crc_val;
546 } else {
547 t->tx_buf = host->ones;
548 t->rx_buf = &scratch->crc_val;
549 }
550 spi_message_add_tail(t, &host->m);
551
552 /*
553 * A single block read is followed by N(EC) [0+] all-ones bytes
554 * before deselect ... don't bother.
555 *
556 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
557 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
558 * collect that single byte, so readblock() doesn't need to.
559 *
560 * For a write, the one-byte data response follows immediately, then
561 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
562 * Then single block reads may deselect, and multiblock ones issue
563 * the next token (next data block, or STOP_TRAN). We can try to
564 * minimize I/O ops by using a single read to collect end-of-busy.
565 */
566 if (multiple || write) {
567 t = &host->early_status;
568 memset(t, 0, sizeof(*t));
569 t->len = write ? sizeof(scratch->status) : 1;
570 t->tx_buf = host->ones;
571 t->rx_buf = scratch->status;
572 t->cs_change = 1;
573 spi_message_add_tail(t, &host->m);
574 }
575}
576
577/*
578 * Write one block:
579 * - caller handled preceding N(WR) [1+] all-ones bytes
580 * - data block
581 * + token
582 * + data bytes
583 * + crc16
584 * - an all-ones byte ... card writes a data-response byte
585 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
586 *
587 * Return negative errno, else success.
588 */
589static int
590mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
591 unsigned long timeout)
592{
593 struct spi_device *spi = host->spi;
594 int status, i;
595 struct scratch *scratch = host->data;
596 u32 pattern;
597
598 if (host->mmc->use_spi_crc)
599 scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
600
601 status = spi_sync_locked(spi, &host->m);
602 if (status != 0) {
603 dev_dbg(&spi->dev, "write error (%d)\n", status);
604 return status;
605 }
606
607 /*
608 * Get the transmission data-response reply. It must follow
609 * immediately after the data block we transferred. This reply
610 * doesn't necessarily tell whether the write operation succeeded;
611 * it just says if the transmission was ok and whether *earlier*
612 * writes succeeded; see the standard.
613 *
614 * In practice, there are (even modern SDHC-)cards which are late
615 * in sending the response, and miss the time frame by a few bits,
616 * so we have to cope with this situation and check the response
617 * bit-by-bit. Arggh!!!
618 */
619 pattern = get_unaligned_be32(scratch->status);
620
621 /* First 3 bit of pattern are undefined */
622 pattern |= 0xE0000000;
623
624 /* left-adjust to leading 0 bit */
625 while (pattern & 0x80000000)
626 pattern <<= 1;
627 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
628 pattern >>= 27;
629
630 switch (pattern) {
631 case SPI_RESPONSE_ACCEPTED:
632 status = 0;
633 break;
634 case SPI_RESPONSE_CRC_ERR:
635 /* host shall then issue MMC_STOP_TRANSMISSION */
636 status = -EILSEQ;
637 break;
638 case SPI_RESPONSE_WRITE_ERR:
639 /* host shall then issue MMC_STOP_TRANSMISSION,
640 * and should MMC_SEND_STATUS to sort it out
641 */
642 status = -EIO;
643 break;
644 default:
645 status = -EPROTO;
646 break;
647 }
648 if (status != 0) {
649 dev_dbg(&spi->dev, "write error %02x (%d)\n",
650 scratch->status[0], status);
651 return status;
652 }
653
654 t->tx_buf += t->len;
655
656 /* Return when not busy. If we didn't collect that status yet,
657 * we'll need some more I/O.
658 */
659 for (i = 4; i < sizeof(scratch->status); i++) {
660 /* card is non-busy if the most recent bit is 1 */
661 if (scratch->status[i] & 0x01)
662 return 0;
663 }
664 return mmc_spi_wait_unbusy(host, timeout);
665}
666
667/*
668 * Read one block:
669 * - skip leading all-ones bytes ... either
670 * + N(AC) [1..f(clock,CSD)] usually, else
671 * + N(CX) [0..8] when reading CSD or CID
672 * - data block
673 * + token ... if error token, no data or crc
674 * + data bytes
675 * + crc16
676 *
677 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
678 * before dropping chipselect.
679 *
680 * For multiblock reads, caller either reads the next block or issues a
681 * STOP_TRANSMISSION command.
682 */
683static int
684mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
685 unsigned long timeout)
686{
687 struct spi_device *spi = host->spi;
688 int status;
689 struct scratch *scratch = host->data;
690 unsigned int bitshift;
691 u8 leftover;
692
693 /* At least one SD card sends an all-zeroes byte when N(CX)
694 * applies, before the all-ones bytes ... just cope with that.
695 */
696 status = mmc_spi_readbytes(host, 1);
697 if (status < 0)
698 return status;
699 status = scratch->status[0];
700 if (status == 0xff || status == 0)
701 status = mmc_spi_readtoken(host, timeout);
702
703 if (status < 0) {
704 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
705 return status;
706 }
707
708 /* The token may be bit-shifted...
709 * the first 0-bit precedes the data stream.
710 */
711 bitshift = 7;
712 while (status & 0x80) {
713 status <<= 1;
714 bitshift--;
715 }
716 leftover = status << 1;
717
718 status = spi_sync_locked(spi, &host->m);
719 if (status < 0) {
720 dev_dbg(&spi->dev, "read error %d\n", status);
721 return status;
722 }
723
724 if (bitshift) {
725 /* Walk through the data and the crc and do
726 * all the magic to get byte-aligned data.
727 */
728 u8 *cp = t->rx_buf;
729 unsigned int len;
730 unsigned int bitright = 8 - bitshift;
731 u8 temp;
732 for (len = t->len; len; len--) {
733 temp = *cp;
734 *cp++ = leftover | (temp >> bitshift);
735 leftover = temp << bitright;
736 }
737 cp = (u8 *) &scratch->crc_val;
738 temp = *cp;
739 *cp++ = leftover | (temp >> bitshift);
740 leftover = temp << bitright;
741 temp = *cp;
742 *cp = leftover | (temp >> bitshift);
743 }
744
745 if (host->mmc->use_spi_crc) {
746 u16 crc = crc_itu_t(0, t->rx_buf, t->len);
747
748 be16_to_cpus(&scratch->crc_val);
749 if (scratch->crc_val != crc) {
750 dev_dbg(&spi->dev,
751 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
752 scratch->crc_val, crc, t->len);
753 return -EILSEQ;
754 }
755 }
756
757 t->rx_buf += t->len;
758
759 return 0;
760}
761
762/*
763 * An MMC/SD data stage includes one or more blocks, optional CRCs,
764 * and inline handshaking. That handhaking makes it unlike most
765 * other SPI protocol stacks.
766 */
767static void
768mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
769 struct mmc_data *data, u32 blk_size)
770{
771 struct spi_device *spi = host->spi;
772 struct spi_transfer *t;
773 struct scatterlist *sg;
774 unsigned n_sg;
775 bool multiple = (data->blocks > 1);
776 bool write = (data->flags & MMC_DATA_WRITE);
777 const char *write_or_read = write ? "write" : "read";
778 u32 clock_rate;
779 unsigned long timeout;
780
781 mmc_spi_setup_data_message(host, multiple, write);
782 t = &host->t;
783
784 if (t->speed_hz)
785 clock_rate = t->speed_hz;
786 else
787 clock_rate = spi->max_speed_hz;
788
789 timeout = data->timeout_ns / 1000 +
790 data->timeout_clks * 1000000 / clock_rate;
791 timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
792
793 /* Handle scatterlist segments one at a time, with synch for
794 * each 512-byte block
795 */
796 for_each_sg(data->sg, sg, data->sg_len, n_sg) {
797 int status = 0;
798 void *kmap_addr;
799 unsigned length = sg->length;
800
801 /* allow pio too; we don't allow highmem */
802 kmap_addr = kmap(sg_page(sg));
803 if (write)
804 t->tx_buf = kmap_addr + sg->offset;
805 else
806 t->rx_buf = kmap_addr + sg->offset;
807
808 /* transfer each block, and update request status */
809 while (length) {
810 t->len = min(length, blk_size);
811
812 dev_dbg(&spi->dev, " %s block, %d bytes\n", write_or_read, t->len);
813
814 if (write)
815 status = mmc_spi_writeblock(host, t, timeout);
816 else
817 status = mmc_spi_readblock(host, t, timeout);
818 if (status < 0)
819 break;
820
821 data->bytes_xfered += t->len;
822 length -= t->len;
823
824 if (!multiple)
825 break;
826 }
827
828 /* discard mappings */
829 if (write)
830 /* nothing to do */;
831 else
832 flush_dcache_page(sg_page(sg));
833 kunmap(sg_page(sg));
834
835 if (status < 0) {
836 data->error = status;
837 dev_dbg(&spi->dev, "%s status %d\n", write_or_read, status);
838 break;
839 }
840 }
841
842 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
843 * can be issued before multiblock writes. Unlike its more widely
844 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
845 * that can affect the STOP_TRAN logic. Complete (and current)
846 * MMC specs should sort that out before Linux starts using CMD23.
847 */
848 if (write && multiple) {
849 struct scratch *scratch = host->data;
850 int tmp;
851 const unsigned statlen = sizeof(scratch->status);
852
853 dev_dbg(&spi->dev, " STOP_TRAN\n");
854
855 /* Tweak the per-block message we set up earlier by morphing
856 * it to hold single buffer with the token followed by some
857 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
858 * "not busy any longer" status, and leave chip selected.
859 */
860 INIT_LIST_HEAD(&host->m.transfers);
861 list_add(&host->early_status.transfer_list,
862 &host->m.transfers);
863
864 memset(scratch->status, 0xff, statlen);
865 scratch->status[0] = SPI_TOKEN_STOP_TRAN;
866
867 host->early_status.tx_buf = host->early_status.rx_buf;
868 host->early_status.len = statlen;
869
870 tmp = spi_sync_locked(spi, &host->m);
871 if (tmp < 0) {
872 if (!data->error)
873 data->error = tmp;
874 return;
875 }
876
877 /* Ideally we collected "not busy" status with one I/O,
878 * avoiding wasteful byte-at-a-time scanning... but more
879 * I/O is often needed.
880 */
881 for (tmp = 2; tmp < statlen; tmp++) {
882 if (scratch->status[tmp] != 0)
883 return;
884 }
885 tmp = mmc_spi_wait_unbusy(host, timeout);
886 if (tmp < 0 && !data->error)
887 data->error = tmp;
888 }
889}
890
891/****************************************************************************/
892
893/*
894 * MMC driver implementation -- the interface to the MMC stack
895 */
896
897static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
898{
899 struct mmc_spi_host *host = mmc_priv(mmc);
900 int status = -EINVAL;
901 int crc_retry = 5;
902 struct mmc_command stop;
903
904#ifdef DEBUG
905 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
906 {
907 struct mmc_command *cmd;
908 int invalid = 0;
909
910 cmd = mrq->cmd;
911 if (!mmc_spi_resp_type(cmd)) {
912 dev_dbg(&host->spi->dev, "bogus command\n");
913 cmd->error = -EINVAL;
914 invalid = 1;
915 }
916
917 cmd = mrq->stop;
918 if (cmd && !mmc_spi_resp_type(cmd)) {
919 dev_dbg(&host->spi->dev, "bogus STOP command\n");
920 cmd->error = -EINVAL;
921 invalid = 1;
922 }
923
924 if (invalid) {
925 dump_stack();
926 mmc_request_done(host->mmc, mrq);
927 return;
928 }
929 }
930#endif
931
932 /* request exclusive bus access */
933 spi_bus_lock(host->spi->controller);
934
935crc_recover:
936 /* issue command; then optionally data and stop */
937 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
938 if (status == 0 && mrq->data) {
939 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
940
941 /*
942 * The SPI bus is not always reliable for large data transfers.
943 * If an occasional crc error is reported by the SD device with
944 * data read/write over SPI, it may be recovered by repeating
945 * the last SD command again. The retry count is set to 5 to
946 * ensure the driver passes stress tests.
947 */
948 if (mrq->data->error == -EILSEQ && crc_retry) {
949 stop.opcode = MMC_STOP_TRANSMISSION;
950 stop.arg = 0;
951 stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
952 status = mmc_spi_command_send(host, mrq, &stop, 0);
953 crc_retry--;
954 mrq->data->error = 0;
955 goto crc_recover;
956 }
957
958 if (mrq->stop)
959 status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
960 else
961 mmc_cs_off(host);
962 }
963
964 /* release the bus */
965 spi_bus_unlock(host->spi->controller);
966
967 mmc_request_done(host->mmc, mrq);
968}
969
970/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
971 *
972 * NOTE that here we can't know that the card has just been powered up;
973 * not all MMC/SD sockets support power switching.
974 *
975 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
976 * this doesn't seem to do the right thing at all...
977 */
978static void mmc_spi_initsequence(struct mmc_spi_host *host)
979{
980 /* Try to be very sure any previous command has completed;
981 * wait till not-busy, skip debris from any old commands.
982 */
983 mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
984 mmc_spi_readbytes(host, 10);
985
986 /*
987 * Do a burst with chipselect active-high. We need to do this to
988 * meet the requirement of 74 clock cycles with both chipselect
989 * and CMD (MOSI) high before CMD0 ... after the card has been
990 * powered up to Vdd(min), and so is ready to take commands.
991 *
992 * Some cards are particularly needy of this (e.g. Viking "SD256")
993 * while most others don't seem to care.
994 *
995 * Note that this is one of the places MMC/SD plays games with the
996 * SPI protocol. Another is that when chipselect is released while
997 * the card returns BUSY status, the clock must issue several cycles
998 * with chipselect high before the card will stop driving its output.
999 *
1000 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1001 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1002 * inverted by gpiolib, so if we want to ascertain to drive it high
1003 * we should toggle the default with an XOR as we do here.
1004 */
1005 host->spi->mode ^= SPI_CS_HIGH;
1006 if (spi_setup(host->spi) != 0) {
1007 /* Just warn; most cards work without it. */
1008 dev_warn(&host->spi->dev,
1009 "can't change chip-select polarity\n");
1010 host->spi->mode ^= SPI_CS_HIGH;
1011 } else {
1012 mmc_spi_readbytes(host, 18);
1013
1014 host->spi->mode ^= SPI_CS_HIGH;
1015 if (spi_setup(host->spi) != 0) {
1016 /* Wot, we can't get the same setup we had before? */
1017 dev_err(&host->spi->dev,
1018 "can't restore chip-select polarity\n");
1019 }
1020 }
1021}
1022
1023static char *mmc_powerstring(u8 power_mode)
1024{
1025 switch (power_mode) {
1026 case MMC_POWER_OFF: return "off";
1027 case MMC_POWER_UP: return "up";
1028 case MMC_POWER_ON: return "on";
1029 }
1030 return "?";
1031}
1032
1033static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1034{
1035 struct mmc_spi_host *host = mmc_priv(mmc);
1036
1037 if (host->power_mode != ios->power_mode) {
1038 int canpower;
1039
1040 canpower = host->pdata && host->pdata->setpower;
1041
1042 dev_dbg(&host->spi->dev, "power %s (%d)%s\n",
1043 mmc_powerstring(ios->power_mode),
1044 ios->vdd,
1045 canpower ? ", can switch" : "");
1046
1047 /* switch power on/off if possible, accounting for
1048 * max 250msec powerup time if needed.
1049 */
1050 if (canpower) {
1051 switch (ios->power_mode) {
1052 case MMC_POWER_OFF:
1053 case MMC_POWER_UP:
1054 host->pdata->setpower(&host->spi->dev,
1055 ios->vdd);
1056 if (ios->power_mode == MMC_POWER_UP)
1057 msleep(host->powerup_msecs);
1058 }
1059 }
1060
1061 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1062 if (ios->power_mode == MMC_POWER_ON)
1063 mmc_spi_initsequence(host);
1064
1065 /* If powering down, ground all card inputs to avoid power
1066 * delivery from data lines! On a shared SPI bus, this
1067 * will probably be temporary; 6.4.2 of the simplified SD
1068 * spec says this must last at least 1msec.
1069 *
1070 * - Clock low means CPOL 0, e.g. mode 0
1071 * - MOSI low comes from writing zero
1072 * - Chipselect is usually active low...
1073 */
1074 if (canpower && ios->power_mode == MMC_POWER_OFF) {
1075 int mres;
1076 u8 nullbyte = 0;
1077
1078 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1079 mres = spi_setup(host->spi);
1080 if (mres < 0)
1081 dev_dbg(&host->spi->dev,
1082 "switch to SPI mode 0 failed\n");
1083
1084 if (spi_write(host->spi, &nullbyte, 1) < 0)
1085 dev_dbg(&host->spi->dev,
1086 "put spi signals to low failed\n");
1087
1088 /*
1089 * Now clock should be low due to spi mode 0;
1090 * MOSI should be low because of written 0x00;
1091 * chipselect should be low (it is active low)
1092 * power supply is off, so now MMC is off too!
1093 *
1094 * FIXME no, chipselect can be high since the
1095 * device is inactive and SPI_CS_HIGH is clear...
1096 */
1097 msleep(10);
1098 if (mres == 0) {
1099 host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1100 mres = spi_setup(host->spi);
1101 if (mres < 0)
1102 dev_dbg(&host->spi->dev,
1103 "switch back to SPI mode 3 failed\n");
1104 }
1105 }
1106
1107 host->power_mode = ios->power_mode;
1108 }
1109
1110 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1111 int status;
1112
1113 host->spi->max_speed_hz = ios->clock;
1114 status = spi_setup(host->spi);
1115 dev_dbg(&host->spi->dev, " clock to %d Hz, %d\n",
1116 host->spi->max_speed_hz, status);
1117 }
1118}
1119
1120static const struct mmc_host_ops mmc_spi_ops = {
1121 .request = mmc_spi_request,
1122 .set_ios = mmc_spi_set_ios,
1123 .get_ro = mmc_gpio_get_ro,
1124 .get_cd = mmc_gpio_get_cd,
1125};
1126
1127
1128/****************************************************************************/
1129
1130/*
1131 * SPI driver implementation
1132 */
1133
1134static irqreturn_t
1135mmc_spi_detect_irq(int irq, void *mmc)
1136{
1137 struct mmc_spi_host *host = mmc_priv(mmc);
1138 u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1139
1140 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1141 return IRQ_HANDLED;
1142}
1143
1144static int mmc_spi_probe(struct spi_device *spi)
1145{
1146 void *ones;
1147 struct mmc_host *mmc;
1148 struct mmc_spi_host *host;
1149 int status;
1150 bool has_ro = false;
1151
1152 /* We rely on full duplex transfers, mostly to reduce
1153 * per-transfer overheads (by making fewer transfers).
1154 */
1155 if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX)
1156 return -EINVAL;
1157
1158 /* MMC and SD specs only seem to care that sampling is on the
1159 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1160 * should be legit. We'll use mode 0 since the steady state is 0,
1161 * which is appropriate for hotplugging, unless the platform data
1162 * specify mode 3 (if hardware is not compatible to mode 0).
1163 */
1164 if (spi->mode != SPI_MODE_3)
1165 spi->mode = SPI_MODE_0;
1166 spi->bits_per_word = 8;
1167
1168 status = spi_setup(spi);
1169 if (status < 0) {
1170 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1171 spi->mode, spi->max_speed_hz / 1000,
1172 status);
1173 return status;
1174 }
1175
1176 /* We need a supply of ones to transmit. This is the only time
1177 * the CPU touches these, so cache coherency isn't a concern.
1178 *
1179 * NOTE if many systems use more than one MMC-over-SPI connector
1180 * it'd save some memory to share this. That's evidently rare.
1181 */
1182 status = -ENOMEM;
1183 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1184 if (!ones)
1185 goto nomem;
1186 memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1187
1188 mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1189 if (!mmc)
1190 goto nomem;
1191
1192 mmc->ops = &mmc_spi_ops;
1193 mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1194 mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1195 mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1196 mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1197
1198 mmc->caps = MMC_CAP_SPI;
1199
1200 /* SPI doesn't need the lowspeed device identification thing for
1201 * MMC or SD cards, since it never comes up in open drain mode.
1202 * That's good; some SPI masters can't handle very low speeds!
1203 *
1204 * However, low speed SDIO cards need not handle over 400 KHz;
1205 * that's the only reason not to use a few MHz for f_min (until
1206 * the upper layer reads the target frequency from the CSD).
1207 */
1208 if (spi->controller->min_speed_hz > 400000)
1209 dev_warn(&spi->dev,"Controller unable to reduce bus clock to 400 KHz\n");
1210
1211 mmc->f_min = max(spi->controller->min_speed_hz, 400000);
1212 mmc->f_max = spi->max_speed_hz;
1213
1214 host = mmc_priv(mmc);
1215 host->mmc = mmc;
1216 host->spi = spi;
1217
1218 host->ones = ones;
1219
1220 dev_set_drvdata(&spi->dev, mmc);
1221
1222 /* Platform data is used to hook up things like card sensing
1223 * and power switching gpios.
1224 */
1225 host->pdata = mmc_spi_get_pdata(spi);
1226 if (host->pdata)
1227 mmc->ocr_avail = host->pdata->ocr_mask;
1228 if (!mmc->ocr_avail) {
1229 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1230 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1231 }
1232 if (host->pdata && host->pdata->setpower) {
1233 host->powerup_msecs = host->pdata->powerup_msecs;
1234 if (!host->powerup_msecs || host->powerup_msecs > 250)
1235 host->powerup_msecs = 250;
1236 }
1237
1238 /* Preallocate buffers */
1239 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1240 if (!host->data)
1241 goto fail_nobuf1;
1242
1243 /* setup message for status/busy readback */
1244 spi_message_init(&host->readback);
1245
1246 spi_message_add_tail(&host->status, &host->readback);
1247 host->status.tx_buf = host->ones;
1248 host->status.rx_buf = &host->data->status;
1249 host->status.cs_change = 1;
1250
1251 /* register card detect irq */
1252 if (host->pdata && host->pdata->init) {
1253 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1254 if (status != 0)
1255 goto fail_glue_init;
1256 }
1257
1258 /* pass platform capabilities, if any */
1259 if (host->pdata) {
1260 mmc->caps |= host->pdata->caps;
1261 mmc->caps2 |= host->pdata->caps2;
1262 }
1263
1264 status = mmc_add_host(mmc);
1265 if (status != 0)
1266 goto fail_glue_init;
1267
1268 /*
1269 * Index 0 is card detect
1270 * Old boardfiles were specifying 1 ms as debounce
1271 */
1272 status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1273 if (status == -EPROBE_DEFER)
1274 goto fail_gpiod_request;
1275 if (!status) {
1276 /*
1277 * The platform has a CD GPIO signal that may support
1278 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1279 * if polling is needed or not.
1280 */
1281 mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1282 mmc_gpiod_request_cd_irq(mmc);
1283 }
1284 mmc_detect_change(mmc, 0);
1285
1286 /* Index 1 is write protect/read only */
1287 status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1288 if (status == -EPROBE_DEFER)
1289 goto fail_gpiod_request;
1290 if (!status)
1291 has_ro = true;
1292
1293 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1294 dev_name(&mmc->class_dev),
1295 has_ro ? "" : ", no WP",
1296 (host->pdata && host->pdata->setpower)
1297 ? "" : ", no poweroff",
1298 (mmc->caps & MMC_CAP_NEEDS_POLL)
1299 ? ", cd polling" : "");
1300 return 0;
1301
1302fail_gpiod_request:
1303 mmc_remove_host(mmc);
1304fail_glue_init:
1305 kfree(host->data);
1306fail_nobuf1:
1307 mmc_spi_put_pdata(spi);
1308 mmc_free_host(mmc);
1309nomem:
1310 kfree(ones);
1311 return status;
1312}
1313
1314
1315static void mmc_spi_remove(struct spi_device *spi)
1316{
1317 struct mmc_host *mmc = dev_get_drvdata(&spi->dev);
1318 struct mmc_spi_host *host = mmc_priv(mmc);
1319
1320 /* prevent new mmc_detect_change() calls */
1321 if (host->pdata && host->pdata->exit)
1322 host->pdata->exit(&spi->dev, mmc);
1323
1324 mmc_remove_host(mmc);
1325
1326 kfree(host->data);
1327 kfree(host->ones);
1328
1329 spi->max_speed_hz = mmc->f_max;
1330 mmc_spi_put_pdata(spi);
1331 mmc_free_host(mmc);
1332}
1333
1334static const struct spi_device_id mmc_spi_dev_ids[] = {
1335 { "mmc-spi-slot"},
1336 { },
1337};
1338MODULE_DEVICE_TABLE(spi, mmc_spi_dev_ids);
1339
1340static const struct of_device_id mmc_spi_of_match_table[] = {
1341 { .compatible = "mmc-spi-slot", },
1342 {},
1343};
1344MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1345
1346static struct spi_driver mmc_spi_driver = {
1347 .driver = {
1348 .name = "mmc_spi",
1349 .of_match_table = mmc_spi_of_match_table,
1350 },
1351 .id_table = mmc_spi_dev_ids,
1352 .probe = mmc_spi_probe,
1353 .remove = mmc_spi_remove,
1354};
1355
1356module_spi_driver(mmc_spi_driver);
1357
1358MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1359MODULE_DESCRIPTION("SPI SD/MMC host driver");
1360MODULE_LICENSE("GPL");
1361MODULE_ALIAS("spi:mmc_spi");