Linux Audio

Check our new training course

Loading...
v6.2
 
   1/*
   2 * Copyright (C) 2011-2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "persistent-data/dm-btree.h"
   9#include "persistent-data/dm-space-map.h"
  10#include "persistent-data/dm-space-map-disk.h"
  11#include "persistent-data/dm-transaction-manager.h"
  12
  13#include <linux/list.h>
  14#include <linux/device-mapper.h>
  15#include <linux/workqueue.h>
  16
  17/*--------------------------------------------------------------------------
 
  18 * As far as the metadata goes, there is:
  19 *
  20 * - A superblock in block zero, taking up fewer than 512 bytes for
  21 *   atomic writes.
  22 *
  23 * - A space map managing the metadata blocks.
  24 *
  25 * - A space map managing the data blocks.
  26 *
  27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  28 *
  29 * - A hierarchical btree, with 2 levels which effectively maps (thin
  30 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
  31 *   field holding the time in the low 24 bits, and block in the top 40
  32 *   bits.
  33 *
  34 * BTrees consist solely of btree_nodes, that fill a block.  Some are
  35 * internal nodes, as such their values are a __le64 pointing to other
  36 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
  37 * smaller than the block size).  The nodes consist of the header,
  38 * followed by an array of keys, followed by an array of values.  We have
  39 * to binary search on the keys so they're all held together to help the
  40 * cpu cache.
  41 *
  42 * Space maps have 2 btrees:
  43 *
  44 * - One maps a uint64_t onto a struct index_entry.  Which points to a
  45 *   bitmap block, and has some details about how many free entries there
  46 *   are etc.
  47 *
  48 * - The bitmap blocks have a header (for the checksum).  Then the rest
  49 *   of the block is pairs of bits.  With the meaning being:
  50 *
  51 *   0 - ref count is 0
  52 *   1 - ref count is 1
  53 *   2 - ref count is 2
  54 *   3 - ref count is higher than 2
  55 *
  56 * - If the count is higher than 2 then the ref count is entered in a
  57 *   second btree that directly maps the block_address to a uint32_t ref
  58 *   count.
  59 *
  60 * The space map metadata variant doesn't have a bitmaps btree.  Instead
  61 * it has one single blocks worth of index_entries.  This avoids
  62 * recursive issues with the bitmap btree needing to allocate space in
  63 * order to insert.  With a small data block size such as 64k the
  64 * metadata support data devices that are hundreds of terrabytes.
  65 *
  66 * The space maps allocate space linearly from front to back.  Space that
  67 * is freed in a transaction is never recycled within that transaction.
  68 * To try and avoid fragmenting _free_ space the allocator always goes
  69 * back and fills in gaps.
  70 *
  71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  72 * from the block manager.
  73 *--------------------------------------------------------------------------*/
 
  74
  75#define DM_MSG_PREFIX   "thin metadata"
  76
  77#define THIN_SUPERBLOCK_MAGIC 27022010
  78#define THIN_SUPERBLOCK_LOCATION 0
  79#define THIN_VERSION 2
  80#define SECTOR_TO_BLOCK_SHIFT 3
  81
  82/*
  83 * For btree insert:
  84 *  3 for btree insert +
  85 *  2 for btree lookup used within space map
  86 * For btree remove:
  87 *  2 for shadow spine +
  88 *  4 for rebalance 3 child node
  89 */
  90#define THIN_MAX_CONCURRENT_LOCKS 6
  91
  92/* This should be plenty */
  93#define SPACE_MAP_ROOT_SIZE 128
  94
  95/*
  96 * Little endian on-disk superblock and device details.
  97 */
  98struct thin_disk_superblock {
  99	__le32 csum;	/* Checksum of superblock except for this field. */
 100	__le32 flags;
 101	__le64 blocknr;	/* This block number, dm_block_t. */
 102
 103	__u8 uuid[16];
 104	__le64 magic;
 105	__le32 version;
 106	__le32 time;
 107
 108	__le64 trans_id;
 109
 110	/*
 111	 * Root held by userspace transactions.
 112	 */
 113	__le64 held_root;
 114
 115	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 116	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 117
 118	/*
 119	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
 120	 */
 121	__le64 data_mapping_root;
 122
 123	/*
 124	 * Device detail root mapping dev_id -> device_details
 125	 */
 126	__le64 device_details_root;
 127
 128	__le32 data_block_size;		/* In 512-byte sectors. */
 129
 130	__le32 metadata_block_size;	/* In 512-byte sectors. */
 131	__le64 metadata_nr_blocks;
 132
 133	__le32 compat_flags;
 134	__le32 compat_ro_flags;
 135	__le32 incompat_flags;
 136} __packed;
 137
 138struct disk_device_details {
 139	__le64 mapped_blocks;
 140	__le64 transaction_id;		/* When created. */
 141	__le32 creation_time;
 142	__le32 snapshotted_time;
 143} __packed;
 144
 145struct dm_pool_metadata {
 146	struct hlist_node hash;
 147
 148	struct block_device *bdev;
 149	struct dm_block_manager *bm;
 150	struct dm_space_map *metadata_sm;
 151	struct dm_space_map *data_sm;
 152	struct dm_transaction_manager *tm;
 153	struct dm_transaction_manager *nb_tm;
 154
 155	/*
 156	 * Two-level btree.
 157	 * First level holds thin_dev_t.
 158	 * Second level holds mappings.
 159	 */
 160	struct dm_btree_info info;
 161
 162	/*
 163	 * Non-blocking version of the above.
 164	 */
 165	struct dm_btree_info nb_info;
 166
 167	/*
 168	 * Just the top level for deleting whole devices.
 169	 */
 170	struct dm_btree_info tl_info;
 171
 172	/*
 173	 * Just the bottom level for creating new devices.
 174	 */
 175	struct dm_btree_info bl_info;
 176
 177	/*
 178	 * Describes the device details btree.
 179	 */
 180	struct dm_btree_info details_info;
 181
 182	struct rw_semaphore root_lock;
 183	uint32_t time;
 184	dm_block_t root;
 185	dm_block_t details_root;
 186	struct list_head thin_devices;
 187	uint64_t trans_id;
 188	unsigned long flags;
 189	sector_t data_block_size;
 190
 191	/*
 192	 * Pre-commit callback.
 193	 *
 194	 * This allows the thin provisioning target to run a callback before
 195	 * the metadata are committed.
 196	 */
 197	dm_pool_pre_commit_fn pre_commit_fn;
 198	void *pre_commit_context;
 199
 200	/*
 201	 * We reserve a section of the metadata for commit overhead.
 202	 * All reported space does *not* include this.
 203	 */
 204	dm_block_t metadata_reserve;
 205
 206	/*
 207	 * Set if a transaction has to be aborted but the attempt to roll back
 208	 * to the previous (good) transaction failed.  The only pool metadata
 209	 * operation possible in this state is the closing of the device.
 210	 */
 211	bool fail_io:1;
 212
 213	/*
 214	 * Set once a thin-pool has been accessed through one of the interfaces
 215	 * that imply the pool is in-service (e.g. thin devices created/deleted,
 216	 * thin-pool message, metadata snapshots, etc).
 217	 */
 218	bool in_service:1;
 219
 220	/*
 221	 * Reading the space map roots can fail, so we read it into these
 222	 * buffers before the superblock is locked and updated.
 223	 */
 224	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 225	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 226};
 227
 228struct dm_thin_device {
 229	struct list_head list;
 230	struct dm_pool_metadata *pmd;
 231	dm_thin_id id;
 232
 233	int open_count;
 234	bool changed:1;
 235	bool aborted_with_changes:1;
 236	uint64_t mapped_blocks;
 237	uint64_t transaction_id;
 238	uint32_t creation_time;
 239	uint32_t snapshotted_time;
 240};
 241
 242/*----------------------------------------------------------------
 
 243 * superblock validator
 244 *--------------------------------------------------------------*/
 245
 246#define SUPERBLOCK_CSUM_XOR 160774
 247
 248static void sb_prepare_for_write(struct dm_block_validator *v,
 249				 struct dm_block *b,
 250				 size_t block_size)
 251{
 252	struct thin_disk_superblock *disk_super = dm_block_data(b);
 253
 254	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
 255	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 256						      block_size - sizeof(__le32),
 257						      SUPERBLOCK_CSUM_XOR));
 258}
 259
 260static int sb_check(struct dm_block_validator *v,
 261		    struct dm_block *b,
 262		    size_t block_size)
 263{
 264	struct thin_disk_superblock *disk_super = dm_block_data(b);
 265	__le32 csum_le;
 266
 267	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
 268		DMERR("sb_check failed: blocknr %llu: "
 269		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
 270		      (unsigned long long)dm_block_location(b));
 271		return -ENOTBLK;
 272	}
 273
 274	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
 275		DMERR("sb_check failed: magic %llu: "
 276		      "wanted %llu", le64_to_cpu(disk_super->magic),
 277		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
 278		return -EILSEQ;
 279	}
 280
 281	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 282					     block_size - sizeof(__le32),
 283					     SUPERBLOCK_CSUM_XOR));
 284	if (csum_le != disk_super->csum) {
 285		DMERR("sb_check failed: csum %u: wanted %u",
 286		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
 287		return -EILSEQ;
 288	}
 289
 290	return 0;
 291}
 292
 293static struct dm_block_validator sb_validator = {
 294	.name = "superblock",
 295	.prepare_for_write = sb_prepare_for_write,
 296	.check = sb_check
 297};
 298
 299/*----------------------------------------------------------------
 
 300 * Methods for the btree value types
 301 *--------------------------------------------------------------*/
 302
 303static uint64_t pack_block_time(dm_block_t b, uint32_t t)
 304{
 305	return (b << 24) | t;
 306}
 307
 308static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
 309{
 310	*b = v >> 24;
 311	*t = v & ((1 << 24) - 1);
 312}
 313
 314/*
 315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
 316 * possible.  'with_runs' reads contiguous runs of blocks, and calls the
 317 * given sm function.
 318 */
 319typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
 320
 321static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
 322{
 323	uint64_t b, begin, end;
 324	uint32_t t;
 325	bool in_run = false;
 326	unsigned i;
 327
 328	for (i = 0; i < count; i++, value_le++) {
 329		/* We know value_le is 8 byte aligned */
 330		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
 331
 332		if (in_run) {
 333			if (b == end) {
 334				end++;
 335			} else {
 336				fn(sm, begin, end);
 337				begin = b;
 338				end = b + 1;
 339			}
 340		} else {
 341			in_run = true;
 342			begin = b;
 343			end = b + 1;
 344		}
 345	}
 346
 347	if (in_run)
 348		fn(sm, begin, end);
 349}
 350
 351static void data_block_inc(void *context, const void *value_le, unsigned count)
 352{
 353	with_runs((struct dm_space_map *) context,
 354		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
 355}
 356
 357static void data_block_dec(void *context, const void *value_le, unsigned count)
 358{
 359	with_runs((struct dm_space_map *) context,
 360		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
 361}
 362
 363static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
 364{
 365	__le64 v1_le, v2_le;
 366	uint64_t b1, b2;
 367	uint32_t t;
 368
 369	memcpy(&v1_le, value1_le, sizeof(v1_le));
 370	memcpy(&v2_le, value2_le, sizeof(v2_le));
 371	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
 372	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
 373
 374	return b1 == b2;
 375}
 376
 377static void subtree_inc(void *context, const void *value, unsigned count)
 378{
 379	struct dm_btree_info *info = context;
 380	const __le64 *root_le = value;
 381	unsigned i;
 382
 383	for (i = 0; i < count; i++, root_le++)
 384		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
 385}
 386
 387static void subtree_dec(void *context, const void *value, unsigned count)
 388{
 389	struct dm_btree_info *info = context;
 390	const __le64 *root_le = value;
 391	unsigned i;
 392
 393	for (i = 0; i < count; i++, root_le++)
 394		if (dm_btree_del(info, le64_to_cpu(*root_le)))
 395			DMERR("btree delete failed");
 396}
 397
 398static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
 399{
 400	__le64 v1_le, v2_le;
 
 401	memcpy(&v1_le, value1_le, sizeof(v1_le));
 402	memcpy(&v2_le, value2_le, sizeof(v2_le));
 403
 404	return v1_le == v2_le;
 405}
 406
 407/*----------------------------------------------------------------*/
 408
 409/*
 410 * Variant that is used for in-core only changes or code that
 411 * shouldn't put the pool in service on its own (e.g. commit).
 412 */
 413static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
 414	__acquires(pmd->root_lock)
 415{
 416	down_write(&pmd->root_lock);
 417}
 418
 419static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
 420{
 421	pmd_write_lock_in_core(pmd);
 422	if (unlikely(!pmd->in_service))
 423		pmd->in_service = true;
 424}
 425
 426static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
 427	__releases(pmd->root_lock)
 428{
 429	up_write(&pmd->root_lock);
 430}
 431
 432/*----------------------------------------------------------------*/
 433
 434static int superblock_lock_zero(struct dm_pool_metadata *pmd,
 435				struct dm_block **sblock)
 436{
 437	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 438				     &sb_validator, sblock);
 439}
 440
 441static int superblock_lock(struct dm_pool_metadata *pmd,
 442			   struct dm_block **sblock)
 443{
 444	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 445				&sb_validator, sblock);
 446}
 447
 448static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
 449{
 450	int r;
 451	unsigned i;
 452	struct dm_block *b;
 453	__le64 *data_le, zero = cpu_to_le64(0);
 454	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
 455
 456	/*
 457	 * We can't use a validator here - it may be all zeroes.
 458	 */
 459	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
 460	if (r)
 461		return r;
 462
 463	data_le = dm_block_data(b);
 464	*result = 1;
 465	for (i = 0; i < block_size; i++) {
 466		if (data_le[i] != zero) {
 467			*result = 0;
 468			break;
 469		}
 470	}
 471
 472	dm_bm_unlock(b);
 473
 474	return 0;
 475}
 476
 477static void __setup_btree_details(struct dm_pool_metadata *pmd)
 478{
 479	pmd->info.tm = pmd->tm;
 480	pmd->info.levels = 2;
 481	pmd->info.value_type.context = pmd->data_sm;
 482	pmd->info.value_type.size = sizeof(__le64);
 483	pmd->info.value_type.inc = data_block_inc;
 484	pmd->info.value_type.dec = data_block_dec;
 485	pmd->info.value_type.equal = data_block_equal;
 486
 487	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
 488	pmd->nb_info.tm = pmd->nb_tm;
 489
 490	pmd->tl_info.tm = pmd->tm;
 491	pmd->tl_info.levels = 1;
 492	pmd->tl_info.value_type.context = &pmd->bl_info;
 493	pmd->tl_info.value_type.size = sizeof(__le64);
 494	pmd->tl_info.value_type.inc = subtree_inc;
 495	pmd->tl_info.value_type.dec = subtree_dec;
 496	pmd->tl_info.value_type.equal = subtree_equal;
 497
 498	pmd->bl_info.tm = pmd->tm;
 499	pmd->bl_info.levels = 1;
 500	pmd->bl_info.value_type.context = pmd->data_sm;
 501	pmd->bl_info.value_type.size = sizeof(__le64);
 502	pmd->bl_info.value_type.inc = data_block_inc;
 503	pmd->bl_info.value_type.dec = data_block_dec;
 504	pmd->bl_info.value_type.equal = data_block_equal;
 505
 506	pmd->details_info.tm = pmd->tm;
 507	pmd->details_info.levels = 1;
 508	pmd->details_info.value_type.context = NULL;
 509	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
 510	pmd->details_info.value_type.inc = NULL;
 511	pmd->details_info.value_type.dec = NULL;
 512	pmd->details_info.value_type.equal = NULL;
 513}
 514
 515static int save_sm_roots(struct dm_pool_metadata *pmd)
 516{
 517	int r;
 518	size_t len;
 519
 520	r = dm_sm_root_size(pmd->metadata_sm, &len);
 521	if (r < 0)
 522		return r;
 523
 524	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
 525	if (r < 0)
 526		return r;
 527
 528	r = dm_sm_root_size(pmd->data_sm, &len);
 529	if (r < 0)
 530		return r;
 531
 532	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
 533}
 534
 535static void copy_sm_roots(struct dm_pool_metadata *pmd,
 536			  struct thin_disk_superblock *disk)
 537{
 538	memcpy(&disk->metadata_space_map_root,
 539	       &pmd->metadata_space_map_root,
 540	       sizeof(pmd->metadata_space_map_root));
 541
 542	memcpy(&disk->data_space_map_root,
 543	       &pmd->data_space_map_root,
 544	       sizeof(pmd->data_space_map_root));
 545}
 546
 547static int __write_initial_superblock(struct dm_pool_metadata *pmd)
 548{
 549	int r;
 550	struct dm_block *sblock;
 551	struct thin_disk_superblock *disk_super;
 552	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
 553
 554	if (bdev_size > THIN_METADATA_MAX_SECTORS)
 555		bdev_size = THIN_METADATA_MAX_SECTORS;
 556
 557	r = dm_sm_commit(pmd->data_sm);
 558	if (r < 0)
 559		return r;
 560
 561	r = dm_tm_pre_commit(pmd->tm);
 562	if (r < 0)
 563		return r;
 564
 565	r = save_sm_roots(pmd);
 566	if (r < 0)
 567		return r;
 568
 569	r = superblock_lock_zero(pmd, &sblock);
 570	if (r)
 571		return r;
 572
 573	disk_super = dm_block_data(sblock);
 574	disk_super->flags = 0;
 575	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
 576	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
 577	disk_super->version = cpu_to_le32(THIN_VERSION);
 578	disk_super->time = 0;
 579	disk_super->trans_id = 0;
 580	disk_super->held_root = 0;
 581
 582	copy_sm_roots(pmd, disk_super);
 583
 584	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 585	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 586	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
 587	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
 588	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
 589
 590	return dm_tm_commit(pmd->tm, sblock);
 591}
 592
 593static int __format_metadata(struct dm_pool_metadata *pmd)
 594{
 595	int r;
 596
 597	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 598				 &pmd->tm, &pmd->metadata_sm);
 599	if (r < 0) {
 
 
 600		DMERR("tm_create_with_sm failed");
 601		return r;
 602	}
 603
 604	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
 605	if (IS_ERR(pmd->data_sm)) {
 606		DMERR("sm_disk_create failed");
 607		r = PTR_ERR(pmd->data_sm);
 
 608		goto bad_cleanup_tm;
 609	}
 610
 611	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 612	if (!pmd->nb_tm) {
 613		DMERR("could not create non-blocking clone tm");
 614		r = -ENOMEM;
 615		goto bad_cleanup_data_sm;
 616	}
 617
 618	__setup_btree_details(pmd);
 619
 620	r = dm_btree_empty(&pmd->info, &pmd->root);
 621	if (r < 0)
 622		goto bad_cleanup_nb_tm;
 623
 624	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
 625	if (r < 0) {
 626		DMERR("couldn't create devices root");
 627		goto bad_cleanup_nb_tm;
 628	}
 629
 630	r = __write_initial_superblock(pmd);
 631	if (r)
 632		goto bad_cleanup_nb_tm;
 633
 634	return 0;
 635
 636bad_cleanup_nb_tm:
 637	dm_tm_destroy(pmd->nb_tm);
 
 638bad_cleanup_data_sm:
 639	dm_sm_destroy(pmd->data_sm);
 
 640bad_cleanup_tm:
 641	dm_tm_destroy(pmd->tm);
 
 642	dm_sm_destroy(pmd->metadata_sm);
 
 643
 644	return r;
 645}
 646
 647static int __check_incompat_features(struct thin_disk_superblock *disk_super,
 648				     struct dm_pool_metadata *pmd)
 649{
 650	uint32_t features;
 651
 652	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
 653	if (features) {
 654		DMERR("could not access metadata due to unsupported optional features (%lx).",
 655		      (unsigned long)features);
 656		return -EINVAL;
 657	}
 658
 659	/*
 660	 * Check for read-only metadata to skip the following RDWR checks.
 661	 */
 662	if (bdev_read_only(pmd->bdev))
 663		return 0;
 664
 665	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
 666	if (features) {
 667		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
 668		      (unsigned long)features);
 669		return -EINVAL;
 670	}
 671
 672	return 0;
 673}
 674
 675static int __open_metadata(struct dm_pool_metadata *pmd)
 676{
 677	int r;
 678	struct dm_block *sblock;
 679	struct thin_disk_superblock *disk_super;
 680
 681	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 682			    &sb_validator, &sblock);
 683	if (r < 0) {
 684		DMERR("couldn't read superblock");
 685		return r;
 686	}
 687
 688	disk_super = dm_block_data(sblock);
 689
 690	/* Verify the data block size hasn't changed */
 691	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
 692		DMERR("changing the data block size (from %u to %llu) is not supported",
 693		      le32_to_cpu(disk_super->data_block_size),
 694		      (unsigned long long)pmd->data_block_size);
 695		r = -EINVAL;
 696		goto bad_unlock_sblock;
 697	}
 698
 699	r = __check_incompat_features(disk_super, pmd);
 700	if (r < 0)
 701		goto bad_unlock_sblock;
 702
 703	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 704			       disk_super->metadata_space_map_root,
 705			       sizeof(disk_super->metadata_space_map_root),
 706			       &pmd->tm, &pmd->metadata_sm);
 707	if (r < 0) {
 
 
 708		DMERR("tm_open_with_sm failed");
 709		goto bad_unlock_sblock;
 710	}
 711
 712	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
 713				       sizeof(disk_super->data_space_map_root));
 714	if (IS_ERR(pmd->data_sm)) {
 715		DMERR("sm_disk_open failed");
 716		r = PTR_ERR(pmd->data_sm);
 
 717		goto bad_cleanup_tm;
 718	}
 719
 720	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 721	if (!pmd->nb_tm) {
 722		DMERR("could not create non-blocking clone tm");
 723		r = -ENOMEM;
 724		goto bad_cleanup_data_sm;
 725	}
 726
 727	/*
 728	 * For pool metadata opening process, root setting is redundant
 729	 * because it will be set again in __begin_transaction(). But dm
 730	 * pool aborting process really needs to get last transaction's
 731	 * root to avoid accessing broken btree.
 732	 */
 733	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 734	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 735
 736	__setup_btree_details(pmd);
 737	dm_bm_unlock(sblock);
 738
 739	return 0;
 740
 741bad_cleanup_data_sm:
 742	dm_sm_destroy(pmd->data_sm);
 
 743bad_cleanup_tm:
 744	dm_tm_destroy(pmd->tm);
 
 745	dm_sm_destroy(pmd->metadata_sm);
 
 746bad_unlock_sblock:
 747	dm_bm_unlock(sblock);
 748
 749	return r;
 750}
 751
 752static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
 753{
 754	int r, unformatted;
 755
 756	r = __superblock_all_zeroes(pmd->bm, &unformatted);
 757	if (r)
 758		return r;
 759
 760	if (unformatted)
 761		return format_device ? __format_metadata(pmd) : -EPERM;
 762
 763	return __open_metadata(pmd);
 764}
 765
 766static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
 767{
 768	int r;
 769
 770	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
 771					  THIN_MAX_CONCURRENT_LOCKS);
 772	if (IS_ERR(pmd->bm)) {
 773		DMERR("could not create block manager");
 774		r = PTR_ERR(pmd->bm);
 775		pmd->bm = NULL;
 776		return r;
 777	}
 778
 779	r = __open_or_format_metadata(pmd, format_device);
 780	if (r) {
 781		dm_block_manager_destroy(pmd->bm);
 782		pmd->bm = NULL;
 783	}
 784
 785	return r;
 786}
 787
 788static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
 789					      bool destroy_bm)
 790{
 791	dm_sm_destroy(pmd->data_sm);
 
 792	dm_sm_destroy(pmd->metadata_sm);
 
 793	dm_tm_destroy(pmd->nb_tm);
 
 794	dm_tm_destroy(pmd->tm);
 
 795	if (destroy_bm)
 796		dm_block_manager_destroy(pmd->bm);
 797}
 798
 799static int __begin_transaction(struct dm_pool_metadata *pmd)
 800{
 801	int r;
 802	struct thin_disk_superblock *disk_super;
 803	struct dm_block *sblock;
 804
 805	/*
 806	 * We re-read the superblock every time.  Shouldn't need to do this
 807	 * really.
 808	 */
 809	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 810			    &sb_validator, &sblock);
 811	if (r)
 812		return r;
 813
 814	disk_super = dm_block_data(sblock);
 815	pmd->time = le32_to_cpu(disk_super->time);
 816	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 817	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 818	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
 819	pmd->flags = le32_to_cpu(disk_super->flags);
 820	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
 821
 822	dm_bm_unlock(sblock);
 823	return 0;
 824}
 825
 826static int __write_changed_details(struct dm_pool_metadata *pmd)
 827{
 828	int r;
 829	struct dm_thin_device *td, *tmp;
 830	struct disk_device_details details;
 831	uint64_t key;
 832
 833	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 834		if (!td->changed)
 835			continue;
 836
 837		key = td->id;
 838
 839		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
 840		details.transaction_id = cpu_to_le64(td->transaction_id);
 841		details.creation_time = cpu_to_le32(td->creation_time);
 842		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
 843		__dm_bless_for_disk(&details);
 844
 845		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
 846				    &key, &details, &pmd->details_root);
 847		if (r)
 848			return r;
 849
 850		if (td->open_count)
 851			td->changed = false;
 852		else {
 853			list_del(&td->list);
 854			kfree(td);
 855		}
 856	}
 857
 858	return 0;
 859}
 860
 861static int __commit_transaction(struct dm_pool_metadata *pmd)
 862{
 863	int r;
 864	struct thin_disk_superblock *disk_super;
 865	struct dm_block *sblock;
 866
 867	/*
 868	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
 869	 */
 870	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
 871	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
 872
 873	if (unlikely(!pmd->in_service))
 874		return 0;
 875
 876	if (pmd->pre_commit_fn) {
 877		r = pmd->pre_commit_fn(pmd->pre_commit_context);
 878		if (r < 0) {
 879			DMERR("pre-commit callback failed");
 880			return r;
 881		}
 882	}
 883
 884	r = __write_changed_details(pmd);
 885	if (r < 0)
 886		return r;
 887
 888	r = dm_sm_commit(pmd->data_sm);
 889	if (r < 0)
 890		return r;
 891
 892	r = dm_tm_pre_commit(pmd->tm);
 893	if (r < 0)
 894		return r;
 895
 896	r = save_sm_roots(pmd);
 897	if (r < 0)
 898		return r;
 899
 900	r = superblock_lock(pmd, &sblock);
 901	if (r)
 902		return r;
 903
 904	disk_super = dm_block_data(sblock);
 905	disk_super->time = cpu_to_le32(pmd->time);
 906	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 907	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 908	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
 909	disk_super->flags = cpu_to_le32(pmd->flags);
 910
 911	copy_sm_roots(pmd, disk_super);
 912
 913	return dm_tm_commit(pmd->tm, sblock);
 914}
 915
 916static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
 917{
 918	int r;
 919	dm_block_t total;
 920	dm_block_t max_blocks = 4096; /* 16M */
 921
 922	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
 923	if (r) {
 924		DMERR("could not get size of metadata device");
 925		pmd->metadata_reserve = max_blocks;
 926	} else
 927		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
 928}
 929
 930struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
 931					       sector_t data_block_size,
 932					       bool format_device)
 933{
 934	int r;
 935	struct dm_pool_metadata *pmd;
 936
 937	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
 938	if (!pmd) {
 939		DMERR("could not allocate metadata struct");
 940		return ERR_PTR(-ENOMEM);
 941	}
 942
 943	init_rwsem(&pmd->root_lock);
 944	pmd->time = 0;
 945	INIT_LIST_HEAD(&pmd->thin_devices);
 946	pmd->fail_io = false;
 947	pmd->in_service = false;
 948	pmd->bdev = bdev;
 949	pmd->data_block_size = data_block_size;
 950	pmd->pre_commit_fn = NULL;
 951	pmd->pre_commit_context = NULL;
 952
 953	r = __create_persistent_data_objects(pmd, format_device);
 954	if (r) {
 955		kfree(pmd);
 956		return ERR_PTR(r);
 957	}
 958
 959	r = __begin_transaction(pmd);
 960	if (r < 0) {
 961		if (dm_pool_metadata_close(pmd) < 0)
 962			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 963		return ERR_PTR(r);
 964	}
 965
 966	__set_metadata_reserve(pmd);
 967
 968	return pmd;
 969}
 970
 971int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
 972{
 973	int r;
 974	unsigned open_devices = 0;
 975	struct dm_thin_device *td, *tmp;
 976
 977	down_read(&pmd->root_lock);
 978	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 979		if (td->open_count)
 980			open_devices++;
 981		else {
 982			list_del(&td->list);
 983			kfree(td);
 984		}
 985	}
 986	up_read(&pmd->root_lock);
 987
 988	if (open_devices) {
 989		DMERR("attempt to close pmd when %u device(s) are still open",
 990		       open_devices);
 991		return -EBUSY;
 992	}
 993
 994	pmd_write_lock_in_core(pmd);
 995	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
 996		r = __commit_transaction(pmd);
 997		if (r < 0)
 998			DMWARN("%s: __commit_transaction() failed, error = %d",
 999			       __func__, r);
1000	}
1001	pmd_write_unlock(pmd);
1002	if (!pmd->fail_io)
1003		__destroy_persistent_data_objects(pmd, true);
1004
1005	kfree(pmd);
1006	return 0;
1007}
1008
1009/*
1010 * __open_device: Returns @td corresponding to device with id @dev,
1011 * creating it if @create is set and incrementing @td->open_count.
1012 * On failure, @td is undefined.
1013 */
1014static int __open_device(struct dm_pool_metadata *pmd,
1015			 dm_thin_id dev, int create,
1016			 struct dm_thin_device **td)
1017{
1018	int r, changed = 0;
1019	struct dm_thin_device *td2;
1020	uint64_t key = dev;
1021	struct disk_device_details details_le;
1022
1023	/*
1024	 * If the device is already open, return it.
1025	 */
1026	list_for_each_entry(td2, &pmd->thin_devices, list)
1027		if (td2->id == dev) {
1028			/*
1029			 * May not create an already-open device.
1030			 */
1031			if (create)
1032				return -EEXIST;
1033
1034			td2->open_count++;
1035			*td = td2;
1036			return 0;
1037		}
1038
1039	/*
1040	 * Check the device exists.
1041	 */
1042	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1043			    &key, &details_le);
1044	if (r) {
1045		if (r != -ENODATA || !create)
1046			return r;
1047
1048		/*
1049		 * Create new device.
1050		 */
1051		changed = 1;
1052		details_le.mapped_blocks = 0;
1053		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1054		details_le.creation_time = cpu_to_le32(pmd->time);
1055		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1056	}
1057
1058	*td = kmalloc(sizeof(**td), GFP_NOIO);
1059	if (!*td)
1060		return -ENOMEM;
1061
1062	(*td)->pmd = pmd;
1063	(*td)->id = dev;
1064	(*td)->open_count = 1;
1065	(*td)->changed = changed;
1066	(*td)->aborted_with_changes = false;
1067	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1068	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1069	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1070	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1071
1072	list_add(&(*td)->list, &pmd->thin_devices);
1073
1074	return 0;
1075}
1076
1077static void __close_device(struct dm_thin_device *td)
1078{
1079	--td->open_count;
1080}
1081
1082static int __create_thin(struct dm_pool_metadata *pmd,
1083			 dm_thin_id dev)
1084{
1085	int r;
1086	dm_block_t dev_root;
1087	uint64_t key = dev;
1088	struct dm_thin_device *td;
1089	__le64 value;
1090
1091	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1092			    &key, NULL);
1093	if (!r)
1094		return -EEXIST;
1095
1096	/*
1097	 * Create an empty btree for the mappings.
1098	 */
1099	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1100	if (r)
1101		return r;
1102
1103	/*
1104	 * Insert it into the main mapping tree.
1105	 */
1106	value = cpu_to_le64(dev_root);
1107	__dm_bless_for_disk(&value);
1108	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1109	if (r) {
1110		dm_btree_del(&pmd->bl_info, dev_root);
1111		return r;
1112	}
1113
1114	r = __open_device(pmd, dev, 1, &td);
1115	if (r) {
1116		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1117		dm_btree_del(&pmd->bl_info, dev_root);
1118		return r;
1119	}
1120	__close_device(td);
1121
1122	return r;
1123}
1124
1125int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1126{
1127	int r = -EINVAL;
1128
1129	pmd_write_lock(pmd);
1130	if (!pmd->fail_io)
1131		r = __create_thin(pmd, dev);
1132	pmd_write_unlock(pmd);
1133
1134	return r;
1135}
1136
1137static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1138				  struct dm_thin_device *snap,
1139				  dm_thin_id origin, uint32_t time)
1140{
1141	int r;
1142	struct dm_thin_device *td;
1143
1144	r = __open_device(pmd, origin, 0, &td);
1145	if (r)
1146		return r;
1147
1148	td->changed = true;
1149	td->snapshotted_time = time;
1150
1151	snap->mapped_blocks = td->mapped_blocks;
1152	snap->snapshotted_time = time;
1153	__close_device(td);
1154
1155	return 0;
1156}
1157
1158static int __create_snap(struct dm_pool_metadata *pmd,
1159			 dm_thin_id dev, dm_thin_id origin)
1160{
1161	int r;
1162	dm_block_t origin_root;
1163	uint64_t key = origin, dev_key = dev;
1164	struct dm_thin_device *td;
1165	__le64 value;
1166
1167	/* check this device is unused */
1168	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1169			    &dev_key, NULL);
1170	if (!r)
1171		return -EEXIST;
1172
1173	/* find the mapping tree for the origin */
1174	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1175	if (r)
1176		return r;
1177	origin_root = le64_to_cpu(value);
1178
1179	/* clone the origin, an inc will do */
1180	dm_tm_inc(pmd->tm, origin_root);
1181
1182	/* insert into the main mapping tree */
1183	value = cpu_to_le64(origin_root);
1184	__dm_bless_for_disk(&value);
1185	key = dev;
1186	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1187	if (r) {
1188		dm_tm_dec(pmd->tm, origin_root);
1189		return r;
1190	}
1191
1192	pmd->time++;
1193
1194	r = __open_device(pmd, dev, 1, &td);
1195	if (r)
1196		goto bad;
1197
1198	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1199	__close_device(td);
1200
1201	if (r)
1202		goto bad;
1203
1204	return 0;
1205
1206bad:
1207	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1208	dm_btree_remove(&pmd->details_info, pmd->details_root,
1209			&key, &pmd->details_root);
1210	return r;
1211}
1212
1213int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1214				 dm_thin_id dev,
1215				 dm_thin_id origin)
1216{
1217	int r = -EINVAL;
1218
1219	pmd_write_lock(pmd);
1220	if (!pmd->fail_io)
1221		r = __create_snap(pmd, dev, origin);
1222	pmd_write_unlock(pmd);
1223
1224	return r;
1225}
1226
1227static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1228{
1229	int r;
1230	uint64_t key = dev;
1231	struct dm_thin_device *td;
1232
1233	/* TODO: failure should mark the transaction invalid */
1234	r = __open_device(pmd, dev, 0, &td);
1235	if (r)
1236		return r;
1237
1238	if (td->open_count > 1) {
1239		__close_device(td);
1240		return -EBUSY;
1241	}
1242
1243	list_del(&td->list);
1244	kfree(td);
1245	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1246			    &key, &pmd->details_root);
1247	if (r)
1248		return r;
1249
1250	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1251	if (r)
1252		return r;
1253
1254	return 0;
1255}
1256
1257int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1258			       dm_thin_id dev)
1259{
1260	int r = -EINVAL;
1261
1262	pmd_write_lock(pmd);
1263	if (!pmd->fail_io)
1264		r = __delete_device(pmd, dev);
1265	pmd_write_unlock(pmd);
1266
1267	return r;
1268}
1269
1270int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1271					uint64_t current_id,
1272					uint64_t new_id)
1273{
1274	int r = -EINVAL;
1275
1276	pmd_write_lock(pmd);
1277
1278	if (pmd->fail_io)
1279		goto out;
1280
1281	if (pmd->trans_id != current_id) {
1282		DMERR("mismatched transaction id");
1283		goto out;
1284	}
1285
1286	pmd->trans_id = new_id;
1287	r = 0;
1288
1289out:
1290	pmd_write_unlock(pmd);
1291
1292	return r;
1293}
1294
1295int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1296					uint64_t *result)
1297{
1298	int r = -EINVAL;
1299
1300	down_read(&pmd->root_lock);
1301	if (!pmd->fail_io) {
1302		*result = pmd->trans_id;
1303		r = 0;
1304	}
1305	up_read(&pmd->root_lock);
1306
1307	return r;
1308}
1309
1310static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1311{
1312	int r, inc;
1313	struct thin_disk_superblock *disk_super;
1314	struct dm_block *copy, *sblock;
1315	dm_block_t held_root;
1316
1317	/*
1318	 * We commit to ensure the btree roots which we increment in a
1319	 * moment are up to date.
1320	 */
1321	r = __commit_transaction(pmd);
1322	if (r < 0) {
1323		DMWARN("%s: __commit_transaction() failed, error = %d",
1324		       __func__, r);
1325		return r;
1326	}
1327
1328	/*
1329	 * Copy the superblock.
1330	 */
1331	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1332	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1333			       &sb_validator, &copy, &inc);
1334	if (r)
1335		return r;
1336
1337	BUG_ON(!inc);
1338
1339	held_root = dm_block_location(copy);
1340	disk_super = dm_block_data(copy);
1341
1342	if (le64_to_cpu(disk_super->held_root)) {
1343		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1344
1345		dm_tm_dec(pmd->tm, held_root);
1346		dm_tm_unlock(pmd->tm, copy);
1347		return -EBUSY;
1348	}
1349
1350	/*
1351	 * Wipe the spacemap since we're not publishing this.
1352	 */
1353	memset(&disk_super->data_space_map_root, 0,
1354	       sizeof(disk_super->data_space_map_root));
1355	memset(&disk_super->metadata_space_map_root, 0,
1356	       sizeof(disk_super->metadata_space_map_root));
1357
1358	/*
1359	 * Increment the data structures that need to be preserved.
1360	 */
1361	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1362	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1363	dm_tm_unlock(pmd->tm, copy);
1364
1365	/*
1366	 * Write the held root into the superblock.
1367	 */
1368	r = superblock_lock(pmd, &sblock);
1369	if (r) {
1370		dm_tm_dec(pmd->tm, held_root);
1371		return r;
1372	}
1373
1374	disk_super = dm_block_data(sblock);
1375	disk_super->held_root = cpu_to_le64(held_root);
1376	dm_bm_unlock(sblock);
1377	return 0;
1378}
1379
1380int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1381{
1382	int r = -EINVAL;
1383
1384	pmd_write_lock(pmd);
1385	if (!pmd->fail_io)
1386		r = __reserve_metadata_snap(pmd);
1387	pmd_write_unlock(pmd);
1388
1389	return r;
1390}
1391
1392static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1393{
1394	int r;
1395	struct thin_disk_superblock *disk_super;
1396	struct dm_block *sblock, *copy;
1397	dm_block_t held_root;
1398
1399	r = superblock_lock(pmd, &sblock);
1400	if (r)
1401		return r;
1402
1403	disk_super = dm_block_data(sblock);
1404	held_root = le64_to_cpu(disk_super->held_root);
1405	disk_super->held_root = cpu_to_le64(0);
1406
1407	dm_bm_unlock(sblock);
1408
1409	if (!held_root) {
1410		DMWARN("No pool metadata snapshot found: nothing to release.");
1411		return -EINVAL;
1412	}
1413
1414	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1415	if (r)
1416		return r;
1417
1418	disk_super = dm_block_data(copy);
1419	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1420	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1421	dm_sm_dec_block(pmd->metadata_sm, held_root);
1422
1423	dm_tm_unlock(pmd->tm, copy);
1424
1425	return 0;
1426}
1427
1428int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1429{
1430	int r = -EINVAL;
1431
1432	pmd_write_lock(pmd);
1433	if (!pmd->fail_io)
1434		r = __release_metadata_snap(pmd);
1435	pmd_write_unlock(pmd);
1436
1437	return r;
1438}
1439
1440static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1441			       dm_block_t *result)
1442{
1443	int r;
1444	struct thin_disk_superblock *disk_super;
1445	struct dm_block *sblock;
1446
1447	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1448			    &sb_validator, &sblock);
1449	if (r)
1450		return r;
1451
1452	disk_super = dm_block_data(sblock);
1453	*result = le64_to_cpu(disk_super->held_root);
1454
1455	dm_bm_unlock(sblock);
1456
1457	return 0;
1458}
1459
1460int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1461			      dm_block_t *result)
1462{
1463	int r = -EINVAL;
1464
1465	down_read(&pmd->root_lock);
1466	if (!pmd->fail_io)
1467		r = __get_metadata_snap(pmd, result);
1468	up_read(&pmd->root_lock);
1469
1470	return r;
1471}
1472
1473int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1474			     struct dm_thin_device **td)
1475{
1476	int r = -EINVAL;
1477
1478	pmd_write_lock_in_core(pmd);
1479	if (!pmd->fail_io)
1480		r = __open_device(pmd, dev, 0, td);
1481	pmd_write_unlock(pmd);
1482
1483	return r;
1484}
1485
1486int dm_pool_close_thin_device(struct dm_thin_device *td)
1487{
1488	pmd_write_lock_in_core(td->pmd);
1489	__close_device(td);
1490	pmd_write_unlock(td->pmd);
1491
1492	return 0;
1493}
1494
1495dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1496{
1497	return td->id;
1498}
1499
1500/*
1501 * Check whether @time (of block creation) is older than @td's last snapshot.
1502 * If so then the associated block is shared with the last snapshot device.
1503 * Any block on a device created *after* the device last got snapshotted is
1504 * necessarily not shared.
1505 */
1506static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1507{
1508	return td->snapshotted_time > time;
1509}
1510
1511static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1512				 struct dm_thin_lookup_result *result)
1513{
1514	uint64_t block_time = 0;
1515	dm_block_t exception_block;
1516	uint32_t exception_time;
1517
1518	block_time = le64_to_cpu(value);
1519	unpack_block_time(block_time, &exception_block, &exception_time);
1520	result->block = exception_block;
1521	result->shared = __snapshotted_since(td, exception_time);
1522}
1523
1524static int __find_block(struct dm_thin_device *td, dm_block_t block,
1525			int can_issue_io, struct dm_thin_lookup_result *result)
1526{
1527	int r;
1528	__le64 value;
1529	struct dm_pool_metadata *pmd = td->pmd;
1530	dm_block_t keys[2] = { td->id, block };
1531	struct dm_btree_info *info;
1532
1533	if (can_issue_io) {
1534		info = &pmd->info;
1535	} else
1536		info = &pmd->nb_info;
1537
1538	r = dm_btree_lookup(info, pmd->root, keys, &value);
1539	if (!r)
1540		unpack_lookup_result(td, value, result);
1541
1542	return r;
1543}
1544
1545int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1546		       int can_issue_io, struct dm_thin_lookup_result *result)
1547{
1548	int r;
1549	struct dm_pool_metadata *pmd = td->pmd;
1550
1551	down_read(&pmd->root_lock);
1552	if (pmd->fail_io) {
1553		up_read(&pmd->root_lock);
1554		return -EINVAL;
1555	}
1556
1557	r = __find_block(td, block, can_issue_io, result);
1558
1559	up_read(&pmd->root_lock);
1560	return r;
1561}
1562
1563static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1564					  dm_block_t *vblock,
1565					  struct dm_thin_lookup_result *result)
1566{
1567	int r;
1568	__le64 value;
1569	struct dm_pool_metadata *pmd = td->pmd;
1570	dm_block_t keys[2] = { td->id, block };
1571
1572	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1573	if (!r)
1574		unpack_lookup_result(td, value, result);
1575
1576	return r;
1577}
1578
1579static int __find_mapped_range(struct dm_thin_device *td,
1580			       dm_block_t begin, dm_block_t end,
1581			       dm_block_t *thin_begin, dm_block_t *thin_end,
1582			       dm_block_t *pool_begin, bool *maybe_shared)
1583{
1584	int r;
1585	dm_block_t pool_end;
1586	struct dm_thin_lookup_result lookup;
1587
1588	if (end < begin)
1589		return -ENODATA;
1590
1591	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1592	if (r)
1593		return r;
1594
1595	if (begin >= end)
1596		return -ENODATA;
1597
1598	*thin_begin = begin;
1599	*pool_begin = lookup.block;
1600	*maybe_shared = lookup.shared;
1601
1602	begin++;
1603	pool_end = *pool_begin + 1;
1604	while (begin != end) {
1605		r = __find_block(td, begin, true, &lookup);
1606		if (r) {
1607			if (r == -ENODATA)
1608				break;
1609			else
1610				return r;
1611		}
1612
1613		if ((lookup.block != pool_end) ||
1614		    (lookup.shared != *maybe_shared))
1615			break;
1616
1617		pool_end++;
1618		begin++;
1619	}
1620
1621	*thin_end = begin;
1622	return 0;
1623}
1624
1625int dm_thin_find_mapped_range(struct dm_thin_device *td,
1626			      dm_block_t begin, dm_block_t end,
1627			      dm_block_t *thin_begin, dm_block_t *thin_end,
1628			      dm_block_t *pool_begin, bool *maybe_shared)
1629{
1630	int r = -EINVAL;
1631	struct dm_pool_metadata *pmd = td->pmd;
1632
1633	down_read(&pmd->root_lock);
1634	if (!pmd->fail_io) {
1635		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1636					pool_begin, maybe_shared);
1637	}
1638	up_read(&pmd->root_lock);
1639
1640	return r;
1641}
1642
1643static int __insert(struct dm_thin_device *td, dm_block_t block,
1644		    dm_block_t data_block)
1645{
1646	int r, inserted;
1647	__le64 value;
1648	struct dm_pool_metadata *pmd = td->pmd;
1649	dm_block_t keys[2] = { td->id, block };
1650
1651	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1652	__dm_bless_for_disk(&value);
1653
1654	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1655				   &pmd->root, &inserted);
1656	if (r)
1657		return r;
1658
1659	td->changed = true;
1660	if (inserted)
1661		td->mapped_blocks++;
1662
1663	return 0;
1664}
1665
1666int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1667			 dm_block_t data_block)
1668{
1669	int r = -EINVAL;
1670
1671	pmd_write_lock(td->pmd);
1672	if (!td->pmd->fail_io)
1673		r = __insert(td, block, data_block);
1674	pmd_write_unlock(td->pmd);
1675
1676	return r;
1677}
1678
1679static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1680{
1681	int r;
1682	unsigned count, total_count = 0;
1683	struct dm_pool_metadata *pmd = td->pmd;
1684	dm_block_t keys[1] = { td->id };
1685	__le64 value;
1686	dm_block_t mapping_root;
1687
1688	/*
1689	 * Find the mapping tree
1690	 */
1691	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1692	if (r)
1693		return r;
1694
1695	/*
1696	 * Remove from the mapping tree, taking care to inc the
1697	 * ref count so it doesn't get deleted.
1698	 */
1699	mapping_root = le64_to_cpu(value);
1700	dm_tm_inc(pmd->tm, mapping_root);
1701	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1702	if (r)
1703		return r;
1704
1705	/*
1706	 * Remove leaves stops at the first unmapped entry, so we have to
1707	 * loop round finding mapped ranges.
1708	 */
1709	while (begin < end) {
1710		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1711		if (r == -ENODATA)
1712			break;
1713
1714		if (r)
1715			return r;
1716
1717		if (begin >= end)
1718			break;
1719
1720		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1721		if (r)
1722			return r;
1723
1724		total_count += count;
1725	}
1726
1727	td->mapped_blocks -= total_count;
1728	td->changed = true;
1729
1730	/*
1731	 * Reinsert the mapping tree.
1732	 */
1733	value = cpu_to_le64(mapping_root);
1734	__dm_bless_for_disk(&value);
1735	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1736}
1737
1738int dm_thin_remove_range(struct dm_thin_device *td,
1739			 dm_block_t begin, dm_block_t end)
1740{
1741	int r = -EINVAL;
1742
1743	pmd_write_lock(td->pmd);
1744	if (!td->pmd->fail_io)
1745		r = __remove_range(td, begin, end);
1746	pmd_write_unlock(td->pmd);
1747
1748	return r;
1749}
1750
1751int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1752{
1753	int r;
1754	uint32_t ref_count;
1755
1756	down_read(&pmd->root_lock);
1757	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1758	if (!r)
1759		*result = (ref_count > 1);
 
 
1760	up_read(&pmd->root_lock);
1761
1762	return r;
1763}
1764
1765int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1766{
1767	int r = 0;
1768
1769	pmd_write_lock(pmd);
1770	r = dm_sm_inc_blocks(pmd->data_sm, b, e);
 
1771	pmd_write_unlock(pmd);
1772
1773	return r;
1774}
1775
1776int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1777{
1778	int r = 0;
1779
1780	pmd_write_lock(pmd);
1781	r = dm_sm_dec_blocks(pmd->data_sm, b, e);
 
1782	pmd_write_unlock(pmd);
1783
1784	return r;
1785}
1786
1787bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1788{
1789	int r;
1790
1791	down_read(&td->pmd->root_lock);
1792	r = td->changed;
1793	up_read(&td->pmd->root_lock);
1794
1795	return r;
1796}
1797
1798bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1799{
1800	bool r = false;
1801	struct dm_thin_device *td, *tmp;
1802
1803	down_read(&pmd->root_lock);
1804	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1805		if (td->changed) {
1806			r = td->changed;
1807			break;
1808		}
1809	}
1810	up_read(&pmd->root_lock);
1811
1812	return r;
1813}
1814
1815bool dm_thin_aborted_changes(struct dm_thin_device *td)
1816{
1817	bool r;
1818
1819	down_read(&td->pmd->root_lock);
1820	r = td->aborted_with_changes;
1821	up_read(&td->pmd->root_lock);
1822
1823	return r;
1824}
1825
1826int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1827{
1828	int r = -EINVAL;
1829
1830	pmd_write_lock(pmd);
1831	if (!pmd->fail_io)
1832		r = dm_sm_new_block(pmd->data_sm, result);
1833	pmd_write_unlock(pmd);
1834
1835	return r;
1836}
1837
1838int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1839{
1840	int r = -EINVAL;
1841
1842	/*
1843	 * Care is taken to not have commit be what
1844	 * triggers putting the thin-pool in-service.
1845	 */
1846	pmd_write_lock_in_core(pmd);
1847	if (pmd->fail_io)
1848		goto out;
1849
1850	r = __commit_transaction(pmd);
1851	if (r < 0)
1852		goto out;
1853
1854	/*
1855	 * Open the next transaction.
1856	 */
1857	r = __begin_transaction(pmd);
1858out:
1859	pmd_write_unlock(pmd);
1860	return r;
1861}
1862
1863static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1864{
1865	struct dm_thin_device *td;
1866
1867	list_for_each_entry(td, &pmd->thin_devices, list)
1868		td->aborted_with_changes = td->changed;
1869}
1870
1871int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1872{
1873	int r = -EINVAL;
1874	struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1875
1876	/* fail_io is double-checked with pmd->root_lock held below */
1877	if (unlikely(pmd->fail_io))
1878		return r;
1879
1880	/*
1881	 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1882	 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1883	 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1884	 * - must take shrinker_rwsem without holding pmd->root_lock
1885	 */
1886	new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1887					 THIN_MAX_CONCURRENT_LOCKS);
1888
1889	pmd_write_lock(pmd);
1890	if (pmd->fail_io) {
1891		pmd_write_unlock(pmd);
1892		goto out;
1893	}
1894
1895	__set_abort_with_changes_flags(pmd);
 
 
1896	__destroy_persistent_data_objects(pmd, false);
1897	old_bm = pmd->bm;
1898	if (IS_ERR(new_bm)) {
1899		DMERR("could not create block manager during abort");
1900		pmd->bm = NULL;
1901		r = PTR_ERR(new_bm);
1902		goto out_unlock;
1903	}
1904
1905	pmd->bm = new_bm;
 
 
 
1906	r = __open_or_format_metadata(pmd, false);
1907	if (r) {
1908		pmd->bm = NULL;
1909		goto out_unlock;
1910	}
1911	new_bm = NULL;
1912out_unlock:
1913	if (r)
1914		pmd->fail_io = true;
1915	pmd_write_unlock(pmd);
1916	dm_block_manager_destroy(old_bm);
1917out:
1918	if (new_bm && !IS_ERR(new_bm))
1919		dm_block_manager_destroy(new_bm);
1920
1921	return r;
1922}
1923
1924int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1925{
1926	int r = -EINVAL;
1927
1928	down_read(&pmd->root_lock);
1929	if (!pmd->fail_io)
1930		r = dm_sm_get_nr_free(pmd->data_sm, result);
1931	up_read(&pmd->root_lock);
1932
1933	return r;
1934}
1935
1936int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1937					  dm_block_t *result)
1938{
1939	int r = -EINVAL;
1940
1941	down_read(&pmd->root_lock);
1942	if (!pmd->fail_io)
1943		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1944
1945	if (!r) {
1946		if (*result < pmd->metadata_reserve)
1947			*result = 0;
1948		else
1949			*result -= pmd->metadata_reserve;
1950	}
1951	up_read(&pmd->root_lock);
1952
1953	return r;
1954}
1955
1956int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1957				  dm_block_t *result)
1958{
1959	int r = -EINVAL;
1960
1961	down_read(&pmd->root_lock);
1962	if (!pmd->fail_io)
1963		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1964	up_read(&pmd->root_lock);
1965
1966	return r;
1967}
1968
1969int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1970{
1971	int r = -EINVAL;
1972
1973	down_read(&pmd->root_lock);
1974	if (!pmd->fail_io)
1975		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1976	up_read(&pmd->root_lock);
1977
1978	return r;
1979}
1980
1981int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1982{
1983	int r = -EINVAL;
1984	struct dm_pool_metadata *pmd = td->pmd;
1985
1986	down_read(&pmd->root_lock);
1987	if (!pmd->fail_io) {
1988		*result = td->mapped_blocks;
1989		r = 0;
1990	}
1991	up_read(&pmd->root_lock);
1992
1993	return r;
1994}
1995
1996static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1997{
1998	int r;
1999	__le64 value_le;
2000	dm_block_t thin_root;
2001	struct dm_pool_metadata *pmd = td->pmd;
2002
2003	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2004	if (r)
2005		return r;
2006
2007	thin_root = le64_to_cpu(value_le);
2008
2009	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2010}
2011
2012int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2013				     dm_block_t *result)
2014{
2015	int r = -EINVAL;
2016	struct dm_pool_metadata *pmd = td->pmd;
2017
2018	down_read(&pmd->root_lock);
2019	if (!pmd->fail_io)
2020		r = __highest_block(td, result);
2021	up_read(&pmd->root_lock);
2022
2023	return r;
2024}
2025
2026static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2027{
2028	int r;
2029	dm_block_t old_count;
2030
2031	r = dm_sm_get_nr_blocks(sm, &old_count);
2032	if (r)
2033		return r;
2034
2035	if (new_count == old_count)
2036		return 0;
2037
2038	if (new_count < old_count) {
2039		DMERR("cannot reduce size of space map");
2040		return -EINVAL;
2041	}
2042
2043	return dm_sm_extend(sm, new_count - old_count);
2044}
2045
2046int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2047{
2048	int r = -EINVAL;
2049
2050	pmd_write_lock(pmd);
2051	if (!pmd->fail_io)
2052		r = __resize_space_map(pmd->data_sm, new_count);
2053	pmd_write_unlock(pmd);
2054
2055	return r;
2056}
2057
2058int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2059{
2060	int r = -EINVAL;
2061
2062	pmd_write_lock(pmd);
2063	if (!pmd->fail_io) {
2064		r = __resize_space_map(pmd->metadata_sm, new_count);
2065		if (!r)
2066			__set_metadata_reserve(pmd);
2067	}
2068	pmd_write_unlock(pmd);
2069
2070	return r;
2071}
2072
2073void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2074{
2075	pmd_write_lock_in_core(pmd);
2076	dm_bm_set_read_only(pmd->bm);
2077	pmd_write_unlock(pmd);
2078}
2079
2080void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2081{
2082	pmd_write_lock_in_core(pmd);
2083	dm_bm_set_read_write(pmd->bm);
2084	pmd_write_unlock(pmd);
2085}
2086
2087int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2088					dm_block_t threshold,
2089					dm_sm_threshold_fn fn,
2090					void *context)
2091{
2092	int r = -EINVAL;
2093
2094	pmd_write_lock_in_core(pmd);
2095	if (!pmd->fail_io) {
2096		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2097						      threshold, fn, context);
2098	}
2099	pmd_write_unlock(pmd);
2100
2101	return r;
2102}
2103
2104void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2105					  dm_pool_pre_commit_fn fn,
2106					  void *context)
2107{
2108	pmd_write_lock_in_core(pmd);
2109	pmd->pre_commit_fn = fn;
2110	pmd->pre_commit_context = context;
2111	pmd_write_unlock(pmd);
2112}
2113
2114int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2115{
2116	int r = -EINVAL;
2117	struct dm_block *sblock;
2118	struct thin_disk_superblock *disk_super;
2119
2120	pmd_write_lock(pmd);
2121	if (pmd->fail_io)
2122		goto out;
2123
2124	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2125
2126	r = superblock_lock(pmd, &sblock);
2127	if (r) {
2128		DMERR("couldn't lock superblock");
2129		goto out;
2130	}
2131
2132	disk_super = dm_block_data(sblock);
2133	disk_super->flags = cpu_to_le32(pmd->flags);
2134
2135	dm_bm_unlock(sblock);
2136out:
2137	pmd_write_unlock(pmd);
2138	return r;
2139}
2140
2141bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2142{
2143	bool needs_check;
2144
2145	down_read(&pmd->root_lock);
2146	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2147	up_read(&pmd->root_lock);
2148
2149	return needs_check;
2150}
2151
2152void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2153{
2154	down_read(&pmd->root_lock);
2155	if (!pmd->fail_io)
2156		dm_tm_issue_prefetches(pmd->tm);
2157	up_read(&pmd->root_lock);
2158}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2011-2012 Red Hat, Inc.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-thin-metadata.h"
   9#include "persistent-data/dm-btree.h"
  10#include "persistent-data/dm-space-map.h"
  11#include "persistent-data/dm-space-map-disk.h"
  12#include "persistent-data/dm-transaction-manager.h"
  13
  14#include <linux/list.h>
  15#include <linux/device-mapper.h>
  16#include <linux/workqueue.h>
  17
  18/*
  19 *--------------------------------------------------------------------------
  20 * As far as the metadata goes, there is:
  21 *
  22 * - A superblock in block zero, taking up fewer than 512 bytes for
  23 *   atomic writes.
  24 *
  25 * - A space map managing the metadata blocks.
  26 *
  27 * - A space map managing the data blocks.
  28 *
  29 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
  30 *
  31 * - A hierarchical btree, with 2 levels which effectively maps (thin
  32 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
  33 *   field holding the time in the low 24 bits, and block in the top 40
  34 *   bits.
  35 *
  36 * BTrees consist solely of btree_nodes, that fill a block.  Some are
  37 * internal nodes, as such their values are a __le64 pointing to other
  38 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
  39 * smaller than the block size).  The nodes consist of the header,
  40 * followed by an array of keys, followed by an array of values.  We have
  41 * to binary search on the keys so they're all held together to help the
  42 * cpu cache.
  43 *
  44 * Space maps have 2 btrees:
  45 *
  46 * - One maps a uint64_t onto a struct index_entry.  Which points to a
  47 *   bitmap block, and has some details about how many free entries there
  48 *   are etc.
  49 *
  50 * - The bitmap blocks have a header (for the checksum).  Then the rest
  51 *   of the block is pairs of bits.  With the meaning being:
  52 *
  53 *   0 - ref count is 0
  54 *   1 - ref count is 1
  55 *   2 - ref count is 2
  56 *   3 - ref count is higher than 2
  57 *
  58 * - If the count is higher than 2 then the ref count is entered in a
  59 *   second btree that directly maps the block_address to a uint32_t ref
  60 *   count.
  61 *
  62 * The space map metadata variant doesn't have a bitmaps btree.  Instead
  63 * it has one single blocks worth of index_entries.  This avoids
  64 * recursive issues with the bitmap btree needing to allocate space in
  65 * order to insert.  With a small data block size such as 64k the
  66 * metadata support data devices that are hundreds of terrabytes.
  67 *
  68 * The space maps allocate space linearly from front to back.  Space that
  69 * is freed in a transaction is never recycled within that transaction.
  70 * To try and avoid fragmenting _free_ space the allocator always goes
  71 * back and fills in gaps.
  72 *
  73 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
  74 * from the block manager.
  75 *--------------------------------------------------------------------------
  76 */
  77
  78#define DM_MSG_PREFIX   "thin metadata"
  79
  80#define THIN_SUPERBLOCK_MAGIC 27022010
  81#define THIN_SUPERBLOCK_LOCATION 0
  82#define THIN_VERSION 2
  83#define SECTOR_TO_BLOCK_SHIFT 3
  84
  85/*
  86 * For btree insert:
  87 *  3 for btree insert +
  88 *  2 for btree lookup used within space map
  89 * For btree remove:
  90 *  2 for shadow spine +
  91 *  4 for rebalance 3 child node
  92 */
  93#define THIN_MAX_CONCURRENT_LOCKS 6
  94
  95/* This should be plenty */
  96#define SPACE_MAP_ROOT_SIZE 128
  97
  98/*
  99 * Little endian on-disk superblock and device details.
 100 */
 101struct thin_disk_superblock {
 102	__le32 csum;	/* Checksum of superblock except for this field. */
 103	__le32 flags;
 104	__le64 blocknr;	/* This block number, dm_block_t. */
 105
 106	__u8 uuid[16];
 107	__le64 magic;
 108	__le32 version;
 109	__le32 time;
 110
 111	__le64 trans_id;
 112
 113	/*
 114	 * Root held by userspace transactions.
 115	 */
 116	__le64 held_root;
 117
 118	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 119	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 120
 121	/*
 122	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
 123	 */
 124	__le64 data_mapping_root;
 125
 126	/*
 127	 * Device detail root mapping dev_id -> device_details
 128	 */
 129	__le64 device_details_root;
 130
 131	__le32 data_block_size;		/* In 512-byte sectors. */
 132
 133	__le32 metadata_block_size;	/* In 512-byte sectors. */
 134	__le64 metadata_nr_blocks;
 135
 136	__le32 compat_flags;
 137	__le32 compat_ro_flags;
 138	__le32 incompat_flags;
 139} __packed;
 140
 141struct disk_device_details {
 142	__le64 mapped_blocks;
 143	__le64 transaction_id;		/* When created. */
 144	__le32 creation_time;
 145	__le32 snapshotted_time;
 146} __packed;
 147
 148struct dm_pool_metadata {
 149	struct hlist_node hash;
 150
 151	struct block_device *bdev;
 152	struct dm_block_manager *bm;
 153	struct dm_space_map *metadata_sm;
 154	struct dm_space_map *data_sm;
 155	struct dm_transaction_manager *tm;
 156	struct dm_transaction_manager *nb_tm;
 157
 158	/*
 159	 * Two-level btree.
 160	 * First level holds thin_dev_t.
 161	 * Second level holds mappings.
 162	 */
 163	struct dm_btree_info info;
 164
 165	/*
 166	 * Non-blocking version of the above.
 167	 */
 168	struct dm_btree_info nb_info;
 169
 170	/*
 171	 * Just the top level for deleting whole devices.
 172	 */
 173	struct dm_btree_info tl_info;
 174
 175	/*
 176	 * Just the bottom level for creating new devices.
 177	 */
 178	struct dm_btree_info bl_info;
 179
 180	/*
 181	 * Describes the device details btree.
 182	 */
 183	struct dm_btree_info details_info;
 184
 185	struct rw_semaphore root_lock;
 186	uint32_t time;
 187	dm_block_t root;
 188	dm_block_t details_root;
 189	struct list_head thin_devices;
 190	uint64_t trans_id;
 191	unsigned long flags;
 192	sector_t data_block_size;
 193
 194	/*
 195	 * Pre-commit callback.
 196	 *
 197	 * This allows the thin provisioning target to run a callback before
 198	 * the metadata are committed.
 199	 */
 200	dm_pool_pre_commit_fn pre_commit_fn;
 201	void *pre_commit_context;
 202
 203	/*
 204	 * We reserve a section of the metadata for commit overhead.
 205	 * All reported space does *not* include this.
 206	 */
 207	dm_block_t metadata_reserve;
 208
 209	/*
 210	 * Set if a transaction has to be aborted but the attempt to roll back
 211	 * to the previous (good) transaction failed.  The only pool metadata
 212	 * operation possible in this state is the closing of the device.
 213	 */
 214	bool fail_io:1;
 215
 216	/*
 217	 * Set once a thin-pool has been accessed through one of the interfaces
 218	 * that imply the pool is in-service (e.g. thin devices created/deleted,
 219	 * thin-pool message, metadata snapshots, etc).
 220	 */
 221	bool in_service:1;
 222
 223	/*
 224	 * Reading the space map roots can fail, so we read it into these
 225	 * buffers before the superblock is locked and updated.
 226	 */
 227	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
 228	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
 229};
 230
 231struct dm_thin_device {
 232	struct list_head list;
 233	struct dm_pool_metadata *pmd;
 234	dm_thin_id id;
 235
 236	int open_count;
 237	bool changed:1;
 238	bool aborted_with_changes:1;
 239	uint64_t mapped_blocks;
 240	uint64_t transaction_id;
 241	uint32_t creation_time;
 242	uint32_t snapshotted_time;
 243};
 244
 245/*
 246 *--------------------------------------------------------------
 247 * superblock validator
 248 *--------------------------------------------------------------
 249 */
 250#define SUPERBLOCK_CSUM_XOR 160774
 251
 252static void sb_prepare_for_write(const struct dm_block_validator *v,
 253				 struct dm_block *b,
 254				 size_t block_size)
 255{
 256	struct thin_disk_superblock *disk_super = dm_block_data(b);
 257
 258	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
 259	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 260						      block_size - sizeof(__le32),
 261						      SUPERBLOCK_CSUM_XOR));
 262}
 263
 264static int sb_check(const struct dm_block_validator *v,
 265		    struct dm_block *b,
 266		    size_t block_size)
 267{
 268	struct thin_disk_superblock *disk_super = dm_block_data(b);
 269	__le32 csum_le;
 270
 271	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
 272		DMERR("%s failed: blocknr %llu: wanted %llu",
 273		      __func__, le64_to_cpu(disk_super->blocknr),
 274		      (unsigned long long)dm_block_location(b));
 275		return -ENOTBLK;
 276	}
 277
 278	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
 279		DMERR("%s failed: magic %llu: wanted %llu",
 280		      __func__, le64_to_cpu(disk_super->magic),
 281		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
 282		return -EILSEQ;
 283	}
 284
 285	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
 286					     block_size - sizeof(__le32),
 287					     SUPERBLOCK_CSUM_XOR));
 288	if (csum_le != disk_super->csum) {
 289		DMERR("%s failed: csum %u: wanted %u",
 290		      __func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
 291		return -EILSEQ;
 292	}
 293
 294	return 0;
 295}
 296
 297static const struct dm_block_validator sb_validator = {
 298	.name = "superblock",
 299	.prepare_for_write = sb_prepare_for_write,
 300	.check = sb_check
 301};
 302
 303/*
 304 *--------------------------------------------------------------
 305 * Methods for the btree value types
 306 *--------------------------------------------------------------
 307 */
 308static uint64_t pack_block_time(dm_block_t b, uint32_t t)
 309{
 310	return (b << 24) | t;
 311}
 312
 313static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
 314{
 315	*b = v >> 24;
 316	*t = v & ((1 << 24) - 1);
 317}
 318
 319/*
 320 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
 321 * possible.  'with_runs' reads contiguous runs of blocks, and calls the
 322 * given sm function.
 323 */
 324typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
 325
 326static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
 327{
 328	uint64_t b, begin, end;
 329	uint32_t t;
 330	bool in_run = false;
 331	unsigned int i;
 332
 333	for (i = 0; i < count; i++, value_le++) {
 334		/* We know value_le is 8 byte aligned */
 335		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
 336
 337		if (in_run) {
 338			if (b == end) {
 339				end++;
 340			} else {
 341				fn(sm, begin, end);
 342				begin = b;
 343				end = b + 1;
 344			}
 345		} else {
 346			in_run = true;
 347			begin = b;
 348			end = b + 1;
 349		}
 350	}
 351
 352	if (in_run)
 353		fn(sm, begin, end);
 354}
 355
 356static void data_block_inc(void *context, const void *value_le, unsigned int count)
 357{
 358	with_runs((struct dm_space_map *) context,
 359		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
 360}
 361
 362static void data_block_dec(void *context, const void *value_le, unsigned int count)
 363{
 364	with_runs((struct dm_space_map *) context,
 365		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
 366}
 367
 368static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
 369{
 370	__le64 v1_le, v2_le;
 371	uint64_t b1, b2;
 372	uint32_t t;
 373
 374	memcpy(&v1_le, value1_le, sizeof(v1_le));
 375	memcpy(&v2_le, value2_le, sizeof(v2_le));
 376	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
 377	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
 378
 379	return b1 == b2;
 380}
 381
 382static void subtree_inc(void *context, const void *value, unsigned int count)
 383{
 384	struct dm_btree_info *info = context;
 385	const __le64 *root_le = value;
 386	unsigned int i;
 387
 388	for (i = 0; i < count; i++, root_le++)
 389		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
 390}
 391
 392static void subtree_dec(void *context, const void *value, unsigned int count)
 393{
 394	struct dm_btree_info *info = context;
 395	const __le64 *root_le = value;
 396	unsigned int i;
 397
 398	for (i = 0; i < count; i++, root_le++)
 399		if (dm_btree_del(info, le64_to_cpu(*root_le)))
 400			DMERR("btree delete failed");
 401}
 402
 403static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
 404{
 405	__le64 v1_le, v2_le;
 406
 407	memcpy(&v1_le, value1_le, sizeof(v1_le));
 408	memcpy(&v2_le, value2_le, sizeof(v2_le));
 409
 410	return v1_le == v2_le;
 411}
 412
 413/*----------------------------------------------------------------*/
 414
 415/*
 416 * Variant that is used for in-core only changes or code that
 417 * shouldn't put the pool in service on its own (e.g. commit).
 418 */
 419static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
 420	__acquires(pmd->root_lock)
 421{
 422	down_write(&pmd->root_lock);
 423}
 424
 425static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
 426{
 427	pmd_write_lock_in_core(pmd);
 428	if (unlikely(!pmd->in_service))
 429		pmd->in_service = true;
 430}
 431
 432static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
 433	__releases(pmd->root_lock)
 434{
 435	up_write(&pmd->root_lock);
 436}
 437
 438/*----------------------------------------------------------------*/
 439
 440static int superblock_lock_zero(struct dm_pool_metadata *pmd,
 441				struct dm_block **sblock)
 442{
 443	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 444				     &sb_validator, sblock);
 445}
 446
 447static int superblock_lock(struct dm_pool_metadata *pmd,
 448			   struct dm_block **sblock)
 449{
 450	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 451				&sb_validator, sblock);
 452}
 453
 454static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
 455{
 456	int r;
 457	unsigned int i;
 458	struct dm_block *b;
 459	__le64 *data_le, zero = cpu_to_le64(0);
 460	unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
 461
 462	/*
 463	 * We can't use a validator here - it may be all zeroes.
 464	 */
 465	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
 466	if (r)
 467		return r;
 468
 469	data_le = dm_block_data(b);
 470	*result = 1;
 471	for (i = 0; i < block_size; i++) {
 472		if (data_le[i] != zero) {
 473			*result = 0;
 474			break;
 475		}
 476	}
 477
 478	dm_bm_unlock(b);
 479
 480	return 0;
 481}
 482
 483static void __setup_btree_details(struct dm_pool_metadata *pmd)
 484{
 485	pmd->info.tm = pmd->tm;
 486	pmd->info.levels = 2;
 487	pmd->info.value_type.context = pmd->data_sm;
 488	pmd->info.value_type.size = sizeof(__le64);
 489	pmd->info.value_type.inc = data_block_inc;
 490	pmd->info.value_type.dec = data_block_dec;
 491	pmd->info.value_type.equal = data_block_equal;
 492
 493	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
 494	pmd->nb_info.tm = pmd->nb_tm;
 495
 496	pmd->tl_info.tm = pmd->tm;
 497	pmd->tl_info.levels = 1;
 498	pmd->tl_info.value_type.context = &pmd->bl_info;
 499	pmd->tl_info.value_type.size = sizeof(__le64);
 500	pmd->tl_info.value_type.inc = subtree_inc;
 501	pmd->tl_info.value_type.dec = subtree_dec;
 502	pmd->tl_info.value_type.equal = subtree_equal;
 503
 504	pmd->bl_info.tm = pmd->tm;
 505	pmd->bl_info.levels = 1;
 506	pmd->bl_info.value_type.context = pmd->data_sm;
 507	pmd->bl_info.value_type.size = sizeof(__le64);
 508	pmd->bl_info.value_type.inc = data_block_inc;
 509	pmd->bl_info.value_type.dec = data_block_dec;
 510	pmd->bl_info.value_type.equal = data_block_equal;
 511
 512	pmd->details_info.tm = pmd->tm;
 513	pmd->details_info.levels = 1;
 514	pmd->details_info.value_type.context = NULL;
 515	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
 516	pmd->details_info.value_type.inc = NULL;
 517	pmd->details_info.value_type.dec = NULL;
 518	pmd->details_info.value_type.equal = NULL;
 519}
 520
 521static int save_sm_roots(struct dm_pool_metadata *pmd)
 522{
 523	int r;
 524	size_t len;
 525
 526	r = dm_sm_root_size(pmd->metadata_sm, &len);
 527	if (r < 0)
 528		return r;
 529
 530	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
 531	if (r < 0)
 532		return r;
 533
 534	r = dm_sm_root_size(pmd->data_sm, &len);
 535	if (r < 0)
 536		return r;
 537
 538	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
 539}
 540
 541static void copy_sm_roots(struct dm_pool_metadata *pmd,
 542			  struct thin_disk_superblock *disk)
 543{
 544	memcpy(&disk->metadata_space_map_root,
 545	       &pmd->metadata_space_map_root,
 546	       sizeof(pmd->metadata_space_map_root));
 547
 548	memcpy(&disk->data_space_map_root,
 549	       &pmd->data_space_map_root,
 550	       sizeof(pmd->data_space_map_root));
 551}
 552
 553static int __write_initial_superblock(struct dm_pool_metadata *pmd)
 554{
 555	int r;
 556	struct dm_block *sblock;
 557	struct thin_disk_superblock *disk_super;
 558	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
 559
 560	if (bdev_size > THIN_METADATA_MAX_SECTORS)
 561		bdev_size = THIN_METADATA_MAX_SECTORS;
 562
 563	r = dm_sm_commit(pmd->data_sm);
 564	if (r < 0)
 565		return r;
 566
 567	r = dm_tm_pre_commit(pmd->tm);
 568	if (r < 0)
 569		return r;
 570
 571	r = save_sm_roots(pmd);
 572	if (r < 0)
 573		return r;
 574
 575	r = superblock_lock_zero(pmd, &sblock);
 576	if (r)
 577		return r;
 578
 579	disk_super = dm_block_data(sblock);
 580	disk_super->flags = 0;
 581	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
 582	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
 583	disk_super->version = cpu_to_le32(THIN_VERSION);
 584	disk_super->time = 0;
 585	disk_super->trans_id = 0;
 586	disk_super->held_root = 0;
 587
 588	copy_sm_roots(pmd, disk_super);
 589
 590	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 591	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 592	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
 593	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
 594	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
 595
 596	return dm_tm_commit(pmd->tm, sblock);
 597}
 598
 599static int __format_metadata(struct dm_pool_metadata *pmd)
 600{
 601	int r;
 602
 603	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 604				 &pmd->tm, &pmd->metadata_sm);
 605	if (r < 0) {
 606		pmd->tm = NULL;
 607		pmd->metadata_sm = NULL;
 608		DMERR("tm_create_with_sm failed");
 609		return r;
 610	}
 611
 612	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
 613	if (IS_ERR(pmd->data_sm)) {
 614		DMERR("sm_disk_create failed");
 615		r = PTR_ERR(pmd->data_sm);
 616		pmd->data_sm = NULL;
 617		goto bad_cleanup_tm;
 618	}
 619
 620	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 621	if (!pmd->nb_tm) {
 622		DMERR("could not create non-blocking clone tm");
 623		r = -ENOMEM;
 624		goto bad_cleanup_data_sm;
 625	}
 626
 627	__setup_btree_details(pmd);
 628
 629	r = dm_btree_empty(&pmd->info, &pmd->root);
 630	if (r < 0)
 631		goto bad_cleanup_nb_tm;
 632
 633	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
 634	if (r < 0) {
 635		DMERR("couldn't create devices root");
 636		goto bad_cleanup_nb_tm;
 637	}
 638
 639	r = __write_initial_superblock(pmd);
 640	if (r)
 641		goto bad_cleanup_nb_tm;
 642
 643	return 0;
 644
 645bad_cleanup_nb_tm:
 646	dm_tm_destroy(pmd->nb_tm);
 647	pmd->nb_tm = NULL;
 648bad_cleanup_data_sm:
 649	dm_sm_destroy(pmd->data_sm);
 650	pmd->data_sm = NULL;
 651bad_cleanup_tm:
 652	dm_tm_destroy(pmd->tm);
 653	pmd->tm = NULL;
 654	dm_sm_destroy(pmd->metadata_sm);
 655	pmd->metadata_sm = NULL;
 656
 657	return r;
 658}
 659
 660static int __check_incompat_features(struct thin_disk_superblock *disk_super,
 661				     struct dm_pool_metadata *pmd)
 662{
 663	uint32_t features;
 664
 665	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
 666	if (features) {
 667		DMERR("could not access metadata due to unsupported optional features (%lx).",
 668		      (unsigned long)features);
 669		return -EINVAL;
 670	}
 671
 672	/*
 673	 * Check for read-only metadata to skip the following RDWR checks.
 674	 */
 675	if (bdev_read_only(pmd->bdev))
 676		return 0;
 677
 678	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
 679	if (features) {
 680		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
 681		      (unsigned long)features);
 682		return -EINVAL;
 683	}
 684
 685	return 0;
 686}
 687
 688static int __open_metadata(struct dm_pool_metadata *pmd)
 689{
 690	int r;
 691	struct dm_block *sblock;
 692	struct thin_disk_superblock *disk_super;
 693
 694	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 695			    &sb_validator, &sblock);
 696	if (r < 0) {
 697		DMERR("couldn't read superblock");
 698		return r;
 699	}
 700
 701	disk_super = dm_block_data(sblock);
 702
 703	/* Verify the data block size hasn't changed */
 704	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
 705		DMERR("changing the data block size (from %u to %llu) is not supported",
 706		      le32_to_cpu(disk_super->data_block_size),
 707		      (unsigned long long)pmd->data_block_size);
 708		r = -EINVAL;
 709		goto bad_unlock_sblock;
 710	}
 711
 712	r = __check_incompat_features(disk_super, pmd);
 713	if (r < 0)
 714		goto bad_unlock_sblock;
 715
 716	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 717			       disk_super->metadata_space_map_root,
 718			       sizeof(disk_super->metadata_space_map_root),
 719			       &pmd->tm, &pmd->metadata_sm);
 720	if (r < 0) {
 721		pmd->tm = NULL;
 722		pmd->metadata_sm = NULL;
 723		DMERR("tm_open_with_sm failed");
 724		goto bad_unlock_sblock;
 725	}
 726
 727	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
 728				       sizeof(disk_super->data_space_map_root));
 729	if (IS_ERR(pmd->data_sm)) {
 730		DMERR("sm_disk_open failed");
 731		r = PTR_ERR(pmd->data_sm);
 732		pmd->data_sm = NULL;
 733		goto bad_cleanup_tm;
 734	}
 735
 736	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
 737	if (!pmd->nb_tm) {
 738		DMERR("could not create non-blocking clone tm");
 739		r = -ENOMEM;
 740		goto bad_cleanup_data_sm;
 741	}
 742
 743	/*
 744	 * For pool metadata opening process, root setting is redundant
 745	 * because it will be set again in __begin_transaction(). But dm
 746	 * pool aborting process really needs to get last transaction's
 747	 * root to avoid accessing broken btree.
 748	 */
 749	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 750	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 751
 752	__setup_btree_details(pmd);
 753	dm_bm_unlock(sblock);
 754
 755	return 0;
 756
 757bad_cleanup_data_sm:
 758	dm_sm_destroy(pmd->data_sm);
 759	pmd->data_sm = NULL;
 760bad_cleanup_tm:
 761	dm_tm_destroy(pmd->tm);
 762	pmd->tm = NULL;
 763	dm_sm_destroy(pmd->metadata_sm);
 764	pmd->metadata_sm = NULL;
 765bad_unlock_sblock:
 766	dm_bm_unlock(sblock);
 767
 768	return r;
 769}
 770
 771static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
 772{
 773	int r, unformatted;
 774
 775	r = __superblock_all_zeroes(pmd->bm, &unformatted);
 776	if (r)
 777		return r;
 778
 779	if (unformatted)
 780		return format_device ? __format_metadata(pmd) : -EPERM;
 781
 782	return __open_metadata(pmd);
 783}
 784
 785static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
 786{
 787	int r;
 788
 789	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
 790					  THIN_MAX_CONCURRENT_LOCKS);
 791	if (IS_ERR(pmd->bm)) {
 792		DMERR("could not create block manager");
 793		r = PTR_ERR(pmd->bm);
 794		pmd->bm = NULL;
 795		return r;
 796	}
 797
 798	r = __open_or_format_metadata(pmd, format_device);
 799	if (r) {
 800		dm_block_manager_destroy(pmd->bm);
 801		pmd->bm = NULL;
 802	}
 803
 804	return r;
 805}
 806
 807static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
 808					      bool destroy_bm)
 809{
 810	dm_sm_destroy(pmd->data_sm);
 811	pmd->data_sm = NULL;
 812	dm_sm_destroy(pmd->metadata_sm);
 813	pmd->metadata_sm = NULL;
 814	dm_tm_destroy(pmd->nb_tm);
 815	pmd->nb_tm = NULL;
 816	dm_tm_destroy(pmd->tm);
 817	pmd->tm = NULL;
 818	if (destroy_bm)
 819		dm_block_manager_destroy(pmd->bm);
 820}
 821
 822static int __begin_transaction(struct dm_pool_metadata *pmd)
 823{
 824	int r;
 825	struct thin_disk_superblock *disk_super;
 826	struct dm_block *sblock;
 827
 828	/*
 829	 * We re-read the superblock every time.  Shouldn't need to do this
 830	 * really.
 831	 */
 832	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
 833			    &sb_validator, &sblock);
 834	if (r)
 835		return r;
 836
 837	disk_super = dm_block_data(sblock);
 838	pmd->time = le32_to_cpu(disk_super->time);
 839	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
 840	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
 841	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
 842	pmd->flags = le32_to_cpu(disk_super->flags);
 843	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
 844
 845	dm_bm_unlock(sblock);
 846	return 0;
 847}
 848
 849static int __write_changed_details(struct dm_pool_metadata *pmd)
 850{
 851	int r;
 852	struct dm_thin_device *td, *tmp;
 853	struct disk_device_details details;
 854	uint64_t key;
 855
 856	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
 857		if (!td->changed)
 858			continue;
 859
 860		key = td->id;
 861
 862		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
 863		details.transaction_id = cpu_to_le64(td->transaction_id);
 864		details.creation_time = cpu_to_le32(td->creation_time);
 865		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
 866		__dm_bless_for_disk(&details);
 867
 868		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
 869				    &key, &details, &pmd->details_root);
 870		if (r)
 871			return r;
 872
 873		if (td->open_count)
 874			td->changed = false;
 875		else {
 876			list_del(&td->list);
 877			kfree(td);
 878		}
 879	}
 880
 881	return 0;
 882}
 883
 884static int __commit_transaction(struct dm_pool_metadata *pmd)
 885{
 886	int r;
 887	struct thin_disk_superblock *disk_super;
 888	struct dm_block *sblock;
 889
 890	/*
 891	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
 892	 */
 893	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
 894	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
 895
 896	if (unlikely(!pmd->in_service))
 897		return 0;
 898
 899	if (pmd->pre_commit_fn) {
 900		r = pmd->pre_commit_fn(pmd->pre_commit_context);
 901		if (r < 0) {
 902			DMERR("pre-commit callback failed");
 903			return r;
 904		}
 905	}
 906
 907	r = __write_changed_details(pmd);
 908	if (r < 0)
 909		return r;
 910
 911	r = dm_sm_commit(pmd->data_sm);
 912	if (r < 0)
 913		return r;
 914
 915	r = dm_tm_pre_commit(pmd->tm);
 916	if (r < 0)
 917		return r;
 918
 919	r = save_sm_roots(pmd);
 920	if (r < 0)
 921		return r;
 922
 923	r = superblock_lock(pmd, &sblock);
 924	if (r)
 925		return r;
 926
 927	disk_super = dm_block_data(sblock);
 928	disk_super->time = cpu_to_le32(pmd->time);
 929	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
 930	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
 931	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
 932	disk_super->flags = cpu_to_le32(pmd->flags);
 933
 934	copy_sm_roots(pmd, disk_super);
 935
 936	return dm_tm_commit(pmd->tm, sblock);
 937}
 938
 939static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
 940{
 941	int r;
 942	dm_block_t total;
 943	dm_block_t max_blocks = 4096; /* 16M */
 944
 945	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
 946	if (r) {
 947		DMERR("could not get size of metadata device");
 948		pmd->metadata_reserve = max_blocks;
 949	} else
 950		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
 951}
 952
 953struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
 954					       sector_t data_block_size,
 955					       bool format_device)
 956{
 957	int r;
 958	struct dm_pool_metadata *pmd;
 959
 960	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
 961	if (!pmd) {
 962		DMERR("could not allocate metadata struct");
 963		return ERR_PTR(-ENOMEM);
 964	}
 965
 966	init_rwsem(&pmd->root_lock);
 967	pmd->time = 0;
 968	INIT_LIST_HEAD(&pmd->thin_devices);
 969	pmd->fail_io = false;
 970	pmd->in_service = false;
 971	pmd->bdev = bdev;
 972	pmd->data_block_size = data_block_size;
 973	pmd->pre_commit_fn = NULL;
 974	pmd->pre_commit_context = NULL;
 975
 976	r = __create_persistent_data_objects(pmd, format_device);
 977	if (r) {
 978		kfree(pmd);
 979		return ERR_PTR(r);
 980	}
 981
 982	r = __begin_transaction(pmd);
 983	if (r < 0) {
 984		if (dm_pool_metadata_close(pmd) < 0)
 985			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
 986		return ERR_PTR(r);
 987	}
 988
 989	__set_metadata_reserve(pmd);
 990
 991	return pmd;
 992}
 993
 994int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
 995{
 996	int r;
 997	unsigned int open_devices = 0;
 998	struct dm_thin_device *td, *tmp;
 999
1000	down_read(&pmd->root_lock);
1001	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1002		if (td->open_count)
1003			open_devices++;
1004		else {
1005			list_del(&td->list);
1006			kfree(td);
1007		}
1008	}
1009	up_read(&pmd->root_lock);
1010
1011	if (open_devices) {
1012		DMERR("attempt to close pmd when %u device(s) are still open",
1013		       open_devices);
1014		return -EBUSY;
1015	}
1016
1017	pmd_write_lock_in_core(pmd);
1018	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
1019		r = __commit_transaction(pmd);
1020		if (r < 0)
1021			DMWARN("%s: __commit_transaction() failed, error = %d",
1022			       __func__, r);
1023	}
1024	pmd_write_unlock(pmd);
1025	__destroy_persistent_data_objects(pmd, true);
 
1026
1027	kfree(pmd);
1028	return 0;
1029}
1030
1031/*
1032 * __open_device: Returns @td corresponding to device with id @dev,
1033 * creating it if @create is set and incrementing @td->open_count.
1034 * On failure, @td is undefined.
1035 */
1036static int __open_device(struct dm_pool_metadata *pmd,
1037			 dm_thin_id dev, int create,
1038			 struct dm_thin_device **td)
1039{
1040	int r, changed = 0;
1041	struct dm_thin_device *td2;
1042	uint64_t key = dev;
1043	struct disk_device_details details_le;
1044
1045	/*
1046	 * If the device is already open, return it.
1047	 */
1048	list_for_each_entry(td2, &pmd->thin_devices, list)
1049		if (td2->id == dev) {
1050			/*
1051			 * May not create an already-open device.
1052			 */
1053			if (create)
1054				return -EEXIST;
1055
1056			td2->open_count++;
1057			*td = td2;
1058			return 0;
1059		}
1060
1061	/*
1062	 * Check the device exists.
1063	 */
1064	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1065			    &key, &details_le);
1066	if (r) {
1067		if (r != -ENODATA || !create)
1068			return r;
1069
1070		/*
1071		 * Create new device.
1072		 */
1073		changed = 1;
1074		details_le.mapped_blocks = 0;
1075		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1076		details_le.creation_time = cpu_to_le32(pmd->time);
1077		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1078	}
1079
1080	*td = kmalloc(sizeof(**td), GFP_NOIO);
1081	if (!*td)
1082		return -ENOMEM;
1083
1084	(*td)->pmd = pmd;
1085	(*td)->id = dev;
1086	(*td)->open_count = 1;
1087	(*td)->changed = changed;
1088	(*td)->aborted_with_changes = false;
1089	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1090	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1091	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1092	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1093
1094	list_add(&(*td)->list, &pmd->thin_devices);
1095
1096	return 0;
1097}
1098
1099static void __close_device(struct dm_thin_device *td)
1100{
1101	--td->open_count;
1102}
1103
1104static int __create_thin(struct dm_pool_metadata *pmd,
1105			 dm_thin_id dev)
1106{
1107	int r;
1108	dm_block_t dev_root;
1109	uint64_t key = dev;
1110	struct dm_thin_device *td;
1111	__le64 value;
1112
1113	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1114			    &key, NULL);
1115	if (!r)
1116		return -EEXIST;
1117
1118	/*
1119	 * Create an empty btree for the mappings.
1120	 */
1121	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1122	if (r)
1123		return r;
1124
1125	/*
1126	 * Insert it into the main mapping tree.
1127	 */
1128	value = cpu_to_le64(dev_root);
1129	__dm_bless_for_disk(&value);
1130	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1131	if (r) {
1132		dm_btree_del(&pmd->bl_info, dev_root);
1133		return r;
1134	}
1135
1136	r = __open_device(pmd, dev, 1, &td);
1137	if (r) {
1138		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139		dm_btree_del(&pmd->bl_info, dev_root);
1140		return r;
1141	}
1142	__close_device(td);
1143
1144	return r;
1145}
1146
1147int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1148{
1149	int r = -EINVAL;
1150
1151	pmd_write_lock(pmd);
1152	if (!pmd->fail_io)
1153		r = __create_thin(pmd, dev);
1154	pmd_write_unlock(pmd);
1155
1156	return r;
1157}
1158
1159static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1160				  struct dm_thin_device *snap,
1161				  dm_thin_id origin, uint32_t time)
1162{
1163	int r;
1164	struct dm_thin_device *td;
1165
1166	r = __open_device(pmd, origin, 0, &td);
1167	if (r)
1168		return r;
1169
1170	td->changed = true;
1171	td->snapshotted_time = time;
1172
1173	snap->mapped_blocks = td->mapped_blocks;
1174	snap->snapshotted_time = time;
1175	__close_device(td);
1176
1177	return 0;
1178}
1179
1180static int __create_snap(struct dm_pool_metadata *pmd,
1181			 dm_thin_id dev, dm_thin_id origin)
1182{
1183	int r;
1184	dm_block_t origin_root;
1185	uint64_t key = origin, dev_key = dev;
1186	struct dm_thin_device *td;
1187	__le64 value;
1188
1189	/* check this device is unused */
1190	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1191			    &dev_key, NULL);
1192	if (!r)
1193		return -EEXIST;
1194
1195	/* find the mapping tree for the origin */
1196	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1197	if (r)
1198		return r;
1199	origin_root = le64_to_cpu(value);
1200
1201	/* clone the origin, an inc will do */
1202	dm_tm_inc(pmd->tm, origin_root);
1203
1204	/* insert into the main mapping tree */
1205	value = cpu_to_le64(origin_root);
1206	__dm_bless_for_disk(&value);
1207	key = dev;
1208	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1209	if (r) {
1210		dm_tm_dec(pmd->tm, origin_root);
1211		return r;
1212	}
1213
1214	pmd->time++;
1215
1216	r = __open_device(pmd, dev, 1, &td);
1217	if (r)
1218		goto bad;
1219
1220	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1221	__close_device(td);
1222
1223	if (r)
1224		goto bad;
1225
1226	return 0;
1227
1228bad:
1229	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1230	dm_btree_remove(&pmd->details_info, pmd->details_root,
1231			&key, &pmd->details_root);
1232	return r;
1233}
1234
1235int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1236				 dm_thin_id dev,
1237				 dm_thin_id origin)
1238{
1239	int r = -EINVAL;
1240
1241	pmd_write_lock(pmd);
1242	if (!pmd->fail_io)
1243		r = __create_snap(pmd, dev, origin);
1244	pmd_write_unlock(pmd);
1245
1246	return r;
1247}
1248
1249static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1250{
1251	int r;
1252	uint64_t key = dev;
1253	struct dm_thin_device *td;
1254
1255	/* TODO: failure should mark the transaction invalid */
1256	r = __open_device(pmd, dev, 0, &td);
1257	if (r)
1258		return r;
1259
1260	if (td->open_count > 1) {
1261		__close_device(td);
1262		return -EBUSY;
1263	}
1264
1265	list_del(&td->list);
1266	kfree(td);
1267	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1268			    &key, &pmd->details_root);
1269	if (r)
1270		return r;
1271
1272	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1273	if (r)
1274		return r;
1275
1276	return 0;
1277}
1278
1279int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1280			       dm_thin_id dev)
1281{
1282	int r = -EINVAL;
1283
1284	pmd_write_lock(pmd);
1285	if (!pmd->fail_io)
1286		r = __delete_device(pmd, dev);
1287	pmd_write_unlock(pmd);
1288
1289	return r;
1290}
1291
1292int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1293					uint64_t current_id,
1294					uint64_t new_id)
1295{
1296	int r = -EINVAL;
1297
1298	pmd_write_lock(pmd);
1299
1300	if (pmd->fail_io)
1301		goto out;
1302
1303	if (pmd->trans_id != current_id) {
1304		DMERR("mismatched transaction id");
1305		goto out;
1306	}
1307
1308	pmd->trans_id = new_id;
1309	r = 0;
1310
1311out:
1312	pmd_write_unlock(pmd);
1313
1314	return r;
1315}
1316
1317int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1318					uint64_t *result)
1319{
1320	int r = -EINVAL;
1321
1322	down_read(&pmd->root_lock);
1323	if (!pmd->fail_io) {
1324		*result = pmd->trans_id;
1325		r = 0;
1326	}
1327	up_read(&pmd->root_lock);
1328
1329	return r;
1330}
1331
1332static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1333{
1334	int r, inc;
1335	struct thin_disk_superblock *disk_super;
1336	struct dm_block *copy, *sblock;
1337	dm_block_t held_root;
1338
1339	/*
1340	 * We commit to ensure the btree roots which we increment in a
1341	 * moment are up to date.
1342	 */
1343	r = __commit_transaction(pmd);
1344	if (r < 0) {
1345		DMWARN("%s: __commit_transaction() failed, error = %d",
1346		       __func__, r);
1347		return r;
1348	}
1349
1350	/*
1351	 * Copy the superblock.
1352	 */
1353	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1354	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1355			       &sb_validator, &copy, &inc);
1356	if (r)
1357		return r;
1358
1359	BUG_ON(!inc);
1360
1361	held_root = dm_block_location(copy);
1362	disk_super = dm_block_data(copy);
1363
1364	if (le64_to_cpu(disk_super->held_root)) {
1365		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1366
1367		dm_tm_dec(pmd->tm, held_root);
1368		dm_tm_unlock(pmd->tm, copy);
1369		return -EBUSY;
1370	}
1371
1372	/*
1373	 * Wipe the spacemap since we're not publishing this.
1374	 */
1375	memset(&disk_super->data_space_map_root, 0,
1376	       sizeof(disk_super->data_space_map_root));
1377	memset(&disk_super->metadata_space_map_root, 0,
1378	       sizeof(disk_super->metadata_space_map_root));
1379
1380	/*
1381	 * Increment the data structures that need to be preserved.
1382	 */
1383	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1384	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1385	dm_tm_unlock(pmd->tm, copy);
1386
1387	/*
1388	 * Write the held root into the superblock.
1389	 */
1390	r = superblock_lock(pmd, &sblock);
1391	if (r) {
1392		dm_tm_dec(pmd->tm, held_root);
1393		return r;
1394	}
1395
1396	disk_super = dm_block_data(sblock);
1397	disk_super->held_root = cpu_to_le64(held_root);
1398	dm_bm_unlock(sblock);
1399	return 0;
1400}
1401
1402int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1403{
1404	int r = -EINVAL;
1405
1406	pmd_write_lock(pmd);
1407	if (!pmd->fail_io)
1408		r = __reserve_metadata_snap(pmd);
1409	pmd_write_unlock(pmd);
1410
1411	return r;
1412}
1413
1414static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1415{
1416	int r;
1417	struct thin_disk_superblock *disk_super;
1418	struct dm_block *sblock, *copy;
1419	dm_block_t held_root;
1420
1421	r = superblock_lock(pmd, &sblock);
1422	if (r)
1423		return r;
1424
1425	disk_super = dm_block_data(sblock);
1426	held_root = le64_to_cpu(disk_super->held_root);
1427	disk_super->held_root = cpu_to_le64(0);
1428
1429	dm_bm_unlock(sblock);
1430
1431	if (!held_root) {
1432		DMWARN("No pool metadata snapshot found: nothing to release.");
1433		return -EINVAL;
1434	}
1435
1436	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1437	if (r)
1438		return r;
1439
1440	disk_super = dm_block_data(copy);
1441	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1442	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1443	dm_sm_dec_block(pmd->metadata_sm, held_root);
1444
1445	dm_tm_unlock(pmd->tm, copy);
1446
1447	return 0;
1448}
1449
1450int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1451{
1452	int r = -EINVAL;
1453
1454	pmd_write_lock(pmd);
1455	if (!pmd->fail_io)
1456		r = __release_metadata_snap(pmd);
1457	pmd_write_unlock(pmd);
1458
1459	return r;
1460}
1461
1462static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1463			       dm_block_t *result)
1464{
1465	int r;
1466	struct thin_disk_superblock *disk_super;
1467	struct dm_block *sblock;
1468
1469	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1470			    &sb_validator, &sblock);
1471	if (r)
1472		return r;
1473
1474	disk_super = dm_block_data(sblock);
1475	*result = le64_to_cpu(disk_super->held_root);
1476
1477	dm_bm_unlock(sblock);
1478
1479	return 0;
1480}
1481
1482int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1483			      dm_block_t *result)
1484{
1485	int r = -EINVAL;
1486
1487	down_read(&pmd->root_lock);
1488	if (!pmd->fail_io)
1489		r = __get_metadata_snap(pmd, result);
1490	up_read(&pmd->root_lock);
1491
1492	return r;
1493}
1494
1495int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1496			     struct dm_thin_device **td)
1497{
1498	int r = -EINVAL;
1499
1500	pmd_write_lock_in_core(pmd);
1501	if (!pmd->fail_io)
1502		r = __open_device(pmd, dev, 0, td);
1503	pmd_write_unlock(pmd);
1504
1505	return r;
1506}
1507
1508int dm_pool_close_thin_device(struct dm_thin_device *td)
1509{
1510	pmd_write_lock_in_core(td->pmd);
1511	__close_device(td);
1512	pmd_write_unlock(td->pmd);
1513
1514	return 0;
1515}
1516
1517dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1518{
1519	return td->id;
1520}
1521
1522/*
1523 * Check whether @time (of block creation) is older than @td's last snapshot.
1524 * If so then the associated block is shared with the last snapshot device.
1525 * Any block on a device created *after* the device last got snapshotted is
1526 * necessarily not shared.
1527 */
1528static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1529{
1530	return td->snapshotted_time > time;
1531}
1532
1533static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1534				 struct dm_thin_lookup_result *result)
1535{
1536	uint64_t block_time = 0;
1537	dm_block_t exception_block;
1538	uint32_t exception_time;
1539
1540	block_time = le64_to_cpu(value);
1541	unpack_block_time(block_time, &exception_block, &exception_time);
1542	result->block = exception_block;
1543	result->shared = __snapshotted_since(td, exception_time);
1544}
1545
1546static int __find_block(struct dm_thin_device *td, dm_block_t block,
1547			int can_issue_io, struct dm_thin_lookup_result *result)
1548{
1549	int r;
1550	__le64 value;
1551	struct dm_pool_metadata *pmd = td->pmd;
1552	dm_block_t keys[2] = { td->id, block };
1553	struct dm_btree_info *info;
1554
1555	if (can_issue_io)
1556		info = &pmd->info;
1557	else
1558		info = &pmd->nb_info;
1559
1560	r = dm_btree_lookup(info, pmd->root, keys, &value);
1561	if (!r)
1562		unpack_lookup_result(td, value, result);
1563
1564	return r;
1565}
1566
1567int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1568		       int can_issue_io, struct dm_thin_lookup_result *result)
1569{
1570	int r;
1571	struct dm_pool_metadata *pmd = td->pmd;
1572
1573	down_read(&pmd->root_lock);
1574	if (pmd->fail_io) {
1575		up_read(&pmd->root_lock);
1576		return -EINVAL;
1577	}
1578
1579	r = __find_block(td, block, can_issue_io, result);
1580
1581	up_read(&pmd->root_lock);
1582	return r;
1583}
1584
1585static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1586					  dm_block_t *vblock,
1587					  struct dm_thin_lookup_result *result)
1588{
1589	int r;
1590	__le64 value;
1591	struct dm_pool_metadata *pmd = td->pmd;
1592	dm_block_t keys[2] = { td->id, block };
1593
1594	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1595	if (!r)
1596		unpack_lookup_result(td, value, result);
1597
1598	return r;
1599}
1600
1601static int __find_mapped_range(struct dm_thin_device *td,
1602			       dm_block_t begin, dm_block_t end,
1603			       dm_block_t *thin_begin, dm_block_t *thin_end,
1604			       dm_block_t *pool_begin, bool *maybe_shared)
1605{
1606	int r;
1607	dm_block_t pool_end;
1608	struct dm_thin_lookup_result lookup;
1609
1610	if (end < begin)
1611		return -ENODATA;
1612
1613	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1614	if (r)
1615		return r;
1616
1617	if (begin >= end)
1618		return -ENODATA;
1619
1620	*thin_begin = begin;
1621	*pool_begin = lookup.block;
1622	*maybe_shared = lookup.shared;
1623
1624	begin++;
1625	pool_end = *pool_begin + 1;
1626	while (begin != end) {
1627		r = __find_block(td, begin, true, &lookup);
1628		if (r) {
1629			if (r == -ENODATA)
1630				break;
1631
1632			return r;
1633		}
1634
1635		if ((lookup.block != pool_end) ||
1636		    (lookup.shared != *maybe_shared))
1637			break;
1638
1639		pool_end++;
1640		begin++;
1641	}
1642
1643	*thin_end = begin;
1644	return 0;
1645}
1646
1647int dm_thin_find_mapped_range(struct dm_thin_device *td,
1648			      dm_block_t begin, dm_block_t end,
1649			      dm_block_t *thin_begin, dm_block_t *thin_end,
1650			      dm_block_t *pool_begin, bool *maybe_shared)
1651{
1652	int r = -EINVAL;
1653	struct dm_pool_metadata *pmd = td->pmd;
1654
1655	down_read(&pmd->root_lock);
1656	if (!pmd->fail_io) {
1657		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1658					pool_begin, maybe_shared);
1659	}
1660	up_read(&pmd->root_lock);
1661
1662	return r;
1663}
1664
1665static int __insert(struct dm_thin_device *td, dm_block_t block,
1666		    dm_block_t data_block)
1667{
1668	int r, inserted;
1669	__le64 value;
1670	struct dm_pool_metadata *pmd = td->pmd;
1671	dm_block_t keys[2] = { td->id, block };
1672
1673	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1674	__dm_bless_for_disk(&value);
1675
1676	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1677				   &pmd->root, &inserted);
1678	if (r)
1679		return r;
1680
1681	td->changed = true;
1682	if (inserted)
1683		td->mapped_blocks++;
1684
1685	return 0;
1686}
1687
1688int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1689			 dm_block_t data_block)
1690{
1691	int r = -EINVAL;
1692
1693	pmd_write_lock(td->pmd);
1694	if (!td->pmd->fail_io)
1695		r = __insert(td, block, data_block);
1696	pmd_write_unlock(td->pmd);
1697
1698	return r;
1699}
1700
1701static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1702{
1703	int r;
1704	unsigned int count, total_count = 0;
1705	struct dm_pool_metadata *pmd = td->pmd;
1706	dm_block_t keys[1] = { td->id };
1707	__le64 value;
1708	dm_block_t mapping_root;
1709
1710	/*
1711	 * Find the mapping tree
1712	 */
1713	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1714	if (r)
1715		return r;
1716
1717	/*
1718	 * Remove from the mapping tree, taking care to inc the
1719	 * ref count so it doesn't get deleted.
1720	 */
1721	mapping_root = le64_to_cpu(value);
1722	dm_tm_inc(pmd->tm, mapping_root);
1723	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1724	if (r)
1725		return r;
1726
1727	/*
1728	 * Remove leaves stops at the first unmapped entry, so we have to
1729	 * loop round finding mapped ranges.
1730	 */
1731	while (begin < end) {
1732		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1733		if (r == -ENODATA)
1734			break;
1735
1736		if (r)
1737			return r;
1738
1739		if (begin >= end)
1740			break;
1741
1742		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1743		if (r)
1744			return r;
1745
1746		total_count += count;
1747	}
1748
1749	td->mapped_blocks -= total_count;
1750	td->changed = true;
1751
1752	/*
1753	 * Reinsert the mapping tree.
1754	 */
1755	value = cpu_to_le64(mapping_root);
1756	__dm_bless_for_disk(&value);
1757	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1758}
1759
1760int dm_thin_remove_range(struct dm_thin_device *td,
1761			 dm_block_t begin, dm_block_t end)
1762{
1763	int r = -EINVAL;
1764
1765	pmd_write_lock(td->pmd);
1766	if (!td->pmd->fail_io)
1767		r = __remove_range(td, begin, end);
1768	pmd_write_unlock(td->pmd);
1769
1770	return r;
1771}
1772
1773int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1774{
1775	int r = -EINVAL;
1776	uint32_t ref_count;
1777
1778	down_read(&pmd->root_lock);
1779	if (!pmd->fail_io) {
1780		r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1781		if (!r)
1782			*result = (ref_count > 1);
1783	}
1784	up_read(&pmd->root_lock);
1785
1786	return r;
1787}
1788
1789int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1790{
1791	int r = -EINVAL;
1792
1793	pmd_write_lock(pmd);
1794	if (!pmd->fail_io)
1795		r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1796	pmd_write_unlock(pmd);
1797
1798	return r;
1799}
1800
1801int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1802{
1803	int r = -EINVAL;
1804
1805	pmd_write_lock(pmd);
1806	if (!pmd->fail_io)
1807		r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1808	pmd_write_unlock(pmd);
1809
1810	return r;
1811}
1812
1813bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1814{
1815	int r;
1816
1817	down_read(&td->pmd->root_lock);
1818	r = td->changed;
1819	up_read(&td->pmd->root_lock);
1820
1821	return r;
1822}
1823
1824bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1825{
1826	bool r = false;
1827	struct dm_thin_device *td, *tmp;
1828
1829	down_read(&pmd->root_lock);
1830	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1831		if (td->changed) {
1832			r = td->changed;
1833			break;
1834		}
1835	}
1836	up_read(&pmd->root_lock);
1837
1838	return r;
1839}
1840
1841bool dm_thin_aborted_changes(struct dm_thin_device *td)
1842{
1843	bool r;
1844
1845	down_read(&td->pmd->root_lock);
1846	r = td->aborted_with_changes;
1847	up_read(&td->pmd->root_lock);
1848
1849	return r;
1850}
1851
1852int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1853{
1854	int r = -EINVAL;
1855
1856	pmd_write_lock(pmd);
1857	if (!pmd->fail_io)
1858		r = dm_sm_new_block(pmd->data_sm, result);
1859	pmd_write_unlock(pmd);
1860
1861	return r;
1862}
1863
1864int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1865{
1866	int r = -EINVAL;
1867
1868	/*
1869	 * Care is taken to not have commit be what
1870	 * triggers putting the thin-pool in-service.
1871	 */
1872	pmd_write_lock_in_core(pmd);
1873	if (pmd->fail_io)
1874		goto out;
1875
1876	r = __commit_transaction(pmd);
1877	if (r < 0)
1878		goto out;
1879
1880	/*
1881	 * Open the next transaction.
1882	 */
1883	r = __begin_transaction(pmd);
1884out:
1885	pmd_write_unlock(pmd);
1886	return r;
1887}
1888
1889static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1890{
1891	struct dm_thin_device *td;
1892
1893	list_for_each_entry(td, &pmd->thin_devices, list)
1894		td->aborted_with_changes = td->changed;
1895}
1896
1897int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1898{
1899	int r = -EINVAL;
 
1900
1901	/* fail_io is double-checked with pmd->root_lock held below */
1902	if (unlikely(pmd->fail_io))
1903		return r;
1904
 
 
 
 
 
 
 
 
 
1905	pmd_write_lock(pmd);
1906	if (pmd->fail_io) {
1907		pmd_write_unlock(pmd);
1908		return r;
1909	}
 
1910	__set_abort_with_changes_flags(pmd);
1911
1912	/* destroy data_sm/metadata_sm/nb_tm/tm */
1913	__destroy_persistent_data_objects(pmd, false);
 
 
 
 
 
 
 
1914
1915	/* reset bm */
1916	dm_block_manager_reset(pmd->bm);
1917
1918	/* rebuild data_sm/metadata_sm/nb_tm/tm */
1919	r = __open_or_format_metadata(pmd, false);
 
 
 
 
 
 
1920	if (r)
1921		pmd->fail_io = true;
1922	pmd_write_unlock(pmd);
 
 
 
 
 
1923	return r;
1924}
1925
1926int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1927{
1928	int r = -EINVAL;
1929
1930	down_read(&pmd->root_lock);
1931	if (!pmd->fail_io)
1932		r = dm_sm_get_nr_free(pmd->data_sm, result);
1933	up_read(&pmd->root_lock);
1934
1935	return r;
1936}
1937
1938int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1939					  dm_block_t *result)
1940{
1941	int r = -EINVAL;
1942
1943	down_read(&pmd->root_lock);
1944	if (!pmd->fail_io)
1945		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1946
1947	if (!r) {
1948		if (*result < pmd->metadata_reserve)
1949			*result = 0;
1950		else
1951			*result -= pmd->metadata_reserve;
1952	}
1953	up_read(&pmd->root_lock);
1954
1955	return r;
1956}
1957
1958int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1959				  dm_block_t *result)
1960{
1961	int r = -EINVAL;
1962
1963	down_read(&pmd->root_lock);
1964	if (!pmd->fail_io)
1965		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1966	up_read(&pmd->root_lock);
1967
1968	return r;
1969}
1970
1971int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1972{
1973	int r = -EINVAL;
1974
1975	down_read(&pmd->root_lock);
1976	if (!pmd->fail_io)
1977		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1978	up_read(&pmd->root_lock);
1979
1980	return r;
1981}
1982
1983int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1984{
1985	int r = -EINVAL;
1986	struct dm_pool_metadata *pmd = td->pmd;
1987
1988	down_read(&pmd->root_lock);
1989	if (!pmd->fail_io) {
1990		*result = td->mapped_blocks;
1991		r = 0;
1992	}
1993	up_read(&pmd->root_lock);
1994
1995	return r;
1996}
1997
1998static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1999{
2000	int r;
2001	__le64 value_le;
2002	dm_block_t thin_root;
2003	struct dm_pool_metadata *pmd = td->pmd;
2004
2005	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2006	if (r)
2007		return r;
2008
2009	thin_root = le64_to_cpu(value_le);
2010
2011	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2012}
2013
2014int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2015				     dm_block_t *result)
2016{
2017	int r = -EINVAL;
2018	struct dm_pool_metadata *pmd = td->pmd;
2019
2020	down_read(&pmd->root_lock);
2021	if (!pmd->fail_io)
2022		r = __highest_block(td, result);
2023	up_read(&pmd->root_lock);
2024
2025	return r;
2026}
2027
2028static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2029{
2030	int r;
2031	dm_block_t old_count;
2032
2033	r = dm_sm_get_nr_blocks(sm, &old_count);
2034	if (r)
2035		return r;
2036
2037	if (new_count == old_count)
2038		return 0;
2039
2040	if (new_count < old_count) {
2041		DMERR("cannot reduce size of space map");
2042		return -EINVAL;
2043	}
2044
2045	return dm_sm_extend(sm, new_count - old_count);
2046}
2047
2048int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2049{
2050	int r = -EINVAL;
2051
2052	pmd_write_lock(pmd);
2053	if (!pmd->fail_io)
2054		r = __resize_space_map(pmd->data_sm, new_count);
2055	pmd_write_unlock(pmd);
2056
2057	return r;
2058}
2059
2060int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2061{
2062	int r = -EINVAL;
2063
2064	pmd_write_lock(pmd);
2065	if (!pmd->fail_io) {
2066		r = __resize_space_map(pmd->metadata_sm, new_count);
2067		if (!r)
2068			__set_metadata_reserve(pmd);
2069	}
2070	pmd_write_unlock(pmd);
2071
2072	return r;
2073}
2074
2075void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2076{
2077	pmd_write_lock_in_core(pmd);
2078	dm_bm_set_read_only(pmd->bm);
2079	pmd_write_unlock(pmd);
2080}
2081
2082void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2083{
2084	pmd_write_lock_in_core(pmd);
2085	dm_bm_set_read_write(pmd->bm);
2086	pmd_write_unlock(pmd);
2087}
2088
2089int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2090					dm_block_t threshold,
2091					dm_sm_threshold_fn fn,
2092					void *context)
2093{
2094	int r = -EINVAL;
2095
2096	pmd_write_lock_in_core(pmd);
2097	if (!pmd->fail_io) {
2098		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2099						      threshold, fn, context);
2100	}
2101	pmd_write_unlock(pmd);
2102
2103	return r;
2104}
2105
2106void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2107					  dm_pool_pre_commit_fn fn,
2108					  void *context)
2109{
2110	pmd_write_lock_in_core(pmd);
2111	pmd->pre_commit_fn = fn;
2112	pmd->pre_commit_context = context;
2113	pmd_write_unlock(pmd);
2114}
2115
2116int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2117{
2118	int r = -EINVAL;
2119	struct dm_block *sblock;
2120	struct thin_disk_superblock *disk_super;
2121
2122	pmd_write_lock(pmd);
2123	if (pmd->fail_io)
2124		goto out;
2125
2126	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2127
2128	r = superblock_lock(pmd, &sblock);
2129	if (r) {
2130		DMERR("couldn't lock superblock");
2131		goto out;
2132	}
2133
2134	disk_super = dm_block_data(sblock);
2135	disk_super->flags = cpu_to_le32(pmd->flags);
2136
2137	dm_bm_unlock(sblock);
2138out:
2139	pmd_write_unlock(pmd);
2140	return r;
2141}
2142
2143bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2144{
2145	bool needs_check;
2146
2147	down_read(&pmd->root_lock);
2148	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2149	up_read(&pmd->root_lock);
2150
2151	return needs_check;
2152}
2153
2154void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2155{
2156	down_read(&pmd->root_lock);
2157	if (!pmd->fail_io)
2158		dm_tm_issue_prefetches(pmd->tm);
2159	up_read(&pmd->root_lock);
2160}