Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_recursion.h>
   8#include <linux/trace_events.h>
   9#include <linux/ring_buffer.h>
  10#include <linux/trace_clock.h>
  11#include <linux/sched/clock.h>
  12#include <linux/trace_seq.h>
  13#include <linux/spinlock.h>
  14#include <linux/irq_work.h>
  15#include <linux/security.h>
  16#include <linux/uaccess.h>
  17#include <linux/hardirq.h>
  18#include <linux/kthread.h>	/* for self test */
  19#include <linux/module.h>
  20#include <linux/percpu.h>
  21#include <linux/mutex.h>
  22#include <linux/delay.h>
  23#include <linux/slab.h>
  24#include <linux/init.h>
  25#include <linux/hash.h>
  26#include <linux/list.h>
  27#include <linux/cpu.h>
  28#include <linux/oom.h>
  29
  30#include <asm/local.h>
  31
  32/*
  33 * The "absolute" timestamp in the buffer is only 59 bits.
  34 * If a clock has the 5 MSBs set, it needs to be saved and
  35 * reinserted.
  36 */
  37#define TS_MSB		(0xf8ULL << 56)
  38#define ABS_TS_MASK	(~TS_MSB)
  39
  40static void update_pages_handler(struct work_struct *work);
  41
  42/*
  43 * The ring buffer header is special. We must manually up keep it.
  44 */
  45int ring_buffer_print_entry_header(struct trace_seq *s)
  46{
  47	trace_seq_puts(s, "# compressed entry header\n");
  48	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  49	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  50	trace_seq_puts(s, "\tarray       :   32 bits\n");
  51	trace_seq_putc(s, '\n');
  52	trace_seq_printf(s, "\tpadding     : type == %d\n",
  53			 RINGBUF_TYPE_PADDING);
  54	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  55			 RINGBUF_TYPE_TIME_EXTEND);
  56	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  57			 RINGBUF_TYPE_TIME_STAMP);
  58	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  59			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  60
  61	return !trace_seq_has_overflowed(s);
  62}
  63
  64/*
  65 * The ring buffer is made up of a list of pages. A separate list of pages is
  66 * allocated for each CPU. A writer may only write to a buffer that is
  67 * associated with the CPU it is currently executing on.  A reader may read
  68 * from any per cpu buffer.
  69 *
  70 * The reader is special. For each per cpu buffer, the reader has its own
  71 * reader page. When a reader has read the entire reader page, this reader
  72 * page is swapped with another page in the ring buffer.
  73 *
  74 * Now, as long as the writer is off the reader page, the reader can do what
  75 * ever it wants with that page. The writer will never write to that page
  76 * again (as long as it is out of the ring buffer).
  77 *
  78 * Here's some silly ASCII art.
  79 *
  80 *   +------+
  81 *   |reader|          RING BUFFER
  82 *   |page  |
  83 *   +------+        +---+   +---+   +---+
  84 *                   |   |-->|   |-->|   |
  85 *                   +---+   +---+   +---+
  86 *                     ^               |
  87 *                     |               |
  88 *                     +---------------+
  89 *
  90 *
  91 *   +------+
  92 *   |reader|          RING BUFFER
  93 *   |page  |------------------v
  94 *   +------+        +---+   +---+   +---+
  95 *                   |   |-->|   |-->|   |
  96 *                   +---+   +---+   +---+
  97 *                     ^               |
  98 *                     |               |
  99 *                     +---------------+
 100 *
 101 *
 102 *   +------+
 103 *   |reader|          RING BUFFER
 104 *   |page  |------------------v
 105 *   +------+        +---+   +---+   +---+
 106 *      ^            |   |-->|   |-->|   |
 107 *      |            +---+   +---+   +---+
 108 *      |                              |
 109 *      |                              |
 110 *      +------------------------------+
 111 *
 112 *
 113 *   +------+
 114 *   |buffer|          RING BUFFER
 115 *   |page  |------------------v
 116 *   +------+        +---+   +---+   +---+
 117 *      ^            |   |   |   |-->|   |
 118 *      |   New      +---+   +---+   +---+
 119 *      |  Reader------^               |
 120 *      |   page                       |
 121 *      +------------------------------+
 122 *
 123 *
 124 * After we make this swap, the reader can hand this page off to the splice
 125 * code and be done with it. It can even allocate a new page if it needs to
 126 * and swap that into the ring buffer.
 127 *
 128 * We will be using cmpxchg soon to make all this lockless.
 129 *
 130 */
 131
 132/* Used for individual buffers (after the counter) */
 133#define RB_BUFFER_OFF		(1 << 20)
 134
 135#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 136
 137#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 138#define RB_ALIGNMENT		4U
 139#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 140#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 141
 142#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
 143# define RB_FORCE_8BYTE_ALIGNMENT	0
 144# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
 145#else
 146# define RB_FORCE_8BYTE_ALIGNMENT	1
 147# define RB_ARCH_ALIGNMENT		8U
 148#endif
 149
 150#define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
 151
 152/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 153#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 154
 155enum {
 156	RB_LEN_TIME_EXTEND = 8,
 157	RB_LEN_TIME_STAMP =  8,
 158};
 159
 160#define skip_time_extend(event) \
 161	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 162
 163#define extended_time(event) \
 164	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 165
 166static inline int rb_null_event(struct ring_buffer_event *event)
 167{
 168	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 169}
 170
 171static void rb_event_set_padding(struct ring_buffer_event *event)
 172{
 173	/* padding has a NULL time_delta */
 174	event->type_len = RINGBUF_TYPE_PADDING;
 175	event->time_delta = 0;
 176}
 177
 178static unsigned
 179rb_event_data_length(struct ring_buffer_event *event)
 180{
 181	unsigned length;
 182
 183	if (event->type_len)
 184		length = event->type_len * RB_ALIGNMENT;
 185	else
 186		length = event->array[0];
 187	return length + RB_EVNT_HDR_SIZE;
 188}
 189
 190/*
 191 * Return the length of the given event. Will return
 192 * the length of the time extend if the event is a
 193 * time extend.
 194 */
 195static inline unsigned
 196rb_event_length(struct ring_buffer_event *event)
 197{
 198	switch (event->type_len) {
 199	case RINGBUF_TYPE_PADDING:
 200		if (rb_null_event(event))
 201			/* undefined */
 202			return -1;
 203		return  event->array[0] + RB_EVNT_HDR_SIZE;
 204
 205	case RINGBUF_TYPE_TIME_EXTEND:
 206		return RB_LEN_TIME_EXTEND;
 207
 208	case RINGBUF_TYPE_TIME_STAMP:
 209		return RB_LEN_TIME_STAMP;
 210
 211	case RINGBUF_TYPE_DATA:
 212		return rb_event_data_length(event);
 213	default:
 214		WARN_ON_ONCE(1);
 215	}
 216	/* not hit */
 217	return 0;
 218}
 219
 220/*
 221 * Return total length of time extend and data,
 222 *   or just the event length for all other events.
 223 */
 224static inline unsigned
 225rb_event_ts_length(struct ring_buffer_event *event)
 226{
 227	unsigned len = 0;
 228
 229	if (extended_time(event)) {
 230		/* time extends include the data event after it */
 231		len = RB_LEN_TIME_EXTEND;
 232		event = skip_time_extend(event);
 233	}
 234	return len + rb_event_length(event);
 235}
 236
 237/**
 238 * ring_buffer_event_length - return the length of the event
 239 * @event: the event to get the length of
 240 *
 241 * Returns the size of the data load of a data event.
 242 * If the event is something other than a data event, it
 243 * returns the size of the event itself. With the exception
 244 * of a TIME EXTEND, where it still returns the size of the
 245 * data load of the data event after it.
 246 */
 247unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 248{
 249	unsigned length;
 250
 251	if (extended_time(event))
 252		event = skip_time_extend(event);
 253
 254	length = rb_event_length(event);
 255	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 256		return length;
 257	length -= RB_EVNT_HDR_SIZE;
 258	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 259                length -= sizeof(event->array[0]);
 260	return length;
 261}
 262EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 263
 264/* inline for ring buffer fast paths */
 265static __always_inline void *
 266rb_event_data(struct ring_buffer_event *event)
 267{
 268	if (extended_time(event))
 269		event = skip_time_extend(event);
 270	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 271	/* If length is in len field, then array[0] has the data */
 272	if (event->type_len)
 273		return (void *)&event->array[0];
 274	/* Otherwise length is in array[0] and array[1] has the data */
 275	return (void *)&event->array[1];
 276}
 277
 278/**
 279 * ring_buffer_event_data - return the data of the event
 280 * @event: the event to get the data from
 281 */
 282void *ring_buffer_event_data(struct ring_buffer_event *event)
 283{
 284	return rb_event_data(event);
 285}
 286EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 287
 288#define for_each_buffer_cpu(buffer, cpu)		\
 289	for_each_cpu(cpu, buffer->cpumask)
 290
 291#define for_each_online_buffer_cpu(buffer, cpu)		\
 292	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 293
 294#define TS_SHIFT	27
 295#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 296#define TS_DELTA_TEST	(~TS_MASK)
 297
 298static u64 rb_event_time_stamp(struct ring_buffer_event *event)
 
 
 
 
 
 
 
 
 
 
 299{
 300	u64 ts;
 301
 302	ts = event->array[0];
 303	ts <<= TS_SHIFT;
 304	ts += event->time_delta;
 305
 306	return ts;
 307}
 308
 309/* Flag when events were overwritten */
 310#define RB_MISSED_EVENTS	(1 << 31)
 311/* Missed count stored at end */
 312#define RB_MISSED_STORED	(1 << 30)
 313
 314struct buffer_data_page {
 315	u64		 time_stamp;	/* page time stamp */
 316	local_t		 commit;	/* write committed index */
 317	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 318};
 319
 320/*
 321 * Note, the buffer_page list must be first. The buffer pages
 322 * are allocated in cache lines, which means that each buffer
 323 * page will be at the beginning of a cache line, and thus
 324 * the least significant bits will be zero. We use this to
 325 * add flags in the list struct pointers, to make the ring buffer
 326 * lockless.
 327 */
 328struct buffer_page {
 329	struct list_head list;		/* list of buffer pages */
 330	local_t		 write;		/* index for next write */
 331	unsigned	 read;		/* index for next read */
 332	local_t		 entries;	/* entries on this page */
 333	unsigned long	 real_end;	/* real end of data */
 334	struct buffer_data_page *page;	/* Actual data page */
 335};
 336
 337/*
 338 * The buffer page counters, write and entries, must be reset
 339 * atomically when crossing page boundaries. To synchronize this
 340 * update, two counters are inserted into the number. One is
 341 * the actual counter for the write position or count on the page.
 342 *
 343 * The other is a counter of updaters. Before an update happens
 344 * the update partition of the counter is incremented. This will
 345 * allow the updater to update the counter atomically.
 346 *
 347 * The counter is 20 bits, and the state data is 12.
 348 */
 349#define RB_WRITE_MASK		0xfffff
 350#define RB_WRITE_INTCNT		(1 << 20)
 351
 352static void rb_init_page(struct buffer_data_page *bpage)
 353{
 354	local_set(&bpage->commit, 0);
 355}
 356
 357/*
 358 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 359 * this issue out.
 360 */
 361static void free_buffer_page(struct buffer_page *bpage)
 362{
 363	free_page((unsigned long)bpage->page);
 364	kfree(bpage);
 365}
 366
 367/*
 368 * We need to fit the time_stamp delta into 27 bits.
 369 */
 370static inline int test_time_stamp(u64 delta)
 371{
 372	if (delta & TS_DELTA_TEST)
 373		return 1;
 374	return 0;
 375}
 376
 377#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 378
 379/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 380#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 381
 382int ring_buffer_print_page_header(struct trace_seq *s)
 383{
 384	struct buffer_data_page field;
 385
 386	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 387			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 388			 (unsigned int)sizeof(field.time_stamp),
 389			 (unsigned int)is_signed_type(u64));
 390
 391	trace_seq_printf(s, "\tfield: local_t commit;\t"
 392			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 393			 (unsigned int)offsetof(typeof(field), commit),
 394			 (unsigned int)sizeof(field.commit),
 395			 (unsigned int)is_signed_type(long));
 396
 397	trace_seq_printf(s, "\tfield: int overwrite;\t"
 398			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 399			 (unsigned int)offsetof(typeof(field), commit),
 400			 1,
 401			 (unsigned int)is_signed_type(long));
 402
 403	trace_seq_printf(s, "\tfield: char data;\t"
 404			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 405			 (unsigned int)offsetof(typeof(field), data),
 406			 (unsigned int)BUF_PAGE_SIZE,
 407			 (unsigned int)is_signed_type(char));
 408
 409	return !trace_seq_has_overflowed(s);
 410}
 411
 412struct rb_irq_work {
 413	struct irq_work			work;
 414	wait_queue_head_t		waiters;
 415	wait_queue_head_t		full_waiters;
 416	long				wait_index;
 417	bool				waiters_pending;
 418	bool				full_waiters_pending;
 419	bool				wakeup_full;
 420};
 421
 422/*
 423 * Structure to hold event state and handle nested events.
 424 */
 425struct rb_event_info {
 426	u64			ts;
 427	u64			delta;
 428	u64			before;
 429	u64			after;
 430	unsigned long		length;
 431	struct buffer_page	*tail_page;
 432	int			add_timestamp;
 433};
 434
 435/*
 436 * Used for the add_timestamp
 437 *  NONE
 438 *  EXTEND - wants a time extend
 439 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 440 *  FORCE - force a full time stamp.
 441 */
 442enum {
 443	RB_ADD_STAMP_NONE		= 0,
 444	RB_ADD_STAMP_EXTEND		= BIT(1),
 445	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 446	RB_ADD_STAMP_FORCE		= BIT(3)
 447};
 448/*
 449 * Used for which event context the event is in.
 450 *  TRANSITION = 0
 451 *  NMI     = 1
 452 *  IRQ     = 2
 453 *  SOFTIRQ = 3
 454 *  NORMAL  = 4
 455 *
 456 * See trace_recursive_lock() comment below for more details.
 457 */
 458enum {
 459	RB_CTX_TRANSITION,
 460	RB_CTX_NMI,
 461	RB_CTX_IRQ,
 462	RB_CTX_SOFTIRQ,
 463	RB_CTX_NORMAL,
 464	RB_CTX_MAX
 465};
 466
 467#if BITS_PER_LONG == 32
 468#define RB_TIME_32
 469#endif
 470
 471/* To test on 64 bit machines */
 472//#define RB_TIME_32
 473
 474#ifdef RB_TIME_32
 475
 476struct rb_time_struct {
 477	local_t		cnt;
 478	local_t		top;
 479	local_t		bottom;
 480	local_t		msb;
 481};
 482#else
 483#include <asm/local64.h>
 484struct rb_time_struct {
 485	local64_t	time;
 486};
 487#endif
 488typedef struct rb_time_struct rb_time_t;
 489
 490#define MAX_NEST	5
 491
 492/*
 493 * head_page == tail_page && head == tail then buffer is empty.
 494 */
 495struct ring_buffer_per_cpu {
 496	int				cpu;
 497	atomic_t			record_disabled;
 498	atomic_t			resize_disabled;
 499	struct trace_buffer	*buffer;
 500	raw_spinlock_t			reader_lock;	/* serialize readers */
 501	arch_spinlock_t			lock;
 502	struct lock_class_key		lock_key;
 503	struct buffer_data_page		*free_page;
 504	unsigned long			nr_pages;
 505	unsigned int			current_context;
 506	struct list_head		*pages;
 507	struct buffer_page		*head_page;	/* read from head */
 508	struct buffer_page		*tail_page;	/* write to tail */
 509	struct buffer_page		*commit_page;	/* committed pages */
 510	struct buffer_page		*reader_page;
 511	unsigned long			lost_events;
 512	unsigned long			last_overrun;
 513	unsigned long			nest;
 514	local_t				entries_bytes;
 515	local_t				entries;
 516	local_t				overrun;
 517	local_t				commit_overrun;
 518	local_t				dropped_events;
 519	local_t				committing;
 520	local_t				commits;
 521	local_t				pages_touched;
 522	local_t				pages_lost;
 523	local_t				pages_read;
 524	long				last_pages_touch;
 525	size_t				shortest_full;
 526	unsigned long			read;
 527	unsigned long			read_bytes;
 528	rb_time_t			write_stamp;
 529	rb_time_t			before_stamp;
 530	u64				event_stamp[MAX_NEST];
 531	u64				read_stamp;
 532	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 533	long				nr_pages_to_update;
 534	struct list_head		new_pages; /* new pages to add */
 535	struct work_struct		update_pages_work;
 536	struct completion		update_done;
 537
 538	struct rb_irq_work		irq_work;
 539};
 540
 541struct trace_buffer {
 542	unsigned			flags;
 543	int				cpus;
 544	atomic_t			record_disabled;
 545	cpumask_var_t			cpumask;
 546
 547	struct lock_class_key		*reader_lock_key;
 548
 549	struct mutex			mutex;
 550
 551	struct ring_buffer_per_cpu	**buffers;
 552
 553	struct hlist_node		node;
 554	u64				(*clock)(void);
 555
 556	struct rb_irq_work		irq_work;
 557	bool				time_stamp_abs;
 558};
 559
 560struct ring_buffer_iter {
 561	struct ring_buffer_per_cpu	*cpu_buffer;
 562	unsigned long			head;
 563	unsigned long			next_event;
 564	struct buffer_page		*head_page;
 565	struct buffer_page		*cache_reader_page;
 566	unsigned long			cache_read;
 567	u64				read_stamp;
 568	u64				page_stamp;
 569	struct ring_buffer_event	*event;
 570	int				missed_events;
 571};
 572
 573#ifdef RB_TIME_32
 574
 575/*
 576 * On 32 bit machines, local64_t is very expensive. As the ring
 577 * buffer doesn't need all the features of a true 64 bit atomic,
 578 * on 32 bit, it uses these functions (64 still uses local64_t).
 579 *
 580 * For the ring buffer, 64 bit required operations for the time is
 581 * the following:
 582 *
 
 583 *  - Reads may fail if it interrupted a modification of the time stamp.
 584 *      It will succeed if it did not interrupt another write even if
 585 *      the read itself is interrupted by a write.
 586 *      It returns whether it was successful or not.
 587 *
 588 *  - Writes always succeed and will overwrite other writes and writes
 589 *      that were done by events interrupting the current write.
 590 *
 591 *  - A write followed by a read of the same time stamp will always succeed,
 592 *      but may not contain the same value.
 593 *
 594 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 595 *      Other than that, it acts like a normal cmpxchg.
 596 *
 597 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 598 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 599 *
 600 * The two most significant bits of each half holds a 2 bit counter (0-3).
 601 * Each update will increment this counter by one.
 602 * When reading the top and bottom, if the two counter bits match then the
 603 *  top and bottom together make a valid 60 bit number.
 604 */
 605#define RB_TIME_SHIFT	30
 606#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 607#define RB_TIME_MSB_SHIFT	 60
 608
 609static inline int rb_time_cnt(unsigned long val)
 610{
 611	return (val >> RB_TIME_SHIFT) & 3;
 612}
 613
 614static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 615{
 616	u64 val;
 617
 618	val = top & RB_TIME_VAL_MASK;
 619	val <<= RB_TIME_SHIFT;
 620	val |= bottom & RB_TIME_VAL_MASK;
 621
 622	return val;
 623}
 624
 625static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 626{
 627	unsigned long top, bottom, msb;
 628	unsigned long c;
 629
 630	/*
 631	 * If the read is interrupted by a write, then the cnt will
 632	 * be different. Loop until both top and bottom have been read
 633	 * without interruption.
 634	 */
 635	do {
 636		c = local_read(&t->cnt);
 637		top = local_read(&t->top);
 638		bottom = local_read(&t->bottom);
 639		msb = local_read(&t->msb);
 640	} while (c != local_read(&t->cnt));
 641
 642	*cnt = rb_time_cnt(top);
 643
 644	/* If top and bottom counts don't match, this interrupted a write */
 645	if (*cnt != rb_time_cnt(bottom))
 646		return false;
 647
 648	/* The shift to msb will lose its cnt bits */
 649	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
 650	return true;
 651}
 652
 653static bool rb_time_read(rb_time_t *t, u64 *ret)
 654{
 655	unsigned long cnt;
 656
 657	return __rb_time_read(t, ret, &cnt);
 658}
 659
 660static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 661{
 662	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 663}
 664
 665static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
 666				 unsigned long *msb)
 667{
 668	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 669	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 670	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
 671}
 672
 673static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 674{
 675	val = rb_time_val_cnt(val, cnt);
 676	local_set(t, val);
 677}
 678
 679static void rb_time_set(rb_time_t *t, u64 val)
 680{
 681	unsigned long cnt, top, bottom, msb;
 682
 683	rb_time_split(val, &top, &bottom, &msb);
 684
 685	/* Writes always succeed with a valid number even if it gets interrupted. */
 686	do {
 687		cnt = local_inc_return(&t->cnt);
 688		rb_time_val_set(&t->top, top, cnt);
 689		rb_time_val_set(&t->bottom, bottom, cnt);
 690		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
 691	} while (cnt != local_read(&t->cnt));
 692}
 693
 694static inline bool
 695rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 696{
 697	unsigned long ret;
 698
 699	ret = local_cmpxchg(l, expect, set);
 700	return ret == expect;
 701}
 702
 703static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 704{
 705	unsigned long cnt, top, bottom, msb;
 706	unsigned long cnt2, top2, bottom2, msb2;
 707	u64 val;
 708
 709	/* The cmpxchg always fails if it interrupted an update */
 710	 if (!__rb_time_read(t, &val, &cnt2))
 711		 return false;
 712
 713	 if (val != expect)
 714		 return false;
 715
 716	 cnt = local_read(&t->cnt);
 717	 if ((cnt & 3) != cnt2)
 718		 return false;
 719
 720	 cnt2 = cnt + 1;
 721
 722	 rb_time_split(val, &top, &bottom, &msb);
 723	 top = rb_time_val_cnt(top, cnt);
 724	 bottom = rb_time_val_cnt(bottom, cnt);
 725
 726	 rb_time_split(set, &top2, &bottom2, &msb2);
 727	 top2 = rb_time_val_cnt(top2, cnt2);
 728	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
 729
 730	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 731		return false;
 732	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
 733		return false;
 734	if (!rb_time_read_cmpxchg(&t->top, top, top2))
 735		return false;
 736	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 737		return false;
 738	return true;
 739}
 740
 741#else /* 64 bits */
 742
 743/* local64_t always succeeds */
 744
 745static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 746{
 747	*ret = local64_read(&t->time);
 748	return true;
 749}
 750static void rb_time_set(rb_time_t *t, u64 val)
 751{
 752	local64_set(&t->time, val);
 753}
 754
 755static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 756{
 757	u64 val;
 758	val = local64_cmpxchg(&t->time, expect, set);
 759	return val == expect;
 760}
 761#endif
 762
 763/*
 764 * Enable this to make sure that the event passed to
 765 * ring_buffer_event_time_stamp() is not committed and also
 766 * is on the buffer that it passed in.
 767 */
 768//#define RB_VERIFY_EVENT
 769#ifdef RB_VERIFY_EVENT
 770static struct list_head *rb_list_head(struct list_head *list);
 771static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 772			 void *event)
 773{
 774	struct buffer_page *page = cpu_buffer->commit_page;
 775	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
 776	struct list_head *next;
 777	long commit, write;
 778	unsigned long addr = (unsigned long)event;
 779	bool done = false;
 780	int stop = 0;
 781
 782	/* Make sure the event exists and is not committed yet */
 783	do {
 784		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
 785			done = true;
 786		commit = local_read(&page->page->commit);
 787		write = local_read(&page->write);
 788		if (addr >= (unsigned long)&page->page->data[commit] &&
 789		    addr < (unsigned long)&page->page->data[write])
 790			return;
 791
 792		next = rb_list_head(page->list.next);
 793		page = list_entry(next, struct buffer_page, list);
 794	} while (!done);
 795	WARN_ON_ONCE(1);
 796}
 797#else
 798static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
 799			 void *event)
 800{
 801}
 802#endif
 803
 804/*
 805 * The absolute time stamp drops the 5 MSBs and some clocks may
 806 * require them. The rb_fix_abs_ts() will take a previous full
 807 * time stamp, and add the 5 MSB of that time stamp on to the
 808 * saved absolute time stamp. Then they are compared in case of
 809 * the unlikely event that the latest time stamp incremented
 810 * the 5 MSB.
 811 */
 812static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
 813{
 814	if (save_ts & TS_MSB) {
 815		abs |= save_ts & TS_MSB;
 816		/* Check for overflow */
 817		if (unlikely(abs < save_ts))
 818			abs += 1ULL << 59;
 819	}
 820	return abs;
 821}
 822
 823static inline u64 rb_time_stamp(struct trace_buffer *buffer);
 824
 825/**
 826 * ring_buffer_event_time_stamp - return the event's current time stamp
 827 * @buffer: The buffer that the event is on
 828 * @event: the event to get the time stamp of
 829 *
 830 * Note, this must be called after @event is reserved, and before it is
 831 * committed to the ring buffer. And must be called from the same
 832 * context where the event was reserved (normal, softirq, irq, etc).
 833 *
 834 * Returns the time stamp associated with the current event.
 835 * If the event has an extended time stamp, then that is used as
 836 * the time stamp to return.
 837 * In the highly unlikely case that the event was nested more than
 838 * the max nesting, then the write_stamp of the buffer is returned,
 839 * otherwise  current time is returned, but that really neither of
 840 * the last two cases should ever happen.
 841 */
 842u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
 843				 struct ring_buffer_event *event)
 844{
 845	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
 846	unsigned int nest;
 847	u64 ts;
 848
 849	/* If the event includes an absolute time, then just use that */
 850	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
 851		ts = rb_event_time_stamp(event);
 852		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
 853	}
 854
 855	nest = local_read(&cpu_buffer->committing);
 856	verify_event(cpu_buffer, event);
 857	if (WARN_ON_ONCE(!nest))
 858		goto fail;
 859
 860	/* Read the current saved nesting level time stamp */
 861	if (likely(--nest < MAX_NEST))
 862		return cpu_buffer->event_stamp[nest];
 863
 864	/* Shouldn't happen, warn if it does */
 865	WARN_ONCE(1, "nest (%d) greater than max", nest);
 866
 867 fail:
 868	/* Can only fail on 32 bit */
 869	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
 870		/* Screw it, just read the current time */
 871		ts = rb_time_stamp(cpu_buffer->buffer);
 872
 873	return ts;
 874}
 875
 876/**
 877 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 878 * @buffer: The ring_buffer to get the number of pages from
 879 * @cpu: The cpu of the ring_buffer to get the number of pages from
 880 *
 881 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 882 */
 883size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 884{
 885	return buffer->buffers[cpu]->nr_pages;
 886}
 887
 888/**
 889 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
 890 * @buffer: The ring_buffer to get the number of pages from
 891 * @cpu: The cpu of the ring_buffer to get the number of pages from
 892 *
 893 * Returns the number of pages that have content in the ring buffer.
 894 */
 895size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 896{
 897	size_t read;
 898	size_t lost;
 899	size_t cnt;
 900
 901	read = local_read(&buffer->buffers[cpu]->pages_read);
 902	lost = local_read(&buffer->buffers[cpu]->pages_lost);
 903	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 904
 905	if (WARN_ON_ONCE(cnt < lost))
 906		return 0;
 907
 908	cnt -= lost;
 909
 910	/* The reader can read an empty page, but not more than that */
 911	if (cnt < read) {
 912		WARN_ON_ONCE(read > cnt + 1);
 913		return 0;
 914	}
 915
 916	return cnt - read;
 917}
 918
 919static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
 920{
 921	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
 922	size_t nr_pages;
 923	size_t dirty;
 924
 925	nr_pages = cpu_buffer->nr_pages;
 926	if (!nr_pages || !full)
 927		return true;
 928
 929	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 930
 931	return (dirty * 100) > (full * nr_pages);
 932}
 933
 934/*
 935 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 936 *
 937 * Schedules a delayed work to wake up any task that is blocked on the
 938 * ring buffer waiters queue.
 939 */
 940static void rb_wake_up_waiters(struct irq_work *work)
 941{
 942	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 943
 944	wake_up_all(&rbwork->waiters);
 945	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
 946		rbwork->wakeup_full = false;
 947		rbwork->full_waiters_pending = false;
 948		wake_up_all(&rbwork->full_waiters);
 949	}
 950}
 951
 952/**
 953 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
 954 * @buffer: The ring buffer to wake waiters on
 955 *
 956 * In the case of a file that represents a ring buffer is closing,
 957 * it is prudent to wake up any waiters that are on this.
 958 */
 959void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
 960{
 961	struct ring_buffer_per_cpu *cpu_buffer;
 962	struct rb_irq_work *rbwork;
 963
 964	if (!buffer)
 965		return;
 966
 967	if (cpu == RING_BUFFER_ALL_CPUS) {
 968
 969		/* Wake up individual ones too. One level recursion */
 970		for_each_buffer_cpu(buffer, cpu)
 971			ring_buffer_wake_waiters(buffer, cpu);
 972
 973		rbwork = &buffer->irq_work;
 974	} else {
 975		if (WARN_ON_ONCE(!buffer->buffers))
 976			return;
 977		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
 978			return;
 979
 980		cpu_buffer = buffer->buffers[cpu];
 981		/* The CPU buffer may not have been initialized yet */
 982		if (!cpu_buffer)
 983			return;
 984		rbwork = &cpu_buffer->irq_work;
 985	}
 986
 987	rbwork->wait_index++;
 988	/* make sure the waiters see the new index */
 989	smp_wmb();
 990
 991	rb_wake_up_waiters(&rbwork->work);
 992}
 993
 994/**
 995 * ring_buffer_wait - wait for input to the ring buffer
 996 * @buffer: buffer to wait on
 997 * @cpu: the cpu buffer to wait on
 998 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
 999 *
1000 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1001 * as data is added to any of the @buffer's cpu buffers. Otherwise
1002 * it will wait for data to be added to a specific cpu buffer.
1003 */
1004int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
1005{
1006	struct ring_buffer_per_cpu *cpu_buffer;
1007	DEFINE_WAIT(wait);
1008	struct rb_irq_work *work;
1009	long wait_index;
1010	int ret = 0;
1011
1012	/*
1013	 * Depending on what the caller is waiting for, either any
1014	 * data in any cpu buffer, or a specific buffer, put the
1015	 * caller on the appropriate wait queue.
1016	 */
1017	if (cpu == RING_BUFFER_ALL_CPUS) {
1018		work = &buffer->irq_work;
1019		/* Full only makes sense on per cpu reads */
1020		full = 0;
1021	} else {
1022		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1023			return -ENODEV;
1024		cpu_buffer = buffer->buffers[cpu];
1025		work = &cpu_buffer->irq_work;
1026	}
1027
1028	wait_index = READ_ONCE(work->wait_index);
1029
1030	while (true) {
1031		if (full)
1032			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1033		else
1034			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1035
1036		/*
1037		 * The events can happen in critical sections where
1038		 * checking a work queue can cause deadlocks.
1039		 * After adding a task to the queue, this flag is set
1040		 * only to notify events to try to wake up the queue
1041		 * using irq_work.
1042		 *
1043		 * We don't clear it even if the buffer is no longer
1044		 * empty. The flag only causes the next event to run
1045		 * irq_work to do the work queue wake up. The worse
1046		 * that can happen if we race with !trace_empty() is that
1047		 * an event will cause an irq_work to try to wake up
1048		 * an empty queue.
1049		 *
1050		 * There's no reason to protect this flag either, as
1051		 * the work queue and irq_work logic will do the necessary
1052		 * synchronization for the wake ups. The only thing
1053		 * that is necessary is that the wake up happens after
1054		 * a task has been queued. It's OK for spurious wake ups.
1055		 */
1056		if (full)
1057			work->full_waiters_pending = true;
1058		else
1059			work->waiters_pending = true;
1060
1061		if (signal_pending(current)) {
1062			ret = -EINTR;
1063			break;
1064		}
1065
1066		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1067			break;
1068
1069		if (cpu != RING_BUFFER_ALL_CPUS &&
1070		    !ring_buffer_empty_cpu(buffer, cpu)) {
1071			unsigned long flags;
1072			bool pagebusy;
1073			bool done;
 
1074
1075			if (!full)
1076				break;
1077
1078			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1079			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1080			done = !pagebusy && full_hit(buffer, cpu, full);
1081
1082			if (!cpu_buffer->shortest_full ||
1083			    cpu_buffer->shortest_full > full)
1084				cpu_buffer->shortest_full = full;
1085			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1086			if (done)
 
1087				break;
1088		}
1089
1090		schedule();
1091
1092		/* Make sure to see the new wait index */
1093		smp_rmb();
1094		if (wait_index != work->wait_index)
1095			break;
1096	}
1097
1098	if (full)
1099		finish_wait(&work->full_waiters, &wait);
1100	else
1101		finish_wait(&work->waiters, &wait);
1102
1103	return ret;
1104}
1105
1106/**
1107 * ring_buffer_poll_wait - poll on buffer input
1108 * @buffer: buffer to wait on
1109 * @cpu: the cpu buffer to wait on
1110 * @filp: the file descriptor
1111 * @poll_table: The poll descriptor
1112 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1113 *
1114 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1115 * as data is added to any of the @buffer's cpu buffers. Otherwise
1116 * it will wait for data to be added to a specific cpu buffer.
1117 *
1118 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1119 * zero otherwise.
1120 */
1121__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1122			  struct file *filp, poll_table *poll_table, int full)
1123{
1124	struct ring_buffer_per_cpu *cpu_buffer;
1125	struct rb_irq_work *work;
1126
1127	if (cpu == RING_BUFFER_ALL_CPUS) {
1128		work = &buffer->irq_work;
1129		full = 0;
1130	} else {
1131		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1132			return -EINVAL;
1133
1134		cpu_buffer = buffer->buffers[cpu];
1135		work = &cpu_buffer->irq_work;
1136	}
1137
1138	if (full) {
1139		poll_wait(filp, &work->full_waiters, poll_table);
1140		work->full_waiters_pending = true;
1141	} else {
1142		poll_wait(filp, &work->waiters, poll_table);
1143		work->waiters_pending = true;
1144	}
1145
1146	/*
1147	 * There's a tight race between setting the waiters_pending and
1148	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1149	 * is set, the next event will wake the task up, but we can get stuck
1150	 * if there's only a single event in.
1151	 *
1152	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1153	 * but adding a memory barrier to all events will cause too much of a
1154	 * performance hit in the fast path.  We only need a memory barrier when
1155	 * the buffer goes from empty to having content.  But as this race is
1156	 * extremely small, and it's not a problem if another event comes in, we
1157	 * will fix it later.
1158	 */
1159	smp_mb();
1160
1161	if (full)
1162		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1163
1164	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1165	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1166		return EPOLLIN | EPOLLRDNORM;
1167	return 0;
1168}
1169
1170/* buffer may be either ring_buffer or ring_buffer_per_cpu */
1171#define RB_WARN_ON(b, cond)						\
1172	({								\
1173		int _____ret = unlikely(cond);				\
1174		if (_____ret) {						\
1175			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1176				struct ring_buffer_per_cpu *__b =	\
1177					(void *)b;			\
1178				atomic_inc(&__b->buffer->record_disabled); \
1179			} else						\
1180				atomic_inc(&b->record_disabled);	\
1181			WARN_ON(1);					\
1182		}							\
1183		_____ret;						\
1184	})
1185
1186/* Up this if you want to test the TIME_EXTENTS and normalization */
1187#define DEBUG_SHIFT 0
1188
1189static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1190{
1191	u64 ts;
1192
1193	/* Skip retpolines :-( */
1194	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1195		ts = trace_clock_local();
1196	else
1197		ts = buffer->clock();
1198
1199	/* shift to debug/test normalization and TIME_EXTENTS */
1200	return ts << DEBUG_SHIFT;
1201}
1202
1203u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1204{
1205	u64 time;
1206
1207	preempt_disable_notrace();
1208	time = rb_time_stamp(buffer);
1209	preempt_enable_notrace();
1210
1211	return time;
1212}
1213EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1214
1215void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1216				      int cpu, u64 *ts)
1217{
1218	/* Just stupid testing the normalize function and deltas */
1219	*ts >>= DEBUG_SHIFT;
1220}
1221EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1222
1223/*
1224 * Making the ring buffer lockless makes things tricky.
1225 * Although writes only happen on the CPU that they are on,
1226 * and they only need to worry about interrupts. Reads can
1227 * happen on any CPU.
1228 *
1229 * The reader page is always off the ring buffer, but when the
1230 * reader finishes with a page, it needs to swap its page with
1231 * a new one from the buffer. The reader needs to take from
1232 * the head (writes go to the tail). But if a writer is in overwrite
1233 * mode and wraps, it must push the head page forward.
1234 *
1235 * Here lies the problem.
1236 *
1237 * The reader must be careful to replace only the head page, and
1238 * not another one. As described at the top of the file in the
1239 * ASCII art, the reader sets its old page to point to the next
1240 * page after head. It then sets the page after head to point to
1241 * the old reader page. But if the writer moves the head page
1242 * during this operation, the reader could end up with the tail.
1243 *
1244 * We use cmpxchg to help prevent this race. We also do something
1245 * special with the page before head. We set the LSB to 1.
1246 *
1247 * When the writer must push the page forward, it will clear the
1248 * bit that points to the head page, move the head, and then set
1249 * the bit that points to the new head page.
1250 *
1251 * We also don't want an interrupt coming in and moving the head
1252 * page on another writer. Thus we use the second LSB to catch
1253 * that too. Thus:
1254 *
1255 * head->list->prev->next        bit 1          bit 0
1256 *                              -------        -------
1257 * Normal page                     0              0
1258 * Points to head page             0              1
1259 * New head page                   1              0
1260 *
1261 * Note we can not trust the prev pointer of the head page, because:
1262 *
1263 * +----+       +-----+        +-----+
1264 * |    |------>|  T  |---X--->|  N  |
1265 * |    |<------|     |        |     |
1266 * +----+       +-----+        +-----+
1267 *   ^                           ^ |
1268 *   |          +-----+          | |
1269 *   +----------|  R  |----------+ |
1270 *              |     |<-----------+
1271 *              +-----+
1272 *
1273 * Key:  ---X-->  HEAD flag set in pointer
1274 *         T      Tail page
1275 *         R      Reader page
1276 *         N      Next page
1277 *
1278 * (see __rb_reserve_next() to see where this happens)
1279 *
1280 *  What the above shows is that the reader just swapped out
1281 *  the reader page with a page in the buffer, but before it
1282 *  could make the new header point back to the new page added
1283 *  it was preempted by a writer. The writer moved forward onto
1284 *  the new page added by the reader and is about to move forward
1285 *  again.
1286 *
1287 *  You can see, it is legitimate for the previous pointer of
1288 *  the head (or any page) not to point back to itself. But only
1289 *  temporarily.
1290 */
1291
1292#define RB_PAGE_NORMAL		0UL
1293#define RB_PAGE_HEAD		1UL
1294#define RB_PAGE_UPDATE		2UL
1295
1296
1297#define RB_FLAG_MASK		3UL
1298
1299/* PAGE_MOVED is not part of the mask */
1300#define RB_PAGE_MOVED		4UL
1301
1302/*
1303 * rb_list_head - remove any bit
1304 */
1305static struct list_head *rb_list_head(struct list_head *list)
1306{
1307	unsigned long val = (unsigned long)list;
1308
1309	return (struct list_head *)(val & ~RB_FLAG_MASK);
1310}
1311
1312/*
1313 * rb_is_head_page - test if the given page is the head page
1314 *
1315 * Because the reader may move the head_page pointer, we can
1316 * not trust what the head page is (it may be pointing to
1317 * the reader page). But if the next page is a header page,
1318 * its flags will be non zero.
1319 */
1320static inline int
1321rb_is_head_page(struct buffer_page *page, struct list_head *list)
 
1322{
1323	unsigned long val;
1324
1325	val = (unsigned long)list->next;
1326
1327	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1328		return RB_PAGE_MOVED;
1329
1330	return val & RB_FLAG_MASK;
1331}
1332
1333/*
1334 * rb_is_reader_page
1335 *
1336 * The unique thing about the reader page, is that, if the
1337 * writer is ever on it, the previous pointer never points
1338 * back to the reader page.
1339 */
1340static bool rb_is_reader_page(struct buffer_page *page)
1341{
1342	struct list_head *list = page->list.prev;
1343
1344	return rb_list_head(list->next) != &page->list;
1345}
1346
1347/*
1348 * rb_set_list_to_head - set a list_head to be pointing to head.
1349 */
1350static void rb_set_list_to_head(struct list_head *list)
 
1351{
1352	unsigned long *ptr;
1353
1354	ptr = (unsigned long *)&list->next;
1355	*ptr |= RB_PAGE_HEAD;
1356	*ptr &= ~RB_PAGE_UPDATE;
1357}
1358
1359/*
1360 * rb_head_page_activate - sets up head page
1361 */
1362static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1363{
1364	struct buffer_page *head;
1365
1366	head = cpu_buffer->head_page;
1367	if (!head)
1368		return;
1369
1370	/*
1371	 * Set the previous list pointer to have the HEAD flag.
1372	 */
1373	rb_set_list_to_head(head->list.prev);
1374}
1375
1376static void rb_list_head_clear(struct list_head *list)
1377{
1378	unsigned long *ptr = (unsigned long *)&list->next;
1379
1380	*ptr &= ~RB_FLAG_MASK;
1381}
1382
1383/*
1384 * rb_head_page_deactivate - clears head page ptr (for free list)
1385 */
1386static void
1387rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1388{
1389	struct list_head *hd;
1390
1391	/* Go through the whole list and clear any pointers found. */
1392	rb_list_head_clear(cpu_buffer->pages);
1393
1394	list_for_each(hd, cpu_buffer->pages)
1395		rb_list_head_clear(hd);
1396}
1397
1398static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1399			    struct buffer_page *head,
1400			    struct buffer_page *prev,
1401			    int old_flag, int new_flag)
1402{
1403	struct list_head *list;
1404	unsigned long val = (unsigned long)&head->list;
1405	unsigned long ret;
1406
1407	list = &prev->list;
1408
1409	val &= ~RB_FLAG_MASK;
1410
1411	ret = cmpxchg((unsigned long *)&list->next,
1412		      val | old_flag, val | new_flag);
1413
1414	/* check if the reader took the page */
1415	if ((ret & ~RB_FLAG_MASK) != val)
1416		return RB_PAGE_MOVED;
1417
1418	return ret & RB_FLAG_MASK;
1419}
1420
1421static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1422				   struct buffer_page *head,
1423				   struct buffer_page *prev,
1424				   int old_flag)
1425{
1426	return rb_head_page_set(cpu_buffer, head, prev,
1427				old_flag, RB_PAGE_UPDATE);
1428}
1429
1430static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1431				 struct buffer_page *head,
1432				 struct buffer_page *prev,
1433				 int old_flag)
1434{
1435	return rb_head_page_set(cpu_buffer, head, prev,
1436				old_flag, RB_PAGE_HEAD);
1437}
1438
1439static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1440				   struct buffer_page *head,
1441				   struct buffer_page *prev,
1442				   int old_flag)
1443{
1444	return rb_head_page_set(cpu_buffer, head, prev,
1445				old_flag, RB_PAGE_NORMAL);
1446}
1447
1448static inline void rb_inc_page(struct buffer_page **bpage)
 
1449{
1450	struct list_head *p = rb_list_head((*bpage)->list.next);
1451
1452	*bpage = list_entry(p, struct buffer_page, list);
1453}
1454
1455static struct buffer_page *
1456rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1457{
1458	struct buffer_page *head;
1459	struct buffer_page *page;
1460	struct list_head *list;
1461	int i;
1462
1463	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1464		return NULL;
1465
1466	/* sanity check */
1467	list = cpu_buffer->pages;
1468	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1469		return NULL;
1470
1471	page = head = cpu_buffer->head_page;
1472	/*
1473	 * It is possible that the writer moves the header behind
1474	 * where we started, and we miss in one loop.
1475	 * A second loop should grab the header, but we'll do
1476	 * three loops just because I'm paranoid.
1477	 */
1478	for (i = 0; i < 3; i++) {
1479		do {
1480			if (rb_is_head_page(page, page->list.prev)) {
1481				cpu_buffer->head_page = page;
1482				return page;
1483			}
1484			rb_inc_page(&page);
1485		} while (page != head);
1486	}
1487
1488	RB_WARN_ON(cpu_buffer, 1);
1489
1490	return NULL;
1491}
1492
1493static int rb_head_page_replace(struct buffer_page *old,
1494				struct buffer_page *new)
1495{
1496	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1497	unsigned long val;
1498	unsigned long ret;
1499
1500	val = *ptr & ~RB_FLAG_MASK;
1501	val |= RB_PAGE_HEAD;
1502
1503	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1504
1505	return ret == val;
1506}
1507
1508/*
1509 * rb_tail_page_update - move the tail page forward
1510 */
1511static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1512			       struct buffer_page *tail_page,
1513			       struct buffer_page *next_page)
1514{
1515	unsigned long old_entries;
1516	unsigned long old_write;
1517
1518	/*
1519	 * The tail page now needs to be moved forward.
1520	 *
1521	 * We need to reset the tail page, but without messing
1522	 * with possible erasing of data brought in by interrupts
1523	 * that have moved the tail page and are currently on it.
1524	 *
1525	 * We add a counter to the write field to denote this.
1526	 */
1527	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1528	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1529
1530	local_inc(&cpu_buffer->pages_touched);
1531	/*
1532	 * Just make sure we have seen our old_write and synchronize
1533	 * with any interrupts that come in.
1534	 */
1535	barrier();
1536
1537	/*
1538	 * If the tail page is still the same as what we think
1539	 * it is, then it is up to us to update the tail
1540	 * pointer.
1541	 */
1542	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1543		/* Zero the write counter */
1544		unsigned long val = old_write & ~RB_WRITE_MASK;
1545		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1546
1547		/*
1548		 * This will only succeed if an interrupt did
1549		 * not come in and change it. In which case, we
1550		 * do not want to modify it.
1551		 *
1552		 * We add (void) to let the compiler know that we do not care
1553		 * about the return value of these functions. We use the
1554		 * cmpxchg to only update if an interrupt did not already
1555		 * do it for us. If the cmpxchg fails, we don't care.
1556		 */
1557		(void)local_cmpxchg(&next_page->write, old_write, val);
1558		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1559
1560		/*
1561		 * No need to worry about races with clearing out the commit.
1562		 * it only can increment when a commit takes place. But that
1563		 * only happens in the outer most nested commit.
1564		 */
1565		local_set(&next_page->page->commit, 0);
1566
1567		/* Again, either we update tail_page or an interrupt does */
1568		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1569	}
1570}
1571
1572static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1573			  struct buffer_page *bpage)
1574{
1575	unsigned long val = (unsigned long)bpage;
1576
1577	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1578		return 1;
1579
1580	return 0;
1581}
1582
1583/**
1584 * rb_check_list - make sure a pointer to a list has the last bits zero
1585 */
1586static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1587			 struct list_head *list)
1588{
1589	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1590		return 1;
1591	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1592		return 1;
1593	return 0;
1594}
1595
1596/**
1597 * rb_check_pages - integrity check of buffer pages
1598 * @cpu_buffer: CPU buffer with pages to test
1599 *
1600 * As a safety measure we check to make sure the data pages have not
1601 * been corrupted.
1602 */
1603static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1604{
1605	struct list_head *head = cpu_buffer->pages;
1606	struct buffer_page *bpage, *tmp;
1607
1608	/* Reset the head page if it exists */
1609	if (cpu_buffer->head_page)
1610		rb_set_head_page(cpu_buffer);
1611
1612	rb_head_page_deactivate(cpu_buffer);
1613
1614	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1615		return -1;
1616	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1617		return -1;
1618
1619	if (rb_check_list(cpu_buffer, head))
1620		return -1;
1621
1622	list_for_each_entry_safe(bpage, tmp, head, list) {
1623		if (RB_WARN_ON(cpu_buffer,
1624			       bpage->list.next->prev != &bpage->list))
1625			return -1;
1626		if (RB_WARN_ON(cpu_buffer,
1627			       bpage->list.prev->next != &bpage->list))
1628			return -1;
1629		if (rb_check_list(cpu_buffer, &bpage->list))
1630			return -1;
1631	}
1632
1633	rb_head_page_activate(cpu_buffer);
1634
1635	return 0;
1636}
1637
1638static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1639		long nr_pages, struct list_head *pages)
1640{
1641	struct buffer_page *bpage, *tmp;
1642	bool user_thread = current->mm != NULL;
1643	gfp_t mflags;
1644	long i;
1645
1646	/*
1647	 * Check if the available memory is there first.
1648	 * Note, si_mem_available() only gives us a rough estimate of available
1649	 * memory. It may not be accurate. But we don't care, we just want
1650	 * to prevent doing any allocation when it is obvious that it is
1651	 * not going to succeed.
1652	 */
1653	i = si_mem_available();
1654	if (i < nr_pages)
1655		return -ENOMEM;
1656
1657	/*
1658	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1659	 * gracefully without invoking oom-killer and the system is not
1660	 * destabilized.
1661	 */
1662	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1663
1664	/*
1665	 * If a user thread allocates too much, and si_mem_available()
1666	 * reports there's enough memory, even though there is not.
1667	 * Make sure the OOM killer kills this thread. This can happen
1668	 * even with RETRY_MAYFAIL because another task may be doing
1669	 * an allocation after this task has taken all memory.
1670	 * This is the task the OOM killer needs to take out during this
1671	 * loop, even if it was triggered by an allocation somewhere else.
1672	 */
1673	if (user_thread)
1674		set_current_oom_origin();
1675	for (i = 0; i < nr_pages; i++) {
1676		struct page *page;
1677
1678		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1679				    mflags, cpu_to_node(cpu_buffer->cpu));
1680		if (!bpage)
1681			goto free_pages;
1682
1683		rb_check_bpage(cpu_buffer, bpage);
1684
1685		list_add(&bpage->list, pages);
1686
1687		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1688		if (!page)
1689			goto free_pages;
1690		bpage->page = page_address(page);
1691		rb_init_page(bpage->page);
1692
1693		if (user_thread && fatal_signal_pending(current))
1694			goto free_pages;
1695	}
1696	if (user_thread)
1697		clear_current_oom_origin();
1698
1699	return 0;
1700
1701free_pages:
1702	list_for_each_entry_safe(bpage, tmp, pages, list) {
1703		list_del_init(&bpage->list);
1704		free_buffer_page(bpage);
1705	}
1706	if (user_thread)
1707		clear_current_oom_origin();
1708
1709	return -ENOMEM;
1710}
1711
1712static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1713			     unsigned long nr_pages)
1714{
1715	LIST_HEAD(pages);
1716
1717	WARN_ON(!nr_pages);
1718
1719	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1720		return -ENOMEM;
1721
1722	/*
1723	 * The ring buffer page list is a circular list that does not
1724	 * start and end with a list head. All page list items point to
1725	 * other pages.
1726	 */
1727	cpu_buffer->pages = pages.next;
1728	list_del(&pages);
1729
1730	cpu_buffer->nr_pages = nr_pages;
1731
1732	rb_check_pages(cpu_buffer);
1733
1734	return 0;
1735}
1736
1737static struct ring_buffer_per_cpu *
1738rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1739{
1740	struct ring_buffer_per_cpu *cpu_buffer;
1741	struct buffer_page *bpage;
1742	struct page *page;
1743	int ret;
1744
1745	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1746				  GFP_KERNEL, cpu_to_node(cpu));
1747	if (!cpu_buffer)
1748		return NULL;
1749
1750	cpu_buffer->cpu = cpu;
1751	cpu_buffer->buffer = buffer;
1752	raw_spin_lock_init(&cpu_buffer->reader_lock);
1753	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1754	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1755	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1756	init_completion(&cpu_buffer->update_done);
1757	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1758	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1759	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1760
1761	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1762			    GFP_KERNEL, cpu_to_node(cpu));
1763	if (!bpage)
1764		goto fail_free_buffer;
1765
1766	rb_check_bpage(cpu_buffer, bpage);
1767
1768	cpu_buffer->reader_page = bpage;
1769	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1770	if (!page)
1771		goto fail_free_reader;
1772	bpage->page = page_address(page);
1773	rb_init_page(bpage->page);
1774
1775	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1776	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1777
1778	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1779	if (ret < 0)
1780		goto fail_free_reader;
1781
1782	cpu_buffer->head_page
1783		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1784	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1785
1786	rb_head_page_activate(cpu_buffer);
1787
1788	return cpu_buffer;
1789
1790 fail_free_reader:
1791	free_buffer_page(cpu_buffer->reader_page);
1792
1793 fail_free_buffer:
1794	kfree(cpu_buffer);
1795	return NULL;
1796}
1797
1798static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1799{
1800	struct list_head *head = cpu_buffer->pages;
1801	struct buffer_page *bpage, *tmp;
1802
1803	free_buffer_page(cpu_buffer->reader_page);
1804
1805	if (head) {
1806		rb_head_page_deactivate(cpu_buffer);
1807
 
1808		list_for_each_entry_safe(bpage, tmp, head, list) {
1809			list_del_init(&bpage->list);
1810			free_buffer_page(bpage);
1811		}
1812		bpage = list_entry(head, struct buffer_page, list);
1813		free_buffer_page(bpage);
1814	}
1815
1816	kfree(cpu_buffer);
1817}
1818
1819/**
1820 * __ring_buffer_alloc - allocate a new ring_buffer
1821 * @size: the size in bytes per cpu that is needed.
1822 * @flags: attributes to set for the ring buffer.
1823 * @key: ring buffer reader_lock_key.
1824 *
1825 * Currently the only flag that is available is the RB_FL_OVERWRITE
1826 * flag. This flag means that the buffer will overwrite old data
1827 * when the buffer wraps. If this flag is not set, the buffer will
1828 * drop data when the tail hits the head.
1829 */
1830struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1831					struct lock_class_key *key)
1832{
1833	struct trace_buffer *buffer;
1834	long nr_pages;
1835	int bsize;
1836	int cpu;
1837	int ret;
1838
1839	/* keep it in its own cache line */
1840	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1841			 GFP_KERNEL);
1842	if (!buffer)
1843		return NULL;
1844
1845	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1846		goto fail_free_buffer;
1847
1848	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1849	buffer->flags = flags;
1850	buffer->clock = trace_clock_local;
1851	buffer->reader_lock_key = key;
1852
1853	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1854	init_waitqueue_head(&buffer->irq_work.waiters);
1855
1856	/* need at least two pages */
1857	if (nr_pages < 2)
1858		nr_pages = 2;
1859
1860	buffer->cpus = nr_cpu_ids;
1861
1862	bsize = sizeof(void *) * nr_cpu_ids;
1863	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1864				  GFP_KERNEL);
1865	if (!buffer->buffers)
1866		goto fail_free_cpumask;
1867
1868	cpu = raw_smp_processor_id();
1869	cpumask_set_cpu(cpu, buffer->cpumask);
1870	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1871	if (!buffer->buffers[cpu])
1872		goto fail_free_buffers;
1873
1874	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875	if (ret < 0)
1876		goto fail_free_buffers;
1877
1878	mutex_init(&buffer->mutex);
1879
1880	return buffer;
1881
1882 fail_free_buffers:
1883	for_each_buffer_cpu(buffer, cpu) {
1884		if (buffer->buffers[cpu])
1885			rb_free_cpu_buffer(buffer->buffers[cpu]);
1886	}
1887	kfree(buffer->buffers);
1888
1889 fail_free_cpumask:
1890	free_cpumask_var(buffer->cpumask);
1891
1892 fail_free_buffer:
1893	kfree(buffer);
1894	return NULL;
1895}
1896EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1897
1898/**
1899 * ring_buffer_free - free a ring buffer.
1900 * @buffer: the buffer to free.
1901 */
1902void
1903ring_buffer_free(struct trace_buffer *buffer)
1904{
1905	int cpu;
1906
1907	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1908
1909	for_each_buffer_cpu(buffer, cpu)
1910		rb_free_cpu_buffer(buffer->buffers[cpu]);
1911
1912	kfree(buffer->buffers);
1913	free_cpumask_var(buffer->cpumask);
1914
1915	kfree(buffer);
1916}
1917EXPORT_SYMBOL_GPL(ring_buffer_free);
1918
1919void ring_buffer_set_clock(struct trace_buffer *buffer,
1920			   u64 (*clock)(void))
1921{
1922	buffer->clock = clock;
1923}
1924
1925void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1926{
1927	buffer->time_stamp_abs = abs;
1928}
1929
1930bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1931{
1932	return buffer->time_stamp_abs;
1933}
1934
1935static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1936
1937static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1938{
1939	return local_read(&bpage->entries) & RB_WRITE_MASK;
1940}
1941
1942static inline unsigned long rb_page_write(struct buffer_page *bpage)
1943{
1944	return local_read(&bpage->write) & RB_WRITE_MASK;
1945}
1946
1947static int
1948rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1949{
1950	struct list_head *tail_page, *to_remove, *next_page;
1951	struct buffer_page *to_remove_page, *tmp_iter_page;
1952	struct buffer_page *last_page, *first_page;
1953	unsigned long nr_removed;
1954	unsigned long head_bit;
1955	int page_entries;
1956
1957	head_bit = 0;
1958
1959	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1960	atomic_inc(&cpu_buffer->record_disabled);
1961	/*
1962	 * We don't race with the readers since we have acquired the reader
1963	 * lock. We also don't race with writers after disabling recording.
1964	 * This makes it easy to figure out the first and the last page to be
1965	 * removed from the list. We unlink all the pages in between including
1966	 * the first and last pages. This is done in a busy loop so that we
1967	 * lose the least number of traces.
1968	 * The pages are freed after we restart recording and unlock readers.
1969	 */
1970	tail_page = &cpu_buffer->tail_page->list;
1971
1972	/*
1973	 * tail page might be on reader page, we remove the next page
1974	 * from the ring buffer
1975	 */
1976	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1977		tail_page = rb_list_head(tail_page->next);
1978	to_remove = tail_page;
1979
1980	/* start of pages to remove */
1981	first_page = list_entry(rb_list_head(to_remove->next),
1982				struct buffer_page, list);
1983
1984	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1985		to_remove = rb_list_head(to_remove)->next;
1986		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1987	}
1988
1989	next_page = rb_list_head(to_remove)->next;
1990
1991	/*
1992	 * Now we remove all pages between tail_page and next_page.
1993	 * Make sure that we have head_bit value preserved for the
1994	 * next page
1995	 */
1996	tail_page->next = (struct list_head *)((unsigned long)next_page |
1997						head_bit);
1998	next_page = rb_list_head(next_page);
1999	next_page->prev = tail_page;
2000
2001	/* make sure pages points to a valid page in the ring buffer */
2002	cpu_buffer->pages = next_page;
2003
2004	/* update head page */
2005	if (head_bit)
2006		cpu_buffer->head_page = list_entry(next_page,
2007						struct buffer_page, list);
2008
2009	/*
2010	 * change read pointer to make sure any read iterators reset
2011	 * themselves
2012	 */
2013	cpu_buffer->read = 0;
2014
2015	/* pages are removed, resume tracing and then free the pages */
2016	atomic_dec(&cpu_buffer->record_disabled);
2017	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2018
2019	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2020
2021	/* last buffer page to remove */
2022	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2023				list);
2024	tmp_iter_page = first_page;
2025
2026	do {
2027		cond_resched();
2028
2029		to_remove_page = tmp_iter_page;
2030		rb_inc_page(&tmp_iter_page);
2031
2032		/* update the counters */
2033		page_entries = rb_page_entries(to_remove_page);
2034		if (page_entries) {
2035			/*
2036			 * If something was added to this page, it was full
2037			 * since it is not the tail page. So we deduct the
2038			 * bytes consumed in ring buffer from here.
2039			 * Increment overrun to account for the lost events.
2040			 */
2041			local_add(page_entries, &cpu_buffer->overrun);
2042			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043			local_inc(&cpu_buffer->pages_lost);
2044		}
2045
2046		/*
2047		 * We have already removed references to this list item, just
2048		 * free up the buffer_page and its page
2049		 */
2050		free_buffer_page(to_remove_page);
2051		nr_removed--;
2052
2053	} while (to_remove_page != last_page);
2054
2055	RB_WARN_ON(cpu_buffer, nr_removed);
2056
2057	return nr_removed == 0;
2058}
2059
2060static int
2061rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2062{
2063	struct list_head *pages = &cpu_buffer->new_pages;
2064	int retries, success;
2065	unsigned long flags;
2066
2067	/* Can be called at early boot up, where interrupts must not been enabled */
2068	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2069	/*
2070	 * We are holding the reader lock, so the reader page won't be swapped
2071	 * in the ring buffer. Now we are racing with the writer trying to
2072	 * move head page and the tail page.
2073	 * We are going to adapt the reader page update process where:
2074	 * 1. We first splice the start and end of list of new pages between
2075	 *    the head page and its previous page.
2076	 * 2. We cmpxchg the prev_page->next to point from head page to the
2077	 *    start of new pages list.
2078	 * 3. Finally, we update the head->prev to the end of new list.
2079	 *
2080	 * We will try this process 10 times, to make sure that we don't keep
2081	 * spinning.
2082	 */
2083	retries = 10;
2084	success = 0;
2085	while (retries--) {
2086		struct list_head *head_page, *prev_page, *r;
2087		struct list_head *last_page, *first_page;
2088		struct list_head *head_page_with_bit;
2089
2090		head_page = &rb_set_head_page(cpu_buffer)->list;
2091		if (!head_page)
2092			break;
2093		prev_page = head_page->prev;
2094
2095		first_page = pages->next;
2096		last_page  = pages->prev;
2097
2098		head_page_with_bit = (struct list_head *)
2099				     ((unsigned long)head_page | RB_PAGE_HEAD);
2100
2101		last_page->next = head_page_with_bit;
2102		first_page->prev = prev_page;
2103
2104		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2105
2106		if (r == head_page_with_bit) {
2107			/*
2108			 * yay, we replaced the page pointer to our new list,
2109			 * now, we just have to update to head page's prev
2110			 * pointer to point to end of list
2111			 */
2112			head_page->prev = last_page;
2113			success = 1;
2114			break;
2115		}
2116	}
2117
2118	if (success)
2119		INIT_LIST_HEAD(pages);
2120	/*
2121	 * If we weren't successful in adding in new pages, warn and stop
2122	 * tracing
2123	 */
2124	RB_WARN_ON(cpu_buffer, !success);
2125	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2126
2127	/* free pages if they weren't inserted */
2128	if (!success) {
2129		struct buffer_page *bpage, *tmp;
2130		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2131					 list) {
2132			list_del_init(&bpage->list);
2133			free_buffer_page(bpage);
2134		}
2135	}
2136	return success;
2137}
2138
2139static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2140{
2141	int success;
2142
2143	if (cpu_buffer->nr_pages_to_update > 0)
2144		success = rb_insert_pages(cpu_buffer);
2145	else
2146		success = rb_remove_pages(cpu_buffer,
2147					-cpu_buffer->nr_pages_to_update);
2148
2149	if (success)
2150		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2151}
2152
2153static void update_pages_handler(struct work_struct *work)
2154{
2155	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2156			struct ring_buffer_per_cpu, update_pages_work);
2157	rb_update_pages(cpu_buffer);
2158	complete(&cpu_buffer->update_done);
2159}
2160
2161/**
2162 * ring_buffer_resize - resize the ring buffer
2163 * @buffer: the buffer to resize.
2164 * @size: the new size.
2165 * @cpu_id: the cpu buffer to resize
2166 *
2167 * Minimum size is 2 * BUF_PAGE_SIZE.
2168 *
2169 * Returns 0 on success and < 0 on failure.
2170 */
2171int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2172			int cpu_id)
2173{
2174	struct ring_buffer_per_cpu *cpu_buffer;
2175	unsigned long nr_pages;
2176	int cpu, err;
2177
2178	/*
2179	 * Always succeed at resizing a non-existent buffer:
2180	 */
2181	if (!buffer)
2182		return 0;
2183
2184	/* Make sure the requested buffer exists */
2185	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2186	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2187		return 0;
2188
2189	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2190
2191	/* we need a minimum of two pages */
2192	if (nr_pages < 2)
2193		nr_pages = 2;
2194
 
 
2195	/* prevent another thread from changing buffer sizes */
2196	mutex_lock(&buffer->mutex);
2197
2198
2199	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2200		/*
2201		 * Don't succeed if resizing is disabled, as a reader might be
2202		 * manipulating the ring buffer and is expecting a sane state while
2203		 * this is true.
2204		 */
2205		for_each_buffer_cpu(buffer, cpu) {
2206			cpu_buffer = buffer->buffers[cpu];
2207			if (atomic_read(&cpu_buffer->resize_disabled)) {
2208				err = -EBUSY;
2209				goto out_err_unlock;
2210			}
2211		}
2212
2213		/* calculate the pages to update */
2214		for_each_buffer_cpu(buffer, cpu) {
2215			cpu_buffer = buffer->buffers[cpu];
2216
2217			cpu_buffer->nr_pages_to_update = nr_pages -
2218							cpu_buffer->nr_pages;
2219			/*
2220			 * nothing more to do for removing pages or no update
2221			 */
2222			if (cpu_buffer->nr_pages_to_update <= 0)
2223				continue;
2224			/*
2225			 * to add pages, make sure all new pages can be
2226			 * allocated without receiving ENOMEM
2227			 */
2228			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2229			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2230						&cpu_buffer->new_pages)) {
2231				/* not enough memory for new pages */
2232				err = -ENOMEM;
2233				goto out_err;
2234			}
2235		}
2236
2237		cpus_read_lock();
2238		/*
2239		 * Fire off all the required work handlers
2240		 * We can't schedule on offline CPUs, but it's not necessary
2241		 * since we can change their buffer sizes without any race.
2242		 */
2243		for_each_buffer_cpu(buffer, cpu) {
2244			cpu_buffer = buffer->buffers[cpu];
2245			if (!cpu_buffer->nr_pages_to_update)
2246				continue;
2247
2248			/* Can't run something on an offline CPU. */
2249			if (!cpu_online(cpu)) {
2250				rb_update_pages(cpu_buffer);
2251				cpu_buffer->nr_pages_to_update = 0;
2252			} else {
2253				/* Run directly if possible. */
2254				migrate_disable();
2255				if (cpu != smp_processor_id()) {
2256					migrate_enable();
2257					schedule_work_on(cpu,
2258							 &cpu_buffer->update_pages_work);
2259				} else {
2260					update_pages_handler(&cpu_buffer->update_pages_work);
2261					migrate_enable();
2262				}
2263			}
2264		}
2265
2266		/* wait for all the updates to complete */
2267		for_each_buffer_cpu(buffer, cpu) {
2268			cpu_buffer = buffer->buffers[cpu];
2269			if (!cpu_buffer->nr_pages_to_update)
2270				continue;
2271
2272			if (cpu_online(cpu))
2273				wait_for_completion(&cpu_buffer->update_done);
2274			cpu_buffer->nr_pages_to_update = 0;
2275		}
2276
2277		cpus_read_unlock();
2278	} else {
 
 
 
 
2279		cpu_buffer = buffer->buffers[cpu_id];
2280
2281		if (nr_pages == cpu_buffer->nr_pages)
2282			goto out;
2283
2284		/*
2285		 * Don't succeed if resizing is disabled, as a reader might be
2286		 * manipulating the ring buffer and is expecting a sane state while
2287		 * this is true.
2288		 */
2289		if (atomic_read(&cpu_buffer->resize_disabled)) {
2290			err = -EBUSY;
2291			goto out_err_unlock;
2292		}
2293
2294		cpu_buffer->nr_pages_to_update = nr_pages -
2295						cpu_buffer->nr_pages;
2296
2297		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2298		if (cpu_buffer->nr_pages_to_update > 0 &&
2299			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2300					    &cpu_buffer->new_pages)) {
2301			err = -ENOMEM;
2302			goto out_err;
2303		}
2304
2305		cpus_read_lock();
2306
2307		/* Can't run something on an offline CPU. */
2308		if (!cpu_online(cpu_id))
2309			rb_update_pages(cpu_buffer);
2310		else {
2311			/* Run directly if possible. */
2312			migrate_disable();
2313			if (cpu_id == smp_processor_id()) {
2314				rb_update_pages(cpu_buffer);
2315				migrate_enable();
2316			} else {
2317				migrate_enable();
2318				schedule_work_on(cpu_id,
2319						 &cpu_buffer->update_pages_work);
2320				wait_for_completion(&cpu_buffer->update_done);
2321			}
2322		}
2323
2324		cpu_buffer->nr_pages_to_update = 0;
2325		cpus_read_unlock();
2326	}
2327
2328 out:
2329	/*
2330	 * The ring buffer resize can happen with the ring buffer
2331	 * enabled, so that the update disturbs the tracing as little
2332	 * as possible. But if the buffer is disabled, we do not need
2333	 * to worry about that, and we can take the time to verify
2334	 * that the buffer is not corrupt.
2335	 */
2336	if (atomic_read(&buffer->record_disabled)) {
2337		atomic_inc(&buffer->record_disabled);
2338		/*
2339		 * Even though the buffer was disabled, we must make sure
2340		 * that it is truly disabled before calling rb_check_pages.
2341		 * There could have been a race between checking
2342		 * record_disable and incrementing it.
2343		 */
2344		synchronize_rcu();
2345		for_each_buffer_cpu(buffer, cpu) {
2346			cpu_buffer = buffer->buffers[cpu];
2347			rb_check_pages(cpu_buffer);
2348		}
2349		atomic_dec(&buffer->record_disabled);
2350	}
2351
2352	mutex_unlock(&buffer->mutex);
2353	return 0;
2354
2355 out_err:
2356	for_each_buffer_cpu(buffer, cpu) {
2357		struct buffer_page *bpage, *tmp;
2358
2359		cpu_buffer = buffer->buffers[cpu];
2360		cpu_buffer->nr_pages_to_update = 0;
2361
2362		if (list_empty(&cpu_buffer->new_pages))
2363			continue;
2364
2365		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2366					list) {
2367			list_del_init(&bpage->list);
2368			free_buffer_page(bpage);
2369		}
2370	}
2371 out_err_unlock:
2372	mutex_unlock(&buffer->mutex);
2373	return err;
2374}
2375EXPORT_SYMBOL_GPL(ring_buffer_resize);
2376
2377void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2378{
2379	mutex_lock(&buffer->mutex);
2380	if (val)
2381		buffer->flags |= RB_FL_OVERWRITE;
2382	else
2383		buffer->flags &= ~RB_FL_OVERWRITE;
2384	mutex_unlock(&buffer->mutex);
2385}
2386EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2387
2388static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2389{
2390	return bpage->page->data + index;
2391}
2392
2393static __always_inline struct ring_buffer_event *
2394rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2395{
2396	return __rb_page_index(cpu_buffer->reader_page,
2397			       cpu_buffer->reader_page->read);
2398}
2399
2400static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2401{
2402	return local_read(&bpage->page->commit);
2403}
2404
2405static struct ring_buffer_event *
2406rb_iter_head_event(struct ring_buffer_iter *iter)
2407{
2408	struct ring_buffer_event *event;
2409	struct buffer_page *iter_head_page = iter->head_page;
2410	unsigned long commit;
2411	unsigned length;
2412
2413	if (iter->head != iter->next_event)
2414		return iter->event;
2415
2416	/*
2417	 * When the writer goes across pages, it issues a cmpxchg which
2418	 * is a mb(), which will synchronize with the rmb here.
2419	 * (see rb_tail_page_update() and __rb_reserve_next())
2420	 */
2421	commit = rb_page_commit(iter_head_page);
2422	smp_rmb();
2423	event = __rb_page_index(iter_head_page, iter->head);
2424	length = rb_event_length(event);
2425
2426	/*
2427	 * READ_ONCE() doesn't work on functions and we don't want the
2428	 * compiler doing any crazy optimizations with length.
2429	 */
2430	barrier();
2431
2432	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2433		/* Writer corrupted the read? */
2434		goto reset;
2435
2436	memcpy(iter->event, event, length);
2437	/*
2438	 * If the page stamp is still the same after this rmb() then the
2439	 * event was safely copied without the writer entering the page.
2440	 */
2441	smp_rmb();
2442
2443	/* Make sure the page didn't change since we read this */
2444	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2445	    commit > rb_page_commit(iter_head_page))
2446		goto reset;
2447
2448	iter->next_event = iter->head + length;
2449	return iter->event;
2450 reset:
2451	/* Reset to the beginning */
2452	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2453	iter->head = 0;
2454	iter->next_event = 0;
2455	iter->missed_events = 1;
2456	return NULL;
2457}
2458
2459/* Size is determined by what has been committed */
2460static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2461{
2462	return rb_page_commit(bpage);
2463}
2464
2465static __always_inline unsigned
2466rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2467{
2468	return rb_page_commit(cpu_buffer->commit_page);
2469}
2470
2471static __always_inline unsigned
2472rb_event_index(struct ring_buffer_event *event)
2473{
2474	unsigned long addr = (unsigned long)event;
2475
2476	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2477}
2478
2479static void rb_inc_iter(struct ring_buffer_iter *iter)
2480{
2481	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2482
2483	/*
2484	 * The iterator could be on the reader page (it starts there).
2485	 * But the head could have moved, since the reader was
2486	 * found. Check for this case and assign the iterator
2487	 * to the head page instead of next.
2488	 */
2489	if (iter->head_page == cpu_buffer->reader_page)
2490		iter->head_page = rb_set_head_page(cpu_buffer);
2491	else
2492		rb_inc_page(&iter->head_page);
2493
2494	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2495	iter->head = 0;
2496	iter->next_event = 0;
2497}
2498
2499/*
2500 * rb_handle_head_page - writer hit the head page
2501 *
2502 * Returns: +1 to retry page
2503 *           0 to continue
2504 *          -1 on error
2505 */
2506static int
2507rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2508		    struct buffer_page *tail_page,
2509		    struct buffer_page *next_page)
2510{
2511	struct buffer_page *new_head;
2512	int entries;
2513	int type;
2514	int ret;
2515
2516	entries = rb_page_entries(next_page);
2517
2518	/*
2519	 * The hard part is here. We need to move the head
2520	 * forward, and protect against both readers on
2521	 * other CPUs and writers coming in via interrupts.
2522	 */
2523	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2524				       RB_PAGE_HEAD);
2525
2526	/*
2527	 * type can be one of four:
2528	 *  NORMAL - an interrupt already moved it for us
2529	 *  HEAD   - we are the first to get here.
2530	 *  UPDATE - we are the interrupt interrupting
2531	 *           a current move.
2532	 *  MOVED  - a reader on another CPU moved the next
2533	 *           pointer to its reader page. Give up
2534	 *           and try again.
2535	 */
2536
2537	switch (type) {
2538	case RB_PAGE_HEAD:
2539		/*
2540		 * We changed the head to UPDATE, thus
2541		 * it is our responsibility to update
2542		 * the counters.
2543		 */
2544		local_add(entries, &cpu_buffer->overrun);
2545		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2546		local_inc(&cpu_buffer->pages_lost);
2547
2548		/*
2549		 * The entries will be zeroed out when we move the
2550		 * tail page.
2551		 */
2552
2553		/* still more to do */
2554		break;
2555
2556	case RB_PAGE_UPDATE:
2557		/*
2558		 * This is an interrupt that interrupt the
2559		 * previous update. Still more to do.
2560		 */
2561		break;
2562	case RB_PAGE_NORMAL:
2563		/*
2564		 * An interrupt came in before the update
2565		 * and processed this for us.
2566		 * Nothing left to do.
2567		 */
2568		return 1;
2569	case RB_PAGE_MOVED:
2570		/*
2571		 * The reader is on another CPU and just did
2572		 * a swap with our next_page.
2573		 * Try again.
2574		 */
2575		return 1;
2576	default:
2577		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2578		return -1;
2579	}
2580
2581	/*
2582	 * Now that we are here, the old head pointer is
2583	 * set to UPDATE. This will keep the reader from
2584	 * swapping the head page with the reader page.
2585	 * The reader (on another CPU) will spin till
2586	 * we are finished.
2587	 *
2588	 * We just need to protect against interrupts
2589	 * doing the job. We will set the next pointer
2590	 * to HEAD. After that, we set the old pointer
2591	 * to NORMAL, but only if it was HEAD before.
2592	 * otherwise we are an interrupt, and only
2593	 * want the outer most commit to reset it.
2594	 */
2595	new_head = next_page;
2596	rb_inc_page(&new_head);
2597
2598	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2599				    RB_PAGE_NORMAL);
2600
2601	/*
2602	 * Valid returns are:
2603	 *  HEAD   - an interrupt came in and already set it.
2604	 *  NORMAL - One of two things:
2605	 *            1) We really set it.
2606	 *            2) A bunch of interrupts came in and moved
2607	 *               the page forward again.
2608	 */
2609	switch (ret) {
2610	case RB_PAGE_HEAD:
2611	case RB_PAGE_NORMAL:
2612		/* OK */
2613		break;
2614	default:
2615		RB_WARN_ON(cpu_buffer, 1);
2616		return -1;
2617	}
2618
2619	/*
2620	 * It is possible that an interrupt came in,
2621	 * set the head up, then more interrupts came in
2622	 * and moved it again. When we get back here,
2623	 * the page would have been set to NORMAL but we
2624	 * just set it back to HEAD.
2625	 *
2626	 * How do you detect this? Well, if that happened
2627	 * the tail page would have moved.
2628	 */
2629	if (ret == RB_PAGE_NORMAL) {
2630		struct buffer_page *buffer_tail_page;
2631
2632		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2633		/*
2634		 * If the tail had moved passed next, then we need
2635		 * to reset the pointer.
2636		 */
2637		if (buffer_tail_page != tail_page &&
2638		    buffer_tail_page != next_page)
2639			rb_head_page_set_normal(cpu_buffer, new_head,
2640						next_page,
2641						RB_PAGE_HEAD);
2642	}
2643
2644	/*
2645	 * If this was the outer most commit (the one that
2646	 * changed the original pointer from HEAD to UPDATE),
2647	 * then it is up to us to reset it to NORMAL.
2648	 */
2649	if (type == RB_PAGE_HEAD) {
2650		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2651					      tail_page,
2652					      RB_PAGE_UPDATE);
2653		if (RB_WARN_ON(cpu_buffer,
2654			       ret != RB_PAGE_UPDATE))
2655			return -1;
2656	}
2657
2658	return 0;
2659}
2660
2661static inline void
2662rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2663	      unsigned long tail, struct rb_event_info *info)
2664{
2665	struct buffer_page *tail_page = info->tail_page;
2666	struct ring_buffer_event *event;
2667	unsigned long length = info->length;
2668
2669	/*
2670	 * Only the event that crossed the page boundary
2671	 * must fill the old tail_page with padding.
2672	 */
2673	if (tail >= BUF_PAGE_SIZE) {
2674		/*
2675		 * If the page was filled, then we still need
2676		 * to update the real_end. Reset it to zero
2677		 * and the reader will ignore it.
2678		 */
2679		if (tail == BUF_PAGE_SIZE)
2680			tail_page->real_end = 0;
2681
2682		local_sub(length, &tail_page->write);
2683		return;
2684	}
2685
2686	event = __rb_page_index(tail_page, tail);
2687
2688	/* account for padding bytes */
2689	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2690
2691	/*
2692	 * Save the original length to the meta data.
2693	 * This will be used by the reader to add lost event
2694	 * counter.
2695	 */
2696	tail_page->real_end = tail;
2697
2698	/*
2699	 * If this event is bigger than the minimum size, then
2700	 * we need to be careful that we don't subtract the
2701	 * write counter enough to allow another writer to slip
2702	 * in on this page.
2703	 * We put in a discarded commit instead, to make sure
2704	 * that this space is not used again.
2705	 *
2706	 * If we are less than the minimum size, we don't need to
2707	 * worry about it.
2708	 */
2709	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2710		/* No room for any events */
2711
2712		/* Mark the rest of the page with padding */
2713		rb_event_set_padding(event);
2714
2715		/* Make sure the padding is visible before the write update */
2716		smp_wmb();
2717
2718		/* Set the write back to the previous setting */
2719		local_sub(length, &tail_page->write);
2720		return;
2721	}
2722
2723	/* Put in a discarded event */
2724	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2725	event->type_len = RINGBUF_TYPE_PADDING;
2726	/* time delta must be non zero */
2727	event->time_delta = 1;
2728
2729	/* Make sure the padding is visible before the tail_page->write update */
2730	smp_wmb();
2731
2732	/* Set write to end of buffer */
2733	length = (tail + length) - BUF_PAGE_SIZE;
2734	local_sub(length, &tail_page->write);
2735}
2736
2737static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2738
2739/*
2740 * This is the slow path, force gcc not to inline it.
2741 */
2742static noinline struct ring_buffer_event *
2743rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2744	     unsigned long tail, struct rb_event_info *info)
2745{
2746	struct buffer_page *tail_page = info->tail_page;
2747	struct buffer_page *commit_page = cpu_buffer->commit_page;
2748	struct trace_buffer *buffer = cpu_buffer->buffer;
2749	struct buffer_page *next_page;
2750	int ret;
2751
2752	next_page = tail_page;
2753
2754	rb_inc_page(&next_page);
2755
2756	/*
2757	 * If for some reason, we had an interrupt storm that made
2758	 * it all the way around the buffer, bail, and warn
2759	 * about it.
2760	 */
2761	if (unlikely(next_page == commit_page)) {
2762		local_inc(&cpu_buffer->commit_overrun);
2763		goto out_reset;
2764	}
2765
2766	/*
2767	 * This is where the fun begins!
2768	 *
2769	 * We are fighting against races between a reader that
2770	 * could be on another CPU trying to swap its reader
2771	 * page with the buffer head.
2772	 *
2773	 * We are also fighting against interrupts coming in and
2774	 * moving the head or tail on us as well.
2775	 *
2776	 * If the next page is the head page then we have filled
2777	 * the buffer, unless the commit page is still on the
2778	 * reader page.
2779	 */
2780	if (rb_is_head_page(next_page, &tail_page->list)) {
2781
2782		/*
2783		 * If the commit is not on the reader page, then
2784		 * move the header page.
2785		 */
2786		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2787			/*
2788			 * If we are not in overwrite mode,
2789			 * this is easy, just stop here.
2790			 */
2791			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2792				local_inc(&cpu_buffer->dropped_events);
2793				goto out_reset;
2794			}
2795
2796			ret = rb_handle_head_page(cpu_buffer,
2797						  tail_page,
2798						  next_page);
2799			if (ret < 0)
2800				goto out_reset;
2801			if (ret)
2802				goto out_again;
2803		} else {
2804			/*
2805			 * We need to be careful here too. The
2806			 * commit page could still be on the reader
2807			 * page. We could have a small buffer, and
2808			 * have filled up the buffer with events
2809			 * from interrupts and such, and wrapped.
2810			 *
2811			 * Note, if the tail page is also on the
2812			 * reader_page, we let it move out.
2813			 */
2814			if (unlikely((cpu_buffer->commit_page !=
2815				      cpu_buffer->tail_page) &&
2816				     (cpu_buffer->commit_page ==
2817				      cpu_buffer->reader_page))) {
2818				local_inc(&cpu_buffer->commit_overrun);
2819				goto out_reset;
2820			}
2821		}
2822	}
2823
2824	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2825
2826 out_again:
2827
2828	rb_reset_tail(cpu_buffer, tail, info);
2829
2830	/* Commit what we have for now. */
2831	rb_end_commit(cpu_buffer);
2832	/* rb_end_commit() decs committing */
2833	local_inc(&cpu_buffer->committing);
2834
2835	/* fail and let the caller try again */
2836	return ERR_PTR(-EAGAIN);
2837
2838 out_reset:
2839	/* reset write */
2840	rb_reset_tail(cpu_buffer, tail, info);
2841
2842	return NULL;
2843}
2844
2845/* Slow path */
2846static struct ring_buffer_event *
2847rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2848{
2849	if (abs)
2850		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2851	else
2852		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2853
2854	/* Not the first event on the page, or not delta? */
2855	if (abs || rb_event_index(event)) {
2856		event->time_delta = delta & TS_MASK;
2857		event->array[0] = delta >> TS_SHIFT;
2858	} else {
2859		/* nope, just zero it */
2860		event->time_delta = 0;
2861		event->array[0] = 0;
2862	}
2863
2864	return skip_time_extend(event);
2865}
2866
 
 
 
2867#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2868static inline bool sched_clock_stable(void)
2869{
2870	return true;
2871}
2872#endif
2873
2874static void
2875rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2876		   struct rb_event_info *info)
2877{
2878	u64 write_stamp;
2879
2880	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2881		  (unsigned long long)info->delta,
2882		  (unsigned long long)info->ts,
2883		  (unsigned long long)info->before,
2884		  (unsigned long long)info->after,
2885		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2886		  sched_clock_stable() ? "" :
2887		  "If you just came from a suspend/resume,\n"
2888		  "please switch to the trace global clock:\n"
2889		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2890		  "or add trace_clock=global to the kernel command line\n");
2891}
2892
2893static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2894				      struct ring_buffer_event **event,
2895				      struct rb_event_info *info,
2896				      u64 *delta,
2897				      unsigned int *length)
2898{
2899	bool abs = info->add_timestamp &
2900		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2901
2902	if (unlikely(info->delta > (1ULL << 59))) {
2903		/*
2904		 * Some timers can use more than 59 bits, and when a timestamp
2905		 * is added to the buffer, it will lose those bits.
2906		 */
2907		if (abs && (info->ts & TS_MSB)) {
2908			info->delta &= ABS_TS_MASK;
2909
2910		/* did the clock go backwards */
2911		} else if (info->before == info->after && info->before > info->ts) {
2912			/* not interrupted */
2913			static int once;
2914
2915			/*
2916			 * This is possible with a recalibrating of the TSC.
2917			 * Do not produce a call stack, but just report it.
2918			 */
2919			if (!once) {
2920				once++;
2921				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2922					info->before, info->ts);
2923			}
2924		} else
2925			rb_check_timestamp(cpu_buffer, info);
2926		if (!abs)
2927			info->delta = 0;
2928	}
2929	*event = rb_add_time_stamp(*event, info->delta, abs);
2930	*length -= RB_LEN_TIME_EXTEND;
2931	*delta = 0;
2932}
2933
2934/**
2935 * rb_update_event - update event type and data
2936 * @cpu_buffer: The per cpu buffer of the @event
2937 * @event: the event to update
2938 * @info: The info to update the @event with (contains length and delta)
2939 *
2940 * Update the type and data fields of the @event. The length
2941 * is the actual size that is written to the ring buffer,
2942 * and with this, we can determine what to place into the
2943 * data field.
2944 */
2945static void
2946rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2947		struct ring_buffer_event *event,
2948		struct rb_event_info *info)
2949{
2950	unsigned length = info->length;
2951	u64 delta = info->delta;
2952	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2953
2954	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2955		cpu_buffer->event_stamp[nest] = info->ts;
2956
2957	/*
2958	 * If we need to add a timestamp, then we
2959	 * add it to the start of the reserved space.
2960	 */
2961	if (unlikely(info->add_timestamp))
2962		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2963
2964	event->time_delta = delta;
2965	length -= RB_EVNT_HDR_SIZE;
2966	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2967		event->type_len = 0;
2968		event->array[0] = length;
2969	} else
2970		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2971}
2972
2973static unsigned rb_calculate_event_length(unsigned length)
2974{
2975	struct ring_buffer_event event; /* Used only for sizeof array */
2976
2977	/* zero length can cause confusions */
2978	if (!length)
2979		length++;
2980
2981	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2982		length += sizeof(event.array[0]);
2983
2984	length += RB_EVNT_HDR_SIZE;
2985	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2986
2987	/*
2988	 * In case the time delta is larger than the 27 bits for it
2989	 * in the header, we need to add a timestamp. If another
2990	 * event comes in when trying to discard this one to increase
2991	 * the length, then the timestamp will be added in the allocated
2992	 * space of this event. If length is bigger than the size needed
2993	 * for the TIME_EXTEND, then padding has to be used. The events
2994	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2995	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2996	 * As length is a multiple of 4, we only need to worry if it
2997	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2998	 */
2999	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3000		length += RB_ALIGNMENT;
3001
3002	return length;
3003}
3004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005static u64 rb_time_delta(struct ring_buffer_event *event)
3006{
3007	switch (event->type_len) {
3008	case RINGBUF_TYPE_PADDING:
3009		return 0;
3010
3011	case RINGBUF_TYPE_TIME_EXTEND:
3012		return rb_event_time_stamp(event);
3013
3014	case RINGBUF_TYPE_TIME_STAMP:
3015		return 0;
3016
3017	case RINGBUF_TYPE_DATA:
3018		return event->time_delta;
3019	default:
3020		return 0;
3021	}
3022}
3023
3024static inline int
3025rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3026		  struct ring_buffer_event *event)
3027{
3028	unsigned long new_index, old_index;
3029	struct buffer_page *bpage;
3030	unsigned long index;
3031	unsigned long addr;
3032	u64 write_stamp;
3033	u64 delta;
3034
3035	new_index = rb_event_index(event);
3036	old_index = new_index + rb_event_ts_length(event);
3037	addr = (unsigned long)event;
3038	addr &= PAGE_MASK;
3039
3040	bpage = READ_ONCE(cpu_buffer->tail_page);
3041
3042	delta = rb_time_delta(event);
3043
3044	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3045		return 0;
3046
3047	/* Make sure the write stamp is read before testing the location */
3048	barrier();
3049
3050	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3051		unsigned long write_mask =
3052			local_read(&bpage->write) & ~RB_WRITE_MASK;
3053		unsigned long event_length = rb_event_length(event);
3054
3055		/* Something came in, can't discard */
3056		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3057				       write_stamp, write_stamp - delta))
3058			return 0;
3059
3060		/*
3061		 * It's possible that the event time delta is zero
3062		 * (has the same time stamp as the previous event)
3063		 * in which case write_stamp and before_stamp could
3064		 * be the same. In such a case, force before_stamp
3065		 * to be different than write_stamp. It doesn't
3066		 * matter what it is, as long as its different.
3067		 */
3068		if (!delta)
3069			rb_time_set(&cpu_buffer->before_stamp, 0);
3070
3071		/*
3072		 * If an event were to come in now, it would see that the
3073		 * write_stamp and the before_stamp are different, and assume
3074		 * that this event just added itself before updating
3075		 * the write stamp. The interrupting event will fix the
3076		 * write stamp for us, and use the before stamp as its delta.
3077		 */
3078
3079		/*
3080		 * This is on the tail page. It is possible that
3081		 * a write could come in and move the tail page
3082		 * and write to the next page. That is fine
3083		 * because we just shorten what is on this page.
3084		 */
3085		old_index += write_mask;
3086		new_index += write_mask;
3087		index = local_cmpxchg(&bpage->write, old_index, new_index);
3088		if (index == old_index) {
3089			/* update counters */
3090			local_sub(event_length, &cpu_buffer->entries_bytes);
3091			return 1;
3092		}
3093	}
3094
3095	/* could not discard */
3096	return 0;
3097}
3098
3099static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3100{
3101	local_inc(&cpu_buffer->committing);
3102	local_inc(&cpu_buffer->commits);
3103}
3104
3105static __always_inline void
3106rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3107{
3108	unsigned long max_count;
3109
3110	/*
3111	 * We only race with interrupts and NMIs on this CPU.
3112	 * If we own the commit event, then we can commit
3113	 * all others that interrupted us, since the interruptions
3114	 * are in stack format (they finish before they come
3115	 * back to us). This allows us to do a simple loop to
3116	 * assign the commit to the tail.
3117	 */
3118 again:
3119	max_count = cpu_buffer->nr_pages * 100;
3120
3121	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3122		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3123			return;
3124		if (RB_WARN_ON(cpu_buffer,
3125			       rb_is_reader_page(cpu_buffer->tail_page)))
3126			return;
3127		local_set(&cpu_buffer->commit_page->page->commit,
3128			  rb_page_write(cpu_buffer->commit_page));
3129		rb_inc_page(&cpu_buffer->commit_page);
3130		/* add barrier to keep gcc from optimizing too much */
3131		barrier();
3132	}
3133	while (rb_commit_index(cpu_buffer) !=
3134	       rb_page_write(cpu_buffer->commit_page)) {
3135
3136		local_set(&cpu_buffer->commit_page->page->commit,
3137			  rb_page_write(cpu_buffer->commit_page));
3138		RB_WARN_ON(cpu_buffer,
3139			   local_read(&cpu_buffer->commit_page->page->commit) &
3140			   ~RB_WRITE_MASK);
3141		barrier();
3142	}
3143
3144	/* again, keep gcc from optimizing */
3145	barrier();
3146
3147	/*
3148	 * If an interrupt came in just after the first while loop
3149	 * and pushed the tail page forward, we will be left with
3150	 * a dangling commit that will never go forward.
3151	 */
3152	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3153		goto again;
3154}
3155
3156static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3157{
3158	unsigned long commits;
3159
3160	if (RB_WARN_ON(cpu_buffer,
3161		       !local_read(&cpu_buffer->committing)))
3162		return;
3163
3164 again:
3165	commits = local_read(&cpu_buffer->commits);
3166	/* synchronize with interrupts */
3167	barrier();
3168	if (local_read(&cpu_buffer->committing) == 1)
3169		rb_set_commit_to_write(cpu_buffer);
3170
3171	local_dec(&cpu_buffer->committing);
3172
3173	/* synchronize with interrupts */
3174	barrier();
3175
3176	/*
3177	 * Need to account for interrupts coming in between the
3178	 * updating of the commit page and the clearing of the
3179	 * committing counter.
3180	 */
3181	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3182	    !local_read(&cpu_buffer->committing)) {
3183		local_inc(&cpu_buffer->committing);
3184		goto again;
3185	}
3186}
3187
3188static inline void rb_event_discard(struct ring_buffer_event *event)
3189{
3190	if (extended_time(event))
3191		event = skip_time_extend(event);
3192
3193	/* array[0] holds the actual length for the discarded event */
3194	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3195	event->type_len = RINGBUF_TYPE_PADDING;
3196	/* time delta must be non zero */
3197	if (!event->time_delta)
3198		event->time_delta = 1;
3199}
3200
3201static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
 
3202{
3203	local_inc(&cpu_buffer->entries);
3204	rb_end_commit(cpu_buffer);
3205}
3206
3207static __always_inline void
3208rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3209{
 
 
 
 
3210	if (buffer->irq_work.waiters_pending) {
3211		buffer->irq_work.waiters_pending = false;
3212		/* irq_work_queue() supplies it's own memory barriers */
3213		irq_work_queue(&buffer->irq_work.work);
3214	}
3215
3216	if (cpu_buffer->irq_work.waiters_pending) {
3217		cpu_buffer->irq_work.waiters_pending = false;
3218		/* irq_work_queue() supplies it's own memory barriers */
3219		irq_work_queue(&cpu_buffer->irq_work.work);
3220	}
3221
3222	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3223		return;
3224
3225	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3226		return;
3227
3228	if (!cpu_buffer->irq_work.full_waiters_pending)
3229		return;
3230
3231	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3232
3233	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
 
 
 
3234		return;
3235
3236	cpu_buffer->irq_work.wakeup_full = true;
3237	cpu_buffer->irq_work.full_waiters_pending = false;
3238	/* irq_work_queue() supplies it's own memory barriers */
3239	irq_work_queue(&cpu_buffer->irq_work.work);
3240}
3241
3242#ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3243# define do_ring_buffer_record_recursion()	\
3244	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3245#else
3246# define do_ring_buffer_record_recursion() do { } while (0)
3247#endif
3248
3249/*
3250 * The lock and unlock are done within a preempt disable section.
3251 * The current_context per_cpu variable can only be modified
3252 * by the current task between lock and unlock. But it can
3253 * be modified more than once via an interrupt. To pass this
3254 * information from the lock to the unlock without having to
3255 * access the 'in_interrupt()' functions again (which do show
3256 * a bit of overhead in something as critical as function tracing,
3257 * we use a bitmask trick.
3258 *
3259 *  bit 1 =  NMI context
3260 *  bit 2 =  IRQ context
3261 *  bit 3 =  SoftIRQ context
3262 *  bit 4 =  normal context.
3263 *
3264 * This works because this is the order of contexts that can
3265 * preempt other contexts. A SoftIRQ never preempts an IRQ
3266 * context.
3267 *
3268 * When the context is determined, the corresponding bit is
3269 * checked and set (if it was set, then a recursion of that context
3270 * happened).
3271 *
3272 * On unlock, we need to clear this bit. To do so, just subtract
3273 * 1 from the current_context and AND it to itself.
3274 *
3275 * (binary)
3276 *  101 - 1 = 100
3277 *  101 & 100 = 100 (clearing bit zero)
3278 *
3279 *  1010 - 1 = 1001
3280 *  1010 & 1001 = 1000 (clearing bit 1)
3281 *
3282 * The least significant bit can be cleared this way, and it
3283 * just so happens that it is the same bit corresponding to
3284 * the current context.
3285 *
3286 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3287 * is set when a recursion is detected at the current context, and if
3288 * the TRANSITION bit is already set, it will fail the recursion.
3289 * This is needed because there's a lag between the changing of
3290 * interrupt context and updating the preempt count. In this case,
3291 * a false positive will be found. To handle this, one extra recursion
3292 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3293 * bit is already set, then it is considered a recursion and the function
3294 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3295 *
3296 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3297 * to be cleared. Even if it wasn't the context that set it. That is,
3298 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3299 * is called before preempt_count() is updated, since the check will
3300 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3301 * NMI then comes in, it will set the NMI bit, but when the NMI code
3302 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3303 * and leave the NMI bit set. But this is fine, because the interrupt
3304 * code that set the TRANSITION bit will then clear the NMI bit when it
3305 * calls trace_recursive_unlock(). If another NMI comes in, it will
3306 * set the TRANSITION bit and continue.
3307 *
3308 * Note: The TRANSITION bit only handles a single transition between context.
3309 */
3310
3311static __always_inline int
3312trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3313{
3314	unsigned int val = cpu_buffer->current_context;
3315	int bit = interrupt_context_level();
 
3316
3317	bit = RB_CTX_NORMAL - bit;
 
 
 
 
3318
3319	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3320		/*
3321		 * It is possible that this was called by transitioning
3322		 * between interrupt context, and preempt_count() has not
3323		 * been updated yet. In this case, use the TRANSITION bit.
3324		 */
3325		bit = RB_CTX_TRANSITION;
3326		if (val & (1 << (bit + cpu_buffer->nest))) {
3327			do_ring_buffer_record_recursion();
3328			return 1;
3329		}
3330	}
3331
3332	val |= (1 << (bit + cpu_buffer->nest));
3333	cpu_buffer->current_context = val;
3334
3335	return 0;
3336}
3337
3338static __always_inline void
3339trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3340{
3341	cpu_buffer->current_context &=
3342		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3343}
3344
3345/* The recursive locking above uses 5 bits */
3346#define NESTED_BITS 5
3347
3348/**
3349 * ring_buffer_nest_start - Allow to trace while nested
3350 * @buffer: The ring buffer to modify
3351 *
3352 * The ring buffer has a safety mechanism to prevent recursion.
3353 * But there may be a case where a trace needs to be done while
3354 * tracing something else. In this case, calling this function
3355 * will allow this function to nest within a currently active
3356 * ring_buffer_lock_reserve().
3357 *
3358 * Call this function before calling another ring_buffer_lock_reserve() and
3359 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3360 */
3361void ring_buffer_nest_start(struct trace_buffer *buffer)
3362{
3363	struct ring_buffer_per_cpu *cpu_buffer;
3364	int cpu;
3365
3366	/* Enabled by ring_buffer_nest_end() */
3367	preempt_disable_notrace();
3368	cpu = raw_smp_processor_id();
3369	cpu_buffer = buffer->buffers[cpu];
3370	/* This is the shift value for the above recursive locking */
3371	cpu_buffer->nest += NESTED_BITS;
3372}
3373
3374/**
3375 * ring_buffer_nest_end - Allow to trace while nested
3376 * @buffer: The ring buffer to modify
3377 *
3378 * Must be called after ring_buffer_nest_start() and after the
3379 * ring_buffer_unlock_commit().
3380 */
3381void ring_buffer_nest_end(struct trace_buffer *buffer)
3382{
3383	struct ring_buffer_per_cpu *cpu_buffer;
3384	int cpu;
3385
3386	/* disabled by ring_buffer_nest_start() */
3387	cpu = raw_smp_processor_id();
3388	cpu_buffer = buffer->buffers[cpu];
3389	/* This is the shift value for the above recursive locking */
3390	cpu_buffer->nest -= NESTED_BITS;
3391	preempt_enable_notrace();
3392}
3393
3394/**
3395 * ring_buffer_unlock_commit - commit a reserved
3396 * @buffer: The buffer to commit to
3397 * @event: The event pointer to commit.
3398 *
3399 * This commits the data to the ring buffer, and releases any locks held.
3400 *
3401 * Must be paired with ring_buffer_lock_reserve.
3402 */
3403int ring_buffer_unlock_commit(struct trace_buffer *buffer)
 
3404{
3405	struct ring_buffer_per_cpu *cpu_buffer;
3406	int cpu = raw_smp_processor_id();
3407
3408	cpu_buffer = buffer->buffers[cpu];
3409
3410	rb_commit(cpu_buffer);
3411
3412	rb_wakeups(buffer, cpu_buffer);
3413
3414	trace_recursive_unlock(cpu_buffer);
3415
3416	preempt_enable_notrace();
3417
3418	return 0;
3419}
3420EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3421
3422/* Special value to validate all deltas on a page. */
3423#define CHECK_FULL_PAGE		1L
3424
3425#ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3426static void dump_buffer_page(struct buffer_data_page *bpage,
3427			     struct rb_event_info *info,
3428			     unsigned long tail)
3429{
3430	struct ring_buffer_event *event;
3431	u64 ts, delta;
3432	int e;
3433
3434	ts = bpage->time_stamp;
3435	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3436
3437	for (e = 0; e < tail; e += rb_event_length(event)) {
3438
3439		event = (struct ring_buffer_event *)(bpage->data + e);
3440
3441		switch (event->type_len) {
3442
3443		case RINGBUF_TYPE_TIME_EXTEND:
3444			delta = rb_event_time_stamp(event);
3445			ts += delta;
3446			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3447			break;
3448
3449		case RINGBUF_TYPE_TIME_STAMP:
3450			delta = rb_event_time_stamp(event);
3451			ts = rb_fix_abs_ts(delta, ts);
3452			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3453			break;
3454
3455		case RINGBUF_TYPE_PADDING:
3456			ts += event->time_delta;
3457			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3458			break;
3459
3460		case RINGBUF_TYPE_DATA:
3461			ts += event->time_delta;
3462			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3463			break;
3464
3465		default:
3466			break;
3467		}
3468	}
3469}
3470
3471static DEFINE_PER_CPU(atomic_t, checking);
3472static atomic_t ts_dump;
3473
3474/*
3475 * Check if the current event time stamp matches the deltas on
3476 * the buffer page.
3477 */
3478static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3479			 struct rb_event_info *info,
3480			 unsigned long tail)
3481{
3482	struct ring_buffer_event *event;
3483	struct buffer_data_page *bpage;
3484	u64 ts, delta;
3485	bool full = false;
3486	int e;
3487
3488	bpage = info->tail_page->page;
3489
3490	if (tail == CHECK_FULL_PAGE) {
3491		full = true;
3492		tail = local_read(&bpage->commit);
3493	} else if (info->add_timestamp &
3494		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3495		/* Ignore events with absolute time stamps */
3496		return;
3497	}
3498
3499	/*
3500	 * Do not check the first event (skip possible extends too).
3501	 * Also do not check if previous events have not been committed.
3502	 */
3503	if (tail <= 8 || tail > local_read(&bpage->commit))
3504		return;
3505
3506	/*
3507	 * If this interrupted another event, 
3508	 */
3509	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3510		goto out;
3511
3512	ts = bpage->time_stamp;
3513
3514	for (e = 0; e < tail; e += rb_event_length(event)) {
3515
3516		event = (struct ring_buffer_event *)(bpage->data + e);
3517
3518		switch (event->type_len) {
3519
3520		case RINGBUF_TYPE_TIME_EXTEND:
3521			delta = rb_event_time_stamp(event);
3522			ts += delta;
3523			break;
3524
3525		case RINGBUF_TYPE_TIME_STAMP:
3526			delta = rb_event_time_stamp(event);
3527			ts = rb_fix_abs_ts(delta, ts);
3528			break;
3529
3530		case RINGBUF_TYPE_PADDING:
3531			if (event->time_delta == 1)
3532				break;
3533			fallthrough;
3534		case RINGBUF_TYPE_DATA:
3535			ts += event->time_delta;
3536			break;
3537
3538		default:
3539			RB_WARN_ON(cpu_buffer, 1);
3540		}
3541	}
3542	if ((full && ts > info->ts) ||
3543	    (!full && ts + info->delta != info->ts)) {
3544		/* If another report is happening, ignore this one */
3545		if (atomic_inc_return(&ts_dump) != 1) {
3546			atomic_dec(&ts_dump);
3547			goto out;
3548		}
3549		atomic_inc(&cpu_buffer->record_disabled);
3550		/* There's some cases in boot up that this can happen */
3551		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3552		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3553			cpu_buffer->cpu,
3554			ts + info->delta, info->ts, info->delta,
3555			info->before, info->after,
3556			full ? " (full)" : "");
3557		dump_buffer_page(bpage, info, tail);
3558		atomic_dec(&ts_dump);
3559		/* Do not re-enable checking */
3560		return;
3561	}
3562out:
3563	atomic_dec(this_cpu_ptr(&checking));
3564}
3565#else
3566static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3567			 struct rb_event_info *info,
3568			 unsigned long tail)
3569{
3570}
3571#endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3572
3573static struct ring_buffer_event *
3574__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3575		  struct rb_event_info *info)
3576{
3577	struct ring_buffer_event *event;
3578	struct buffer_page *tail_page;
3579	unsigned long tail, write, w;
3580	bool a_ok;
3581	bool b_ok;
3582
3583	/* Don't let the compiler play games with cpu_buffer->tail_page */
3584	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3585
3586 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3587	barrier();
3588	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3589	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3590	barrier();
3591	info->ts = rb_time_stamp(cpu_buffer->buffer);
3592
3593	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3594		info->delta = info->ts;
3595	} else {
3596		/*
3597		 * If interrupting an event time update, we may need an
3598		 * absolute timestamp.
3599		 * Don't bother if this is the start of a new page (w == 0).
3600		 */
3601		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3602			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3603			info->length += RB_LEN_TIME_EXTEND;
3604		} else {
3605			info->delta = info->ts - info->after;
3606			if (unlikely(test_time_stamp(info->delta))) {
3607				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3608				info->length += RB_LEN_TIME_EXTEND;
3609			}
3610		}
3611	}
3612
3613 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3614
3615 /*C*/	write = local_add_return(info->length, &tail_page->write);
3616
3617	/* set write to only the index of the write */
3618	write &= RB_WRITE_MASK;
3619
3620	tail = write - info->length;
3621
3622	/* See if we shot pass the end of this buffer page */
3623	if (unlikely(write > BUF_PAGE_SIZE)) {
3624		/* before and after may now different, fix it up*/
3625		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3626		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3627		if (a_ok && b_ok && info->before != info->after)
3628			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3629					      info->before, info->after);
3630		if (a_ok && b_ok)
3631			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3632		return rb_move_tail(cpu_buffer, tail, info);
3633	}
3634
3635	if (likely(tail == w)) {
3636		u64 save_before;
3637		bool s_ok;
3638
3639		/* Nothing interrupted us between A and C */
3640 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3641		barrier();
3642 /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3643		RB_WARN_ON(cpu_buffer, !s_ok);
3644		if (likely(!(info->add_timestamp &
3645			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3646			/* This did not interrupt any time update */
3647			info->delta = info->ts - info->after;
3648		else
3649			/* Just use full timestamp for interrupting event */
3650			info->delta = info->ts;
3651		barrier();
3652		check_buffer(cpu_buffer, info, tail);
3653		if (unlikely(info->ts != save_before)) {
3654			/* SLOW PATH - Interrupted between C and E */
3655
3656			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3657			RB_WARN_ON(cpu_buffer, !a_ok);
3658
3659			/* Write stamp must only go forward */
3660			if (save_before > info->after) {
3661				/*
3662				 * We do not care about the result, only that
3663				 * it gets updated atomically.
3664				 */
3665				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3666						      info->after, save_before);
3667			}
3668		}
3669	} else {
3670		u64 ts;
3671		/* SLOW PATH - Interrupted between A and C */
3672		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3673		/* Was interrupted before here, write_stamp must be valid */
3674		RB_WARN_ON(cpu_buffer, !a_ok);
3675		ts = rb_time_stamp(cpu_buffer->buffer);
3676		barrier();
3677 /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3678		    info->after < ts &&
3679		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3680				    info->after, ts)) {
3681			/* Nothing came after this event between C and E */
3682			info->delta = ts - info->after;
 
 
 
3683		} else {
3684			/*
3685			 * Interrupted between C and E:
3686			 * Lost the previous events time stamp. Just set the
3687			 * delta to zero, and this will be the same time as
3688			 * the event this event interrupted. And the events that
3689			 * came after this will still be correct (as they would
3690			 * have built their delta on the previous event.
3691			 */
3692			info->delta = 0;
3693		}
3694		info->ts = ts;
3695		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3696	}
3697
3698	/*
3699	 * If this is the first commit on the page, then it has the same
3700	 * timestamp as the page itself.
3701	 */
3702	if (unlikely(!tail && !(info->add_timestamp &
3703				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3704		info->delta = 0;
3705
3706	/* We reserved something on the buffer */
3707
3708	event = __rb_page_index(tail_page, tail);
3709	rb_update_event(cpu_buffer, event, info);
3710
3711	local_inc(&tail_page->entries);
3712
3713	/*
3714	 * If this is the first commit on the page, then update
3715	 * its timestamp.
3716	 */
3717	if (unlikely(!tail))
3718		tail_page->page->time_stamp = info->ts;
3719
3720	/* account for these added bytes */
3721	local_add(info->length, &cpu_buffer->entries_bytes);
3722
3723	return event;
3724}
3725
3726static __always_inline struct ring_buffer_event *
3727rb_reserve_next_event(struct trace_buffer *buffer,
3728		      struct ring_buffer_per_cpu *cpu_buffer,
3729		      unsigned long length)
3730{
3731	struct ring_buffer_event *event;
3732	struct rb_event_info info;
3733	int nr_loops = 0;
3734	int add_ts_default;
3735
3736	rb_start_commit(cpu_buffer);
3737	/* The commit page can not change after this */
3738
3739#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3740	/*
3741	 * Due to the ability to swap a cpu buffer from a buffer
3742	 * it is possible it was swapped before we committed.
3743	 * (committing stops a swap). We check for it here and
3744	 * if it happened, we have to fail the write.
3745	 */
3746	barrier();
3747	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3748		local_dec(&cpu_buffer->committing);
3749		local_dec(&cpu_buffer->commits);
3750		return NULL;
3751	}
3752#endif
3753
3754	info.length = rb_calculate_event_length(length);
3755
3756	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3757		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3758		info.length += RB_LEN_TIME_EXTEND;
3759	} else {
3760		add_ts_default = RB_ADD_STAMP_NONE;
3761	}
3762
3763 again:
3764	info.add_timestamp = add_ts_default;
3765	info.delta = 0;
3766
3767	/*
3768	 * We allow for interrupts to reenter here and do a trace.
3769	 * If one does, it will cause this original code to loop
3770	 * back here. Even with heavy interrupts happening, this
3771	 * should only happen a few times in a row. If this happens
3772	 * 1000 times in a row, there must be either an interrupt
3773	 * storm or we have something buggy.
3774	 * Bail!
3775	 */
3776	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3777		goto out_fail;
3778
3779	event = __rb_reserve_next(cpu_buffer, &info);
3780
3781	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3782		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3783			info.length -= RB_LEN_TIME_EXTEND;
3784		goto again;
3785	}
3786
3787	if (likely(event))
3788		return event;
3789 out_fail:
3790	rb_end_commit(cpu_buffer);
3791	return NULL;
3792}
3793
3794/**
3795 * ring_buffer_lock_reserve - reserve a part of the buffer
3796 * @buffer: the ring buffer to reserve from
3797 * @length: the length of the data to reserve (excluding event header)
3798 *
3799 * Returns a reserved event on the ring buffer to copy directly to.
3800 * The user of this interface will need to get the body to write into
3801 * and can use the ring_buffer_event_data() interface.
3802 *
3803 * The length is the length of the data needed, not the event length
3804 * which also includes the event header.
3805 *
3806 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3807 * If NULL is returned, then nothing has been allocated or locked.
3808 */
3809struct ring_buffer_event *
3810ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3811{
3812	struct ring_buffer_per_cpu *cpu_buffer;
3813	struct ring_buffer_event *event;
3814	int cpu;
3815
3816	/* If we are tracing schedule, we don't want to recurse */
3817	preempt_disable_notrace();
3818
3819	if (unlikely(atomic_read(&buffer->record_disabled)))
3820		goto out;
3821
3822	cpu = raw_smp_processor_id();
3823
3824	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3825		goto out;
3826
3827	cpu_buffer = buffer->buffers[cpu];
3828
3829	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3830		goto out;
3831
3832	if (unlikely(length > BUF_MAX_DATA_SIZE))
3833		goto out;
3834
3835	if (unlikely(trace_recursive_lock(cpu_buffer)))
3836		goto out;
3837
3838	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3839	if (!event)
3840		goto out_unlock;
3841
3842	return event;
3843
3844 out_unlock:
3845	trace_recursive_unlock(cpu_buffer);
3846 out:
3847	preempt_enable_notrace();
3848	return NULL;
3849}
3850EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3851
3852/*
3853 * Decrement the entries to the page that an event is on.
3854 * The event does not even need to exist, only the pointer
3855 * to the page it is on. This may only be called before the commit
3856 * takes place.
3857 */
3858static inline void
3859rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3860		   struct ring_buffer_event *event)
3861{
3862	unsigned long addr = (unsigned long)event;
3863	struct buffer_page *bpage = cpu_buffer->commit_page;
3864	struct buffer_page *start;
3865
3866	addr &= PAGE_MASK;
3867
3868	/* Do the likely case first */
3869	if (likely(bpage->page == (void *)addr)) {
3870		local_dec(&bpage->entries);
3871		return;
3872	}
3873
3874	/*
3875	 * Because the commit page may be on the reader page we
3876	 * start with the next page and check the end loop there.
3877	 */
3878	rb_inc_page(&bpage);
3879	start = bpage;
3880	do {
3881		if (bpage->page == (void *)addr) {
3882			local_dec(&bpage->entries);
3883			return;
3884		}
3885		rb_inc_page(&bpage);
3886	} while (bpage != start);
3887
3888	/* commit not part of this buffer?? */
3889	RB_WARN_ON(cpu_buffer, 1);
3890}
3891
3892/**
3893 * ring_buffer_discard_commit - discard an event that has not been committed
3894 * @buffer: the ring buffer
3895 * @event: non committed event to discard
3896 *
3897 * Sometimes an event that is in the ring buffer needs to be ignored.
3898 * This function lets the user discard an event in the ring buffer
3899 * and then that event will not be read later.
3900 *
3901 * This function only works if it is called before the item has been
3902 * committed. It will try to free the event from the ring buffer
3903 * if another event has not been added behind it.
3904 *
3905 * If another event has been added behind it, it will set the event
3906 * up as discarded, and perform the commit.
3907 *
3908 * If this function is called, do not call ring_buffer_unlock_commit on
3909 * the event.
3910 */
3911void ring_buffer_discard_commit(struct trace_buffer *buffer,
3912				struct ring_buffer_event *event)
3913{
3914	struct ring_buffer_per_cpu *cpu_buffer;
3915	int cpu;
3916
3917	/* The event is discarded regardless */
3918	rb_event_discard(event);
3919
3920	cpu = smp_processor_id();
3921	cpu_buffer = buffer->buffers[cpu];
3922
3923	/*
3924	 * This must only be called if the event has not been
3925	 * committed yet. Thus we can assume that preemption
3926	 * is still disabled.
3927	 */
3928	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3929
3930	rb_decrement_entry(cpu_buffer, event);
3931	if (rb_try_to_discard(cpu_buffer, event))
3932		goto out;
3933
3934 out:
3935	rb_end_commit(cpu_buffer);
3936
3937	trace_recursive_unlock(cpu_buffer);
3938
3939	preempt_enable_notrace();
3940
3941}
3942EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3943
3944/**
3945 * ring_buffer_write - write data to the buffer without reserving
3946 * @buffer: The ring buffer to write to.
3947 * @length: The length of the data being written (excluding the event header)
3948 * @data: The data to write to the buffer.
3949 *
3950 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3951 * one function. If you already have the data to write to the buffer, it
3952 * may be easier to simply call this function.
3953 *
3954 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3955 * and not the length of the event which would hold the header.
3956 */
3957int ring_buffer_write(struct trace_buffer *buffer,
3958		      unsigned long length,
3959		      void *data)
3960{
3961	struct ring_buffer_per_cpu *cpu_buffer;
3962	struct ring_buffer_event *event;
3963	void *body;
3964	int ret = -EBUSY;
3965	int cpu;
3966
3967	preempt_disable_notrace();
3968
3969	if (atomic_read(&buffer->record_disabled))
3970		goto out;
3971
3972	cpu = raw_smp_processor_id();
3973
3974	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3975		goto out;
3976
3977	cpu_buffer = buffer->buffers[cpu];
3978
3979	if (atomic_read(&cpu_buffer->record_disabled))
3980		goto out;
3981
3982	if (length > BUF_MAX_DATA_SIZE)
3983		goto out;
3984
3985	if (unlikely(trace_recursive_lock(cpu_buffer)))
3986		goto out;
3987
3988	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3989	if (!event)
3990		goto out_unlock;
3991
3992	body = rb_event_data(event);
3993
3994	memcpy(body, data, length);
3995
3996	rb_commit(cpu_buffer);
3997
3998	rb_wakeups(buffer, cpu_buffer);
3999
4000	ret = 0;
4001
4002 out_unlock:
4003	trace_recursive_unlock(cpu_buffer);
4004
4005 out:
4006	preempt_enable_notrace();
4007
4008	return ret;
4009}
4010EXPORT_SYMBOL_GPL(ring_buffer_write);
4011
4012static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4013{
4014	struct buffer_page *reader = cpu_buffer->reader_page;
4015	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4016	struct buffer_page *commit = cpu_buffer->commit_page;
4017
4018	/* In case of error, head will be NULL */
4019	if (unlikely(!head))
4020		return true;
4021
4022	/* Reader should exhaust content in reader page */
4023	if (reader->read != rb_page_commit(reader))
4024		return false;
4025
4026	/*
4027	 * If writers are committing on the reader page, knowing all
4028	 * committed content has been read, the ring buffer is empty.
4029	 */
4030	if (commit == reader)
4031		return true;
4032
4033	/*
4034	 * If writers are committing on a page other than reader page
4035	 * and head page, there should always be content to read.
4036	 */
4037	if (commit != head)
4038		return false;
4039
4040	/*
4041	 * Writers are committing on the head page, we just need
4042	 * to care about there're committed data, and the reader will
4043	 * swap reader page with head page when it is to read data.
4044	 */
4045	return rb_page_commit(commit) == 0;
4046}
4047
4048/**
4049 * ring_buffer_record_disable - stop all writes into the buffer
4050 * @buffer: The ring buffer to stop writes to.
4051 *
4052 * This prevents all writes to the buffer. Any attempt to write
4053 * to the buffer after this will fail and return NULL.
4054 *
4055 * The caller should call synchronize_rcu() after this.
4056 */
4057void ring_buffer_record_disable(struct trace_buffer *buffer)
4058{
4059	atomic_inc(&buffer->record_disabled);
4060}
4061EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4062
4063/**
4064 * ring_buffer_record_enable - enable writes to the buffer
4065 * @buffer: The ring buffer to enable writes
4066 *
4067 * Note, multiple disables will need the same number of enables
4068 * to truly enable the writing (much like preempt_disable).
4069 */
4070void ring_buffer_record_enable(struct trace_buffer *buffer)
4071{
4072	atomic_dec(&buffer->record_disabled);
4073}
4074EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4075
4076/**
4077 * ring_buffer_record_off - stop all writes into the buffer
4078 * @buffer: The ring buffer to stop writes to.
4079 *
4080 * This prevents all writes to the buffer. Any attempt to write
4081 * to the buffer after this will fail and return NULL.
4082 *
4083 * This is different than ring_buffer_record_disable() as
4084 * it works like an on/off switch, where as the disable() version
4085 * must be paired with a enable().
4086 */
4087void ring_buffer_record_off(struct trace_buffer *buffer)
4088{
4089	unsigned int rd;
4090	unsigned int new_rd;
4091
4092	do {
4093		rd = atomic_read(&buffer->record_disabled);
4094		new_rd = rd | RB_BUFFER_OFF;
4095	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4096}
4097EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4098
4099/**
4100 * ring_buffer_record_on - restart writes into the buffer
4101 * @buffer: The ring buffer to start writes to.
4102 *
4103 * This enables all writes to the buffer that was disabled by
4104 * ring_buffer_record_off().
4105 *
4106 * This is different than ring_buffer_record_enable() as
4107 * it works like an on/off switch, where as the enable() version
4108 * must be paired with a disable().
4109 */
4110void ring_buffer_record_on(struct trace_buffer *buffer)
4111{
4112	unsigned int rd;
4113	unsigned int new_rd;
4114
4115	do {
4116		rd = atomic_read(&buffer->record_disabled);
4117		new_rd = rd & ~RB_BUFFER_OFF;
4118	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
4119}
4120EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4121
4122/**
4123 * ring_buffer_record_is_on - return true if the ring buffer can write
4124 * @buffer: The ring buffer to see if write is enabled
4125 *
4126 * Returns true if the ring buffer is in a state that it accepts writes.
4127 */
4128bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4129{
4130	return !atomic_read(&buffer->record_disabled);
4131}
4132
4133/**
4134 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4135 * @buffer: The ring buffer to see if write is set enabled
4136 *
4137 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4138 * Note that this does NOT mean it is in a writable state.
4139 *
4140 * It may return true when the ring buffer has been disabled by
4141 * ring_buffer_record_disable(), as that is a temporary disabling of
4142 * the ring buffer.
4143 */
4144bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4145{
4146	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4147}
4148
4149/**
4150 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4151 * @buffer: The ring buffer to stop writes to.
4152 * @cpu: The CPU buffer to stop
4153 *
4154 * This prevents all writes to the buffer. Any attempt to write
4155 * to the buffer after this will fail and return NULL.
4156 *
4157 * The caller should call synchronize_rcu() after this.
4158 */
4159void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4160{
4161	struct ring_buffer_per_cpu *cpu_buffer;
4162
4163	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4164		return;
4165
4166	cpu_buffer = buffer->buffers[cpu];
4167	atomic_inc(&cpu_buffer->record_disabled);
4168}
4169EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4170
4171/**
4172 * ring_buffer_record_enable_cpu - enable writes to the buffer
4173 * @buffer: The ring buffer to enable writes
4174 * @cpu: The CPU to enable.
4175 *
4176 * Note, multiple disables will need the same number of enables
4177 * to truly enable the writing (much like preempt_disable).
4178 */
4179void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4180{
4181	struct ring_buffer_per_cpu *cpu_buffer;
4182
4183	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4184		return;
4185
4186	cpu_buffer = buffer->buffers[cpu];
4187	atomic_dec(&cpu_buffer->record_disabled);
4188}
4189EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4190
4191/*
4192 * The total entries in the ring buffer is the running counter
4193 * of entries entered into the ring buffer, minus the sum of
4194 * the entries read from the ring buffer and the number of
4195 * entries that were overwritten.
4196 */
4197static inline unsigned long
4198rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4199{
4200	return local_read(&cpu_buffer->entries) -
4201		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4202}
4203
4204/**
4205 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4206 * @buffer: The ring buffer
4207 * @cpu: The per CPU buffer to read from.
4208 */
4209u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4210{
4211	unsigned long flags;
4212	struct ring_buffer_per_cpu *cpu_buffer;
4213	struct buffer_page *bpage;
4214	u64 ret = 0;
4215
4216	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217		return 0;
4218
4219	cpu_buffer = buffer->buffers[cpu];
4220	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221	/*
4222	 * if the tail is on reader_page, oldest time stamp is on the reader
4223	 * page
4224	 */
4225	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4226		bpage = cpu_buffer->reader_page;
4227	else
4228		bpage = rb_set_head_page(cpu_buffer);
4229	if (bpage)
4230		ret = bpage->page->time_stamp;
4231	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4232
4233	return ret;
4234}
4235EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4236
4237/**
4238 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4239 * @buffer: The ring buffer
4240 * @cpu: The per CPU buffer to read from.
4241 */
4242unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4243{
4244	struct ring_buffer_per_cpu *cpu_buffer;
4245	unsigned long ret;
4246
4247	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4248		return 0;
4249
4250	cpu_buffer = buffer->buffers[cpu];
4251	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4252
4253	return ret;
4254}
4255EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4256
4257/**
4258 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4259 * @buffer: The ring buffer
4260 * @cpu: The per CPU buffer to get the entries from.
4261 */
4262unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4263{
4264	struct ring_buffer_per_cpu *cpu_buffer;
4265
4266	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4267		return 0;
4268
4269	cpu_buffer = buffer->buffers[cpu];
4270
4271	return rb_num_of_entries(cpu_buffer);
4272}
4273EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4274
4275/**
4276 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4277 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4278 * @buffer: The ring buffer
4279 * @cpu: The per CPU buffer to get the number of overruns from
4280 */
4281unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4282{
4283	struct ring_buffer_per_cpu *cpu_buffer;
4284	unsigned long ret;
4285
4286	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4287		return 0;
4288
4289	cpu_buffer = buffer->buffers[cpu];
4290	ret = local_read(&cpu_buffer->overrun);
4291
4292	return ret;
4293}
4294EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4295
4296/**
4297 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4298 * commits failing due to the buffer wrapping around while there are uncommitted
4299 * events, such as during an interrupt storm.
4300 * @buffer: The ring buffer
4301 * @cpu: The per CPU buffer to get the number of overruns from
4302 */
4303unsigned long
4304ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4305{
4306	struct ring_buffer_per_cpu *cpu_buffer;
4307	unsigned long ret;
4308
4309	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4310		return 0;
4311
4312	cpu_buffer = buffer->buffers[cpu];
4313	ret = local_read(&cpu_buffer->commit_overrun);
4314
4315	return ret;
4316}
4317EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4318
4319/**
4320 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4321 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4322 * @buffer: The ring buffer
4323 * @cpu: The per CPU buffer to get the number of overruns from
4324 */
4325unsigned long
4326ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4327{
4328	struct ring_buffer_per_cpu *cpu_buffer;
4329	unsigned long ret;
4330
4331	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4332		return 0;
4333
4334	cpu_buffer = buffer->buffers[cpu];
4335	ret = local_read(&cpu_buffer->dropped_events);
4336
4337	return ret;
4338}
4339EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4340
4341/**
4342 * ring_buffer_read_events_cpu - get the number of events successfully read
4343 * @buffer: The ring buffer
4344 * @cpu: The per CPU buffer to get the number of events read
4345 */
4346unsigned long
4347ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4348{
4349	struct ring_buffer_per_cpu *cpu_buffer;
4350
4351	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4352		return 0;
4353
4354	cpu_buffer = buffer->buffers[cpu];
4355	return cpu_buffer->read;
4356}
4357EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4358
4359/**
4360 * ring_buffer_entries - get the number of entries in a buffer
4361 * @buffer: The ring buffer
4362 *
4363 * Returns the total number of entries in the ring buffer
4364 * (all CPU entries)
4365 */
4366unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4367{
4368	struct ring_buffer_per_cpu *cpu_buffer;
4369	unsigned long entries = 0;
4370	int cpu;
4371
4372	/* if you care about this being correct, lock the buffer */
4373	for_each_buffer_cpu(buffer, cpu) {
4374		cpu_buffer = buffer->buffers[cpu];
4375		entries += rb_num_of_entries(cpu_buffer);
4376	}
4377
4378	return entries;
4379}
4380EXPORT_SYMBOL_GPL(ring_buffer_entries);
4381
4382/**
4383 * ring_buffer_overruns - get the number of overruns in buffer
4384 * @buffer: The ring buffer
4385 *
4386 * Returns the total number of overruns in the ring buffer
4387 * (all CPU entries)
4388 */
4389unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4390{
4391	struct ring_buffer_per_cpu *cpu_buffer;
4392	unsigned long overruns = 0;
4393	int cpu;
4394
4395	/* if you care about this being correct, lock the buffer */
4396	for_each_buffer_cpu(buffer, cpu) {
4397		cpu_buffer = buffer->buffers[cpu];
4398		overruns += local_read(&cpu_buffer->overrun);
4399	}
4400
4401	return overruns;
4402}
4403EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4404
4405static void rb_iter_reset(struct ring_buffer_iter *iter)
4406{
4407	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4408
4409	/* Iterator usage is expected to have record disabled */
4410	iter->head_page = cpu_buffer->reader_page;
4411	iter->head = cpu_buffer->reader_page->read;
4412	iter->next_event = iter->head;
4413
4414	iter->cache_reader_page = iter->head_page;
4415	iter->cache_read = cpu_buffer->read;
4416
4417	if (iter->head) {
4418		iter->read_stamp = cpu_buffer->read_stamp;
4419		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4420	} else {
4421		iter->read_stamp = iter->head_page->page->time_stamp;
4422		iter->page_stamp = iter->read_stamp;
4423	}
4424}
4425
4426/**
4427 * ring_buffer_iter_reset - reset an iterator
4428 * @iter: The iterator to reset
4429 *
4430 * Resets the iterator, so that it will start from the beginning
4431 * again.
4432 */
4433void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4434{
4435	struct ring_buffer_per_cpu *cpu_buffer;
4436	unsigned long flags;
4437
4438	if (!iter)
4439		return;
4440
4441	cpu_buffer = iter->cpu_buffer;
4442
4443	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4444	rb_iter_reset(iter);
4445	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4446}
4447EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4448
4449/**
4450 * ring_buffer_iter_empty - check if an iterator has no more to read
4451 * @iter: The iterator to check
4452 */
4453int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4454{
4455	struct ring_buffer_per_cpu *cpu_buffer;
4456	struct buffer_page *reader;
4457	struct buffer_page *head_page;
4458	struct buffer_page *commit_page;
4459	struct buffer_page *curr_commit_page;
4460	unsigned commit;
4461	u64 curr_commit_ts;
4462	u64 commit_ts;
4463
4464	cpu_buffer = iter->cpu_buffer;
4465	reader = cpu_buffer->reader_page;
4466	head_page = cpu_buffer->head_page;
4467	commit_page = cpu_buffer->commit_page;
4468	commit_ts = commit_page->page->time_stamp;
4469
4470	/*
4471	 * When the writer goes across pages, it issues a cmpxchg which
4472	 * is a mb(), which will synchronize with the rmb here.
4473	 * (see rb_tail_page_update())
4474	 */
4475	smp_rmb();
4476	commit = rb_page_commit(commit_page);
4477	/* We want to make sure that the commit page doesn't change */
4478	smp_rmb();
4479
4480	/* Make sure commit page didn't change */
4481	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4482	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4483
4484	/* If the commit page changed, then there's more data */
4485	if (curr_commit_page != commit_page ||
4486	    curr_commit_ts != commit_ts)
4487		return 0;
4488
4489	/* Still racy, as it may return a false positive, but that's OK */
4490	return ((iter->head_page == commit_page && iter->head >= commit) ||
4491		(iter->head_page == reader && commit_page == head_page &&
4492		 head_page->read == commit &&
4493		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4494}
4495EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4496
4497static void
4498rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4499		     struct ring_buffer_event *event)
4500{
4501	u64 delta;
4502
4503	switch (event->type_len) {
4504	case RINGBUF_TYPE_PADDING:
4505		return;
4506
4507	case RINGBUF_TYPE_TIME_EXTEND:
4508		delta = rb_event_time_stamp(event);
4509		cpu_buffer->read_stamp += delta;
4510		return;
4511
4512	case RINGBUF_TYPE_TIME_STAMP:
4513		delta = rb_event_time_stamp(event);
4514		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4515		cpu_buffer->read_stamp = delta;
4516		return;
4517
4518	case RINGBUF_TYPE_DATA:
4519		cpu_buffer->read_stamp += event->time_delta;
4520		return;
4521
4522	default:
4523		RB_WARN_ON(cpu_buffer, 1);
4524	}
4525	return;
4526}
4527
4528static void
4529rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4530			  struct ring_buffer_event *event)
4531{
4532	u64 delta;
4533
4534	switch (event->type_len) {
4535	case RINGBUF_TYPE_PADDING:
4536		return;
4537
4538	case RINGBUF_TYPE_TIME_EXTEND:
4539		delta = rb_event_time_stamp(event);
4540		iter->read_stamp += delta;
4541		return;
4542
4543	case RINGBUF_TYPE_TIME_STAMP:
4544		delta = rb_event_time_stamp(event);
4545		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4546		iter->read_stamp = delta;
4547		return;
4548
4549	case RINGBUF_TYPE_DATA:
4550		iter->read_stamp += event->time_delta;
4551		return;
4552
4553	default:
4554		RB_WARN_ON(iter->cpu_buffer, 1);
4555	}
4556	return;
4557}
4558
4559static struct buffer_page *
4560rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4561{
4562	struct buffer_page *reader = NULL;
4563	unsigned long overwrite;
4564	unsigned long flags;
4565	int nr_loops = 0;
4566	int ret;
4567
4568	local_irq_save(flags);
4569	arch_spin_lock(&cpu_buffer->lock);
4570
4571 again:
4572	/*
4573	 * This should normally only loop twice. But because the
4574	 * start of the reader inserts an empty page, it causes
4575	 * a case where we will loop three times. There should be no
4576	 * reason to loop four times (that I know of).
4577	 */
4578	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4579		reader = NULL;
4580		goto out;
4581	}
4582
4583	reader = cpu_buffer->reader_page;
4584
4585	/* If there's more to read, return this page */
4586	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4587		goto out;
4588
4589	/* Never should we have an index greater than the size */
4590	if (RB_WARN_ON(cpu_buffer,
4591		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4592		goto out;
4593
4594	/* check if we caught up to the tail */
4595	reader = NULL;
4596	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4597		goto out;
4598
4599	/* Don't bother swapping if the ring buffer is empty */
4600	if (rb_num_of_entries(cpu_buffer) == 0)
4601		goto out;
4602
4603	/*
4604	 * Reset the reader page to size zero.
4605	 */
4606	local_set(&cpu_buffer->reader_page->write, 0);
4607	local_set(&cpu_buffer->reader_page->entries, 0);
4608	local_set(&cpu_buffer->reader_page->page->commit, 0);
4609	cpu_buffer->reader_page->real_end = 0;
4610
4611 spin:
4612	/*
4613	 * Splice the empty reader page into the list around the head.
4614	 */
4615	reader = rb_set_head_page(cpu_buffer);
4616	if (!reader)
4617		goto out;
4618	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4619	cpu_buffer->reader_page->list.prev = reader->list.prev;
4620
4621	/*
4622	 * cpu_buffer->pages just needs to point to the buffer, it
4623	 *  has no specific buffer page to point to. Lets move it out
4624	 *  of our way so we don't accidentally swap it.
4625	 */
4626	cpu_buffer->pages = reader->list.prev;
4627
4628	/* The reader page will be pointing to the new head */
4629	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4630
4631	/*
4632	 * We want to make sure we read the overruns after we set up our
4633	 * pointers to the next object. The writer side does a
4634	 * cmpxchg to cross pages which acts as the mb on the writer
4635	 * side. Note, the reader will constantly fail the swap
4636	 * while the writer is updating the pointers, so this
4637	 * guarantees that the overwrite recorded here is the one we
4638	 * want to compare with the last_overrun.
4639	 */
4640	smp_mb();
4641	overwrite = local_read(&(cpu_buffer->overrun));
4642
4643	/*
4644	 * Here's the tricky part.
4645	 *
4646	 * We need to move the pointer past the header page.
4647	 * But we can only do that if a writer is not currently
4648	 * moving it. The page before the header page has the
4649	 * flag bit '1' set if it is pointing to the page we want.
4650	 * but if the writer is in the process of moving it
4651	 * than it will be '2' or already moved '0'.
4652	 */
4653
4654	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4655
4656	/*
4657	 * If we did not convert it, then we must try again.
4658	 */
4659	if (!ret)
4660		goto spin;
4661
4662	/*
4663	 * Yay! We succeeded in replacing the page.
4664	 *
4665	 * Now make the new head point back to the reader page.
4666	 */
4667	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4668	rb_inc_page(&cpu_buffer->head_page);
4669
4670	local_inc(&cpu_buffer->pages_read);
4671
4672	/* Finally update the reader page to the new head */
4673	cpu_buffer->reader_page = reader;
4674	cpu_buffer->reader_page->read = 0;
4675
4676	if (overwrite != cpu_buffer->last_overrun) {
4677		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4678		cpu_buffer->last_overrun = overwrite;
4679	}
4680
4681	goto again;
4682
4683 out:
4684	/* Update the read_stamp on the first event */
4685	if (reader && reader->read == 0)
4686		cpu_buffer->read_stamp = reader->page->time_stamp;
4687
4688	arch_spin_unlock(&cpu_buffer->lock);
4689	local_irq_restore(flags);
4690
4691	/*
4692	 * The writer has preempt disable, wait for it. But not forever
4693	 * Although, 1 second is pretty much "forever"
4694	 */
4695#define USECS_WAIT	1000000
4696        for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4697		/* If the write is past the end of page, a writer is still updating it */
4698		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4699			break;
4700
4701		udelay(1);
4702
4703		/* Get the latest version of the reader write value */
4704		smp_rmb();
4705	}
4706
4707	/* The writer is not moving forward? Something is wrong */
4708	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4709		reader = NULL;
4710
4711	/*
4712	 * Make sure we see any padding after the write update
4713	 * (see rb_reset_tail())
4714	 */
4715	smp_rmb();
4716
4717
4718	return reader;
4719}
4720
4721static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4722{
4723	struct ring_buffer_event *event;
4724	struct buffer_page *reader;
4725	unsigned length;
4726
4727	reader = rb_get_reader_page(cpu_buffer);
4728
4729	/* This function should not be called when buffer is empty */
4730	if (RB_WARN_ON(cpu_buffer, !reader))
4731		return;
4732
4733	event = rb_reader_event(cpu_buffer);
4734
4735	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4736		cpu_buffer->read++;
4737
4738	rb_update_read_stamp(cpu_buffer, event);
4739
4740	length = rb_event_length(event);
4741	cpu_buffer->reader_page->read += length;
4742}
4743
4744static void rb_advance_iter(struct ring_buffer_iter *iter)
4745{
4746	struct ring_buffer_per_cpu *cpu_buffer;
4747
4748	cpu_buffer = iter->cpu_buffer;
4749
4750	/* If head == next_event then we need to jump to the next event */
4751	if (iter->head == iter->next_event) {
4752		/* If the event gets overwritten again, there's nothing to do */
4753		if (rb_iter_head_event(iter) == NULL)
4754			return;
4755	}
4756
4757	iter->head = iter->next_event;
4758
4759	/*
4760	 * Check if we are at the end of the buffer.
4761	 */
4762	if (iter->next_event >= rb_page_size(iter->head_page)) {
4763		/* discarded commits can make the page empty */
4764		if (iter->head_page == cpu_buffer->commit_page)
4765			return;
4766		rb_inc_iter(iter);
4767		return;
4768	}
4769
4770	rb_update_iter_read_stamp(iter, iter->event);
4771}
4772
4773static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4774{
4775	return cpu_buffer->lost_events;
4776}
4777
4778static struct ring_buffer_event *
4779rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4780	       unsigned long *lost_events)
4781{
4782	struct ring_buffer_event *event;
4783	struct buffer_page *reader;
4784	int nr_loops = 0;
4785
4786	if (ts)
4787		*ts = 0;
4788 again:
4789	/*
4790	 * We repeat when a time extend is encountered.
4791	 * Since the time extend is always attached to a data event,
4792	 * we should never loop more than once.
4793	 * (We never hit the following condition more than twice).
4794	 */
4795	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4796		return NULL;
4797
4798	reader = rb_get_reader_page(cpu_buffer);
4799	if (!reader)
4800		return NULL;
4801
4802	event = rb_reader_event(cpu_buffer);
4803
4804	switch (event->type_len) {
4805	case RINGBUF_TYPE_PADDING:
4806		if (rb_null_event(event))
4807			RB_WARN_ON(cpu_buffer, 1);
4808		/*
4809		 * Because the writer could be discarding every
4810		 * event it creates (which would probably be bad)
4811		 * if we were to go back to "again" then we may never
4812		 * catch up, and will trigger the warn on, or lock
4813		 * the box. Return the padding, and we will release
4814		 * the current locks, and try again.
4815		 */
4816		return event;
4817
4818	case RINGBUF_TYPE_TIME_EXTEND:
4819		/* Internal data, OK to advance */
4820		rb_advance_reader(cpu_buffer);
4821		goto again;
4822
4823	case RINGBUF_TYPE_TIME_STAMP:
4824		if (ts) {
4825			*ts = rb_event_time_stamp(event);
4826			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4827			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4828							 cpu_buffer->cpu, ts);
4829		}
4830		/* Internal data, OK to advance */
4831		rb_advance_reader(cpu_buffer);
4832		goto again;
4833
4834	case RINGBUF_TYPE_DATA:
4835		if (ts && !(*ts)) {
4836			*ts = cpu_buffer->read_stamp + event->time_delta;
4837			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4838							 cpu_buffer->cpu, ts);
4839		}
4840		if (lost_events)
4841			*lost_events = rb_lost_events(cpu_buffer);
4842		return event;
4843
4844	default:
4845		RB_WARN_ON(cpu_buffer, 1);
4846	}
4847
4848	return NULL;
4849}
4850EXPORT_SYMBOL_GPL(ring_buffer_peek);
4851
4852static struct ring_buffer_event *
4853rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4854{
4855	struct trace_buffer *buffer;
4856	struct ring_buffer_per_cpu *cpu_buffer;
4857	struct ring_buffer_event *event;
4858	int nr_loops = 0;
4859
4860	if (ts)
4861		*ts = 0;
4862
4863	cpu_buffer = iter->cpu_buffer;
4864	buffer = cpu_buffer->buffer;
4865
4866	/*
4867	 * Check if someone performed a consuming read to
4868	 * the buffer. A consuming read invalidates the iterator
4869	 * and we need to reset the iterator in this case.
4870	 */
4871	if (unlikely(iter->cache_read != cpu_buffer->read ||
4872		     iter->cache_reader_page != cpu_buffer->reader_page))
4873		rb_iter_reset(iter);
4874
4875 again:
4876	if (ring_buffer_iter_empty(iter))
4877		return NULL;
4878
4879	/*
4880	 * As the writer can mess with what the iterator is trying
4881	 * to read, just give up if we fail to get an event after
4882	 * three tries. The iterator is not as reliable when reading
4883	 * the ring buffer with an active write as the consumer is.
4884	 * Do not warn if the three failures is reached.
4885	 */
4886	if (++nr_loops > 3)
4887		return NULL;
4888
4889	if (rb_per_cpu_empty(cpu_buffer))
4890		return NULL;
4891
4892	if (iter->head >= rb_page_size(iter->head_page)) {
4893		rb_inc_iter(iter);
4894		goto again;
4895	}
4896
4897	event = rb_iter_head_event(iter);
4898	if (!event)
4899		goto again;
4900
4901	switch (event->type_len) {
4902	case RINGBUF_TYPE_PADDING:
4903		if (rb_null_event(event)) {
4904			rb_inc_iter(iter);
4905			goto again;
4906		}
4907		rb_advance_iter(iter);
4908		return event;
4909
4910	case RINGBUF_TYPE_TIME_EXTEND:
4911		/* Internal data, OK to advance */
4912		rb_advance_iter(iter);
4913		goto again;
4914
4915	case RINGBUF_TYPE_TIME_STAMP:
4916		if (ts) {
4917			*ts = rb_event_time_stamp(event);
4918			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4919			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4920							 cpu_buffer->cpu, ts);
4921		}
4922		/* Internal data, OK to advance */
4923		rb_advance_iter(iter);
4924		goto again;
4925
4926	case RINGBUF_TYPE_DATA:
4927		if (ts && !(*ts)) {
4928			*ts = iter->read_stamp + event->time_delta;
4929			ring_buffer_normalize_time_stamp(buffer,
4930							 cpu_buffer->cpu, ts);
4931		}
4932		return event;
4933
4934	default:
4935		RB_WARN_ON(cpu_buffer, 1);
4936	}
4937
4938	return NULL;
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4941
4942static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4943{
4944	if (likely(!in_nmi())) {
4945		raw_spin_lock(&cpu_buffer->reader_lock);
4946		return true;
4947	}
4948
4949	/*
4950	 * If an NMI die dumps out the content of the ring buffer
4951	 * trylock must be used to prevent a deadlock if the NMI
4952	 * preempted a task that holds the ring buffer locks. If
4953	 * we get the lock then all is fine, if not, then continue
4954	 * to do the read, but this can corrupt the ring buffer,
4955	 * so it must be permanently disabled from future writes.
4956	 * Reading from NMI is a oneshot deal.
4957	 */
4958	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4959		return true;
4960
4961	/* Continue without locking, but disable the ring buffer */
4962	atomic_inc(&cpu_buffer->record_disabled);
4963	return false;
4964}
4965
4966static inline void
4967rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4968{
4969	if (likely(locked))
4970		raw_spin_unlock(&cpu_buffer->reader_lock);
4971	return;
4972}
4973
4974/**
4975 * ring_buffer_peek - peek at the next event to be read
4976 * @buffer: The ring buffer to read
4977 * @cpu: The cpu to peak at
4978 * @ts: The timestamp counter of this event.
4979 * @lost_events: a variable to store if events were lost (may be NULL)
4980 *
4981 * This will return the event that will be read next, but does
4982 * not consume the data.
4983 */
4984struct ring_buffer_event *
4985ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4986		 unsigned long *lost_events)
4987{
4988	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4989	struct ring_buffer_event *event;
4990	unsigned long flags;
4991	bool dolock;
4992
4993	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4994		return NULL;
4995
4996 again:
4997	local_irq_save(flags);
4998	dolock = rb_reader_lock(cpu_buffer);
4999	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5000	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5001		rb_advance_reader(cpu_buffer);
5002	rb_reader_unlock(cpu_buffer, dolock);
5003	local_irq_restore(flags);
5004
5005	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5006		goto again;
5007
5008	return event;
5009}
5010
5011/** ring_buffer_iter_dropped - report if there are dropped events
5012 * @iter: The ring buffer iterator
5013 *
5014 * Returns true if there was dropped events since the last peek.
5015 */
5016bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5017{
5018	bool ret = iter->missed_events != 0;
5019
5020	iter->missed_events = 0;
5021	return ret;
5022}
5023EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5024
5025/**
5026 * ring_buffer_iter_peek - peek at the next event to be read
5027 * @iter: The ring buffer iterator
5028 * @ts: The timestamp counter of this event.
5029 *
5030 * This will return the event that will be read next, but does
5031 * not increment the iterator.
5032 */
5033struct ring_buffer_event *
5034ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5035{
5036	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5037	struct ring_buffer_event *event;
5038	unsigned long flags;
5039
5040 again:
5041	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5042	event = rb_iter_peek(iter, ts);
5043	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5044
5045	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5046		goto again;
5047
5048	return event;
5049}
5050
5051/**
5052 * ring_buffer_consume - return an event and consume it
5053 * @buffer: The ring buffer to get the next event from
5054 * @cpu: the cpu to read the buffer from
5055 * @ts: a variable to store the timestamp (may be NULL)
5056 * @lost_events: a variable to store if events were lost (may be NULL)
5057 *
5058 * Returns the next event in the ring buffer, and that event is consumed.
5059 * Meaning, that sequential reads will keep returning a different event,
5060 * and eventually empty the ring buffer if the producer is slower.
5061 */
5062struct ring_buffer_event *
5063ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5064		    unsigned long *lost_events)
5065{
5066	struct ring_buffer_per_cpu *cpu_buffer;
5067	struct ring_buffer_event *event = NULL;
5068	unsigned long flags;
5069	bool dolock;
5070
5071 again:
5072	/* might be called in atomic */
5073	preempt_disable();
5074
5075	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5076		goto out;
5077
5078	cpu_buffer = buffer->buffers[cpu];
5079	local_irq_save(flags);
5080	dolock = rb_reader_lock(cpu_buffer);
5081
5082	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5083	if (event) {
5084		cpu_buffer->lost_events = 0;
5085		rb_advance_reader(cpu_buffer);
5086	}
5087
5088	rb_reader_unlock(cpu_buffer, dolock);
5089	local_irq_restore(flags);
5090
5091 out:
5092	preempt_enable();
5093
5094	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5095		goto again;
5096
5097	return event;
5098}
5099EXPORT_SYMBOL_GPL(ring_buffer_consume);
5100
5101/**
5102 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5103 * @buffer: The ring buffer to read from
5104 * @cpu: The cpu buffer to iterate over
5105 * @flags: gfp flags to use for memory allocation
5106 *
5107 * This performs the initial preparations necessary to iterate
5108 * through the buffer.  Memory is allocated, buffer recording
5109 * is disabled, and the iterator pointer is returned to the caller.
5110 *
5111 * Disabling buffer recording prevents the reading from being
5112 * corrupted. This is not a consuming read, so a producer is not
5113 * expected.
5114 *
5115 * After a sequence of ring_buffer_read_prepare calls, the user is
5116 * expected to make at least one call to ring_buffer_read_prepare_sync.
5117 * Afterwards, ring_buffer_read_start is invoked to get things going
5118 * for real.
5119 *
5120 * This overall must be paired with ring_buffer_read_finish.
5121 */
5122struct ring_buffer_iter *
5123ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5124{
5125	struct ring_buffer_per_cpu *cpu_buffer;
5126	struct ring_buffer_iter *iter;
5127
5128	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5129		return NULL;
5130
5131	iter = kzalloc(sizeof(*iter), flags);
5132	if (!iter)
5133		return NULL;
5134
5135	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5136	if (!iter->event) {
5137		kfree(iter);
5138		return NULL;
5139	}
5140
5141	cpu_buffer = buffer->buffers[cpu];
5142
5143	iter->cpu_buffer = cpu_buffer;
5144
5145	atomic_inc(&cpu_buffer->resize_disabled);
5146
5147	return iter;
5148}
5149EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5150
5151/**
5152 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5153 *
5154 * All previously invoked ring_buffer_read_prepare calls to prepare
5155 * iterators will be synchronized.  Afterwards, read_buffer_read_start
5156 * calls on those iterators are allowed.
5157 */
5158void
5159ring_buffer_read_prepare_sync(void)
5160{
5161	synchronize_rcu();
5162}
5163EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5164
5165/**
5166 * ring_buffer_read_start - start a non consuming read of the buffer
5167 * @iter: The iterator returned by ring_buffer_read_prepare
5168 *
5169 * This finalizes the startup of an iteration through the buffer.
5170 * The iterator comes from a call to ring_buffer_read_prepare and
5171 * an intervening ring_buffer_read_prepare_sync must have been
5172 * performed.
5173 *
5174 * Must be paired with ring_buffer_read_finish.
5175 */
5176void
5177ring_buffer_read_start(struct ring_buffer_iter *iter)
5178{
5179	struct ring_buffer_per_cpu *cpu_buffer;
5180	unsigned long flags;
5181
5182	if (!iter)
5183		return;
5184
5185	cpu_buffer = iter->cpu_buffer;
5186
5187	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5188	arch_spin_lock(&cpu_buffer->lock);
5189	rb_iter_reset(iter);
5190	arch_spin_unlock(&cpu_buffer->lock);
5191	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5192}
5193EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5194
5195/**
5196 * ring_buffer_read_finish - finish reading the iterator of the buffer
5197 * @iter: The iterator retrieved by ring_buffer_start
5198 *
5199 * This re-enables the recording to the buffer, and frees the
5200 * iterator.
5201 */
5202void
5203ring_buffer_read_finish(struct ring_buffer_iter *iter)
5204{
5205	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5206	unsigned long flags;
5207
5208	/*
5209	 * Ring buffer is disabled from recording, here's a good place
5210	 * to check the integrity of the ring buffer.
5211	 * Must prevent readers from trying to read, as the check
5212	 * clears the HEAD page and readers require it.
5213	 */
5214	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215	rb_check_pages(cpu_buffer);
5216	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5217
5218	atomic_dec(&cpu_buffer->resize_disabled);
5219	kfree(iter->event);
5220	kfree(iter);
5221}
5222EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5223
5224/**
5225 * ring_buffer_iter_advance - advance the iterator to the next location
5226 * @iter: The ring buffer iterator
5227 *
5228 * Move the location of the iterator such that the next read will
5229 * be the next location of the iterator.
5230 */
5231void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5232{
5233	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5234	unsigned long flags;
5235
5236	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5237
5238	rb_advance_iter(iter);
5239
5240	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5241}
5242EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5243
5244/**
5245 * ring_buffer_size - return the size of the ring buffer (in bytes)
5246 * @buffer: The ring buffer.
5247 * @cpu: The CPU to get ring buffer size from.
5248 */
5249unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5250{
5251	/*
5252	 * Earlier, this method returned
5253	 *	BUF_PAGE_SIZE * buffer->nr_pages
5254	 * Since the nr_pages field is now removed, we have converted this to
5255	 * return the per cpu buffer value.
5256	 */
5257	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5258		return 0;
5259
5260	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5261}
5262EXPORT_SYMBOL_GPL(ring_buffer_size);
5263
5264static void
5265rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5266{
5267	rb_head_page_deactivate(cpu_buffer);
5268
5269	cpu_buffer->head_page
5270		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5271	local_set(&cpu_buffer->head_page->write, 0);
5272	local_set(&cpu_buffer->head_page->entries, 0);
5273	local_set(&cpu_buffer->head_page->page->commit, 0);
5274
5275	cpu_buffer->head_page->read = 0;
5276
5277	cpu_buffer->tail_page = cpu_buffer->head_page;
5278	cpu_buffer->commit_page = cpu_buffer->head_page;
5279
5280	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5281	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5282	local_set(&cpu_buffer->reader_page->write, 0);
5283	local_set(&cpu_buffer->reader_page->entries, 0);
5284	local_set(&cpu_buffer->reader_page->page->commit, 0);
5285	cpu_buffer->reader_page->read = 0;
5286
5287	local_set(&cpu_buffer->entries_bytes, 0);
5288	local_set(&cpu_buffer->overrun, 0);
5289	local_set(&cpu_buffer->commit_overrun, 0);
5290	local_set(&cpu_buffer->dropped_events, 0);
5291	local_set(&cpu_buffer->entries, 0);
5292	local_set(&cpu_buffer->committing, 0);
5293	local_set(&cpu_buffer->commits, 0);
5294	local_set(&cpu_buffer->pages_touched, 0);
5295	local_set(&cpu_buffer->pages_lost, 0);
5296	local_set(&cpu_buffer->pages_read, 0);
5297	cpu_buffer->last_pages_touch = 0;
5298	cpu_buffer->shortest_full = 0;
5299	cpu_buffer->read = 0;
5300	cpu_buffer->read_bytes = 0;
5301
5302	rb_time_set(&cpu_buffer->write_stamp, 0);
5303	rb_time_set(&cpu_buffer->before_stamp, 0);
5304
5305	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5306
5307	cpu_buffer->lost_events = 0;
5308	cpu_buffer->last_overrun = 0;
5309
5310	rb_head_page_activate(cpu_buffer);
5311}
5312
5313/* Must have disabled the cpu buffer then done a synchronize_rcu */
5314static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5315{
5316	unsigned long flags;
5317
5318	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5319
5320	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5321		goto out;
5322
5323	arch_spin_lock(&cpu_buffer->lock);
5324
5325	rb_reset_cpu(cpu_buffer);
5326
5327	arch_spin_unlock(&cpu_buffer->lock);
5328
5329 out:
5330	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5331}
5332
5333/**
5334 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5335 * @buffer: The ring buffer to reset a per cpu buffer of
5336 * @cpu: The CPU buffer to be reset
5337 */
5338void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5339{
5340	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5341
5342	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5343		return;
5344
5345	/* prevent another thread from changing buffer sizes */
5346	mutex_lock(&buffer->mutex);
5347
5348	atomic_inc(&cpu_buffer->resize_disabled);
5349	atomic_inc(&cpu_buffer->record_disabled);
5350
5351	/* Make sure all commits have finished */
5352	synchronize_rcu();
5353
5354	reset_disabled_cpu_buffer(cpu_buffer);
5355
5356	atomic_dec(&cpu_buffer->record_disabled);
5357	atomic_dec(&cpu_buffer->resize_disabled);
5358
5359	mutex_unlock(&buffer->mutex);
5360}
5361EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5362
5363/**
5364 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5365 * @buffer: The ring buffer to reset a per cpu buffer of
5366 * @cpu: The CPU buffer to be reset
5367 */
5368void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5369{
5370	struct ring_buffer_per_cpu *cpu_buffer;
5371	int cpu;
5372
5373	/* prevent another thread from changing buffer sizes */
5374	mutex_lock(&buffer->mutex);
5375
5376	for_each_online_buffer_cpu(buffer, cpu) {
5377		cpu_buffer = buffer->buffers[cpu];
5378
5379		atomic_inc(&cpu_buffer->resize_disabled);
5380		atomic_inc(&cpu_buffer->record_disabled);
5381	}
5382
5383	/* Make sure all commits have finished */
5384	synchronize_rcu();
5385
5386	for_each_online_buffer_cpu(buffer, cpu) {
5387		cpu_buffer = buffer->buffers[cpu];
5388
5389		reset_disabled_cpu_buffer(cpu_buffer);
5390
5391		atomic_dec(&cpu_buffer->record_disabled);
5392		atomic_dec(&cpu_buffer->resize_disabled);
5393	}
5394
5395	mutex_unlock(&buffer->mutex);
5396}
5397
5398/**
5399 * ring_buffer_reset - reset a ring buffer
5400 * @buffer: The ring buffer to reset all cpu buffers
5401 */
5402void ring_buffer_reset(struct trace_buffer *buffer)
5403{
5404	struct ring_buffer_per_cpu *cpu_buffer;
5405	int cpu;
5406
5407	/* prevent another thread from changing buffer sizes */
5408	mutex_lock(&buffer->mutex);
5409
5410	for_each_buffer_cpu(buffer, cpu) {
5411		cpu_buffer = buffer->buffers[cpu];
5412
5413		atomic_inc(&cpu_buffer->resize_disabled);
5414		atomic_inc(&cpu_buffer->record_disabled);
5415	}
5416
5417	/* Make sure all commits have finished */
5418	synchronize_rcu();
5419
5420	for_each_buffer_cpu(buffer, cpu) {
5421		cpu_buffer = buffer->buffers[cpu];
5422
5423		reset_disabled_cpu_buffer(cpu_buffer);
5424
5425		atomic_dec(&cpu_buffer->record_disabled);
5426		atomic_dec(&cpu_buffer->resize_disabled);
5427	}
5428
5429	mutex_unlock(&buffer->mutex);
5430}
5431EXPORT_SYMBOL_GPL(ring_buffer_reset);
5432
5433/**
5434 * ring_buffer_empty - is the ring buffer empty?
5435 * @buffer: The ring buffer to test
5436 */
5437bool ring_buffer_empty(struct trace_buffer *buffer)
5438{
5439	struct ring_buffer_per_cpu *cpu_buffer;
5440	unsigned long flags;
5441	bool dolock;
5442	int cpu;
5443	int ret;
5444
5445	/* yes this is racy, but if you don't like the race, lock the buffer */
5446	for_each_buffer_cpu(buffer, cpu) {
5447		cpu_buffer = buffer->buffers[cpu];
5448		local_irq_save(flags);
5449		dolock = rb_reader_lock(cpu_buffer);
5450		ret = rb_per_cpu_empty(cpu_buffer);
5451		rb_reader_unlock(cpu_buffer, dolock);
5452		local_irq_restore(flags);
5453
5454		if (!ret)
5455			return false;
5456	}
5457
5458	return true;
5459}
5460EXPORT_SYMBOL_GPL(ring_buffer_empty);
5461
5462/**
5463 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5464 * @buffer: The ring buffer
5465 * @cpu: The CPU buffer to test
5466 */
5467bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5468{
5469	struct ring_buffer_per_cpu *cpu_buffer;
5470	unsigned long flags;
5471	bool dolock;
5472	int ret;
5473
5474	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5475		return true;
5476
5477	cpu_buffer = buffer->buffers[cpu];
5478	local_irq_save(flags);
5479	dolock = rb_reader_lock(cpu_buffer);
5480	ret = rb_per_cpu_empty(cpu_buffer);
5481	rb_reader_unlock(cpu_buffer, dolock);
5482	local_irq_restore(flags);
5483
5484	return ret;
5485}
5486EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5487
5488#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5489/**
5490 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5491 * @buffer_a: One buffer to swap with
5492 * @buffer_b: The other buffer to swap with
5493 * @cpu: the CPU of the buffers to swap
5494 *
5495 * This function is useful for tracers that want to take a "snapshot"
5496 * of a CPU buffer and has another back up buffer lying around.
5497 * it is expected that the tracer handles the cpu buffer not being
5498 * used at the moment.
5499 */
5500int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5501			 struct trace_buffer *buffer_b, int cpu)
5502{
5503	struct ring_buffer_per_cpu *cpu_buffer_a;
5504	struct ring_buffer_per_cpu *cpu_buffer_b;
5505	int ret = -EINVAL;
5506
5507	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5508	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5509		goto out;
5510
5511	cpu_buffer_a = buffer_a->buffers[cpu];
5512	cpu_buffer_b = buffer_b->buffers[cpu];
5513
5514	/* At least make sure the two buffers are somewhat the same */
5515	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5516		goto out;
5517
5518	ret = -EAGAIN;
5519
5520	if (atomic_read(&buffer_a->record_disabled))
5521		goto out;
5522
5523	if (atomic_read(&buffer_b->record_disabled))
5524		goto out;
5525
5526	if (atomic_read(&cpu_buffer_a->record_disabled))
5527		goto out;
5528
5529	if (atomic_read(&cpu_buffer_b->record_disabled))
5530		goto out;
5531
5532	/*
5533	 * We can't do a synchronize_rcu here because this
5534	 * function can be called in atomic context.
5535	 * Normally this will be called from the same CPU as cpu.
5536	 * If not it's up to the caller to protect this.
5537	 */
5538	atomic_inc(&cpu_buffer_a->record_disabled);
5539	atomic_inc(&cpu_buffer_b->record_disabled);
5540
5541	ret = -EBUSY;
5542	if (local_read(&cpu_buffer_a->committing))
5543		goto out_dec;
5544	if (local_read(&cpu_buffer_b->committing))
5545		goto out_dec;
5546
5547	buffer_a->buffers[cpu] = cpu_buffer_b;
5548	buffer_b->buffers[cpu] = cpu_buffer_a;
5549
5550	cpu_buffer_b->buffer = buffer_a;
5551	cpu_buffer_a->buffer = buffer_b;
5552
5553	ret = 0;
5554
5555out_dec:
5556	atomic_dec(&cpu_buffer_a->record_disabled);
5557	atomic_dec(&cpu_buffer_b->record_disabled);
5558out:
5559	return ret;
5560}
5561EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5562#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5563
5564/**
5565 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5566 * @buffer: the buffer to allocate for.
5567 * @cpu: the cpu buffer to allocate.
5568 *
5569 * This function is used in conjunction with ring_buffer_read_page.
5570 * When reading a full page from the ring buffer, these functions
5571 * can be used to speed up the process. The calling function should
5572 * allocate a few pages first with this function. Then when it
5573 * needs to get pages from the ring buffer, it passes the result
5574 * of this function into ring_buffer_read_page, which will swap
5575 * the page that was allocated, with the read page of the buffer.
5576 *
5577 * Returns:
5578 *  The page allocated, or ERR_PTR
5579 */
5580void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5581{
5582	struct ring_buffer_per_cpu *cpu_buffer;
5583	struct buffer_data_page *bpage = NULL;
5584	unsigned long flags;
5585	struct page *page;
5586
5587	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5588		return ERR_PTR(-ENODEV);
5589
5590	cpu_buffer = buffer->buffers[cpu];
5591	local_irq_save(flags);
5592	arch_spin_lock(&cpu_buffer->lock);
5593
5594	if (cpu_buffer->free_page) {
5595		bpage = cpu_buffer->free_page;
5596		cpu_buffer->free_page = NULL;
5597	}
5598
5599	arch_spin_unlock(&cpu_buffer->lock);
5600	local_irq_restore(flags);
5601
5602	if (bpage)
5603		goto out;
5604
5605	page = alloc_pages_node(cpu_to_node(cpu),
5606				GFP_KERNEL | __GFP_NORETRY, 0);
5607	if (!page)
5608		return ERR_PTR(-ENOMEM);
5609
5610	bpage = page_address(page);
5611
5612 out:
5613	rb_init_page(bpage);
5614
5615	return bpage;
5616}
5617EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5618
5619/**
5620 * ring_buffer_free_read_page - free an allocated read page
5621 * @buffer: the buffer the page was allocate for
5622 * @cpu: the cpu buffer the page came from
5623 * @data: the page to free
5624 *
5625 * Free a page allocated from ring_buffer_alloc_read_page.
5626 */
5627void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5628{
5629	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5630	struct buffer_data_page *bpage = data;
5631	struct page *page = virt_to_page(bpage);
5632	unsigned long flags;
5633
5634	/* If the page is still in use someplace else, we can't reuse it */
5635	if (page_ref_count(page) > 1)
5636		goto out;
5637
5638	local_irq_save(flags);
5639	arch_spin_lock(&cpu_buffer->lock);
5640
5641	if (!cpu_buffer->free_page) {
5642		cpu_buffer->free_page = bpage;
5643		bpage = NULL;
5644	}
5645
5646	arch_spin_unlock(&cpu_buffer->lock);
5647	local_irq_restore(flags);
5648
5649 out:
5650	free_page((unsigned long)bpage);
5651}
5652EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5653
5654/**
5655 * ring_buffer_read_page - extract a page from the ring buffer
5656 * @buffer: buffer to extract from
5657 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5658 * @len: amount to extract
5659 * @cpu: the cpu of the buffer to extract
5660 * @full: should the extraction only happen when the page is full.
5661 *
5662 * This function will pull out a page from the ring buffer and consume it.
5663 * @data_page must be the address of the variable that was returned
5664 * from ring_buffer_alloc_read_page. This is because the page might be used
5665 * to swap with a page in the ring buffer.
5666 *
5667 * for example:
5668 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5669 *	if (IS_ERR(rpage))
5670 *		return PTR_ERR(rpage);
5671 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5672 *	if (ret >= 0)
5673 *		process_page(rpage, ret);
5674 *
5675 * When @full is set, the function will not return true unless
5676 * the writer is off the reader page.
5677 *
5678 * Note: it is up to the calling functions to handle sleeps and wakeups.
5679 *  The ring buffer can be used anywhere in the kernel and can not
5680 *  blindly call wake_up. The layer that uses the ring buffer must be
5681 *  responsible for that.
5682 *
5683 * Returns:
5684 *  >=0 if data has been transferred, returns the offset of consumed data.
5685 *  <0 if no data has been transferred.
5686 */
5687int ring_buffer_read_page(struct trace_buffer *buffer,
5688			  void **data_page, size_t len, int cpu, int full)
5689{
5690	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5691	struct ring_buffer_event *event;
5692	struct buffer_data_page *bpage;
5693	struct buffer_page *reader;
5694	unsigned long missed_events;
5695	unsigned long flags;
5696	unsigned int commit;
5697	unsigned int read;
5698	u64 save_timestamp;
5699	int ret = -1;
5700
5701	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5702		goto out;
5703
5704	/*
5705	 * If len is not big enough to hold the page header, then
5706	 * we can not copy anything.
5707	 */
5708	if (len <= BUF_PAGE_HDR_SIZE)
5709		goto out;
5710
5711	len -= BUF_PAGE_HDR_SIZE;
5712
5713	if (!data_page)
5714		goto out;
5715
5716	bpage = *data_page;
5717	if (!bpage)
5718		goto out;
5719
5720	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5721
5722	reader = rb_get_reader_page(cpu_buffer);
5723	if (!reader)
5724		goto out_unlock;
5725
5726	event = rb_reader_event(cpu_buffer);
5727
5728	read = reader->read;
5729	commit = rb_page_commit(reader);
5730
5731	/* Check if any events were dropped */
5732	missed_events = cpu_buffer->lost_events;
5733
5734	/*
5735	 * If this page has been partially read or
5736	 * if len is not big enough to read the rest of the page or
5737	 * a writer is still on the page, then
5738	 * we must copy the data from the page to the buffer.
5739	 * Otherwise, we can simply swap the page with the one passed in.
5740	 */
5741	if (read || (len < (commit - read)) ||
5742	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5743		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5744		unsigned int rpos = read;
5745		unsigned int pos = 0;
5746		unsigned int size;
5747
5748		/*
5749		 * If a full page is expected, this can still be returned
5750		 * if there's been a previous partial read and the
5751		 * rest of the page can be read and the commit page is off
5752		 * the reader page.
5753		 */
5754		if (full &&
5755		    (!read || (len < (commit - read)) ||
5756		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5757			goto out_unlock;
5758
5759		if (len > (commit - read))
5760			len = (commit - read);
5761
5762		/* Always keep the time extend and data together */
5763		size = rb_event_ts_length(event);
5764
5765		if (len < size)
5766			goto out_unlock;
5767
5768		/* save the current timestamp, since the user will need it */
5769		save_timestamp = cpu_buffer->read_stamp;
5770
5771		/* Need to copy one event at a time */
5772		do {
5773			/* We need the size of one event, because
5774			 * rb_advance_reader only advances by one event,
5775			 * whereas rb_event_ts_length may include the size of
5776			 * one or two events.
5777			 * We have already ensured there's enough space if this
5778			 * is a time extend. */
5779			size = rb_event_length(event);
5780			memcpy(bpage->data + pos, rpage->data + rpos, size);
5781
5782			len -= size;
5783
5784			rb_advance_reader(cpu_buffer);
5785			rpos = reader->read;
5786			pos += size;
5787
5788			if (rpos >= commit)
5789				break;
5790
5791			event = rb_reader_event(cpu_buffer);
5792			/* Always keep the time extend and data together */
5793			size = rb_event_ts_length(event);
5794		} while (len >= size);
5795
5796		/* update bpage */
5797		local_set(&bpage->commit, pos);
5798		bpage->time_stamp = save_timestamp;
5799
5800		/* we copied everything to the beginning */
5801		read = 0;
5802	} else {
5803		/* update the entry counter */
5804		cpu_buffer->read += rb_page_entries(reader);
5805		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5806
5807		/* swap the pages */
5808		rb_init_page(bpage);
5809		bpage = reader->page;
5810		reader->page = *data_page;
5811		local_set(&reader->write, 0);
5812		local_set(&reader->entries, 0);
5813		reader->read = 0;
5814		*data_page = bpage;
5815
5816		/*
5817		 * Use the real_end for the data size,
5818		 * This gives us a chance to store the lost events
5819		 * on the page.
5820		 */
5821		if (reader->real_end)
5822			local_set(&bpage->commit, reader->real_end);
5823	}
5824	ret = read;
5825
5826	cpu_buffer->lost_events = 0;
5827
5828	commit = local_read(&bpage->commit);
5829	/*
5830	 * Set a flag in the commit field if we lost events
5831	 */
5832	if (missed_events) {
5833		/* If there is room at the end of the page to save the
5834		 * missed events, then record it there.
5835		 */
5836		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5837			memcpy(&bpage->data[commit], &missed_events,
5838			       sizeof(missed_events));
5839			local_add(RB_MISSED_STORED, &bpage->commit);
5840			commit += sizeof(missed_events);
5841		}
5842		local_add(RB_MISSED_EVENTS, &bpage->commit);
5843	}
5844
5845	/*
5846	 * This page may be off to user land. Zero it out here.
5847	 */
5848	if (commit < BUF_PAGE_SIZE)
5849		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5850
5851 out_unlock:
5852	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5853
5854 out:
5855	return ret;
5856}
5857EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5858
5859/*
5860 * We only allocate new buffers, never free them if the CPU goes down.
5861 * If we were to free the buffer, then the user would lose any trace that was in
5862 * the buffer.
5863 */
5864int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5865{
5866	struct trace_buffer *buffer;
5867	long nr_pages_same;
5868	int cpu_i;
5869	unsigned long nr_pages;
5870
5871	buffer = container_of(node, struct trace_buffer, node);
5872	if (cpumask_test_cpu(cpu, buffer->cpumask))
5873		return 0;
5874
5875	nr_pages = 0;
5876	nr_pages_same = 1;
5877	/* check if all cpu sizes are same */
5878	for_each_buffer_cpu(buffer, cpu_i) {
5879		/* fill in the size from first enabled cpu */
5880		if (nr_pages == 0)
5881			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5882		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5883			nr_pages_same = 0;
5884			break;
5885		}
5886	}
5887	/* allocate minimum pages, user can later expand it */
5888	if (!nr_pages_same)
5889		nr_pages = 2;
5890	buffer->buffers[cpu] =
5891		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5892	if (!buffer->buffers[cpu]) {
5893		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5894		     cpu);
5895		return -ENOMEM;
5896	}
5897	smp_wmb();
5898	cpumask_set_cpu(cpu, buffer->cpumask);
5899	return 0;
5900}
5901
5902#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5903/*
5904 * This is a basic integrity check of the ring buffer.
5905 * Late in the boot cycle this test will run when configured in.
5906 * It will kick off a thread per CPU that will go into a loop
5907 * writing to the per cpu ring buffer various sizes of data.
5908 * Some of the data will be large items, some small.
5909 *
5910 * Another thread is created that goes into a spin, sending out
5911 * IPIs to the other CPUs to also write into the ring buffer.
5912 * this is to test the nesting ability of the buffer.
5913 *
5914 * Basic stats are recorded and reported. If something in the
5915 * ring buffer should happen that's not expected, a big warning
5916 * is displayed and all ring buffers are disabled.
5917 */
5918static struct task_struct *rb_threads[NR_CPUS] __initdata;
5919
5920struct rb_test_data {
5921	struct trace_buffer *buffer;
5922	unsigned long		events;
5923	unsigned long		bytes_written;
5924	unsigned long		bytes_alloc;
5925	unsigned long		bytes_dropped;
5926	unsigned long		events_nested;
5927	unsigned long		bytes_written_nested;
5928	unsigned long		bytes_alloc_nested;
5929	unsigned long		bytes_dropped_nested;
5930	int			min_size_nested;
5931	int			max_size_nested;
5932	int			max_size;
5933	int			min_size;
5934	int			cpu;
5935	int			cnt;
5936};
5937
5938static struct rb_test_data rb_data[NR_CPUS] __initdata;
5939
5940/* 1 meg per cpu */
5941#define RB_TEST_BUFFER_SIZE	1048576
5942
5943static char rb_string[] __initdata =
5944	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5945	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5946	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5947
5948static bool rb_test_started __initdata;
5949
5950struct rb_item {
5951	int size;
5952	char str[];
5953};
5954
5955static __init int rb_write_something(struct rb_test_data *data, bool nested)
5956{
5957	struct ring_buffer_event *event;
5958	struct rb_item *item;
5959	bool started;
5960	int event_len;
5961	int size;
5962	int len;
5963	int cnt;
5964
5965	/* Have nested writes different that what is written */
5966	cnt = data->cnt + (nested ? 27 : 0);
5967
5968	/* Multiply cnt by ~e, to make some unique increment */
5969	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5970
5971	len = size + sizeof(struct rb_item);
5972
5973	started = rb_test_started;
5974	/* read rb_test_started before checking buffer enabled */
5975	smp_rmb();
5976
5977	event = ring_buffer_lock_reserve(data->buffer, len);
5978	if (!event) {
5979		/* Ignore dropped events before test starts. */
5980		if (started) {
5981			if (nested)
5982				data->bytes_dropped += len;
5983			else
5984				data->bytes_dropped_nested += len;
5985		}
5986		return len;
5987	}
5988
5989	event_len = ring_buffer_event_length(event);
5990
5991	if (RB_WARN_ON(data->buffer, event_len < len))
5992		goto out;
5993
5994	item = ring_buffer_event_data(event);
5995	item->size = size;
5996	memcpy(item->str, rb_string, size);
5997
5998	if (nested) {
5999		data->bytes_alloc_nested += event_len;
6000		data->bytes_written_nested += len;
6001		data->events_nested++;
6002		if (!data->min_size_nested || len < data->min_size_nested)
6003			data->min_size_nested = len;
6004		if (len > data->max_size_nested)
6005			data->max_size_nested = len;
6006	} else {
6007		data->bytes_alloc += event_len;
6008		data->bytes_written += len;
6009		data->events++;
6010		if (!data->min_size || len < data->min_size)
6011			data->max_size = len;
6012		if (len > data->max_size)
6013			data->max_size = len;
6014	}
6015
6016 out:
6017	ring_buffer_unlock_commit(data->buffer);
6018
6019	return 0;
6020}
6021
6022static __init int rb_test(void *arg)
6023{
6024	struct rb_test_data *data = arg;
6025
6026	while (!kthread_should_stop()) {
6027		rb_write_something(data, false);
6028		data->cnt++;
6029
6030		set_current_state(TASK_INTERRUPTIBLE);
6031		/* Now sleep between a min of 100-300us and a max of 1ms */
6032		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6033	}
6034
6035	return 0;
6036}
6037
6038static __init void rb_ipi(void *ignore)
6039{
6040	struct rb_test_data *data;
6041	int cpu = smp_processor_id();
6042
6043	data = &rb_data[cpu];
6044	rb_write_something(data, true);
6045}
6046
6047static __init int rb_hammer_test(void *arg)
6048{
6049	while (!kthread_should_stop()) {
6050
6051		/* Send an IPI to all cpus to write data! */
6052		smp_call_function(rb_ipi, NULL, 1);
6053		/* No sleep, but for non preempt, let others run */
6054		schedule();
6055	}
6056
6057	return 0;
6058}
6059
6060static __init int test_ringbuffer(void)
6061{
6062	struct task_struct *rb_hammer;
6063	struct trace_buffer *buffer;
6064	int cpu;
6065	int ret = 0;
6066
6067	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6068		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6069		return 0;
6070	}
6071
6072	pr_info("Running ring buffer tests...\n");
6073
6074	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6075	if (WARN_ON(!buffer))
6076		return 0;
6077
6078	/* Disable buffer so that threads can't write to it yet */
6079	ring_buffer_record_off(buffer);
6080
6081	for_each_online_cpu(cpu) {
6082		rb_data[cpu].buffer = buffer;
6083		rb_data[cpu].cpu = cpu;
6084		rb_data[cpu].cnt = cpu;
6085		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6086						     cpu, "rbtester/%u");
6087		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6088			pr_cont("FAILED\n");
6089			ret = PTR_ERR(rb_threads[cpu]);
6090			goto out_free;
6091		}
 
 
 
6092	}
6093
6094	/* Now create the rb hammer! */
6095	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6096	if (WARN_ON(IS_ERR(rb_hammer))) {
6097		pr_cont("FAILED\n");
6098		ret = PTR_ERR(rb_hammer);
6099		goto out_free;
6100	}
6101
6102	ring_buffer_record_on(buffer);
6103	/*
6104	 * Show buffer is enabled before setting rb_test_started.
6105	 * Yes there's a small race window where events could be
6106	 * dropped and the thread wont catch it. But when a ring
6107	 * buffer gets enabled, there will always be some kind of
6108	 * delay before other CPUs see it. Thus, we don't care about
6109	 * those dropped events. We care about events dropped after
6110	 * the threads see that the buffer is active.
6111	 */
6112	smp_wmb();
6113	rb_test_started = true;
6114
6115	set_current_state(TASK_INTERRUPTIBLE);
6116	/* Just run for 10 seconds */;
6117	schedule_timeout(10 * HZ);
6118
6119	kthread_stop(rb_hammer);
6120
6121 out_free:
6122	for_each_online_cpu(cpu) {
6123		if (!rb_threads[cpu])
6124			break;
6125		kthread_stop(rb_threads[cpu]);
6126	}
6127	if (ret) {
6128		ring_buffer_free(buffer);
6129		return ret;
6130	}
6131
6132	/* Report! */
6133	pr_info("finished\n");
6134	for_each_online_cpu(cpu) {
6135		struct ring_buffer_event *event;
6136		struct rb_test_data *data = &rb_data[cpu];
6137		struct rb_item *item;
6138		unsigned long total_events;
6139		unsigned long total_dropped;
6140		unsigned long total_written;
6141		unsigned long total_alloc;
6142		unsigned long total_read = 0;
6143		unsigned long total_size = 0;
6144		unsigned long total_len = 0;
6145		unsigned long total_lost = 0;
6146		unsigned long lost;
6147		int big_event_size;
6148		int small_event_size;
6149
6150		ret = -1;
6151
6152		total_events = data->events + data->events_nested;
6153		total_written = data->bytes_written + data->bytes_written_nested;
6154		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6155		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6156
6157		big_event_size = data->max_size + data->max_size_nested;
6158		small_event_size = data->min_size + data->min_size_nested;
6159
6160		pr_info("CPU %d:\n", cpu);
6161		pr_info("              events:    %ld\n", total_events);
6162		pr_info("       dropped bytes:    %ld\n", total_dropped);
6163		pr_info("       alloced bytes:    %ld\n", total_alloc);
6164		pr_info("       written bytes:    %ld\n", total_written);
6165		pr_info("       biggest event:    %d\n", big_event_size);
6166		pr_info("      smallest event:    %d\n", small_event_size);
6167
6168		if (RB_WARN_ON(buffer, total_dropped))
6169			break;
6170
6171		ret = 0;
6172
6173		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6174			total_lost += lost;
6175			item = ring_buffer_event_data(event);
6176			total_len += ring_buffer_event_length(event);
6177			total_size += item->size + sizeof(struct rb_item);
6178			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6179				pr_info("FAILED!\n");
6180				pr_info("buffer had: %.*s\n", item->size, item->str);
6181				pr_info("expected:   %.*s\n", item->size, rb_string);
6182				RB_WARN_ON(buffer, 1);
6183				ret = -1;
6184				break;
6185			}
6186			total_read++;
6187		}
6188		if (ret)
6189			break;
6190
6191		ret = -1;
6192
6193		pr_info("         read events:   %ld\n", total_read);
6194		pr_info("         lost events:   %ld\n", total_lost);
6195		pr_info("        total events:   %ld\n", total_lost + total_read);
6196		pr_info("  recorded len bytes:   %ld\n", total_len);
6197		pr_info(" recorded size bytes:   %ld\n", total_size);
6198		if (total_lost) {
6199			pr_info(" With dropped events, record len and size may not match\n"
6200				" alloced and written from above\n");
6201		} else {
6202			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6203				       total_size != total_written))
6204				break;
6205		}
6206		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6207			break;
6208
6209		ret = 0;
6210	}
6211	if (!ret)
6212		pr_info("Ring buffer PASSED!\n");
6213
6214	ring_buffer_free(buffer);
6215	return 0;
6216}
6217
6218late_initcall(test_ringbuffer);
6219#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
 
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/security.h>
  15#include <linux/uaccess.h>
  16#include <linux/hardirq.h>
  17#include <linux/kthread.h>	/* for self test */
  18#include <linux/module.h>
  19#include <linux/percpu.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/slab.h>
  23#include <linux/init.h>
  24#include <linux/hash.h>
  25#include <linux/list.h>
  26#include <linux/cpu.h>
  27#include <linux/oom.h>
  28
  29#include <asm/local.h>
  30
 
 
 
 
 
 
 
 
  31static void update_pages_handler(struct work_struct *work);
  32
  33/*
  34 * The ring buffer header is special. We must manually up keep it.
  35 */
  36int ring_buffer_print_entry_header(struct trace_seq *s)
  37{
  38	trace_seq_puts(s, "# compressed entry header\n");
  39	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  40	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  41	trace_seq_puts(s, "\tarray       :   32 bits\n");
  42	trace_seq_putc(s, '\n');
  43	trace_seq_printf(s, "\tpadding     : type == %d\n",
  44			 RINGBUF_TYPE_PADDING);
  45	trace_seq_printf(s, "\ttime_extend : type == %d\n",
  46			 RINGBUF_TYPE_TIME_EXTEND);
  47	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  48			 RINGBUF_TYPE_TIME_STAMP);
  49	trace_seq_printf(s, "\tdata max type_len  == %d\n",
  50			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  51
  52	return !trace_seq_has_overflowed(s);
  53}
  54
  55/*
  56 * The ring buffer is made up of a list of pages. A separate list of pages is
  57 * allocated for each CPU. A writer may only write to a buffer that is
  58 * associated with the CPU it is currently executing on.  A reader may read
  59 * from any per cpu buffer.
  60 *
  61 * The reader is special. For each per cpu buffer, the reader has its own
  62 * reader page. When a reader has read the entire reader page, this reader
  63 * page is swapped with another page in the ring buffer.
  64 *
  65 * Now, as long as the writer is off the reader page, the reader can do what
  66 * ever it wants with that page. The writer will never write to that page
  67 * again (as long as it is out of the ring buffer).
  68 *
  69 * Here's some silly ASCII art.
  70 *
  71 *   +------+
  72 *   |reader|          RING BUFFER
  73 *   |page  |
  74 *   +------+        +---+   +---+   +---+
  75 *                   |   |-->|   |-->|   |
  76 *                   +---+   +---+   +---+
  77 *                     ^               |
  78 *                     |               |
  79 *                     +---------------+
  80 *
  81 *
  82 *   +------+
  83 *   |reader|          RING BUFFER
  84 *   |page  |------------------v
  85 *   +------+        +---+   +---+   +---+
  86 *                   |   |-->|   |-->|   |
  87 *                   +---+   +---+   +---+
  88 *                     ^               |
  89 *                     |               |
  90 *                     +---------------+
  91 *
  92 *
  93 *   +------+
  94 *   |reader|          RING BUFFER
  95 *   |page  |------------------v
  96 *   +------+        +---+   +---+   +---+
  97 *      ^            |   |-->|   |-->|   |
  98 *      |            +---+   +---+   +---+
  99 *      |                              |
 100 *      |                              |
 101 *      +------------------------------+
 102 *
 103 *
 104 *   +------+
 105 *   |buffer|          RING BUFFER
 106 *   |page  |------------------v
 107 *   +------+        +---+   +---+   +---+
 108 *      ^            |   |   |   |-->|   |
 109 *      |   New      +---+   +---+   +---+
 110 *      |  Reader------^               |
 111 *      |   page                       |
 112 *      +------------------------------+
 113 *
 114 *
 115 * After we make this swap, the reader can hand this page off to the splice
 116 * code and be done with it. It can even allocate a new page if it needs to
 117 * and swap that into the ring buffer.
 118 *
 119 * We will be using cmpxchg soon to make all this lockless.
 120 *
 121 */
 122
 123/* Used for individual buffers (after the counter) */
 124#define RB_BUFFER_OFF		(1 << 20)
 125
 126#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 127
 128#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 129#define RB_ALIGNMENT		4U
 130#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 131#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
 132#define RB_ALIGN_DATA		__aligned(RB_ALIGNMENT)
 
 
 
 
 
 
 
 
 
 133
 134/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 135#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 136
 137enum {
 138	RB_LEN_TIME_EXTEND = 8,
 139	RB_LEN_TIME_STAMP =  8,
 140};
 141
 142#define skip_time_extend(event) \
 143	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 144
 145#define extended_time(event) \
 146	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 147
 148static inline int rb_null_event(struct ring_buffer_event *event)
 149{
 150	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 151}
 152
 153static void rb_event_set_padding(struct ring_buffer_event *event)
 154{
 155	/* padding has a NULL time_delta */
 156	event->type_len = RINGBUF_TYPE_PADDING;
 157	event->time_delta = 0;
 158}
 159
 160static unsigned
 161rb_event_data_length(struct ring_buffer_event *event)
 162{
 163	unsigned length;
 164
 165	if (event->type_len)
 166		length = event->type_len * RB_ALIGNMENT;
 167	else
 168		length = event->array[0];
 169	return length + RB_EVNT_HDR_SIZE;
 170}
 171
 172/*
 173 * Return the length of the given event. Will return
 174 * the length of the time extend if the event is a
 175 * time extend.
 176 */
 177static inline unsigned
 178rb_event_length(struct ring_buffer_event *event)
 179{
 180	switch (event->type_len) {
 181	case RINGBUF_TYPE_PADDING:
 182		if (rb_null_event(event))
 183			/* undefined */
 184			return -1;
 185		return  event->array[0] + RB_EVNT_HDR_SIZE;
 186
 187	case RINGBUF_TYPE_TIME_EXTEND:
 188		return RB_LEN_TIME_EXTEND;
 189
 190	case RINGBUF_TYPE_TIME_STAMP:
 191		return RB_LEN_TIME_STAMP;
 192
 193	case RINGBUF_TYPE_DATA:
 194		return rb_event_data_length(event);
 195	default:
 196		WARN_ON_ONCE(1);
 197	}
 198	/* not hit */
 199	return 0;
 200}
 201
 202/*
 203 * Return total length of time extend and data,
 204 *   or just the event length for all other events.
 205 */
 206static inline unsigned
 207rb_event_ts_length(struct ring_buffer_event *event)
 208{
 209	unsigned len = 0;
 210
 211	if (extended_time(event)) {
 212		/* time extends include the data event after it */
 213		len = RB_LEN_TIME_EXTEND;
 214		event = skip_time_extend(event);
 215	}
 216	return len + rb_event_length(event);
 217}
 218
 219/**
 220 * ring_buffer_event_length - return the length of the event
 221 * @event: the event to get the length of
 222 *
 223 * Returns the size of the data load of a data event.
 224 * If the event is something other than a data event, it
 225 * returns the size of the event itself. With the exception
 226 * of a TIME EXTEND, where it still returns the size of the
 227 * data load of the data event after it.
 228 */
 229unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 230{
 231	unsigned length;
 232
 233	if (extended_time(event))
 234		event = skip_time_extend(event);
 235
 236	length = rb_event_length(event);
 237	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 238		return length;
 239	length -= RB_EVNT_HDR_SIZE;
 240	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 241                length -= sizeof(event->array[0]);
 242	return length;
 243}
 244EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 245
 246/* inline for ring buffer fast paths */
 247static __always_inline void *
 248rb_event_data(struct ring_buffer_event *event)
 249{
 250	if (extended_time(event))
 251		event = skip_time_extend(event);
 252	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 253	/* If length is in len field, then array[0] has the data */
 254	if (event->type_len)
 255		return (void *)&event->array[0];
 256	/* Otherwise length is in array[0] and array[1] has the data */
 257	return (void *)&event->array[1];
 258}
 259
 260/**
 261 * ring_buffer_event_data - return the data of the event
 262 * @event: the event to get the data from
 263 */
 264void *ring_buffer_event_data(struct ring_buffer_event *event)
 265{
 266	return rb_event_data(event);
 267}
 268EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 269
 270#define for_each_buffer_cpu(buffer, cpu)		\
 271	for_each_cpu(cpu, buffer->cpumask)
 272
 273#define for_each_online_buffer_cpu(buffer, cpu)		\
 274	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
 275
 276#define TS_SHIFT	27
 277#define TS_MASK		((1ULL << TS_SHIFT) - 1)
 278#define TS_DELTA_TEST	(~TS_MASK)
 279
 280/**
 281 * ring_buffer_event_time_stamp - return the event's extended timestamp
 282 * @event: the event to get the timestamp of
 283 *
 284 * Returns the extended timestamp associated with a data event.
 285 * An extended time_stamp is a 64-bit timestamp represented
 286 * internally in a special way that makes the best use of space
 287 * contained within a ring buffer event.  This function decodes
 288 * it and maps it to a straight u64 value.
 289 */
 290u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 291{
 292	u64 ts;
 293
 294	ts = event->array[0];
 295	ts <<= TS_SHIFT;
 296	ts += event->time_delta;
 297
 298	return ts;
 299}
 300
 301/* Flag when events were overwritten */
 302#define RB_MISSED_EVENTS	(1 << 31)
 303/* Missed count stored at end */
 304#define RB_MISSED_STORED	(1 << 30)
 305
 306struct buffer_data_page {
 307	u64		 time_stamp;	/* page time stamp */
 308	local_t		 commit;	/* write committed index */
 309	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
 310};
 311
 312/*
 313 * Note, the buffer_page list must be first. The buffer pages
 314 * are allocated in cache lines, which means that each buffer
 315 * page will be at the beginning of a cache line, and thus
 316 * the least significant bits will be zero. We use this to
 317 * add flags in the list struct pointers, to make the ring buffer
 318 * lockless.
 319 */
 320struct buffer_page {
 321	struct list_head list;		/* list of buffer pages */
 322	local_t		 write;		/* index for next write */
 323	unsigned	 read;		/* index for next read */
 324	local_t		 entries;	/* entries on this page */
 325	unsigned long	 real_end;	/* real end of data */
 326	struct buffer_data_page *page;	/* Actual data page */
 327};
 328
 329/*
 330 * The buffer page counters, write and entries, must be reset
 331 * atomically when crossing page boundaries. To synchronize this
 332 * update, two counters are inserted into the number. One is
 333 * the actual counter for the write position or count on the page.
 334 *
 335 * The other is a counter of updaters. Before an update happens
 336 * the update partition of the counter is incremented. This will
 337 * allow the updater to update the counter atomically.
 338 *
 339 * The counter is 20 bits, and the state data is 12.
 340 */
 341#define RB_WRITE_MASK		0xfffff
 342#define RB_WRITE_INTCNT		(1 << 20)
 343
 344static void rb_init_page(struct buffer_data_page *bpage)
 345{
 346	local_set(&bpage->commit, 0);
 347}
 348
 349/*
 350 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 351 * this issue out.
 352 */
 353static void free_buffer_page(struct buffer_page *bpage)
 354{
 355	free_page((unsigned long)bpage->page);
 356	kfree(bpage);
 357}
 358
 359/*
 360 * We need to fit the time_stamp delta into 27 bits.
 361 */
 362static inline int test_time_stamp(u64 delta)
 363{
 364	if (delta & TS_DELTA_TEST)
 365		return 1;
 366	return 0;
 367}
 368
 369#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 370
 371/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 372#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 373
 374int ring_buffer_print_page_header(struct trace_seq *s)
 375{
 376	struct buffer_data_page field;
 377
 378	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 379			 "offset:0;\tsize:%u;\tsigned:%u;\n",
 380			 (unsigned int)sizeof(field.time_stamp),
 381			 (unsigned int)is_signed_type(u64));
 382
 383	trace_seq_printf(s, "\tfield: local_t commit;\t"
 384			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 385			 (unsigned int)offsetof(typeof(field), commit),
 386			 (unsigned int)sizeof(field.commit),
 387			 (unsigned int)is_signed_type(long));
 388
 389	trace_seq_printf(s, "\tfield: int overwrite;\t"
 390			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 391			 (unsigned int)offsetof(typeof(field), commit),
 392			 1,
 393			 (unsigned int)is_signed_type(long));
 394
 395	trace_seq_printf(s, "\tfield: char data;\t"
 396			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
 397			 (unsigned int)offsetof(typeof(field), data),
 398			 (unsigned int)BUF_PAGE_SIZE,
 399			 (unsigned int)is_signed_type(char));
 400
 401	return !trace_seq_has_overflowed(s);
 402}
 403
 404struct rb_irq_work {
 405	struct irq_work			work;
 406	wait_queue_head_t		waiters;
 407	wait_queue_head_t		full_waiters;
 
 408	bool				waiters_pending;
 409	bool				full_waiters_pending;
 410	bool				wakeup_full;
 411};
 412
 413/*
 414 * Structure to hold event state and handle nested events.
 415 */
 416struct rb_event_info {
 417	u64			ts;
 418	u64			delta;
 419	u64			before;
 420	u64			after;
 421	unsigned long		length;
 422	struct buffer_page	*tail_page;
 423	int			add_timestamp;
 424};
 425
 426/*
 427 * Used for the add_timestamp
 428 *  NONE
 429 *  EXTEND - wants a time extend
 430 *  ABSOLUTE - the buffer requests all events to have absolute time stamps
 431 *  FORCE - force a full time stamp.
 432 */
 433enum {
 434	RB_ADD_STAMP_NONE		= 0,
 435	RB_ADD_STAMP_EXTEND		= BIT(1),
 436	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
 437	RB_ADD_STAMP_FORCE		= BIT(3)
 438};
 439/*
 440 * Used for which event context the event is in.
 441 *  NMI     = 0
 442 *  IRQ     = 1
 443 *  SOFTIRQ = 2
 444 *  NORMAL  = 3
 
 445 *
 446 * See trace_recursive_lock() comment below for more details.
 447 */
 448enum {
 
 449	RB_CTX_NMI,
 450	RB_CTX_IRQ,
 451	RB_CTX_SOFTIRQ,
 452	RB_CTX_NORMAL,
 453	RB_CTX_MAX
 454};
 455
 456#if BITS_PER_LONG == 32
 457#define RB_TIME_32
 458#endif
 459
 460/* To test on 64 bit machines */
 461//#define RB_TIME_32
 462
 463#ifdef RB_TIME_32
 464
 465struct rb_time_struct {
 466	local_t		cnt;
 467	local_t		top;
 468	local_t		bottom;
 
 469};
 470#else
 471#include <asm/local64.h>
 472struct rb_time_struct {
 473	local64_t	time;
 474};
 475#endif
 476typedef struct rb_time_struct rb_time_t;
 477
 
 
 478/*
 479 * head_page == tail_page && head == tail then buffer is empty.
 480 */
 481struct ring_buffer_per_cpu {
 482	int				cpu;
 483	atomic_t			record_disabled;
 484	atomic_t			resize_disabled;
 485	struct trace_buffer	*buffer;
 486	raw_spinlock_t			reader_lock;	/* serialize readers */
 487	arch_spinlock_t			lock;
 488	struct lock_class_key		lock_key;
 489	struct buffer_data_page		*free_page;
 490	unsigned long			nr_pages;
 491	unsigned int			current_context;
 492	struct list_head		*pages;
 493	struct buffer_page		*head_page;	/* read from head */
 494	struct buffer_page		*tail_page;	/* write to tail */
 495	struct buffer_page		*commit_page;	/* committed pages */
 496	struct buffer_page		*reader_page;
 497	unsigned long			lost_events;
 498	unsigned long			last_overrun;
 499	unsigned long			nest;
 500	local_t				entries_bytes;
 501	local_t				entries;
 502	local_t				overrun;
 503	local_t				commit_overrun;
 504	local_t				dropped_events;
 505	local_t				committing;
 506	local_t				commits;
 507	local_t				pages_touched;
 
 508	local_t				pages_read;
 509	long				last_pages_touch;
 510	size_t				shortest_full;
 511	unsigned long			read;
 512	unsigned long			read_bytes;
 513	rb_time_t			write_stamp;
 514	rb_time_t			before_stamp;
 
 515	u64				read_stamp;
 516	/* ring buffer pages to update, > 0 to add, < 0 to remove */
 517	long				nr_pages_to_update;
 518	struct list_head		new_pages; /* new pages to add */
 519	struct work_struct		update_pages_work;
 520	struct completion		update_done;
 521
 522	struct rb_irq_work		irq_work;
 523};
 524
 525struct trace_buffer {
 526	unsigned			flags;
 527	int				cpus;
 528	atomic_t			record_disabled;
 529	cpumask_var_t			cpumask;
 530
 531	struct lock_class_key		*reader_lock_key;
 532
 533	struct mutex			mutex;
 534
 535	struct ring_buffer_per_cpu	**buffers;
 536
 537	struct hlist_node		node;
 538	u64				(*clock)(void);
 539
 540	struct rb_irq_work		irq_work;
 541	bool				time_stamp_abs;
 542};
 543
 544struct ring_buffer_iter {
 545	struct ring_buffer_per_cpu	*cpu_buffer;
 546	unsigned long			head;
 547	unsigned long			next_event;
 548	struct buffer_page		*head_page;
 549	struct buffer_page		*cache_reader_page;
 550	unsigned long			cache_read;
 551	u64				read_stamp;
 552	u64				page_stamp;
 553	struct ring_buffer_event	*event;
 554	int				missed_events;
 555};
 556
 557#ifdef RB_TIME_32
 558
 559/*
 560 * On 32 bit machines, local64_t is very expensive. As the ring
 561 * buffer doesn't need all the features of a true 64 bit atomic,
 562 * on 32 bit, it uses these functions (64 still uses local64_t).
 563 *
 564 * For the ring buffer, 64 bit required operations for the time is
 565 * the following:
 566 *
 567 *  - Only need 59 bits (uses 60 to make it even).
 568 *  - Reads may fail if it interrupted a modification of the time stamp.
 569 *      It will succeed if it did not interrupt another write even if
 570 *      the read itself is interrupted by a write.
 571 *      It returns whether it was successful or not.
 572 *
 573 *  - Writes always succeed and will overwrite other writes and writes
 574 *      that were done by events interrupting the current write.
 575 *
 576 *  - A write followed by a read of the same time stamp will always succeed,
 577 *      but may not contain the same value.
 578 *
 579 *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
 580 *      Other than that, it acts like a normal cmpxchg.
 581 *
 582 * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
 583 *  (bottom being the least significant 30 bits of the 60 bit time stamp).
 584 *
 585 * The two most significant bits of each half holds a 2 bit counter (0-3).
 586 * Each update will increment this counter by one.
 587 * When reading the top and bottom, if the two counter bits match then the
 588 *  top and bottom together make a valid 60 bit number.
 589 */
 590#define RB_TIME_SHIFT	30
 591#define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
 
 592
 593static inline int rb_time_cnt(unsigned long val)
 594{
 595	return (val >> RB_TIME_SHIFT) & 3;
 596}
 597
 598static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
 599{
 600	u64 val;
 601
 602	val = top & RB_TIME_VAL_MASK;
 603	val <<= RB_TIME_SHIFT;
 604	val |= bottom & RB_TIME_VAL_MASK;
 605
 606	return val;
 607}
 608
 609static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
 610{
 611	unsigned long top, bottom;
 612	unsigned long c;
 613
 614	/*
 615	 * If the read is interrupted by a write, then the cnt will
 616	 * be different. Loop until both top and bottom have been read
 617	 * without interruption.
 618	 */
 619	do {
 620		c = local_read(&t->cnt);
 621		top = local_read(&t->top);
 622		bottom = local_read(&t->bottom);
 
 623	} while (c != local_read(&t->cnt));
 624
 625	*cnt = rb_time_cnt(top);
 626
 627	/* If top and bottom counts don't match, this interrupted a write */
 628	if (*cnt != rb_time_cnt(bottom))
 629		return false;
 630
 631	*ret = rb_time_val(top, bottom);
 
 632	return true;
 633}
 634
 635static bool rb_time_read(rb_time_t *t, u64 *ret)
 636{
 637	unsigned long cnt;
 638
 639	return __rb_time_read(t, ret, &cnt);
 640}
 641
 642static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
 643{
 644	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
 645}
 646
 647static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
 
 648{
 649	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
 650	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
 
 651}
 652
 653static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
 654{
 655	val = rb_time_val_cnt(val, cnt);
 656	local_set(t, val);
 657}
 658
 659static void rb_time_set(rb_time_t *t, u64 val)
 660{
 661	unsigned long cnt, top, bottom;
 662
 663	rb_time_split(val, &top, &bottom);
 664
 665	/* Writes always succeed with a valid number even if it gets interrupted. */
 666	do {
 667		cnt = local_inc_return(&t->cnt);
 668		rb_time_val_set(&t->top, top, cnt);
 669		rb_time_val_set(&t->bottom, bottom, cnt);
 
 670	} while (cnt != local_read(&t->cnt));
 671}
 672
 673static inline bool
 674rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
 675{
 676	unsigned long ret;
 677
 678	ret = local_cmpxchg(l, expect, set);
 679	return ret == expect;
 680}
 681
 682static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 683{
 684	unsigned long cnt, top, bottom;
 685	unsigned long cnt2, top2, bottom2;
 686	u64 val;
 687
 688	/* The cmpxchg always fails if it interrupted an update */
 689	 if (!__rb_time_read(t, &val, &cnt2))
 690		 return false;
 691
 692	 if (val != expect)
 693		 return false;
 694
 695	 cnt = local_read(&t->cnt);
 696	 if ((cnt & 3) != cnt2)
 697		 return false;
 698
 699	 cnt2 = cnt + 1;
 700
 701	 rb_time_split(val, &top, &bottom);
 702	 top = rb_time_val_cnt(top, cnt);
 703	 bottom = rb_time_val_cnt(bottom, cnt);
 704
 705	 rb_time_split(set, &top2, &bottom2);
 706	 top2 = rb_time_val_cnt(top2, cnt2);
 707	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
 708
 709	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
 710		return false;
 
 
 711	if (!rb_time_read_cmpxchg(&t->top, top, top2))
 712		return false;
 713	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
 714		return false;
 715	return true;
 716}
 717
 718#else /* 64 bits */
 719
 720/* local64_t always succeeds */
 721
 722static inline bool rb_time_read(rb_time_t *t, u64 *ret)
 723{
 724	*ret = local64_read(&t->time);
 725	return true;
 726}
 727static void rb_time_set(rb_time_t *t, u64 val)
 728{
 729	local64_set(&t->time, val);
 730}
 731
 732static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 733{
 734	u64 val;
 735	val = local64_cmpxchg(&t->time, expect, set);
 736	return val == expect;
 737}
 738#endif
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740/**
 741 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 742 * @buffer: The ring_buffer to get the number of pages from
 743 * @cpu: The cpu of the ring_buffer to get the number of pages from
 744 *
 745 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 746 */
 747size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
 748{
 749	return buffer->buffers[cpu]->nr_pages;
 750}
 751
 752/**
 753 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 754 * @buffer: The ring_buffer to get the number of pages from
 755 * @cpu: The cpu of the ring_buffer to get the number of pages from
 756 *
 757 * Returns the number of pages that have content in the ring buffer.
 758 */
 759size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
 760{
 761	size_t read;
 
 762	size_t cnt;
 763
 764	read = local_read(&buffer->buffers[cpu]->pages_read);
 
 765	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 
 
 
 
 
 
 766	/* The reader can read an empty page, but not more than that */
 767	if (cnt < read) {
 768		WARN_ON_ONCE(read > cnt + 1);
 769		return 0;
 770	}
 771
 772	return cnt - read;
 773}
 774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775/*
 776 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 777 *
 778 * Schedules a delayed work to wake up any task that is blocked on the
 779 * ring buffer waiters queue.
 780 */
 781static void rb_wake_up_waiters(struct irq_work *work)
 782{
 783	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 784
 785	wake_up_all(&rbwork->waiters);
 786	if (rbwork->wakeup_full) {
 787		rbwork->wakeup_full = false;
 
 788		wake_up_all(&rbwork->full_waiters);
 789	}
 790}
 791
 792/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793 * ring_buffer_wait - wait for input to the ring buffer
 794 * @buffer: buffer to wait on
 795 * @cpu: the cpu buffer to wait on
 796 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 797 *
 798 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 799 * as data is added to any of the @buffer's cpu buffers. Otherwise
 800 * it will wait for data to be added to a specific cpu buffer.
 801 */
 802int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
 803{
 804	struct ring_buffer_per_cpu *cpu_buffer;
 805	DEFINE_WAIT(wait);
 806	struct rb_irq_work *work;
 
 807	int ret = 0;
 808
 809	/*
 810	 * Depending on what the caller is waiting for, either any
 811	 * data in any cpu buffer, or a specific buffer, put the
 812	 * caller on the appropriate wait queue.
 813	 */
 814	if (cpu == RING_BUFFER_ALL_CPUS) {
 815		work = &buffer->irq_work;
 816		/* Full only makes sense on per cpu reads */
 817		full = 0;
 818	} else {
 819		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 820			return -ENODEV;
 821		cpu_buffer = buffer->buffers[cpu];
 822		work = &cpu_buffer->irq_work;
 823	}
 824
 
 825
 826	while (true) {
 827		if (full)
 828			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 829		else
 830			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 831
 832		/*
 833		 * The events can happen in critical sections where
 834		 * checking a work queue can cause deadlocks.
 835		 * After adding a task to the queue, this flag is set
 836		 * only to notify events to try to wake up the queue
 837		 * using irq_work.
 838		 *
 839		 * We don't clear it even if the buffer is no longer
 840		 * empty. The flag only causes the next event to run
 841		 * irq_work to do the work queue wake up. The worse
 842		 * that can happen if we race with !trace_empty() is that
 843		 * an event will cause an irq_work to try to wake up
 844		 * an empty queue.
 845		 *
 846		 * There's no reason to protect this flag either, as
 847		 * the work queue and irq_work logic will do the necessary
 848		 * synchronization for the wake ups. The only thing
 849		 * that is necessary is that the wake up happens after
 850		 * a task has been queued. It's OK for spurious wake ups.
 851		 */
 852		if (full)
 853			work->full_waiters_pending = true;
 854		else
 855			work->waiters_pending = true;
 856
 857		if (signal_pending(current)) {
 858			ret = -EINTR;
 859			break;
 860		}
 861
 862		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 863			break;
 864
 865		if (cpu != RING_BUFFER_ALL_CPUS &&
 866		    !ring_buffer_empty_cpu(buffer, cpu)) {
 867			unsigned long flags;
 868			bool pagebusy;
 869			size_t nr_pages;
 870			size_t dirty;
 871
 872			if (!full)
 873				break;
 874
 875			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 876			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 877			nr_pages = cpu_buffer->nr_pages;
 878			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 879			if (!cpu_buffer->shortest_full ||
 880			    cpu_buffer->shortest_full < full)
 881				cpu_buffer->shortest_full = full;
 882			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 883			if (!pagebusy &&
 884			    (!nr_pages || (dirty * 100) > full * nr_pages))
 885				break;
 886		}
 887
 888		schedule();
 
 
 
 
 
 889	}
 890
 891	if (full)
 892		finish_wait(&work->full_waiters, &wait);
 893	else
 894		finish_wait(&work->waiters, &wait);
 895
 896	return ret;
 897}
 898
 899/**
 900 * ring_buffer_poll_wait - poll on buffer input
 901 * @buffer: buffer to wait on
 902 * @cpu: the cpu buffer to wait on
 903 * @filp: the file descriptor
 904 * @poll_table: The poll descriptor
 
 905 *
 906 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 907 * as data is added to any of the @buffer's cpu buffers. Otherwise
 908 * it will wait for data to be added to a specific cpu buffer.
 909 *
 910 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 911 * zero otherwise.
 912 */
 913__poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
 914			  struct file *filp, poll_table *poll_table)
 915{
 916	struct ring_buffer_per_cpu *cpu_buffer;
 917	struct rb_irq_work *work;
 918
 919	if (cpu == RING_BUFFER_ALL_CPUS)
 920		work = &buffer->irq_work;
 921	else {
 
 922		if (!cpumask_test_cpu(cpu, buffer->cpumask))
 923			return -EINVAL;
 924
 925		cpu_buffer = buffer->buffers[cpu];
 926		work = &cpu_buffer->irq_work;
 927	}
 928
 929	poll_wait(filp, &work->waiters, poll_table);
 930	work->waiters_pending = true;
 
 
 
 
 
 
 931	/*
 932	 * There's a tight race between setting the waiters_pending and
 933	 * checking if the ring buffer is empty.  Once the waiters_pending bit
 934	 * is set, the next event will wake the task up, but we can get stuck
 935	 * if there's only a single event in.
 936	 *
 937	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
 938	 * but adding a memory barrier to all events will cause too much of a
 939	 * performance hit in the fast path.  We only need a memory barrier when
 940	 * the buffer goes from empty to having content.  But as this race is
 941	 * extremely small, and it's not a problem if another event comes in, we
 942	 * will fix it later.
 943	 */
 944	smp_mb();
 945
 
 
 
 946	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 947	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 948		return EPOLLIN | EPOLLRDNORM;
 949	return 0;
 950}
 951
 952/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 953#define RB_WARN_ON(b, cond)						\
 954	({								\
 955		int _____ret = unlikely(cond);				\
 956		if (_____ret) {						\
 957			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 958				struct ring_buffer_per_cpu *__b =	\
 959					(void *)b;			\
 960				atomic_inc(&__b->buffer->record_disabled); \
 961			} else						\
 962				atomic_inc(&b->record_disabled);	\
 963			WARN_ON(1);					\
 964		}							\
 965		_____ret;						\
 966	})
 967
 968/* Up this if you want to test the TIME_EXTENTS and normalization */
 969#define DEBUG_SHIFT 0
 970
 971static inline u64 rb_time_stamp(struct trace_buffer *buffer)
 972{
 973	u64 ts;
 974
 975	/* Skip retpolines :-( */
 976	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
 977		ts = trace_clock_local();
 978	else
 979		ts = buffer->clock();
 980
 981	/* shift to debug/test normalization and TIME_EXTENTS */
 982	return ts << DEBUG_SHIFT;
 983}
 984
 985u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
 986{
 987	u64 time;
 988
 989	preempt_disable_notrace();
 990	time = rb_time_stamp(buffer);
 991	preempt_enable_notrace();
 992
 993	return time;
 994}
 995EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 996
 997void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
 998				      int cpu, u64 *ts)
 999{
1000	/* Just stupid testing the normalize function and deltas */
1001	*ts >>= DEBUG_SHIFT;
1002}
1003EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1004
1005/*
1006 * Making the ring buffer lockless makes things tricky.
1007 * Although writes only happen on the CPU that they are on,
1008 * and they only need to worry about interrupts. Reads can
1009 * happen on any CPU.
1010 *
1011 * The reader page is always off the ring buffer, but when the
1012 * reader finishes with a page, it needs to swap its page with
1013 * a new one from the buffer. The reader needs to take from
1014 * the head (writes go to the tail). But if a writer is in overwrite
1015 * mode and wraps, it must push the head page forward.
1016 *
1017 * Here lies the problem.
1018 *
1019 * The reader must be careful to replace only the head page, and
1020 * not another one. As described at the top of the file in the
1021 * ASCII art, the reader sets its old page to point to the next
1022 * page after head. It then sets the page after head to point to
1023 * the old reader page. But if the writer moves the head page
1024 * during this operation, the reader could end up with the tail.
1025 *
1026 * We use cmpxchg to help prevent this race. We also do something
1027 * special with the page before head. We set the LSB to 1.
1028 *
1029 * When the writer must push the page forward, it will clear the
1030 * bit that points to the head page, move the head, and then set
1031 * the bit that points to the new head page.
1032 *
1033 * We also don't want an interrupt coming in and moving the head
1034 * page on another writer. Thus we use the second LSB to catch
1035 * that too. Thus:
1036 *
1037 * head->list->prev->next        bit 1          bit 0
1038 *                              -------        -------
1039 * Normal page                     0              0
1040 * Points to head page             0              1
1041 * New head page                   1              0
1042 *
1043 * Note we can not trust the prev pointer of the head page, because:
1044 *
1045 * +----+       +-----+        +-----+
1046 * |    |------>|  T  |---X--->|  N  |
1047 * |    |<------|     |        |     |
1048 * +----+       +-----+        +-----+
1049 *   ^                           ^ |
1050 *   |          +-----+          | |
1051 *   +----------|  R  |----------+ |
1052 *              |     |<-----------+
1053 *              +-----+
1054 *
1055 * Key:  ---X-->  HEAD flag set in pointer
1056 *         T      Tail page
1057 *         R      Reader page
1058 *         N      Next page
1059 *
1060 * (see __rb_reserve_next() to see where this happens)
1061 *
1062 *  What the above shows is that the reader just swapped out
1063 *  the reader page with a page in the buffer, but before it
1064 *  could make the new header point back to the new page added
1065 *  it was preempted by a writer. The writer moved forward onto
1066 *  the new page added by the reader and is about to move forward
1067 *  again.
1068 *
1069 *  You can see, it is legitimate for the previous pointer of
1070 *  the head (or any page) not to point back to itself. But only
1071 *  temporarily.
1072 */
1073
1074#define RB_PAGE_NORMAL		0UL
1075#define RB_PAGE_HEAD		1UL
1076#define RB_PAGE_UPDATE		2UL
1077
1078
1079#define RB_FLAG_MASK		3UL
1080
1081/* PAGE_MOVED is not part of the mask */
1082#define RB_PAGE_MOVED		4UL
1083
1084/*
1085 * rb_list_head - remove any bit
1086 */
1087static struct list_head *rb_list_head(struct list_head *list)
1088{
1089	unsigned long val = (unsigned long)list;
1090
1091	return (struct list_head *)(val & ~RB_FLAG_MASK);
1092}
1093
1094/*
1095 * rb_is_head_page - test if the given page is the head page
1096 *
1097 * Because the reader may move the head_page pointer, we can
1098 * not trust what the head page is (it may be pointing to
1099 * the reader page). But if the next page is a header page,
1100 * its flags will be non zero.
1101 */
1102static inline int
1103rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1104		struct buffer_page *page, struct list_head *list)
1105{
1106	unsigned long val;
1107
1108	val = (unsigned long)list->next;
1109
1110	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1111		return RB_PAGE_MOVED;
1112
1113	return val & RB_FLAG_MASK;
1114}
1115
1116/*
1117 * rb_is_reader_page
1118 *
1119 * The unique thing about the reader page, is that, if the
1120 * writer is ever on it, the previous pointer never points
1121 * back to the reader page.
1122 */
1123static bool rb_is_reader_page(struct buffer_page *page)
1124{
1125	struct list_head *list = page->list.prev;
1126
1127	return rb_list_head(list->next) != &page->list;
1128}
1129
1130/*
1131 * rb_set_list_to_head - set a list_head to be pointing to head.
1132 */
1133static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
1134				struct list_head *list)
1135{
1136	unsigned long *ptr;
1137
1138	ptr = (unsigned long *)&list->next;
1139	*ptr |= RB_PAGE_HEAD;
1140	*ptr &= ~RB_PAGE_UPDATE;
1141}
1142
1143/*
1144 * rb_head_page_activate - sets up head page
1145 */
1146static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1147{
1148	struct buffer_page *head;
1149
1150	head = cpu_buffer->head_page;
1151	if (!head)
1152		return;
1153
1154	/*
1155	 * Set the previous list pointer to have the HEAD flag.
1156	 */
1157	rb_set_list_to_head(cpu_buffer, head->list.prev);
1158}
1159
1160static void rb_list_head_clear(struct list_head *list)
1161{
1162	unsigned long *ptr = (unsigned long *)&list->next;
1163
1164	*ptr &= ~RB_FLAG_MASK;
1165}
1166
1167/*
1168 * rb_head_page_deactivate - clears head page ptr (for free list)
1169 */
1170static void
1171rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1172{
1173	struct list_head *hd;
1174
1175	/* Go through the whole list and clear any pointers found. */
1176	rb_list_head_clear(cpu_buffer->pages);
1177
1178	list_for_each(hd, cpu_buffer->pages)
1179		rb_list_head_clear(hd);
1180}
1181
1182static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1183			    struct buffer_page *head,
1184			    struct buffer_page *prev,
1185			    int old_flag, int new_flag)
1186{
1187	struct list_head *list;
1188	unsigned long val = (unsigned long)&head->list;
1189	unsigned long ret;
1190
1191	list = &prev->list;
1192
1193	val &= ~RB_FLAG_MASK;
1194
1195	ret = cmpxchg((unsigned long *)&list->next,
1196		      val | old_flag, val | new_flag);
1197
1198	/* check if the reader took the page */
1199	if ((ret & ~RB_FLAG_MASK) != val)
1200		return RB_PAGE_MOVED;
1201
1202	return ret & RB_FLAG_MASK;
1203}
1204
1205static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1206				   struct buffer_page *head,
1207				   struct buffer_page *prev,
1208				   int old_flag)
1209{
1210	return rb_head_page_set(cpu_buffer, head, prev,
1211				old_flag, RB_PAGE_UPDATE);
1212}
1213
1214static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1215				 struct buffer_page *head,
1216				 struct buffer_page *prev,
1217				 int old_flag)
1218{
1219	return rb_head_page_set(cpu_buffer, head, prev,
1220				old_flag, RB_PAGE_HEAD);
1221}
1222
1223static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1224				   struct buffer_page *head,
1225				   struct buffer_page *prev,
1226				   int old_flag)
1227{
1228	return rb_head_page_set(cpu_buffer, head, prev,
1229				old_flag, RB_PAGE_NORMAL);
1230}
1231
1232static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1233			       struct buffer_page **bpage)
1234{
1235	struct list_head *p = rb_list_head((*bpage)->list.next);
1236
1237	*bpage = list_entry(p, struct buffer_page, list);
1238}
1239
1240static struct buffer_page *
1241rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1242{
1243	struct buffer_page *head;
1244	struct buffer_page *page;
1245	struct list_head *list;
1246	int i;
1247
1248	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1249		return NULL;
1250
1251	/* sanity check */
1252	list = cpu_buffer->pages;
1253	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1254		return NULL;
1255
1256	page = head = cpu_buffer->head_page;
1257	/*
1258	 * It is possible that the writer moves the header behind
1259	 * where we started, and we miss in one loop.
1260	 * A second loop should grab the header, but we'll do
1261	 * three loops just because I'm paranoid.
1262	 */
1263	for (i = 0; i < 3; i++) {
1264		do {
1265			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1266				cpu_buffer->head_page = page;
1267				return page;
1268			}
1269			rb_inc_page(cpu_buffer, &page);
1270		} while (page != head);
1271	}
1272
1273	RB_WARN_ON(cpu_buffer, 1);
1274
1275	return NULL;
1276}
1277
1278static int rb_head_page_replace(struct buffer_page *old,
1279				struct buffer_page *new)
1280{
1281	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1282	unsigned long val;
1283	unsigned long ret;
1284
1285	val = *ptr & ~RB_FLAG_MASK;
1286	val |= RB_PAGE_HEAD;
1287
1288	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1289
1290	return ret == val;
1291}
1292
1293/*
1294 * rb_tail_page_update - move the tail page forward
1295 */
1296static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1297			       struct buffer_page *tail_page,
1298			       struct buffer_page *next_page)
1299{
1300	unsigned long old_entries;
1301	unsigned long old_write;
1302
1303	/*
1304	 * The tail page now needs to be moved forward.
1305	 *
1306	 * We need to reset the tail page, but without messing
1307	 * with possible erasing of data brought in by interrupts
1308	 * that have moved the tail page and are currently on it.
1309	 *
1310	 * We add a counter to the write field to denote this.
1311	 */
1312	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1313	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1314
1315	local_inc(&cpu_buffer->pages_touched);
1316	/*
1317	 * Just make sure we have seen our old_write and synchronize
1318	 * with any interrupts that come in.
1319	 */
1320	barrier();
1321
1322	/*
1323	 * If the tail page is still the same as what we think
1324	 * it is, then it is up to us to update the tail
1325	 * pointer.
1326	 */
1327	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1328		/* Zero the write counter */
1329		unsigned long val = old_write & ~RB_WRITE_MASK;
1330		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1331
1332		/*
1333		 * This will only succeed if an interrupt did
1334		 * not come in and change it. In which case, we
1335		 * do not want to modify it.
1336		 *
1337		 * We add (void) to let the compiler know that we do not care
1338		 * about the return value of these functions. We use the
1339		 * cmpxchg to only update if an interrupt did not already
1340		 * do it for us. If the cmpxchg fails, we don't care.
1341		 */
1342		(void)local_cmpxchg(&next_page->write, old_write, val);
1343		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1344
1345		/*
1346		 * No need to worry about races with clearing out the commit.
1347		 * it only can increment when a commit takes place. But that
1348		 * only happens in the outer most nested commit.
1349		 */
1350		local_set(&next_page->page->commit, 0);
1351
1352		/* Again, either we update tail_page or an interrupt does */
1353		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1354	}
1355}
1356
1357static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1358			  struct buffer_page *bpage)
1359{
1360	unsigned long val = (unsigned long)bpage;
1361
1362	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1363		return 1;
1364
1365	return 0;
1366}
1367
1368/**
1369 * rb_check_list - make sure a pointer to a list has the last bits zero
1370 */
1371static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1372			 struct list_head *list)
1373{
1374	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1375		return 1;
1376	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1377		return 1;
1378	return 0;
1379}
1380
1381/**
1382 * rb_check_pages - integrity check of buffer pages
1383 * @cpu_buffer: CPU buffer with pages to test
1384 *
1385 * As a safety measure we check to make sure the data pages have not
1386 * been corrupted.
1387 */
1388static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1389{
1390	struct list_head *head = cpu_buffer->pages;
1391	struct buffer_page *bpage, *tmp;
1392
1393	/* Reset the head page if it exists */
1394	if (cpu_buffer->head_page)
1395		rb_set_head_page(cpu_buffer);
1396
1397	rb_head_page_deactivate(cpu_buffer);
1398
1399	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1400		return -1;
1401	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1402		return -1;
1403
1404	if (rb_check_list(cpu_buffer, head))
1405		return -1;
1406
1407	list_for_each_entry_safe(bpage, tmp, head, list) {
1408		if (RB_WARN_ON(cpu_buffer,
1409			       bpage->list.next->prev != &bpage->list))
1410			return -1;
1411		if (RB_WARN_ON(cpu_buffer,
1412			       bpage->list.prev->next != &bpage->list))
1413			return -1;
1414		if (rb_check_list(cpu_buffer, &bpage->list))
1415			return -1;
1416	}
1417
1418	rb_head_page_activate(cpu_buffer);
1419
1420	return 0;
1421}
1422
1423static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
 
1424{
1425	struct buffer_page *bpage, *tmp;
1426	bool user_thread = current->mm != NULL;
1427	gfp_t mflags;
1428	long i;
1429
1430	/*
1431	 * Check if the available memory is there first.
1432	 * Note, si_mem_available() only gives us a rough estimate of available
1433	 * memory. It may not be accurate. But we don't care, we just want
1434	 * to prevent doing any allocation when it is obvious that it is
1435	 * not going to succeed.
1436	 */
1437	i = si_mem_available();
1438	if (i < nr_pages)
1439		return -ENOMEM;
1440
1441	/*
1442	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1443	 * gracefully without invoking oom-killer and the system is not
1444	 * destabilized.
1445	 */
1446	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1447
1448	/*
1449	 * If a user thread allocates too much, and si_mem_available()
1450	 * reports there's enough memory, even though there is not.
1451	 * Make sure the OOM killer kills this thread. This can happen
1452	 * even with RETRY_MAYFAIL because another task may be doing
1453	 * an allocation after this task has taken all memory.
1454	 * This is the task the OOM killer needs to take out during this
1455	 * loop, even if it was triggered by an allocation somewhere else.
1456	 */
1457	if (user_thread)
1458		set_current_oom_origin();
1459	for (i = 0; i < nr_pages; i++) {
1460		struct page *page;
1461
1462		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1463				    mflags, cpu_to_node(cpu));
1464		if (!bpage)
1465			goto free_pages;
1466
 
 
1467		list_add(&bpage->list, pages);
1468
1469		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1470		if (!page)
1471			goto free_pages;
1472		bpage->page = page_address(page);
1473		rb_init_page(bpage->page);
1474
1475		if (user_thread && fatal_signal_pending(current))
1476			goto free_pages;
1477	}
1478	if (user_thread)
1479		clear_current_oom_origin();
1480
1481	return 0;
1482
1483free_pages:
1484	list_for_each_entry_safe(bpage, tmp, pages, list) {
1485		list_del_init(&bpage->list);
1486		free_buffer_page(bpage);
1487	}
1488	if (user_thread)
1489		clear_current_oom_origin();
1490
1491	return -ENOMEM;
1492}
1493
1494static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1495			     unsigned long nr_pages)
1496{
1497	LIST_HEAD(pages);
1498
1499	WARN_ON(!nr_pages);
1500
1501	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1502		return -ENOMEM;
1503
1504	/*
1505	 * The ring buffer page list is a circular list that does not
1506	 * start and end with a list head. All page list items point to
1507	 * other pages.
1508	 */
1509	cpu_buffer->pages = pages.next;
1510	list_del(&pages);
1511
1512	cpu_buffer->nr_pages = nr_pages;
1513
1514	rb_check_pages(cpu_buffer);
1515
1516	return 0;
1517}
1518
1519static struct ring_buffer_per_cpu *
1520rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1521{
1522	struct ring_buffer_per_cpu *cpu_buffer;
1523	struct buffer_page *bpage;
1524	struct page *page;
1525	int ret;
1526
1527	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1528				  GFP_KERNEL, cpu_to_node(cpu));
1529	if (!cpu_buffer)
1530		return NULL;
1531
1532	cpu_buffer->cpu = cpu;
1533	cpu_buffer->buffer = buffer;
1534	raw_spin_lock_init(&cpu_buffer->reader_lock);
1535	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1536	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1537	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1538	init_completion(&cpu_buffer->update_done);
1539	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1540	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1541	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1542
1543	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1544			    GFP_KERNEL, cpu_to_node(cpu));
1545	if (!bpage)
1546		goto fail_free_buffer;
1547
1548	rb_check_bpage(cpu_buffer, bpage);
1549
1550	cpu_buffer->reader_page = bpage;
1551	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1552	if (!page)
1553		goto fail_free_reader;
1554	bpage->page = page_address(page);
1555	rb_init_page(bpage->page);
1556
1557	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1558	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1559
1560	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1561	if (ret < 0)
1562		goto fail_free_reader;
1563
1564	cpu_buffer->head_page
1565		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1566	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1567
1568	rb_head_page_activate(cpu_buffer);
1569
1570	return cpu_buffer;
1571
1572 fail_free_reader:
1573	free_buffer_page(cpu_buffer->reader_page);
1574
1575 fail_free_buffer:
1576	kfree(cpu_buffer);
1577	return NULL;
1578}
1579
1580static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1581{
1582	struct list_head *head = cpu_buffer->pages;
1583	struct buffer_page *bpage, *tmp;
1584
1585	free_buffer_page(cpu_buffer->reader_page);
1586
1587	rb_head_page_deactivate(cpu_buffer);
 
1588
1589	if (head) {
1590		list_for_each_entry_safe(bpage, tmp, head, list) {
1591			list_del_init(&bpage->list);
1592			free_buffer_page(bpage);
1593		}
1594		bpage = list_entry(head, struct buffer_page, list);
1595		free_buffer_page(bpage);
1596	}
1597
1598	kfree(cpu_buffer);
1599}
1600
1601/**
1602 * __ring_buffer_alloc - allocate a new ring_buffer
1603 * @size: the size in bytes per cpu that is needed.
1604 * @flags: attributes to set for the ring buffer.
1605 * @key: ring buffer reader_lock_key.
1606 *
1607 * Currently the only flag that is available is the RB_FL_OVERWRITE
1608 * flag. This flag means that the buffer will overwrite old data
1609 * when the buffer wraps. If this flag is not set, the buffer will
1610 * drop data when the tail hits the head.
1611 */
1612struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1613					struct lock_class_key *key)
1614{
1615	struct trace_buffer *buffer;
1616	long nr_pages;
1617	int bsize;
1618	int cpu;
1619	int ret;
1620
1621	/* keep it in its own cache line */
1622	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1623			 GFP_KERNEL);
1624	if (!buffer)
1625		return NULL;
1626
1627	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1628		goto fail_free_buffer;
1629
1630	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1631	buffer->flags = flags;
1632	buffer->clock = trace_clock_local;
1633	buffer->reader_lock_key = key;
1634
1635	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1636	init_waitqueue_head(&buffer->irq_work.waiters);
1637
1638	/* need at least two pages */
1639	if (nr_pages < 2)
1640		nr_pages = 2;
1641
1642	buffer->cpus = nr_cpu_ids;
1643
1644	bsize = sizeof(void *) * nr_cpu_ids;
1645	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1646				  GFP_KERNEL);
1647	if (!buffer->buffers)
1648		goto fail_free_cpumask;
1649
1650	cpu = raw_smp_processor_id();
1651	cpumask_set_cpu(cpu, buffer->cpumask);
1652	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1653	if (!buffer->buffers[cpu])
1654		goto fail_free_buffers;
1655
1656	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1657	if (ret < 0)
1658		goto fail_free_buffers;
1659
1660	mutex_init(&buffer->mutex);
1661
1662	return buffer;
1663
1664 fail_free_buffers:
1665	for_each_buffer_cpu(buffer, cpu) {
1666		if (buffer->buffers[cpu])
1667			rb_free_cpu_buffer(buffer->buffers[cpu]);
1668	}
1669	kfree(buffer->buffers);
1670
1671 fail_free_cpumask:
1672	free_cpumask_var(buffer->cpumask);
1673
1674 fail_free_buffer:
1675	kfree(buffer);
1676	return NULL;
1677}
1678EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1679
1680/**
1681 * ring_buffer_free - free a ring buffer.
1682 * @buffer: the buffer to free.
1683 */
1684void
1685ring_buffer_free(struct trace_buffer *buffer)
1686{
1687	int cpu;
1688
1689	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1690
1691	for_each_buffer_cpu(buffer, cpu)
1692		rb_free_cpu_buffer(buffer->buffers[cpu]);
1693
1694	kfree(buffer->buffers);
1695	free_cpumask_var(buffer->cpumask);
1696
1697	kfree(buffer);
1698}
1699EXPORT_SYMBOL_GPL(ring_buffer_free);
1700
1701void ring_buffer_set_clock(struct trace_buffer *buffer,
1702			   u64 (*clock)(void))
1703{
1704	buffer->clock = clock;
1705}
1706
1707void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1708{
1709	buffer->time_stamp_abs = abs;
1710}
1711
1712bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1713{
1714	return buffer->time_stamp_abs;
1715}
1716
1717static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1718
1719static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1720{
1721	return local_read(&bpage->entries) & RB_WRITE_MASK;
1722}
1723
1724static inline unsigned long rb_page_write(struct buffer_page *bpage)
1725{
1726	return local_read(&bpage->write) & RB_WRITE_MASK;
1727}
1728
1729static int
1730rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1731{
1732	struct list_head *tail_page, *to_remove, *next_page;
1733	struct buffer_page *to_remove_page, *tmp_iter_page;
1734	struct buffer_page *last_page, *first_page;
1735	unsigned long nr_removed;
1736	unsigned long head_bit;
1737	int page_entries;
1738
1739	head_bit = 0;
1740
1741	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1742	atomic_inc(&cpu_buffer->record_disabled);
1743	/*
1744	 * We don't race with the readers since we have acquired the reader
1745	 * lock. We also don't race with writers after disabling recording.
1746	 * This makes it easy to figure out the first and the last page to be
1747	 * removed from the list. We unlink all the pages in between including
1748	 * the first and last pages. This is done in a busy loop so that we
1749	 * lose the least number of traces.
1750	 * The pages are freed after we restart recording and unlock readers.
1751	 */
1752	tail_page = &cpu_buffer->tail_page->list;
1753
1754	/*
1755	 * tail page might be on reader page, we remove the next page
1756	 * from the ring buffer
1757	 */
1758	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1759		tail_page = rb_list_head(tail_page->next);
1760	to_remove = tail_page;
1761
1762	/* start of pages to remove */
1763	first_page = list_entry(rb_list_head(to_remove->next),
1764				struct buffer_page, list);
1765
1766	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1767		to_remove = rb_list_head(to_remove)->next;
1768		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1769	}
1770
1771	next_page = rb_list_head(to_remove)->next;
1772
1773	/*
1774	 * Now we remove all pages between tail_page and next_page.
1775	 * Make sure that we have head_bit value preserved for the
1776	 * next page
1777	 */
1778	tail_page->next = (struct list_head *)((unsigned long)next_page |
1779						head_bit);
1780	next_page = rb_list_head(next_page);
1781	next_page->prev = tail_page;
1782
1783	/* make sure pages points to a valid page in the ring buffer */
1784	cpu_buffer->pages = next_page;
1785
1786	/* update head page */
1787	if (head_bit)
1788		cpu_buffer->head_page = list_entry(next_page,
1789						struct buffer_page, list);
1790
1791	/*
1792	 * change read pointer to make sure any read iterators reset
1793	 * themselves
1794	 */
1795	cpu_buffer->read = 0;
1796
1797	/* pages are removed, resume tracing and then free the pages */
1798	atomic_dec(&cpu_buffer->record_disabled);
1799	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1800
1801	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1802
1803	/* last buffer page to remove */
1804	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1805				list);
1806	tmp_iter_page = first_page;
1807
1808	do {
1809		cond_resched();
1810
1811		to_remove_page = tmp_iter_page;
1812		rb_inc_page(cpu_buffer, &tmp_iter_page);
1813
1814		/* update the counters */
1815		page_entries = rb_page_entries(to_remove_page);
1816		if (page_entries) {
1817			/*
1818			 * If something was added to this page, it was full
1819			 * since it is not the tail page. So we deduct the
1820			 * bytes consumed in ring buffer from here.
1821			 * Increment overrun to account for the lost events.
1822			 */
1823			local_add(page_entries, &cpu_buffer->overrun);
1824			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
1825		}
1826
1827		/*
1828		 * We have already removed references to this list item, just
1829		 * free up the buffer_page and its page
1830		 */
1831		free_buffer_page(to_remove_page);
1832		nr_removed--;
1833
1834	} while (to_remove_page != last_page);
1835
1836	RB_WARN_ON(cpu_buffer, nr_removed);
1837
1838	return nr_removed == 0;
1839}
1840
1841static int
1842rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1843{
1844	struct list_head *pages = &cpu_buffer->new_pages;
1845	int retries, success;
 
1846
1847	raw_spin_lock_irq(&cpu_buffer->reader_lock);
 
1848	/*
1849	 * We are holding the reader lock, so the reader page won't be swapped
1850	 * in the ring buffer. Now we are racing with the writer trying to
1851	 * move head page and the tail page.
1852	 * We are going to adapt the reader page update process where:
1853	 * 1. We first splice the start and end of list of new pages between
1854	 *    the head page and its previous page.
1855	 * 2. We cmpxchg the prev_page->next to point from head page to the
1856	 *    start of new pages list.
1857	 * 3. Finally, we update the head->prev to the end of new list.
1858	 *
1859	 * We will try this process 10 times, to make sure that we don't keep
1860	 * spinning.
1861	 */
1862	retries = 10;
1863	success = 0;
1864	while (retries--) {
1865		struct list_head *head_page, *prev_page, *r;
1866		struct list_head *last_page, *first_page;
1867		struct list_head *head_page_with_bit;
1868
1869		head_page = &rb_set_head_page(cpu_buffer)->list;
1870		if (!head_page)
1871			break;
1872		prev_page = head_page->prev;
1873
1874		first_page = pages->next;
1875		last_page  = pages->prev;
1876
1877		head_page_with_bit = (struct list_head *)
1878				     ((unsigned long)head_page | RB_PAGE_HEAD);
1879
1880		last_page->next = head_page_with_bit;
1881		first_page->prev = prev_page;
1882
1883		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1884
1885		if (r == head_page_with_bit) {
1886			/*
1887			 * yay, we replaced the page pointer to our new list,
1888			 * now, we just have to update to head page's prev
1889			 * pointer to point to end of list
1890			 */
1891			head_page->prev = last_page;
1892			success = 1;
1893			break;
1894		}
1895	}
1896
1897	if (success)
1898		INIT_LIST_HEAD(pages);
1899	/*
1900	 * If we weren't successful in adding in new pages, warn and stop
1901	 * tracing
1902	 */
1903	RB_WARN_ON(cpu_buffer, !success);
1904	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1905
1906	/* free pages if they weren't inserted */
1907	if (!success) {
1908		struct buffer_page *bpage, *tmp;
1909		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1910					 list) {
1911			list_del_init(&bpage->list);
1912			free_buffer_page(bpage);
1913		}
1914	}
1915	return success;
1916}
1917
1918static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1919{
1920	int success;
1921
1922	if (cpu_buffer->nr_pages_to_update > 0)
1923		success = rb_insert_pages(cpu_buffer);
1924	else
1925		success = rb_remove_pages(cpu_buffer,
1926					-cpu_buffer->nr_pages_to_update);
1927
1928	if (success)
1929		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1930}
1931
1932static void update_pages_handler(struct work_struct *work)
1933{
1934	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1935			struct ring_buffer_per_cpu, update_pages_work);
1936	rb_update_pages(cpu_buffer);
1937	complete(&cpu_buffer->update_done);
1938}
1939
1940/**
1941 * ring_buffer_resize - resize the ring buffer
1942 * @buffer: the buffer to resize.
1943 * @size: the new size.
1944 * @cpu_id: the cpu buffer to resize
1945 *
1946 * Minimum size is 2 * BUF_PAGE_SIZE.
1947 *
1948 * Returns 0 on success and < 0 on failure.
1949 */
1950int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1951			int cpu_id)
1952{
1953	struct ring_buffer_per_cpu *cpu_buffer;
1954	unsigned long nr_pages;
1955	int cpu, err = 0;
1956
1957	/*
1958	 * Always succeed at resizing a non-existent buffer:
1959	 */
1960	if (!buffer)
1961		return size;
1962
1963	/* Make sure the requested buffer exists */
1964	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1965	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1966		return size;
1967
1968	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1969
1970	/* we need a minimum of two pages */
1971	if (nr_pages < 2)
1972		nr_pages = 2;
1973
1974	size = nr_pages * BUF_PAGE_SIZE;
1975
1976	/* prevent another thread from changing buffer sizes */
1977	mutex_lock(&buffer->mutex);
1978
1979
1980	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1981		/*
1982		 * Don't succeed if resizing is disabled, as a reader might be
1983		 * manipulating the ring buffer and is expecting a sane state while
1984		 * this is true.
1985		 */
1986		for_each_buffer_cpu(buffer, cpu) {
1987			cpu_buffer = buffer->buffers[cpu];
1988			if (atomic_read(&cpu_buffer->resize_disabled)) {
1989				err = -EBUSY;
1990				goto out_err_unlock;
1991			}
1992		}
1993
1994		/* calculate the pages to update */
1995		for_each_buffer_cpu(buffer, cpu) {
1996			cpu_buffer = buffer->buffers[cpu];
1997
1998			cpu_buffer->nr_pages_to_update = nr_pages -
1999							cpu_buffer->nr_pages;
2000			/*
2001			 * nothing more to do for removing pages or no update
2002			 */
2003			if (cpu_buffer->nr_pages_to_update <= 0)
2004				continue;
2005			/*
2006			 * to add pages, make sure all new pages can be
2007			 * allocated without receiving ENOMEM
2008			 */
2009			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2010			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2011						&cpu_buffer->new_pages, cpu)) {
2012				/* not enough memory for new pages */
2013				err = -ENOMEM;
2014				goto out_err;
2015			}
2016		}
2017
2018		get_online_cpus();
2019		/*
2020		 * Fire off all the required work handlers
2021		 * We can't schedule on offline CPUs, but it's not necessary
2022		 * since we can change their buffer sizes without any race.
2023		 */
2024		for_each_buffer_cpu(buffer, cpu) {
2025			cpu_buffer = buffer->buffers[cpu];
2026			if (!cpu_buffer->nr_pages_to_update)
2027				continue;
2028
2029			/* Can't run something on an offline CPU. */
2030			if (!cpu_online(cpu)) {
2031				rb_update_pages(cpu_buffer);
2032				cpu_buffer->nr_pages_to_update = 0;
2033			} else {
2034				schedule_work_on(cpu,
2035						&cpu_buffer->update_pages_work);
 
 
 
 
 
 
 
 
2036			}
2037		}
2038
2039		/* wait for all the updates to complete */
2040		for_each_buffer_cpu(buffer, cpu) {
2041			cpu_buffer = buffer->buffers[cpu];
2042			if (!cpu_buffer->nr_pages_to_update)
2043				continue;
2044
2045			if (cpu_online(cpu))
2046				wait_for_completion(&cpu_buffer->update_done);
2047			cpu_buffer->nr_pages_to_update = 0;
2048		}
2049
2050		put_online_cpus();
2051	} else {
2052		/* Make sure this CPU has been initialized */
2053		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
2054			goto out;
2055
2056		cpu_buffer = buffer->buffers[cpu_id];
2057
2058		if (nr_pages == cpu_buffer->nr_pages)
2059			goto out;
2060
2061		/*
2062		 * Don't succeed if resizing is disabled, as a reader might be
2063		 * manipulating the ring buffer and is expecting a sane state while
2064		 * this is true.
2065		 */
2066		if (atomic_read(&cpu_buffer->resize_disabled)) {
2067			err = -EBUSY;
2068			goto out_err_unlock;
2069		}
2070
2071		cpu_buffer->nr_pages_to_update = nr_pages -
2072						cpu_buffer->nr_pages;
2073
2074		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2075		if (cpu_buffer->nr_pages_to_update > 0 &&
2076			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
2077					    &cpu_buffer->new_pages, cpu_id)) {
2078			err = -ENOMEM;
2079			goto out_err;
2080		}
2081
2082		get_online_cpus();
2083
2084		/* Can't run something on an offline CPU. */
2085		if (!cpu_online(cpu_id))
2086			rb_update_pages(cpu_buffer);
2087		else {
2088			schedule_work_on(cpu_id,
2089					 &cpu_buffer->update_pages_work);
2090			wait_for_completion(&cpu_buffer->update_done);
 
 
 
 
 
 
 
 
2091		}
2092
2093		cpu_buffer->nr_pages_to_update = 0;
2094		put_online_cpus();
2095	}
2096
2097 out:
2098	/*
2099	 * The ring buffer resize can happen with the ring buffer
2100	 * enabled, so that the update disturbs the tracing as little
2101	 * as possible. But if the buffer is disabled, we do not need
2102	 * to worry about that, and we can take the time to verify
2103	 * that the buffer is not corrupt.
2104	 */
2105	if (atomic_read(&buffer->record_disabled)) {
2106		atomic_inc(&buffer->record_disabled);
2107		/*
2108		 * Even though the buffer was disabled, we must make sure
2109		 * that it is truly disabled before calling rb_check_pages.
2110		 * There could have been a race between checking
2111		 * record_disable and incrementing it.
2112		 */
2113		synchronize_rcu();
2114		for_each_buffer_cpu(buffer, cpu) {
2115			cpu_buffer = buffer->buffers[cpu];
2116			rb_check_pages(cpu_buffer);
2117		}
2118		atomic_dec(&buffer->record_disabled);
2119	}
2120
2121	mutex_unlock(&buffer->mutex);
2122	return size;
2123
2124 out_err:
2125	for_each_buffer_cpu(buffer, cpu) {
2126		struct buffer_page *bpage, *tmp;
2127
2128		cpu_buffer = buffer->buffers[cpu];
2129		cpu_buffer->nr_pages_to_update = 0;
2130
2131		if (list_empty(&cpu_buffer->new_pages))
2132			continue;
2133
2134		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2135					list) {
2136			list_del_init(&bpage->list);
2137			free_buffer_page(bpage);
2138		}
2139	}
2140 out_err_unlock:
2141	mutex_unlock(&buffer->mutex);
2142	return err;
2143}
2144EXPORT_SYMBOL_GPL(ring_buffer_resize);
2145
2146void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2147{
2148	mutex_lock(&buffer->mutex);
2149	if (val)
2150		buffer->flags |= RB_FL_OVERWRITE;
2151	else
2152		buffer->flags &= ~RB_FL_OVERWRITE;
2153	mutex_unlock(&buffer->mutex);
2154}
2155EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2156
2157static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2158{
2159	return bpage->page->data + index;
2160}
2161
2162static __always_inline struct ring_buffer_event *
2163rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2164{
2165	return __rb_page_index(cpu_buffer->reader_page,
2166			       cpu_buffer->reader_page->read);
2167}
2168
2169static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2170{
2171	return local_read(&bpage->page->commit);
2172}
2173
2174static struct ring_buffer_event *
2175rb_iter_head_event(struct ring_buffer_iter *iter)
2176{
2177	struct ring_buffer_event *event;
2178	struct buffer_page *iter_head_page = iter->head_page;
2179	unsigned long commit;
2180	unsigned length;
2181
2182	if (iter->head != iter->next_event)
2183		return iter->event;
2184
2185	/*
2186	 * When the writer goes across pages, it issues a cmpxchg which
2187	 * is a mb(), which will synchronize with the rmb here.
2188	 * (see rb_tail_page_update() and __rb_reserve_next())
2189	 */
2190	commit = rb_page_commit(iter_head_page);
2191	smp_rmb();
2192	event = __rb_page_index(iter_head_page, iter->head);
2193	length = rb_event_length(event);
2194
2195	/*
2196	 * READ_ONCE() doesn't work on functions and we don't want the
2197	 * compiler doing any crazy optimizations with length.
2198	 */
2199	barrier();
2200
2201	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2202		/* Writer corrupted the read? */
2203		goto reset;
2204
2205	memcpy(iter->event, event, length);
2206	/*
2207	 * If the page stamp is still the same after this rmb() then the
2208	 * event was safely copied without the writer entering the page.
2209	 */
2210	smp_rmb();
2211
2212	/* Make sure the page didn't change since we read this */
2213	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2214	    commit > rb_page_commit(iter_head_page))
2215		goto reset;
2216
2217	iter->next_event = iter->head + length;
2218	return iter->event;
2219 reset:
2220	/* Reset to the beginning */
2221	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2222	iter->head = 0;
2223	iter->next_event = 0;
2224	iter->missed_events = 1;
2225	return NULL;
2226}
2227
2228/* Size is determined by what has been committed */
2229static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2230{
2231	return rb_page_commit(bpage);
2232}
2233
2234static __always_inline unsigned
2235rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2236{
2237	return rb_page_commit(cpu_buffer->commit_page);
2238}
2239
2240static __always_inline unsigned
2241rb_event_index(struct ring_buffer_event *event)
2242{
2243	unsigned long addr = (unsigned long)event;
2244
2245	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2246}
2247
2248static void rb_inc_iter(struct ring_buffer_iter *iter)
2249{
2250	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2251
2252	/*
2253	 * The iterator could be on the reader page (it starts there).
2254	 * But the head could have moved, since the reader was
2255	 * found. Check for this case and assign the iterator
2256	 * to the head page instead of next.
2257	 */
2258	if (iter->head_page == cpu_buffer->reader_page)
2259		iter->head_page = rb_set_head_page(cpu_buffer);
2260	else
2261		rb_inc_page(cpu_buffer, &iter->head_page);
2262
2263	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2264	iter->head = 0;
2265	iter->next_event = 0;
2266}
2267
2268/*
2269 * rb_handle_head_page - writer hit the head page
2270 *
2271 * Returns: +1 to retry page
2272 *           0 to continue
2273 *          -1 on error
2274 */
2275static int
2276rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2277		    struct buffer_page *tail_page,
2278		    struct buffer_page *next_page)
2279{
2280	struct buffer_page *new_head;
2281	int entries;
2282	int type;
2283	int ret;
2284
2285	entries = rb_page_entries(next_page);
2286
2287	/*
2288	 * The hard part is here. We need to move the head
2289	 * forward, and protect against both readers on
2290	 * other CPUs and writers coming in via interrupts.
2291	 */
2292	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2293				       RB_PAGE_HEAD);
2294
2295	/*
2296	 * type can be one of four:
2297	 *  NORMAL - an interrupt already moved it for us
2298	 *  HEAD   - we are the first to get here.
2299	 *  UPDATE - we are the interrupt interrupting
2300	 *           a current move.
2301	 *  MOVED  - a reader on another CPU moved the next
2302	 *           pointer to its reader page. Give up
2303	 *           and try again.
2304	 */
2305
2306	switch (type) {
2307	case RB_PAGE_HEAD:
2308		/*
2309		 * We changed the head to UPDATE, thus
2310		 * it is our responsibility to update
2311		 * the counters.
2312		 */
2313		local_add(entries, &cpu_buffer->overrun);
2314		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
 
2315
2316		/*
2317		 * The entries will be zeroed out when we move the
2318		 * tail page.
2319		 */
2320
2321		/* still more to do */
2322		break;
2323
2324	case RB_PAGE_UPDATE:
2325		/*
2326		 * This is an interrupt that interrupt the
2327		 * previous update. Still more to do.
2328		 */
2329		break;
2330	case RB_PAGE_NORMAL:
2331		/*
2332		 * An interrupt came in before the update
2333		 * and processed this for us.
2334		 * Nothing left to do.
2335		 */
2336		return 1;
2337	case RB_PAGE_MOVED:
2338		/*
2339		 * The reader is on another CPU and just did
2340		 * a swap with our next_page.
2341		 * Try again.
2342		 */
2343		return 1;
2344	default:
2345		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2346		return -1;
2347	}
2348
2349	/*
2350	 * Now that we are here, the old head pointer is
2351	 * set to UPDATE. This will keep the reader from
2352	 * swapping the head page with the reader page.
2353	 * The reader (on another CPU) will spin till
2354	 * we are finished.
2355	 *
2356	 * We just need to protect against interrupts
2357	 * doing the job. We will set the next pointer
2358	 * to HEAD. After that, we set the old pointer
2359	 * to NORMAL, but only if it was HEAD before.
2360	 * otherwise we are an interrupt, and only
2361	 * want the outer most commit to reset it.
2362	 */
2363	new_head = next_page;
2364	rb_inc_page(cpu_buffer, &new_head);
2365
2366	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2367				    RB_PAGE_NORMAL);
2368
2369	/*
2370	 * Valid returns are:
2371	 *  HEAD   - an interrupt came in and already set it.
2372	 *  NORMAL - One of two things:
2373	 *            1) We really set it.
2374	 *            2) A bunch of interrupts came in and moved
2375	 *               the page forward again.
2376	 */
2377	switch (ret) {
2378	case RB_PAGE_HEAD:
2379	case RB_PAGE_NORMAL:
2380		/* OK */
2381		break;
2382	default:
2383		RB_WARN_ON(cpu_buffer, 1);
2384		return -1;
2385	}
2386
2387	/*
2388	 * It is possible that an interrupt came in,
2389	 * set the head up, then more interrupts came in
2390	 * and moved it again. When we get back here,
2391	 * the page would have been set to NORMAL but we
2392	 * just set it back to HEAD.
2393	 *
2394	 * How do you detect this? Well, if that happened
2395	 * the tail page would have moved.
2396	 */
2397	if (ret == RB_PAGE_NORMAL) {
2398		struct buffer_page *buffer_tail_page;
2399
2400		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2401		/*
2402		 * If the tail had moved passed next, then we need
2403		 * to reset the pointer.
2404		 */
2405		if (buffer_tail_page != tail_page &&
2406		    buffer_tail_page != next_page)
2407			rb_head_page_set_normal(cpu_buffer, new_head,
2408						next_page,
2409						RB_PAGE_HEAD);
2410	}
2411
2412	/*
2413	 * If this was the outer most commit (the one that
2414	 * changed the original pointer from HEAD to UPDATE),
2415	 * then it is up to us to reset it to NORMAL.
2416	 */
2417	if (type == RB_PAGE_HEAD) {
2418		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2419					      tail_page,
2420					      RB_PAGE_UPDATE);
2421		if (RB_WARN_ON(cpu_buffer,
2422			       ret != RB_PAGE_UPDATE))
2423			return -1;
2424	}
2425
2426	return 0;
2427}
2428
2429static inline void
2430rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2431	      unsigned long tail, struct rb_event_info *info)
2432{
2433	struct buffer_page *tail_page = info->tail_page;
2434	struct ring_buffer_event *event;
2435	unsigned long length = info->length;
2436
2437	/*
2438	 * Only the event that crossed the page boundary
2439	 * must fill the old tail_page with padding.
2440	 */
2441	if (tail >= BUF_PAGE_SIZE) {
2442		/*
2443		 * If the page was filled, then we still need
2444		 * to update the real_end. Reset it to zero
2445		 * and the reader will ignore it.
2446		 */
2447		if (tail == BUF_PAGE_SIZE)
2448			tail_page->real_end = 0;
2449
2450		local_sub(length, &tail_page->write);
2451		return;
2452	}
2453
2454	event = __rb_page_index(tail_page, tail);
2455
2456	/* account for padding bytes */
2457	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2458
2459	/*
2460	 * Save the original length to the meta data.
2461	 * This will be used by the reader to add lost event
2462	 * counter.
2463	 */
2464	tail_page->real_end = tail;
2465
2466	/*
2467	 * If this event is bigger than the minimum size, then
2468	 * we need to be careful that we don't subtract the
2469	 * write counter enough to allow another writer to slip
2470	 * in on this page.
2471	 * We put in a discarded commit instead, to make sure
2472	 * that this space is not used again.
2473	 *
2474	 * If we are less than the minimum size, we don't need to
2475	 * worry about it.
2476	 */
2477	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2478		/* No room for any events */
2479
2480		/* Mark the rest of the page with padding */
2481		rb_event_set_padding(event);
2482
 
 
 
2483		/* Set the write back to the previous setting */
2484		local_sub(length, &tail_page->write);
2485		return;
2486	}
2487
2488	/* Put in a discarded event */
2489	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2490	event->type_len = RINGBUF_TYPE_PADDING;
2491	/* time delta must be non zero */
2492	event->time_delta = 1;
2493
 
 
 
2494	/* Set write to end of buffer */
2495	length = (tail + length) - BUF_PAGE_SIZE;
2496	local_sub(length, &tail_page->write);
2497}
2498
2499static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2500
2501/*
2502 * This is the slow path, force gcc not to inline it.
2503 */
2504static noinline struct ring_buffer_event *
2505rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2506	     unsigned long tail, struct rb_event_info *info)
2507{
2508	struct buffer_page *tail_page = info->tail_page;
2509	struct buffer_page *commit_page = cpu_buffer->commit_page;
2510	struct trace_buffer *buffer = cpu_buffer->buffer;
2511	struct buffer_page *next_page;
2512	int ret;
2513
2514	next_page = tail_page;
2515
2516	rb_inc_page(cpu_buffer, &next_page);
2517
2518	/*
2519	 * If for some reason, we had an interrupt storm that made
2520	 * it all the way around the buffer, bail, and warn
2521	 * about it.
2522	 */
2523	if (unlikely(next_page == commit_page)) {
2524		local_inc(&cpu_buffer->commit_overrun);
2525		goto out_reset;
2526	}
2527
2528	/*
2529	 * This is where the fun begins!
2530	 *
2531	 * We are fighting against races between a reader that
2532	 * could be on another CPU trying to swap its reader
2533	 * page with the buffer head.
2534	 *
2535	 * We are also fighting against interrupts coming in and
2536	 * moving the head or tail on us as well.
2537	 *
2538	 * If the next page is the head page then we have filled
2539	 * the buffer, unless the commit page is still on the
2540	 * reader page.
2541	 */
2542	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2543
2544		/*
2545		 * If the commit is not on the reader page, then
2546		 * move the header page.
2547		 */
2548		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2549			/*
2550			 * If we are not in overwrite mode,
2551			 * this is easy, just stop here.
2552			 */
2553			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2554				local_inc(&cpu_buffer->dropped_events);
2555				goto out_reset;
2556			}
2557
2558			ret = rb_handle_head_page(cpu_buffer,
2559						  tail_page,
2560						  next_page);
2561			if (ret < 0)
2562				goto out_reset;
2563			if (ret)
2564				goto out_again;
2565		} else {
2566			/*
2567			 * We need to be careful here too. The
2568			 * commit page could still be on the reader
2569			 * page. We could have a small buffer, and
2570			 * have filled up the buffer with events
2571			 * from interrupts and such, and wrapped.
2572			 *
2573			 * Note, if the tail page is also the on the
2574			 * reader_page, we let it move out.
2575			 */
2576			if (unlikely((cpu_buffer->commit_page !=
2577				      cpu_buffer->tail_page) &&
2578				     (cpu_buffer->commit_page ==
2579				      cpu_buffer->reader_page))) {
2580				local_inc(&cpu_buffer->commit_overrun);
2581				goto out_reset;
2582			}
2583		}
2584	}
2585
2586	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2587
2588 out_again:
2589
2590	rb_reset_tail(cpu_buffer, tail, info);
2591
2592	/* Commit what we have for now. */
2593	rb_end_commit(cpu_buffer);
2594	/* rb_end_commit() decs committing */
2595	local_inc(&cpu_buffer->committing);
2596
2597	/* fail and let the caller try again */
2598	return ERR_PTR(-EAGAIN);
2599
2600 out_reset:
2601	/* reset write */
2602	rb_reset_tail(cpu_buffer, tail, info);
2603
2604	return NULL;
2605}
2606
2607/* Slow path */
2608static struct ring_buffer_event *
2609rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2610{
2611	if (abs)
2612		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2613	else
2614		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2615
2616	/* Not the first event on the page, or not delta? */
2617	if (abs || rb_event_index(event)) {
2618		event->time_delta = delta & TS_MASK;
2619		event->array[0] = delta >> TS_SHIFT;
2620	} else {
2621		/* nope, just zero it */
2622		event->time_delta = 0;
2623		event->array[0] = 0;
2624	}
2625
2626	return skip_time_extend(event);
2627}
2628
2629static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2630				     struct ring_buffer_event *event);
2631
2632#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2633static inline bool sched_clock_stable(void)
2634{
2635	return true;
2636}
2637#endif
2638
2639static void
2640rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2641		   struct rb_event_info *info)
2642{
2643	u64 write_stamp;
2644
2645	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2646		  (unsigned long long)info->delta,
2647		  (unsigned long long)info->ts,
2648		  (unsigned long long)info->before,
2649		  (unsigned long long)info->after,
2650		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2651		  sched_clock_stable() ? "" :
2652		  "If you just came from a suspend/resume,\n"
2653		  "please switch to the trace global clock:\n"
2654		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2655		  "or add trace_clock=global to the kernel command line\n");
2656}
2657
2658static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2659				      struct ring_buffer_event **event,
2660				      struct rb_event_info *info,
2661				      u64 *delta,
2662				      unsigned int *length)
2663{
2664	bool abs = info->add_timestamp &
2665		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2666
2667	if (unlikely(info->delta > (1ULL << 59))) {
 
 
 
 
 
 
 
2668		/* did the clock go backwards */
2669		if (info->before == info->after && info->before > info->ts) {
2670			/* not interrupted */
2671			static int once;
2672
2673			/*
2674			 * This is possible with a recalibrating of the TSC.
2675			 * Do not produce a call stack, but just report it.
2676			 */
2677			if (!once) {
2678				once++;
2679				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2680					info->before, info->ts);
2681			}
2682		} else
2683			rb_check_timestamp(cpu_buffer, info);
2684		if (!abs)
2685			info->delta = 0;
2686	}
2687	*event = rb_add_time_stamp(*event, info->delta, abs);
2688	*length -= RB_LEN_TIME_EXTEND;
2689	*delta = 0;
2690}
2691
2692/**
2693 * rb_update_event - update event type and data
2694 * @cpu_buffer: The per cpu buffer of the @event
2695 * @event: the event to update
2696 * @info: The info to update the @event with (contains length and delta)
2697 *
2698 * Update the type and data fields of the @event. The length
2699 * is the actual size that is written to the ring buffer,
2700 * and with this, we can determine what to place into the
2701 * data field.
2702 */
2703static void
2704rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2705		struct ring_buffer_event *event,
2706		struct rb_event_info *info)
2707{
2708	unsigned length = info->length;
2709	u64 delta = info->delta;
 
 
 
 
2710
2711	/*
2712	 * If we need to add a timestamp, then we
2713	 * add it to the start of the reserved space.
2714	 */
2715	if (unlikely(info->add_timestamp))
2716		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2717
2718	event->time_delta = delta;
2719	length -= RB_EVNT_HDR_SIZE;
2720	if (length > RB_MAX_SMALL_DATA) {
2721		event->type_len = 0;
2722		event->array[0] = length;
2723	} else
2724		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2725}
2726
2727static unsigned rb_calculate_event_length(unsigned length)
2728{
2729	struct ring_buffer_event event; /* Used only for sizeof array */
2730
2731	/* zero length can cause confusions */
2732	if (!length)
2733		length++;
2734
2735	if (length > RB_MAX_SMALL_DATA)
2736		length += sizeof(event.array[0]);
2737
2738	length += RB_EVNT_HDR_SIZE;
2739	length = ALIGN(length, RB_ALIGNMENT);
2740
2741	/*
2742	 * In case the time delta is larger than the 27 bits for it
2743	 * in the header, we need to add a timestamp. If another
2744	 * event comes in when trying to discard this one to increase
2745	 * the length, then the timestamp will be added in the allocated
2746	 * space of this event. If length is bigger than the size needed
2747	 * for the TIME_EXTEND, then padding has to be used. The events
2748	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2749	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2750	 * As length is a multiple of 4, we only need to worry if it
2751	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2752	 */
2753	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2754		length += RB_ALIGNMENT;
2755
2756	return length;
2757}
2758
2759static __always_inline bool
2760rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2761		   struct ring_buffer_event *event)
2762{
2763	unsigned long addr = (unsigned long)event;
2764	unsigned long index;
2765
2766	index = rb_event_index(event);
2767	addr &= PAGE_MASK;
2768
2769	return cpu_buffer->commit_page->page == (void *)addr &&
2770		rb_commit_index(cpu_buffer) == index;
2771}
2772
2773static u64 rb_time_delta(struct ring_buffer_event *event)
2774{
2775	switch (event->type_len) {
2776	case RINGBUF_TYPE_PADDING:
2777		return 0;
2778
2779	case RINGBUF_TYPE_TIME_EXTEND:
2780		return ring_buffer_event_time_stamp(event);
2781
2782	case RINGBUF_TYPE_TIME_STAMP:
2783		return 0;
2784
2785	case RINGBUF_TYPE_DATA:
2786		return event->time_delta;
2787	default:
2788		return 0;
2789	}
2790}
2791
2792static inline int
2793rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2794		  struct ring_buffer_event *event)
2795{
2796	unsigned long new_index, old_index;
2797	struct buffer_page *bpage;
2798	unsigned long index;
2799	unsigned long addr;
2800	u64 write_stamp;
2801	u64 delta;
2802
2803	new_index = rb_event_index(event);
2804	old_index = new_index + rb_event_ts_length(event);
2805	addr = (unsigned long)event;
2806	addr &= PAGE_MASK;
2807
2808	bpage = READ_ONCE(cpu_buffer->tail_page);
2809
2810	delta = rb_time_delta(event);
2811
2812	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2813		return 0;
2814
2815	/* Make sure the write stamp is read before testing the location */
2816	barrier();
2817
2818	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2819		unsigned long write_mask =
2820			local_read(&bpage->write) & ~RB_WRITE_MASK;
2821		unsigned long event_length = rb_event_length(event);
2822
2823		/* Something came in, can't discard */
2824		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2825				       write_stamp, write_stamp - delta))
2826			return 0;
2827
2828		/*
 
 
 
 
 
 
 
 
 
 
 
2829		 * If an event were to come in now, it would see that the
2830		 * write_stamp and the before_stamp are different, and assume
2831		 * that this event just added itself before updating
2832		 * the write stamp. The interrupting event will fix the
2833		 * write stamp for us, and use the before stamp as its delta.
2834		 */
2835
2836		/*
2837		 * This is on the tail page. It is possible that
2838		 * a write could come in and move the tail page
2839		 * and write to the next page. That is fine
2840		 * because we just shorten what is on this page.
2841		 */
2842		old_index += write_mask;
2843		new_index += write_mask;
2844		index = local_cmpxchg(&bpage->write, old_index, new_index);
2845		if (index == old_index) {
2846			/* update counters */
2847			local_sub(event_length, &cpu_buffer->entries_bytes);
2848			return 1;
2849		}
2850	}
2851
2852	/* could not discard */
2853	return 0;
2854}
2855
2856static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2857{
2858	local_inc(&cpu_buffer->committing);
2859	local_inc(&cpu_buffer->commits);
2860}
2861
2862static __always_inline void
2863rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2864{
2865	unsigned long max_count;
2866
2867	/*
2868	 * We only race with interrupts and NMIs on this CPU.
2869	 * If we own the commit event, then we can commit
2870	 * all others that interrupted us, since the interruptions
2871	 * are in stack format (they finish before they come
2872	 * back to us). This allows us to do a simple loop to
2873	 * assign the commit to the tail.
2874	 */
2875 again:
2876	max_count = cpu_buffer->nr_pages * 100;
2877
2878	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2879		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2880			return;
2881		if (RB_WARN_ON(cpu_buffer,
2882			       rb_is_reader_page(cpu_buffer->tail_page)))
2883			return;
2884		local_set(&cpu_buffer->commit_page->page->commit,
2885			  rb_page_write(cpu_buffer->commit_page));
2886		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2887		/* add barrier to keep gcc from optimizing too much */
2888		barrier();
2889	}
2890	while (rb_commit_index(cpu_buffer) !=
2891	       rb_page_write(cpu_buffer->commit_page)) {
2892
2893		local_set(&cpu_buffer->commit_page->page->commit,
2894			  rb_page_write(cpu_buffer->commit_page));
2895		RB_WARN_ON(cpu_buffer,
2896			   local_read(&cpu_buffer->commit_page->page->commit) &
2897			   ~RB_WRITE_MASK);
2898		barrier();
2899	}
2900
2901	/* again, keep gcc from optimizing */
2902	barrier();
2903
2904	/*
2905	 * If an interrupt came in just after the first while loop
2906	 * and pushed the tail page forward, we will be left with
2907	 * a dangling commit that will never go forward.
2908	 */
2909	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2910		goto again;
2911}
2912
2913static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2914{
2915	unsigned long commits;
2916
2917	if (RB_WARN_ON(cpu_buffer,
2918		       !local_read(&cpu_buffer->committing)))
2919		return;
2920
2921 again:
2922	commits = local_read(&cpu_buffer->commits);
2923	/* synchronize with interrupts */
2924	barrier();
2925	if (local_read(&cpu_buffer->committing) == 1)
2926		rb_set_commit_to_write(cpu_buffer);
2927
2928	local_dec(&cpu_buffer->committing);
2929
2930	/* synchronize with interrupts */
2931	barrier();
2932
2933	/*
2934	 * Need to account for interrupts coming in between the
2935	 * updating of the commit page and the clearing of the
2936	 * committing counter.
2937	 */
2938	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2939	    !local_read(&cpu_buffer->committing)) {
2940		local_inc(&cpu_buffer->committing);
2941		goto again;
2942	}
2943}
2944
2945static inline void rb_event_discard(struct ring_buffer_event *event)
2946{
2947	if (extended_time(event))
2948		event = skip_time_extend(event);
2949
2950	/* array[0] holds the actual length for the discarded event */
2951	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2952	event->type_len = RINGBUF_TYPE_PADDING;
2953	/* time delta must be non zero */
2954	if (!event->time_delta)
2955		event->time_delta = 1;
2956}
2957
2958static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2959		      struct ring_buffer_event *event)
2960{
2961	local_inc(&cpu_buffer->entries);
2962	rb_end_commit(cpu_buffer);
2963}
2964
2965static __always_inline void
2966rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2967{
2968	size_t nr_pages;
2969	size_t dirty;
2970	size_t full;
2971
2972	if (buffer->irq_work.waiters_pending) {
2973		buffer->irq_work.waiters_pending = false;
2974		/* irq_work_queue() supplies it's own memory barriers */
2975		irq_work_queue(&buffer->irq_work.work);
2976	}
2977
2978	if (cpu_buffer->irq_work.waiters_pending) {
2979		cpu_buffer->irq_work.waiters_pending = false;
2980		/* irq_work_queue() supplies it's own memory barriers */
2981		irq_work_queue(&cpu_buffer->irq_work.work);
2982	}
2983
2984	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2985		return;
2986
2987	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2988		return;
2989
2990	if (!cpu_buffer->irq_work.full_waiters_pending)
2991		return;
2992
2993	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2994
2995	full = cpu_buffer->shortest_full;
2996	nr_pages = cpu_buffer->nr_pages;
2997	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2998	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2999		return;
3000
3001	cpu_buffer->irq_work.wakeup_full = true;
3002	cpu_buffer->irq_work.full_waiters_pending = false;
3003	/* irq_work_queue() supplies it's own memory barriers */
3004	irq_work_queue(&cpu_buffer->irq_work.work);
3005}
3006
 
 
 
 
 
 
 
3007/*
3008 * The lock and unlock are done within a preempt disable section.
3009 * The current_context per_cpu variable can only be modified
3010 * by the current task between lock and unlock. But it can
3011 * be modified more than once via an interrupt. To pass this
3012 * information from the lock to the unlock without having to
3013 * access the 'in_interrupt()' functions again (which do show
3014 * a bit of overhead in something as critical as function tracing,
3015 * we use a bitmask trick.
3016 *
3017 *  bit 0 =  NMI context
3018 *  bit 1 =  IRQ context
3019 *  bit 2 =  SoftIRQ context
3020 *  bit 3 =  normal context.
3021 *
3022 * This works because this is the order of contexts that can
3023 * preempt other contexts. A SoftIRQ never preempts an IRQ
3024 * context.
3025 *
3026 * When the context is determined, the corresponding bit is
3027 * checked and set (if it was set, then a recursion of that context
3028 * happened).
3029 *
3030 * On unlock, we need to clear this bit. To do so, just subtract
3031 * 1 from the current_context and AND it to itself.
3032 *
3033 * (binary)
3034 *  101 - 1 = 100
3035 *  101 & 100 = 100 (clearing bit zero)
3036 *
3037 *  1010 - 1 = 1001
3038 *  1010 & 1001 = 1000 (clearing bit 1)
3039 *
3040 * The least significant bit can be cleared this way, and it
3041 * just so happens that it is the same bit corresponding to
3042 * the current context.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043 */
3044
3045static __always_inline int
3046trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3047{
3048	unsigned int val = cpu_buffer->current_context;
3049	unsigned long pc = preempt_count();
3050	int bit;
3051
3052	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3053		bit = RB_CTX_NORMAL;
3054	else
3055		bit = pc & NMI_MASK ? RB_CTX_NMI :
3056			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3057
3058	if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
3059		return 1;
 
 
 
 
 
 
 
 
 
 
3060
3061	val |= (1 << (bit + cpu_buffer->nest));
3062	cpu_buffer->current_context = val;
3063
3064	return 0;
3065}
3066
3067static __always_inline void
3068trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3069{
3070	cpu_buffer->current_context &=
3071		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3072}
3073
3074/* The recursive locking above uses 4 bits */
3075#define NESTED_BITS 4
3076
3077/**
3078 * ring_buffer_nest_start - Allow to trace while nested
3079 * @buffer: The ring buffer to modify
3080 *
3081 * The ring buffer has a safety mechanism to prevent recursion.
3082 * But there may be a case where a trace needs to be done while
3083 * tracing something else. In this case, calling this function
3084 * will allow this function to nest within a currently active
3085 * ring_buffer_lock_reserve().
3086 *
3087 * Call this function before calling another ring_buffer_lock_reserve() and
3088 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3089 */
3090void ring_buffer_nest_start(struct trace_buffer *buffer)
3091{
3092	struct ring_buffer_per_cpu *cpu_buffer;
3093	int cpu;
3094
3095	/* Enabled by ring_buffer_nest_end() */
3096	preempt_disable_notrace();
3097	cpu = raw_smp_processor_id();
3098	cpu_buffer = buffer->buffers[cpu];
3099	/* This is the shift value for the above recursive locking */
3100	cpu_buffer->nest += NESTED_BITS;
3101}
3102
3103/**
3104 * ring_buffer_nest_end - Allow to trace while nested
3105 * @buffer: The ring buffer to modify
3106 *
3107 * Must be called after ring_buffer_nest_start() and after the
3108 * ring_buffer_unlock_commit().
3109 */
3110void ring_buffer_nest_end(struct trace_buffer *buffer)
3111{
3112	struct ring_buffer_per_cpu *cpu_buffer;
3113	int cpu;
3114
3115	/* disabled by ring_buffer_nest_start() */
3116	cpu = raw_smp_processor_id();
3117	cpu_buffer = buffer->buffers[cpu];
3118	/* This is the shift value for the above recursive locking */
3119	cpu_buffer->nest -= NESTED_BITS;
3120	preempt_enable_notrace();
3121}
3122
3123/**
3124 * ring_buffer_unlock_commit - commit a reserved
3125 * @buffer: The buffer to commit to
3126 * @event: The event pointer to commit.
3127 *
3128 * This commits the data to the ring buffer, and releases any locks held.
3129 *
3130 * Must be paired with ring_buffer_lock_reserve.
3131 */
3132int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3133			      struct ring_buffer_event *event)
3134{
3135	struct ring_buffer_per_cpu *cpu_buffer;
3136	int cpu = raw_smp_processor_id();
3137
3138	cpu_buffer = buffer->buffers[cpu];
3139
3140	rb_commit(cpu_buffer, event);
3141
3142	rb_wakeups(buffer, cpu_buffer);
3143
3144	trace_recursive_unlock(cpu_buffer);
3145
3146	preempt_enable_notrace();
3147
3148	return 0;
3149}
3150EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152static struct ring_buffer_event *
3153__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3154		  struct rb_event_info *info)
3155{
3156	struct ring_buffer_event *event;
3157	struct buffer_page *tail_page;
3158	unsigned long tail, write, w;
3159	bool a_ok;
3160	bool b_ok;
3161
3162	/* Don't let the compiler play games with cpu_buffer->tail_page */
3163	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3164
3165 /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3166	barrier();
3167	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3168	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3169	barrier();
3170	info->ts = rb_time_stamp(cpu_buffer->buffer);
3171
3172	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3173		info->delta = info->ts;
3174	} else {
3175		/*
3176		 * If interrupting an event time update, we may need an
3177		 * absolute timestamp.
3178		 * Don't bother if this is the start of a new page (w == 0).
3179		 */
3180		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3181			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3182			info->length += RB_LEN_TIME_EXTEND;
3183		} else {
3184			info->delta = info->ts - info->after;
3185			if (unlikely(test_time_stamp(info->delta))) {
3186				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3187				info->length += RB_LEN_TIME_EXTEND;
3188			}
3189		}
3190	}
3191
3192 /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3193
3194 /*C*/	write = local_add_return(info->length, &tail_page->write);
3195
3196	/* set write to only the index of the write */
3197	write &= RB_WRITE_MASK;
3198
3199	tail = write - info->length;
3200
3201	/* See if we shot pass the end of this buffer page */
3202	if (unlikely(write > BUF_PAGE_SIZE)) {
3203		if (tail != w) {
3204			/* before and after may now different, fix it up*/
3205			b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3206			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3207			if (a_ok && b_ok && info->before != info->after)
3208				(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3209						      info->before, info->after);
3210		}
3211		return rb_move_tail(cpu_buffer, tail, info);
3212	}
3213
3214	if (likely(tail == w)) {
3215		u64 save_before;
3216		bool s_ok;
3217
3218		/* Nothing interrupted us between A and C */
3219 /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3220		barrier();
3221 /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3222		RB_WARN_ON(cpu_buffer, !s_ok);
3223		if (likely(!(info->add_timestamp &
3224			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3225			/* This did not interrupt any time update */
3226			info->delta = info->ts - info->after;
3227		else
3228			/* Just use full timestamp for inerrupting event */
3229			info->delta = info->ts;
3230		barrier();
 
3231		if (unlikely(info->ts != save_before)) {
3232			/* SLOW PATH - Interrupted between C and E */
3233
3234			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3235			RB_WARN_ON(cpu_buffer, !a_ok);
3236
3237			/* Write stamp must only go forward */
3238			if (save_before > info->after) {
3239				/*
3240				 * We do not care about the result, only that
3241				 * it gets updated atomically.
3242				 */
3243				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3244						      info->after, save_before);
3245			}
3246		}
3247	} else {
3248		u64 ts;
3249		/* SLOW PATH - Interrupted between A and C */
3250		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3251		/* Was interrupted before here, write_stamp must be valid */
3252		RB_WARN_ON(cpu_buffer, !a_ok);
3253		ts = rb_time_stamp(cpu_buffer->buffer);
3254		barrier();
3255 /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3256		    info->after < ts) {
 
 
3257			/* Nothing came after this event between C and E */
3258			info->delta = ts - info->after;
3259			(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3260					      info->after, info->ts);
3261			info->ts = ts;
3262		} else {
3263			/*
3264			 * Interrupted beween C and E:
3265			 * Lost the previous events time stamp. Just set the
3266			 * delta to zero, and this will be the same time as
3267			 * the event this event interrupted. And the events that
3268			 * came after this will still be correct (as they would
3269			 * have built their delta on the previous event.
3270			 */
3271			info->delta = 0;
3272		}
 
3273		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3274	}
3275
3276	/*
3277	 * If this is the first commit on the page, then it has the same
3278	 * timestamp as the page itself.
3279	 */
3280	if (unlikely(!tail && !(info->add_timestamp &
3281				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3282		info->delta = 0;
3283
3284	/* We reserved something on the buffer */
3285
3286	event = __rb_page_index(tail_page, tail);
3287	rb_update_event(cpu_buffer, event, info);
3288
3289	local_inc(&tail_page->entries);
3290
3291	/*
3292	 * If this is the first commit on the page, then update
3293	 * its timestamp.
3294	 */
3295	if (unlikely(!tail))
3296		tail_page->page->time_stamp = info->ts;
3297
3298	/* account for these added bytes */
3299	local_add(info->length, &cpu_buffer->entries_bytes);
3300
3301	return event;
3302}
3303
3304static __always_inline struct ring_buffer_event *
3305rb_reserve_next_event(struct trace_buffer *buffer,
3306		      struct ring_buffer_per_cpu *cpu_buffer,
3307		      unsigned long length)
3308{
3309	struct ring_buffer_event *event;
3310	struct rb_event_info info;
3311	int nr_loops = 0;
3312	int add_ts_default;
3313
3314	rb_start_commit(cpu_buffer);
3315	/* The commit page can not change after this */
3316
3317#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3318	/*
3319	 * Due to the ability to swap a cpu buffer from a buffer
3320	 * it is possible it was swapped before we committed.
3321	 * (committing stops a swap). We check for it here and
3322	 * if it happened, we have to fail the write.
3323	 */
3324	barrier();
3325	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3326		local_dec(&cpu_buffer->committing);
3327		local_dec(&cpu_buffer->commits);
3328		return NULL;
3329	}
3330#endif
3331
3332	info.length = rb_calculate_event_length(length);
3333
3334	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3335		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3336		info.length += RB_LEN_TIME_EXTEND;
3337	} else {
3338		add_ts_default = RB_ADD_STAMP_NONE;
3339	}
3340
3341 again:
3342	info.add_timestamp = add_ts_default;
3343	info.delta = 0;
3344
3345	/*
3346	 * We allow for interrupts to reenter here and do a trace.
3347	 * If one does, it will cause this original code to loop
3348	 * back here. Even with heavy interrupts happening, this
3349	 * should only happen a few times in a row. If this happens
3350	 * 1000 times in a row, there must be either an interrupt
3351	 * storm or we have something buggy.
3352	 * Bail!
3353	 */
3354	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3355		goto out_fail;
3356
3357	event = __rb_reserve_next(cpu_buffer, &info);
3358
3359	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3360		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3361			info.length -= RB_LEN_TIME_EXTEND;
3362		goto again;
3363	}
3364
3365	if (likely(event))
3366		return event;
3367 out_fail:
3368	rb_end_commit(cpu_buffer);
3369	return NULL;
3370}
3371
3372/**
3373 * ring_buffer_lock_reserve - reserve a part of the buffer
3374 * @buffer: the ring buffer to reserve from
3375 * @length: the length of the data to reserve (excluding event header)
3376 *
3377 * Returns a reserved event on the ring buffer to copy directly to.
3378 * The user of this interface will need to get the body to write into
3379 * and can use the ring_buffer_event_data() interface.
3380 *
3381 * The length is the length of the data needed, not the event length
3382 * which also includes the event header.
3383 *
3384 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3385 * If NULL is returned, then nothing has been allocated or locked.
3386 */
3387struct ring_buffer_event *
3388ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3389{
3390	struct ring_buffer_per_cpu *cpu_buffer;
3391	struct ring_buffer_event *event;
3392	int cpu;
3393
3394	/* If we are tracing schedule, we don't want to recurse */
3395	preempt_disable_notrace();
3396
3397	if (unlikely(atomic_read(&buffer->record_disabled)))
3398		goto out;
3399
3400	cpu = raw_smp_processor_id();
3401
3402	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3403		goto out;
3404
3405	cpu_buffer = buffer->buffers[cpu];
3406
3407	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3408		goto out;
3409
3410	if (unlikely(length > BUF_MAX_DATA_SIZE))
3411		goto out;
3412
3413	if (unlikely(trace_recursive_lock(cpu_buffer)))
3414		goto out;
3415
3416	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3417	if (!event)
3418		goto out_unlock;
3419
3420	return event;
3421
3422 out_unlock:
3423	trace_recursive_unlock(cpu_buffer);
3424 out:
3425	preempt_enable_notrace();
3426	return NULL;
3427}
3428EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3429
3430/*
3431 * Decrement the entries to the page that an event is on.
3432 * The event does not even need to exist, only the pointer
3433 * to the page it is on. This may only be called before the commit
3434 * takes place.
3435 */
3436static inline void
3437rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3438		   struct ring_buffer_event *event)
3439{
3440	unsigned long addr = (unsigned long)event;
3441	struct buffer_page *bpage = cpu_buffer->commit_page;
3442	struct buffer_page *start;
3443
3444	addr &= PAGE_MASK;
3445
3446	/* Do the likely case first */
3447	if (likely(bpage->page == (void *)addr)) {
3448		local_dec(&bpage->entries);
3449		return;
3450	}
3451
3452	/*
3453	 * Because the commit page may be on the reader page we
3454	 * start with the next page and check the end loop there.
3455	 */
3456	rb_inc_page(cpu_buffer, &bpage);
3457	start = bpage;
3458	do {
3459		if (bpage->page == (void *)addr) {
3460			local_dec(&bpage->entries);
3461			return;
3462		}
3463		rb_inc_page(cpu_buffer, &bpage);
3464	} while (bpage != start);
3465
3466	/* commit not part of this buffer?? */
3467	RB_WARN_ON(cpu_buffer, 1);
3468}
3469
3470/**
3471 * ring_buffer_commit_discard - discard an event that has not been committed
3472 * @buffer: the ring buffer
3473 * @event: non committed event to discard
3474 *
3475 * Sometimes an event that is in the ring buffer needs to be ignored.
3476 * This function lets the user discard an event in the ring buffer
3477 * and then that event will not be read later.
3478 *
3479 * This function only works if it is called before the item has been
3480 * committed. It will try to free the event from the ring buffer
3481 * if another event has not been added behind it.
3482 *
3483 * If another event has been added behind it, it will set the event
3484 * up as discarded, and perform the commit.
3485 *
3486 * If this function is called, do not call ring_buffer_unlock_commit on
3487 * the event.
3488 */
3489void ring_buffer_discard_commit(struct trace_buffer *buffer,
3490				struct ring_buffer_event *event)
3491{
3492	struct ring_buffer_per_cpu *cpu_buffer;
3493	int cpu;
3494
3495	/* The event is discarded regardless */
3496	rb_event_discard(event);
3497
3498	cpu = smp_processor_id();
3499	cpu_buffer = buffer->buffers[cpu];
3500
3501	/*
3502	 * This must only be called if the event has not been
3503	 * committed yet. Thus we can assume that preemption
3504	 * is still disabled.
3505	 */
3506	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3507
3508	rb_decrement_entry(cpu_buffer, event);
3509	if (rb_try_to_discard(cpu_buffer, event))
3510		goto out;
3511
3512 out:
3513	rb_end_commit(cpu_buffer);
3514
3515	trace_recursive_unlock(cpu_buffer);
3516
3517	preempt_enable_notrace();
3518
3519}
3520EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3521
3522/**
3523 * ring_buffer_write - write data to the buffer without reserving
3524 * @buffer: The ring buffer to write to.
3525 * @length: The length of the data being written (excluding the event header)
3526 * @data: The data to write to the buffer.
3527 *
3528 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3529 * one function. If you already have the data to write to the buffer, it
3530 * may be easier to simply call this function.
3531 *
3532 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3533 * and not the length of the event which would hold the header.
3534 */
3535int ring_buffer_write(struct trace_buffer *buffer,
3536		      unsigned long length,
3537		      void *data)
3538{
3539	struct ring_buffer_per_cpu *cpu_buffer;
3540	struct ring_buffer_event *event;
3541	void *body;
3542	int ret = -EBUSY;
3543	int cpu;
3544
3545	preempt_disable_notrace();
3546
3547	if (atomic_read(&buffer->record_disabled))
3548		goto out;
3549
3550	cpu = raw_smp_processor_id();
3551
3552	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3553		goto out;
3554
3555	cpu_buffer = buffer->buffers[cpu];
3556
3557	if (atomic_read(&cpu_buffer->record_disabled))
3558		goto out;
3559
3560	if (length > BUF_MAX_DATA_SIZE)
3561		goto out;
3562
3563	if (unlikely(trace_recursive_lock(cpu_buffer)))
3564		goto out;
3565
3566	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3567	if (!event)
3568		goto out_unlock;
3569
3570	body = rb_event_data(event);
3571
3572	memcpy(body, data, length);
3573
3574	rb_commit(cpu_buffer, event);
3575
3576	rb_wakeups(buffer, cpu_buffer);
3577
3578	ret = 0;
3579
3580 out_unlock:
3581	trace_recursive_unlock(cpu_buffer);
3582
3583 out:
3584	preempt_enable_notrace();
3585
3586	return ret;
3587}
3588EXPORT_SYMBOL_GPL(ring_buffer_write);
3589
3590static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3591{
3592	struct buffer_page *reader = cpu_buffer->reader_page;
3593	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3594	struct buffer_page *commit = cpu_buffer->commit_page;
3595
3596	/* In case of error, head will be NULL */
3597	if (unlikely(!head))
3598		return true;
3599
3600	return reader->read == rb_page_commit(reader) &&
3601		(commit == reader ||
3602		 (commit == head &&
3603		  head->read == rb_page_commit(commit)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3604}
3605
3606/**
3607 * ring_buffer_record_disable - stop all writes into the buffer
3608 * @buffer: The ring buffer to stop writes to.
3609 *
3610 * This prevents all writes to the buffer. Any attempt to write
3611 * to the buffer after this will fail and return NULL.
3612 *
3613 * The caller should call synchronize_rcu() after this.
3614 */
3615void ring_buffer_record_disable(struct trace_buffer *buffer)
3616{
3617	atomic_inc(&buffer->record_disabled);
3618}
3619EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3620
3621/**
3622 * ring_buffer_record_enable - enable writes to the buffer
3623 * @buffer: The ring buffer to enable writes
3624 *
3625 * Note, multiple disables will need the same number of enables
3626 * to truly enable the writing (much like preempt_disable).
3627 */
3628void ring_buffer_record_enable(struct trace_buffer *buffer)
3629{
3630	atomic_dec(&buffer->record_disabled);
3631}
3632EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3633
3634/**
3635 * ring_buffer_record_off - stop all writes into the buffer
3636 * @buffer: The ring buffer to stop writes to.
3637 *
3638 * This prevents all writes to the buffer. Any attempt to write
3639 * to the buffer after this will fail and return NULL.
3640 *
3641 * This is different than ring_buffer_record_disable() as
3642 * it works like an on/off switch, where as the disable() version
3643 * must be paired with a enable().
3644 */
3645void ring_buffer_record_off(struct trace_buffer *buffer)
3646{
3647	unsigned int rd;
3648	unsigned int new_rd;
3649
3650	do {
3651		rd = atomic_read(&buffer->record_disabled);
3652		new_rd = rd | RB_BUFFER_OFF;
3653	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3654}
3655EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3656
3657/**
3658 * ring_buffer_record_on - restart writes into the buffer
3659 * @buffer: The ring buffer to start writes to.
3660 *
3661 * This enables all writes to the buffer that was disabled by
3662 * ring_buffer_record_off().
3663 *
3664 * This is different than ring_buffer_record_enable() as
3665 * it works like an on/off switch, where as the enable() version
3666 * must be paired with a disable().
3667 */
3668void ring_buffer_record_on(struct trace_buffer *buffer)
3669{
3670	unsigned int rd;
3671	unsigned int new_rd;
3672
3673	do {
3674		rd = atomic_read(&buffer->record_disabled);
3675		new_rd = rd & ~RB_BUFFER_OFF;
3676	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3677}
3678EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3679
3680/**
3681 * ring_buffer_record_is_on - return true if the ring buffer can write
3682 * @buffer: The ring buffer to see if write is enabled
3683 *
3684 * Returns true if the ring buffer is in a state that it accepts writes.
3685 */
3686bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3687{
3688	return !atomic_read(&buffer->record_disabled);
3689}
3690
3691/**
3692 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3693 * @buffer: The ring buffer to see if write is set enabled
3694 *
3695 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3696 * Note that this does NOT mean it is in a writable state.
3697 *
3698 * It may return true when the ring buffer has been disabled by
3699 * ring_buffer_record_disable(), as that is a temporary disabling of
3700 * the ring buffer.
3701 */
3702bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3703{
3704	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3705}
3706
3707/**
3708 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3709 * @buffer: The ring buffer to stop writes to.
3710 * @cpu: The CPU buffer to stop
3711 *
3712 * This prevents all writes to the buffer. Any attempt to write
3713 * to the buffer after this will fail and return NULL.
3714 *
3715 * The caller should call synchronize_rcu() after this.
3716 */
3717void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3718{
3719	struct ring_buffer_per_cpu *cpu_buffer;
3720
3721	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3722		return;
3723
3724	cpu_buffer = buffer->buffers[cpu];
3725	atomic_inc(&cpu_buffer->record_disabled);
3726}
3727EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3728
3729/**
3730 * ring_buffer_record_enable_cpu - enable writes to the buffer
3731 * @buffer: The ring buffer to enable writes
3732 * @cpu: The CPU to enable.
3733 *
3734 * Note, multiple disables will need the same number of enables
3735 * to truly enable the writing (much like preempt_disable).
3736 */
3737void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3738{
3739	struct ring_buffer_per_cpu *cpu_buffer;
3740
3741	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3742		return;
3743
3744	cpu_buffer = buffer->buffers[cpu];
3745	atomic_dec(&cpu_buffer->record_disabled);
3746}
3747EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3748
3749/*
3750 * The total entries in the ring buffer is the running counter
3751 * of entries entered into the ring buffer, minus the sum of
3752 * the entries read from the ring buffer and the number of
3753 * entries that were overwritten.
3754 */
3755static inline unsigned long
3756rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3757{
3758	return local_read(&cpu_buffer->entries) -
3759		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3760}
3761
3762/**
3763 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3764 * @buffer: The ring buffer
3765 * @cpu: The per CPU buffer to read from.
3766 */
3767u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3768{
3769	unsigned long flags;
3770	struct ring_buffer_per_cpu *cpu_buffer;
3771	struct buffer_page *bpage;
3772	u64 ret = 0;
3773
3774	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3775		return 0;
3776
3777	cpu_buffer = buffer->buffers[cpu];
3778	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3779	/*
3780	 * if the tail is on reader_page, oldest time stamp is on the reader
3781	 * page
3782	 */
3783	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3784		bpage = cpu_buffer->reader_page;
3785	else
3786		bpage = rb_set_head_page(cpu_buffer);
3787	if (bpage)
3788		ret = bpage->page->time_stamp;
3789	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3790
3791	return ret;
3792}
3793EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3794
3795/**
3796 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3797 * @buffer: The ring buffer
3798 * @cpu: The per CPU buffer to read from.
3799 */
3800unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3801{
3802	struct ring_buffer_per_cpu *cpu_buffer;
3803	unsigned long ret;
3804
3805	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3806		return 0;
3807
3808	cpu_buffer = buffer->buffers[cpu];
3809	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3810
3811	return ret;
3812}
3813EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3814
3815/**
3816 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3817 * @buffer: The ring buffer
3818 * @cpu: The per CPU buffer to get the entries from.
3819 */
3820unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3821{
3822	struct ring_buffer_per_cpu *cpu_buffer;
3823
3824	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825		return 0;
3826
3827	cpu_buffer = buffer->buffers[cpu];
3828
3829	return rb_num_of_entries(cpu_buffer);
3830}
3831EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3832
3833/**
3834 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3835 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3836 * @buffer: The ring buffer
3837 * @cpu: The per CPU buffer to get the number of overruns from
3838 */
3839unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
3840{
3841	struct ring_buffer_per_cpu *cpu_buffer;
3842	unsigned long ret;
3843
3844	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3845		return 0;
3846
3847	cpu_buffer = buffer->buffers[cpu];
3848	ret = local_read(&cpu_buffer->overrun);
3849
3850	return ret;
3851}
3852EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3853
3854/**
3855 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3856 * commits failing due to the buffer wrapping around while there are uncommitted
3857 * events, such as during an interrupt storm.
3858 * @buffer: The ring buffer
3859 * @cpu: The per CPU buffer to get the number of overruns from
3860 */
3861unsigned long
3862ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
3863{
3864	struct ring_buffer_per_cpu *cpu_buffer;
3865	unsigned long ret;
3866
3867	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3868		return 0;
3869
3870	cpu_buffer = buffer->buffers[cpu];
3871	ret = local_read(&cpu_buffer->commit_overrun);
3872
3873	return ret;
3874}
3875EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3876
3877/**
3878 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3879 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3880 * @buffer: The ring buffer
3881 * @cpu: The per CPU buffer to get the number of overruns from
3882 */
3883unsigned long
3884ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
3885{
3886	struct ring_buffer_per_cpu *cpu_buffer;
3887	unsigned long ret;
3888
3889	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3890		return 0;
3891
3892	cpu_buffer = buffer->buffers[cpu];
3893	ret = local_read(&cpu_buffer->dropped_events);
3894
3895	return ret;
3896}
3897EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3898
3899/**
3900 * ring_buffer_read_events_cpu - get the number of events successfully read
3901 * @buffer: The ring buffer
3902 * @cpu: The per CPU buffer to get the number of events read
3903 */
3904unsigned long
3905ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
3906{
3907	struct ring_buffer_per_cpu *cpu_buffer;
3908
3909	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3910		return 0;
3911
3912	cpu_buffer = buffer->buffers[cpu];
3913	return cpu_buffer->read;
3914}
3915EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3916
3917/**
3918 * ring_buffer_entries - get the number of entries in a buffer
3919 * @buffer: The ring buffer
3920 *
3921 * Returns the total number of entries in the ring buffer
3922 * (all CPU entries)
3923 */
3924unsigned long ring_buffer_entries(struct trace_buffer *buffer)
3925{
3926	struct ring_buffer_per_cpu *cpu_buffer;
3927	unsigned long entries = 0;
3928	int cpu;
3929
3930	/* if you care about this being correct, lock the buffer */
3931	for_each_buffer_cpu(buffer, cpu) {
3932		cpu_buffer = buffer->buffers[cpu];
3933		entries += rb_num_of_entries(cpu_buffer);
3934	}
3935
3936	return entries;
3937}
3938EXPORT_SYMBOL_GPL(ring_buffer_entries);
3939
3940/**
3941 * ring_buffer_overruns - get the number of overruns in buffer
3942 * @buffer: The ring buffer
3943 *
3944 * Returns the total number of overruns in the ring buffer
3945 * (all CPU entries)
3946 */
3947unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
3948{
3949	struct ring_buffer_per_cpu *cpu_buffer;
3950	unsigned long overruns = 0;
3951	int cpu;
3952
3953	/* if you care about this being correct, lock the buffer */
3954	for_each_buffer_cpu(buffer, cpu) {
3955		cpu_buffer = buffer->buffers[cpu];
3956		overruns += local_read(&cpu_buffer->overrun);
3957	}
3958
3959	return overruns;
3960}
3961EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3962
3963static void rb_iter_reset(struct ring_buffer_iter *iter)
3964{
3965	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3966
3967	/* Iterator usage is expected to have record disabled */
3968	iter->head_page = cpu_buffer->reader_page;
3969	iter->head = cpu_buffer->reader_page->read;
3970	iter->next_event = iter->head;
3971
3972	iter->cache_reader_page = iter->head_page;
3973	iter->cache_read = cpu_buffer->read;
3974
3975	if (iter->head) {
3976		iter->read_stamp = cpu_buffer->read_stamp;
3977		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
3978	} else {
3979		iter->read_stamp = iter->head_page->page->time_stamp;
3980		iter->page_stamp = iter->read_stamp;
3981	}
3982}
3983
3984/**
3985 * ring_buffer_iter_reset - reset an iterator
3986 * @iter: The iterator to reset
3987 *
3988 * Resets the iterator, so that it will start from the beginning
3989 * again.
3990 */
3991void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3992{
3993	struct ring_buffer_per_cpu *cpu_buffer;
3994	unsigned long flags;
3995
3996	if (!iter)
3997		return;
3998
3999	cpu_buffer = iter->cpu_buffer;
4000
4001	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4002	rb_iter_reset(iter);
4003	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4004}
4005EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4006
4007/**
4008 * ring_buffer_iter_empty - check if an iterator has no more to read
4009 * @iter: The iterator to check
4010 */
4011int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4012{
4013	struct ring_buffer_per_cpu *cpu_buffer;
4014	struct buffer_page *reader;
4015	struct buffer_page *head_page;
4016	struct buffer_page *commit_page;
4017	struct buffer_page *curr_commit_page;
4018	unsigned commit;
4019	u64 curr_commit_ts;
4020	u64 commit_ts;
4021
4022	cpu_buffer = iter->cpu_buffer;
4023	reader = cpu_buffer->reader_page;
4024	head_page = cpu_buffer->head_page;
4025	commit_page = cpu_buffer->commit_page;
4026	commit_ts = commit_page->page->time_stamp;
4027
4028	/*
4029	 * When the writer goes across pages, it issues a cmpxchg which
4030	 * is a mb(), which will synchronize with the rmb here.
4031	 * (see rb_tail_page_update())
4032	 */
4033	smp_rmb();
4034	commit = rb_page_commit(commit_page);
4035	/* We want to make sure that the commit page doesn't change */
4036	smp_rmb();
4037
4038	/* Make sure commit page didn't change */
4039	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4040	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4041
4042	/* If the commit page changed, then there's more data */
4043	if (curr_commit_page != commit_page ||
4044	    curr_commit_ts != commit_ts)
4045		return 0;
4046
4047	/* Still racy, as it may return a false positive, but that's OK */
4048	return ((iter->head_page == commit_page && iter->head >= commit) ||
4049		(iter->head_page == reader && commit_page == head_page &&
4050		 head_page->read == commit &&
4051		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4052}
4053EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4054
4055static void
4056rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4057		     struct ring_buffer_event *event)
4058{
4059	u64 delta;
4060
4061	switch (event->type_len) {
4062	case RINGBUF_TYPE_PADDING:
4063		return;
4064
4065	case RINGBUF_TYPE_TIME_EXTEND:
4066		delta = ring_buffer_event_time_stamp(event);
4067		cpu_buffer->read_stamp += delta;
4068		return;
4069
4070	case RINGBUF_TYPE_TIME_STAMP:
4071		delta = ring_buffer_event_time_stamp(event);
 
4072		cpu_buffer->read_stamp = delta;
4073		return;
4074
4075	case RINGBUF_TYPE_DATA:
4076		cpu_buffer->read_stamp += event->time_delta;
4077		return;
4078
4079	default:
4080		RB_WARN_ON(cpu_buffer, 1);
4081	}
4082	return;
4083}
4084
4085static void
4086rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4087			  struct ring_buffer_event *event)
4088{
4089	u64 delta;
4090
4091	switch (event->type_len) {
4092	case RINGBUF_TYPE_PADDING:
4093		return;
4094
4095	case RINGBUF_TYPE_TIME_EXTEND:
4096		delta = ring_buffer_event_time_stamp(event);
4097		iter->read_stamp += delta;
4098		return;
4099
4100	case RINGBUF_TYPE_TIME_STAMP:
4101		delta = ring_buffer_event_time_stamp(event);
 
4102		iter->read_stamp = delta;
4103		return;
4104
4105	case RINGBUF_TYPE_DATA:
4106		iter->read_stamp += event->time_delta;
4107		return;
4108
4109	default:
4110		RB_WARN_ON(iter->cpu_buffer, 1);
4111	}
4112	return;
4113}
4114
4115static struct buffer_page *
4116rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4117{
4118	struct buffer_page *reader = NULL;
4119	unsigned long overwrite;
4120	unsigned long flags;
4121	int nr_loops = 0;
4122	int ret;
4123
4124	local_irq_save(flags);
4125	arch_spin_lock(&cpu_buffer->lock);
4126
4127 again:
4128	/*
4129	 * This should normally only loop twice. But because the
4130	 * start of the reader inserts an empty page, it causes
4131	 * a case where we will loop three times. There should be no
4132	 * reason to loop four times (that I know of).
4133	 */
4134	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4135		reader = NULL;
4136		goto out;
4137	}
4138
4139	reader = cpu_buffer->reader_page;
4140
4141	/* If there's more to read, return this page */
4142	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4143		goto out;
4144
4145	/* Never should we have an index greater than the size */
4146	if (RB_WARN_ON(cpu_buffer,
4147		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4148		goto out;
4149
4150	/* check if we caught up to the tail */
4151	reader = NULL;
4152	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4153		goto out;
4154
4155	/* Don't bother swapping if the ring buffer is empty */
4156	if (rb_num_of_entries(cpu_buffer) == 0)
4157		goto out;
4158
4159	/*
4160	 * Reset the reader page to size zero.
4161	 */
4162	local_set(&cpu_buffer->reader_page->write, 0);
4163	local_set(&cpu_buffer->reader_page->entries, 0);
4164	local_set(&cpu_buffer->reader_page->page->commit, 0);
4165	cpu_buffer->reader_page->real_end = 0;
4166
4167 spin:
4168	/*
4169	 * Splice the empty reader page into the list around the head.
4170	 */
4171	reader = rb_set_head_page(cpu_buffer);
4172	if (!reader)
4173		goto out;
4174	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4175	cpu_buffer->reader_page->list.prev = reader->list.prev;
4176
4177	/*
4178	 * cpu_buffer->pages just needs to point to the buffer, it
4179	 *  has no specific buffer page to point to. Lets move it out
4180	 *  of our way so we don't accidentally swap it.
4181	 */
4182	cpu_buffer->pages = reader->list.prev;
4183
4184	/* The reader page will be pointing to the new head */
4185	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
4186
4187	/*
4188	 * We want to make sure we read the overruns after we set up our
4189	 * pointers to the next object. The writer side does a
4190	 * cmpxchg to cross pages which acts as the mb on the writer
4191	 * side. Note, the reader will constantly fail the swap
4192	 * while the writer is updating the pointers, so this
4193	 * guarantees that the overwrite recorded here is the one we
4194	 * want to compare with the last_overrun.
4195	 */
4196	smp_mb();
4197	overwrite = local_read(&(cpu_buffer->overrun));
4198
4199	/*
4200	 * Here's the tricky part.
4201	 *
4202	 * We need to move the pointer past the header page.
4203	 * But we can only do that if a writer is not currently
4204	 * moving it. The page before the header page has the
4205	 * flag bit '1' set if it is pointing to the page we want.
4206	 * but if the writer is in the process of moving it
4207	 * than it will be '2' or already moved '0'.
4208	 */
4209
4210	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4211
4212	/*
4213	 * If we did not convert it, then we must try again.
4214	 */
4215	if (!ret)
4216		goto spin;
4217
4218	/*
4219	 * Yay! We succeeded in replacing the page.
4220	 *
4221	 * Now make the new head point back to the reader page.
4222	 */
4223	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4224	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
4225
4226	local_inc(&cpu_buffer->pages_read);
4227
4228	/* Finally update the reader page to the new head */
4229	cpu_buffer->reader_page = reader;
4230	cpu_buffer->reader_page->read = 0;
4231
4232	if (overwrite != cpu_buffer->last_overrun) {
4233		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4234		cpu_buffer->last_overrun = overwrite;
4235	}
4236
4237	goto again;
4238
4239 out:
4240	/* Update the read_stamp on the first event */
4241	if (reader && reader->read == 0)
4242		cpu_buffer->read_stamp = reader->page->time_stamp;
4243
4244	arch_spin_unlock(&cpu_buffer->lock);
4245	local_irq_restore(flags);
4246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4247	return reader;
4248}
4249
4250static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4251{
4252	struct ring_buffer_event *event;
4253	struct buffer_page *reader;
4254	unsigned length;
4255
4256	reader = rb_get_reader_page(cpu_buffer);
4257
4258	/* This function should not be called when buffer is empty */
4259	if (RB_WARN_ON(cpu_buffer, !reader))
4260		return;
4261
4262	event = rb_reader_event(cpu_buffer);
4263
4264	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4265		cpu_buffer->read++;
4266
4267	rb_update_read_stamp(cpu_buffer, event);
4268
4269	length = rb_event_length(event);
4270	cpu_buffer->reader_page->read += length;
4271}
4272
4273static void rb_advance_iter(struct ring_buffer_iter *iter)
4274{
4275	struct ring_buffer_per_cpu *cpu_buffer;
4276
4277	cpu_buffer = iter->cpu_buffer;
4278
4279	/* If head == next_event then we need to jump to the next event */
4280	if (iter->head == iter->next_event) {
4281		/* If the event gets overwritten again, there's nothing to do */
4282		if (rb_iter_head_event(iter) == NULL)
4283			return;
4284	}
4285
4286	iter->head = iter->next_event;
4287
4288	/*
4289	 * Check if we are at the end of the buffer.
4290	 */
4291	if (iter->next_event >= rb_page_size(iter->head_page)) {
4292		/* discarded commits can make the page empty */
4293		if (iter->head_page == cpu_buffer->commit_page)
4294			return;
4295		rb_inc_iter(iter);
4296		return;
4297	}
4298
4299	rb_update_iter_read_stamp(iter, iter->event);
4300}
4301
4302static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4303{
4304	return cpu_buffer->lost_events;
4305}
4306
4307static struct ring_buffer_event *
4308rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4309	       unsigned long *lost_events)
4310{
4311	struct ring_buffer_event *event;
4312	struct buffer_page *reader;
4313	int nr_loops = 0;
4314
4315	if (ts)
4316		*ts = 0;
4317 again:
4318	/*
4319	 * We repeat when a time extend is encountered.
4320	 * Since the time extend is always attached to a data event,
4321	 * we should never loop more than once.
4322	 * (We never hit the following condition more than twice).
4323	 */
4324	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4325		return NULL;
4326
4327	reader = rb_get_reader_page(cpu_buffer);
4328	if (!reader)
4329		return NULL;
4330
4331	event = rb_reader_event(cpu_buffer);
4332
4333	switch (event->type_len) {
4334	case RINGBUF_TYPE_PADDING:
4335		if (rb_null_event(event))
4336			RB_WARN_ON(cpu_buffer, 1);
4337		/*
4338		 * Because the writer could be discarding every
4339		 * event it creates (which would probably be bad)
4340		 * if we were to go back to "again" then we may never
4341		 * catch up, and will trigger the warn on, or lock
4342		 * the box. Return the padding, and we will release
4343		 * the current locks, and try again.
4344		 */
4345		return event;
4346
4347	case RINGBUF_TYPE_TIME_EXTEND:
4348		/* Internal data, OK to advance */
4349		rb_advance_reader(cpu_buffer);
4350		goto again;
4351
4352	case RINGBUF_TYPE_TIME_STAMP:
4353		if (ts) {
4354			*ts = ring_buffer_event_time_stamp(event);
 
4355			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4356							 cpu_buffer->cpu, ts);
4357		}
4358		/* Internal data, OK to advance */
4359		rb_advance_reader(cpu_buffer);
4360		goto again;
4361
4362	case RINGBUF_TYPE_DATA:
4363		if (ts && !(*ts)) {
4364			*ts = cpu_buffer->read_stamp + event->time_delta;
4365			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4366							 cpu_buffer->cpu, ts);
4367		}
4368		if (lost_events)
4369			*lost_events = rb_lost_events(cpu_buffer);
4370		return event;
4371
4372	default:
4373		RB_WARN_ON(cpu_buffer, 1);
4374	}
4375
4376	return NULL;
4377}
4378EXPORT_SYMBOL_GPL(ring_buffer_peek);
4379
4380static struct ring_buffer_event *
4381rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4382{
4383	struct trace_buffer *buffer;
4384	struct ring_buffer_per_cpu *cpu_buffer;
4385	struct ring_buffer_event *event;
4386	int nr_loops = 0;
4387
4388	if (ts)
4389		*ts = 0;
4390
4391	cpu_buffer = iter->cpu_buffer;
4392	buffer = cpu_buffer->buffer;
4393
4394	/*
4395	 * Check if someone performed a consuming read to
4396	 * the buffer. A consuming read invalidates the iterator
4397	 * and we need to reset the iterator in this case.
4398	 */
4399	if (unlikely(iter->cache_read != cpu_buffer->read ||
4400		     iter->cache_reader_page != cpu_buffer->reader_page))
4401		rb_iter_reset(iter);
4402
4403 again:
4404	if (ring_buffer_iter_empty(iter))
4405		return NULL;
4406
4407	/*
4408	 * As the writer can mess with what the iterator is trying
4409	 * to read, just give up if we fail to get an event after
4410	 * three tries. The iterator is not as reliable when reading
4411	 * the ring buffer with an active write as the consumer is.
4412	 * Do not warn if the three failures is reached.
4413	 */
4414	if (++nr_loops > 3)
4415		return NULL;
4416
4417	if (rb_per_cpu_empty(cpu_buffer))
4418		return NULL;
4419
4420	if (iter->head >= rb_page_size(iter->head_page)) {
4421		rb_inc_iter(iter);
4422		goto again;
4423	}
4424
4425	event = rb_iter_head_event(iter);
4426	if (!event)
4427		goto again;
4428
4429	switch (event->type_len) {
4430	case RINGBUF_TYPE_PADDING:
4431		if (rb_null_event(event)) {
4432			rb_inc_iter(iter);
4433			goto again;
4434		}
4435		rb_advance_iter(iter);
4436		return event;
4437
4438	case RINGBUF_TYPE_TIME_EXTEND:
4439		/* Internal data, OK to advance */
4440		rb_advance_iter(iter);
4441		goto again;
4442
4443	case RINGBUF_TYPE_TIME_STAMP:
4444		if (ts) {
4445			*ts = ring_buffer_event_time_stamp(event);
 
4446			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4447							 cpu_buffer->cpu, ts);
4448		}
4449		/* Internal data, OK to advance */
4450		rb_advance_iter(iter);
4451		goto again;
4452
4453	case RINGBUF_TYPE_DATA:
4454		if (ts && !(*ts)) {
4455			*ts = iter->read_stamp + event->time_delta;
4456			ring_buffer_normalize_time_stamp(buffer,
4457							 cpu_buffer->cpu, ts);
4458		}
4459		return event;
4460
4461	default:
4462		RB_WARN_ON(cpu_buffer, 1);
4463	}
4464
4465	return NULL;
4466}
4467EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4468
4469static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4470{
4471	if (likely(!in_nmi())) {
4472		raw_spin_lock(&cpu_buffer->reader_lock);
4473		return true;
4474	}
4475
4476	/*
4477	 * If an NMI die dumps out the content of the ring buffer
4478	 * trylock must be used to prevent a deadlock if the NMI
4479	 * preempted a task that holds the ring buffer locks. If
4480	 * we get the lock then all is fine, if not, then continue
4481	 * to do the read, but this can corrupt the ring buffer,
4482	 * so it must be permanently disabled from future writes.
4483	 * Reading from NMI is a oneshot deal.
4484	 */
4485	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4486		return true;
4487
4488	/* Continue without locking, but disable the ring buffer */
4489	atomic_inc(&cpu_buffer->record_disabled);
4490	return false;
4491}
4492
4493static inline void
4494rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4495{
4496	if (likely(locked))
4497		raw_spin_unlock(&cpu_buffer->reader_lock);
4498	return;
4499}
4500
4501/**
4502 * ring_buffer_peek - peek at the next event to be read
4503 * @buffer: The ring buffer to read
4504 * @cpu: The cpu to peak at
4505 * @ts: The timestamp counter of this event.
4506 * @lost_events: a variable to store if events were lost (may be NULL)
4507 *
4508 * This will return the event that will be read next, but does
4509 * not consume the data.
4510 */
4511struct ring_buffer_event *
4512ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4513		 unsigned long *lost_events)
4514{
4515	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4516	struct ring_buffer_event *event;
4517	unsigned long flags;
4518	bool dolock;
4519
4520	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4521		return NULL;
4522
4523 again:
4524	local_irq_save(flags);
4525	dolock = rb_reader_lock(cpu_buffer);
4526	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4527	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4528		rb_advance_reader(cpu_buffer);
4529	rb_reader_unlock(cpu_buffer, dolock);
4530	local_irq_restore(flags);
4531
4532	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4533		goto again;
4534
4535	return event;
4536}
4537
4538/** ring_buffer_iter_dropped - report if there are dropped events
4539 * @iter: The ring buffer iterator
4540 *
4541 * Returns true if there was dropped events since the last peek.
4542 */
4543bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4544{
4545	bool ret = iter->missed_events != 0;
4546
4547	iter->missed_events = 0;
4548	return ret;
4549}
4550EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4551
4552/**
4553 * ring_buffer_iter_peek - peek at the next event to be read
4554 * @iter: The ring buffer iterator
4555 * @ts: The timestamp counter of this event.
4556 *
4557 * This will return the event that will be read next, but does
4558 * not increment the iterator.
4559 */
4560struct ring_buffer_event *
4561ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4562{
4563	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4564	struct ring_buffer_event *event;
4565	unsigned long flags;
4566
4567 again:
4568	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4569	event = rb_iter_peek(iter, ts);
4570	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4571
4572	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4573		goto again;
4574
4575	return event;
4576}
4577
4578/**
4579 * ring_buffer_consume - return an event and consume it
4580 * @buffer: The ring buffer to get the next event from
4581 * @cpu: the cpu to read the buffer from
4582 * @ts: a variable to store the timestamp (may be NULL)
4583 * @lost_events: a variable to store if events were lost (may be NULL)
4584 *
4585 * Returns the next event in the ring buffer, and that event is consumed.
4586 * Meaning, that sequential reads will keep returning a different event,
4587 * and eventually empty the ring buffer if the producer is slower.
4588 */
4589struct ring_buffer_event *
4590ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4591		    unsigned long *lost_events)
4592{
4593	struct ring_buffer_per_cpu *cpu_buffer;
4594	struct ring_buffer_event *event = NULL;
4595	unsigned long flags;
4596	bool dolock;
4597
4598 again:
4599	/* might be called in atomic */
4600	preempt_disable();
4601
4602	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4603		goto out;
4604
4605	cpu_buffer = buffer->buffers[cpu];
4606	local_irq_save(flags);
4607	dolock = rb_reader_lock(cpu_buffer);
4608
4609	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4610	if (event) {
4611		cpu_buffer->lost_events = 0;
4612		rb_advance_reader(cpu_buffer);
4613	}
4614
4615	rb_reader_unlock(cpu_buffer, dolock);
4616	local_irq_restore(flags);
4617
4618 out:
4619	preempt_enable();
4620
4621	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4622		goto again;
4623
4624	return event;
4625}
4626EXPORT_SYMBOL_GPL(ring_buffer_consume);
4627
4628/**
4629 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4630 * @buffer: The ring buffer to read from
4631 * @cpu: The cpu buffer to iterate over
4632 * @flags: gfp flags to use for memory allocation
4633 *
4634 * This performs the initial preparations necessary to iterate
4635 * through the buffer.  Memory is allocated, buffer recording
4636 * is disabled, and the iterator pointer is returned to the caller.
4637 *
4638 * Disabling buffer recording prevents the reading from being
4639 * corrupted. This is not a consuming read, so a producer is not
4640 * expected.
4641 *
4642 * After a sequence of ring_buffer_read_prepare calls, the user is
4643 * expected to make at least one call to ring_buffer_read_prepare_sync.
4644 * Afterwards, ring_buffer_read_start is invoked to get things going
4645 * for real.
4646 *
4647 * This overall must be paired with ring_buffer_read_finish.
4648 */
4649struct ring_buffer_iter *
4650ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4651{
4652	struct ring_buffer_per_cpu *cpu_buffer;
4653	struct ring_buffer_iter *iter;
4654
4655	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4656		return NULL;
4657
4658	iter = kzalloc(sizeof(*iter), flags);
4659	if (!iter)
4660		return NULL;
4661
4662	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4663	if (!iter->event) {
4664		kfree(iter);
4665		return NULL;
4666	}
4667
4668	cpu_buffer = buffer->buffers[cpu];
4669
4670	iter->cpu_buffer = cpu_buffer;
4671
4672	atomic_inc(&cpu_buffer->resize_disabled);
4673
4674	return iter;
4675}
4676EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4677
4678/**
4679 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4680 *
4681 * All previously invoked ring_buffer_read_prepare calls to prepare
4682 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4683 * calls on those iterators are allowed.
4684 */
4685void
4686ring_buffer_read_prepare_sync(void)
4687{
4688	synchronize_rcu();
4689}
4690EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4691
4692/**
4693 * ring_buffer_read_start - start a non consuming read of the buffer
4694 * @iter: The iterator returned by ring_buffer_read_prepare
4695 *
4696 * This finalizes the startup of an iteration through the buffer.
4697 * The iterator comes from a call to ring_buffer_read_prepare and
4698 * an intervening ring_buffer_read_prepare_sync must have been
4699 * performed.
4700 *
4701 * Must be paired with ring_buffer_read_finish.
4702 */
4703void
4704ring_buffer_read_start(struct ring_buffer_iter *iter)
4705{
4706	struct ring_buffer_per_cpu *cpu_buffer;
4707	unsigned long flags;
4708
4709	if (!iter)
4710		return;
4711
4712	cpu_buffer = iter->cpu_buffer;
4713
4714	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4715	arch_spin_lock(&cpu_buffer->lock);
4716	rb_iter_reset(iter);
4717	arch_spin_unlock(&cpu_buffer->lock);
4718	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4719}
4720EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4721
4722/**
4723 * ring_buffer_read_finish - finish reading the iterator of the buffer
4724 * @iter: The iterator retrieved by ring_buffer_start
4725 *
4726 * This re-enables the recording to the buffer, and frees the
4727 * iterator.
4728 */
4729void
4730ring_buffer_read_finish(struct ring_buffer_iter *iter)
4731{
4732	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4733	unsigned long flags;
4734
4735	/*
4736	 * Ring buffer is disabled from recording, here's a good place
4737	 * to check the integrity of the ring buffer.
4738	 * Must prevent readers from trying to read, as the check
4739	 * clears the HEAD page and readers require it.
4740	 */
4741	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4742	rb_check_pages(cpu_buffer);
4743	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4744
4745	atomic_dec(&cpu_buffer->resize_disabled);
4746	kfree(iter->event);
4747	kfree(iter);
4748}
4749EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4750
4751/**
4752 * ring_buffer_iter_advance - advance the iterator to the next location
4753 * @iter: The ring buffer iterator
4754 *
4755 * Move the location of the iterator such that the next read will
4756 * be the next location of the iterator.
4757 */
4758void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4759{
4760	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4761	unsigned long flags;
4762
4763	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4764
4765	rb_advance_iter(iter);
4766
4767	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4768}
4769EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4770
4771/**
4772 * ring_buffer_size - return the size of the ring buffer (in bytes)
4773 * @buffer: The ring buffer.
4774 * @cpu: The CPU to get ring buffer size from.
4775 */
4776unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4777{
4778	/*
4779	 * Earlier, this method returned
4780	 *	BUF_PAGE_SIZE * buffer->nr_pages
4781	 * Since the nr_pages field is now removed, we have converted this to
4782	 * return the per cpu buffer value.
4783	 */
4784	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4785		return 0;
4786
4787	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4788}
4789EXPORT_SYMBOL_GPL(ring_buffer_size);
4790
4791static void
4792rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4793{
4794	rb_head_page_deactivate(cpu_buffer);
4795
4796	cpu_buffer->head_page
4797		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4798	local_set(&cpu_buffer->head_page->write, 0);
4799	local_set(&cpu_buffer->head_page->entries, 0);
4800	local_set(&cpu_buffer->head_page->page->commit, 0);
4801
4802	cpu_buffer->head_page->read = 0;
4803
4804	cpu_buffer->tail_page = cpu_buffer->head_page;
4805	cpu_buffer->commit_page = cpu_buffer->head_page;
4806
4807	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4808	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4809	local_set(&cpu_buffer->reader_page->write, 0);
4810	local_set(&cpu_buffer->reader_page->entries, 0);
4811	local_set(&cpu_buffer->reader_page->page->commit, 0);
4812	cpu_buffer->reader_page->read = 0;
4813
4814	local_set(&cpu_buffer->entries_bytes, 0);
4815	local_set(&cpu_buffer->overrun, 0);
4816	local_set(&cpu_buffer->commit_overrun, 0);
4817	local_set(&cpu_buffer->dropped_events, 0);
4818	local_set(&cpu_buffer->entries, 0);
4819	local_set(&cpu_buffer->committing, 0);
4820	local_set(&cpu_buffer->commits, 0);
4821	local_set(&cpu_buffer->pages_touched, 0);
 
4822	local_set(&cpu_buffer->pages_read, 0);
4823	cpu_buffer->last_pages_touch = 0;
4824	cpu_buffer->shortest_full = 0;
4825	cpu_buffer->read = 0;
4826	cpu_buffer->read_bytes = 0;
4827
4828	rb_time_set(&cpu_buffer->write_stamp, 0);
4829	rb_time_set(&cpu_buffer->before_stamp, 0);
4830
 
 
4831	cpu_buffer->lost_events = 0;
4832	cpu_buffer->last_overrun = 0;
4833
4834	rb_head_page_activate(cpu_buffer);
4835}
4836
4837/* Must have disabled the cpu buffer then done a synchronize_rcu */
4838static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
4839{
4840	unsigned long flags;
4841
4842	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4843
4844	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4845		goto out;
4846
4847	arch_spin_lock(&cpu_buffer->lock);
4848
4849	rb_reset_cpu(cpu_buffer);
4850
4851	arch_spin_unlock(&cpu_buffer->lock);
4852
4853 out:
4854	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4855}
4856
4857/**
4858 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4859 * @buffer: The ring buffer to reset a per cpu buffer of
4860 * @cpu: The CPU buffer to be reset
4861 */
4862void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
4863{
4864	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4865
4866	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4867		return;
4868
 
 
 
4869	atomic_inc(&cpu_buffer->resize_disabled);
4870	atomic_inc(&cpu_buffer->record_disabled);
4871
4872	/* Make sure all commits have finished */
4873	synchronize_rcu();
4874
4875	reset_disabled_cpu_buffer(cpu_buffer);
4876
4877	atomic_dec(&cpu_buffer->record_disabled);
4878	atomic_dec(&cpu_buffer->resize_disabled);
 
 
4879}
4880EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4881
4882/**
4883 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4884 * @buffer: The ring buffer to reset a per cpu buffer of
4885 * @cpu: The CPU buffer to be reset
4886 */
4887void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
4888{
4889	struct ring_buffer_per_cpu *cpu_buffer;
4890	int cpu;
4891
 
 
 
4892	for_each_online_buffer_cpu(buffer, cpu) {
4893		cpu_buffer = buffer->buffers[cpu];
4894
4895		atomic_inc(&cpu_buffer->resize_disabled);
4896		atomic_inc(&cpu_buffer->record_disabled);
4897	}
4898
4899	/* Make sure all commits have finished */
4900	synchronize_rcu();
4901
4902	for_each_online_buffer_cpu(buffer, cpu) {
4903		cpu_buffer = buffer->buffers[cpu];
4904
4905		reset_disabled_cpu_buffer(cpu_buffer);
4906
4907		atomic_dec(&cpu_buffer->record_disabled);
4908		atomic_dec(&cpu_buffer->resize_disabled);
4909	}
 
 
4910}
4911
4912/**
4913 * ring_buffer_reset - reset a ring buffer
4914 * @buffer: The ring buffer to reset all cpu buffers
4915 */
4916void ring_buffer_reset(struct trace_buffer *buffer)
4917{
4918	struct ring_buffer_per_cpu *cpu_buffer;
4919	int cpu;
4920
 
 
 
4921	for_each_buffer_cpu(buffer, cpu) {
4922		cpu_buffer = buffer->buffers[cpu];
4923
4924		atomic_inc(&cpu_buffer->resize_disabled);
4925		atomic_inc(&cpu_buffer->record_disabled);
4926	}
4927
4928	/* Make sure all commits have finished */
4929	synchronize_rcu();
4930
4931	for_each_buffer_cpu(buffer, cpu) {
4932		cpu_buffer = buffer->buffers[cpu];
4933
4934		reset_disabled_cpu_buffer(cpu_buffer);
4935
4936		atomic_dec(&cpu_buffer->record_disabled);
4937		atomic_dec(&cpu_buffer->resize_disabled);
4938	}
 
 
4939}
4940EXPORT_SYMBOL_GPL(ring_buffer_reset);
4941
4942/**
4943 * rind_buffer_empty - is the ring buffer empty?
4944 * @buffer: The ring buffer to test
4945 */
4946bool ring_buffer_empty(struct trace_buffer *buffer)
4947{
4948	struct ring_buffer_per_cpu *cpu_buffer;
4949	unsigned long flags;
4950	bool dolock;
4951	int cpu;
4952	int ret;
4953
4954	/* yes this is racy, but if you don't like the race, lock the buffer */
4955	for_each_buffer_cpu(buffer, cpu) {
4956		cpu_buffer = buffer->buffers[cpu];
4957		local_irq_save(flags);
4958		dolock = rb_reader_lock(cpu_buffer);
4959		ret = rb_per_cpu_empty(cpu_buffer);
4960		rb_reader_unlock(cpu_buffer, dolock);
4961		local_irq_restore(flags);
4962
4963		if (!ret)
4964			return false;
4965	}
4966
4967	return true;
4968}
4969EXPORT_SYMBOL_GPL(ring_buffer_empty);
4970
4971/**
4972 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4973 * @buffer: The ring buffer
4974 * @cpu: The CPU buffer to test
4975 */
4976bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
4977{
4978	struct ring_buffer_per_cpu *cpu_buffer;
4979	unsigned long flags;
4980	bool dolock;
4981	int ret;
4982
4983	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4984		return true;
4985
4986	cpu_buffer = buffer->buffers[cpu];
4987	local_irq_save(flags);
4988	dolock = rb_reader_lock(cpu_buffer);
4989	ret = rb_per_cpu_empty(cpu_buffer);
4990	rb_reader_unlock(cpu_buffer, dolock);
4991	local_irq_restore(flags);
4992
4993	return ret;
4994}
4995EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4996
4997#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4998/**
4999 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5000 * @buffer_a: One buffer to swap with
5001 * @buffer_b: The other buffer to swap with
5002 * @cpu: the CPU of the buffers to swap
5003 *
5004 * This function is useful for tracers that want to take a "snapshot"
5005 * of a CPU buffer and has another back up buffer lying around.
5006 * it is expected that the tracer handles the cpu buffer not being
5007 * used at the moment.
5008 */
5009int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5010			 struct trace_buffer *buffer_b, int cpu)
5011{
5012	struct ring_buffer_per_cpu *cpu_buffer_a;
5013	struct ring_buffer_per_cpu *cpu_buffer_b;
5014	int ret = -EINVAL;
5015
5016	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5017	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5018		goto out;
5019
5020	cpu_buffer_a = buffer_a->buffers[cpu];
5021	cpu_buffer_b = buffer_b->buffers[cpu];
5022
5023	/* At least make sure the two buffers are somewhat the same */
5024	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5025		goto out;
5026
5027	ret = -EAGAIN;
5028
5029	if (atomic_read(&buffer_a->record_disabled))
5030		goto out;
5031
5032	if (atomic_read(&buffer_b->record_disabled))
5033		goto out;
5034
5035	if (atomic_read(&cpu_buffer_a->record_disabled))
5036		goto out;
5037
5038	if (atomic_read(&cpu_buffer_b->record_disabled))
5039		goto out;
5040
5041	/*
5042	 * We can't do a synchronize_rcu here because this
5043	 * function can be called in atomic context.
5044	 * Normally this will be called from the same CPU as cpu.
5045	 * If not it's up to the caller to protect this.
5046	 */
5047	atomic_inc(&cpu_buffer_a->record_disabled);
5048	atomic_inc(&cpu_buffer_b->record_disabled);
5049
5050	ret = -EBUSY;
5051	if (local_read(&cpu_buffer_a->committing))
5052		goto out_dec;
5053	if (local_read(&cpu_buffer_b->committing))
5054		goto out_dec;
5055
5056	buffer_a->buffers[cpu] = cpu_buffer_b;
5057	buffer_b->buffers[cpu] = cpu_buffer_a;
5058
5059	cpu_buffer_b->buffer = buffer_a;
5060	cpu_buffer_a->buffer = buffer_b;
5061
5062	ret = 0;
5063
5064out_dec:
5065	atomic_dec(&cpu_buffer_a->record_disabled);
5066	atomic_dec(&cpu_buffer_b->record_disabled);
5067out:
5068	return ret;
5069}
5070EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5071#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5072
5073/**
5074 * ring_buffer_alloc_read_page - allocate a page to read from buffer
5075 * @buffer: the buffer to allocate for.
5076 * @cpu: the cpu buffer to allocate.
5077 *
5078 * This function is used in conjunction with ring_buffer_read_page.
5079 * When reading a full page from the ring buffer, these functions
5080 * can be used to speed up the process. The calling function should
5081 * allocate a few pages first with this function. Then when it
5082 * needs to get pages from the ring buffer, it passes the result
5083 * of this function into ring_buffer_read_page, which will swap
5084 * the page that was allocated, with the read page of the buffer.
5085 *
5086 * Returns:
5087 *  The page allocated, or ERR_PTR
5088 */
5089void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5090{
5091	struct ring_buffer_per_cpu *cpu_buffer;
5092	struct buffer_data_page *bpage = NULL;
5093	unsigned long flags;
5094	struct page *page;
5095
5096	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5097		return ERR_PTR(-ENODEV);
5098
5099	cpu_buffer = buffer->buffers[cpu];
5100	local_irq_save(flags);
5101	arch_spin_lock(&cpu_buffer->lock);
5102
5103	if (cpu_buffer->free_page) {
5104		bpage = cpu_buffer->free_page;
5105		cpu_buffer->free_page = NULL;
5106	}
5107
5108	arch_spin_unlock(&cpu_buffer->lock);
5109	local_irq_restore(flags);
5110
5111	if (bpage)
5112		goto out;
5113
5114	page = alloc_pages_node(cpu_to_node(cpu),
5115				GFP_KERNEL | __GFP_NORETRY, 0);
5116	if (!page)
5117		return ERR_PTR(-ENOMEM);
5118
5119	bpage = page_address(page);
5120
5121 out:
5122	rb_init_page(bpage);
5123
5124	return bpage;
5125}
5126EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5127
5128/**
5129 * ring_buffer_free_read_page - free an allocated read page
5130 * @buffer: the buffer the page was allocate for
5131 * @cpu: the cpu buffer the page came from
5132 * @data: the page to free
5133 *
5134 * Free a page allocated from ring_buffer_alloc_read_page.
5135 */
5136void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5137{
5138	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5139	struct buffer_data_page *bpage = data;
5140	struct page *page = virt_to_page(bpage);
5141	unsigned long flags;
5142
5143	/* If the page is still in use someplace else, we can't reuse it */
5144	if (page_ref_count(page) > 1)
5145		goto out;
5146
5147	local_irq_save(flags);
5148	arch_spin_lock(&cpu_buffer->lock);
5149
5150	if (!cpu_buffer->free_page) {
5151		cpu_buffer->free_page = bpage;
5152		bpage = NULL;
5153	}
5154
5155	arch_spin_unlock(&cpu_buffer->lock);
5156	local_irq_restore(flags);
5157
5158 out:
5159	free_page((unsigned long)bpage);
5160}
5161EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5162
5163/**
5164 * ring_buffer_read_page - extract a page from the ring buffer
5165 * @buffer: buffer to extract from
5166 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5167 * @len: amount to extract
5168 * @cpu: the cpu of the buffer to extract
5169 * @full: should the extraction only happen when the page is full.
5170 *
5171 * This function will pull out a page from the ring buffer and consume it.
5172 * @data_page must be the address of the variable that was returned
5173 * from ring_buffer_alloc_read_page. This is because the page might be used
5174 * to swap with a page in the ring buffer.
5175 *
5176 * for example:
5177 *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5178 *	if (IS_ERR(rpage))
5179 *		return PTR_ERR(rpage);
5180 *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5181 *	if (ret >= 0)
5182 *		process_page(rpage, ret);
5183 *
5184 * When @full is set, the function will not return true unless
5185 * the writer is off the reader page.
5186 *
5187 * Note: it is up to the calling functions to handle sleeps and wakeups.
5188 *  The ring buffer can be used anywhere in the kernel and can not
5189 *  blindly call wake_up. The layer that uses the ring buffer must be
5190 *  responsible for that.
5191 *
5192 * Returns:
5193 *  >=0 if data has been transferred, returns the offset of consumed data.
5194 *  <0 if no data has been transferred.
5195 */
5196int ring_buffer_read_page(struct trace_buffer *buffer,
5197			  void **data_page, size_t len, int cpu, int full)
5198{
5199	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5200	struct ring_buffer_event *event;
5201	struct buffer_data_page *bpage;
5202	struct buffer_page *reader;
5203	unsigned long missed_events;
5204	unsigned long flags;
5205	unsigned int commit;
5206	unsigned int read;
5207	u64 save_timestamp;
5208	int ret = -1;
5209
5210	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5211		goto out;
5212
5213	/*
5214	 * If len is not big enough to hold the page header, then
5215	 * we can not copy anything.
5216	 */
5217	if (len <= BUF_PAGE_HDR_SIZE)
5218		goto out;
5219
5220	len -= BUF_PAGE_HDR_SIZE;
5221
5222	if (!data_page)
5223		goto out;
5224
5225	bpage = *data_page;
5226	if (!bpage)
5227		goto out;
5228
5229	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5230
5231	reader = rb_get_reader_page(cpu_buffer);
5232	if (!reader)
5233		goto out_unlock;
5234
5235	event = rb_reader_event(cpu_buffer);
5236
5237	read = reader->read;
5238	commit = rb_page_commit(reader);
5239
5240	/* Check if any events were dropped */
5241	missed_events = cpu_buffer->lost_events;
5242
5243	/*
5244	 * If this page has been partially read or
5245	 * if len is not big enough to read the rest of the page or
5246	 * a writer is still on the page, then
5247	 * we must copy the data from the page to the buffer.
5248	 * Otherwise, we can simply swap the page with the one passed in.
5249	 */
5250	if (read || (len < (commit - read)) ||
5251	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5252		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5253		unsigned int rpos = read;
5254		unsigned int pos = 0;
5255		unsigned int size;
5256
5257		if (full)
 
 
 
 
 
 
 
 
5258			goto out_unlock;
5259
5260		if (len > (commit - read))
5261			len = (commit - read);
5262
5263		/* Always keep the time extend and data together */
5264		size = rb_event_ts_length(event);
5265
5266		if (len < size)
5267			goto out_unlock;
5268
5269		/* save the current timestamp, since the user will need it */
5270		save_timestamp = cpu_buffer->read_stamp;
5271
5272		/* Need to copy one event at a time */
5273		do {
5274			/* We need the size of one event, because
5275			 * rb_advance_reader only advances by one event,
5276			 * whereas rb_event_ts_length may include the size of
5277			 * one or two events.
5278			 * We have already ensured there's enough space if this
5279			 * is a time extend. */
5280			size = rb_event_length(event);
5281			memcpy(bpage->data + pos, rpage->data + rpos, size);
5282
5283			len -= size;
5284
5285			rb_advance_reader(cpu_buffer);
5286			rpos = reader->read;
5287			pos += size;
5288
5289			if (rpos >= commit)
5290				break;
5291
5292			event = rb_reader_event(cpu_buffer);
5293			/* Always keep the time extend and data together */
5294			size = rb_event_ts_length(event);
5295		} while (len >= size);
5296
5297		/* update bpage */
5298		local_set(&bpage->commit, pos);
5299		bpage->time_stamp = save_timestamp;
5300
5301		/* we copied everything to the beginning */
5302		read = 0;
5303	} else {
5304		/* update the entry counter */
5305		cpu_buffer->read += rb_page_entries(reader);
5306		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5307
5308		/* swap the pages */
5309		rb_init_page(bpage);
5310		bpage = reader->page;
5311		reader->page = *data_page;
5312		local_set(&reader->write, 0);
5313		local_set(&reader->entries, 0);
5314		reader->read = 0;
5315		*data_page = bpage;
5316
5317		/*
5318		 * Use the real_end for the data size,
5319		 * This gives us a chance to store the lost events
5320		 * on the page.
5321		 */
5322		if (reader->real_end)
5323			local_set(&bpage->commit, reader->real_end);
5324	}
5325	ret = read;
5326
5327	cpu_buffer->lost_events = 0;
5328
5329	commit = local_read(&bpage->commit);
5330	/*
5331	 * Set a flag in the commit field if we lost events
5332	 */
5333	if (missed_events) {
5334		/* If there is room at the end of the page to save the
5335		 * missed events, then record it there.
5336		 */
5337		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5338			memcpy(&bpage->data[commit], &missed_events,
5339			       sizeof(missed_events));
5340			local_add(RB_MISSED_STORED, &bpage->commit);
5341			commit += sizeof(missed_events);
5342		}
5343		local_add(RB_MISSED_EVENTS, &bpage->commit);
5344	}
5345
5346	/*
5347	 * This page may be off to user land. Zero it out here.
5348	 */
5349	if (commit < BUF_PAGE_SIZE)
5350		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5351
5352 out_unlock:
5353	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5354
5355 out:
5356	return ret;
5357}
5358EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5359
5360/*
5361 * We only allocate new buffers, never free them if the CPU goes down.
5362 * If we were to free the buffer, then the user would lose any trace that was in
5363 * the buffer.
5364 */
5365int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5366{
5367	struct trace_buffer *buffer;
5368	long nr_pages_same;
5369	int cpu_i;
5370	unsigned long nr_pages;
5371
5372	buffer = container_of(node, struct trace_buffer, node);
5373	if (cpumask_test_cpu(cpu, buffer->cpumask))
5374		return 0;
5375
5376	nr_pages = 0;
5377	nr_pages_same = 1;
5378	/* check if all cpu sizes are same */
5379	for_each_buffer_cpu(buffer, cpu_i) {
5380		/* fill in the size from first enabled cpu */
5381		if (nr_pages == 0)
5382			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5383		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5384			nr_pages_same = 0;
5385			break;
5386		}
5387	}
5388	/* allocate minimum pages, user can later expand it */
5389	if (!nr_pages_same)
5390		nr_pages = 2;
5391	buffer->buffers[cpu] =
5392		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5393	if (!buffer->buffers[cpu]) {
5394		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5395		     cpu);
5396		return -ENOMEM;
5397	}
5398	smp_wmb();
5399	cpumask_set_cpu(cpu, buffer->cpumask);
5400	return 0;
5401}
5402
5403#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5404/*
5405 * This is a basic integrity check of the ring buffer.
5406 * Late in the boot cycle this test will run when configured in.
5407 * It will kick off a thread per CPU that will go into a loop
5408 * writing to the per cpu ring buffer various sizes of data.
5409 * Some of the data will be large items, some small.
5410 *
5411 * Another thread is created that goes into a spin, sending out
5412 * IPIs to the other CPUs to also write into the ring buffer.
5413 * this is to test the nesting ability of the buffer.
5414 *
5415 * Basic stats are recorded and reported. If something in the
5416 * ring buffer should happen that's not expected, a big warning
5417 * is displayed and all ring buffers are disabled.
5418 */
5419static struct task_struct *rb_threads[NR_CPUS] __initdata;
5420
5421struct rb_test_data {
5422	struct trace_buffer *buffer;
5423	unsigned long		events;
5424	unsigned long		bytes_written;
5425	unsigned long		bytes_alloc;
5426	unsigned long		bytes_dropped;
5427	unsigned long		events_nested;
5428	unsigned long		bytes_written_nested;
5429	unsigned long		bytes_alloc_nested;
5430	unsigned long		bytes_dropped_nested;
5431	int			min_size_nested;
5432	int			max_size_nested;
5433	int			max_size;
5434	int			min_size;
5435	int			cpu;
5436	int			cnt;
5437};
5438
5439static struct rb_test_data rb_data[NR_CPUS] __initdata;
5440
5441/* 1 meg per cpu */
5442#define RB_TEST_BUFFER_SIZE	1048576
5443
5444static char rb_string[] __initdata =
5445	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5446	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5447	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5448
5449static bool rb_test_started __initdata;
5450
5451struct rb_item {
5452	int size;
5453	char str[];
5454};
5455
5456static __init int rb_write_something(struct rb_test_data *data, bool nested)
5457{
5458	struct ring_buffer_event *event;
5459	struct rb_item *item;
5460	bool started;
5461	int event_len;
5462	int size;
5463	int len;
5464	int cnt;
5465
5466	/* Have nested writes different that what is written */
5467	cnt = data->cnt + (nested ? 27 : 0);
5468
5469	/* Multiply cnt by ~e, to make some unique increment */
5470	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5471
5472	len = size + sizeof(struct rb_item);
5473
5474	started = rb_test_started;
5475	/* read rb_test_started before checking buffer enabled */
5476	smp_rmb();
5477
5478	event = ring_buffer_lock_reserve(data->buffer, len);
5479	if (!event) {
5480		/* Ignore dropped events before test starts. */
5481		if (started) {
5482			if (nested)
5483				data->bytes_dropped += len;
5484			else
5485				data->bytes_dropped_nested += len;
5486		}
5487		return len;
5488	}
5489
5490	event_len = ring_buffer_event_length(event);
5491
5492	if (RB_WARN_ON(data->buffer, event_len < len))
5493		goto out;
5494
5495	item = ring_buffer_event_data(event);
5496	item->size = size;
5497	memcpy(item->str, rb_string, size);
5498
5499	if (nested) {
5500		data->bytes_alloc_nested += event_len;
5501		data->bytes_written_nested += len;
5502		data->events_nested++;
5503		if (!data->min_size_nested || len < data->min_size_nested)
5504			data->min_size_nested = len;
5505		if (len > data->max_size_nested)
5506			data->max_size_nested = len;
5507	} else {
5508		data->bytes_alloc += event_len;
5509		data->bytes_written += len;
5510		data->events++;
5511		if (!data->min_size || len < data->min_size)
5512			data->max_size = len;
5513		if (len > data->max_size)
5514			data->max_size = len;
5515	}
5516
5517 out:
5518	ring_buffer_unlock_commit(data->buffer, event);
5519
5520	return 0;
5521}
5522
5523static __init int rb_test(void *arg)
5524{
5525	struct rb_test_data *data = arg;
5526
5527	while (!kthread_should_stop()) {
5528		rb_write_something(data, false);
5529		data->cnt++;
5530
5531		set_current_state(TASK_INTERRUPTIBLE);
5532		/* Now sleep between a min of 100-300us and a max of 1ms */
5533		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5534	}
5535
5536	return 0;
5537}
5538
5539static __init void rb_ipi(void *ignore)
5540{
5541	struct rb_test_data *data;
5542	int cpu = smp_processor_id();
5543
5544	data = &rb_data[cpu];
5545	rb_write_something(data, true);
5546}
5547
5548static __init int rb_hammer_test(void *arg)
5549{
5550	while (!kthread_should_stop()) {
5551
5552		/* Send an IPI to all cpus to write data! */
5553		smp_call_function(rb_ipi, NULL, 1);
5554		/* No sleep, but for non preempt, let others run */
5555		schedule();
5556	}
5557
5558	return 0;
5559}
5560
5561static __init int test_ringbuffer(void)
5562{
5563	struct task_struct *rb_hammer;
5564	struct trace_buffer *buffer;
5565	int cpu;
5566	int ret = 0;
5567
5568	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5569		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5570		return 0;
5571	}
5572
5573	pr_info("Running ring buffer tests...\n");
5574
5575	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5576	if (WARN_ON(!buffer))
5577		return 0;
5578
5579	/* Disable buffer so that threads can't write to it yet */
5580	ring_buffer_record_off(buffer);
5581
5582	for_each_online_cpu(cpu) {
5583		rb_data[cpu].buffer = buffer;
5584		rb_data[cpu].cpu = cpu;
5585		rb_data[cpu].cnt = cpu;
5586		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5587						 "rbtester/%d", cpu);
5588		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5589			pr_cont("FAILED\n");
5590			ret = PTR_ERR(rb_threads[cpu]);
5591			goto out_free;
5592		}
5593
5594		kthread_bind(rb_threads[cpu], cpu);
5595 		wake_up_process(rb_threads[cpu]);
5596	}
5597
5598	/* Now create the rb hammer! */
5599	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5600	if (WARN_ON(IS_ERR(rb_hammer))) {
5601		pr_cont("FAILED\n");
5602		ret = PTR_ERR(rb_hammer);
5603		goto out_free;
5604	}
5605
5606	ring_buffer_record_on(buffer);
5607	/*
5608	 * Show buffer is enabled before setting rb_test_started.
5609	 * Yes there's a small race window where events could be
5610	 * dropped and the thread wont catch it. But when a ring
5611	 * buffer gets enabled, there will always be some kind of
5612	 * delay before other CPUs see it. Thus, we don't care about
5613	 * those dropped events. We care about events dropped after
5614	 * the threads see that the buffer is active.
5615	 */
5616	smp_wmb();
5617	rb_test_started = true;
5618
5619	set_current_state(TASK_INTERRUPTIBLE);
5620	/* Just run for 10 seconds */;
5621	schedule_timeout(10 * HZ);
5622
5623	kthread_stop(rb_hammer);
5624
5625 out_free:
5626	for_each_online_cpu(cpu) {
5627		if (!rb_threads[cpu])
5628			break;
5629		kthread_stop(rb_threads[cpu]);
5630	}
5631	if (ret) {
5632		ring_buffer_free(buffer);
5633		return ret;
5634	}
5635
5636	/* Report! */
5637	pr_info("finished\n");
5638	for_each_online_cpu(cpu) {
5639		struct ring_buffer_event *event;
5640		struct rb_test_data *data = &rb_data[cpu];
5641		struct rb_item *item;
5642		unsigned long total_events;
5643		unsigned long total_dropped;
5644		unsigned long total_written;
5645		unsigned long total_alloc;
5646		unsigned long total_read = 0;
5647		unsigned long total_size = 0;
5648		unsigned long total_len = 0;
5649		unsigned long total_lost = 0;
5650		unsigned long lost;
5651		int big_event_size;
5652		int small_event_size;
5653
5654		ret = -1;
5655
5656		total_events = data->events + data->events_nested;
5657		total_written = data->bytes_written + data->bytes_written_nested;
5658		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5659		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5660
5661		big_event_size = data->max_size + data->max_size_nested;
5662		small_event_size = data->min_size + data->min_size_nested;
5663
5664		pr_info("CPU %d:\n", cpu);
5665		pr_info("              events:    %ld\n", total_events);
5666		pr_info("       dropped bytes:    %ld\n", total_dropped);
5667		pr_info("       alloced bytes:    %ld\n", total_alloc);
5668		pr_info("       written bytes:    %ld\n", total_written);
5669		pr_info("       biggest event:    %d\n", big_event_size);
5670		pr_info("      smallest event:    %d\n", small_event_size);
5671
5672		if (RB_WARN_ON(buffer, total_dropped))
5673			break;
5674
5675		ret = 0;
5676
5677		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5678			total_lost += lost;
5679			item = ring_buffer_event_data(event);
5680			total_len += ring_buffer_event_length(event);
5681			total_size += item->size + sizeof(struct rb_item);
5682			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5683				pr_info("FAILED!\n");
5684				pr_info("buffer had: %.*s\n", item->size, item->str);
5685				pr_info("expected:   %.*s\n", item->size, rb_string);
5686				RB_WARN_ON(buffer, 1);
5687				ret = -1;
5688				break;
5689			}
5690			total_read++;
5691		}
5692		if (ret)
5693			break;
5694
5695		ret = -1;
5696
5697		pr_info("         read events:   %ld\n", total_read);
5698		pr_info("         lost events:   %ld\n", total_lost);
5699		pr_info("        total events:   %ld\n", total_lost + total_read);
5700		pr_info("  recorded len bytes:   %ld\n", total_len);
5701		pr_info(" recorded size bytes:   %ld\n", total_size);
5702		if (total_lost)
5703			pr_info(" With dropped events, record len and size may not match\n"
5704				" alloced and written from above\n");
5705		if (!total_lost) {
5706			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5707				       total_size != total_written))
5708				break;
5709		}
5710		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5711			break;
5712
5713		ret = 0;
5714	}
5715	if (!ret)
5716		pr_info("Ring buffer PASSED!\n");
5717
5718	ring_buffer_free(buffer);
5719	return 0;
5720}
5721
5722late_initcall(test_ringbuffer);
5723#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */