Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/sizes.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15#include <linux/random.h>
16#include <linux/scatterlist.h>
17#include <linux/sysfs.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/sd.h>
23
24#include "core.h"
25#include "card.h"
26#include "host.h"
27#include "bus.h"
28#include "mmc_ops.h"
29#include "sd.h"
30#include "sd_ops.h"
31
32static const unsigned int tran_exp[] = {
33 10000, 100000, 1000000, 10000000,
34 0, 0, 0, 0
35};
36
37static const unsigned char tran_mant[] = {
38 0, 10, 12, 13, 15, 20, 25, 30,
39 35, 40, 45, 50, 55, 60, 70, 80,
40};
41
42static const unsigned int taac_exp[] = {
43 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
44};
45
46static const unsigned int taac_mant[] = {
47 0, 10, 12, 13, 15, 20, 25, 30,
48 35, 40, 45, 50, 55, 60, 70, 80,
49};
50
51static const unsigned int sd_au_size[] = {
52 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
53 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
54 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
55 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
56};
57
58#define UNSTUFF_BITS(resp,start,size) \
59 ({ \
60 const int __size = size; \
61 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
62 const int __off = 3 - ((start) / 32); \
63 const int __shft = (start) & 31; \
64 u32 __res; \
65 \
66 __res = resp[__off] >> __shft; \
67 if (__size + __shft > 32) \
68 __res |= resp[__off-1] << ((32 - __shft) % 32); \
69 __res & __mask; \
70 })
71
72#define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
73#define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
74
75struct sd_busy_data {
76 struct mmc_card *card;
77 u8 *reg_buf;
78};
79
80/*
81 * Given the decoded CSD structure, decode the raw CID to our CID structure.
82 */
83void mmc_decode_cid(struct mmc_card *card)
84{
85 u32 *resp = card->raw_cid;
86
87 /*
88 * Add the raw card ID (cid) data to the entropy pool. It doesn't
89 * matter that not all of it is unique, it's just bonus entropy.
90 */
91 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
92
93 /*
94 * SD doesn't currently have a version field so we will
95 * have to assume we can parse this.
96 */
97 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
98 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
99 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
100 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
101 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
102 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
103 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
104 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
105 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
106 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
107 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
108 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
109
110 card->cid.year += 2000; /* SD cards year offset */
111}
112
113/*
114 * Given a 128-bit response, decode to our card CSD structure.
115 */
116static int mmc_decode_csd(struct mmc_card *card)
117{
118 struct mmc_csd *csd = &card->csd;
119 unsigned int e, m, csd_struct;
120 u32 *resp = card->raw_csd;
121
122 csd_struct = UNSTUFF_BITS(resp, 126, 2);
123
124 switch (csd_struct) {
125 case 0:
126 m = UNSTUFF_BITS(resp, 115, 4);
127 e = UNSTUFF_BITS(resp, 112, 3);
128 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
129 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
130
131 m = UNSTUFF_BITS(resp, 99, 4);
132 e = UNSTUFF_BITS(resp, 96, 3);
133 csd->max_dtr = tran_exp[e] * tran_mant[m];
134 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
135
136 e = UNSTUFF_BITS(resp, 47, 3);
137 m = UNSTUFF_BITS(resp, 62, 12);
138 csd->capacity = (1 + m) << (e + 2);
139
140 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
141 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
142 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
143 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
144 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
145 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
146 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
147 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
148
149 if (UNSTUFF_BITS(resp, 46, 1)) {
150 csd->erase_size = 1;
151 } else if (csd->write_blkbits >= 9) {
152 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
153 csd->erase_size <<= csd->write_blkbits - 9;
154 }
155
156 if (UNSTUFF_BITS(resp, 13, 1))
157 mmc_card_set_readonly(card);
158 break;
159 case 1:
160 /*
161 * This is a block-addressed SDHC or SDXC card. Most
162 * interesting fields are unused and have fixed
163 * values. To avoid getting tripped by buggy cards,
164 * we assume those fixed values ourselves.
165 */
166 mmc_card_set_blockaddr(card);
167
168 csd->taac_ns = 0; /* Unused */
169 csd->taac_clks = 0; /* Unused */
170
171 m = UNSTUFF_BITS(resp, 99, 4);
172 e = UNSTUFF_BITS(resp, 96, 3);
173 csd->max_dtr = tran_exp[e] * tran_mant[m];
174 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
175 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
176
177 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
178 if (csd->c_size >= 0xFFFF)
179 mmc_card_set_ext_capacity(card);
180
181 m = UNSTUFF_BITS(resp, 48, 22);
182 csd->capacity = (1 + m) << 10;
183
184 csd->read_blkbits = 9;
185 csd->read_partial = 0;
186 csd->write_misalign = 0;
187 csd->read_misalign = 0;
188 csd->r2w_factor = 4; /* Unused */
189 csd->write_blkbits = 9;
190 csd->write_partial = 0;
191 csd->erase_size = 1;
192
193 if (UNSTUFF_BITS(resp, 13, 1))
194 mmc_card_set_readonly(card);
195 break;
196 default:
197 pr_err("%s: unrecognised CSD structure version %d\n",
198 mmc_hostname(card->host), csd_struct);
199 return -EINVAL;
200 }
201
202 card->erase_size = csd->erase_size;
203
204 return 0;
205}
206
207/*
208 * Given a 64-bit response, decode to our card SCR structure.
209 */
210static int mmc_decode_scr(struct mmc_card *card)
211{
212 struct sd_scr *scr = &card->scr;
213 unsigned int scr_struct;
214 u32 resp[4];
215
216 resp[3] = card->raw_scr[1];
217 resp[2] = card->raw_scr[0];
218
219 scr_struct = UNSTUFF_BITS(resp, 60, 4);
220 if (scr_struct != 0) {
221 pr_err("%s: unrecognised SCR structure version %d\n",
222 mmc_hostname(card->host), scr_struct);
223 return -EINVAL;
224 }
225
226 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
227 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
228 if (scr->sda_vsn == SCR_SPEC_VER_2)
229 /* Check if Physical Layer Spec v3.0 is supported */
230 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
231
232 if (scr->sda_spec3) {
233 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
234 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
235 }
236
237 if (UNSTUFF_BITS(resp, 55, 1))
238 card->erased_byte = 0xFF;
239 else
240 card->erased_byte = 0x0;
241
242 if (scr->sda_spec4)
243 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
244 else if (scr->sda_spec3)
245 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
246
247 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
248 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
249 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
250 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
251 return -EINVAL;
252 }
253
254 return 0;
255}
256
257/*
258 * Fetch and process SD Status register.
259 */
260static int mmc_read_ssr(struct mmc_card *card)
261{
262 unsigned int au, es, et, eo;
263 __be32 *raw_ssr;
264 u32 resp[4] = {};
265 u8 discard_support;
266 int i;
267
268 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
269 pr_warn("%s: card lacks mandatory SD Status function\n",
270 mmc_hostname(card->host));
271 return 0;
272 }
273
274 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
275 if (!raw_ssr)
276 return -ENOMEM;
277
278 if (mmc_app_sd_status(card, raw_ssr)) {
279 pr_warn("%s: problem reading SD Status register\n",
280 mmc_hostname(card->host));
281 kfree(raw_ssr);
282 return 0;
283 }
284
285 for (i = 0; i < 16; i++)
286 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
287
288 kfree(raw_ssr);
289
290 /*
291 * UNSTUFF_BITS only works with four u32s so we have to offset the
292 * bitfield positions accordingly.
293 */
294 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
295 if (au) {
296 if (au <= 9 || card->scr.sda_spec3) {
297 card->ssr.au = sd_au_size[au];
298 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
299 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
300 if (es && et) {
301 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
302 card->ssr.erase_timeout = (et * 1000) / es;
303 card->ssr.erase_offset = eo * 1000;
304 }
305 } else {
306 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
307 mmc_hostname(card->host));
308 }
309 }
310
311 /*
312 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
313 */
314 resp[3] = card->raw_ssr[6];
315 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
316 card->erase_arg = (card->scr.sda_specx && discard_support) ?
317 SD_DISCARD_ARG : SD_ERASE_ARG;
318
319 return 0;
320}
321
322/*
323 * Fetches and decodes switch information
324 */
325static int mmc_read_switch(struct mmc_card *card)
326{
327 int err;
328 u8 *status;
329
330 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
331 return 0;
332
333 if (!(card->csd.cmdclass & CCC_SWITCH)) {
334 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
335 mmc_hostname(card->host));
336 return 0;
337 }
338
339 status = kmalloc(64, GFP_KERNEL);
340 if (!status)
341 return -ENOMEM;
342
343 /*
344 * Find out the card's support bits with a mode 0 operation.
345 * The argument does not matter, as the support bits do not
346 * change with the arguments.
347 */
348 err = mmc_sd_switch(card, 0, 0, 0, status);
349 if (err) {
350 /*
351 * If the host or the card can't do the switch,
352 * fail more gracefully.
353 */
354 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
355 goto out;
356
357 pr_warn("%s: problem reading Bus Speed modes\n",
358 mmc_hostname(card->host));
359 err = 0;
360
361 goto out;
362 }
363
364 if (status[13] & SD_MODE_HIGH_SPEED)
365 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
366
367 if (card->scr.sda_spec3) {
368 card->sw_caps.sd3_bus_mode = status[13];
369 /* Driver Strengths supported by the card */
370 card->sw_caps.sd3_drv_type = status[9];
371 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
372 }
373
374out:
375 kfree(status);
376
377 return err;
378}
379
380/*
381 * Test if the card supports high-speed mode and, if so, switch to it.
382 */
383int mmc_sd_switch_hs(struct mmc_card *card)
384{
385 int err;
386 u8 *status;
387
388 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
389 return 0;
390
391 if (!(card->csd.cmdclass & CCC_SWITCH))
392 return 0;
393
394 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
395 return 0;
396
397 if (card->sw_caps.hs_max_dtr == 0)
398 return 0;
399
400 status = kmalloc(64, GFP_KERNEL);
401 if (!status)
402 return -ENOMEM;
403
404 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
405 if (err)
406 goto out;
407
408 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
409 pr_warn("%s: Problem switching card into high-speed mode!\n",
410 mmc_hostname(card->host));
411 err = 0;
412 } else {
413 err = 1;
414 }
415
416out:
417 kfree(status);
418
419 return err;
420}
421
422static int sd_select_driver_type(struct mmc_card *card, u8 *status)
423{
424 int card_drv_type, drive_strength, drv_type;
425 int err;
426
427 card->drive_strength = 0;
428
429 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
430
431 drive_strength = mmc_select_drive_strength(card,
432 card->sw_caps.uhs_max_dtr,
433 card_drv_type, &drv_type);
434
435 if (drive_strength) {
436 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
437 if (err)
438 return err;
439 if ((status[15] & 0xF) != drive_strength) {
440 pr_warn("%s: Problem setting drive strength!\n",
441 mmc_hostname(card->host));
442 return 0;
443 }
444 card->drive_strength = drive_strength;
445 }
446
447 if (drv_type)
448 mmc_set_driver_type(card->host, drv_type);
449
450 return 0;
451}
452
453static void sd_update_bus_speed_mode(struct mmc_card *card)
454{
455 /*
456 * If the host doesn't support any of the UHS-I modes, fallback on
457 * default speed.
458 */
459 if (!mmc_host_uhs(card->host)) {
460 card->sd_bus_speed = 0;
461 return;
462 }
463
464 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
465 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
466 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
467 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
469 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
471 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
472 SD_MODE_UHS_SDR50)) {
473 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
474 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
475 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
476 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
477 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
478 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
480 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
481 SD_MODE_UHS_SDR12)) {
482 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
483 }
484}
485
486static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
487{
488 int err;
489 unsigned int timing = 0;
490
491 switch (card->sd_bus_speed) {
492 case UHS_SDR104_BUS_SPEED:
493 timing = MMC_TIMING_UHS_SDR104;
494 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
495 break;
496 case UHS_DDR50_BUS_SPEED:
497 timing = MMC_TIMING_UHS_DDR50;
498 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
499 break;
500 case UHS_SDR50_BUS_SPEED:
501 timing = MMC_TIMING_UHS_SDR50;
502 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
503 break;
504 case UHS_SDR25_BUS_SPEED:
505 timing = MMC_TIMING_UHS_SDR25;
506 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
507 break;
508 case UHS_SDR12_BUS_SPEED:
509 timing = MMC_TIMING_UHS_SDR12;
510 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
511 break;
512 default:
513 return 0;
514 }
515
516 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
517 if (err)
518 return err;
519
520 if ((status[16] & 0xF) != card->sd_bus_speed)
521 pr_warn("%s: Problem setting bus speed mode!\n",
522 mmc_hostname(card->host));
523 else {
524 mmc_set_timing(card->host, timing);
525 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
526 }
527
528 return 0;
529}
530
531/* Get host's max current setting at its current voltage */
532static u32 sd_get_host_max_current(struct mmc_host *host)
533{
534 u32 voltage, max_current;
535
536 voltage = 1 << host->ios.vdd;
537 switch (voltage) {
538 case MMC_VDD_165_195:
539 max_current = host->max_current_180;
540 break;
541 case MMC_VDD_29_30:
542 case MMC_VDD_30_31:
543 max_current = host->max_current_300;
544 break;
545 case MMC_VDD_32_33:
546 case MMC_VDD_33_34:
547 max_current = host->max_current_330;
548 break;
549 default:
550 max_current = 0;
551 }
552
553 return max_current;
554}
555
556static int sd_set_current_limit(struct mmc_card *card, u8 *status)
557{
558 int current_limit = SD_SET_CURRENT_NO_CHANGE;
559 int err;
560 u32 max_current;
561
562 /*
563 * Current limit switch is only defined for SDR50, SDR104, and DDR50
564 * bus speed modes. For other bus speed modes, we do not change the
565 * current limit.
566 */
567 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
568 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
569 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
570 return 0;
571
572 /*
573 * Host has different current capabilities when operating at
574 * different voltages, so find out its max current first.
575 */
576 max_current = sd_get_host_max_current(card->host);
577
578 /*
579 * We only check host's capability here, if we set a limit that is
580 * higher than the card's maximum current, the card will be using its
581 * maximum current, e.g. if the card's maximum current is 300ma, and
582 * when we set current limit to 200ma, the card will draw 200ma, and
583 * when we set current limit to 400/600/800ma, the card will draw its
584 * maximum 300ma from the host.
585 *
586 * The above is incorrect: if we try to set a current limit that is
587 * not supported by the card, the card can rightfully error out the
588 * attempt, and remain at the default current limit. This results
589 * in a 300mA card being limited to 200mA even though the host
590 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
591 * an iMX6 host. --rmk
592 */
593 if (max_current >= 800 &&
594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
595 current_limit = SD_SET_CURRENT_LIMIT_800;
596 else if (max_current >= 600 &&
597 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
598 current_limit = SD_SET_CURRENT_LIMIT_600;
599 else if (max_current >= 400 &&
600 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
601 current_limit = SD_SET_CURRENT_LIMIT_400;
602 else if (max_current >= 200 &&
603 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
604 current_limit = SD_SET_CURRENT_LIMIT_200;
605
606 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
607 err = mmc_sd_switch(card, 1, 3, current_limit, status);
608 if (err)
609 return err;
610
611 if (((status[15] >> 4) & 0x0F) != current_limit)
612 pr_warn("%s: Problem setting current limit!\n",
613 mmc_hostname(card->host));
614
615 }
616
617 return 0;
618}
619
620/*
621 * UHS-I specific initialization procedure
622 */
623static int mmc_sd_init_uhs_card(struct mmc_card *card)
624{
625 int err;
626 u8 *status;
627
628 if (!(card->csd.cmdclass & CCC_SWITCH))
629 return 0;
630
631 status = kmalloc(64, GFP_KERNEL);
632 if (!status)
633 return -ENOMEM;
634
635 /* Set 4-bit bus width */
636 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
637 if (err)
638 goto out;
639
640 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
641
642 /*
643 * Select the bus speed mode depending on host
644 * and card capability.
645 */
646 sd_update_bus_speed_mode(card);
647
648 /* Set the driver strength for the card */
649 err = sd_select_driver_type(card, status);
650 if (err)
651 goto out;
652
653 /* Set current limit for the card */
654 err = sd_set_current_limit(card, status);
655 if (err)
656 goto out;
657
658 /* Set bus speed mode of the card */
659 err = sd_set_bus_speed_mode(card, status);
660 if (err)
661 goto out;
662
663 /*
664 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
665 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
666 */
667 if (!mmc_host_is_spi(card->host) &&
668 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
669 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
670 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
671 err = mmc_execute_tuning(card);
672
673 /*
674 * As SD Specifications Part1 Physical Layer Specification
675 * Version 3.01 says, CMD19 tuning is available for unlocked
676 * cards in transfer state of 1.8V signaling mode. The small
677 * difference between v3.00 and 3.01 spec means that CMD19
678 * tuning is also available for DDR50 mode.
679 */
680 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
681 pr_warn("%s: ddr50 tuning failed\n",
682 mmc_hostname(card->host));
683 err = 0;
684 }
685 }
686
687out:
688 kfree(status);
689
690 return err;
691}
692
693MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
694 card->raw_cid[2], card->raw_cid[3]);
695MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
696 card->raw_csd[2], card->raw_csd[3]);
697MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
698MMC_DEV_ATTR(ssr,
699 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
700 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
701 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
702 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
703 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
704 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
705 card->raw_ssr[15]);
706MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
707MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
708MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
709MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
710MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
711MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
712MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
713MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
714MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
715MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
716MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
717
718
719static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721{
722 struct mmc_card *card = mmc_dev_to_card(dev);
723 struct mmc_host *host = card->host;
724
725 if (card->csd.dsr_imp && host->dsr_req)
726 return sysfs_emit(buf, "0x%x\n", host->dsr);
727 /* return default DSR value */
728 return sysfs_emit(buf, "0x%x\n", 0x404);
729}
730
731static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
732
733MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
734MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
735MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
736
737#define sdio_info_attr(num) \
738static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
739{ \
740 struct mmc_card *card = mmc_dev_to_card(dev); \
741 \
742 if (num > card->num_info) \
743 return -ENODATA; \
744 if (!card->info[num - 1][0]) \
745 return 0; \
746 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
747} \
748static DEVICE_ATTR_RO(info##num)
749
750sdio_info_attr(1);
751sdio_info_attr(2);
752sdio_info_attr(3);
753sdio_info_attr(4);
754
755static struct attribute *sd_std_attrs[] = {
756 &dev_attr_vendor.attr,
757 &dev_attr_device.attr,
758 &dev_attr_revision.attr,
759 &dev_attr_info1.attr,
760 &dev_attr_info2.attr,
761 &dev_attr_info3.attr,
762 &dev_attr_info4.attr,
763 &dev_attr_cid.attr,
764 &dev_attr_csd.attr,
765 &dev_attr_scr.attr,
766 &dev_attr_ssr.attr,
767 &dev_attr_date.attr,
768 &dev_attr_erase_size.attr,
769 &dev_attr_preferred_erase_size.attr,
770 &dev_attr_fwrev.attr,
771 &dev_attr_hwrev.attr,
772 &dev_attr_manfid.attr,
773 &dev_attr_name.attr,
774 &dev_attr_oemid.attr,
775 &dev_attr_serial.attr,
776 &dev_attr_ocr.attr,
777 &dev_attr_rca.attr,
778 &dev_attr_dsr.attr,
779 NULL,
780};
781
782static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
783 int index)
784{
785 struct device *dev = kobj_to_dev(kobj);
786 struct mmc_card *card = mmc_dev_to_card(dev);
787
788 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
789 if ((attr == &dev_attr_vendor.attr ||
790 attr == &dev_attr_device.attr ||
791 attr == &dev_attr_revision.attr ||
792 attr == &dev_attr_info1.attr ||
793 attr == &dev_attr_info2.attr ||
794 attr == &dev_attr_info3.attr ||
795 attr == &dev_attr_info4.attr
796 ) &&!mmc_card_sd_combo(card))
797 return 0;
798
799 return attr->mode;
800}
801
802static const struct attribute_group sd_std_group = {
803 .attrs = sd_std_attrs,
804 .is_visible = sd_std_is_visible,
805};
806__ATTRIBUTE_GROUPS(sd_std);
807
808struct device_type sd_type = {
809 .groups = sd_std_groups,
810};
811
812/*
813 * Fetch CID from card.
814 */
815int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
816{
817 int err;
818 u32 max_current;
819 int retries = 10;
820 u32 pocr = ocr;
821
822try_again:
823 if (!retries) {
824 ocr &= ~SD_OCR_S18R;
825 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
826 }
827
828 /*
829 * Since we're changing the OCR value, we seem to
830 * need to tell some cards to go back to the idle
831 * state. We wait 1ms to give cards time to
832 * respond.
833 */
834 mmc_go_idle(host);
835
836 /*
837 * If SD_SEND_IF_COND indicates an SD 2.0
838 * compliant card and we should set bit 30
839 * of the ocr to indicate that we can handle
840 * block-addressed SDHC cards.
841 */
842 err = mmc_send_if_cond(host, ocr);
843 if (!err)
844 ocr |= SD_OCR_CCS;
845
846 /*
847 * If the host supports one of UHS-I modes, request the card
848 * to switch to 1.8V signaling level. If the card has failed
849 * repeatedly to switch however, skip this.
850 */
851 if (retries && mmc_host_uhs(host))
852 ocr |= SD_OCR_S18R;
853
854 /*
855 * If the host can supply more than 150mA at current voltage,
856 * XPC should be set to 1.
857 */
858 max_current = sd_get_host_max_current(host);
859 if (max_current > 150)
860 ocr |= SD_OCR_XPC;
861
862 err = mmc_send_app_op_cond(host, ocr, rocr);
863 if (err)
864 return err;
865
866 /*
867 * In case the S18A bit is set in the response, let's start the signal
868 * voltage switch procedure. SPI mode doesn't support CMD11.
869 * Note that, according to the spec, the S18A bit is not valid unless
870 * the CCS bit is set as well. We deliberately deviate from the spec in
871 * regards to this, which allows UHS-I to be supported for SDSC cards.
872 */
873 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
874 rocr && (*rocr & SD_ROCR_S18A)) {
875 err = mmc_set_uhs_voltage(host, pocr);
876 if (err == -EAGAIN) {
877 retries--;
878 goto try_again;
879 } else if (err) {
880 retries = 0;
881 goto try_again;
882 }
883 }
884
885 err = mmc_send_cid(host, cid);
886 return err;
887}
888
889int mmc_sd_get_csd(struct mmc_card *card)
890{
891 int err;
892
893 /*
894 * Fetch CSD from card.
895 */
896 err = mmc_send_csd(card, card->raw_csd);
897 if (err)
898 return err;
899
900 err = mmc_decode_csd(card);
901 if (err)
902 return err;
903
904 return 0;
905}
906
907static int mmc_sd_get_ro(struct mmc_host *host)
908{
909 int ro;
910
911 /*
912 * Some systems don't feature a write-protect pin and don't need one.
913 * E.g. because they only have micro-SD card slot. For those systems
914 * assume that the SD card is always read-write.
915 */
916 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
917 return 0;
918
919 if (!host->ops->get_ro)
920 return -1;
921
922 ro = host->ops->get_ro(host);
923
924 return ro;
925}
926
927int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
928 bool reinit)
929{
930 int err;
931
932 if (!reinit) {
933 /*
934 * Fetch SCR from card.
935 */
936 err = mmc_app_send_scr(card);
937 if (err)
938 return err;
939
940 err = mmc_decode_scr(card);
941 if (err)
942 return err;
943
944 /*
945 * Fetch and process SD Status register.
946 */
947 err = mmc_read_ssr(card);
948 if (err)
949 return err;
950
951 /* Erase init depends on CSD and SSR */
952 mmc_init_erase(card);
953 }
954
955 /*
956 * Fetch switch information from card. Note, sd3_bus_mode can change if
957 * voltage switch outcome changes, so do this always.
958 */
959 err = mmc_read_switch(card);
960 if (err)
961 return err;
962
963 /*
964 * For SPI, enable CRC as appropriate.
965 * This CRC enable is located AFTER the reading of the
966 * card registers because some SDHC cards are not able
967 * to provide valid CRCs for non-512-byte blocks.
968 */
969 if (mmc_host_is_spi(host)) {
970 err = mmc_spi_set_crc(host, use_spi_crc);
971 if (err)
972 return err;
973 }
974
975 /*
976 * Check if read-only switch is active.
977 */
978 if (!reinit) {
979 int ro = mmc_sd_get_ro(host);
980
981 if (ro < 0) {
982 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
983 mmc_hostname(host));
984 } else if (ro > 0) {
985 mmc_card_set_readonly(card);
986 }
987 }
988
989 return 0;
990}
991
992unsigned mmc_sd_get_max_clock(struct mmc_card *card)
993{
994 unsigned max_dtr = (unsigned int)-1;
995
996 if (mmc_card_hs(card)) {
997 if (max_dtr > card->sw_caps.hs_max_dtr)
998 max_dtr = card->sw_caps.hs_max_dtr;
999 } else if (max_dtr > card->csd.max_dtr) {
1000 max_dtr = card->csd.max_dtr;
1001 }
1002
1003 return max_dtr;
1004}
1005
1006static bool mmc_sd_card_using_v18(struct mmc_card *card)
1007{
1008 /*
1009 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1010 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1011 * they can be used to determine if the card has already switched to
1012 * 1.8V signaling.
1013 */
1014 return card->sw_caps.sd3_bus_mode &
1015 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1016}
1017
1018static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1019 u8 reg_data)
1020{
1021 struct mmc_host *host = card->host;
1022 struct mmc_request mrq = {};
1023 struct mmc_command cmd = {};
1024 struct mmc_data data = {};
1025 struct scatterlist sg;
1026 u8 *reg_buf;
1027
1028 reg_buf = kzalloc(512, GFP_KERNEL);
1029 if (!reg_buf)
1030 return -ENOMEM;
1031
1032 mrq.cmd = &cmd;
1033 mrq.data = &data;
1034
1035 /*
1036 * Arguments of CMD49:
1037 * [31:31] MIO (0 = memory).
1038 * [30:27] FNO (function number).
1039 * [26:26] MW - mask write mode (0 = disable).
1040 * [25:18] page number.
1041 * [17:9] offset address.
1042 * [8:0] length (0 = 1 byte).
1043 */
1044 cmd.arg = fno << 27 | page << 18 | offset << 9;
1045
1046 /* The first byte in the buffer is the data to be written. */
1047 reg_buf[0] = reg_data;
1048
1049 data.flags = MMC_DATA_WRITE;
1050 data.blksz = 512;
1051 data.blocks = 1;
1052 data.sg = &sg;
1053 data.sg_len = 1;
1054 sg_init_one(&sg, reg_buf, 512);
1055
1056 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1057 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1058
1059 mmc_set_data_timeout(&data, card);
1060 mmc_wait_for_req(host, &mrq);
1061
1062 kfree(reg_buf);
1063
1064 /*
1065 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1066 * after the CMD49. Although, let's leave this to be managed by the
1067 * caller.
1068 */
1069
1070 if (cmd.error)
1071 return cmd.error;
1072 if (data.error)
1073 return data.error;
1074
1075 return 0;
1076}
1077
1078static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1079 u16 offset, u16 len, u8 *reg_buf)
1080{
1081 u32 cmd_args;
1082
1083 /*
1084 * Command arguments of CMD48:
1085 * [31:31] MIO (0 = memory).
1086 * [30:27] FNO (function number).
1087 * [26:26] reserved (0).
1088 * [25:18] page number.
1089 * [17:9] offset address.
1090 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1091 */
1092 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1093
1094 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1095 cmd_args, reg_buf, 512);
1096}
1097
1098static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1099 u16 offset)
1100{
1101 int err;
1102 u8 *reg_buf;
1103
1104 reg_buf = kzalloc(512, GFP_KERNEL);
1105 if (!reg_buf)
1106 return -ENOMEM;
1107
1108 /* Read the extension register for power management function. */
1109 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1110 if (err) {
1111 pr_warn("%s: error %d reading PM func of ext reg\n",
1112 mmc_hostname(card->host), err);
1113 goto out;
1114 }
1115
1116 /* PM revision consists of 4 bits. */
1117 card->ext_power.rev = reg_buf[0] & 0xf;
1118
1119 /* Power Off Notification support at bit 4. */
1120 if (reg_buf[1] & BIT(4))
1121 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1122
1123 /* Power Sustenance support at bit 5. */
1124 if (reg_buf[1] & BIT(5))
1125 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1126
1127 /* Power Down Mode support at bit 6. */
1128 if (reg_buf[1] & BIT(6))
1129 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1130
1131 card->ext_power.fno = fno;
1132 card->ext_power.page = page;
1133 card->ext_power.offset = offset;
1134
1135out:
1136 kfree(reg_buf);
1137 return err;
1138}
1139
1140static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1141 u16 offset)
1142{
1143 int err;
1144 u8 *reg_buf;
1145
1146 reg_buf = kzalloc(512, GFP_KERNEL);
1147 if (!reg_buf)
1148 return -ENOMEM;
1149
1150 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1151 if (err) {
1152 pr_warn("%s: error %d reading PERF func of ext reg\n",
1153 mmc_hostname(card->host), err);
1154 goto out;
1155 }
1156
1157 /* PERF revision. */
1158 card->ext_perf.rev = reg_buf[0];
1159
1160 /* FX_EVENT support at bit 0. */
1161 if (reg_buf[1] & BIT(0))
1162 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1163
1164 /* Card initiated self-maintenance support at bit 0. */
1165 if (reg_buf[2] & BIT(0))
1166 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1167
1168 /* Host initiated self-maintenance support at bit 1. */
1169 if (reg_buf[2] & BIT(1))
1170 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1171
1172 /* Cache support at bit 0. */
1173 if (reg_buf[4] & BIT(0))
1174 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1175
1176 /* Command queue support indicated via queue depth bits (0 to 4). */
1177 if (reg_buf[6] & 0x1f)
1178 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1179
1180 card->ext_perf.fno = fno;
1181 card->ext_perf.page = page;
1182 card->ext_perf.offset = offset;
1183
1184out:
1185 kfree(reg_buf);
1186 return err;
1187}
1188
1189static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1190 u16 *next_ext_addr)
1191{
1192 u8 num_regs, fno, page;
1193 u16 sfc, offset, ext = *next_ext_addr;
1194 u32 reg_addr;
1195
1196 /*
1197 * Parse only one register set per extension, as that is sufficient to
1198 * support the standard functions. This means another 48 bytes in the
1199 * buffer must be available.
1200 */
1201 if (ext + 48 > 512)
1202 return -EFAULT;
1203
1204 /* Standard Function Code */
1205 memcpy(&sfc, &gen_info_buf[ext], 2);
1206
1207 /* Address to the next extension. */
1208 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1209
1210 /* Number of registers for this extension. */
1211 num_regs = gen_info_buf[ext + 42];
1212
1213 /* We support only one register per extension. */
1214 if (num_regs != 1)
1215 return 0;
1216
1217 /* Extension register address. */
1218 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1219
1220 /* 9 bits (0 to 8) contains the offset address. */
1221 offset = reg_addr & 0x1ff;
1222
1223 /* 8 bits (9 to 16) contains the page number. */
1224 page = reg_addr >> 9 & 0xff ;
1225
1226 /* 4 bits (18 to 21) contains the function number. */
1227 fno = reg_addr >> 18 & 0xf;
1228
1229 /* Standard Function Code for power management. */
1230 if (sfc == 0x1)
1231 return sd_parse_ext_reg_power(card, fno, page, offset);
1232
1233 /* Standard Function Code for performance enhancement. */
1234 if (sfc == 0x2)
1235 return sd_parse_ext_reg_perf(card, fno, page, offset);
1236
1237 return 0;
1238}
1239
1240static int sd_read_ext_regs(struct mmc_card *card)
1241{
1242 int err, i;
1243 u8 num_ext, *gen_info_buf;
1244 u16 rev, len, next_ext_addr;
1245
1246 if (mmc_host_is_spi(card->host))
1247 return 0;
1248
1249 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1250 return 0;
1251
1252 gen_info_buf = kzalloc(512, GFP_KERNEL);
1253 if (!gen_info_buf)
1254 return -ENOMEM;
1255
1256 /*
1257 * Read 512 bytes of general info, which is found at function number 0,
1258 * at page 0 and with no offset.
1259 */
1260 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1261 if (err) {
1262 pr_err("%s: error %d reading general info of SD ext reg\n",
1263 mmc_hostname(card->host), err);
1264 goto out;
1265 }
1266
1267 /* General info structure revision. */
1268 memcpy(&rev, &gen_info_buf[0], 2);
1269
1270 /* Length of general info in bytes. */
1271 memcpy(&len, &gen_info_buf[2], 2);
1272
1273 /* Number of extensions to be find. */
1274 num_ext = gen_info_buf[4];
1275
1276 /*
1277 * We only support revision 0 and limit it to 512 bytes for simplicity.
1278 * No matter what, let's return zero to allow us to continue using the
1279 * card, even if we can't support the features from the SD function
1280 * extensions registers.
1281 */
1282 if (rev != 0 || len > 512) {
1283 pr_warn("%s: non-supported SD ext reg layout\n",
1284 mmc_hostname(card->host));
1285 goto out;
1286 }
1287
1288 /*
1289 * Parse the extension registers. The first extension should start
1290 * immediately after the general info header (16 bytes).
1291 */
1292 next_ext_addr = 16;
1293 for (i = 0; i < num_ext; i++) {
1294 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1295 if (err) {
1296 pr_err("%s: error %d parsing SD ext reg\n",
1297 mmc_hostname(card->host), err);
1298 goto out;
1299 }
1300 }
1301
1302out:
1303 kfree(gen_info_buf);
1304 return err;
1305}
1306
1307static bool sd_cache_enabled(struct mmc_host *host)
1308{
1309 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1310}
1311
1312static int sd_flush_cache(struct mmc_host *host)
1313{
1314 struct mmc_card *card = host->card;
1315 u8 *reg_buf, fno, page;
1316 u16 offset;
1317 int err;
1318
1319 if (!sd_cache_enabled(host))
1320 return 0;
1321
1322 reg_buf = kzalloc(512, GFP_KERNEL);
1323 if (!reg_buf)
1324 return -ENOMEM;
1325
1326 /*
1327 * Set Flush Cache at bit 0 in the performance enhancement register at
1328 * 261 bytes offset.
1329 */
1330 fno = card->ext_perf.fno;
1331 page = card->ext_perf.page;
1332 offset = card->ext_perf.offset + 261;
1333
1334 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1335 if (err) {
1336 pr_warn("%s: error %d writing Cache Flush bit\n",
1337 mmc_hostname(host), err);
1338 goto out;
1339 }
1340
1341 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1342 MMC_BUSY_EXTR_SINGLE);
1343 if (err)
1344 goto out;
1345
1346 /*
1347 * Read the Flush Cache bit. The card shall reset it, to confirm that
1348 * it's has completed the flushing of the cache.
1349 */
1350 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1351 if (err) {
1352 pr_warn("%s: error %d reading Cache Flush bit\n",
1353 mmc_hostname(host), err);
1354 goto out;
1355 }
1356
1357 if (reg_buf[0] & BIT(0))
1358 err = -ETIMEDOUT;
1359out:
1360 kfree(reg_buf);
1361 return err;
1362}
1363
1364static int sd_enable_cache(struct mmc_card *card)
1365{
1366 u8 *reg_buf;
1367 int err;
1368
1369 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1370
1371 reg_buf = kzalloc(512, GFP_KERNEL);
1372 if (!reg_buf)
1373 return -ENOMEM;
1374
1375 /*
1376 * Set Cache Enable at bit 0 in the performance enhancement register at
1377 * 260 bytes offset.
1378 */
1379 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1380 card->ext_perf.offset + 260, BIT(0));
1381 if (err) {
1382 pr_warn("%s: error %d writing Cache Enable bit\n",
1383 mmc_hostname(card->host), err);
1384 goto out;
1385 }
1386
1387 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1388 MMC_BUSY_EXTR_SINGLE);
1389 if (!err)
1390 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1391
1392out:
1393 kfree(reg_buf);
1394 return err;
1395}
1396
1397/*
1398 * Handle the detection and initialisation of a card.
1399 *
1400 * In the case of a resume, "oldcard" will contain the card
1401 * we're trying to reinitialise.
1402 */
1403static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1404 struct mmc_card *oldcard)
1405{
1406 struct mmc_card *card;
1407 int err;
1408 u32 cid[4];
1409 u32 rocr = 0;
1410 bool v18_fixup_failed = false;
1411
1412 WARN_ON(!host->claimed);
1413retry:
1414 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1415 if (err)
1416 return err;
1417
1418 if (oldcard) {
1419 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1420 pr_debug("%s: Perhaps the card was replaced\n",
1421 mmc_hostname(host));
1422 return -ENOENT;
1423 }
1424
1425 card = oldcard;
1426 } else {
1427 /*
1428 * Allocate card structure.
1429 */
1430 card = mmc_alloc_card(host, &sd_type);
1431 if (IS_ERR(card))
1432 return PTR_ERR(card);
1433
1434 card->ocr = ocr;
1435 card->type = MMC_TYPE_SD;
1436 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1437 }
1438
1439 /*
1440 * Call the optional HC's init_card function to handle quirks.
1441 */
1442 if (host->ops->init_card)
1443 host->ops->init_card(host, card);
1444
1445 /*
1446 * For native busses: get card RCA and quit open drain mode.
1447 */
1448 if (!mmc_host_is_spi(host)) {
1449 err = mmc_send_relative_addr(host, &card->rca);
1450 if (err)
1451 goto free_card;
1452 }
1453
1454 if (!oldcard) {
1455 err = mmc_sd_get_csd(card);
1456 if (err)
1457 goto free_card;
1458
1459 mmc_decode_cid(card);
1460 }
1461
1462 /*
1463 * handling only for cards supporting DSR and hosts requesting
1464 * DSR configuration
1465 */
1466 if (card->csd.dsr_imp && host->dsr_req)
1467 mmc_set_dsr(host);
1468
1469 /*
1470 * Select card, as all following commands rely on that.
1471 */
1472 if (!mmc_host_is_spi(host)) {
1473 err = mmc_select_card(card);
1474 if (err)
1475 goto free_card;
1476 }
1477
1478 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1479 if (err)
1480 goto free_card;
1481
1482 /*
1483 * If the card has not been power cycled, it may still be using 1.8V
1484 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1485 * transfer mode.
1486 */
1487 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1488 mmc_sd_card_using_v18(card) &&
1489 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1490 if (mmc_host_set_uhs_voltage(host) ||
1491 mmc_sd_init_uhs_card(card)) {
1492 v18_fixup_failed = true;
1493 mmc_power_cycle(host, ocr);
1494 if (!oldcard)
1495 mmc_remove_card(card);
1496 goto retry;
1497 }
1498 goto cont;
1499 }
1500
1501 /* Initialization sequence for UHS-I cards */
1502 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1503 err = mmc_sd_init_uhs_card(card);
1504 if (err)
1505 goto free_card;
1506 } else {
1507 /*
1508 * Attempt to change to high-speed (if supported)
1509 */
1510 err = mmc_sd_switch_hs(card);
1511 if (err > 0)
1512 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1513 else if (err)
1514 goto free_card;
1515
1516 /*
1517 * Set bus speed.
1518 */
1519 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1520
1521 /*
1522 * Switch to wider bus (if supported).
1523 */
1524 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1525 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1526 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1527 if (err)
1528 goto free_card;
1529
1530 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1531 }
1532 }
1533cont:
1534 if (!oldcard) {
1535 /* Read/parse the extension registers. */
1536 err = sd_read_ext_regs(card);
1537 if (err)
1538 goto free_card;
1539 }
1540
1541 /* Enable internal SD cache if supported. */
1542 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1543 err = sd_enable_cache(card);
1544 if (err)
1545 goto free_card;
1546 }
1547
1548 if (host->cqe_ops && !host->cqe_enabled) {
1549 err = host->cqe_ops->cqe_enable(host, card);
1550 if (!err) {
1551 host->cqe_enabled = true;
1552 host->hsq_enabled = true;
1553 pr_info("%s: Host Software Queue enabled\n",
1554 mmc_hostname(host));
1555 }
1556 }
1557
1558 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1559 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1560 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1561 mmc_hostname(host));
1562 err = -EINVAL;
1563 goto free_card;
1564 }
1565
1566 host->card = card;
1567 return 0;
1568
1569free_card:
1570 if (!oldcard)
1571 mmc_remove_card(card);
1572
1573 return err;
1574}
1575
1576/*
1577 * Host is being removed. Free up the current card.
1578 */
1579static void mmc_sd_remove(struct mmc_host *host)
1580{
1581 mmc_remove_card(host->card);
1582 host->card = NULL;
1583}
1584
1585/*
1586 * Card detection - card is alive.
1587 */
1588static int mmc_sd_alive(struct mmc_host *host)
1589{
1590 return mmc_send_status(host->card, NULL);
1591}
1592
1593/*
1594 * Card detection callback from host.
1595 */
1596static void mmc_sd_detect(struct mmc_host *host)
1597{
1598 int err;
1599
1600 mmc_get_card(host->card, NULL);
1601
1602 /*
1603 * Just check if our card has been removed.
1604 */
1605 err = _mmc_detect_card_removed(host);
1606
1607 mmc_put_card(host->card, NULL);
1608
1609 if (err) {
1610 mmc_sd_remove(host);
1611
1612 mmc_claim_host(host);
1613 mmc_detach_bus(host);
1614 mmc_power_off(host);
1615 mmc_release_host(host);
1616 }
1617}
1618
1619static int sd_can_poweroff_notify(struct mmc_card *card)
1620{
1621 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1622}
1623
1624static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1625{
1626 struct sd_busy_data *data = cb_data;
1627 struct mmc_card *card = data->card;
1628 int err;
1629
1630 /*
1631 * Read the status register for the power management function. It's at
1632 * one byte offset and is one byte long. The Power Off Notification
1633 * Ready is bit 0.
1634 */
1635 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1636 card->ext_power.offset + 1, 1, data->reg_buf);
1637 if (err) {
1638 pr_warn("%s: error %d reading status reg of PM func\n",
1639 mmc_hostname(card->host), err);
1640 return err;
1641 }
1642
1643 *busy = !(data->reg_buf[0] & BIT(0));
1644 return 0;
1645}
1646
1647static int sd_poweroff_notify(struct mmc_card *card)
1648{
1649 struct sd_busy_data cb_data;
1650 u8 *reg_buf;
1651 int err;
1652
1653 reg_buf = kzalloc(512, GFP_KERNEL);
1654 if (!reg_buf)
1655 return -ENOMEM;
1656
1657 /*
1658 * Set the Power Off Notification bit in the power management settings
1659 * register at 2 bytes offset.
1660 */
1661 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1662 card->ext_power.offset + 2, BIT(0));
1663 if (err) {
1664 pr_warn("%s: error %d writing Power Off Notify bit\n",
1665 mmc_hostname(card->host), err);
1666 goto out;
1667 }
1668
1669 /* Find out when the command is completed. */
1670 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1671 MMC_BUSY_EXTR_SINGLE);
1672 if (err)
1673 goto out;
1674
1675 cb_data.card = card;
1676 cb_data.reg_buf = reg_buf;
1677 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1678 &sd_busy_poweroff_notify_cb, &cb_data);
1679
1680out:
1681 kfree(reg_buf);
1682 return err;
1683}
1684
1685static int _mmc_sd_suspend(struct mmc_host *host)
1686{
1687 struct mmc_card *card = host->card;
1688 int err = 0;
1689
1690 mmc_claim_host(host);
1691
1692 if (mmc_card_suspended(card))
1693 goto out;
1694
1695 if (sd_can_poweroff_notify(card))
1696 err = sd_poweroff_notify(card);
1697 else if (!mmc_host_is_spi(host))
1698 err = mmc_deselect_cards(host);
1699
1700 if (!err) {
1701 mmc_power_off(host);
1702 mmc_card_set_suspended(card);
1703 }
1704
1705out:
1706 mmc_release_host(host);
1707 return err;
1708}
1709
1710/*
1711 * Callback for suspend
1712 */
1713static int mmc_sd_suspend(struct mmc_host *host)
1714{
1715 int err;
1716
1717 err = _mmc_sd_suspend(host);
1718 if (!err) {
1719 pm_runtime_disable(&host->card->dev);
1720 pm_runtime_set_suspended(&host->card->dev);
1721 }
1722
1723 return err;
1724}
1725
1726/*
1727 * This function tries to determine if the same card is still present
1728 * and, if so, restore all state to it.
1729 */
1730static int _mmc_sd_resume(struct mmc_host *host)
1731{
1732 int err = 0;
1733
1734 mmc_claim_host(host);
1735
1736 if (!mmc_card_suspended(host->card))
1737 goto out;
1738
1739 mmc_power_up(host, host->card->ocr);
1740 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1741 mmc_card_clr_suspended(host->card);
1742
1743out:
1744 mmc_release_host(host);
1745 return err;
1746}
1747
1748/*
1749 * Callback for resume
1750 */
1751static int mmc_sd_resume(struct mmc_host *host)
1752{
1753 pm_runtime_enable(&host->card->dev);
1754 return 0;
1755}
1756
1757/*
1758 * Callback for runtime_suspend.
1759 */
1760static int mmc_sd_runtime_suspend(struct mmc_host *host)
1761{
1762 int err;
1763
1764 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1765 return 0;
1766
1767 err = _mmc_sd_suspend(host);
1768 if (err)
1769 pr_err("%s: error %d doing aggressive suspend\n",
1770 mmc_hostname(host), err);
1771
1772 return err;
1773}
1774
1775/*
1776 * Callback for runtime_resume.
1777 */
1778static int mmc_sd_runtime_resume(struct mmc_host *host)
1779{
1780 int err;
1781
1782 err = _mmc_sd_resume(host);
1783 if (err && err != -ENOMEDIUM)
1784 pr_err("%s: error %d doing runtime resume\n",
1785 mmc_hostname(host), err);
1786
1787 return 0;
1788}
1789
1790static int mmc_sd_hw_reset(struct mmc_host *host)
1791{
1792 mmc_power_cycle(host, host->card->ocr);
1793 return mmc_sd_init_card(host, host->card->ocr, host->card);
1794}
1795
1796static const struct mmc_bus_ops mmc_sd_ops = {
1797 .remove = mmc_sd_remove,
1798 .detect = mmc_sd_detect,
1799 .runtime_suspend = mmc_sd_runtime_suspend,
1800 .runtime_resume = mmc_sd_runtime_resume,
1801 .suspend = mmc_sd_suspend,
1802 .resume = mmc_sd_resume,
1803 .alive = mmc_sd_alive,
1804 .shutdown = mmc_sd_suspend,
1805 .hw_reset = mmc_sd_hw_reset,
1806 .cache_enabled = sd_cache_enabled,
1807 .flush_cache = sd_flush_cache,
1808};
1809
1810/*
1811 * Starting point for SD card init.
1812 */
1813int mmc_attach_sd(struct mmc_host *host)
1814{
1815 int err;
1816 u32 ocr, rocr;
1817
1818 WARN_ON(!host->claimed);
1819
1820 err = mmc_send_app_op_cond(host, 0, &ocr);
1821 if (err)
1822 return err;
1823
1824 mmc_attach_bus(host, &mmc_sd_ops);
1825 if (host->ocr_avail_sd)
1826 host->ocr_avail = host->ocr_avail_sd;
1827
1828 /*
1829 * We need to get OCR a different way for SPI.
1830 */
1831 if (mmc_host_is_spi(host)) {
1832 mmc_go_idle(host);
1833
1834 err = mmc_spi_read_ocr(host, 0, &ocr);
1835 if (err)
1836 goto err;
1837 }
1838
1839 /*
1840 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1841 * these bits as being in-valid and especially also bit7.
1842 */
1843 ocr &= ~0x7FFF;
1844
1845 rocr = mmc_select_voltage(host, ocr);
1846
1847 /*
1848 * Can we support the voltage(s) of the card(s)?
1849 */
1850 if (!rocr) {
1851 err = -EINVAL;
1852 goto err;
1853 }
1854
1855 /*
1856 * Detect and init the card.
1857 */
1858 err = mmc_sd_init_card(host, rocr, NULL);
1859 if (err)
1860 goto err;
1861
1862 mmc_release_host(host);
1863 err = mmc_add_card(host->card);
1864 if (err)
1865 goto remove_card;
1866
1867 mmc_claim_host(host);
1868 return 0;
1869
1870remove_card:
1871 mmc_remove_card(host->card);
1872 host->card = NULL;
1873 mmc_claim_host(host);
1874err:
1875 mmc_detach_bus(host);
1876
1877 pr_err("%s: error %d whilst initialising SD card\n",
1878 mmc_hostname(host), err);
1879
1880 return err;
1881}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/sizes.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15#include <linux/random.h>
16#include <linux/scatterlist.h>
17#include <linux/sysfs.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/sd.h>
23
24#include "core.h"
25#include "card.h"
26#include "host.h"
27#include "bus.h"
28#include "mmc_ops.h"
29#include "quirks.h"
30#include "sd.h"
31#include "sd_ops.h"
32
33static const unsigned int tran_exp[] = {
34 10000, 100000, 1000000, 10000000,
35 0, 0, 0, 0
36};
37
38static const unsigned char tran_mant[] = {
39 0, 10, 12, 13, 15, 20, 25, 30,
40 35, 40, 45, 50, 55, 60, 70, 80,
41};
42
43static const unsigned int taac_exp[] = {
44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
45};
46
47static const unsigned int taac_mant[] = {
48 0, 10, 12, 13, 15, 20, 25, 30,
49 35, 40, 45, 50, 55, 60, 70, 80,
50};
51
52static const unsigned int sd_au_size[] = {
53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
57};
58
59#define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
60#define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
61
62struct sd_busy_data {
63 struct mmc_card *card;
64 u8 *reg_buf;
65};
66
67/*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
70void mmc_decode_cid(struct mmc_card *card)
71{
72 u32 *resp = card->raw_cid;
73
74 /*
75 * Add the raw card ID (cid) data to the entropy pool. It doesn't
76 * matter that not all of it is unique, it's just bonus entropy.
77 */
78 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
79
80 /*
81 * SD doesn't currently have a version field so we will
82 * have to assume we can parse this.
83 */
84 card->cid.manfid = unstuff_bits(resp, 120, 8);
85 card->cid.oemid = unstuff_bits(resp, 104, 16);
86 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
87 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
88 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
89 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
90 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
91 card->cid.hwrev = unstuff_bits(resp, 60, 4);
92 card->cid.fwrev = unstuff_bits(resp, 56, 4);
93 card->cid.serial = unstuff_bits(resp, 24, 32);
94 card->cid.year = unstuff_bits(resp, 12, 8);
95 card->cid.month = unstuff_bits(resp, 8, 4);
96
97 card->cid.year += 2000; /* SD cards year offset */
98}
99
100/*
101 * Given a 128-bit response, decode to our card CSD structure.
102 */
103static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
104{
105 struct mmc_csd *csd = &card->csd;
106 unsigned int e, m, csd_struct;
107 u32 *resp = card->raw_csd;
108
109 csd_struct = unstuff_bits(resp, 126, 2);
110
111 switch (csd_struct) {
112 case 0:
113 m = unstuff_bits(resp, 115, 4);
114 e = unstuff_bits(resp, 112, 3);
115 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
116 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
117
118 m = unstuff_bits(resp, 99, 4);
119 e = unstuff_bits(resp, 96, 3);
120 csd->max_dtr = tran_exp[e] * tran_mant[m];
121 csd->cmdclass = unstuff_bits(resp, 84, 12);
122
123 e = unstuff_bits(resp, 47, 3);
124 m = unstuff_bits(resp, 62, 12);
125 csd->capacity = (1 + m) << (e + 2);
126
127 csd->read_blkbits = unstuff_bits(resp, 80, 4);
128 csd->read_partial = unstuff_bits(resp, 79, 1);
129 csd->write_misalign = unstuff_bits(resp, 78, 1);
130 csd->read_misalign = unstuff_bits(resp, 77, 1);
131 csd->dsr_imp = unstuff_bits(resp, 76, 1);
132 csd->r2w_factor = unstuff_bits(resp, 26, 3);
133 csd->write_blkbits = unstuff_bits(resp, 22, 4);
134 csd->write_partial = unstuff_bits(resp, 21, 1);
135
136 if (unstuff_bits(resp, 46, 1)) {
137 csd->erase_size = 1;
138 } else if (csd->write_blkbits >= 9) {
139 csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
140 csd->erase_size <<= csd->write_blkbits - 9;
141 }
142
143 if (unstuff_bits(resp, 13, 1))
144 mmc_card_set_readonly(card);
145 break;
146 case 1:
147 case 2:
148 /*
149 * This is a block-addressed SDHC, SDXC or SDUC card.
150 * Most interesting fields are unused and have fixed
151 * values. To avoid getting tripped by buggy cards,
152 * we assume those fixed values ourselves.
153 */
154 mmc_card_set_blockaddr(card);
155
156 csd->taac_ns = 0; /* Unused */
157 csd->taac_clks = 0; /* Unused */
158
159 m = unstuff_bits(resp, 99, 4);
160 e = unstuff_bits(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = unstuff_bits(resp, 84, 12);
163
164 if (csd_struct == 1)
165 m = unstuff_bits(resp, 48, 22);
166 else
167 m = unstuff_bits(resp, 48, 28);
168 csd->c_size = m;
169
170 if (csd->c_size >= 0x400000 && is_sduc)
171 mmc_card_set_ult_capacity(card);
172 else if (csd->c_size >= 0xFFFF)
173 mmc_card_set_ext_capacity(card);
174
175 csd->capacity = (1 + (typeof(sector_t))m) << 10;
176
177 csd->read_blkbits = 9;
178 csd->read_partial = 0;
179 csd->write_misalign = 0;
180 csd->read_misalign = 0;
181 csd->r2w_factor = 4; /* Unused */
182 csd->write_blkbits = 9;
183 csd->write_partial = 0;
184 csd->erase_size = 1;
185
186 if (unstuff_bits(resp, 13, 1))
187 mmc_card_set_readonly(card);
188 break;
189 default:
190 pr_err("%s: unrecognised CSD structure version %d\n",
191 mmc_hostname(card->host), csd_struct);
192 return -EINVAL;
193 }
194
195 card->erase_size = csd->erase_size;
196
197 return 0;
198}
199
200/*
201 * Given a 64-bit response, decode to our card SCR structure.
202 */
203int mmc_decode_scr(struct mmc_card *card)
204{
205 struct sd_scr *scr = &card->scr;
206 unsigned int scr_struct;
207 u32 resp[4];
208
209 resp[3] = card->raw_scr[1];
210 resp[2] = card->raw_scr[0];
211
212 scr_struct = unstuff_bits(resp, 60, 4);
213 if (scr_struct != 0) {
214 pr_err("%s: unrecognised SCR structure version %d\n",
215 mmc_hostname(card->host), scr_struct);
216 return -EINVAL;
217 }
218
219 scr->sda_vsn = unstuff_bits(resp, 56, 4);
220 scr->bus_widths = unstuff_bits(resp, 48, 4);
221 if (scr->sda_vsn == SCR_SPEC_VER_2)
222 /* Check if Physical Layer Spec v3.0 is supported */
223 scr->sda_spec3 = unstuff_bits(resp, 47, 1);
224
225 if (scr->sda_spec3) {
226 scr->sda_spec4 = unstuff_bits(resp, 42, 1);
227 scr->sda_specx = unstuff_bits(resp, 38, 4);
228 }
229
230 if (unstuff_bits(resp, 55, 1))
231 card->erased_byte = 0xFF;
232 else
233 card->erased_byte = 0x0;
234
235 if (scr->sda_spec4)
236 scr->cmds = unstuff_bits(resp, 32, 4);
237 else if (scr->sda_spec3)
238 scr->cmds = unstuff_bits(resp, 32, 2);
239
240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
244 return -EINVAL;
245 }
246
247 return 0;
248}
249
250/*
251 * Fetch and process SD Status register.
252 */
253static int mmc_read_ssr(struct mmc_card *card)
254{
255 unsigned int au, es, et, eo;
256 __be32 *raw_ssr;
257 u32 resp[4] = {};
258 u8 discard_support;
259 int i;
260
261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
262 pr_warn("%s: card lacks mandatory SD Status function\n",
263 mmc_hostname(card->host));
264 return 0;
265 }
266
267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
268 if (!raw_ssr)
269 return -ENOMEM;
270
271 if (mmc_app_sd_status(card, raw_ssr)) {
272 pr_warn("%s: problem reading SD Status register\n",
273 mmc_hostname(card->host));
274 kfree(raw_ssr);
275 return 0;
276 }
277
278 for (i = 0; i < 16; i++)
279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
280
281 kfree(raw_ssr);
282
283 /*
284 * unstuff_bits only works with four u32s so we have to offset the
285 * bitfield positions accordingly.
286 */
287 au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
288 if (au) {
289 if (au <= 9 || card->scr.sda_spec3) {
290 card->ssr.au = sd_au_size[au];
291 es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
292 et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
293 if (es && et) {
294 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
295 card->ssr.erase_timeout = (et * 1000) / es;
296 card->ssr.erase_offset = eo * 1000;
297 }
298 } else {
299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
300 mmc_hostname(card->host));
301 }
302 }
303
304 /*
305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
306 */
307 resp[3] = card->raw_ssr[6];
308 discard_support = unstuff_bits(resp, 313 - 288, 1);
309 card->erase_arg = (card->scr.sda_specx && discard_support) ?
310 SD_DISCARD_ARG : SD_ERASE_ARG;
311
312 return 0;
313}
314
315/*
316 * Fetches and decodes switch information
317 */
318static int mmc_read_switch(struct mmc_card *card)
319{
320 int err;
321 u8 *status;
322
323 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
324 return 0;
325
326 if (!(card->csd.cmdclass & CCC_SWITCH)) {
327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
328 mmc_hostname(card->host));
329 return 0;
330 }
331
332 status = kmalloc(64, GFP_KERNEL);
333 if (!status)
334 return -ENOMEM;
335
336 /*
337 * Find out the card's support bits with a mode 0 operation.
338 * The argument does not matter, as the support bits do not
339 * change with the arguments.
340 */
341 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
342 if (err) {
343 /*
344 * If the host or the card can't do the switch,
345 * fail more gracefully.
346 */
347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
348 goto out;
349
350 pr_warn("%s: problem reading Bus Speed modes\n",
351 mmc_hostname(card->host));
352 err = 0;
353
354 goto out;
355 }
356
357 if (status[13] & SD_MODE_HIGH_SPEED)
358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
359
360 if (card->scr.sda_spec3) {
361 card->sw_caps.sd3_bus_mode = status[13];
362 /* Driver Strengths supported by the card */
363 card->sw_caps.sd3_drv_type = status[9];
364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
365 }
366
367out:
368 kfree(status);
369
370 return err;
371}
372
373/*
374 * Test if the card supports high-speed mode and, if so, switch to it.
375 */
376int mmc_sd_switch_hs(struct mmc_card *card)
377{
378 int err;
379 u8 *status;
380
381 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
382 return 0;
383
384 if (!(card->csd.cmdclass & CCC_SWITCH))
385 return 0;
386
387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
388 return 0;
389
390 if (card->sw_caps.hs_max_dtr == 0)
391 return 0;
392
393 status = kmalloc(64, GFP_KERNEL);
394 if (!status)
395 return -ENOMEM;
396
397 err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
398 HIGH_SPEED_BUS_SPEED, status);
399 if (err)
400 goto out;
401
402 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
403 pr_warn("%s: Problem switching card into high-speed mode!\n",
404 mmc_hostname(card->host));
405 err = 0;
406 } else {
407 err = 1;
408 }
409
410out:
411 kfree(status);
412
413 return err;
414}
415
416static int sd_select_driver_type(struct mmc_card *card, u8 *status)
417{
418 int card_drv_type, drive_strength, drv_type;
419 int err;
420
421 card->drive_strength = 0;
422
423 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
424
425 drive_strength = mmc_select_drive_strength(card,
426 card->sw_caps.uhs_max_dtr,
427 card_drv_type, &drv_type);
428
429 if (drive_strength) {
430 err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
431 drive_strength, status);
432 if (err)
433 return err;
434 if ((status[15] & 0xF) != drive_strength) {
435 pr_warn("%s: Problem setting drive strength!\n",
436 mmc_hostname(card->host));
437 return 0;
438 }
439 card->drive_strength = drive_strength;
440 }
441
442 if (drv_type)
443 mmc_set_driver_type(card->host, drv_type);
444
445 return 0;
446}
447
448static void sd_update_bus_speed_mode(struct mmc_card *card)
449{
450 /*
451 * If the host doesn't support any of the UHS-I modes, fallback on
452 * default speed.
453 */
454 if (!mmc_host_uhs(card->host)) {
455 card->sd_bus_speed = 0;
456 return;
457 }
458
459 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
461 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
462 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
463 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
464 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
467 SD_MODE_UHS_SDR50)) {
468 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
471 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
472 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
475 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
476 SD_MODE_UHS_SDR12)) {
477 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
478 }
479}
480
481static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
482{
483 int err;
484 unsigned int timing = 0;
485
486 switch (card->sd_bus_speed) {
487 case UHS_SDR104_BUS_SPEED:
488 timing = MMC_TIMING_UHS_SDR104;
489 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
490 break;
491 case UHS_DDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_DDR50;
493 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
494 break;
495 case UHS_SDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR50;
497 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
498 break;
499 case UHS_SDR25_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR25;
501 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
502 break;
503 case UHS_SDR12_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR12;
505 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
506 break;
507 default:
508 return 0;
509 }
510
511 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
512 if (err)
513 return err;
514
515 if ((status[16] & 0xF) != card->sd_bus_speed)
516 pr_warn("%s: Problem setting bus speed mode!\n",
517 mmc_hostname(card->host));
518 else {
519 mmc_set_timing(card->host, timing);
520 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
521 }
522
523 return 0;
524}
525
526/* Get host's max current setting at its current voltage */
527static u32 sd_get_host_max_current(struct mmc_host *host)
528{
529 u32 voltage, max_current;
530
531 voltage = 1 << host->ios.vdd;
532 switch (voltage) {
533 case MMC_VDD_165_195:
534 max_current = host->max_current_180;
535 break;
536 case MMC_VDD_29_30:
537 case MMC_VDD_30_31:
538 max_current = host->max_current_300;
539 break;
540 case MMC_VDD_32_33:
541 case MMC_VDD_33_34:
542 max_current = host->max_current_330;
543 break;
544 default:
545 max_current = 0;
546 }
547
548 return max_current;
549}
550
551static int sd_set_current_limit(struct mmc_card *card, u8 *status)
552{
553 int current_limit = SD_SET_CURRENT_NO_CHANGE;
554 int err;
555 u32 max_current;
556
557 /*
558 * Current limit switch is only defined for SDR50, SDR104, and DDR50
559 * bus speed modes. For other bus speed modes, we do not change the
560 * current limit.
561 */
562 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
563 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
564 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
565 return 0;
566
567 /*
568 * Host has different current capabilities when operating at
569 * different voltages, so find out its max current first.
570 */
571 max_current = sd_get_host_max_current(card->host);
572
573 /*
574 * We only check host's capability here, if we set a limit that is
575 * higher than the card's maximum current, the card will be using its
576 * maximum current, e.g. if the card's maximum current is 300ma, and
577 * when we set current limit to 200ma, the card will draw 200ma, and
578 * when we set current limit to 400/600/800ma, the card will draw its
579 * maximum 300ma from the host.
580 *
581 * The above is incorrect: if we try to set a current limit that is
582 * not supported by the card, the card can rightfully error out the
583 * attempt, and remain at the default current limit. This results
584 * in a 300mA card being limited to 200mA even though the host
585 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
586 * an iMX6 host. --rmk
587 */
588 if (max_current >= 800 &&
589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
590 current_limit = SD_SET_CURRENT_LIMIT_800;
591 else if (max_current >= 600 &&
592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
593 current_limit = SD_SET_CURRENT_LIMIT_600;
594 else if (max_current >= 400 &&
595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
596 current_limit = SD_SET_CURRENT_LIMIT_400;
597 else if (max_current >= 200 &&
598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
599 current_limit = SD_SET_CURRENT_LIMIT_200;
600
601 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
602 err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
603 current_limit, status);
604 if (err)
605 return err;
606
607 if (((status[15] >> 4) & 0x0F) != current_limit)
608 pr_warn("%s: Problem setting current limit!\n",
609 mmc_hostname(card->host));
610
611 }
612
613 return 0;
614}
615
616/*
617 * UHS-I specific initialization procedure
618 */
619static int mmc_sd_init_uhs_card(struct mmc_card *card)
620{
621 int err;
622 u8 *status;
623
624 if (!(card->csd.cmdclass & CCC_SWITCH))
625 return 0;
626
627 status = kmalloc(64, GFP_KERNEL);
628 if (!status)
629 return -ENOMEM;
630
631 /* Set 4-bit bus width */
632 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
633 if (err)
634 goto out;
635
636 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
637
638 /*
639 * Select the bus speed mode depending on host
640 * and card capability.
641 */
642 sd_update_bus_speed_mode(card);
643
644 /* Set the driver strength for the card */
645 err = sd_select_driver_type(card, status);
646 if (err)
647 goto out;
648
649 /* Set current limit for the card */
650 err = sd_set_current_limit(card, status);
651 if (err)
652 goto out;
653
654 /* Set bus speed mode of the card */
655 err = sd_set_bus_speed_mode(card, status);
656 if (err)
657 goto out;
658
659 /*
660 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
661 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
662 */
663 if (!mmc_host_is_spi(card->host) &&
664 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
665 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
666 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
667 err = mmc_execute_tuning(card);
668
669 /*
670 * As SD Specifications Part1 Physical Layer Specification
671 * Version 3.01 says, CMD19 tuning is available for unlocked
672 * cards in transfer state of 1.8V signaling mode. The small
673 * difference between v3.00 and 3.01 spec means that CMD19
674 * tuning is also available for DDR50 mode.
675 */
676 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
677 pr_warn("%s: ddr50 tuning failed\n",
678 mmc_hostname(card->host));
679 err = 0;
680 }
681 }
682
683out:
684 kfree(status);
685
686 return err;
687}
688
689MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
690 card->raw_cid[2], card->raw_cid[3]);
691MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
692 card->raw_csd[2], card->raw_csd[3]);
693MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
694MMC_DEV_ATTR(ssr,
695 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
696 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
697 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
698 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
699 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
700 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
701 card->raw_ssr[15]);
702MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
703MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
704MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
705MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
706MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
707MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
708MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
709MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
710MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
711MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
712MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
713
714
715static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
716 char *buf)
717{
718 struct mmc_card *card = mmc_dev_to_card(dev);
719 struct mmc_host *host = card->host;
720
721 if (card->csd.dsr_imp && host->dsr_req)
722 return sysfs_emit(buf, "0x%x\n", host->dsr);
723 /* return default DSR value */
724 return sysfs_emit(buf, "0x%x\n", 0x404);
725}
726
727static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
728
729MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
730MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
731MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
732
733#define sdio_info_attr(num) \
734static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
735{ \
736 struct mmc_card *card = mmc_dev_to_card(dev); \
737 \
738 if (num > card->num_info) \
739 return -ENODATA; \
740 if (!card->info[num - 1][0]) \
741 return 0; \
742 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
743} \
744static DEVICE_ATTR_RO(info##num)
745
746sdio_info_attr(1);
747sdio_info_attr(2);
748sdio_info_attr(3);
749sdio_info_attr(4);
750
751static struct attribute *sd_std_attrs[] = {
752 &dev_attr_vendor.attr,
753 &dev_attr_device.attr,
754 &dev_attr_revision.attr,
755 &dev_attr_info1.attr,
756 &dev_attr_info2.attr,
757 &dev_attr_info3.attr,
758 &dev_attr_info4.attr,
759 &dev_attr_cid.attr,
760 &dev_attr_csd.attr,
761 &dev_attr_scr.attr,
762 &dev_attr_ssr.attr,
763 &dev_attr_date.attr,
764 &dev_attr_erase_size.attr,
765 &dev_attr_preferred_erase_size.attr,
766 &dev_attr_fwrev.attr,
767 &dev_attr_hwrev.attr,
768 &dev_attr_manfid.attr,
769 &dev_attr_name.attr,
770 &dev_attr_oemid.attr,
771 &dev_attr_serial.attr,
772 &dev_attr_ocr.attr,
773 &dev_attr_rca.attr,
774 &dev_attr_dsr.attr,
775 NULL,
776};
777
778static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
779 int index)
780{
781 struct device *dev = kobj_to_dev(kobj);
782 struct mmc_card *card = mmc_dev_to_card(dev);
783
784 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
785 if ((attr == &dev_attr_vendor.attr ||
786 attr == &dev_attr_device.attr ||
787 attr == &dev_attr_revision.attr ||
788 attr == &dev_attr_info1.attr ||
789 attr == &dev_attr_info2.attr ||
790 attr == &dev_attr_info3.attr ||
791 attr == &dev_attr_info4.attr
792 ) &&!mmc_card_sd_combo(card))
793 return 0;
794
795 return attr->mode;
796}
797
798static const struct attribute_group sd_std_group = {
799 .attrs = sd_std_attrs,
800 .is_visible = sd_std_is_visible,
801};
802__ATTRIBUTE_GROUPS(sd_std);
803
804const struct device_type sd_type = {
805 .groups = sd_std_groups,
806};
807
808/*
809 * Fetch CID from card.
810 */
811int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
812{
813 int err;
814 u32 max_current;
815 int retries = 10;
816 u32 pocr = ocr;
817
818try_again:
819 if (!retries) {
820 ocr &= ~SD_OCR_S18R;
821 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
822 }
823
824 /*
825 * Since we're changing the OCR value, we seem to
826 * need to tell some cards to go back to the idle
827 * state. We wait 1ms to give cards time to
828 * respond.
829 */
830 mmc_go_idle(host);
831
832 /*
833 * If SD_SEND_IF_COND indicates an SD 2.0
834 * compliant card and we should set bit 30
835 * of the ocr to indicate that we can handle
836 * block-addressed SDHC cards.
837 */
838 err = mmc_send_if_cond(host, ocr);
839 if (!err) {
840 ocr |= SD_OCR_CCS;
841 /* Set HO2T as well - SDUC card won't respond otherwise */
842 ocr |= SD_OCR_2T;
843 }
844
845 /*
846 * If the host supports one of UHS-I modes, request the card
847 * to switch to 1.8V signaling level. If the card has failed
848 * repeatedly to switch however, skip this.
849 */
850 if (retries && mmc_host_uhs(host))
851 ocr |= SD_OCR_S18R;
852
853 /*
854 * If the host can supply more than 150mA at current voltage,
855 * XPC should be set to 1.
856 */
857 max_current = sd_get_host_max_current(host);
858 if (max_current > 150)
859 ocr |= SD_OCR_XPC;
860
861 err = mmc_send_app_op_cond(host, ocr, rocr);
862 if (err)
863 return err;
864
865 /*
866 * In case the S18A bit is set in the response, let's start the signal
867 * voltage switch procedure. SPI mode doesn't support CMD11.
868 * Note that, according to the spec, the S18A bit is not valid unless
869 * the CCS bit is set as well. We deliberately deviate from the spec in
870 * regards to this, which allows UHS-I to be supported for SDSC cards.
871 */
872 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
873 rocr && (*rocr & SD_ROCR_S18A)) {
874 err = mmc_set_uhs_voltage(host, pocr);
875 if (err == -EAGAIN) {
876 retries--;
877 goto try_again;
878 } else if (err) {
879 retries = 0;
880 goto try_again;
881 }
882 }
883
884 err = mmc_send_cid(host, cid);
885 return err;
886}
887
888int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
889{
890 int err;
891
892 /*
893 * Fetch CSD from card.
894 */
895 err = mmc_send_csd(card, card->raw_csd);
896 if (err)
897 return err;
898
899 err = mmc_decode_csd(card, is_sduc);
900 if (err)
901 return err;
902
903 return 0;
904}
905
906int mmc_sd_get_ro(struct mmc_host *host)
907{
908 int ro;
909
910 /*
911 * Some systems don't feature a write-protect pin and don't need one.
912 * E.g. because they only have micro-SD card slot. For those systems
913 * assume that the SD card is always read-write.
914 */
915 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
916 return 0;
917
918 if (!host->ops->get_ro)
919 return -1;
920
921 ro = host->ops->get_ro(host);
922
923 return ro;
924}
925
926int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
927 bool reinit)
928{
929 int err;
930
931 if (!reinit) {
932 /*
933 * Fetch SCR from card.
934 */
935 err = mmc_app_send_scr(card);
936 if (err)
937 return err;
938
939 err = mmc_decode_scr(card);
940 if (err)
941 return err;
942
943 /*
944 * Fetch and process SD Status register.
945 */
946 err = mmc_read_ssr(card);
947 if (err)
948 return err;
949
950 /* Erase init depends on CSD and SSR */
951 mmc_init_erase(card);
952 }
953
954 /*
955 * Fetch switch information from card. Note, sd3_bus_mode can change if
956 * voltage switch outcome changes, so do this always.
957 */
958 err = mmc_read_switch(card);
959 if (err)
960 return err;
961
962 /*
963 * For SPI, enable CRC as appropriate.
964 * This CRC enable is located AFTER the reading of the
965 * card registers because some SDHC cards are not able
966 * to provide valid CRCs for non-512-byte blocks.
967 */
968 if (mmc_host_is_spi(host)) {
969 err = mmc_spi_set_crc(host, use_spi_crc);
970 if (err)
971 return err;
972 }
973
974 /*
975 * Check if read-only switch is active.
976 */
977 if (!reinit) {
978 int ro = mmc_sd_get_ro(host);
979
980 if (ro < 0) {
981 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
982 mmc_hostname(host));
983 } else if (ro > 0) {
984 mmc_card_set_readonly(card);
985 }
986 }
987
988 return 0;
989}
990
991unsigned mmc_sd_get_max_clock(struct mmc_card *card)
992{
993 unsigned max_dtr = (unsigned int)-1;
994
995 if (mmc_card_hs(card)) {
996 if (max_dtr > card->sw_caps.hs_max_dtr)
997 max_dtr = card->sw_caps.hs_max_dtr;
998 } else if (max_dtr > card->csd.max_dtr) {
999 max_dtr = card->csd.max_dtr;
1000 }
1001
1002 return max_dtr;
1003}
1004
1005static bool mmc_sd_card_using_v18(struct mmc_card *card)
1006{
1007 /*
1008 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1009 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1010 * they can be used to determine if the card has already switched to
1011 * 1.8V signaling.
1012 */
1013 return card->sw_caps.sd3_bus_mode &
1014 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1015}
1016
1017static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1018 u8 reg_data)
1019{
1020 struct mmc_host *host = card->host;
1021 struct mmc_request mrq = {};
1022 struct mmc_command cmd = {};
1023 struct mmc_data data = {};
1024 struct scatterlist sg;
1025 u8 *reg_buf;
1026
1027 reg_buf = kzalloc(512, GFP_KERNEL);
1028 if (!reg_buf)
1029 return -ENOMEM;
1030
1031 mrq.cmd = &cmd;
1032 mrq.data = &data;
1033
1034 /*
1035 * Arguments of CMD49:
1036 * [31:31] MIO (0 = memory).
1037 * [30:27] FNO (function number).
1038 * [26:26] MW - mask write mode (0 = disable).
1039 * [25:18] page number.
1040 * [17:9] offset address.
1041 * [8:0] length (0 = 1 byte).
1042 */
1043 cmd.arg = fno << 27 | page << 18 | offset << 9;
1044
1045 /* The first byte in the buffer is the data to be written. */
1046 reg_buf[0] = reg_data;
1047
1048 data.flags = MMC_DATA_WRITE;
1049 data.blksz = 512;
1050 data.blocks = 1;
1051 data.sg = &sg;
1052 data.sg_len = 1;
1053 sg_init_one(&sg, reg_buf, 512);
1054
1055 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1056 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1057
1058 mmc_set_data_timeout(&data, card);
1059 mmc_wait_for_req(host, &mrq);
1060
1061 kfree(reg_buf);
1062
1063 /*
1064 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1065 * after the CMD49. Although, let's leave this to be managed by the
1066 * caller.
1067 */
1068
1069 if (cmd.error)
1070 return cmd.error;
1071 if (data.error)
1072 return data.error;
1073
1074 return 0;
1075}
1076
1077static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1078 u16 offset, u16 len, u8 *reg_buf)
1079{
1080 u32 cmd_args;
1081
1082 /*
1083 * Command arguments of CMD48:
1084 * [31:31] MIO (0 = memory).
1085 * [30:27] FNO (function number).
1086 * [26:26] reserved (0).
1087 * [25:18] page number.
1088 * [17:9] offset address.
1089 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1090 */
1091 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1092
1093 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1094 cmd_args, reg_buf, 512);
1095}
1096
1097static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1098 u16 offset)
1099{
1100 int err;
1101 u8 *reg_buf;
1102
1103 reg_buf = kzalloc(512, GFP_KERNEL);
1104 if (!reg_buf)
1105 return -ENOMEM;
1106
1107 /* Read the extension register for power management function. */
1108 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1109 if (err) {
1110 pr_warn("%s: error %d reading PM func of ext reg\n",
1111 mmc_hostname(card->host), err);
1112 goto out;
1113 }
1114
1115 /* PM revision consists of 4 bits. */
1116 card->ext_power.rev = reg_buf[0] & 0xf;
1117
1118 /* Power Off Notification support at bit 4. */
1119 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1120 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1121
1122 /* Power Sustenance support at bit 5. */
1123 if (reg_buf[1] & BIT(5))
1124 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1125
1126 /* Power Down Mode support at bit 6. */
1127 if (reg_buf[1] & BIT(6))
1128 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1129
1130 card->ext_power.fno = fno;
1131 card->ext_power.page = page;
1132 card->ext_power.offset = offset;
1133
1134out:
1135 kfree(reg_buf);
1136 return err;
1137}
1138
1139static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1140 u16 offset)
1141{
1142 int err;
1143 u8 *reg_buf;
1144
1145 reg_buf = kzalloc(512, GFP_KERNEL);
1146 if (!reg_buf)
1147 return -ENOMEM;
1148
1149 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1150 if (err) {
1151 pr_warn("%s: error %d reading PERF func of ext reg\n",
1152 mmc_hostname(card->host), err);
1153 goto out;
1154 }
1155
1156 /* PERF revision. */
1157 card->ext_perf.rev = reg_buf[0];
1158
1159 /* FX_EVENT support at bit 0. */
1160 if (reg_buf[1] & BIT(0))
1161 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1162
1163 /* Card initiated self-maintenance support at bit 0. */
1164 if (reg_buf[2] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1166
1167 /* Host initiated self-maintenance support at bit 1. */
1168 if (reg_buf[2] & BIT(1))
1169 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1170
1171 /* Cache support at bit 0. */
1172 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1173 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1174
1175 /* Command queue support indicated via queue depth bits (0 to 4). */
1176 if (reg_buf[6] & 0x1f)
1177 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1178
1179 card->ext_perf.fno = fno;
1180 card->ext_perf.page = page;
1181 card->ext_perf.offset = offset;
1182
1183out:
1184 kfree(reg_buf);
1185 return err;
1186}
1187
1188static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1189 u16 *next_ext_addr)
1190{
1191 u8 num_regs, fno, page;
1192 u16 sfc, offset, ext = *next_ext_addr;
1193 u32 reg_addr;
1194
1195 /*
1196 * Parse only one register set per extension, as that is sufficient to
1197 * support the standard functions. This means another 48 bytes in the
1198 * buffer must be available.
1199 */
1200 if (ext + 48 > 512)
1201 return -EFAULT;
1202
1203 /* Standard Function Code */
1204 memcpy(&sfc, &gen_info_buf[ext], 2);
1205
1206 /* Address to the next extension. */
1207 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1208
1209 /* Number of registers for this extension. */
1210 num_regs = gen_info_buf[ext + 42];
1211
1212 /* We support only one register per extension. */
1213 if (num_regs != 1)
1214 return 0;
1215
1216 /* Extension register address. */
1217 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1218
1219 /* 9 bits (0 to 8) contains the offset address. */
1220 offset = reg_addr & 0x1ff;
1221
1222 /* 8 bits (9 to 16) contains the page number. */
1223 page = reg_addr >> 9 & 0xff ;
1224
1225 /* 4 bits (18 to 21) contains the function number. */
1226 fno = reg_addr >> 18 & 0xf;
1227
1228 /* Standard Function Code for power management. */
1229 if (sfc == 0x1)
1230 return sd_parse_ext_reg_power(card, fno, page, offset);
1231
1232 /* Standard Function Code for performance enhancement. */
1233 if (sfc == 0x2)
1234 return sd_parse_ext_reg_perf(card, fno, page, offset);
1235
1236 return 0;
1237}
1238
1239static int sd_read_ext_regs(struct mmc_card *card)
1240{
1241 int err, i;
1242 u8 num_ext, *gen_info_buf;
1243 u16 rev, len, next_ext_addr;
1244
1245 if (mmc_host_is_spi(card->host))
1246 return 0;
1247
1248 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1249 return 0;
1250
1251 gen_info_buf = kzalloc(512, GFP_KERNEL);
1252 if (!gen_info_buf)
1253 return -ENOMEM;
1254
1255 /*
1256 * Read 512 bytes of general info, which is found at function number 0,
1257 * at page 0 and with no offset.
1258 */
1259 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1260 if (err) {
1261 pr_err("%s: error %d reading general info of SD ext reg\n",
1262 mmc_hostname(card->host), err);
1263 goto out;
1264 }
1265
1266 /* General info structure revision. */
1267 memcpy(&rev, &gen_info_buf[0], 2);
1268
1269 /* Length of general info in bytes. */
1270 memcpy(&len, &gen_info_buf[2], 2);
1271
1272 /* Number of extensions to be find. */
1273 num_ext = gen_info_buf[4];
1274
1275 /*
1276 * We only support revision 0 and limit it to 512 bytes for simplicity.
1277 * No matter what, let's return zero to allow us to continue using the
1278 * card, even if we can't support the features from the SD function
1279 * extensions registers.
1280 */
1281 if (rev != 0 || len > 512) {
1282 pr_warn("%s: non-supported SD ext reg layout\n",
1283 mmc_hostname(card->host));
1284 goto out;
1285 }
1286
1287 /*
1288 * Parse the extension registers. The first extension should start
1289 * immediately after the general info header (16 bytes).
1290 */
1291 next_ext_addr = 16;
1292 for (i = 0; i < num_ext; i++) {
1293 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1294 if (err) {
1295 pr_err("%s: error %d parsing SD ext reg\n",
1296 mmc_hostname(card->host), err);
1297 goto out;
1298 }
1299 }
1300
1301out:
1302 kfree(gen_info_buf);
1303 return err;
1304}
1305
1306static bool sd_cache_enabled(struct mmc_host *host)
1307{
1308 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1309}
1310
1311static int sd_flush_cache(struct mmc_host *host)
1312{
1313 struct mmc_card *card = host->card;
1314 u8 *reg_buf, fno, page;
1315 u16 offset;
1316 int err;
1317
1318 if (!sd_cache_enabled(host))
1319 return 0;
1320
1321 reg_buf = kzalloc(512, GFP_KERNEL);
1322 if (!reg_buf)
1323 return -ENOMEM;
1324
1325 /*
1326 * Set Flush Cache at bit 0 in the performance enhancement register at
1327 * 261 bytes offset.
1328 */
1329 fno = card->ext_perf.fno;
1330 page = card->ext_perf.page;
1331 offset = card->ext_perf.offset + 261;
1332
1333 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1334 if (err) {
1335 pr_warn("%s: error %d writing Cache Flush bit\n",
1336 mmc_hostname(host), err);
1337 goto out;
1338 }
1339
1340 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1341 MMC_BUSY_EXTR_SINGLE);
1342 if (err)
1343 goto out;
1344
1345 /*
1346 * Read the Flush Cache bit. The card shall reset it, to confirm that
1347 * it's has completed the flushing of the cache.
1348 */
1349 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1350 if (err) {
1351 pr_warn("%s: error %d reading Cache Flush bit\n",
1352 mmc_hostname(host), err);
1353 goto out;
1354 }
1355
1356 if (reg_buf[0] & BIT(0))
1357 err = -ETIMEDOUT;
1358out:
1359 kfree(reg_buf);
1360 return err;
1361}
1362
1363static int sd_enable_cache(struct mmc_card *card)
1364{
1365 u8 *reg_buf;
1366 int err;
1367
1368 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1369
1370 reg_buf = kzalloc(512, GFP_KERNEL);
1371 if (!reg_buf)
1372 return -ENOMEM;
1373
1374 /*
1375 * Set Cache Enable at bit 0 in the performance enhancement register at
1376 * 260 bytes offset.
1377 */
1378 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1379 card->ext_perf.offset + 260, BIT(0));
1380 if (err) {
1381 pr_warn("%s: error %d writing Cache Enable bit\n",
1382 mmc_hostname(card->host), err);
1383 goto out;
1384 }
1385
1386 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1387 MMC_BUSY_EXTR_SINGLE);
1388 if (!err)
1389 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1390
1391out:
1392 kfree(reg_buf);
1393 return err;
1394}
1395
1396/*
1397 * Handle the detection and initialisation of a card.
1398 *
1399 * In the case of a resume, "oldcard" will contain the card
1400 * we're trying to reinitialise.
1401 */
1402static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1403 struct mmc_card *oldcard)
1404{
1405 struct mmc_card *card;
1406 int err;
1407 u32 cid[4];
1408 u32 rocr = 0;
1409 bool v18_fixup_failed = false;
1410
1411 WARN_ON(!host->claimed);
1412retry:
1413 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1414 if (err)
1415 return err;
1416
1417 if (oldcard) {
1418 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1419 pr_debug("%s: Perhaps the card was replaced\n",
1420 mmc_hostname(host));
1421 return -ENOENT;
1422 }
1423
1424 card = oldcard;
1425 } else {
1426 /*
1427 * Allocate card structure.
1428 */
1429 card = mmc_alloc_card(host, &sd_type);
1430 if (IS_ERR(card))
1431 return PTR_ERR(card);
1432
1433 card->ocr = ocr;
1434 card->type = MMC_TYPE_SD;
1435 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1436 }
1437
1438 /*
1439 * Call the optional HC's init_card function to handle quirks.
1440 */
1441 if (host->ops->init_card)
1442 host->ops->init_card(host, card);
1443
1444 /*
1445 * For native busses: get card RCA and quit open drain mode.
1446 */
1447 if (!mmc_host_is_spi(host)) {
1448 err = mmc_send_relative_addr(host, &card->rca);
1449 if (err)
1450 goto free_card;
1451 }
1452
1453 if (!oldcard) {
1454 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1455 bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1456
1457 err = mmc_sd_get_csd(card, is_sduc);
1458 if (err)
1459 goto free_card;
1460
1461 mmc_decode_cid(card);
1462 }
1463
1464 /*
1465 * handling only for cards supporting DSR and hosts requesting
1466 * DSR configuration
1467 */
1468 if (card->csd.dsr_imp && host->dsr_req)
1469 mmc_set_dsr(host);
1470
1471 /*
1472 * Select card, as all following commands rely on that.
1473 */
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1476 if (err)
1477 goto free_card;
1478 }
1479
1480 /* Apply quirks prior to card setup */
1481 mmc_fixup_device(card, mmc_sd_fixups);
1482
1483 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1484 if (err)
1485 goto free_card;
1486
1487 /*
1488 * If the card has not been power cycled, it may still be using 1.8V
1489 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1490 * transfer mode.
1491 */
1492 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1493 mmc_sd_card_using_v18(card) &&
1494 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1495 if (mmc_host_set_uhs_voltage(host) ||
1496 mmc_sd_init_uhs_card(card)) {
1497 v18_fixup_failed = true;
1498 mmc_power_cycle(host, ocr);
1499 if (!oldcard)
1500 mmc_remove_card(card);
1501 goto retry;
1502 }
1503 goto cont;
1504 }
1505
1506 /* Initialization sequence for UHS-I cards */
1507 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1508 err = mmc_sd_init_uhs_card(card);
1509 if (err)
1510 goto free_card;
1511 } else {
1512 /*
1513 * Attempt to change to high-speed (if supported)
1514 */
1515 err = mmc_sd_switch_hs(card);
1516 if (err > 0)
1517 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1518 else if (err)
1519 goto free_card;
1520
1521 /*
1522 * Set bus speed.
1523 */
1524 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1525
1526 if (host->ios.timing == MMC_TIMING_SD_HS &&
1527 host->ops->prepare_sd_hs_tuning) {
1528 err = host->ops->prepare_sd_hs_tuning(host, card);
1529 if (err)
1530 goto free_card;
1531 }
1532
1533 /*
1534 * Switch to wider bus (if supported).
1535 */
1536 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1537 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1538 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1539 if (err)
1540 goto free_card;
1541
1542 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1543 }
1544
1545 if (host->ios.timing == MMC_TIMING_SD_HS &&
1546 host->ops->execute_sd_hs_tuning) {
1547 err = host->ops->execute_sd_hs_tuning(host, card);
1548 if (err)
1549 goto free_card;
1550 }
1551 }
1552cont:
1553 if (!oldcard) {
1554 /* Read/parse the extension registers. */
1555 err = sd_read_ext_regs(card);
1556 if (err)
1557 goto free_card;
1558 }
1559
1560 /* Enable internal SD cache if supported. */
1561 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1562 err = sd_enable_cache(card);
1563 if (err)
1564 goto free_card;
1565 }
1566
1567 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1568 err = host->cqe_ops->cqe_enable(host, card);
1569 if (!err) {
1570 host->cqe_enabled = true;
1571 host->hsq_enabled = true;
1572 pr_info("%s: Host Software Queue enabled\n",
1573 mmc_hostname(host));
1574 }
1575 }
1576
1577 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1578 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1579 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1580 mmc_hostname(host));
1581 err = -EINVAL;
1582 goto free_card;
1583 }
1584
1585 host->card = card;
1586 return 0;
1587
1588free_card:
1589 if (!oldcard)
1590 mmc_remove_card(card);
1591
1592 return err;
1593}
1594
1595/*
1596 * Host is being removed. Free up the current card.
1597 */
1598static void mmc_sd_remove(struct mmc_host *host)
1599{
1600 mmc_remove_card(host->card);
1601 host->card = NULL;
1602}
1603
1604/*
1605 * Card detection - card is alive.
1606 */
1607static int mmc_sd_alive(struct mmc_host *host)
1608{
1609 return mmc_send_status(host->card, NULL);
1610}
1611
1612/*
1613 * Card detection callback from host.
1614 */
1615static void mmc_sd_detect(struct mmc_host *host)
1616{
1617 int err;
1618
1619 mmc_get_card(host->card, NULL);
1620
1621 /*
1622 * Just check if our card has been removed.
1623 */
1624 err = _mmc_detect_card_removed(host);
1625
1626 mmc_put_card(host->card, NULL);
1627
1628 if (err) {
1629 mmc_sd_remove(host);
1630
1631 mmc_claim_host(host);
1632 mmc_detach_bus(host);
1633 mmc_power_off(host);
1634 mmc_release_host(host);
1635 }
1636}
1637
1638static int sd_can_poweroff_notify(struct mmc_card *card)
1639{
1640 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1641}
1642
1643static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1644{
1645 struct sd_busy_data *data = cb_data;
1646 struct mmc_card *card = data->card;
1647 int err;
1648
1649 /*
1650 * Read the status register for the power management function. It's at
1651 * one byte offset and is one byte long. The Power Off Notification
1652 * Ready is bit 0.
1653 */
1654 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1655 card->ext_power.offset + 1, 1, data->reg_buf);
1656 if (err) {
1657 pr_warn("%s: error %d reading status reg of PM func\n",
1658 mmc_hostname(card->host), err);
1659 return err;
1660 }
1661
1662 *busy = !(data->reg_buf[0] & BIT(0));
1663 return 0;
1664}
1665
1666static int sd_poweroff_notify(struct mmc_card *card)
1667{
1668 struct sd_busy_data cb_data;
1669 u8 *reg_buf;
1670 int err;
1671
1672 reg_buf = kzalloc(512, GFP_KERNEL);
1673 if (!reg_buf)
1674 return -ENOMEM;
1675
1676 /*
1677 * Set the Power Off Notification bit in the power management settings
1678 * register at 2 bytes offset.
1679 */
1680 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1681 card->ext_power.offset + 2, BIT(0));
1682 if (err) {
1683 pr_warn("%s: error %d writing Power Off Notify bit\n",
1684 mmc_hostname(card->host), err);
1685 goto out;
1686 }
1687
1688 /* Find out when the command is completed. */
1689 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1690 MMC_BUSY_EXTR_SINGLE);
1691 if (err)
1692 goto out;
1693
1694 cb_data.card = card;
1695 cb_data.reg_buf = reg_buf;
1696 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1697 &sd_busy_poweroff_notify_cb, &cb_data);
1698
1699out:
1700 kfree(reg_buf);
1701 return err;
1702}
1703
1704static int _mmc_sd_suspend(struct mmc_host *host)
1705{
1706 struct mmc_card *card = host->card;
1707 int err = 0;
1708
1709 mmc_claim_host(host);
1710
1711 if (mmc_card_suspended(card))
1712 goto out;
1713
1714 if (sd_can_poweroff_notify(card))
1715 err = sd_poweroff_notify(card);
1716 else if (!mmc_host_is_spi(host))
1717 err = mmc_deselect_cards(host);
1718
1719 if (!err) {
1720 mmc_power_off(host);
1721 mmc_card_set_suspended(card);
1722 }
1723
1724out:
1725 mmc_release_host(host);
1726 return err;
1727}
1728
1729/*
1730 * Callback for suspend
1731 */
1732static int mmc_sd_suspend(struct mmc_host *host)
1733{
1734 int err;
1735
1736 err = _mmc_sd_suspend(host);
1737 if (!err) {
1738 pm_runtime_disable(&host->card->dev);
1739 pm_runtime_set_suspended(&host->card->dev);
1740 }
1741
1742 return err;
1743}
1744
1745/*
1746 * This function tries to determine if the same card is still present
1747 * and, if so, restore all state to it.
1748 */
1749static int _mmc_sd_resume(struct mmc_host *host)
1750{
1751 int err = 0;
1752
1753 mmc_claim_host(host);
1754
1755 if (!mmc_card_suspended(host->card))
1756 goto out;
1757
1758 mmc_power_up(host, host->card->ocr);
1759 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1760 mmc_card_clr_suspended(host->card);
1761
1762out:
1763 mmc_release_host(host);
1764 return err;
1765}
1766
1767/*
1768 * Callback for resume
1769 */
1770static int mmc_sd_resume(struct mmc_host *host)
1771{
1772 pm_runtime_enable(&host->card->dev);
1773 return 0;
1774}
1775
1776/*
1777 * Callback for runtime_suspend.
1778 */
1779static int mmc_sd_runtime_suspend(struct mmc_host *host)
1780{
1781 int err;
1782
1783 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1784 return 0;
1785
1786 err = _mmc_sd_suspend(host);
1787 if (err)
1788 pr_err("%s: error %d doing aggressive suspend\n",
1789 mmc_hostname(host), err);
1790
1791 return err;
1792}
1793
1794/*
1795 * Callback for runtime_resume.
1796 */
1797static int mmc_sd_runtime_resume(struct mmc_host *host)
1798{
1799 int err;
1800
1801 err = _mmc_sd_resume(host);
1802 if (err && err != -ENOMEDIUM)
1803 pr_err("%s: error %d doing runtime resume\n",
1804 mmc_hostname(host), err);
1805
1806 return 0;
1807}
1808
1809static int mmc_sd_hw_reset(struct mmc_host *host)
1810{
1811 mmc_power_cycle(host, host->card->ocr);
1812 return mmc_sd_init_card(host, host->card->ocr, host->card);
1813}
1814
1815static const struct mmc_bus_ops mmc_sd_ops = {
1816 .remove = mmc_sd_remove,
1817 .detect = mmc_sd_detect,
1818 .runtime_suspend = mmc_sd_runtime_suspend,
1819 .runtime_resume = mmc_sd_runtime_resume,
1820 .suspend = mmc_sd_suspend,
1821 .resume = mmc_sd_resume,
1822 .alive = mmc_sd_alive,
1823 .shutdown = mmc_sd_suspend,
1824 .hw_reset = mmc_sd_hw_reset,
1825 .cache_enabled = sd_cache_enabled,
1826 .flush_cache = sd_flush_cache,
1827};
1828
1829/*
1830 * Starting point for SD card init.
1831 */
1832int mmc_attach_sd(struct mmc_host *host)
1833{
1834 int err;
1835 u32 ocr, rocr;
1836
1837 WARN_ON(!host->claimed);
1838
1839 err = mmc_send_app_op_cond(host, 0, &ocr);
1840 if (err)
1841 return err;
1842
1843 mmc_attach_bus(host, &mmc_sd_ops);
1844 if (host->ocr_avail_sd)
1845 host->ocr_avail = host->ocr_avail_sd;
1846
1847 /*
1848 * We need to get OCR a different way for SPI.
1849 */
1850 if (mmc_host_is_spi(host)) {
1851 mmc_go_idle(host);
1852
1853 err = mmc_spi_read_ocr(host, 0, &ocr);
1854 if (err)
1855 goto err;
1856 }
1857
1858 /*
1859 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1860 * these bits as being in-valid and especially also bit7.
1861 */
1862 ocr &= ~0x7FFF;
1863
1864 rocr = mmc_select_voltage(host, ocr);
1865
1866 /*
1867 * Can we support the voltage(s) of the card(s)?
1868 */
1869 if (!rocr) {
1870 err = -EINVAL;
1871 goto err;
1872 }
1873
1874 /*
1875 * Detect and init the card.
1876 */
1877 err = mmc_sd_init_card(host, rocr, NULL);
1878 if (err)
1879 goto err;
1880
1881 mmc_release_host(host);
1882 err = mmc_add_card(host->card);
1883 if (err)
1884 goto remove_card;
1885
1886 mmc_claim_host(host);
1887 return 0;
1888
1889remove_card:
1890 mmc_remove_card(host->card);
1891 host->card = NULL;
1892 mmc_claim_host(host);
1893err:
1894 mmc_detach_bus(host);
1895
1896 pr_err("%s: error %d whilst initialising SD card\n",
1897 mmc_hostname(host), err);
1898
1899 return err;
1900}