Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
   4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
   5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
   7 * James Leu (jleu@mindspring.net).
   8 * Copyright (C) 2001 by various other people who didn't put their name here.
   9 */
  10
  11#include <linux/memblock.h>
  12#include <linux/etherdevice.h>
  13#include <linux/ethtool.h>
  14#include <linux/inetdevice.h>
  15#include <linux/init.h>
  16#include <linux/list.h>
  17#include <linux/netdevice.h>
  18#include <linux/platform_device.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/skbuff.h>
  21#include <linux/slab.h>
  22#include <linux/interrupt.h>
  23#include <linux/firmware.h>
  24#include <linux/fs.h>
 
  25#include <uapi/linux/filter.h>
  26#include <init.h>
  27#include <irq_kern.h>
  28#include <irq_user.h>
  29#include <net_kern.h>
  30#include <os.h>
  31#include "mconsole_kern.h"
  32#include "vector_user.h"
  33#include "vector_kern.h"
  34
  35/*
  36 * Adapted from network devices with the following major changes:
  37 * All transports are static - simplifies the code significantly
  38 * Multiple FDs/IRQs per device
  39 * Vector IO optionally used for read/write, falling back to legacy
  40 * based on configuration and/or availability
  41 * Configuration is no longer positional - L2TPv3 and GRE require up to
  42 * 10 parameters, passing this as positional is not fit for purpose.
  43 * Only socket transports are supported
  44 */
  45
  46
  47#define DRIVER_NAME "uml-vector"
  48struct vector_cmd_line_arg {
  49	struct list_head list;
  50	int unit;
  51	char *arguments;
  52};
  53
  54struct vector_device {
  55	struct list_head list;
  56	struct net_device *dev;
  57	struct platform_device pdev;
  58	int unit;
  59	int opened;
  60};
  61
  62static LIST_HEAD(vec_cmd_line);
  63
  64static DEFINE_SPINLOCK(vector_devices_lock);
  65static LIST_HEAD(vector_devices);
  66
  67static int driver_registered;
  68
  69static void vector_eth_configure(int n, struct arglist *def);
  70static int vector_mmsg_rx(struct vector_private *vp, int budget);
  71
  72/* Argument accessors to set variables (and/or set default values)
  73 * mtu, buffer sizing, default headroom, etc
  74 */
  75
  76#define DEFAULT_HEADROOM 2
  77#define SAFETY_MARGIN 32
  78#define DEFAULT_VECTOR_SIZE 64
  79#define TX_SMALL_PACKET 128
  80#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
  81
  82static const struct {
  83	const char string[ETH_GSTRING_LEN];
  84} ethtool_stats_keys[] = {
  85	{ "rx_queue_max" },
  86	{ "rx_queue_running_average" },
  87	{ "tx_queue_max" },
  88	{ "tx_queue_running_average" },
  89	{ "rx_encaps_errors" },
  90	{ "tx_timeout_count" },
  91	{ "tx_restart_queue" },
  92	{ "tx_kicks" },
  93	{ "tx_flow_control_xon" },
  94	{ "tx_flow_control_xoff" },
  95	{ "rx_csum_offload_good" },
  96	{ "rx_csum_offload_errors"},
  97	{ "sg_ok"},
  98	{ "sg_linearized"},
  99};
 100
 101#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
 102
 103static void vector_reset_stats(struct vector_private *vp)
 104{
 
 
 
 
 
 
 
 105	vp->estats.rx_queue_max = 0;
 106	vp->estats.rx_queue_running_average = 0;
 107	vp->estats.tx_queue_max = 0;
 108	vp->estats.tx_queue_running_average = 0;
 109	vp->estats.rx_encaps_errors = 0;
 
 
 
 
 
 
 
 
 
 110	vp->estats.tx_timeout_count = 0;
 111	vp->estats.tx_restart_queue = 0;
 112	vp->estats.tx_kicks = 0;
 113	vp->estats.tx_flow_control_xon = 0;
 114	vp->estats.tx_flow_control_xoff = 0;
 115	vp->estats.sg_ok = 0;
 116	vp->estats.sg_linearized = 0;
 
 117}
 118
 119static int get_mtu(struct arglist *def)
 120{
 121	char *mtu = uml_vector_fetch_arg(def, "mtu");
 122	long result;
 123
 124	if (mtu != NULL) {
 125		if (kstrtoul(mtu, 10, &result) == 0)
 126			if ((result < (1 << 16) - 1) && (result >= 576))
 127				return result;
 128	}
 129	return ETH_MAX_PACKET;
 130}
 131
 132static char *get_bpf_file(struct arglist *def)
 133{
 134	return uml_vector_fetch_arg(def, "bpffile");
 135}
 136
 137static bool get_bpf_flash(struct arglist *def)
 138{
 139	char *allow = uml_vector_fetch_arg(def, "bpfflash");
 140	long result;
 141
 142	if (allow != NULL) {
 143		if (kstrtoul(allow, 10, &result) == 0)
 144			return (allow > 0);
 145	}
 146	return false;
 147}
 148
 149static int get_depth(struct arglist *def)
 150{
 151	char *mtu = uml_vector_fetch_arg(def, "depth");
 152	long result;
 153
 154	if (mtu != NULL) {
 155		if (kstrtoul(mtu, 10, &result) == 0)
 156			return result;
 157	}
 158	return DEFAULT_VECTOR_SIZE;
 159}
 160
 161static int get_headroom(struct arglist *def)
 162{
 163	char *mtu = uml_vector_fetch_arg(def, "headroom");
 164	long result;
 165
 166	if (mtu != NULL) {
 167		if (kstrtoul(mtu, 10, &result) == 0)
 168			return result;
 169	}
 170	return DEFAULT_HEADROOM;
 171}
 172
 173static int get_req_size(struct arglist *def)
 174{
 175	char *gro = uml_vector_fetch_arg(def, "gro");
 176	long result;
 177
 178	if (gro != NULL) {
 179		if (kstrtoul(gro, 10, &result) == 0) {
 180			if (result > 0)
 181				return 65536;
 182		}
 183	}
 184	return get_mtu(def) + ETH_HEADER_OTHER +
 185		get_headroom(def) + SAFETY_MARGIN;
 186}
 187
 188
 189static int get_transport_options(struct arglist *def)
 190{
 191	char *transport = uml_vector_fetch_arg(def, "transport");
 192	char *vector = uml_vector_fetch_arg(def, "vec");
 193
 194	int vec_rx = VECTOR_RX;
 195	int vec_tx = VECTOR_TX;
 196	long parsed;
 197	int result = 0;
 198
 199	if (transport == NULL)
 200		return -EINVAL;
 201
 202	if (vector != NULL) {
 203		if (kstrtoul(vector, 10, &parsed) == 0) {
 204			if (parsed == 0) {
 205				vec_rx = 0;
 206				vec_tx = 0;
 207			}
 208		}
 209	}
 210
 211	if (get_bpf_flash(def))
 212		result = VECTOR_BPF_FLASH;
 213
 214	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
 215		return result;
 216	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
 217		return (result | vec_rx | VECTOR_BPF);
 218	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
 219		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
 220	return (result | vec_rx | vec_tx);
 221}
 222
 223
 224/* A mini-buffer for packet drop read
 225 * All of our supported transports are datagram oriented and we always
 226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
 227 * than the packet size it still counts as full packet read and will
 228 * clean the incoming stream to keep sigio/epoll happy
 229 */
 230
 231#define DROP_BUFFER_SIZE 32
 232
 233static char *drop_buffer;
 234
 235/* Array backed queues optimized for bulk enqueue/dequeue and
 236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
 237 * For more details and full design rationale see
 238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
 239 */
 240
 241
 242/*
 243 * Advance the mmsg queue head by n = advance. Resets the queue to
 244 * maximum enqueue/dequeue-at-once capacity if possible. Called by
 245 * dequeuers. Caller must hold the head_lock!
 246 */
 247
 248static int vector_advancehead(struct vector_queue *qi, int advance)
 249{
 250	int queue_depth;
 251
 252	qi->head =
 253		(qi->head + advance)
 254			% qi->max_depth;
 255
 256
 257	spin_lock(&qi->tail_lock);
 258	qi->queue_depth -= advance;
 259
 260	/* we are at 0, use this to
 261	 * reset head and tail so we can use max size vectors
 262	 */
 263
 264	if (qi->queue_depth == 0) {
 265		qi->head = 0;
 266		qi->tail = 0;
 267	}
 268	queue_depth = qi->queue_depth;
 269	spin_unlock(&qi->tail_lock);
 270	return queue_depth;
 271}
 272
 273/*	Advance the queue tail by n = advance.
 274 *	This is called by enqueuers which should hold the
 275 *	head lock already
 276 */
 277
 278static int vector_advancetail(struct vector_queue *qi, int advance)
 279{
 280	int queue_depth;
 281
 282	qi->tail =
 283		(qi->tail + advance)
 284			% qi->max_depth;
 285	spin_lock(&qi->head_lock);
 286	qi->queue_depth += advance;
 287	queue_depth = qi->queue_depth;
 288	spin_unlock(&qi->head_lock);
 289	return queue_depth;
 290}
 291
 292static int prep_msg(struct vector_private *vp,
 293	struct sk_buff *skb,
 294	struct iovec *iov)
 295{
 296	int iov_index = 0;
 297	int nr_frags, frag;
 298	skb_frag_t *skb_frag;
 299
 300	nr_frags = skb_shinfo(skb)->nr_frags;
 301	if (nr_frags > MAX_IOV_SIZE) {
 302		if (skb_linearize(skb) != 0)
 303			goto drop;
 304	}
 305	if (vp->header_size > 0) {
 306		iov[iov_index].iov_len = vp->header_size;
 307		vp->form_header(iov[iov_index].iov_base, skb, vp);
 308		iov_index++;
 309	}
 310	iov[iov_index].iov_base = skb->data;
 311	if (nr_frags > 0) {
 312		iov[iov_index].iov_len = skb->len - skb->data_len;
 313		vp->estats.sg_ok++;
 314	} else
 315		iov[iov_index].iov_len = skb->len;
 316	iov_index++;
 317	for (frag = 0; frag < nr_frags; frag++) {
 318		skb_frag = &skb_shinfo(skb)->frags[frag];
 319		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 320		iov[iov_index].iov_len = skb_frag_size(skb_frag);
 321		iov_index++;
 322	}
 323	return iov_index;
 324drop:
 325	return -1;
 326}
 327/*
 328 * Generic vector enqueue with support for forming headers using transport
 329 * specific callback. Allows GRE, L2TPv3, RAW and other transports
 330 * to use a common enqueue procedure in vector mode
 331 */
 332
 333static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
 334{
 335	struct vector_private *vp = netdev_priv(qi->dev);
 336	int queue_depth;
 337	int packet_len;
 338	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 339	int iov_count;
 340
 341	spin_lock(&qi->tail_lock);
 342	spin_lock(&qi->head_lock);
 343	queue_depth = qi->queue_depth;
 344	spin_unlock(&qi->head_lock);
 345
 346	if (skb)
 347		packet_len = skb->len;
 348
 349	if (queue_depth < qi->max_depth) {
 350
 351		*(qi->skbuff_vector + qi->tail) = skb;
 352		mmsg_vector += qi->tail;
 353		iov_count = prep_msg(
 354			vp,
 355			skb,
 356			mmsg_vector->msg_hdr.msg_iov
 357		);
 358		if (iov_count < 1)
 359			goto drop;
 360		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
 361		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
 362		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
 
 363		queue_depth = vector_advancetail(qi, 1);
 364	} else
 365		goto drop;
 366	spin_unlock(&qi->tail_lock);
 367	return queue_depth;
 368drop:
 369	qi->dev->stats.tx_dropped++;
 370	if (skb != NULL) {
 371		packet_len = skb->len;
 372		dev_consume_skb_any(skb);
 373		netdev_completed_queue(qi->dev, 1, packet_len);
 374	}
 375	spin_unlock(&qi->tail_lock);
 376	return queue_depth;
 377}
 378
 379static int consume_vector_skbs(struct vector_queue *qi, int count)
 380{
 381	struct sk_buff *skb;
 382	int skb_index;
 383	int bytes_compl = 0;
 384
 385	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
 386		skb = *(qi->skbuff_vector + skb_index);
 387		/* mark as empty to ensure correct destruction if
 388		 * needed
 389		 */
 390		bytes_compl += skb->len;
 391		*(qi->skbuff_vector + skb_index) = NULL;
 392		dev_consume_skb_any(skb);
 393	}
 394	qi->dev->stats.tx_bytes += bytes_compl;
 395	qi->dev->stats.tx_packets += count;
 396	netdev_completed_queue(qi->dev, count, bytes_compl);
 397	return vector_advancehead(qi, count);
 398}
 399
 400/*
 401 * Generic vector deque via sendmmsg with support for forming headers
 402 * using transport specific callback. Allows GRE, L2TPv3, RAW and
 403 * other transports to use a common dequeue procedure in vector mode
 404 */
 405
 406
 407static int vector_send(struct vector_queue *qi)
 408{
 409	struct vector_private *vp = netdev_priv(qi->dev);
 410	struct mmsghdr *send_from;
 411	int result = 0, send_len, queue_depth = qi->max_depth;
 412
 413	if (spin_trylock(&qi->head_lock)) {
 414		if (spin_trylock(&qi->tail_lock)) {
 415			/* update queue_depth to current value */
 416			queue_depth = qi->queue_depth;
 417			spin_unlock(&qi->tail_lock);
 418			while (queue_depth > 0) {
 419				/* Calculate the start of the vector */
 420				send_len = queue_depth;
 421				send_from = qi->mmsg_vector;
 422				send_from += qi->head;
 423				/* Adjust vector size if wraparound */
 424				if (send_len + qi->head > qi->max_depth)
 425					send_len = qi->max_depth - qi->head;
 426				/* Try to TX as many packets as possible */
 427				if (send_len > 0) {
 428					result = uml_vector_sendmmsg(
 429						 vp->fds->tx_fd,
 430						 send_from,
 431						 send_len,
 432						 0
 433					);
 434					vp->in_write_poll =
 435						(result != send_len);
 436				}
 437				/* For some of the sendmmsg error scenarios
 438				 * we may end being unsure in the TX success
 439				 * for all packets. It is safer to declare
 440				 * them all TX-ed and blame the network.
 441				 */
 442				if (result < 0) {
 443					if (net_ratelimit())
 444						netdev_err(vp->dev, "sendmmsg err=%i\n",
 445							result);
 446					vp->in_error = true;
 447					result = send_len;
 448				}
 449				if (result > 0) {
 450					queue_depth =
 451						consume_vector_skbs(qi, result);
 452					/* This is equivalent to an TX IRQ.
 453					 * Restart the upper layers to feed us
 454					 * more packets.
 455					 */
 456					if (result > vp->estats.tx_queue_max)
 457						vp->estats.tx_queue_max = result;
 458					vp->estats.tx_queue_running_average =
 459						(vp->estats.tx_queue_running_average + result) >> 1;
 460				}
 461				netif_wake_queue(qi->dev);
 462				/* if TX is busy, break out of the send loop,
 463				 *  poll write IRQ will reschedule xmit for us
 464				 */
 465				if (result != send_len) {
 466					vp->estats.tx_restart_queue++;
 467					break;
 468				}
 
 
 
 
 
 
 
 
 469			}
 470		}
 471		spin_unlock(&qi->head_lock);
 472	}
 473	return queue_depth;
 474}
 475
 476/* Queue destructor. Deliberately stateless so we can use
 477 * it in queue cleanup if initialization fails.
 478 */
 479
 480static void destroy_queue(struct vector_queue *qi)
 481{
 482	int i;
 483	struct iovec *iov;
 484	struct vector_private *vp = netdev_priv(qi->dev);
 485	struct mmsghdr *mmsg_vector;
 486
 487	if (qi == NULL)
 488		return;
 489	/* deallocate any skbuffs - we rely on any unused to be
 490	 * set to NULL.
 491	 */
 492	if (qi->skbuff_vector != NULL) {
 493		for (i = 0; i < qi->max_depth; i++) {
 494			if (*(qi->skbuff_vector + i) != NULL)
 495				dev_kfree_skb_any(*(qi->skbuff_vector + i));
 496		}
 497		kfree(qi->skbuff_vector);
 498	}
 499	/* deallocate matching IOV structures including header buffs */
 500	if (qi->mmsg_vector != NULL) {
 501		mmsg_vector = qi->mmsg_vector;
 502		for (i = 0; i < qi->max_depth; i++) {
 503			iov = mmsg_vector->msg_hdr.msg_iov;
 504			if (iov != NULL) {
 505				if ((vp->header_size > 0) &&
 506					(iov->iov_base != NULL))
 507					kfree(iov->iov_base);
 508				kfree(iov);
 509			}
 510			mmsg_vector++;
 511		}
 512		kfree(qi->mmsg_vector);
 513	}
 514	kfree(qi);
 515}
 516
 517/*
 518 * Queue constructor. Create a queue with a given side.
 519 */
 520static struct vector_queue *create_queue(
 521	struct vector_private *vp,
 522	int max_size,
 523	int header_size,
 524	int num_extra_frags)
 525{
 526	struct vector_queue *result;
 527	int i;
 528	struct iovec *iov;
 529	struct mmsghdr *mmsg_vector;
 530
 531	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
 532	if (result == NULL)
 533		return NULL;
 534	result->max_depth = max_size;
 535	result->dev = vp->dev;
 536	result->mmsg_vector = kmalloc(
 537		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
 538	if (result->mmsg_vector == NULL)
 539		goto out_mmsg_fail;
 540	result->skbuff_vector = kmalloc(
 541		(sizeof(void *) * max_size), GFP_KERNEL);
 542	if (result->skbuff_vector == NULL)
 543		goto out_skb_fail;
 544
 545	/* further failures can be handled safely by destroy_queue*/
 546
 547	mmsg_vector = result->mmsg_vector;
 548	for (i = 0; i < max_size; i++) {
 549		/* Clear all pointers - we use non-NULL as marking on
 550		 * what to free on destruction
 551		 */
 552		*(result->skbuff_vector + i) = NULL;
 553		mmsg_vector->msg_hdr.msg_iov = NULL;
 554		mmsg_vector++;
 555	}
 556	mmsg_vector = result->mmsg_vector;
 557	result->max_iov_frags = num_extra_frags;
 558	for (i = 0; i < max_size; i++) {
 559		if (vp->header_size > 0)
 560			iov = kmalloc_array(3 + num_extra_frags,
 561					    sizeof(struct iovec),
 562					    GFP_KERNEL
 563			);
 564		else
 565			iov = kmalloc_array(2 + num_extra_frags,
 566					    sizeof(struct iovec),
 567					    GFP_KERNEL
 568			);
 569		if (iov == NULL)
 570			goto out_fail;
 571		mmsg_vector->msg_hdr.msg_iov = iov;
 572		mmsg_vector->msg_hdr.msg_iovlen = 1;
 573		mmsg_vector->msg_hdr.msg_control = NULL;
 574		mmsg_vector->msg_hdr.msg_controllen = 0;
 575		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
 576		mmsg_vector->msg_hdr.msg_name = NULL;
 577		mmsg_vector->msg_hdr.msg_namelen = 0;
 578		if (vp->header_size > 0) {
 579			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
 580			if (iov->iov_base == NULL)
 581				goto out_fail;
 582			iov->iov_len = header_size;
 583			mmsg_vector->msg_hdr.msg_iovlen = 2;
 584			iov++;
 585		}
 586		iov->iov_base = NULL;
 587		iov->iov_len = 0;
 588		mmsg_vector++;
 589	}
 590	spin_lock_init(&result->head_lock);
 591	spin_lock_init(&result->tail_lock);
 592	result->queue_depth = 0;
 593	result->head = 0;
 594	result->tail = 0;
 595	return result;
 596out_skb_fail:
 597	kfree(result->mmsg_vector);
 598out_mmsg_fail:
 599	kfree(result);
 600	return NULL;
 601out_fail:
 602	destroy_queue(result);
 603	return NULL;
 604}
 605
 606/*
 607 * We do not use the RX queue as a proper wraparound queue for now
 608 * This is not necessary because the consumption via napi_gro_receive()
 609 * happens in-line. While we can try using the return code of
 610 * netif_rx() for flow control there are no drivers doing this today.
 611 * For this RX specific use we ignore the tail/head locks and
 612 * just read into a prepared queue filled with skbuffs.
 613 */
 614
 615static struct sk_buff *prep_skb(
 616	struct vector_private *vp,
 617	struct user_msghdr *msg)
 618{
 619	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
 620	struct sk_buff *result;
 621	int iov_index = 0, len;
 622	struct iovec *iov = msg->msg_iov;
 623	int err, nr_frags, frag;
 624	skb_frag_t *skb_frag;
 625
 626	if (vp->req_size <= linear)
 627		len = linear;
 628	else
 629		len = vp->req_size;
 630	result = alloc_skb_with_frags(
 631		linear,
 632		len - vp->max_packet,
 633		3,
 634		&err,
 635		GFP_ATOMIC
 636	);
 637	if (vp->header_size > 0)
 638		iov_index++;
 639	if (result == NULL) {
 640		iov[iov_index].iov_base = NULL;
 641		iov[iov_index].iov_len = 0;
 642		goto done;
 643	}
 644	skb_reserve(result, vp->headroom);
 645	result->dev = vp->dev;
 646	skb_put(result, vp->max_packet);
 647	result->data_len = len - vp->max_packet;
 648	result->len += len - vp->max_packet;
 649	skb_reset_mac_header(result);
 650	result->ip_summed = CHECKSUM_NONE;
 651	iov[iov_index].iov_base = result->data;
 652	iov[iov_index].iov_len = vp->max_packet;
 653	iov_index++;
 654
 655	nr_frags = skb_shinfo(result)->nr_frags;
 656	for (frag = 0; frag < nr_frags; frag++) {
 657		skb_frag = &skb_shinfo(result)->frags[frag];
 658		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 659		if (iov[iov_index].iov_base != NULL)
 660			iov[iov_index].iov_len = skb_frag_size(skb_frag);
 661		else
 662			iov[iov_index].iov_len = 0;
 663		iov_index++;
 664	}
 665done:
 666	msg->msg_iovlen = iov_index;
 667	return result;
 668}
 669
 670
 671/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
 672
 673static void prep_queue_for_rx(struct vector_queue *qi)
 674{
 675	struct vector_private *vp = netdev_priv(qi->dev);
 676	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 677	void **skbuff_vector = qi->skbuff_vector;
 678	int i;
 
 
 679
 680	if (qi->queue_depth == 0)
 681		return;
 682	for (i = 0; i < qi->queue_depth; i++) {
 
 
 
 
 
 
 
 683		/* it is OK if allocation fails - recvmmsg with NULL data in
 684		 * iov argument still performs an RX, just drops the packet
 685		 * This allows us stop faffing around with a "drop buffer"
 686		 */
 687
 688		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
 689		skbuff_vector++;
 690		mmsg_vector++;
 691	}
 692	qi->queue_depth = 0;
 693}
 694
 695static struct vector_device *find_device(int n)
 696{
 697	struct vector_device *device;
 698	struct list_head *ele;
 699
 700	spin_lock(&vector_devices_lock);
 701	list_for_each(ele, &vector_devices) {
 702		device = list_entry(ele, struct vector_device, list);
 703		if (device->unit == n)
 704			goto out;
 705	}
 706	device = NULL;
 707 out:
 708	spin_unlock(&vector_devices_lock);
 709	return device;
 710}
 711
 712static int vector_parse(char *str, int *index_out, char **str_out,
 713			char **error_out)
 714{
 715	int n, len, err;
 716	char *start = str;
 717
 718	len = strlen(str);
 719
 720	while ((*str != ':') && (strlen(str) > 1))
 721		str++;
 722	if (*str != ':') {
 723		*error_out = "Expected ':' after device number";
 724		return -EINVAL;
 725	}
 726	*str = '\0';
 727
 728	err = kstrtouint(start, 0, &n);
 729	if (err < 0) {
 730		*error_out = "Bad device number";
 731		return err;
 732	}
 733
 734	str++;
 735	if (find_device(n)) {
 736		*error_out = "Device already configured";
 737		return -EINVAL;
 738	}
 739
 740	*index_out = n;
 741	*str_out = str;
 742	return 0;
 743}
 744
 745static int vector_config(char *str, char **error_out)
 746{
 747	int err, n;
 748	char *params;
 749	struct arglist *parsed;
 750
 751	err = vector_parse(str, &n, &params, error_out);
 752	if (err != 0)
 753		return err;
 754
 755	/* This string is broken up and the pieces used by the underlying
 756	 * driver. We should copy it to make sure things do not go wrong
 757	 * later.
 758	 */
 759
 760	params = kstrdup(params, GFP_KERNEL);
 761	if (params == NULL) {
 762		*error_out = "vector_config failed to strdup string";
 763		return -ENOMEM;
 764	}
 765
 766	parsed = uml_parse_vector_ifspec(params);
 767
 768	if (parsed == NULL) {
 769		*error_out = "vector_config failed to parse parameters";
 
 770		return -EINVAL;
 771	}
 772
 773	vector_eth_configure(n, parsed);
 774	return 0;
 775}
 776
 777static int vector_id(char **str, int *start_out, int *end_out)
 778{
 779	char *end;
 780	int n;
 781
 782	n = simple_strtoul(*str, &end, 0);
 783	if ((*end != '\0') || (end == *str))
 784		return -1;
 785
 786	*start_out = n;
 787	*end_out = n;
 788	*str = end;
 789	return n;
 790}
 791
 792static int vector_remove(int n, char **error_out)
 793{
 794	struct vector_device *vec_d;
 795	struct net_device *dev;
 796	struct vector_private *vp;
 797
 798	vec_d = find_device(n);
 799	if (vec_d == NULL)
 800		return -ENODEV;
 801	dev = vec_d->dev;
 802	vp = netdev_priv(dev);
 803	if (vp->fds != NULL)
 804		return -EBUSY;
 805	unregister_netdev(dev);
 806	platform_device_unregister(&vec_d->pdev);
 807	return 0;
 808}
 809
 810/*
 811 * There is no shared per-transport initialization code, so
 812 * we will just initialize each interface one by one and
 813 * add them to a list
 814 */
 815
 816static struct platform_driver uml_net_driver = {
 817	.driver = {
 818		.name = DRIVER_NAME,
 819	},
 820};
 821
 822
 823static void vector_device_release(struct device *dev)
 824{
 825	struct vector_device *device = dev_get_drvdata(dev);
 
 826	struct net_device *netdev = device->dev;
 827
 828	list_del(&device->list);
 829	kfree(device);
 830	free_netdev(netdev);
 831}
 832
 833/* Bog standard recv using recvmsg - not used normally unless the user
 834 * explicitly specifies not to use recvmmsg vector RX.
 835 */
 836
 837static int vector_legacy_rx(struct vector_private *vp)
 838{
 839	int pkt_len;
 840	struct user_msghdr hdr;
 841	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
 842	int iovpos = 0;
 843	struct sk_buff *skb;
 844	int header_check;
 845
 846	hdr.msg_name = NULL;
 847	hdr.msg_namelen = 0;
 848	hdr.msg_iov = (struct iovec *) &iov;
 849	hdr.msg_control = NULL;
 850	hdr.msg_controllen = 0;
 851	hdr.msg_flags = 0;
 852
 853	if (vp->header_size > 0) {
 854		iov[0].iov_base = vp->header_rxbuffer;
 855		iov[0].iov_len = vp->header_size;
 856	}
 857
 858	skb = prep_skb(vp, &hdr);
 859
 860	if (skb == NULL) {
 861		/* Read a packet into drop_buffer and don't do
 862		 * anything with it.
 863		 */
 864		iov[iovpos].iov_base = drop_buffer;
 865		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
 866		hdr.msg_iovlen = 1;
 867		vp->dev->stats.rx_dropped++;
 868	}
 869
 870	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
 871	if (pkt_len < 0) {
 872		vp->in_error = true;
 873		return pkt_len;
 874	}
 875
 876	if (skb != NULL) {
 877		if (pkt_len > vp->header_size) {
 878			if (vp->header_size > 0) {
 879				header_check = vp->verify_header(
 880					vp->header_rxbuffer, skb, vp);
 881				if (header_check < 0) {
 882					dev_kfree_skb_irq(skb);
 883					vp->dev->stats.rx_dropped++;
 884					vp->estats.rx_encaps_errors++;
 885					return 0;
 886				}
 887				if (header_check > 0) {
 888					vp->estats.rx_csum_offload_good++;
 889					skb->ip_summed = CHECKSUM_UNNECESSARY;
 890				}
 891			}
 892			pskb_trim(skb, pkt_len - vp->rx_header_size);
 893			skb->protocol = eth_type_trans(skb, skb->dev);
 894			vp->dev->stats.rx_bytes += skb->len;
 895			vp->dev->stats.rx_packets++;
 896			napi_gro_receive(&vp->napi, skb);
 897		} else {
 898			dev_kfree_skb_irq(skb);
 899		}
 900	}
 901	return pkt_len;
 902}
 903
 904/*
 905 * Packet at a time TX which falls back to vector TX if the
 906 * underlying transport is busy.
 907 */
 908
 909
 910
 911static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
 912{
 913	struct iovec iov[3 + MAX_IOV_SIZE];
 914	int iov_count, pkt_len = 0;
 915
 916	iov[0].iov_base = vp->header_txbuffer;
 917	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
 918
 919	if (iov_count < 1)
 920		goto drop;
 921
 922	pkt_len = uml_vector_writev(
 923		vp->fds->tx_fd,
 924		(struct iovec *) &iov,
 925		iov_count
 926	);
 927
 928	if (pkt_len < 0)
 929		goto drop;
 930
 931	netif_trans_update(vp->dev);
 932	netif_wake_queue(vp->dev);
 933
 934	if (pkt_len > 0) {
 935		vp->dev->stats.tx_bytes += skb->len;
 936		vp->dev->stats.tx_packets++;
 937	} else {
 938		vp->dev->stats.tx_dropped++;
 939	}
 940	consume_skb(skb);
 941	return pkt_len;
 942drop:
 943	vp->dev->stats.tx_dropped++;
 944	consume_skb(skb);
 945	if (pkt_len < 0)
 946		vp->in_error = true;
 947	return pkt_len;
 948}
 949
 950/*
 951 * Receive as many messages as we can in one call using the special
 952 * mmsg vector matched to an skb vector which we prepared earlier.
 953 */
 954
 955static int vector_mmsg_rx(struct vector_private *vp, int budget)
 956{
 957	int packet_count, i;
 958	struct vector_queue *qi = vp->rx_queue;
 959	struct sk_buff *skb;
 960	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 961	void **skbuff_vector = qi->skbuff_vector;
 962	int header_check;
 963
 964	/* Refresh the vector and make sure it is with new skbs and the
 965	 * iovs are updated to point to them.
 966	 */
 967
 968	prep_queue_for_rx(qi);
 969
 970	/* Fire the Lazy Gun - get as many packets as we can in one go. */
 971
 972	if (budget > qi->max_depth)
 973		budget = qi->max_depth;
 974
 975	packet_count = uml_vector_recvmmsg(
 976		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
 977
 978	if (packet_count < 0)
 979		vp->in_error = true;
 980
 981	if (packet_count <= 0)
 982		return packet_count;
 983
 984	/* We treat packet processing as enqueue, buffer refresh as dequeue
 985	 * The queue_depth tells us how many buffers have been used and how
 986	 * many do we need to prep the next time prep_queue_for_rx() is called.
 987	 */
 988
 989	qi->queue_depth = packet_count;
 990
 991	for (i = 0; i < packet_count; i++) {
 992		skb = (*skbuff_vector);
 993		if (mmsg_vector->msg_len > vp->header_size) {
 994			if (vp->header_size > 0) {
 995				header_check = vp->verify_header(
 996					mmsg_vector->msg_hdr.msg_iov->iov_base,
 997					skb,
 998					vp
 999				);
1000				if (header_check < 0) {
1001				/* Overlay header failed to verify - discard.
1002				 * We can actually keep this skb and reuse it,
1003				 * but that will make the prep logic too
1004				 * complex.
1005				 */
1006					dev_kfree_skb_irq(skb);
1007					vp->estats.rx_encaps_errors++;
1008					continue;
1009				}
1010				if (header_check > 0) {
1011					vp->estats.rx_csum_offload_good++;
1012					skb->ip_summed = CHECKSUM_UNNECESSARY;
1013				}
1014			}
1015			pskb_trim(skb,
1016				mmsg_vector->msg_len - vp->rx_header_size);
1017			skb->protocol = eth_type_trans(skb, skb->dev);
1018			/*
1019			 * We do not need to lock on updating stats here
1020			 * The interrupt loop is non-reentrant.
1021			 */
1022			vp->dev->stats.rx_bytes += skb->len;
1023			vp->dev->stats.rx_packets++;
1024			napi_gro_receive(&vp->napi, skb);
1025		} else {
1026			/* Overlay header too short to do anything - discard.
1027			 * We can actually keep this skb and reuse it,
1028			 * but that will make the prep logic too complex.
1029			 */
1030			if (skb != NULL)
1031				dev_kfree_skb_irq(skb);
1032		}
1033		(*skbuff_vector) = NULL;
1034		/* Move to the next buffer element */
1035		mmsg_vector++;
1036		skbuff_vector++;
1037	}
1038	if (packet_count > 0) {
1039		if (vp->estats.rx_queue_max < packet_count)
1040			vp->estats.rx_queue_max = packet_count;
1041		vp->estats.rx_queue_running_average =
1042			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1043	}
1044	return packet_count;
1045}
1046
1047static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1048{
1049	struct vector_private *vp = netdev_priv(dev);
1050	int queue_depth = 0;
1051
1052	if (vp->in_error) {
1053		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1054		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1055			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1056		return NETDEV_TX_BUSY;
1057	}
1058
1059	if ((vp->options & VECTOR_TX) == 0) {
1060		writev_tx(vp, skb);
1061		return NETDEV_TX_OK;
1062	}
1063
1064	/* We do BQL only in the vector path, no point doing it in
1065	 * packet at a time mode as there is no device queue
1066	 */
1067
1068	netdev_sent_queue(vp->dev, skb->len);
1069	queue_depth = vector_enqueue(vp->tx_queue, skb);
1070
1071	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1072		mod_timer(&vp->tl, vp->coalesce);
1073		return NETDEV_TX_OK;
1074	} else {
1075		queue_depth = vector_send(vp->tx_queue);
1076		if (queue_depth > 0)
1077			napi_schedule(&vp->napi);
1078	}
1079
1080	return NETDEV_TX_OK;
1081}
1082
1083static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1084{
1085	struct net_device *dev = dev_id;
1086	struct vector_private *vp = netdev_priv(dev);
1087
1088	if (!netif_running(dev))
1089		return IRQ_NONE;
1090	napi_schedule(&vp->napi);
1091	return IRQ_HANDLED;
1092
1093}
1094
1095static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1096{
1097	struct net_device *dev = dev_id;
1098	struct vector_private *vp = netdev_priv(dev);
1099
1100	if (!netif_running(dev))
1101		return IRQ_NONE;
1102	/* We need to pay attention to it only if we got
1103	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1104	 * we ignore it. In the future, it may be worth
1105	 * it to improve the IRQ controller a bit to make
1106	 * tweaking the IRQ mask less costly
1107	 */
1108
1109	napi_schedule(&vp->napi);
1110	return IRQ_HANDLED;
1111
1112}
1113
1114static int irq_rr;
1115
1116static int vector_net_close(struct net_device *dev)
1117{
1118	struct vector_private *vp = netdev_priv(dev);
1119	unsigned long flags;
1120
1121	netif_stop_queue(dev);
1122	del_timer(&vp->tl);
1123
 
 
1124	if (vp->fds == NULL)
1125		return 0;
1126
1127	/* Disable and free all IRQS */
1128	if (vp->rx_irq > 0) {
1129		um_free_irq(vp->rx_irq, dev);
1130		vp->rx_irq = 0;
1131	}
1132	if (vp->tx_irq > 0) {
1133		um_free_irq(vp->tx_irq, dev);
1134		vp->tx_irq = 0;
1135	}
1136	napi_disable(&vp->napi);
1137	netif_napi_del(&vp->napi);
1138	if (vp->fds->rx_fd > 0) {
1139		if (vp->bpf)
1140			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1141		os_close_file(vp->fds->rx_fd);
1142		vp->fds->rx_fd = -1;
1143	}
1144	if (vp->fds->tx_fd > 0) {
1145		os_close_file(vp->fds->tx_fd);
1146		vp->fds->tx_fd = -1;
1147	}
1148	if (vp->bpf != NULL)
1149		kfree(vp->bpf->filter);
1150	kfree(vp->bpf);
1151	vp->bpf = NULL;
1152	kfree(vp->fds->remote_addr);
1153	kfree(vp->transport_data);
1154	kfree(vp->header_rxbuffer);
1155	kfree(vp->header_txbuffer);
1156	if (vp->rx_queue != NULL)
1157		destroy_queue(vp->rx_queue);
1158	if (vp->tx_queue != NULL)
1159		destroy_queue(vp->tx_queue);
1160	kfree(vp->fds);
1161	vp->fds = NULL;
1162	spin_lock_irqsave(&vp->lock, flags);
1163	vp->opened = false;
1164	vp->in_error = false;
1165	spin_unlock_irqrestore(&vp->lock, flags);
1166	return 0;
1167}
1168
1169static int vector_poll(struct napi_struct *napi, int budget)
1170{
1171	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1172	int work_done = 0;
1173	int err;
1174	bool tx_enqueued = false;
1175
1176	if ((vp->options & VECTOR_TX) != 0)
1177		tx_enqueued = (vector_send(vp->tx_queue) > 0);
 
1178	if ((vp->options & VECTOR_RX) > 0)
1179		err = vector_mmsg_rx(vp, budget);
1180	else {
1181		err = vector_legacy_rx(vp);
1182		if (err > 0)
1183			err = 1;
1184	}
 
1185	if (err > 0)
1186		work_done += err;
1187
1188	if (tx_enqueued || err > 0)
1189		napi_schedule(napi);
1190	if (work_done < budget)
1191		napi_complete_done(napi, work_done);
1192	return work_done;
1193}
1194
1195static void vector_reset_tx(struct work_struct *work)
1196{
1197	struct vector_private *vp =
1198		container_of(work, struct vector_private, reset_tx);
1199	netdev_reset_queue(vp->dev);
1200	netif_start_queue(vp->dev);
1201	netif_wake_queue(vp->dev);
1202}
1203
1204static int vector_net_open(struct net_device *dev)
1205{
1206	struct vector_private *vp = netdev_priv(dev);
1207	unsigned long flags;
1208	int err = -EINVAL;
1209	struct vector_device *vdevice;
1210
1211	spin_lock_irqsave(&vp->lock, flags);
1212	if (vp->opened) {
1213		spin_unlock_irqrestore(&vp->lock, flags);
1214		return -ENXIO;
1215	}
1216	vp->opened = true;
1217	spin_unlock_irqrestore(&vp->lock, flags);
1218
1219	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1220
1221	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1222
1223	if (vp->fds == NULL)
1224		goto out_close;
1225
1226	if (build_transport_data(vp) < 0)
1227		goto out_close;
1228
1229	if ((vp->options & VECTOR_RX) > 0) {
1230		vp->rx_queue = create_queue(
1231			vp,
1232			get_depth(vp->parsed),
1233			vp->rx_header_size,
1234			MAX_IOV_SIZE
1235		);
1236		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1237	} else {
1238		vp->header_rxbuffer = kmalloc(
1239			vp->rx_header_size,
1240			GFP_KERNEL
1241		);
1242		if (vp->header_rxbuffer == NULL)
1243			goto out_close;
1244	}
1245	if ((vp->options & VECTOR_TX) > 0) {
1246		vp->tx_queue = create_queue(
1247			vp,
1248			get_depth(vp->parsed),
1249			vp->header_size,
1250			MAX_IOV_SIZE
1251		);
1252	} else {
1253		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1254		if (vp->header_txbuffer == NULL)
1255			goto out_close;
1256	}
1257
1258	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1259			      get_depth(vp->parsed));
1260	napi_enable(&vp->napi);
1261
1262	/* READ IRQ */
1263	err = um_request_irq(
1264		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1265			IRQ_READ, vector_rx_interrupt,
1266			IRQF_SHARED, dev->name, dev);
1267	if (err < 0) {
1268		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1269		err = -ENETUNREACH;
1270		goto out_close;
1271	}
1272	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1273	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1274	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1275
1276	/* WRITE IRQ - we need it only if we have vector TX */
1277	if ((vp->options & VECTOR_TX) > 0) {
1278		err = um_request_irq(
1279			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1280				IRQ_WRITE, vector_tx_interrupt,
1281				IRQF_SHARED, dev->name, dev);
1282		if (err < 0) {
1283			netdev_err(dev,
1284				"vector_open: failed to get tx irq(%d)\n", err);
1285			err = -ENETUNREACH;
1286			goto out_close;
1287		}
1288		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1289		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1290	}
1291
1292	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1293		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1294			vp->options |= VECTOR_BPF;
1295	}
1296	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1297		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1298
1299	if (vp->bpf != NULL)
1300		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1301
1302	netif_start_queue(dev);
1303	vector_reset_stats(vp);
1304
1305	/* clear buffer - it can happen that the host side of the interface
1306	 * is full when we get here. In this case, new data is never queued,
1307	 * SIGIOs never arrive, and the net never works.
1308	 */
1309
1310	napi_schedule(&vp->napi);
1311
1312	vdevice = find_device(vp->unit);
1313	vdevice->opened = 1;
1314
1315	if ((vp->options & VECTOR_TX) != 0)
1316		add_timer(&vp->tl);
1317	return 0;
1318out_close:
1319	vector_net_close(dev);
1320	return err;
1321}
1322
1323
1324static void vector_net_set_multicast_list(struct net_device *dev)
1325{
1326	/* TODO: - we can do some BPF games here */
1327	return;
1328}
1329
1330static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1331{
1332	struct vector_private *vp = netdev_priv(dev);
1333
1334	vp->estats.tx_timeout_count++;
1335	netif_trans_update(dev);
1336	schedule_work(&vp->reset_tx);
1337}
1338
1339static netdev_features_t vector_fix_features(struct net_device *dev,
1340	netdev_features_t features)
1341{
1342	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1343	return features;
1344}
1345
1346static int vector_set_features(struct net_device *dev,
1347	netdev_features_t features)
1348{
1349	struct vector_private *vp = netdev_priv(dev);
1350	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1351	 * no way to negotiate it on raw sockets, so we can change
1352	 * only our side.
1353	 */
1354	if (features & NETIF_F_GRO)
1355		/* All new frame buffers will be GRO-sized */
1356		vp->req_size = 65536;
1357	else
1358		/* All new frame buffers will be normal sized */
1359		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1360	return 0;
1361}
1362
1363#ifdef CONFIG_NET_POLL_CONTROLLER
1364static void vector_net_poll_controller(struct net_device *dev)
1365{
1366	disable_irq(dev->irq);
1367	vector_rx_interrupt(dev->irq, dev);
1368	enable_irq(dev->irq);
1369}
1370#endif
1371
1372static void vector_net_get_drvinfo(struct net_device *dev,
1373				struct ethtool_drvinfo *info)
1374{
1375	strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1376}
1377
1378static int vector_net_load_bpf_flash(struct net_device *dev,
1379				struct ethtool_flash *efl)
1380{
1381	struct vector_private *vp = netdev_priv(dev);
1382	struct vector_device *vdevice;
1383	const struct firmware *fw;
1384	int result = 0;
1385
1386	if (!(vp->options & VECTOR_BPF_FLASH)) {
1387		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1388		return -1;
1389	}
1390
1391	spin_lock(&vp->lock);
1392
1393	if (vp->bpf != NULL) {
1394		if (vp->opened)
1395			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1396		kfree(vp->bpf->filter);
1397		vp->bpf->filter = NULL;
1398	} else {
1399		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1400		if (vp->bpf == NULL) {
1401			netdev_err(dev, "failed to allocate memory for firmware\n");
1402			goto flash_fail;
1403		}
1404	}
1405
1406	vdevice = find_device(vp->unit);
1407
1408	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1409		goto flash_fail;
1410
1411	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1412	if (!vp->bpf->filter)
1413		goto free_buffer;
1414
1415	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1416	release_firmware(fw);
1417
1418	if (vp->opened)
1419		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1420
1421	spin_unlock(&vp->lock);
1422
1423	return result;
1424
1425free_buffer:
1426	release_firmware(fw);
1427
1428flash_fail:
1429	spin_unlock(&vp->lock);
1430	if (vp->bpf != NULL)
1431		kfree(vp->bpf->filter);
1432	kfree(vp->bpf);
1433	vp->bpf = NULL;
1434	return -1;
1435}
1436
1437static void vector_get_ringparam(struct net_device *netdev,
1438				 struct ethtool_ringparam *ring,
1439				 struct kernel_ethtool_ringparam *kernel_ring,
1440				 struct netlink_ext_ack *extack)
1441{
1442	struct vector_private *vp = netdev_priv(netdev);
1443
1444	ring->rx_max_pending = vp->rx_queue->max_depth;
1445	ring->tx_max_pending = vp->tx_queue->max_depth;
1446	ring->rx_pending = vp->rx_queue->max_depth;
1447	ring->tx_pending = vp->tx_queue->max_depth;
1448}
1449
1450static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1451{
1452	switch (stringset) {
1453	case ETH_SS_TEST:
1454		*buf = '\0';
1455		break;
1456	case ETH_SS_STATS:
1457		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1458		break;
1459	default:
1460		WARN_ON(1);
1461		break;
1462	}
1463}
1464
1465static int vector_get_sset_count(struct net_device *dev, int sset)
1466{
1467	switch (sset) {
1468	case ETH_SS_TEST:
1469		return 0;
1470	case ETH_SS_STATS:
1471		return VECTOR_NUM_STATS;
1472	default:
1473		return -EOPNOTSUPP;
1474	}
1475}
1476
1477static void vector_get_ethtool_stats(struct net_device *dev,
1478	struct ethtool_stats *estats,
1479	u64 *tmp_stats)
1480{
1481	struct vector_private *vp = netdev_priv(dev);
1482
 
 
 
 
 
 
 
 
1483	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
 
 
1484}
1485
1486static int vector_get_coalesce(struct net_device *netdev,
1487			       struct ethtool_coalesce *ec,
1488			       struct kernel_ethtool_coalesce *kernel_coal,
1489			       struct netlink_ext_ack *extack)
1490{
1491	struct vector_private *vp = netdev_priv(netdev);
1492
1493	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1494	return 0;
1495}
1496
1497static int vector_set_coalesce(struct net_device *netdev,
1498			       struct ethtool_coalesce *ec,
1499			       struct kernel_ethtool_coalesce *kernel_coal,
1500			       struct netlink_ext_ack *extack)
1501{
1502	struct vector_private *vp = netdev_priv(netdev);
1503
1504	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1505	if (vp->coalesce == 0)
1506		vp->coalesce = 1;
1507	return 0;
1508}
1509
1510static const struct ethtool_ops vector_net_ethtool_ops = {
1511	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1512	.get_drvinfo	= vector_net_get_drvinfo,
1513	.get_link	= ethtool_op_get_link,
1514	.get_ts_info	= ethtool_op_get_ts_info,
1515	.get_ringparam	= vector_get_ringparam,
1516	.get_strings	= vector_get_strings,
1517	.get_sset_count	= vector_get_sset_count,
1518	.get_ethtool_stats = vector_get_ethtool_stats,
1519	.get_coalesce	= vector_get_coalesce,
1520	.set_coalesce	= vector_set_coalesce,
1521	.flash_device	= vector_net_load_bpf_flash,
1522};
1523
1524
1525static const struct net_device_ops vector_netdev_ops = {
1526	.ndo_open		= vector_net_open,
1527	.ndo_stop		= vector_net_close,
1528	.ndo_start_xmit		= vector_net_start_xmit,
1529	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1530	.ndo_tx_timeout		= vector_net_tx_timeout,
1531	.ndo_set_mac_address	= eth_mac_addr,
1532	.ndo_validate_addr	= eth_validate_addr,
1533	.ndo_fix_features	= vector_fix_features,
1534	.ndo_set_features	= vector_set_features,
1535#ifdef CONFIG_NET_POLL_CONTROLLER
1536	.ndo_poll_controller = vector_net_poll_controller,
1537#endif
1538};
1539
1540static void vector_timer_expire(struct timer_list *t)
1541{
1542	struct vector_private *vp = from_timer(vp, t, tl);
1543
1544	vp->estats.tx_kicks++;
1545	napi_schedule(&vp->napi);
1546}
1547
1548
1549
1550static void vector_eth_configure(
1551		int n,
1552		struct arglist *def
1553	)
1554{
1555	struct vector_device *device;
1556	struct net_device *dev;
1557	struct vector_private *vp;
1558	int err;
1559
1560	device = kzalloc(sizeof(*device), GFP_KERNEL);
1561	if (device == NULL) {
1562		printk(KERN_ERR "eth_configure failed to allocate struct "
1563				 "vector_device\n");
1564		return;
1565	}
1566	dev = alloc_etherdev(sizeof(struct vector_private));
1567	if (dev == NULL) {
1568		printk(KERN_ERR "eth_configure: failed to allocate struct "
1569				 "net_device for vec%d\n", n);
1570		goto out_free_device;
1571	}
1572
1573	dev->mtu = get_mtu(def);
1574
1575	INIT_LIST_HEAD(&device->list);
1576	device->unit = n;
1577
1578	/* If this name ends up conflicting with an existing registered
1579	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1580	 * and fail.
1581	 */
1582	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1583	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1584	vp = netdev_priv(dev);
1585
1586	/* sysfs register */
1587	if (!driver_registered) {
1588		platform_driver_register(&uml_net_driver);
1589		driver_registered = 1;
1590	}
1591	device->pdev.id = n;
1592	device->pdev.name = DRIVER_NAME;
1593	device->pdev.dev.release = vector_device_release;
1594	dev_set_drvdata(&device->pdev.dev, device);
1595	if (platform_device_register(&device->pdev))
1596		goto out_free_netdev;
1597	SET_NETDEV_DEV(dev, &device->pdev.dev);
1598
1599	device->dev = dev;
1600
1601	*vp = ((struct vector_private)
1602		{
1603		.list			= LIST_HEAD_INIT(vp->list),
1604		.dev			= dev,
1605		.unit			= n,
1606		.options		= get_transport_options(def),
1607		.rx_irq			= 0,
1608		.tx_irq			= 0,
1609		.parsed			= def,
1610		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1611		/* TODO - we need to calculate headroom so that ip header
1612		 * is 16 byte aligned all the time
1613		 */
1614		.headroom		= get_headroom(def),
1615		.form_header		= NULL,
1616		.verify_header		= NULL,
1617		.header_rxbuffer	= NULL,
1618		.header_txbuffer	= NULL,
1619		.header_size		= 0,
1620		.rx_header_size		= 0,
1621		.rexmit_scheduled	= false,
1622		.opened			= false,
1623		.transport_data		= NULL,
1624		.in_write_poll		= false,
1625		.coalesce		= 2,
1626		.req_size		= get_req_size(def),
1627		.in_error		= false,
1628		.bpf			= NULL
1629	});
1630
1631	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1632	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1633
1634	timer_setup(&vp->tl, vector_timer_expire, 0);
1635	spin_lock_init(&vp->lock);
1636
1637	/* FIXME */
1638	dev->netdev_ops = &vector_netdev_ops;
1639	dev->ethtool_ops = &vector_net_ethtool_ops;
1640	dev->watchdog_timeo = (HZ >> 1);
1641	/* primary IRQ - fixme */
1642	dev->irq = 0; /* we will adjust this once opened */
1643
1644	rtnl_lock();
1645	err = register_netdevice(dev);
1646	rtnl_unlock();
1647	if (err)
1648		goto out_undo_user_init;
1649
1650	spin_lock(&vector_devices_lock);
1651	list_add(&device->list, &vector_devices);
1652	spin_unlock(&vector_devices_lock);
1653
1654	return;
1655
1656out_undo_user_init:
1657	return;
1658out_free_netdev:
1659	free_netdev(dev);
1660out_free_device:
1661	kfree(device);
1662}
1663
1664
1665
1666
1667/*
1668 * Invoked late in the init
1669 */
1670
1671static int __init vector_init(void)
1672{
1673	struct list_head *ele;
1674	struct vector_cmd_line_arg *def;
1675	struct arglist *parsed;
1676
1677	list_for_each(ele, &vec_cmd_line) {
1678		def = list_entry(ele, struct vector_cmd_line_arg, list);
1679		parsed = uml_parse_vector_ifspec(def->arguments);
1680		if (parsed != NULL)
1681			vector_eth_configure(def->unit, parsed);
1682	}
1683	return 0;
1684}
1685
1686
1687/* Invoked at initial argument parsing, only stores
1688 * arguments until a proper vector_init is called
1689 * later
1690 */
1691
1692static int __init vector_setup(char *str)
1693{
1694	char *error;
1695	int n, err;
1696	struct vector_cmd_line_arg *new;
1697
1698	err = vector_parse(str, &n, &str, &error);
1699	if (err) {
1700		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1701				 str, error);
1702		return 1;
1703	}
1704	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1705	if (!new)
1706		panic("%s: Failed to allocate %zu bytes\n", __func__,
1707		      sizeof(*new));
1708	INIT_LIST_HEAD(&new->list);
1709	new->unit = n;
1710	new->arguments = str;
1711	list_add_tail(&new->list, &vec_cmd_line);
1712	return 1;
1713}
1714
1715__setup("vec", vector_setup);
1716__uml_help(vector_setup,
1717"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1718"	 Configure a vector io network device.\n\n"
1719);
1720
1721late_initcall(vector_init);
1722
1723static struct mc_device vector_mc = {
1724	.list		= LIST_HEAD_INIT(vector_mc.list),
1725	.name		= "vec",
1726	.config		= vector_config,
1727	.get_config	= NULL,
1728	.id		= vector_id,
1729	.remove		= vector_remove,
1730};
1731
1732#ifdef CONFIG_INET
1733static int vector_inetaddr_event(
1734	struct notifier_block *this,
1735	unsigned long event,
1736	void *ptr)
1737{
1738	return NOTIFY_DONE;
1739}
1740
1741static struct notifier_block vector_inetaddr_notifier = {
1742	.notifier_call		= vector_inetaddr_event,
1743};
1744
1745static void inet_register(void)
1746{
1747	register_inetaddr_notifier(&vector_inetaddr_notifier);
1748}
1749#else
1750static inline void inet_register(void)
1751{
1752}
1753#endif
1754
1755static int vector_net_init(void)
1756{
1757	mconsole_register_dev(&vector_mc);
1758	inet_register();
1759	return 0;
1760}
1761
1762__initcall(vector_net_init);
1763
1764
1765
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
   4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
   5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
   6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
   7 * James Leu (jleu@mindspring.net).
   8 * Copyright (C) 2001 by various other people who didn't put their name here.
   9 */
  10
  11#include <linux/memblock.h>
  12#include <linux/etherdevice.h>
  13#include <linux/ethtool.h>
  14#include <linux/inetdevice.h>
  15#include <linux/init.h>
  16#include <linux/list.h>
  17#include <linux/netdevice.h>
  18#include <linux/platform_device.h>
  19#include <linux/rtnetlink.h>
  20#include <linux/skbuff.h>
  21#include <linux/slab.h>
  22#include <linux/interrupt.h>
  23#include <linux/firmware.h>
  24#include <linux/fs.h>
  25#include <asm/atomic.h>
  26#include <uapi/linux/filter.h>
  27#include <init.h>
  28#include <irq_kern.h>
  29#include <irq_user.h>
  30#include <net_kern.h>
  31#include <os.h>
  32#include "mconsole_kern.h"
  33#include "vector_user.h"
  34#include "vector_kern.h"
  35
  36/*
  37 * Adapted from network devices with the following major changes:
  38 * All transports are static - simplifies the code significantly
  39 * Multiple FDs/IRQs per device
  40 * Vector IO optionally used for read/write, falling back to legacy
  41 * based on configuration and/or availability
  42 * Configuration is no longer positional - L2TPv3 and GRE require up to
  43 * 10 parameters, passing this as positional is not fit for purpose.
  44 * Only socket transports are supported
  45 */
  46
  47
  48#define DRIVER_NAME "uml-vector"
  49struct vector_cmd_line_arg {
  50	struct list_head list;
  51	int unit;
  52	char *arguments;
  53};
  54
  55struct vector_device {
  56	struct list_head list;
  57	struct net_device *dev;
  58	struct platform_device pdev;
  59	int unit;
  60	int opened;
  61};
  62
  63static LIST_HEAD(vec_cmd_line);
  64
  65static DEFINE_SPINLOCK(vector_devices_lock);
  66static LIST_HEAD(vector_devices);
  67
  68static int driver_registered;
  69
  70static void vector_eth_configure(int n, struct arglist *def);
  71static int vector_mmsg_rx(struct vector_private *vp, int budget);
  72
  73/* Argument accessors to set variables (and/or set default values)
  74 * mtu, buffer sizing, default headroom, etc
  75 */
  76
  77#define DEFAULT_HEADROOM 2
  78#define SAFETY_MARGIN 32
  79#define DEFAULT_VECTOR_SIZE 64
  80#define TX_SMALL_PACKET 128
  81#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
  82
  83static const struct {
  84	const char string[ETH_GSTRING_LEN];
  85} ethtool_stats_keys[] = {
  86	{ "rx_queue_max" },
  87	{ "rx_queue_running_average" },
  88	{ "tx_queue_max" },
  89	{ "tx_queue_running_average" },
  90	{ "rx_encaps_errors" },
  91	{ "tx_timeout_count" },
  92	{ "tx_restart_queue" },
  93	{ "tx_kicks" },
  94	{ "tx_flow_control_xon" },
  95	{ "tx_flow_control_xoff" },
  96	{ "rx_csum_offload_good" },
  97	{ "rx_csum_offload_errors"},
  98	{ "sg_ok"},
  99	{ "sg_linearized"},
 100};
 101
 102#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
 103
 104static void vector_reset_stats(struct vector_private *vp)
 105{
 106	/* We reuse the existing queue locks for stats */
 107
 108	/* RX stats are modified with RX head_lock held
 109	 * in vector_poll.
 110	 */
 111
 112	spin_lock(&vp->rx_queue->head_lock);
 113	vp->estats.rx_queue_max = 0;
 114	vp->estats.rx_queue_running_average = 0;
 
 
 115	vp->estats.rx_encaps_errors = 0;
 116	vp->estats.sg_ok = 0;
 117	vp->estats.sg_linearized = 0;
 118	spin_unlock(&vp->rx_queue->head_lock);
 119
 120	/* TX stats are modified with TX head_lock held
 121	 * in vector_send.
 122	 */
 123
 124	spin_lock(&vp->tx_queue->head_lock);
 125	vp->estats.tx_timeout_count = 0;
 126	vp->estats.tx_restart_queue = 0;
 127	vp->estats.tx_kicks = 0;
 128	vp->estats.tx_flow_control_xon = 0;
 129	vp->estats.tx_flow_control_xoff = 0;
 130	vp->estats.tx_queue_max = 0;
 131	vp->estats.tx_queue_running_average = 0;
 132	spin_unlock(&vp->tx_queue->head_lock);
 133}
 134
 135static int get_mtu(struct arglist *def)
 136{
 137	char *mtu = uml_vector_fetch_arg(def, "mtu");
 138	long result;
 139
 140	if (mtu != NULL) {
 141		if (kstrtoul(mtu, 10, &result) == 0)
 142			if ((result < (1 << 16) - 1) && (result >= 576))
 143				return result;
 144	}
 145	return ETH_MAX_PACKET;
 146}
 147
 148static char *get_bpf_file(struct arglist *def)
 149{
 150	return uml_vector_fetch_arg(def, "bpffile");
 151}
 152
 153static bool get_bpf_flash(struct arglist *def)
 154{
 155	char *allow = uml_vector_fetch_arg(def, "bpfflash");
 156	long result;
 157
 158	if (allow != NULL) {
 159		if (kstrtoul(allow, 10, &result) == 0)
 160			return result > 0;
 161	}
 162	return false;
 163}
 164
 165static int get_depth(struct arglist *def)
 166{
 167	char *mtu = uml_vector_fetch_arg(def, "depth");
 168	long result;
 169
 170	if (mtu != NULL) {
 171		if (kstrtoul(mtu, 10, &result) == 0)
 172			return result;
 173	}
 174	return DEFAULT_VECTOR_SIZE;
 175}
 176
 177static int get_headroom(struct arglist *def)
 178{
 179	char *mtu = uml_vector_fetch_arg(def, "headroom");
 180	long result;
 181
 182	if (mtu != NULL) {
 183		if (kstrtoul(mtu, 10, &result) == 0)
 184			return result;
 185	}
 186	return DEFAULT_HEADROOM;
 187}
 188
 189static int get_req_size(struct arglist *def)
 190{
 191	char *gro = uml_vector_fetch_arg(def, "gro");
 192	long result;
 193
 194	if (gro != NULL) {
 195		if (kstrtoul(gro, 10, &result) == 0) {
 196			if (result > 0)
 197				return 65536;
 198		}
 199	}
 200	return get_mtu(def) + ETH_HEADER_OTHER +
 201		get_headroom(def) + SAFETY_MARGIN;
 202}
 203
 204
 205static int get_transport_options(struct arglist *def)
 206{
 207	char *transport = uml_vector_fetch_arg(def, "transport");
 208	char *vector = uml_vector_fetch_arg(def, "vec");
 209
 210	int vec_rx = VECTOR_RX;
 211	int vec_tx = VECTOR_TX;
 212	long parsed;
 213	int result = 0;
 214
 215	if (transport == NULL)
 216		return -EINVAL;
 217
 218	if (vector != NULL) {
 219		if (kstrtoul(vector, 10, &parsed) == 0) {
 220			if (parsed == 0) {
 221				vec_rx = 0;
 222				vec_tx = 0;
 223			}
 224		}
 225	}
 226
 227	if (get_bpf_flash(def))
 228		result = VECTOR_BPF_FLASH;
 229
 230	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
 231		return result;
 232	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
 233		return (result | vec_rx | VECTOR_BPF);
 234	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
 235		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
 236	return (result | vec_rx | vec_tx);
 237}
 238
 239
 240/* A mini-buffer for packet drop read
 241 * All of our supported transports are datagram oriented and we always
 242 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
 243 * than the packet size it still counts as full packet read and will
 244 * clean the incoming stream to keep sigio/epoll happy
 245 */
 246
 247#define DROP_BUFFER_SIZE 32
 248
 249static char *drop_buffer;
 250
 
 
 
 
 
 
 251
 252/*
 253 * Advance the mmsg queue head by n = advance. Resets the queue to
 254 * maximum enqueue/dequeue-at-once capacity if possible. Called by
 255 * dequeuers. Caller must hold the head_lock!
 256 */
 257
 258static int vector_advancehead(struct vector_queue *qi, int advance)
 259{
 
 
 260	qi->head =
 261		(qi->head + advance)
 262			% qi->max_depth;
 263
 264
 265	atomic_sub(advance, &qi->queue_depth);
 266	return atomic_read(&qi->queue_depth);
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269/*	Advance the queue tail by n = advance.
 270 *	This is called by enqueuers which should hold the
 271 *	head lock already
 272 */
 273
 274static int vector_advancetail(struct vector_queue *qi, int advance)
 275{
 
 
 276	qi->tail =
 277		(qi->tail + advance)
 278			% qi->max_depth;
 279	atomic_add(advance, &qi->queue_depth);
 280	return atomic_read(&qi->queue_depth);
 
 
 
 281}
 282
 283static int prep_msg(struct vector_private *vp,
 284	struct sk_buff *skb,
 285	struct iovec *iov)
 286{
 287	int iov_index = 0;
 288	int nr_frags, frag;
 289	skb_frag_t *skb_frag;
 290
 291	nr_frags = skb_shinfo(skb)->nr_frags;
 292	if (nr_frags > MAX_IOV_SIZE) {
 293		if (skb_linearize(skb) != 0)
 294			goto drop;
 295	}
 296	if (vp->header_size > 0) {
 297		iov[iov_index].iov_len = vp->header_size;
 298		vp->form_header(iov[iov_index].iov_base, skb, vp);
 299		iov_index++;
 300	}
 301	iov[iov_index].iov_base = skb->data;
 302	if (nr_frags > 0) {
 303		iov[iov_index].iov_len = skb->len - skb->data_len;
 304		vp->estats.sg_ok++;
 305	} else
 306		iov[iov_index].iov_len = skb->len;
 307	iov_index++;
 308	for (frag = 0; frag < nr_frags; frag++) {
 309		skb_frag = &skb_shinfo(skb)->frags[frag];
 310		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 311		iov[iov_index].iov_len = skb_frag_size(skb_frag);
 312		iov_index++;
 313	}
 314	return iov_index;
 315drop:
 316	return -1;
 317}
 318/*
 319 * Generic vector enqueue with support for forming headers using transport
 320 * specific callback. Allows GRE, L2TPv3, RAW and other transports
 321 * to use a common enqueue procedure in vector mode
 322 */
 323
 324static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
 325{
 326	struct vector_private *vp = netdev_priv(qi->dev);
 327	int queue_depth;
 328	int packet_len;
 329	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 330	int iov_count;
 331
 332	spin_lock(&qi->tail_lock);
 333	queue_depth = atomic_read(&qi->queue_depth);
 
 
 334
 335	if (skb)
 336		packet_len = skb->len;
 337
 338	if (queue_depth < qi->max_depth) {
 339
 340		*(qi->skbuff_vector + qi->tail) = skb;
 341		mmsg_vector += qi->tail;
 342		iov_count = prep_msg(
 343			vp,
 344			skb,
 345			mmsg_vector->msg_hdr.msg_iov
 346		);
 347		if (iov_count < 1)
 348			goto drop;
 349		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
 350		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
 351		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
 352		wmb(); /* Make the packet visible to the NAPI poll thread */
 353		queue_depth = vector_advancetail(qi, 1);
 354	} else
 355		goto drop;
 356	spin_unlock(&qi->tail_lock);
 357	return queue_depth;
 358drop:
 359	qi->dev->stats.tx_dropped++;
 360	if (skb != NULL) {
 361		packet_len = skb->len;
 362		dev_consume_skb_any(skb);
 363		netdev_completed_queue(qi->dev, 1, packet_len);
 364	}
 365	spin_unlock(&qi->tail_lock);
 366	return queue_depth;
 367}
 368
 369static int consume_vector_skbs(struct vector_queue *qi, int count)
 370{
 371	struct sk_buff *skb;
 372	int skb_index;
 373	int bytes_compl = 0;
 374
 375	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
 376		skb = *(qi->skbuff_vector + skb_index);
 377		/* mark as empty to ensure correct destruction if
 378		 * needed
 379		 */
 380		bytes_compl += skb->len;
 381		*(qi->skbuff_vector + skb_index) = NULL;
 382		dev_consume_skb_any(skb);
 383	}
 384	qi->dev->stats.tx_bytes += bytes_compl;
 385	qi->dev->stats.tx_packets += count;
 386	netdev_completed_queue(qi->dev, count, bytes_compl);
 387	return vector_advancehead(qi, count);
 388}
 389
 390/*
 391 * Generic vector dequeue via sendmmsg with support for forming headers
 392 * using transport specific callback. Allows GRE, L2TPv3, RAW and
 393 * other transports to use a common dequeue procedure in vector mode
 394 */
 395
 396
 397static int vector_send(struct vector_queue *qi)
 398{
 399	struct vector_private *vp = netdev_priv(qi->dev);
 400	struct mmsghdr *send_from;
 401	int result = 0, send_len;
 402
 403	if (spin_trylock(&qi->head_lock)) {
 404		/* update queue_depth to current value */
 405		while (atomic_read(&qi->queue_depth) > 0) {
 406			/* Calculate the start of the vector */
 407			send_len = atomic_read(&qi->queue_depth);
 408			send_from = qi->mmsg_vector;
 409			send_from += qi->head;
 410			/* Adjust vector size if wraparound */
 411			if (send_len + qi->head > qi->max_depth)
 412				send_len = qi->max_depth - qi->head;
 413			/* Try to TX as many packets as possible */
 414			if (send_len > 0) {
 415				result = uml_vector_sendmmsg(
 416					 vp->fds->tx_fd,
 417					 send_from,
 418					 send_len,
 419					 0
 420				);
 421				vp->in_write_poll =
 422					(result != send_len);
 423			}
 424			/* For some of the sendmmsg error scenarios
 425			 * we may end being unsure in the TX success
 426			 * for all packets. It is safer to declare
 427			 * them all TX-ed and blame the network.
 428			 */
 429			if (result < 0) {
 430				if (net_ratelimit())
 431					netdev_err(vp->dev, "sendmmsg err=%i\n",
 432						result);
 433				vp->in_error = true;
 434				result = send_len;
 435			}
 436			if (result > 0) {
 437				consume_vector_skbs(qi, result);
 438				/* This is equivalent to an TX IRQ.
 439				 * Restart the upper layers to feed us
 440				 * more packets.
 
 
 
 
 
 
 
 
 
 
 
 
 
 441				 */
 442				if (result > vp->estats.tx_queue_max)
 443					vp->estats.tx_queue_max = result;
 444				vp->estats.tx_queue_running_average =
 445					(vp->estats.tx_queue_running_average + result) >> 1;
 446			}
 447			netif_wake_queue(qi->dev);
 448			/* if TX is busy, break out of the send loop,
 449			 *  poll write IRQ will reschedule xmit for us.
 450			 */
 451			if (result != send_len) {
 452				vp->estats.tx_restart_queue++;
 453				break;
 454			}
 455		}
 456		spin_unlock(&qi->head_lock);
 457	}
 458	return atomic_read(&qi->queue_depth);
 459}
 460
 461/* Queue destructor. Deliberately stateless so we can use
 462 * it in queue cleanup if initialization fails.
 463 */
 464
 465static void destroy_queue(struct vector_queue *qi)
 466{
 467	int i;
 468	struct iovec *iov;
 469	struct vector_private *vp = netdev_priv(qi->dev);
 470	struct mmsghdr *mmsg_vector;
 471
 472	if (qi == NULL)
 473		return;
 474	/* deallocate any skbuffs - we rely on any unused to be
 475	 * set to NULL.
 476	 */
 477	if (qi->skbuff_vector != NULL) {
 478		for (i = 0; i < qi->max_depth; i++) {
 479			if (*(qi->skbuff_vector + i) != NULL)
 480				dev_kfree_skb_any(*(qi->skbuff_vector + i));
 481		}
 482		kfree(qi->skbuff_vector);
 483	}
 484	/* deallocate matching IOV structures including header buffs */
 485	if (qi->mmsg_vector != NULL) {
 486		mmsg_vector = qi->mmsg_vector;
 487		for (i = 0; i < qi->max_depth; i++) {
 488			iov = mmsg_vector->msg_hdr.msg_iov;
 489			if (iov != NULL) {
 490				if ((vp->header_size > 0) &&
 491					(iov->iov_base != NULL))
 492					kfree(iov->iov_base);
 493				kfree(iov);
 494			}
 495			mmsg_vector++;
 496		}
 497		kfree(qi->mmsg_vector);
 498	}
 499	kfree(qi);
 500}
 501
 502/*
 503 * Queue constructor. Create a queue with a given side.
 504 */
 505static struct vector_queue *create_queue(
 506	struct vector_private *vp,
 507	int max_size,
 508	int header_size,
 509	int num_extra_frags)
 510{
 511	struct vector_queue *result;
 512	int i;
 513	struct iovec *iov;
 514	struct mmsghdr *mmsg_vector;
 515
 516	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
 517	if (result == NULL)
 518		return NULL;
 519	result->max_depth = max_size;
 520	result->dev = vp->dev;
 521	result->mmsg_vector = kmalloc(
 522		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
 523	if (result->mmsg_vector == NULL)
 524		goto out_mmsg_fail;
 525	result->skbuff_vector = kmalloc(
 526		(sizeof(void *) * max_size), GFP_KERNEL);
 527	if (result->skbuff_vector == NULL)
 528		goto out_skb_fail;
 529
 530	/* further failures can be handled safely by destroy_queue*/
 531
 532	mmsg_vector = result->mmsg_vector;
 533	for (i = 0; i < max_size; i++) {
 534		/* Clear all pointers - we use non-NULL as marking on
 535		 * what to free on destruction
 536		 */
 537		*(result->skbuff_vector + i) = NULL;
 538		mmsg_vector->msg_hdr.msg_iov = NULL;
 539		mmsg_vector++;
 540	}
 541	mmsg_vector = result->mmsg_vector;
 542	result->max_iov_frags = num_extra_frags;
 543	for (i = 0; i < max_size; i++) {
 544		if (vp->header_size > 0)
 545			iov = kmalloc_array(3 + num_extra_frags,
 546					    sizeof(struct iovec),
 547					    GFP_KERNEL
 548			);
 549		else
 550			iov = kmalloc_array(2 + num_extra_frags,
 551					    sizeof(struct iovec),
 552					    GFP_KERNEL
 553			);
 554		if (iov == NULL)
 555			goto out_fail;
 556		mmsg_vector->msg_hdr.msg_iov = iov;
 557		mmsg_vector->msg_hdr.msg_iovlen = 1;
 558		mmsg_vector->msg_hdr.msg_control = NULL;
 559		mmsg_vector->msg_hdr.msg_controllen = 0;
 560		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
 561		mmsg_vector->msg_hdr.msg_name = NULL;
 562		mmsg_vector->msg_hdr.msg_namelen = 0;
 563		if (vp->header_size > 0) {
 564			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
 565			if (iov->iov_base == NULL)
 566				goto out_fail;
 567			iov->iov_len = header_size;
 568			mmsg_vector->msg_hdr.msg_iovlen = 2;
 569			iov++;
 570		}
 571		iov->iov_base = NULL;
 572		iov->iov_len = 0;
 573		mmsg_vector++;
 574	}
 575	spin_lock_init(&result->head_lock);
 576	spin_lock_init(&result->tail_lock);
 577	atomic_set(&result->queue_depth, 0);
 578	result->head = 0;
 579	result->tail = 0;
 580	return result;
 581out_skb_fail:
 582	kfree(result->mmsg_vector);
 583out_mmsg_fail:
 584	kfree(result);
 585	return NULL;
 586out_fail:
 587	destroy_queue(result);
 588	return NULL;
 589}
 590
 591/*
 592 * We do not use the RX queue as a proper wraparound queue for now
 593 * This is not necessary because the consumption via napi_gro_receive()
 594 * happens in-line. While we can try using the return code of
 595 * netif_rx() for flow control there are no drivers doing this today.
 596 * For this RX specific use we ignore the tail/head locks and
 597 * just read into a prepared queue filled with skbuffs.
 598 */
 599
 600static struct sk_buff *prep_skb(
 601	struct vector_private *vp,
 602	struct user_msghdr *msg)
 603{
 604	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
 605	struct sk_buff *result;
 606	int iov_index = 0, len;
 607	struct iovec *iov = msg->msg_iov;
 608	int err, nr_frags, frag;
 609	skb_frag_t *skb_frag;
 610
 611	if (vp->req_size <= linear)
 612		len = linear;
 613	else
 614		len = vp->req_size;
 615	result = alloc_skb_with_frags(
 616		linear,
 617		len - vp->max_packet,
 618		3,
 619		&err,
 620		GFP_ATOMIC
 621	);
 622	if (vp->header_size > 0)
 623		iov_index++;
 624	if (result == NULL) {
 625		iov[iov_index].iov_base = NULL;
 626		iov[iov_index].iov_len = 0;
 627		goto done;
 628	}
 629	skb_reserve(result, vp->headroom);
 630	result->dev = vp->dev;
 631	skb_put(result, vp->max_packet);
 632	result->data_len = len - vp->max_packet;
 633	result->len += len - vp->max_packet;
 634	skb_reset_mac_header(result);
 635	result->ip_summed = CHECKSUM_NONE;
 636	iov[iov_index].iov_base = result->data;
 637	iov[iov_index].iov_len = vp->max_packet;
 638	iov_index++;
 639
 640	nr_frags = skb_shinfo(result)->nr_frags;
 641	for (frag = 0; frag < nr_frags; frag++) {
 642		skb_frag = &skb_shinfo(result)->frags[frag];
 643		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
 644		if (iov[iov_index].iov_base != NULL)
 645			iov[iov_index].iov_len = skb_frag_size(skb_frag);
 646		else
 647			iov[iov_index].iov_len = 0;
 648		iov_index++;
 649	}
 650done:
 651	msg->msg_iovlen = iov_index;
 652	return result;
 653}
 654
 655
 656/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
 657
 658static void prep_queue_for_rx(struct vector_queue *qi)
 659{
 660	struct vector_private *vp = netdev_priv(qi->dev);
 661	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 662	void **skbuff_vector = qi->skbuff_vector;
 663	int i, queue_depth;
 664
 665	queue_depth = atomic_read(&qi->queue_depth);
 666
 667	if (queue_depth == 0)
 668		return;
 669
 670	/* RX is always emptied 100% during each cycle, so we do not
 671	 * have to do the tail wraparound math for it.
 672	 */
 673
 674	qi->head = qi->tail = 0;
 675
 676	for (i = 0; i < queue_depth; i++) {
 677		/* it is OK if allocation fails - recvmmsg with NULL data in
 678		 * iov argument still performs an RX, just drops the packet
 679		 * This allows us stop faffing around with a "drop buffer"
 680		 */
 681
 682		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
 683		skbuff_vector++;
 684		mmsg_vector++;
 685	}
 686	atomic_set(&qi->queue_depth, 0);
 687}
 688
 689static struct vector_device *find_device(int n)
 690{
 691	struct vector_device *device;
 692	struct list_head *ele;
 693
 694	spin_lock(&vector_devices_lock);
 695	list_for_each(ele, &vector_devices) {
 696		device = list_entry(ele, struct vector_device, list);
 697		if (device->unit == n)
 698			goto out;
 699	}
 700	device = NULL;
 701 out:
 702	spin_unlock(&vector_devices_lock);
 703	return device;
 704}
 705
 706static int vector_parse(char *str, int *index_out, char **str_out,
 707			char **error_out)
 708{
 709	int n, err;
 710	char *start = str;
 711
 
 
 712	while ((*str != ':') && (strlen(str) > 1))
 713		str++;
 714	if (*str != ':') {
 715		*error_out = "Expected ':' after device number";
 716		return -EINVAL;
 717	}
 718	*str = '\0';
 719
 720	err = kstrtouint(start, 0, &n);
 721	if (err < 0) {
 722		*error_out = "Bad device number";
 723		return err;
 724	}
 725
 726	str++;
 727	if (find_device(n)) {
 728		*error_out = "Device already configured";
 729		return -EINVAL;
 730	}
 731
 732	*index_out = n;
 733	*str_out = str;
 734	return 0;
 735}
 736
 737static int vector_config(char *str, char **error_out)
 738{
 739	int err, n;
 740	char *params;
 741	struct arglist *parsed;
 742
 743	err = vector_parse(str, &n, &params, error_out);
 744	if (err != 0)
 745		return err;
 746
 747	/* This string is broken up and the pieces used by the underlying
 748	 * driver. We should copy it to make sure things do not go wrong
 749	 * later.
 750	 */
 751
 752	params = kstrdup(params, GFP_KERNEL);
 753	if (params == NULL) {
 754		*error_out = "vector_config failed to strdup string";
 755		return -ENOMEM;
 756	}
 757
 758	parsed = uml_parse_vector_ifspec(params);
 759
 760	if (parsed == NULL) {
 761		*error_out = "vector_config failed to parse parameters";
 762		kfree(params);
 763		return -EINVAL;
 764	}
 765
 766	vector_eth_configure(n, parsed);
 767	return 0;
 768}
 769
 770static int vector_id(char **str, int *start_out, int *end_out)
 771{
 772	char *end;
 773	int n;
 774
 775	n = simple_strtoul(*str, &end, 0);
 776	if ((*end != '\0') || (end == *str))
 777		return -1;
 778
 779	*start_out = n;
 780	*end_out = n;
 781	*str = end;
 782	return n;
 783}
 784
 785static int vector_remove(int n, char **error_out)
 786{
 787	struct vector_device *vec_d;
 788	struct net_device *dev;
 789	struct vector_private *vp;
 790
 791	vec_d = find_device(n);
 792	if (vec_d == NULL)
 793		return -ENODEV;
 794	dev = vec_d->dev;
 795	vp = netdev_priv(dev);
 796	if (vp->fds != NULL)
 797		return -EBUSY;
 798	unregister_netdev(dev);
 799	platform_device_unregister(&vec_d->pdev);
 800	return 0;
 801}
 802
 803/*
 804 * There is no shared per-transport initialization code, so
 805 * we will just initialize each interface one by one and
 806 * add them to a list
 807 */
 808
 809static struct platform_driver uml_net_driver = {
 810	.driver = {
 811		.name = DRIVER_NAME,
 812	},
 813};
 814
 815
 816static void vector_device_release(struct device *dev)
 817{
 818	struct vector_device *device =
 819		container_of(dev, struct vector_device, pdev.dev);
 820	struct net_device *netdev = device->dev;
 821
 822	list_del(&device->list);
 823	kfree(device);
 824	free_netdev(netdev);
 825}
 826
 827/* Bog standard recv using recvmsg - not used normally unless the user
 828 * explicitly specifies not to use recvmmsg vector RX.
 829 */
 830
 831static int vector_legacy_rx(struct vector_private *vp)
 832{
 833	int pkt_len;
 834	struct user_msghdr hdr;
 835	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
 836	int iovpos = 0;
 837	struct sk_buff *skb;
 838	int header_check;
 839
 840	hdr.msg_name = NULL;
 841	hdr.msg_namelen = 0;
 842	hdr.msg_iov = (struct iovec *) &iov;
 843	hdr.msg_control = NULL;
 844	hdr.msg_controllen = 0;
 845	hdr.msg_flags = 0;
 846
 847	if (vp->header_size > 0) {
 848		iov[0].iov_base = vp->header_rxbuffer;
 849		iov[0].iov_len = vp->header_size;
 850	}
 851
 852	skb = prep_skb(vp, &hdr);
 853
 854	if (skb == NULL) {
 855		/* Read a packet into drop_buffer and don't do
 856		 * anything with it.
 857		 */
 858		iov[iovpos].iov_base = drop_buffer;
 859		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
 860		hdr.msg_iovlen = 1;
 861		vp->dev->stats.rx_dropped++;
 862	}
 863
 864	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
 865	if (pkt_len < 0) {
 866		vp->in_error = true;
 867		return pkt_len;
 868	}
 869
 870	if (skb != NULL) {
 871		if (pkt_len > vp->header_size) {
 872			if (vp->header_size > 0) {
 873				header_check = vp->verify_header(
 874					vp->header_rxbuffer, skb, vp);
 875				if (header_check < 0) {
 876					dev_kfree_skb_irq(skb);
 877					vp->dev->stats.rx_dropped++;
 878					vp->estats.rx_encaps_errors++;
 879					return 0;
 880				}
 881				if (header_check > 0) {
 882					vp->estats.rx_csum_offload_good++;
 883					skb->ip_summed = CHECKSUM_UNNECESSARY;
 884				}
 885			}
 886			pskb_trim(skb, pkt_len - vp->rx_header_size);
 887			skb->protocol = eth_type_trans(skb, skb->dev);
 888			vp->dev->stats.rx_bytes += skb->len;
 889			vp->dev->stats.rx_packets++;
 890			napi_gro_receive(&vp->napi, skb);
 891		} else {
 892			dev_kfree_skb_irq(skb);
 893		}
 894	}
 895	return pkt_len;
 896}
 897
 898/*
 899 * Packet at a time TX which falls back to vector TX if the
 900 * underlying transport is busy.
 901 */
 902
 903
 904
 905static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
 906{
 907	struct iovec iov[3 + MAX_IOV_SIZE];
 908	int iov_count, pkt_len = 0;
 909
 910	iov[0].iov_base = vp->header_txbuffer;
 911	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
 912
 913	if (iov_count < 1)
 914		goto drop;
 915
 916	pkt_len = uml_vector_writev(
 917		vp->fds->tx_fd,
 918		(struct iovec *) &iov,
 919		iov_count
 920	);
 921
 922	if (pkt_len < 0)
 923		goto drop;
 924
 925	netif_trans_update(vp->dev);
 926	netif_wake_queue(vp->dev);
 927
 928	if (pkt_len > 0) {
 929		vp->dev->stats.tx_bytes += skb->len;
 930		vp->dev->stats.tx_packets++;
 931	} else {
 932		vp->dev->stats.tx_dropped++;
 933	}
 934	consume_skb(skb);
 935	return pkt_len;
 936drop:
 937	vp->dev->stats.tx_dropped++;
 938	consume_skb(skb);
 939	if (pkt_len < 0)
 940		vp->in_error = true;
 941	return pkt_len;
 942}
 943
 944/*
 945 * Receive as many messages as we can in one call using the special
 946 * mmsg vector matched to an skb vector which we prepared earlier.
 947 */
 948
 949static int vector_mmsg_rx(struct vector_private *vp, int budget)
 950{
 951	int packet_count, i;
 952	struct vector_queue *qi = vp->rx_queue;
 953	struct sk_buff *skb;
 954	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
 955	void **skbuff_vector = qi->skbuff_vector;
 956	int header_check;
 957
 958	/* Refresh the vector and make sure it is with new skbs and the
 959	 * iovs are updated to point to them.
 960	 */
 961
 962	prep_queue_for_rx(qi);
 963
 964	/* Fire the Lazy Gun - get as many packets as we can in one go. */
 965
 966	if (budget > qi->max_depth)
 967		budget = qi->max_depth;
 968
 969	packet_count = uml_vector_recvmmsg(
 970		vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
 971
 972	if (packet_count < 0)
 973		vp->in_error = true;
 974
 975	if (packet_count <= 0)
 976		return packet_count;
 977
 978	/* We treat packet processing as enqueue, buffer refresh as dequeue
 979	 * The queue_depth tells us how many buffers have been used and how
 980	 * many do we need to prep the next time prep_queue_for_rx() is called.
 981	 */
 982
 983	atomic_add(packet_count, &qi->queue_depth);
 984
 985	for (i = 0; i < packet_count; i++) {
 986		skb = (*skbuff_vector);
 987		if (mmsg_vector->msg_len > vp->header_size) {
 988			if (vp->header_size > 0) {
 989				header_check = vp->verify_header(
 990					mmsg_vector->msg_hdr.msg_iov->iov_base,
 991					skb,
 992					vp
 993				);
 994				if (header_check < 0) {
 995				/* Overlay header failed to verify - discard.
 996				 * We can actually keep this skb and reuse it,
 997				 * but that will make the prep logic too
 998				 * complex.
 999				 */
1000					dev_kfree_skb_irq(skb);
1001					vp->estats.rx_encaps_errors++;
1002					continue;
1003				}
1004				if (header_check > 0) {
1005					vp->estats.rx_csum_offload_good++;
1006					skb->ip_summed = CHECKSUM_UNNECESSARY;
1007				}
1008			}
1009			pskb_trim(skb,
1010				mmsg_vector->msg_len - vp->rx_header_size);
1011			skb->protocol = eth_type_trans(skb, skb->dev);
1012			/*
1013			 * We do not need to lock on updating stats here
1014			 * The interrupt loop is non-reentrant.
1015			 */
1016			vp->dev->stats.rx_bytes += skb->len;
1017			vp->dev->stats.rx_packets++;
1018			napi_gro_receive(&vp->napi, skb);
1019		} else {
1020			/* Overlay header too short to do anything - discard.
1021			 * We can actually keep this skb and reuse it,
1022			 * but that will make the prep logic too complex.
1023			 */
1024			if (skb != NULL)
1025				dev_kfree_skb_irq(skb);
1026		}
1027		(*skbuff_vector) = NULL;
1028		/* Move to the next buffer element */
1029		mmsg_vector++;
1030		skbuff_vector++;
1031	}
1032	if (packet_count > 0) {
1033		if (vp->estats.rx_queue_max < packet_count)
1034			vp->estats.rx_queue_max = packet_count;
1035		vp->estats.rx_queue_running_average =
1036			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1037	}
1038	return packet_count;
1039}
1040
1041static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1042{
1043	struct vector_private *vp = netdev_priv(dev);
1044	int queue_depth = 0;
1045
1046	if (vp->in_error) {
1047		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1048		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1049			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1050		return NETDEV_TX_BUSY;
1051	}
1052
1053	if ((vp->options & VECTOR_TX) == 0) {
1054		writev_tx(vp, skb);
1055		return NETDEV_TX_OK;
1056	}
1057
1058	/* We do BQL only in the vector path, no point doing it in
1059	 * packet at a time mode as there is no device queue
1060	 */
1061
1062	netdev_sent_queue(vp->dev, skb->len);
1063	queue_depth = vector_enqueue(vp->tx_queue, skb);
1064
1065	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1066		mod_timer(&vp->tl, vp->coalesce);
1067		return NETDEV_TX_OK;
1068	} else {
1069		queue_depth = vector_send(vp->tx_queue);
1070		if (queue_depth > 0)
1071			napi_schedule(&vp->napi);
1072	}
1073
1074	return NETDEV_TX_OK;
1075}
1076
1077static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1078{
1079	struct net_device *dev = dev_id;
1080	struct vector_private *vp = netdev_priv(dev);
1081
1082	if (!netif_running(dev))
1083		return IRQ_NONE;
1084	napi_schedule(&vp->napi);
1085	return IRQ_HANDLED;
1086
1087}
1088
1089static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1090{
1091	struct net_device *dev = dev_id;
1092	struct vector_private *vp = netdev_priv(dev);
1093
1094	if (!netif_running(dev))
1095		return IRQ_NONE;
1096	/* We need to pay attention to it only if we got
1097	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1098	 * we ignore it. In the future, it may be worth
1099	 * it to improve the IRQ controller a bit to make
1100	 * tweaking the IRQ mask less costly
1101	 */
1102
1103	napi_schedule(&vp->napi);
1104	return IRQ_HANDLED;
1105
1106}
1107
1108static int irq_rr;
1109
1110static int vector_net_close(struct net_device *dev)
1111{
1112	struct vector_private *vp = netdev_priv(dev);
 
1113
1114	netif_stop_queue(dev);
1115	del_timer(&vp->tl);
1116
1117	vp->opened = false;
1118
1119	if (vp->fds == NULL)
1120		return 0;
1121
1122	/* Disable and free all IRQS */
1123	if (vp->rx_irq > 0) {
1124		um_free_irq(vp->rx_irq, dev);
1125		vp->rx_irq = 0;
1126	}
1127	if (vp->tx_irq > 0) {
1128		um_free_irq(vp->tx_irq, dev);
1129		vp->tx_irq = 0;
1130	}
1131	napi_disable(&vp->napi);
1132	netif_napi_del(&vp->napi);
1133	if (vp->fds->rx_fd > 0) {
1134		if (vp->bpf)
1135			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1136		os_close_file(vp->fds->rx_fd);
1137		vp->fds->rx_fd = -1;
1138	}
1139	if (vp->fds->tx_fd > 0) {
1140		os_close_file(vp->fds->tx_fd);
1141		vp->fds->tx_fd = -1;
1142	}
1143	if (vp->bpf != NULL)
1144		kfree(vp->bpf->filter);
1145	kfree(vp->bpf);
1146	vp->bpf = NULL;
1147	kfree(vp->fds->remote_addr);
1148	kfree(vp->transport_data);
1149	kfree(vp->header_rxbuffer);
1150	kfree(vp->header_txbuffer);
1151	if (vp->rx_queue != NULL)
1152		destroy_queue(vp->rx_queue);
1153	if (vp->tx_queue != NULL)
1154		destroy_queue(vp->tx_queue);
1155	kfree(vp->fds);
1156	vp->fds = NULL;
 
 
1157	vp->in_error = false;
 
1158	return 0;
1159}
1160
1161static int vector_poll(struct napi_struct *napi, int budget)
1162{
1163	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1164	int work_done = 0;
1165	int err;
1166	bool tx_enqueued = false;
1167
1168	if ((vp->options & VECTOR_TX) != 0)
1169		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1170	spin_lock(&vp->rx_queue->head_lock);
1171	if ((vp->options & VECTOR_RX) > 0)
1172		err = vector_mmsg_rx(vp, budget);
1173	else {
1174		err = vector_legacy_rx(vp);
1175		if (err > 0)
1176			err = 1;
1177	}
1178	spin_unlock(&vp->rx_queue->head_lock);
1179	if (err > 0)
1180		work_done += err;
1181
1182	if (tx_enqueued || err > 0)
1183		napi_schedule(napi);
1184	if (work_done <= budget)
1185		napi_complete_done(napi, work_done);
1186	return work_done;
1187}
1188
1189static void vector_reset_tx(struct work_struct *work)
1190{
1191	struct vector_private *vp =
1192		container_of(work, struct vector_private, reset_tx);
1193	netdev_reset_queue(vp->dev);
1194	netif_start_queue(vp->dev);
1195	netif_wake_queue(vp->dev);
1196}
1197
1198static int vector_net_open(struct net_device *dev)
1199{
1200	struct vector_private *vp = netdev_priv(dev);
 
1201	int err = -EINVAL;
1202	struct vector_device *vdevice;
1203
1204	if (vp->opened)
 
 
1205		return -ENXIO;
 
1206	vp->opened = true;
 
1207
1208	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1209
1210	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1211
1212	if (vp->fds == NULL)
1213		goto out_close;
1214
1215	if (build_transport_data(vp) < 0)
1216		goto out_close;
1217
1218	if ((vp->options & VECTOR_RX) > 0) {
1219		vp->rx_queue = create_queue(
1220			vp,
1221			get_depth(vp->parsed),
1222			vp->rx_header_size,
1223			MAX_IOV_SIZE
1224		);
1225		atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1226	} else {
1227		vp->header_rxbuffer = kmalloc(
1228			vp->rx_header_size,
1229			GFP_KERNEL
1230		);
1231		if (vp->header_rxbuffer == NULL)
1232			goto out_close;
1233	}
1234	if ((vp->options & VECTOR_TX) > 0) {
1235		vp->tx_queue = create_queue(
1236			vp,
1237			get_depth(vp->parsed),
1238			vp->header_size,
1239			MAX_IOV_SIZE
1240		);
1241	} else {
1242		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1243		if (vp->header_txbuffer == NULL)
1244			goto out_close;
1245	}
1246
1247	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1248			      get_depth(vp->parsed));
1249	napi_enable(&vp->napi);
1250
1251	/* READ IRQ */
1252	err = um_request_irq(
1253		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1254			IRQ_READ, vector_rx_interrupt,
1255			IRQF_SHARED, dev->name, dev);
1256	if (err < 0) {
1257		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1258		err = -ENETUNREACH;
1259		goto out_close;
1260	}
1261	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1262	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1263	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1264
1265	/* WRITE IRQ - we need it only if we have vector TX */
1266	if ((vp->options & VECTOR_TX) > 0) {
1267		err = um_request_irq(
1268			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1269				IRQ_WRITE, vector_tx_interrupt,
1270				IRQF_SHARED, dev->name, dev);
1271		if (err < 0) {
1272			netdev_err(dev,
1273				"vector_open: failed to get tx irq(%d)\n", err);
1274			err = -ENETUNREACH;
1275			goto out_close;
1276		}
1277		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1278		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1279	}
1280
1281	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1282		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1283			vp->options |= VECTOR_BPF;
1284	}
1285	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1286		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1287
1288	if (vp->bpf != NULL)
1289		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1290
1291	netif_start_queue(dev);
1292	vector_reset_stats(vp);
1293
1294	/* clear buffer - it can happen that the host side of the interface
1295	 * is full when we get here. In this case, new data is never queued,
1296	 * SIGIOs never arrive, and the net never works.
1297	 */
1298
1299	napi_schedule(&vp->napi);
1300
1301	vdevice = find_device(vp->unit);
1302	vdevice->opened = 1;
1303
1304	if ((vp->options & VECTOR_TX) != 0)
1305		add_timer(&vp->tl);
1306	return 0;
1307out_close:
1308	vector_net_close(dev);
1309	return err;
1310}
1311
1312
1313static void vector_net_set_multicast_list(struct net_device *dev)
1314{
1315	/* TODO: - we can do some BPF games here */
1316	return;
1317}
1318
1319static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1320{
1321	struct vector_private *vp = netdev_priv(dev);
1322
1323	vp->estats.tx_timeout_count++;
1324	netif_trans_update(dev);
1325	schedule_work(&vp->reset_tx);
1326}
1327
1328static netdev_features_t vector_fix_features(struct net_device *dev,
1329	netdev_features_t features)
1330{
1331	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1332	return features;
1333}
1334
1335static int vector_set_features(struct net_device *dev,
1336	netdev_features_t features)
1337{
1338	struct vector_private *vp = netdev_priv(dev);
1339	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1340	 * no way to negotiate it on raw sockets, so we can change
1341	 * only our side.
1342	 */
1343	if (features & NETIF_F_GRO)
1344		/* All new frame buffers will be GRO-sized */
1345		vp->req_size = 65536;
1346	else
1347		/* All new frame buffers will be normal sized */
1348		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1349	return 0;
1350}
1351
1352#ifdef CONFIG_NET_POLL_CONTROLLER
1353static void vector_net_poll_controller(struct net_device *dev)
1354{
1355	disable_irq(dev->irq);
1356	vector_rx_interrupt(dev->irq, dev);
1357	enable_irq(dev->irq);
1358}
1359#endif
1360
1361static void vector_net_get_drvinfo(struct net_device *dev,
1362				struct ethtool_drvinfo *info)
1363{
1364	strscpy(info->driver, DRIVER_NAME);
1365}
1366
1367static int vector_net_load_bpf_flash(struct net_device *dev,
1368				struct ethtool_flash *efl)
1369{
1370	struct vector_private *vp = netdev_priv(dev);
1371	struct vector_device *vdevice;
1372	const struct firmware *fw;
1373	int result = 0;
1374
1375	if (!(vp->options & VECTOR_BPF_FLASH)) {
1376		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1377		return -1;
1378	}
1379
 
 
1380	if (vp->bpf != NULL) {
1381		if (vp->opened)
1382			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1383		kfree(vp->bpf->filter);
1384		vp->bpf->filter = NULL;
1385	} else {
1386		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1387		if (vp->bpf == NULL) {
1388			netdev_err(dev, "failed to allocate memory for firmware\n");
1389			goto flash_fail;
1390		}
1391	}
1392
1393	vdevice = find_device(vp->unit);
1394
1395	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1396		goto flash_fail;
1397
1398	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1399	if (!vp->bpf->filter)
1400		goto free_buffer;
1401
1402	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1403	release_firmware(fw);
1404
1405	if (vp->opened)
1406		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1407
 
 
1408	return result;
1409
1410free_buffer:
1411	release_firmware(fw);
1412
1413flash_fail:
 
1414	if (vp->bpf != NULL)
1415		kfree(vp->bpf->filter);
1416	kfree(vp->bpf);
1417	vp->bpf = NULL;
1418	return -1;
1419}
1420
1421static void vector_get_ringparam(struct net_device *netdev,
1422				 struct ethtool_ringparam *ring,
1423				 struct kernel_ethtool_ringparam *kernel_ring,
1424				 struct netlink_ext_ack *extack)
1425{
1426	struct vector_private *vp = netdev_priv(netdev);
1427
1428	ring->rx_max_pending = vp->rx_queue->max_depth;
1429	ring->tx_max_pending = vp->tx_queue->max_depth;
1430	ring->rx_pending = vp->rx_queue->max_depth;
1431	ring->tx_pending = vp->tx_queue->max_depth;
1432}
1433
1434static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1435{
1436	switch (stringset) {
1437	case ETH_SS_TEST:
1438		*buf = '\0';
1439		break;
1440	case ETH_SS_STATS:
1441		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1442		break;
1443	default:
1444		WARN_ON(1);
1445		break;
1446	}
1447}
1448
1449static int vector_get_sset_count(struct net_device *dev, int sset)
1450{
1451	switch (sset) {
1452	case ETH_SS_TEST:
1453		return 0;
1454	case ETH_SS_STATS:
1455		return VECTOR_NUM_STATS;
1456	default:
1457		return -EOPNOTSUPP;
1458	}
1459}
1460
1461static void vector_get_ethtool_stats(struct net_device *dev,
1462	struct ethtool_stats *estats,
1463	u64 *tmp_stats)
1464{
1465	struct vector_private *vp = netdev_priv(dev);
1466
1467	/* Stats are modified in the dequeue portions of
1468	 * rx/tx which are protected by the head locks
1469	 * grabbing these locks here ensures they are up
1470	 * to date.
1471	 */
1472
1473	spin_lock(&vp->tx_queue->head_lock);
1474	spin_lock(&vp->rx_queue->head_lock);
1475	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1476	spin_unlock(&vp->rx_queue->head_lock);
1477	spin_unlock(&vp->tx_queue->head_lock);
1478}
1479
1480static int vector_get_coalesce(struct net_device *netdev,
1481			       struct ethtool_coalesce *ec,
1482			       struct kernel_ethtool_coalesce *kernel_coal,
1483			       struct netlink_ext_ack *extack)
1484{
1485	struct vector_private *vp = netdev_priv(netdev);
1486
1487	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1488	return 0;
1489}
1490
1491static int vector_set_coalesce(struct net_device *netdev,
1492			       struct ethtool_coalesce *ec,
1493			       struct kernel_ethtool_coalesce *kernel_coal,
1494			       struct netlink_ext_ack *extack)
1495{
1496	struct vector_private *vp = netdev_priv(netdev);
1497
1498	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1499	if (vp->coalesce == 0)
1500		vp->coalesce = 1;
1501	return 0;
1502}
1503
1504static const struct ethtool_ops vector_net_ethtool_ops = {
1505	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1506	.get_drvinfo	= vector_net_get_drvinfo,
1507	.get_link	= ethtool_op_get_link,
1508	.get_ts_info	= ethtool_op_get_ts_info,
1509	.get_ringparam	= vector_get_ringparam,
1510	.get_strings	= vector_get_strings,
1511	.get_sset_count	= vector_get_sset_count,
1512	.get_ethtool_stats = vector_get_ethtool_stats,
1513	.get_coalesce	= vector_get_coalesce,
1514	.set_coalesce	= vector_set_coalesce,
1515	.flash_device	= vector_net_load_bpf_flash,
1516};
1517
1518
1519static const struct net_device_ops vector_netdev_ops = {
1520	.ndo_open		= vector_net_open,
1521	.ndo_stop		= vector_net_close,
1522	.ndo_start_xmit		= vector_net_start_xmit,
1523	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1524	.ndo_tx_timeout		= vector_net_tx_timeout,
1525	.ndo_set_mac_address	= eth_mac_addr,
1526	.ndo_validate_addr	= eth_validate_addr,
1527	.ndo_fix_features	= vector_fix_features,
1528	.ndo_set_features	= vector_set_features,
1529#ifdef CONFIG_NET_POLL_CONTROLLER
1530	.ndo_poll_controller = vector_net_poll_controller,
1531#endif
1532};
1533
1534static void vector_timer_expire(struct timer_list *t)
1535{
1536	struct vector_private *vp = from_timer(vp, t, tl);
1537
1538	vp->estats.tx_kicks++;
1539	napi_schedule(&vp->napi);
1540}
1541
1542
1543
1544static void vector_eth_configure(
1545		int n,
1546		struct arglist *def
1547	)
1548{
1549	struct vector_device *device;
1550	struct net_device *dev;
1551	struct vector_private *vp;
1552	int err;
1553
1554	device = kzalloc(sizeof(*device), GFP_KERNEL);
1555	if (device == NULL) {
1556		printk(KERN_ERR "eth_configure failed to allocate struct "
1557				 "vector_device\n");
1558		return;
1559	}
1560	dev = alloc_etherdev(sizeof(struct vector_private));
1561	if (dev == NULL) {
1562		printk(KERN_ERR "eth_configure: failed to allocate struct "
1563				 "net_device for vec%d\n", n);
1564		goto out_free_device;
1565	}
1566
1567	dev->mtu = get_mtu(def);
1568
1569	INIT_LIST_HEAD(&device->list);
1570	device->unit = n;
1571
1572	/* If this name ends up conflicting with an existing registered
1573	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1574	 * and fail.
1575	 */
1576	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1577	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1578	vp = netdev_priv(dev);
1579
1580	/* sysfs register */
1581	if (!driver_registered) {
1582		platform_driver_register(&uml_net_driver);
1583		driver_registered = 1;
1584	}
1585	device->pdev.id = n;
1586	device->pdev.name = DRIVER_NAME;
1587	device->pdev.dev.release = vector_device_release;
1588	dev_set_drvdata(&device->pdev.dev, device);
1589	if (platform_device_register(&device->pdev))
1590		goto out_free_netdev;
1591	SET_NETDEV_DEV(dev, &device->pdev.dev);
1592
1593	device->dev = dev;
1594
1595	*vp = ((struct vector_private)
1596		{
1597		.list			= LIST_HEAD_INIT(vp->list),
1598		.dev			= dev,
1599		.unit			= n,
1600		.options		= get_transport_options(def),
1601		.rx_irq			= 0,
1602		.tx_irq			= 0,
1603		.parsed			= def,
1604		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1605		/* TODO - we need to calculate headroom so that ip header
1606		 * is 16 byte aligned all the time
1607		 */
1608		.headroom		= get_headroom(def),
1609		.form_header		= NULL,
1610		.verify_header		= NULL,
1611		.header_rxbuffer	= NULL,
1612		.header_txbuffer	= NULL,
1613		.header_size		= 0,
1614		.rx_header_size		= 0,
1615		.rexmit_scheduled	= false,
1616		.opened			= false,
1617		.transport_data		= NULL,
1618		.in_write_poll		= false,
1619		.coalesce		= 2,
1620		.req_size		= get_req_size(def),
1621		.in_error		= false,
1622		.bpf			= NULL
1623	});
1624
1625	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1626	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1627
1628	timer_setup(&vp->tl, vector_timer_expire, 0);
 
1629
1630	/* FIXME */
1631	dev->netdev_ops = &vector_netdev_ops;
1632	dev->ethtool_ops = &vector_net_ethtool_ops;
1633	dev->watchdog_timeo = (HZ >> 1);
1634	/* primary IRQ - fixme */
1635	dev->irq = 0; /* we will adjust this once opened */
1636
1637	rtnl_lock();
1638	err = register_netdevice(dev);
1639	rtnl_unlock();
1640	if (err)
1641		goto out_undo_user_init;
1642
1643	spin_lock(&vector_devices_lock);
1644	list_add(&device->list, &vector_devices);
1645	spin_unlock(&vector_devices_lock);
1646
1647	return;
1648
1649out_undo_user_init:
1650	return;
1651out_free_netdev:
1652	free_netdev(dev);
1653out_free_device:
1654	kfree(device);
1655}
1656
1657
1658
1659
1660/*
1661 * Invoked late in the init
1662 */
1663
1664static int __init vector_init(void)
1665{
1666	struct list_head *ele;
1667	struct vector_cmd_line_arg *def;
1668	struct arglist *parsed;
1669
1670	list_for_each(ele, &vec_cmd_line) {
1671		def = list_entry(ele, struct vector_cmd_line_arg, list);
1672		parsed = uml_parse_vector_ifspec(def->arguments);
1673		if (parsed != NULL)
1674			vector_eth_configure(def->unit, parsed);
1675	}
1676	return 0;
1677}
1678
1679
1680/* Invoked at initial argument parsing, only stores
1681 * arguments until a proper vector_init is called
1682 * later
1683 */
1684
1685static int __init vector_setup(char *str)
1686{
1687	char *error;
1688	int n, err;
1689	struct vector_cmd_line_arg *new;
1690
1691	err = vector_parse(str, &n, &str, &error);
1692	if (err) {
1693		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1694				 str, error);
1695		return 1;
1696	}
1697	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1698	if (!new)
1699		panic("%s: Failed to allocate %zu bytes\n", __func__,
1700		      sizeof(*new));
1701	INIT_LIST_HEAD(&new->list);
1702	new->unit = n;
1703	new->arguments = str;
1704	list_add_tail(&new->list, &vec_cmd_line);
1705	return 1;
1706}
1707
1708__setup("vec", vector_setup);
1709__uml_help(vector_setup,
1710"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1711"	 Configure a vector io network device.\n\n"
1712);
1713
1714late_initcall(vector_init);
1715
1716static struct mc_device vector_mc = {
1717	.list		= LIST_HEAD_INIT(vector_mc.list),
1718	.name		= "vec",
1719	.config		= vector_config,
1720	.get_config	= NULL,
1721	.id		= vector_id,
1722	.remove		= vector_remove,
1723};
1724
1725#ifdef CONFIG_INET
1726static int vector_inetaddr_event(
1727	struct notifier_block *this,
1728	unsigned long event,
1729	void *ptr)
1730{
1731	return NOTIFY_DONE;
1732}
1733
1734static struct notifier_block vector_inetaddr_notifier = {
1735	.notifier_call		= vector_inetaddr_event,
1736};
1737
1738static void inet_register(void)
1739{
1740	register_inetaddr_notifier(&vector_inetaddr_notifier);
1741}
1742#else
1743static inline void inet_register(void)
1744{
1745}
1746#endif
1747
1748static int vector_net_init(void)
1749{
1750	mconsole_register_dev(&vector_mc);
1751	inet_register();
1752	return 0;
1753}
1754
1755__initcall(vector_net_init);
1756
1757
1758