Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
11
12#if defined(CONFIG_SLAB)
13
14 struct kmem_cache *slab_cache;
15 union {
16 struct {
17 struct list_head slab_list;
18 void *freelist; /* array of free object indexes */
19 void *s_mem; /* first object */
20 };
21 struct rcu_head rcu_head;
22 };
23 unsigned int active;
24
25#elif defined(CONFIG_SLUB)
26
27 struct kmem_cache *slab_cache;
28 union {
29 struct {
30 union {
31 struct list_head slab_list;
32#ifdef CONFIG_SLUB_CPU_PARTIAL
33 struct {
34 struct slab *next;
35 int slabs; /* Nr of slabs left */
36 };
37#endif
38 };
39 /* Double-word boundary */
40 void *freelist; /* first free object */
41 union {
42 unsigned long counters;
43 struct {
44 unsigned inuse:16;
45 unsigned objects:15;
46 unsigned frozen:1;
47 };
48 };
49 };
50 struct rcu_head rcu_head;
51 };
52 unsigned int __unused;
53
54#elif defined(CONFIG_SLOB)
55
56 struct list_head slab_list;
57 void *__unused_1;
58 void *freelist; /* first free block */
59 long units;
60 unsigned int __unused_2;
61
62#else
63#error "Unexpected slab allocator configured"
64#endif
65
66 atomic_t __page_refcount;
67#ifdef CONFIG_MEMCG
68 unsigned long memcg_data;
69#endif
70};
71
72#define SLAB_MATCH(pg, sl) \
73 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
74SLAB_MATCH(flags, __page_flags);
75#ifndef CONFIG_SLOB
76SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
77#else
78SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
79#endif
80SLAB_MATCH(_refcount, __page_refcount);
81#ifdef CONFIG_MEMCG
82SLAB_MATCH(memcg_data, memcg_data);
83#endif
84#undef SLAB_MATCH
85static_assert(sizeof(struct slab) <= sizeof(struct page));
86#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
87static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
88#endif
89
90/**
91 * folio_slab - Converts from folio to slab.
92 * @folio: The folio.
93 *
94 * Currently struct slab is a different representation of a folio where
95 * folio_test_slab() is true.
96 *
97 * Return: The slab which contains this folio.
98 */
99#define folio_slab(folio) (_Generic((folio), \
100 const struct folio *: (const struct slab *)(folio), \
101 struct folio *: (struct slab *)(folio)))
102
103/**
104 * slab_folio - The folio allocated for a slab
105 * @slab: The slab.
106 *
107 * Slabs are allocated as folios that contain the individual objects and are
108 * using some fields in the first struct page of the folio - those fields are
109 * now accessed by struct slab. It is occasionally necessary to convert back to
110 * a folio in order to communicate with the rest of the mm. Please use this
111 * helper function instead of casting yourself, as the implementation may change
112 * in the future.
113 */
114#define slab_folio(s) (_Generic((s), \
115 const struct slab *: (const struct folio *)s, \
116 struct slab *: (struct folio *)s))
117
118/**
119 * page_slab - Converts from first struct page to slab.
120 * @p: The first (either head of compound or single) page of slab.
121 *
122 * A temporary wrapper to convert struct page to struct slab in situations where
123 * we know the page is the compound head, or single order-0 page.
124 *
125 * Long-term ideally everything would work with struct slab directly or go
126 * through folio to struct slab.
127 *
128 * Return: The slab which contains this page
129 */
130#define page_slab(p) (_Generic((p), \
131 const struct page *: (const struct slab *)(p), \
132 struct page *: (struct slab *)(p)))
133
134/**
135 * slab_page - The first struct page allocated for a slab
136 * @slab: The slab.
137 *
138 * A convenience wrapper for converting slab to the first struct page of the
139 * underlying folio, to communicate with code not yet converted to folio or
140 * struct slab.
141 */
142#define slab_page(s) folio_page(slab_folio(s), 0)
143
144/*
145 * If network-based swap is enabled, sl*b must keep track of whether pages
146 * were allocated from pfmemalloc reserves.
147 */
148static inline bool slab_test_pfmemalloc(const struct slab *slab)
149{
150 return folio_test_active((struct folio *)slab_folio(slab));
151}
152
153static inline void slab_set_pfmemalloc(struct slab *slab)
154{
155 folio_set_active(slab_folio(slab));
156}
157
158static inline void slab_clear_pfmemalloc(struct slab *slab)
159{
160 folio_clear_active(slab_folio(slab));
161}
162
163static inline void __slab_clear_pfmemalloc(struct slab *slab)
164{
165 __folio_clear_active(slab_folio(slab));
166}
167
168static inline void *slab_address(const struct slab *slab)
169{
170 return folio_address(slab_folio(slab));
171}
172
173static inline int slab_nid(const struct slab *slab)
174{
175 return folio_nid(slab_folio(slab));
176}
177
178static inline pg_data_t *slab_pgdat(const struct slab *slab)
179{
180 return folio_pgdat(slab_folio(slab));
181}
182
183static inline struct slab *virt_to_slab(const void *addr)
184{
185 struct folio *folio = virt_to_folio(addr);
186
187 if (!folio_test_slab(folio))
188 return NULL;
189
190 return folio_slab(folio);
191}
192
193static inline int slab_order(const struct slab *slab)
194{
195 return folio_order((struct folio *)slab_folio(slab));
196}
197
198static inline size_t slab_size(const struct slab *slab)
199{
200 return PAGE_SIZE << slab_order(slab);
201}
202
203#ifdef CONFIG_SLOB
204/*
205 * Common fields provided in kmem_cache by all slab allocators
206 * This struct is either used directly by the allocator (SLOB)
207 * or the allocator must include definitions for all fields
208 * provided in kmem_cache_common in their definition of kmem_cache.
209 *
210 * Once we can do anonymous structs (C11 standard) we could put a
211 * anonymous struct definition in these allocators so that the
212 * separate allocations in the kmem_cache structure of SLAB and
213 * SLUB is no longer needed.
214 */
215struct kmem_cache {
216 unsigned int object_size;/* The original size of the object */
217 unsigned int size; /* The aligned/padded/added on size */
218 unsigned int align; /* Alignment as calculated */
219 slab_flags_t flags; /* Active flags on the slab */
220 const char *name; /* Slab name for sysfs */
221 int refcount; /* Use counter */
222 void (*ctor)(void *); /* Called on object slot creation */
223 struct list_head list; /* List of all slab caches on the system */
224};
225
226#endif /* CONFIG_SLOB */
227
228#ifdef CONFIG_SLAB
229#include <linux/slab_def.h>
230#endif
231
232#ifdef CONFIG_SLUB
233#include <linux/slub_def.h>
234#endif
235
236#include <linux/memcontrol.h>
237#include <linux/fault-inject.h>
238#include <linux/kasan.h>
239#include <linux/kmemleak.h>
240#include <linux/random.h>
241#include <linux/sched/mm.h>
242#include <linux/list_lru.h>
243
244/*
245 * State of the slab allocator.
246 *
247 * This is used to describe the states of the allocator during bootup.
248 * Allocators use this to gradually bootstrap themselves. Most allocators
249 * have the problem that the structures used for managing slab caches are
250 * allocated from slab caches themselves.
251 */
252enum slab_state {
253 DOWN, /* No slab functionality yet */
254 PARTIAL, /* SLUB: kmem_cache_node available */
255 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
256 UP, /* Slab caches usable but not all extras yet */
257 FULL /* Everything is working */
258};
259
260extern enum slab_state slab_state;
261
262/* The slab cache mutex protects the management structures during changes */
263extern struct mutex slab_mutex;
264
265/* The list of all slab caches on the system */
266extern struct list_head slab_caches;
267
268/* The slab cache that manages slab cache information */
269extern struct kmem_cache *kmem_cache;
270
271/* A table of kmalloc cache names and sizes */
272extern const struct kmalloc_info_struct {
273 const char *name[NR_KMALLOC_TYPES];
274 unsigned int size;
275} kmalloc_info[];
276
277#ifndef CONFIG_SLOB
278/* Kmalloc array related functions */
279void setup_kmalloc_cache_index_table(void);
280void create_kmalloc_caches(slab_flags_t);
281
282/* Find the kmalloc slab corresponding for a certain size */
283struct kmem_cache *kmalloc_slab(size_t, gfp_t);
284
285void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
286 int node, size_t orig_size,
287 unsigned long caller);
288void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
289#endif
290
291gfp_t kmalloc_fix_flags(gfp_t flags);
292
293/* Functions provided by the slab allocators */
294int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
295
296struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
297 slab_flags_t flags, unsigned int useroffset,
298 unsigned int usersize);
299extern void create_boot_cache(struct kmem_cache *, const char *name,
300 unsigned int size, slab_flags_t flags,
301 unsigned int useroffset, unsigned int usersize);
302
303int slab_unmergeable(struct kmem_cache *s);
304struct kmem_cache *find_mergeable(unsigned size, unsigned align,
305 slab_flags_t flags, const char *name, void (*ctor)(void *));
306#ifndef CONFIG_SLOB
307struct kmem_cache *
308__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
309 slab_flags_t flags, void (*ctor)(void *));
310
311slab_flags_t kmem_cache_flags(unsigned int object_size,
312 slab_flags_t flags, const char *name);
313#else
314static inline struct kmem_cache *
315__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
316 slab_flags_t flags, void (*ctor)(void *))
317{ return NULL; }
318
319static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
320 slab_flags_t flags, const char *name)
321{
322 return flags;
323}
324#endif
325
326
327/* Legal flag mask for kmem_cache_create(), for various configurations */
328#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
329 SLAB_CACHE_DMA32 | SLAB_PANIC | \
330 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
331
332#if defined(CONFIG_DEBUG_SLAB)
333#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
334#elif defined(CONFIG_SLUB_DEBUG)
335#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
336 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
337#else
338#define SLAB_DEBUG_FLAGS (0)
339#endif
340
341#if defined(CONFIG_SLAB)
342#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
343 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
344 SLAB_ACCOUNT)
345#elif defined(CONFIG_SLUB)
346#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
347 SLAB_TEMPORARY | SLAB_ACCOUNT | \
348 SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
349#else
350#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
351#endif
352
353/* Common flags available with current configuration */
354#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
355
356/* Common flags permitted for kmem_cache_create */
357#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
358 SLAB_RED_ZONE | \
359 SLAB_POISON | \
360 SLAB_STORE_USER | \
361 SLAB_TRACE | \
362 SLAB_CONSISTENCY_CHECKS | \
363 SLAB_MEM_SPREAD | \
364 SLAB_NOLEAKTRACE | \
365 SLAB_RECLAIM_ACCOUNT | \
366 SLAB_TEMPORARY | \
367 SLAB_ACCOUNT | \
368 SLAB_KMALLOC | \
369 SLAB_NO_USER_FLAGS)
370
371bool __kmem_cache_empty(struct kmem_cache *);
372int __kmem_cache_shutdown(struct kmem_cache *);
373void __kmem_cache_release(struct kmem_cache *);
374int __kmem_cache_shrink(struct kmem_cache *);
375void slab_kmem_cache_release(struct kmem_cache *);
376
377struct seq_file;
378struct file;
379
380struct slabinfo {
381 unsigned long active_objs;
382 unsigned long num_objs;
383 unsigned long active_slabs;
384 unsigned long num_slabs;
385 unsigned long shared_avail;
386 unsigned int limit;
387 unsigned int batchcount;
388 unsigned int shared;
389 unsigned int objects_per_slab;
390 unsigned int cache_order;
391};
392
393void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
394void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
395ssize_t slabinfo_write(struct file *file, const char __user *buffer,
396 size_t count, loff_t *ppos);
397
398static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
399{
400 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
401 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
402}
403
404#ifdef CONFIG_SLUB_DEBUG
405#ifdef CONFIG_SLUB_DEBUG_ON
406DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
407#else
408DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
409#endif
410extern void print_tracking(struct kmem_cache *s, void *object);
411long validate_slab_cache(struct kmem_cache *s);
412static inline bool __slub_debug_enabled(void)
413{
414 return static_branch_unlikely(&slub_debug_enabled);
415}
416#else
417static inline void print_tracking(struct kmem_cache *s, void *object)
418{
419}
420static inline bool __slub_debug_enabled(void)
421{
422 return false;
423}
424#endif
425
426/*
427 * Returns true if any of the specified slub_debug flags is enabled for the
428 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
429 * the static key.
430 */
431static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
432{
433 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
434 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
435 if (__slub_debug_enabled())
436 return s->flags & flags;
437 return false;
438}
439
440#ifdef CONFIG_MEMCG_KMEM
441/*
442 * slab_objcgs - get the object cgroups vector associated with a slab
443 * @slab: a pointer to the slab struct
444 *
445 * Returns a pointer to the object cgroups vector associated with the slab,
446 * or NULL if no such vector has been associated yet.
447 */
448static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
449{
450 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
451
452 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
453 slab_page(slab));
454 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
455
456 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
457}
458
459int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
460 gfp_t gfp, bool new_slab);
461void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
462 enum node_stat_item idx, int nr);
463
464static inline void memcg_free_slab_cgroups(struct slab *slab)
465{
466 kfree(slab_objcgs(slab));
467 slab->memcg_data = 0;
468}
469
470static inline size_t obj_full_size(struct kmem_cache *s)
471{
472 /*
473 * For each accounted object there is an extra space which is used
474 * to store obj_cgroup membership. Charge it too.
475 */
476 return s->size + sizeof(struct obj_cgroup *);
477}
478
479/*
480 * Returns false if the allocation should fail.
481 */
482static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
483 struct list_lru *lru,
484 struct obj_cgroup **objcgp,
485 size_t objects, gfp_t flags)
486{
487 struct obj_cgroup *objcg;
488
489 if (!memcg_kmem_enabled())
490 return true;
491
492 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
493 return true;
494
495 objcg = get_obj_cgroup_from_current();
496 if (!objcg)
497 return true;
498
499 if (lru) {
500 int ret;
501 struct mem_cgroup *memcg;
502
503 memcg = get_mem_cgroup_from_objcg(objcg);
504 ret = memcg_list_lru_alloc(memcg, lru, flags);
505 css_put(&memcg->css);
506
507 if (ret)
508 goto out;
509 }
510
511 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
512 goto out;
513
514 *objcgp = objcg;
515 return true;
516out:
517 obj_cgroup_put(objcg);
518 return false;
519}
520
521static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
522 struct obj_cgroup *objcg,
523 gfp_t flags, size_t size,
524 void **p)
525{
526 struct slab *slab;
527 unsigned long off;
528 size_t i;
529
530 if (!memcg_kmem_enabled() || !objcg)
531 return;
532
533 for (i = 0; i < size; i++) {
534 if (likely(p[i])) {
535 slab = virt_to_slab(p[i]);
536
537 if (!slab_objcgs(slab) &&
538 memcg_alloc_slab_cgroups(slab, s, flags,
539 false)) {
540 obj_cgroup_uncharge(objcg, obj_full_size(s));
541 continue;
542 }
543
544 off = obj_to_index(s, slab, p[i]);
545 obj_cgroup_get(objcg);
546 slab_objcgs(slab)[off] = objcg;
547 mod_objcg_state(objcg, slab_pgdat(slab),
548 cache_vmstat_idx(s), obj_full_size(s));
549 } else {
550 obj_cgroup_uncharge(objcg, obj_full_size(s));
551 }
552 }
553 obj_cgroup_put(objcg);
554}
555
556static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
557 void **p, int objects)
558{
559 struct obj_cgroup **objcgs;
560 int i;
561
562 if (!memcg_kmem_enabled())
563 return;
564
565 objcgs = slab_objcgs(slab);
566 if (!objcgs)
567 return;
568
569 for (i = 0; i < objects; i++) {
570 struct obj_cgroup *objcg;
571 unsigned int off;
572
573 off = obj_to_index(s, slab, p[i]);
574 objcg = objcgs[off];
575 if (!objcg)
576 continue;
577
578 objcgs[off] = NULL;
579 obj_cgroup_uncharge(objcg, obj_full_size(s));
580 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
581 -obj_full_size(s));
582 obj_cgroup_put(objcg);
583 }
584}
585
586#else /* CONFIG_MEMCG_KMEM */
587static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
588{
589 return NULL;
590}
591
592static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
593{
594 return NULL;
595}
596
597static inline int memcg_alloc_slab_cgroups(struct slab *slab,
598 struct kmem_cache *s, gfp_t gfp,
599 bool new_slab)
600{
601 return 0;
602}
603
604static inline void memcg_free_slab_cgroups(struct slab *slab)
605{
606}
607
608static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
609 struct list_lru *lru,
610 struct obj_cgroup **objcgp,
611 size_t objects, gfp_t flags)
612{
613 return true;
614}
615
616static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
617 struct obj_cgroup *objcg,
618 gfp_t flags, size_t size,
619 void **p)
620{
621}
622
623static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
624 void **p, int objects)
625{
626}
627#endif /* CONFIG_MEMCG_KMEM */
628
629#ifndef CONFIG_SLOB
630static inline struct kmem_cache *virt_to_cache(const void *obj)
631{
632 struct slab *slab;
633
634 slab = virt_to_slab(obj);
635 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
636 __func__))
637 return NULL;
638 return slab->slab_cache;
639}
640
641static __always_inline void account_slab(struct slab *slab, int order,
642 struct kmem_cache *s, gfp_t gfp)
643{
644 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
645 memcg_alloc_slab_cgroups(slab, s, gfp, true);
646
647 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
648 PAGE_SIZE << order);
649}
650
651static __always_inline void unaccount_slab(struct slab *slab, int order,
652 struct kmem_cache *s)
653{
654 if (memcg_kmem_enabled())
655 memcg_free_slab_cgroups(slab);
656
657 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
658 -(PAGE_SIZE << order));
659}
660
661static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
662{
663 struct kmem_cache *cachep;
664
665 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
666 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
667 return s;
668
669 cachep = virt_to_cache(x);
670 if (WARN(cachep && cachep != s,
671 "%s: Wrong slab cache. %s but object is from %s\n",
672 __func__, s->name, cachep->name))
673 print_tracking(cachep, x);
674 return cachep;
675}
676
677void free_large_kmalloc(struct folio *folio, void *object);
678
679#endif /* CONFIG_SLOB */
680
681size_t __ksize(const void *objp);
682
683static inline size_t slab_ksize(const struct kmem_cache *s)
684{
685#ifndef CONFIG_SLUB
686 return s->object_size;
687
688#else /* CONFIG_SLUB */
689# ifdef CONFIG_SLUB_DEBUG
690 /*
691 * Debugging requires use of the padding between object
692 * and whatever may come after it.
693 */
694 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
695 return s->object_size;
696# endif
697 if (s->flags & SLAB_KASAN)
698 return s->object_size;
699 /*
700 * If we have the need to store the freelist pointer
701 * back there or track user information then we can
702 * only use the space before that information.
703 */
704 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
705 return s->inuse;
706 /*
707 * Else we can use all the padding etc for the allocation
708 */
709 return s->size;
710#endif
711}
712
713static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
714 struct list_lru *lru,
715 struct obj_cgroup **objcgp,
716 size_t size, gfp_t flags)
717{
718 flags &= gfp_allowed_mask;
719
720 might_alloc(flags);
721
722 if (should_failslab(s, flags))
723 return NULL;
724
725 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
726 return NULL;
727
728 return s;
729}
730
731static inline void slab_post_alloc_hook(struct kmem_cache *s,
732 struct obj_cgroup *objcg, gfp_t flags,
733 size_t size, void **p, bool init,
734 unsigned int orig_size)
735{
736 unsigned int zero_size = s->object_size;
737 size_t i;
738
739 flags &= gfp_allowed_mask;
740
741 /*
742 * For kmalloc object, the allocated memory size(object_size) is likely
743 * larger than the requested size(orig_size). If redzone check is
744 * enabled for the extra space, don't zero it, as it will be redzoned
745 * soon. The redzone operation for this extra space could be seen as a
746 * replacement of current poisoning under certain debug option, and
747 * won't break other sanity checks.
748 */
749 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
750 (s->flags & SLAB_KMALLOC))
751 zero_size = orig_size;
752
753 /*
754 * As memory initialization might be integrated into KASAN,
755 * kasan_slab_alloc and initialization memset must be
756 * kept together to avoid discrepancies in behavior.
757 *
758 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
759 */
760 for (i = 0; i < size; i++) {
761 p[i] = kasan_slab_alloc(s, p[i], flags, init);
762 if (p[i] && init && !kasan_has_integrated_init())
763 memset(p[i], 0, zero_size);
764 kmemleak_alloc_recursive(p[i], s->object_size, 1,
765 s->flags, flags);
766 kmsan_slab_alloc(s, p[i], flags);
767 }
768
769 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
770}
771
772#ifndef CONFIG_SLOB
773/*
774 * The slab lists for all objects.
775 */
776struct kmem_cache_node {
777#ifdef CONFIG_SLAB
778 raw_spinlock_t list_lock;
779 struct list_head slabs_partial; /* partial list first, better asm code */
780 struct list_head slabs_full;
781 struct list_head slabs_free;
782 unsigned long total_slabs; /* length of all slab lists */
783 unsigned long free_slabs; /* length of free slab list only */
784 unsigned long free_objects;
785 unsigned int free_limit;
786 unsigned int colour_next; /* Per-node cache coloring */
787 struct array_cache *shared; /* shared per node */
788 struct alien_cache **alien; /* on other nodes */
789 unsigned long next_reap; /* updated without locking */
790 int free_touched; /* updated without locking */
791#endif
792
793#ifdef CONFIG_SLUB
794 spinlock_t list_lock;
795 unsigned long nr_partial;
796 struct list_head partial;
797#ifdef CONFIG_SLUB_DEBUG
798 atomic_long_t nr_slabs;
799 atomic_long_t total_objects;
800 struct list_head full;
801#endif
802#endif
803
804};
805
806static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
807{
808 return s->node[node];
809}
810
811/*
812 * Iterator over all nodes. The body will be executed for each node that has
813 * a kmem_cache_node structure allocated (which is true for all online nodes)
814 */
815#define for_each_kmem_cache_node(__s, __node, __n) \
816 for (__node = 0; __node < nr_node_ids; __node++) \
817 if ((__n = get_node(__s, __node)))
818
819#endif
820
821#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
822void dump_unreclaimable_slab(void);
823#else
824static inline void dump_unreclaimable_slab(void)
825{
826}
827#endif
828
829void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
830
831#ifdef CONFIG_SLAB_FREELIST_RANDOM
832int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
833 gfp_t gfp);
834void cache_random_seq_destroy(struct kmem_cache *cachep);
835#else
836static inline int cache_random_seq_create(struct kmem_cache *cachep,
837 unsigned int count, gfp_t gfp)
838{
839 return 0;
840}
841static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
842#endif /* CONFIG_SLAB_FREELIST_RANDOM */
843
844static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
845{
846 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
847 &init_on_alloc)) {
848 if (c->ctor)
849 return false;
850 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
851 return flags & __GFP_ZERO;
852 return true;
853 }
854 return flags & __GFP_ZERO;
855}
856
857static inline bool slab_want_init_on_free(struct kmem_cache *c)
858{
859 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
860 &init_on_free))
861 return !(c->ctor ||
862 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
863 return false;
864}
865
866#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
867void debugfs_slab_release(struct kmem_cache *);
868#else
869static inline void debugfs_slab_release(struct kmem_cache *s) { }
870#endif
871
872#ifdef CONFIG_PRINTK
873#define KS_ADDRS_COUNT 16
874struct kmem_obj_info {
875 void *kp_ptr;
876 struct slab *kp_slab;
877 void *kp_objp;
878 unsigned long kp_data_offset;
879 struct kmem_cache *kp_slab_cache;
880 void *kp_ret;
881 void *kp_stack[KS_ADDRS_COUNT];
882 void *kp_free_stack[KS_ADDRS_COUNT];
883};
884void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
885#endif
886
887#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
888void __check_heap_object(const void *ptr, unsigned long n,
889 const struct slab *slab, bool to_user);
890#else
891static inline
892void __check_heap_object(const void *ptr, unsigned long n,
893 const struct slab *slab, bool to_user)
894{
895}
896#endif
897
898#ifdef CONFIG_SLUB_DEBUG
899void skip_orig_size_check(struct kmem_cache *s, const void *object);
900#endif
901
902#endif /* MM_SLAB_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
24 slab_flags_t flags; /* Active flags on the slab */
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
44#include <linux/fault-inject.h>
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
47#include <linux/random.h>
48#include <linux/sched/mm.h>
49#include <linux/kmemleak.h>
50
51/*
52 * State of the slab allocator.
53 *
54 * This is used to describe the states of the allocator during bootup.
55 * Allocators use this to gradually bootstrap themselves. Most allocators
56 * have the problem that the structures used for managing slab caches are
57 * allocated from slab caches themselves.
58 */
59enum slab_state {
60 DOWN, /* No slab functionality yet */
61 PARTIAL, /* SLUB: kmem_cache_node available */
62 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
63 UP, /* Slab caches usable but not all extras yet */
64 FULL /* Everything is working */
65};
66
67extern enum slab_state slab_state;
68
69/* The slab cache mutex protects the management structures during changes */
70extern struct mutex slab_mutex;
71
72/* The list of all slab caches on the system */
73extern struct list_head slab_caches;
74
75/* The slab cache that manages slab cache information */
76extern struct kmem_cache *kmem_cache;
77
78/* A table of kmalloc cache names and sizes */
79extern const struct kmalloc_info_struct {
80 const char *name[NR_KMALLOC_TYPES];
81 unsigned int size;
82} kmalloc_info[];
83
84#ifndef CONFIG_SLOB
85/* Kmalloc array related functions */
86void setup_kmalloc_cache_index_table(void);
87void create_kmalloc_caches(slab_flags_t);
88
89/* Find the kmalloc slab corresponding for a certain size */
90struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91#endif
92
93gfp_t kmalloc_fix_flags(gfp_t flags);
94
95/* Functions provided by the slab allocators */
96int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97
98struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
99 slab_flags_t flags, unsigned int useroffset,
100 unsigned int usersize);
101extern void create_boot_cache(struct kmem_cache *, const char *name,
102 unsigned int size, slab_flags_t flags,
103 unsigned int useroffset, unsigned int usersize);
104
105int slab_unmergeable(struct kmem_cache *s);
106struct kmem_cache *find_mergeable(unsigned size, unsigned align,
107 slab_flags_t flags, const char *name, void (*ctor)(void *));
108#ifndef CONFIG_SLOB
109struct kmem_cache *
110__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
111 slab_flags_t flags, void (*ctor)(void *));
112
113slab_flags_t kmem_cache_flags(unsigned int object_size,
114 slab_flags_t flags, const char *name,
115 void (*ctor)(void *));
116#else
117static inline struct kmem_cache *
118__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
119 slab_flags_t flags, void (*ctor)(void *))
120{ return NULL; }
121
122static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
123 slab_flags_t flags, const char *name,
124 void (*ctor)(void *))
125{
126 return flags;
127}
128#endif
129
130
131/* Legal flag mask for kmem_cache_create(), for various configurations */
132#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
133 SLAB_CACHE_DMA32 | SLAB_PANIC | \
134 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
135
136#if defined(CONFIG_DEBUG_SLAB)
137#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
138#elif defined(CONFIG_SLUB_DEBUG)
139#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
140 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
141#else
142#define SLAB_DEBUG_FLAGS (0)
143#endif
144
145#if defined(CONFIG_SLAB)
146#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
147 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
148 SLAB_ACCOUNT)
149#elif defined(CONFIG_SLUB)
150#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
151 SLAB_TEMPORARY | SLAB_ACCOUNT)
152#else
153#define SLAB_CACHE_FLAGS (0)
154#endif
155
156/* Common flags available with current configuration */
157#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
158
159/* Common flags permitted for kmem_cache_create */
160#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
161 SLAB_RED_ZONE | \
162 SLAB_POISON | \
163 SLAB_STORE_USER | \
164 SLAB_TRACE | \
165 SLAB_CONSISTENCY_CHECKS | \
166 SLAB_MEM_SPREAD | \
167 SLAB_NOLEAKTRACE | \
168 SLAB_RECLAIM_ACCOUNT | \
169 SLAB_TEMPORARY | \
170 SLAB_ACCOUNT)
171
172bool __kmem_cache_empty(struct kmem_cache *);
173int __kmem_cache_shutdown(struct kmem_cache *);
174void __kmem_cache_release(struct kmem_cache *);
175int __kmem_cache_shrink(struct kmem_cache *);
176void slab_kmem_cache_release(struct kmem_cache *);
177
178struct seq_file;
179struct file;
180
181struct slabinfo {
182 unsigned long active_objs;
183 unsigned long num_objs;
184 unsigned long active_slabs;
185 unsigned long num_slabs;
186 unsigned long shared_avail;
187 unsigned int limit;
188 unsigned int batchcount;
189 unsigned int shared;
190 unsigned int objects_per_slab;
191 unsigned int cache_order;
192};
193
194void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
195void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
196ssize_t slabinfo_write(struct file *file, const char __user *buffer,
197 size_t count, loff_t *ppos);
198
199/*
200 * Generic implementation of bulk operations
201 * These are useful for situations in which the allocator cannot
202 * perform optimizations. In that case segments of the object listed
203 * may be allocated or freed using these operations.
204 */
205void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
206int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
207
208static inline int cache_vmstat_idx(struct kmem_cache *s)
209{
210 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
211 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
212}
213
214#ifdef CONFIG_SLUB_DEBUG
215#ifdef CONFIG_SLUB_DEBUG_ON
216DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
217#else
218DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
219#endif
220extern void print_tracking(struct kmem_cache *s, void *object);
221#else
222static inline void print_tracking(struct kmem_cache *s, void *object)
223{
224}
225#endif
226
227/*
228 * Returns true if any of the specified slub_debug flags is enabled for the
229 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
230 * the static key.
231 */
232static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
233{
234#ifdef CONFIG_SLUB_DEBUG
235 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
236 if (static_branch_unlikely(&slub_debug_enabled))
237 return s->flags & flags;
238#endif
239 return false;
240}
241
242#ifdef CONFIG_MEMCG_KMEM
243static inline struct obj_cgroup **page_obj_cgroups(struct page *page)
244{
245 /*
246 * page->mem_cgroup and page->obj_cgroups are sharing the same
247 * space. To distinguish between them in case we don't know for sure
248 * that the page is a slab page (e.g. page_cgroup_ino()), let's
249 * always set the lowest bit of obj_cgroups.
250 */
251 return (struct obj_cgroup **)
252 ((unsigned long)page->obj_cgroups & ~0x1UL);
253}
254
255static inline bool page_has_obj_cgroups(struct page *page)
256{
257 return ((unsigned long)page->obj_cgroups & 0x1UL);
258}
259
260int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
261 gfp_t gfp);
262
263static inline void memcg_free_page_obj_cgroups(struct page *page)
264{
265 kfree(page_obj_cgroups(page));
266 page->obj_cgroups = NULL;
267}
268
269static inline size_t obj_full_size(struct kmem_cache *s)
270{
271 /*
272 * For each accounted object there is an extra space which is used
273 * to store obj_cgroup membership. Charge it too.
274 */
275 return s->size + sizeof(struct obj_cgroup *);
276}
277
278static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
279 size_t objects,
280 gfp_t flags)
281{
282 struct obj_cgroup *objcg;
283
284 if (memcg_kmem_bypass())
285 return NULL;
286
287 objcg = get_obj_cgroup_from_current();
288 if (!objcg)
289 return NULL;
290
291 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
292 obj_cgroup_put(objcg);
293 return NULL;
294 }
295
296 return objcg;
297}
298
299static inline void mod_objcg_state(struct obj_cgroup *objcg,
300 struct pglist_data *pgdat,
301 int idx, int nr)
302{
303 struct mem_cgroup *memcg;
304 struct lruvec *lruvec;
305
306 rcu_read_lock();
307 memcg = obj_cgroup_memcg(objcg);
308 lruvec = mem_cgroup_lruvec(memcg, pgdat);
309 mod_memcg_lruvec_state(lruvec, idx, nr);
310 rcu_read_unlock();
311}
312
313static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
314 struct obj_cgroup *objcg,
315 gfp_t flags, size_t size,
316 void **p)
317{
318 struct page *page;
319 unsigned long off;
320 size_t i;
321
322 if (!objcg)
323 return;
324
325 flags &= ~__GFP_ACCOUNT;
326 for (i = 0; i < size; i++) {
327 if (likely(p[i])) {
328 page = virt_to_head_page(p[i]);
329
330 if (!page_has_obj_cgroups(page) &&
331 memcg_alloc_page_obj_cgroups(page, s, flags)) {
332 obj_cgroup_uncharge(objcg, obj_full_size(s));
333 continue;
334 }
335
336 off = obj_to_index(s, page, p[i]);
337 obj_cgroup_get(objcg);
338 page_obj_cgroups(page)[off] = objcg;
339 mod_objcg_state(objcg, page_pgdat(page),
340 cache_vmstat_idx(s), obj_full_size(s));
341 } else {
342 obj_cgroup_uncharge(objcg, obj_full_size(s));
343 }
344 }
345 obj_cgroup_put(objcg);
346}
347
348static inline void memcg_slab_free_hook(struct kmem_cache *s, struct page *page,
349 void *p)
350{
351 struct obj_cgroup *objcg;
352 unsigned int off;
353
354 if (!memcg_kmem_enabled())
355 return;
356
357 if (!page_has_obj_cgroups(page))
358 return;
359
360 off = obj_to_index(s, page, p);
361 objcg = page_obj_cgroups(page)[off];
362 page_obj_cgroups(page)[off] = NULL;
363
364 if (!objcg)
365 return;
366
367 obj_cgroup_uncharge(objcg, obj_full_size(s));
368 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
369 -obj_full_size(s));
370
371 obj_cgroup_put(objcg);
372}
373
374#else /* CONFIG_MEMCG_KMEM */
375static inline bool page_has_obj_cgroups(struct page *page)
376{
377 return false;
378}
379
380static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
381{
382 return NULL;
383}
384
385static inline int memcg_alloc_page_obj_cgroups(struct page *page,
386 struct kmem_cache *s, gfp_t gfp)
387{
388 return 0;
389}
390
391static inline void memcg_free_page_obj_cgroups(struct page *page)
392{
393}
394
395static inline struct obj_cgroup *memcg_slab_pre_alloc_hook(struct kmem_cache *s,
396 size_t objects,
397 gfp_t flags)
398{
399 return NULL;
400}
401
402static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
403 struct obj_cgroup *objcg,
404 gfp_t flags, size_t size,
405 void **p)
406{
407}
408
409static inline void memcg_slab_free_hook(struct kmem_cache *s, struct page *page,
410 void *p)
411{
412}
413#endif /* CONFIG_MEMCG_KMEM */
414
415static inline struct kmem_cache *virt_to_cache(const void *obj)
416{
417 struct page *page;
418
419 page = virt_to_head_page(obj);
420 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
421 __func__))
422 return NULL;
423 return page->slab_cache;
424}
425
426static __always_inline void account_slab_page(struct page *page, int order,
427 struct kmem_cache *s)
428{
429 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
430 PAGE_SIZE << order);
431}
432
433static __always_inline void unaccount_slab_page(struct page *page, int order,
434 struct kmem_cache *s)
435{
436 if (memcg_kmem_enabled())
437 memcg_free_page_obj_cgroups(page);
438
439 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
440 -(PAGE_SIZE << order));
441}
442
443static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
444{
445 struct kmem_cache *cachep;
446
447 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
448 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
449 return s;
450
451 cachep = virt_to_cache(x);
452 if (WARN(cachep && cachep != s,
453 "%s: Wrong slab cache. %s but object is from %s\n",
454 __func__, s->name, cachep->name))
455 print_tracking(cachep, x);
456 return cachep;
457}
458
459static inline size_t slab_ksize(const struct kmem_cache *s)
460{
461#ifndef CONFIG_SLUB
462 return s->object_size;
463
464#else /* CONFIG_SLUB */
465# ifdef CONFIG_SLUB_DEBUG
466 /*
467 * Debugging requires use of the padding between object
468 * and whatever may come after it.
469 */
470 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
471 return s->object_size;
472# endif
473 if (s->flags & SLAB_KASAN)
474 return s->object_size;
475 /*
476 * If we have the need to store the freelist pointer
477 * back there or track user information then we can
478 * only use the space before that information.
479 */
480 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
481 return s->inuse;
482 /*
483 * Else we can use all the padding etc for the allocation
484 */
485 return s->size;
486#endif
487}
488
489static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
490 struct obj_cgroup **objcgp,
491 size_t size, gfp_t flags)
492{
493 flags &= gfp_allowed_mask;
494
495 fs_reclaim_acquire(flags);
496 fs_reclaim_release(flags);
497
498 might_sleep_if(gfpflags_allow_blocking(flags));
499
500 if (should_failslab(s, flags))
501 return NULL;
502
503 if (memcg_kmem_enabled() &&
504 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
505 *objcgp = memcg_slab_pre_alloc_hook(s, size, flags);
506
507 return s;
508}
509
510static inline void slab_post_alloc_hook(struct kmem_cache *s,
511 struct obj_cgroup *objcg,
512 gfp_t flags, size_t size, void **p)
513{
514 size_t i;
515
516 flags &= gfp_allowed_mask;
517 for (i = 0; i < size; i++) {
518 p[i] = kasan_slab_alloc(s, p[i], flags);
519 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
520 kmemleak_alloc_recursive(p[i], s->object_size, 1,
521 s->flags, flags);
522 }
523
524 if (memcg_kmem_enabled())
525 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
526}
527
528#ifndef CONFIG_SLOB
529/*
530 * The slab lists for all objects.
531 */
532struct kmem_cache_node {
533 spinlock_t list_lock;
534
535#ifdef CONFIG_SLAB
536 struct list_head slabs_partial; /* partial list first, better asm code */
537 struct list_head slabs_full;
538 struct list_head slabs_free;
539 unsigned long total_slabs; /* length of all slab lists */
540 unsigned long free_slabs; /* length of free slab list only */
541 unsigned long free_objects;
542 unsigned int free_limit;
543 unsigned int colour_next; /* Per-node cache coloring */
544 struct array_cache *shared; /* shared per node */
545 struct alien_cache **alien; /* on other nodes */
546 unsigned long next_reap; /* updated without locking */
547 int free_touched; /* updated without locking */
548#endif
549
550#ifdef CONFIG_SLUB
551 unsigned long nr_partial;
552 struct list_head partial;
553#ifdef CONFIG_SLUB_DEBUG
554 atomic_long_t nr_slabs;
555 atomic_long_t total_objects;
556 struct list_head full;
557#endif
558#endif
559
560};
561
562static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
563{
564 return s->node[node];
565}
566
567/*
568 * Iterator over all nodes. The body will be executed for each node that has
569 * a kmem_cache_node structure allocated (which is true for all online nodes)
570 */
571#define for_each_kmem_cache_node(__s, __node, __n) \
572 for (__node = 0; __node < nr_node_ids; __node++) \
573 if ((__n = get_node(__s, __node)))
574
575#endif
576
577void *slab_start(struct seq_file *m, loff_t *pos);
578void *slab_next(struct seq_file *m, void *p, loff_t *pos);
579void slab_stop(struct seq_file *m, void *p);
580int memcg_slab_show(struct seq_file *m, void *p);
581
582#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
583void dump_unreclaimable_slab(void);
584#else
585static inline void dump_unreclaimable_slab(void)
586{
587}
588#endif
589
590void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
591
592#ifdef CONFIG_SLAB_FREELIST_RANDOM
593int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
594 gfp_t gfp);
595void cache_random_seq_destroy(struct kmem_cache *cachep);
596#else
597static inline int cache_random_seq_create(struct kmem_cache *cachep,
598 unsigned int count, gfp_t gfp)
599{
600 return 0;
601}
602static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
603#endif /* CONFIG_SLAB_FREELIST_RANDOM */
604
605static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
606{
607 if (static_branch_unlikely(&init_on_alloc)) {
608 if (c->ctor)
609 return false;
610 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
611 return flags & __GFP_ZERO;
612 return true;
613 }
614 return flags & __GFP_ZERO;
615}
616
617static inline bool slab_want_init_on_free(struct kmem_cache *c)
618{
619 if (static_branch_unlikely(&init_on_free))
620 return !(c->ctor ||
621 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
622 return false;
623}
624
625#endif /* MM_SLAB_H */