Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64bit can do a quick check without holding jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32bit cannot do that because the store of tick_next_period
  68	 * consists of two 32bit stores and the first store could move it
  69	 * to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on jiffies_lock and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Reevaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 
 
 101	write_seqcount_begin(&jiffies_seq);
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the jiffies_seq protected job */
 118	jiffies_64 += ticks;
 119
 120	/*
 121	 * Keep the tick_next_period variable up to date.
 122	 */
 123	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 
 
 
 124
 125	if (IS_ENABLED(CONFIG_64BIT)) {
 126		/*
 127		 * Pairs with smp_load_acquire() in the lockless quick
 128		 * check above and ensures that the update to jiffies_64 is
 129		 * not reordered vs. the store to tick_next_period, neither
 130		 * by the compiler nor by the CPU.
 131		 */
 132		smp_store_release(&tick_next_period, nextp);
 133	} else {
 134		/*
 135		 * A plain store is good enough on 32bit as the quick check
 136		 * above is protected by the sequence count.
 137		 */
 138		tick_next_period = nextp;
 139	}
 140
 141	/*
 142	 * Release the sequence count. calc_global_load() below is not
 143	 * protected by it, but jiffies_lock needs to be held to prevent
 144	 * concurrent invocations.
 145	 */
 146	write_seqcount_end(&jiffies_seq);
 147
 148	calc_global_load();
 149
 150	raw_spin_unlock(&jiffies_lock);
 151	update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159	ktime_t period;
 160
 161	raw_spin_lock(&jiffies_lock);
 162	write_seqcount_begin(&jiffies_seq);
 163	/* Did we start the jiffies update yet ? */
 164	if (last_jiffies_update == 0)
 165		last_jiffies_update = tick_next_period;
 166	period = last_jiffies_update;
 167	write_seqcount_end(&jiffies_seq);
 168	raw_spin_unlock(&jiffies_lock);
 169	return period;
 170}
 171
 172#define MAX_STALLED_JIFFIES 5
 173
 174static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 175{
 176	int cpu = smp_processor_id();
 177
 178#ifdef CONFIG_NO_HZ_COMMON
 179	/*
 180	 * Check if the do_timer duty was dropped. We don't care about
 181	 * concurrency: This happens only when the CPU in charge went
 182	 * into a long sleep. If two CPUs happen to assign themselves to
 183	 * this duty, then the jiffies update is still serialized by
 184	 * jiffies_lock.
 185	 *
 186	 * If nohz_full is enabled, this should not happen because the
 187	 * tick_do_timer_cpu never relinquishes.
 188	 */
 189	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 190#ifdef CONFIG_NO_HZ_FULL
 191		WARN_ON_ONCE(tick_nohz_full_running);
 192#endif
 193		tick_do_timer_cpu = cpu;
 194	}
 195#endif
 196
 197	/* Check, if the jiffies need an update */
 198	if (tick_do_timer_cpu == cpu)
 199		tick_do_update_jiffies64(now);
 200
 201	/*
 202	 * If jiffies update stalled for too long (timekeeper in stop_machine()
 203	 * or VMEXIT'ed for several msecs), force an update.
 204	 */
 205	if (ts->last_tick_jiffies != jiffies) {
 206		ts->stalled_jiffies = 0;
 207		ts->last_tick_jiffies = READ_ONCE(jiffies);
 208	} else {
 209		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 210			tick_do_update_jiffies64(now);
 211			ts->stalled_jiffies = 0;
 212			ts->last_tick_jiffies = READ_ONCE(jiffies);
 213		}
 214	}
 215
 216	if (ts->inidle)
 217		ts->got_idle_tick = 1;
 218}
 219
 220static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 221{
 222#ifdef CONFIG_NO_HZ_COMMON
 223	/*
 224	 * When we are idle and the tick is stopped, we have to touch
 225	 * the watchdog as we might not schedule for a really long
 226	 * time. This happens on complete idle SMP systems while
 227	 * waiting on the login prompt. We also increment the "start of
 228	 * idle" jiffy stamp so the idle accounting adjustment we do
 229	 * when we go busy again does not account too much ticks.
 230	 */
 231	if (ts->tick_stopped) {
 232		touch_softlockup_watchdog_sched();
 233		if (is_idle_task(current))
 234			ts->idle_jiffies++;
 235		/*
 236		 * In case the current tick fired too early past its expected
 237		 * expiration, make sure we don't bypass the next clock reprogramming
 238		 * to the same deadline.
 239		 */
 240		ts->next_tick = 0;
 241	}
 242#endif
 243	update_process_times(user_mode(regs));
 244	profile_tick(CPU_PROFILING);
 245}
 246#endif
 247
 248#ifdef CONFIG_NO_HZ_FULL
 249cpumask_var_t tick_nohz_full_mask;
 250EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 251bool tick_nohz_full_running;
 252EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 253static atomic_t tick_dep_mask;
 254
 255static bool check_tick_dependency(atomic_t *dep)
 256{
 257	int val = atomic_read(dep);
 258
 259	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 260		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 261		return true;
 262	}
 263
 264	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 265		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 266		return true;
 267	}
 268
 269	if (val & TICK_DEP_MASK_SCHED) {
 270		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 271		return true;
 272	}
 273
 274	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 275		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 276		return true;
 277	}
 278
 279	if (val & TICK_DEP_MASK_RCU) {
 280		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 281		return true;
 282	}
 283
 284	return false;
 285}
 286
 287static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 288{
 289	lockdep_assert_irqs_disabled();
 290
 291	if (unlikely(!cpu_online(cpu)))
 292		return false;
 293
 294	if (check_tick_dependency(&tick_dep_mask))
 295		return false;
 296
 297	if (check_tick_dependency(&ts->tick_dep_mask))
 298		return false;
 299
 300	if (check_tick_dependency(&current->tick_dep_mask))
 301		return false;
 302
 303	if (check_tick_dependency(&current->signal->tick_dep_mask))
 304		return false;
 305
 306	return true;
 307}
 308
 309static void nohz_full_kick_func(struct irq_work *work)
 310{
 311	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 312}
 313
 314static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 315	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 
 
 316
 317/*
 318 * Kick this CPU if it's full dynticks in order to force it to
 319 * re-evaluate its dependency on the tick and restart it if necessary.
 320 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 321 * is NMI safe.
 322 */
 323static void tick_nohz_full_kick(void)
 324{
 325	if (!tick_nohz_full_cpu(smp_processor_id()))
 326		return;
 327
 328	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 329}
 330
 331/*
 332 * Kick the CPU if it's full dynticks in order to force it to
 333 * re-evaluate its dependency on the tick and restart it if necessary.
 334 */
 335void tick_nohz_full_kick_cpu(int cpu)
 336{
 337	if (!tick_nohz_full_cpu(cpu))
 338		return;
 339
 340	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 341}
 342
 343static void tick_nohz_kick_task(struct task_struct *tsk)
 344{
 345	int cpu;
 346
 347	/*
 348	 * If the task is not running, run_posix_cpu_timers()
 349	 * has nothing to elapse, IPI can then be spared.
 350	 *
 351	 * activate_task()                      STORE p->tick_dep_mask
 352	 *   STORE p->on_rq
 353	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 354	 *   LOCK rq->lock                      LOAD p->on_rq
 355	 *   smp_mb__after_spin_lock()
 356	 *   tick_nohz_task_switch()
 357	 *     LOAD p->tick_dep_mask
 358	 */
 359	if (!sched_task_on_rq(tsk))
 360		return;
 361
 362	/*
 363	 * If the task concurrently migrates to another CPU,
 364	 * we guarantee it sees the new tick dependency upon
 365	 * schedule.
 366	 *
 367	 * set_task_cpu(p, cpu);
 368	 *   STORE p->cpu = @cpu
 369	 * __schedule() (switch to task 'p')
 370	 *   LOCK rq->lock
 371	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 372	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 373	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 374	 */
 375	cpu = task_cpu(tsk);
 376
 377	preempt_disable();
 378	if (cpu_online(cpu))
 379		tick_nohz_full_kick_cpu(cpu);
 380	preempt_enable();
 381}
 382
 383/*
 384 * Kick all full dynticks CPUs in order to force these to re-evaluate
 385 * their dependency on the tick and restart it if necessary.
 386 */
 387static void tick_nohz_full_kick_all(void)
 388{
 389	int cpu;
 390
 391	if (!tick_nohz_full_running)
 392		return;
 393
 394	preempt_disable();
 395	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 396		tick_nohz_full_kick_cpu(cpu);
 397	preempt_enable();
 398}
 399
 400static void tick_nohz_dep_set_all(atomic_t *dep,
 401				  enum tick_dep_bits bit)
 402{
 403	int prev;
 404
 405	prev = atomic_fetch_or(BIT(bit), dep);
 406	if (!prev)
 407		tick_nohz_full_kick_all();
 408}
 409
 410/*
 411 * Set a global tick dependency. Used by perf events that rely on freq and
 412 * by unstable clock.
 413 */
 414void tick_nohz_dep_set(enum tick_dep_bits bit)
 415{
 416	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 417}
 418
 419void tick_nohz_dep_clear(enum tick_dep_bits bit)
 420{
 421	atomic_andnot(BIT(bit), &tick_dep_mask);
 422}
 423
 424/*
 425 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 426 * manage events throttling.
 427 */
 428void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 429{
 430	int prev;
 431	struct tick_sched *ts;
 432
 433	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 434
 435	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 436	if (!prev) {
 437		preempt_disable();
 438		/* Perf needs local kick that is NMI safe */
 439		if (cpu == smp_processor_id()) {
 440			tick_nohz_full_kick();
 441		} else {
 442			/* Remote irq work not NMI-safe */
 443			if (!WARN_ON_ONCE(in_nmi()))
 444				tick_nohz_full_kick_cpu(cpu);
 445		}
 446		preempt_enable();
 447	}
 448}
 449EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 450
 451void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 452{
 453	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 454
 455	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 458
 459/*
 460 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 461 * in order to elapse per task timers.
 462 */
 463void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 464{
 465	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 466		tick_nohz_kick_task(tsk);
 
 
 
 
 
 
 
 
 
 
 
 467}
 468EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 469
 470void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 471{
 472	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 473}
 474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 475
 476/*
 477 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 478 * per process timers.
 479 */
 480void tick_nohz_dep_set_signal(struct task_struct *tsk,
 481			      enum tick_dep_bits bit)
 482{
 483	int prev;
 484	struct signal_struct *sig = tsk->signal;
 485
 486	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 487	if (!prev) {
 488		struct task_struct *t;
 489
 490		lockdep_assert_held(&tsk->sighand->siglock);
 491		__for_each_thread(sig, t)
 492			tick_nohz_kick_task(t);
 493	}
 494}
 495
 496void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 497{
 498	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 499}
 500
 501/*
 502 * Re-evaluate the need for the tick as we switch the current task.
 503 * It might need the tick due to per task/process properties:
 504 * perf events, posix CPU timers, ...
 505 */
 506void __tick_nohz_task_switch(void)
 507{
 
 508	struct tick_sched *ts;
 509
 
 
 510	if (!tick_nohz_full_cpu(smp_processor_id()))
 511		return;
 512
 513	ts = this_cpu_ptr(&tick_cpu_sched);
 514
 515	if (ts->tick_stopped) {
 516		if (atomic_read(&current->tick_dep_mask) ||
 517		    atomic_read(&current->signal->tick_dep_mask))
 518			tick_nohz_full_kick();
 519	}
 
 
 520}
 521
 522/* Get the boot-time nohz CPU list from the kernel parameters. */
 523void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 524{
 525	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 526	cpumask_copy(tick_nohz_full_mask, cpumask);
 527	tick_nohz_full_running = true;
 528}
 
 529
 530static int tick_nohz_cpu_down(unsigned int cpu)
 531{
 532	/*
 533	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 534	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 535	 * CPUs. It must remain online when nohz full is enabled.
 536	 */
 537	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 538		return -EBUSY;
 539	return 0;
 540}
 541
 542void __init tick_nohz_init(void)
 543{
 544	int cpu, ret;
 545
 546	if (!tick_nohz_full_running)
 547		return;
 548
 549	/*
 550	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 551	 * locking contexts. But then we need irq work to raise its own
 552	 * interrupts to avoid circular dependency on the tick
 553	 */
 554	if (!arch_irq_work_has_interrupt()) {
 555		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 556		cpumask_clear(tick_nohz_full_mask);
 557		tick_nohz_full_running = false;
 558		return;
 559	}
 560
 561	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 562			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 563		cpu = smp_processor_id();
 564
 565		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 566			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 567				"for timekeeping\n", cpu);
 568			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 569		}
 570	}
 571
 572	for_each_cpu(cpu, tick_nohz_full_mask)
 573		ct_cpu_track_user(cpu);
 574
 575	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 576					"kernel/nohz:predown", NULL,
 577					tick_nohz_cpu_down);
 578	WARN_ON(ret < 0);
 579	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 580		cpumask_pr_args(tick_nohz_full_mask));
 581}
 582#endif
 583
 584/*
 585 * NOHZ - aka dynamic tick functionality
 586 */
 587#ifdef CONFIG_NO_HZ_COMMON
 588/*
 589 * NO HZ enabled ?
 590 */
 591bool tick_nohz_enabled __read_mostly  = true;
 592unsigned long tick_nohz_active  __read_mostly;
 593/*
 594 * Enable / Disable tickless mode
 595 */
 596static int __init setup_tick_nohz(char *str)
 597{
 598	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 599}
 600
 601__setup("nohz=", setup_tick_nohz);
 602
 603bool tick_nohz_tick_stopped(void)
 604{
 605	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 606
 607	return ts->tick_stopped;
 608}
 609
 610bool tick_nohz_tick_stopped_cpu(int cpu)
 611{
 612	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 613
 614	return ts->tick_stopped;
 615}
 616
 617/**
 618 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 619 *
 620 * Called from interrupt entry when the CPU was idle
 621 *
 622 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 623 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 624 * value. We do this unconditionally on any CPU, as we don't know whether the
 625 * CPU, which has the update task assigned is in a long sleep.
 626 */
 627static void tick_nohz_update_jiffies(ktime_t now)
 628{
 629	unsigned long flags;
 630
 631	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 632
 633	local_irq_save(flags);
 634	tick_do_update_jiffies64(now);
 635	local_irq_restore(flags);
 636
 637	touch_softlockup_watchdog_sched();
 638}
 639
 640/*
 641 * Updates the per-CPU time idle statistics counters
 642 */
 643static void
 644update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 645{
 646	ktime_t delta;
 647
 648	if (ts->idle_active) {
 649		delta = ktime_sub(now, ts->idle_entrytime);
 650		if (nr_iowait_cpu(cpu) > 0)
 651			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 652		else
 653			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 654		ts->idle_entrytime = now;
 655	}
 656
 657	if (last_update_time)
 658		*last_update_time = ktime_to_us(now);
 659
 660}
 661
 662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 663{
 664	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 665	ts->idle_active = 0;
 666
 667	sched_clock_idle_wakeup_event();
 668}
 669
 670static void tick_nohz_start_idle(struct tick_sched *ts)
 671{
 672	ts->idle_entrytime = ktime_get();
 673	ts->idle_active = 1;
 674	sched_clock_idle_sleep_event();
 675}
 676
 677/**
 678 * get_cpu_idle_time_us - get the total idle time of a CPU
 679 * @cpu: CPU number to query
 680 * @last_update_time: variable to store update time in. Do not update
 681 * counters if NULL.
 682 *
 683 * Return the cumulative idle time (since boot) for a given
 684 * CPU, in microseconds.
 685 *
 686 * This time is measured via accounting rather than sampling,
 687 * and is as accurate as ktime_get() is.
 688 *
 689 * This function returns -1 if NOHZ is not enabled.
 690 */
 691u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 692{
 693	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 694	ktime_t now, idle;
 695
 696	if (!tick_nohz_active)
 697		return -1;
 698
 699	now = ktime_get();
 700	if (last_update_time) {
 701		update_ts_time_stats(cpu, ts, now, last_update_time);
 702		idle = ts->idle_sleeptime;
 703	} else {
 704		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 705			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 706
 707			idle = ktime_add(ts->idle_sleeptime, delta);
 708		} else {
 709			idle = ts->idle_sleeptime;
 710		}
 711	}
 712
 713	return ktime_to_us(idle);
 714
 715}
 716EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 717
 718/**
 719 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 720 * @cpu: CPU number to query
 721 * @last_update_time: variable to store update time in. Do not update
 722 * counters if NULL.
 723 *
 724 * Return the cumulative iowait time (since boot) for a given
 725 * CPU, in microseconds.
 726 *
 727 * This time is measured via accounting rather than sampling,
 728 * and is as accurate as ktime_get() is.
 729 *
 730 * This function returns -1 if NOHZ is not enabled.
 731 */
 732u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 733{
 734	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 735	ktime_t now, iowait;
 736
 737	if (!tick_nohz_active)
 738		return -1;
 739
 740	now = ktime_get();
 741	if (last_update_time) {
 742		update_ts_time_stats(cpu, ts, now, last_update_time);
 743		iowait = ts->iowait_sleeptime;
 744	} else {
 745		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 746			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 747
 748			iowait = ktime_add(ts->iowait_sleeptime, delta);
 749		} else {
 750			iowait = ts->iowait_sleeptime;
 751		}
 752	}
 753
 754	return ktime_to_us(iowait);
 755}
 756EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 757
 758static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 759{
 760	hrtimer_cancel(&ts->sched_timer);
 761	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 762
 763	/* Forward the time to expire in the future */
 764	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 765
 766	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 767		hrtimer_start_expires(&ts->sched_timer,
 768				      HRTIMER_MODE_ABS_PINNED_HARD);
 769	} else {
 770		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 771	}
 772
 773	/*
 774	 * Reset to make sure next tick stop doesn't get fooled by past
 775	 * cached clock deadline.
 776	 */
 777	ts->next_tick = 0;
 778}
 779
 780static inline bool local_timer_softirq_pending(void)
 781{
 782	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 783}
 784
 785static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 786{
 787	u64 basemono, next_tick, delta, expires;
 788	unsigned long basejiff;
 789	unsigned int seq;
 790
 791	/* Read jiffies and the time when jiffies were updated last */
 792	do {
 793		seq = read_seqcount_begin(&jiffies_seq);
 794		basemono = last_jiffies_update;
 795		basejiff = jiffies;
 796	} while (read_seqcount_retry(&jiffies_seq, seq));
 797	ts->last_jiffies = basejiff;
 798	ts->timer_expires_base = basemono;
 799
 800	/*
 801	 * Keep the periodic tick, when RCU, architecture or irq_work
 802	 * requests it.
 803	 * Aside of that check whether the local timer softirq is
 804	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 805	 * because there is an already expired timer, so it will request
 806	 * immediate expiry, which rearms the hardware timer with a
 807	 * minimal delta which brings us back to this place
 808	 * immediately. Lather, rinse and repeat...
 809	 */
 810	if (rcu_needs_cpu() || arch_needs_cpu() ||
 811	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 812		next_tick = basemono + TICK_NSEC;
 813	} else {
 814		/*
 815		 * Get the next pending timer. If high resolution
 816		 * timers are enabled this only takes the timer wheel
 817		 * timers into account. If high resolution timers are
 818		 * disabled this also looks at the next expiring
 819		 * hrtimer.
 820		 */
 821		next_tick = get_next_timer_interrupt(basejiff, basemono);
 822		ts->next_timer = next_tick;
 
 
 823	}
 824
 825	/*
 826	 * If the tick is due in the next period, keep it ticking or
 827	 * force prod the timer.
 828	 */
 829	delta = next_tick - basemono;
 830	if (delta <= (u64)TICK_NSEC) {
 831		/*
 832		 * Tell the timer code that the base is not idle, i.e. undo
 833		 * the effect of get_next_timer_interrupt():
 834		 */
 835		timer_clear_idle();
 836		/*
 837		 * We've not stopped the tick yet, and there's a timer in the
 838		 * next period, so no point in stopping it either, bail.
 839		 */
 840		if (!ts->tick_stopped) {
 841			ts->timer_expires = 0;
 842			goto out;
 843		}
 844	}
 845
 846	/*
 847	 * If this CPU is the one which had the do_timer() duty last, we limit
 848	 * the sleep time to the timekeeping max_deferment value.
 849	 * Otherwise we can sleep as long as we want.
 850	 */
 851	delta = timekeeping_max_deferment();
 852	if (cpu != tick_do_timer_cpu &&
 853	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 854		delta = KTIME_MAX;
 855
 856	/* Calculate the next expiry time */
 857	if (delta < (KTIME_MAX - basemono))
 858		expires = basemono + delta;
 859	else
 860		expires = KTIME_MAX;
 861
 862	ts->timer_expires = min_t(u64, expires, next_tick);
 863
 864out:
 865	return ts->timer_expires;
 866}
 867
 868static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 869{
 870	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 871	u64 basemono = ts->timer_expires_base;
 872	u64 expires = ts->timer_expires;
 873	ktime_t tick = expires;
 874
 875	/* Make sure we won't be trying to stop it twice in a row. */
 876	ts->timer_expires_base = 0;
 877
 878	/*
 879	 * If this CPU is the one which updates jiffies, then give up
 880	 * the assignment and let it be taken by the CPU which runs
 881	 * the tick timer next, which might be this CPU as well. If we
 882	 * don't drop this here the jiffies might be stale and
 883	 * do_timer() never invoked. Keep track of the fact that it
 884	 * was the one which had the do_timer() duty last.
 885	 */
 886	if (cpu == tick_do_timer_cpu) {
 887		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 888		ts->do_timer_last = 1;
 889	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 890		ts->do_timer_last = 0;
 891	}
 892
 893	/* Skip reprogram of event if its not changed */
 894	if (ts->tick_stopped && (expires == ts->next_tick)) {
 895		/* Sanity check: make sure clockevent is actually programmed */
 896		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 897			return;
 898
 899		WARN_ON_ONCE(1);
 900		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 901			    basemono, ts->next_tick, dev->next_event,
 902			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 903	}
 904
 905	/*
 906	 * nohz_stop_sched_tick can be called several times before
 907	 * the nohz_restart_sched_tick is called. This happens when
 908	 * interrupts arrive which do not cause a reschedule. In the
 909	 * first call we save the current tick time, so we can restart
 910	 * the scheduler tick in nohz_restart_sched_tick.
 911	 */
 912	if (!ts->tick_stopped) {
 913		calc_load_nohz_start();
 914		quiet_vmstat();
 915
 916		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 917		ts->tick_stopped = 1;
 918		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 919	}
 920
 921	ts->next_tick = tick;
 922
 923	/*
 924	 * If the expiration time == KTIME_MAX, then we simply stop
 925	 * the tick timer.
 926	 */
 927	if (unlikely(expires == KTIME_MAX)) {
 928		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 929			hrtimer_cancel(&ts->sched_timer);
 930		else
 931			tick_program_event(KTIME_MAX, 1);
 932		return;
 933	}
 934
 935	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 936		hrtimer_start(&ts->sched_timer, tick,
 937			      HRTIMER_MODE_ABS_PINNED_HARD);
 938	} else {
 939		hrtimer_set_expires(&ts->sched_timer, tick);
 940		tick_program_event(tick, 1);
 941	}
 942}
 943
 944static void tick_nohz_retain_tick(struct tick_sched *ts)
 945{
 946	ts->timer_expires_base = 0;
 947}
 948
 949#ifdef CONFIG_NO_HZ_FULL
 950static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 951{
 952	if (tick_nohz_next_event(ts, cpu))
 953		tick_nohz_stop_tick(ts, cpu);
 954	else
 955		tick_nohz_retain_tick(ts);
 956}
 957#endif /* CONFIG_NO_HZ_FULL */
 958
 959static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 960{
 961	/* Update jiffies first */
 962	tick_do_update_jiffies64(now);
 963
 964	/*
 965	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 966	 * the clock forward checks in the enqueue path:
 967	 */
 968	timer_clear_idle();
 969
 970	calc_load_nohz_stop();
 971	touch_softlockup_watchdog_sched();
 972	/*
 973	 * Cancel the scheduled timer and restore the tick
 974	 */
 975	ts->tick_stopped  = 0;
 
 
 976	tick_nohz_restart(ts, now);
 977}
 978
 979static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 980					 ktime_t now)
 981{
 982#ifdef CONFIG_NO_HZ_FULL
 983	int cpu = smp_processor_id();
 984
 985	if (can_stop_full_tick(cpu, ts))
 986		tick_nohz_stop_sched_tick(ts, cpu);
 987	else if (ts->tick_stopped)
 988		tick_nohz_restart_sched_tick(ts, now);
 989#endif
 990}
 991
 992static void tick_nohz_full_update_tick(struct tick_sched *ts)
 993{
 994	if (!tick_nohz_full_cpu(smp_processor_id()))
 995		return;
 996
 997	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 998		return;
 999
1000	__tick_nohz_full_update_tick(ts, ktime_get());
1001}
1002
1003/*
1004 * A pending softirq outside an IRQ (or softirq disabled section) context
1005 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1006 * reach here due to the need_resched() early check in can_stop_idle_tick().
1007 *
1008 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1009 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1010 * triggering the below since wakep_softirqd() is ignored.
1011 *
1012 */
1013static bool report_idle_softirq(void)
1014{
1015	static int ratelimit;
1016	unsigned int pending = local_softirq_pending();
1017
1018	if (likely(!pending))
1019		return false;
1020
1021	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1022	if (!cpu_active(smp_processor_id())) {
1023		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1024		if (!pending)
1025			return false;
1026	}
1027
1028	if (ratelimit < 10)
1029		return false;
1030
1031	/* On RT, softirqs handling may be waiting on some lock */
1032	if (!local_bh_blocked())
1033		return false;
1034
1035	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1036		pending);
1037	ratelimit++;
1038
1039	return true;
1040}
1041
1042static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1043{
1044	/*
1045	 * If this CPU is offline and it is the one which updates
1046	 * jiffies, then give up the assignment and let it be taken by
1047	 * the CPU which runs the tick timer next. If we don't drop
1048	 * this here the jiffies might be stale and do_timer() never
1049	 * invoked.
1050	 */
1051	if (unlikely(!cpu_online(cpu))) {
1052		if (cpu == tick_do_timer_cpu)
1053			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1054		/*
1055		 * Make sure the CPU doesn't get fooled by obsolete tick
1056		 * deadline if it comes back online later.
1057		 */
1058		ts->next_tick = 0;
1059		return false;
1060	}
1061
1062	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1063		return false;
1064
1065	if (need_resched())
1066		return false;
1067
1068	if (unlikely(report_idle_softirq()))
 
 
 
 
 
 
 
 
1069		return false;
 
1070
1071	if (tick_nohz_full_enabled()) {
1072		/*
1073		 * Keep the tick alive to guarantee timekeeping progression
1074		 * if there are full dynticks CPUs around
1075		 */
1076		if (tick_do_timer_cpu == cpu)
1077			return false;
 
 
 
 
 
 
 
1078
1079		/* Should not happen for nohz-full */
1080		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1081			return false;
1082	}
1083
1084	return true;
1085}
1086
1087static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1088{
1089	ktime_t expires;
1090	int cpu = smp_processor_id();
1091
1092	/*
1093	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1094	 * tick timer expiration time is known already.
1095	 */
1096	if (ts->timer_expires_base)
1097		expires = ts->timer_expires;
1098	else if (can_stop_idle_tick(cpu, ts))
1099		expires = tick_nohz_next_event(ts, cpu);
1100	else
1101		return;
1102
1103	ts->idle_calls++;
1104
1105	if (expires > 0LL) {
1106		int was_stopped = ts->tick_stopped;
1107
1108		tick_nohz_stop_tick(ts, cpu);
1109
1110		ts->idle_sleeps++;
1111		ts->idle_expires = expires;
1112
1113		if (!was_stopped && ts->tick_stopped) {
1114			ts->idle_jiffies = ts->last_jiffies;
1115			nohz_balance_enter_idle(cpu);
1116		}
1117	} else {
1118		tick_nohz_retain_tick(ts);
1119	}
1120}
1121
1122/**
1123 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1124 *
1125 * When the next event is more than a tick into the future, stop the idle tick
1126 */
1127void tick_nohz_idle_stop_tick(void)
1128{
1129	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1130}
1131
1132void tick_nohz_idle_retain_tick(void)
1133{
1134	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1135	/*
1136	 * Undo the effect of get_next_timer_interrupt() called from
1137	 * tick_nohz_next_event().
1138	 */
1139	timer_clear_idle();
1140}
1141
1142/**
1143 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1144 *
1145 * Called when we start the idle loop.
1146 */
1147void tick_nohz_idle_enter(void)
1148{
1149	struct tick_sched *ts;
1150
1151	lockdep_assert_irqs_enabled();
1152
1153	local_irq_disable();
1154
1155	ts = this_cpu_ptr(&tick_cpu_sched);
1156
1157	WARN_ON_ONCE(ts->timer_expires_base);
1158
1159	ts->inidle = 1;
1160	tick_nohz_start_idle(ts);
1161
1162	local_irq_enable();
1163}
1164
1165/**
1166 * tick_nohz_irq_exit - update next tick event from interrupt exit
1167 *
1168 * When an interrupt fires while we are idle and it doesn't cause
1169 * a reschedule, it may still add, modify or delete a timer, enqueue
1170 * an RCU callback, etc...
1171 * So we need to re-calculate and reprogram the next tick event.
1172 */
1173void tick_nohz_irq_exit(void)
1174{
1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1176
1177	if (ts->inidle)
1178		tick_nohz_start_idle(ts);
1179	else
1180		tick_nohz_full_update_tick(ts);
1181}
1182
1183/**
1184 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1185 */
1186bool tick_nohz_idle_got_tick(void)
1187{
1188	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1189
1190	if (ts->got_idle_tick) {
1191		ts->got_idle_tick = 0;
1192		return true;
1193	}
1194	return false;
1195}
1196
1197/**
1198 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1199 * or the tick, whatever that expires first. Note that, if the tick has been
1200 * stopped, it returns the next hrtimer.
1201 *
1202 * Called from power state control code with interrupts disabled
1203 */
1204ktime_t tick_nohz_get_next_hrtimer(void)
1205{
1206	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1207}
1208
1209/**
1210 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1211 * @delta_next: duration until the next event if the tick cannot be stopped
1212 *
1213 * Called from power state control code with interrupts disabled.
1214 *
1215 * The return value of this function and/or the value returned by it through the
1216 * @delta_next pointer can be negative which must be taken into account by its
1217 * callers.
1218 */
1219ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1220{
1221	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1222	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1223	int cpu = smp_processor_id();
1224	/*
1225	 * The idle entry time is expected to be a sufficient approximation of
1226	 * the current time at this point.
1227	 */
1228	ktime_t now = ts->idle_entrytime;
1229	ktime_t next_event;
1230
1231	WARN_ON_ONCE(!ts->inidle);
1232
1233	*delta_next = ktime_sub(dev->next_event, now);
1234
1235	if (!can_stop_idle_tick(cpu, ts))
1236		return *delta_next;
1237
1238	next_event = tick_nohz_next_event(ts, cpu);
1239	if (!next_event)
1240		return *delta_next;
1241
1242	/*
1243	 * If the next highres timer to expire is earlier than next_event, the
1244	 * idle governor needs to know that.
1245	 */
1246	next_event = min_t(u64, next_event,
1247			   hrtimer_next_event_without(&ts->sched_timer));
1248
1249	return ktime_sub(next_event, now);
1250}
1251
1252/**
1253 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1254 * for a particular CPU.
1255 *
1256 * Called from the schedutil frequency scaling governor in scheduler context.
1257 */
1258unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1259{
1260	struct tick_sched *ts = tick_get_tick_sched(cpu);
1261
1262	return ts->idle_calls;
1263}
1264
1265/**
1266 * tick_nohz_get_idle_calls - return the current idle calls counter value
1267 *
1268 * Called from the schedutil frequency scaling governor in scheduler context.
1269 */
1270unsigned long tick_nohz_get_idle_calls(void)
1271{
1272	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1273
1274	return ts->idle_calls;
1275}
1276
1277static void tick_nohz_account_idle_time(struct tick_sched *ts,
1278					ktime_t now)
1279{
 
1280	unsigned long ticks;
1281
1282	ts->idle_exittime = now;
1283
1284	if (vtime_accounting_enabled_this_cpu())
1285		return;
1286	/*
1287	 * We stopped the tick in idle. Update process times would miss the
1288	 * time we slept as update_process_times does only a 1 tick
1289	 * accounting. Enforce that this is accounted to idle !
1290	 */
1291	ticks = jiffies - ts->idle_jiffies;
1292	/*
1293	 * We might be one off. Do not randomly account a huge number of ticks!
1294	 */
1295	if (ticks && ticks < LONG_MAX)
1296		account_idle_ticks(ticks);
 
1297}
1298
1299void tick_nohz_idle_restart_tick(void)
1300{
1301	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1302
1303	if (ts->tick_stopped) {
1304		ktime_t now = ktime_get();
1305		tick_nohz_restart_sched_tick(ts, now);
1306		tick_nohz_account_idle_time(ts, now);
1307	}
1308}
1309
1310static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1311{
1312	if (tick_nohz_full_cpu(smp_processor_id()))
1313		__tick_nohz_full_update_tick(ts, now);
1314	else
1315		tick_nohz_restart_sched_tick(ts, now);
1316
1317	tick_nohz_account_idle_time(ts, now);
 
1318}
1319
1320/**
1321 * tick_nohz_idle_exit - restart the idle tick from the idle task
1322 *
1323 * Restart the idle tick when the CPU is woken up from idle
1324 * This also exit the RCU extended quiescent state. The CPU
1325 * can use RCU again after this function is called.
1326 */
1327void tick_nohz_idle_exit(void)
1328{
1329	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1330	bool idle_active, tick_stopped;
1331	ktime_t now;
1332
1333	local_irq_disable();
1334
1335	WARN_ON_ONCE(!ts->inidle);
1336	WARN_ON_ONCE(ts->timer_expires_base);
1337
1338	ts->inidle = 0;
1339	idle_active = ts->idle_active;
1340	tick_stopped = ts->tick_stopped;
1341
1342	if (idle_active || tick_stopped)
1343		now = ktime_get();
1344
1345	if (idle_active)
1346		tick_nohz_stop_idle(ts, now);
1347
1348	if (tick_stopped)
1349		tick_nohz_idle_update_tick(ts, now);
1350
1351	local_irq_enable();
1352}
1353
1354/*
1355 * The nohz low res interrupt handler
1356 */
1357static void tick_nohz_handler(struct clock_event_device *dev)
1358{
1359	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1360	struct pt_regs *regs = get_irq_regs();
1361	ktime_t now = ktime_get();
1362
1363	dev->next_event = KTIME_MAX;
1364
1365	tick_sched_do_timer(ts, now);
1366	tick_sched_handle(ts, regs);
1367
1368	if (unlikely(ts->tick_stopped)) {
1369		/*
1370		 * The clockevent device is not reprogrammed, so change the
1371		 * clock event device to ONESHOT_STOPPED to avoid spurious
1372		 * interrupts on devices which might not be truly one shot.
1373		 */
1374		tick_program_event(KTIME_MAX, 1);
1375		return;
1376	}
1377
1378	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1379	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1380}
1381
1382static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1383{
1384	if (!tick_nohz_enabled)
1385		return;
1386	ts->nohz_mode = mode;
1387	/* One update is enough */
1388	if (!test_and_set_bit(0, &tick_nohz_active))
1389		timers_update_nohz();
1390}
1391
1392/**
1393 * tick_nohz_switch_to_nohz - switch to nohz mode
1394 */
1395static void tick_nohz_switch_to_nohz(void)
1396{
1397	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1398	ktime_t next;
1399
1400	if (!tick_nohz_enabled)
1401		return;
1402
1403	if (tick_switch_to_oneshot(tick_nohz_handler))
1404		return;
1405
1406	/*
1407	 * Recycle the hrtimer in ts, so we can share the
1408	 * hrtimer_forward with the highres code.
1409	 */
1410	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1411	/* Get the next period */
1412	next = tick_init_jiffy_update();
1413
1414	hrtimer_set_expires(&ts->sched_timer, next);
1415	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1416	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1418}
1419
1420static inline void tick_nohz_irq_enter(void)
1421{
1422	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1423	ktime_t now;
1424
1425	if (!ts->idle_active && !ts->tick_stopped)
1426		return;
1427	now = ktime_get();
1428	if (ts->idle_active)
1429		tick_nohz_stop_idle(ts, now);
1430	/*
1431	 * If all CPUs are idle. We may need to update a stale jiffies value.
1432	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1433	 * alive but it might be busy looping with interrupts disabled in some
1434	 * rare case (typically stop machine). So we must make sure we have a
1435	 * last resort.
1436	 */
1437	if (ts->tick_stopped)
1438		tick_nohz_update_jiffies(now);
1439}
1440
1441#else
1442
1443static inline void tick_nohz_switch_to_nohz(void) { }
1444static inline void tick_nohz_irq_enter(void) { }
1445static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1446
1447#endif /* CONFIG_NO_HZ_COMMON */
1448
1449/*
1450 * Called from irq_enter to notify about the possible interruption of idle()
1451 */
1452void tick_irq_enter(void)
1453{
1454	tick_check_oneshot_broadcast_this_cpu();
1455	tick_nohz_irq_enter();
1456}
1457
1458/*
1459 * High resolution timer specific code
1460 */
1461#ifdef CONFIG_HIGH_RES_TIMERS
1462/*
1463 * We rearm the timer until we get disabled by the idle code.
1464 * Called with interrupts disabled.
1465 */
1466static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1467{
1468	struct tick_sched *ts =
1469		container_of(timer, struct tick_sched, sched_timer);
1470	struct pt_regs *regs = get_irq_regs();
1471	ktime_t now = ktime_get();
1472
1473	tick_sched_do_timer(ts, now);
1474
1475	/*
1476	 * Do not call, when we are not in irq context and have
1477	 * no valid regs pointer
1478	 */
1479	if (regs)
1480		tick_sched_handle(ts, regs);
1481	else
1482		ts->next_tick = 0;
1483
1484	/* No need to reprogram if we are in idle or full dynticks mode */
1485	if (unlikely(ts->tick_stopped))
1486		return HRTIMER_NORESTART;
1487
1488	hrtimer_forward(timer, now, TICK_NSEC);
1489
1490	return HRTIMER_RESTART;
1491}
1492
1493static int sched_skew_tick;
1494
1495static int __init skew_tick(char *str)
1496{
1497	get_option(&str, &sched_skew_tick);
1498
1499	return 0;
1500}
1501early_param("skew_tick", skew_tick);
1502
1503/**
1504 * tick_setup_sched_timer - setup the tick emulation timer
1505 */
1506void tick_setup_sched_timer(void)
1507{
1508	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1509	ktime_t now = ktime_get();
1510
1511	/*
1512	 * Emulate tick processing via per-CPU hrtimers:
1513	 */
1514	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1515	ts->sched_timer.function = tick_sched_timer;
1516
1517	/* Get the next period (per-CPU) */
1518	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1519
1520	/* Offset the tick to avert jiffies_lock contention. */
1521	if (sched_skew_tick) {
1522		u64 offset = TICK_NSEC >> 1;
1523		do_div(offset, num_possible_cpus());
1524		offset *= smp_processor_id();
1525		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1526	}
1527
1528	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1529	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1530	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1531}
1532#endif /* HIGH_RES_TIMERS */
1533
1534#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1535void tick_cancel_sched_timer(int cpu)
1536{
1537	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1538
1539# ifdef CONFIG_HIGH_RES_TIMERS
1540	if (ts->sched_timer.base)
1541		hrtimer_cancel(&ts->sched_timer);
1542# endif
1543
1544	memset(ts, 0, sizeof(*ts));
1545}
1546#endif
1547
1548/*
1549 * Async notification about clocksource changes
1550 */
1551void tick_clock_notify(void)
1552{
1553	int cpu;
1554
1555	for_each_possible_cpu(cpu)
1556		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1557}
1558
1559/*
1560 * Async notification about clock event changes
1561 */
1562void tick_oneshot_notify(void)
1563{
1564	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1565
1566	set_bit(0, &ts->check_clocks);
1567}
1568
1569/*
1570 * Check, if a change happened, which makes oneshot possible.
1571 *
1572 * Called cyclic from the hrtimer softirq (driven by the timer
1573 * softirq) allow_nohz signals, that we can switch into low-res nohz
1574 * mode, because high resolution timers are disabled (either compile
1575 * or runtime). Called with interrupts disabled.
1576 */
1577int tick_check_oneshot_change(int allow_nohz)
1578{
1579	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1580
1581	if (!test_and_clear_bit(0, &ts->check_clocks))
1582		return 0;
1583
1584	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1585		return 0;
1586
1587	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1588		return 0;
1589
1590	if (!allow_nohz)
1591		return 1;
1592
1593	tick_nohz_switch_to_nohz();
1594	return 0;
1595}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
 
  23#include <linux/module.h>
  24#include <linux/irq_work.h>
  25#include <linux/posix-timers.h>
  26#include <linux/context_tracking.h>
  27#include <linux/mm.h>
  28
  29#include <asm/irq_regs.h>
  30
  31#include "tick-internal.h"
  32
  33#include <trace/events/timer.h>
  34
  35/*
  36 * Per-CPU nohz control structure
  37 */
  38static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  39
  40struct tick_sched *tick_get_tick_sched(int cpu)
  41{
  42	return &per_cpu(tick_cpu_sched, cpu);
  43}
  44
  45#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  46/*
  47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
 
 
  48 */
  49static ktime_t last_jiffies_update;
  50
  51/*
  52 * Must be called with interrupts disabled !
  53 */
  54static void tick_do_update_jiffies64(ktime_t now)
  55{
  56	unsigned long ticks = 0;
  57	ktime_t delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
 
 
  59	/*
  60	 * Do a quick check without holding jiffies_lock:
  61	 * The READ_ONCE() pairs with two updates done later in this function.
  62	 */
  63	delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
  64	if (delta < tick_period)
  65		return;
 
  66
  67	/* Reevaluate with jiffies_lock held */
  68	raw_spin_lock(&jiffies_lock);
  69	write_seqcount_begin(&jiffies_seq);
  70
  71	delta = ktime_sub(now, last_jiffies_update);
  72	if (delta >= tick_period) {
 
 
 
 
  73
  74		delta = ktime_sub(delta, tick_period);
  75		/* Pairs with the lockless read in this function. */
  76		WRITE_ONCE(last_jiffies_update,
  77			   ktime_add(last_jiffies_update, tick_period));
  78
  79		/* Slow path for long timeouts */
  80		if (unlikely(delta >= tick_period)) {
  81			s64 incr = ktime_to_ns(tick_period);
  82
  83			ticks = ktime_divns(delta, incr);
  84
  85			/* Pairs with the lockless read in this function. */
  86			WRITE_ONCE(last_jiffies_update,
  87				   ktime_add_ns(last_jiffies_update,
  88						incr * ticks));
  89		}
  90		do_timer(++ticks);
  91
  92		/* Keep the tick_next_period variable up to date */
  93		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
  94	} else {
  95		write_seqcount_end(&jiffies_seq);
  96		raw_spin_unlock(&jiffies_lock);
  97		return;
 
 
  98	}
 
 
 
 
 
 
  99	write_seqcount_end(&jiffies_seq);
 
 
 
 100	raw_spin_unlock(&jiffies_lock);
 101	update_wall_time();
 102}
 103
 104/*
 105 * Initialize and return retrieve the jiffies update.
 106 */
 107static ktime_t tick_init_jiffy_update(void)
 108{
 109	ktime_t period;
 110
 111	raw_spin_lock(&jiffies_lock);
 112	write_seqcount_begin(&jiffies_seq);
 113	/* Did we start the jiffies update yet ? */
 114	if (last_jiffies_update == 0)
 115		last_jiffies_update = tick_next_period;
 116	period = last_jiffies_update;
 117	write_seqcount_end(&jiffies_seq);
 118	raw_spin_unlock(&jiffies_lock);
 119	return period;
 120}
 121
 
 
 122static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 123{
 124	int cpu = smp_processor_id();
 125
 126#ifdef CONFIG_NO_HZ_COMMON
 127	/*
 128	 * Check if the do_timer duty was dropped. We don't care about
 129	 * concurrency: This happens only when the CPU in charge went
 130	 * into a long sleep. If two CPUs happen to assign themselves to
 131	 * this duty, then the jiffies update is still serialized by
 132	 * jiffies_lock.
 133	 *
 134	 * If nohz_full is enabled, this should not happen because the
 135	 * tick_do_timer_cpu never relinquishes.
 136	 */
 137	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 138#ifdef CONFIG_NO_HZ_FULL
 139		WARN_ON(tick_nohz_full_running);
 140#endif
 141		tick_do_timer_cpu = cpu;
 142	}
 143#endif
 144
 145	/* Check, if the jiffies need an update */
 146	if (tick_do_timer_cpu == cpu)
 147		tick_do_update_jiffies64(now);
 148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149	if (ts->inidle)
 150		ts->got_idle_tick = 1;
 151}
 152
 153static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 154{
 155#ifdef CONFIG_NO_HZ_COMMON
 156	/*
 157	 * When we are idle and the tick is stopped, we have to touch
 158	 * the watchdog as we might not schedule for a really long
 159	 * time. This happens on complete idle SMP systems while
 160	 * waiting on the login prompt. We also increment the "start of
 161	 * idle" jiffy stamp so the idle accounting adjustment we do
 162	 * when we go busy again does not account too much ticks.
 163	 */
 164	if (ts->tick_stopped) {
 165		touch_softlockup_watchdog_sched();
 166		if (is_idle_task(current))
 167			ts->idle_jiffies++;
 168		/*
 169		 * In case the current tick fired too early past its expected
 170		 * expiration, make sure we don't bypass the next clock reprogramming
 171		 * to the same deadline.
 172		 */
 173		ts->next_tick = 0;
 174	}
 175#endif
 176	update_process_times(user_mode(regs));
 177	profile_tick(CPU_PROFILING);
 178}
 179#endif
 180
 181#ifdef CONFIG_NO_HZ_FULL
 182cpumask_var_t tick_nohz_full_mask;
 
 183bool tick_nohz_full_running;
 184EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 185static atomic_t tick_dep_mask;
 186
 187static bool check_tick_dependency(atomic_t *dep)
 188{
 189	int val = atomic_read(dep);
 190
 191	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 192		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 193		return true;
 194	}
 195
 196	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 197		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 198		return true;
 199	}
 200
 201	if (val & TICK_DEP_MASK_SCHED) {
 202		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 203		return true;
 204	}
 205
 206	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 207		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 208		return true;
 209	}
 210
 211	if (val & TICK_DEP_MASK_RCU) {
 212		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 213		return true;
 214	}
 215
 216	return false;
 217}
 218
 219static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 220{
 221	lockdep_assert_irqs_disabled();
 222
 223	if (unlikely(!cpu_online(cpu)))
 224		return false;
 225
 226	if (check_tick_dependency(&tick_dep_mask))
 227		return false;
 228
 229	if (check_tick_dependency(&ts->tick_dep_mask))
 230		return false;
 231
 232	if (check_tick_dependency(&current->tick_dep_mask))
 233		return false;
 234
 235	if (check_tick_dependency(&current->signal->tick_dep_mask))
 236		return false;
 237
 238	return true;
 239}
 240
 241static void nohz_full_kick_func(struct irq_work *work)
 242{
 243	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 244}
 245
 246static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 247	.func = nohz_full_kick_func,
 248	.flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
 249};
 250
 251/*
 252 * Kick this CPU if it's full dynticks in order to force it to
 253 * re-evaluate its dependency on the tick and restart it if necessary.
 254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 255 * is NMI safe.
 256 */
 257static void tick_nohz_full_kick(void)
 258{
 259	if (!tick_nohz_full_cpu(smp_processor_id()))
 260		return;
 261
 262	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 263}
 264
 265/*
 266 * Kick the CPU if it's full dynticks in order to force it to
 267 * re-evaluate its dependency on the tick and restart it if necessary.
 268 */
 269void tick_nohz_full_kick_cpu(int cpu)
 270{
 271	if (!tick_nohz_full_cpu(cpu))
 272		return;
 273
 274	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 275}
 276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277/*
 278 * Kick all full dynticks CPUs in order to force these to re-evaluate
 279 * their dependency on the tick and restart it if necessary.
 280 */
 281static void tick_nohz_full_kick_all(void)
 282{
 283	int cpu;
 284
 285	if (!tick_nohz_full_running)
 286		return;
 287
 288	preempt_disable();
 289	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 290		tick_nohz_full_kick_cpu(cpu);
 291	preempt_enable();
 292}
 293
 294static void tick_nohz_dep_set_all(atomic_t *dep,
 295				  enum tick_dep_bits bit)
 296{
 297	int prev;
 298
 299	prev = atomic_fetch_or(BIT(bit), dep);
 300	if (!prev)
 301		tick_nohz_full_kick_all();
 302}
 303
 304/*
 305 * Set a global tick dependency. Used by perf events that rely on freq and
 306 * by unstable clock.
 307 */
 308void tick_nohz_dep_set(enum tick_dep_bits bit)
 309{
 310	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 311}
 312
 313void tick_nohz_dep_clear(enum tick_dep_bits bit)
 314{
 315	atomic_andnot(BIT(bit), &tick_dep_mask);
 316}
 317
 318/*
 319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 320 * manage events throttling.
 321 */
 322void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 323{
 324	int prev;
 325	struct tick_sched *ts;
 326
 327	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 328
 329	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 330	if (!prev) {
 331		preempt_disable();
 332		/* Perf needs local kick that is NMI safe */
 333		if (cpu == smp_processor_id()) {
 334			tick_nohz_full_kick();
 335		} else {
 336			/* Remote irq work not NMI-safe */
 337			if (!WARN_ON_ONCE(in_nmi()))
 338				tick_nohz_full_kick_cpu(cpu);
 339		}
 340		preempt_enable();
 341	}
 342}
 343EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 344
 345void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 346{
 347	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 348
 349	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 350}
 351EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 352
 353/*
 354 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 355 * in order to elapse per task timers.
 356 */
 357void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 358{
 359	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask)) {
 360		if (tsk == current) {
 361			preempt_disable();
 362			tick_nohz_full_kick();
 363			preempt_enable();
 364		} else {
 365			/*
 366			 * Some future tick_nohz_full_kick_task()
 367			 * should optimize this.
 368			 */
 369			tick_nohz_full_kick_all();
 370		}
 371	}
 372}
 373EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 374
 375void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 376{
 377	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 378}
 379EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 380
 381/*
 382 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 383 * per process timers.
 384 */
 385void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 
 386{
 387	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
 
 
 
 
 
 
 
 
 
 
 388}
 389
 390void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 391{
 392	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 393}
 394
 395/*
 396 * Re-evaluate the need for the tick as we switch the current task.
 397 * It might need the tick due to per task/process properties:
 398 * perf events, posix CPU timers, ...
 399 */
 400void __tick_nohz_task_switch(void)
 401{
 402	unsigned long flags;
 403	struct tick_sched *ts;
 404
 405	local_irq_save(flags);
 406
 407	if (!tick_nohz_full_cpu(smp_processor_id()))
 408		goto out;
 409
 410	ts = this_cpu_ptr(&tick_cpu_sched);
 411
 412	if (ts->tick_stopped) {
 413		if (atomic_read(&current->tick_dep_mask) ||
 414		    atomic_read(&current->signal->tick_dep_mask))
 415			tick_nohz_full_kick();
 416	}
 417out:
 418	local_irq_restore(flags);
 419}
 420
 421/* Get the boot-time nohz CPU list from the kernel parameters. */
 422void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 423{
 424	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 425	cpumask_copy(tick_nohz_full_mask, cpumask);
 426	tick_nohz_full_running = true;
 427}
 428EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 429
 430static int tick_nohz_cpu_down(unsigned int cpu)
 431{
 432	/*
 433	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 434	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 435	 * CPUs. It must remain online when nohz full is enabled.
 436	 */
 437	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 438		return -EBUSY;
 439	return 0;
 440}
 441
 442void __init tick_nohz_init(void)
 443{
 444	int cpu, ret;
 445
 446	if (!tick_nohz_full_running)
 447		return;
 448
 449	/*
 450	 * Full dynticks uses irq work to drive the tick rescheduling on safe
 451	 * locking contexts. But then we need irq work to raise its own
 452	 * interrupts to avoid circular dependency on the tick
 453	 */
 454	if (!arch_irq_work_has_interrupt()) {
 455		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 456		cpumask_clear(tick_nohz_full_mask);
 457		tick_nohz_full_running = false;
 458		return;
 459	}
 460
 461	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 462			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 463		cpu = smp_processor_id();
 464
 465		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 466			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 467				"for timekeeping\n", cpu);
 468			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 469		}
 470	}
 471
 472	for_each_cpu(cpu, tick_nohz_full_mask)
 473		context_tracking_cpu_set(cpu);
 474
 475	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 476					"kernel/nohz:predown", NULL,
 477					tick_nohz_cpu_down);
 478	WARN_ON(ret < 0);
 479	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 480		cpumask_pr_args(tick_nohz_full_mask));
 481}
 482#endif
 483
 484/*
 485 * NOHZ - aka dynamic tick functionality
 486 */
 487#ifdef CONFIG_NO_HZ_COMMON
 488/*
 489 * NO HZ enabled ?
 490 */
 491bool tick_nohz_enabled __read_mostly  = true;
 492unsigned long tick_nohz_active  __read_mostly;
 493/*
 494 * Enable / Disable tickless mode
 495 */
 496static int __init setup_tick_nohz(char *str)
 497{
 498	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 499}
 500
 501__setup("nohz=", setup_tick_nohz);
 502
 503bool tick_nohz_tick_stopped(void)
 504{
 505	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 506
 507	return ts->tick_stopped;
 508}
 509
 510bool tick_nohz_tick_stopped_cpu(int cpu)
 511{
 512	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 513
 514	return ts->tick_stopped;
 515}
 516
 517/**
 518 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 519 *
 520 * Called from interrupt entry when the CPU was idle
 521 *
 522 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 523 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 524 * value. We do this unconditionally on any CPU, as we don't know whether the
 525 * CPU, which has the update task assigned is in a long sleep.
 526 */
 527static void tick_nohz_update_jiffies(ktime_t now)
 528{
 529	unsigned long flags;
 530
 531	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 532
 533	local_irq_save(flags);
 534	tick_do_update_jiffies64(now);
 535	local_irq_restore(flags);
 536
 537	touch_softlockup_watchdog_sched();
 538}
 539
 540/*
 541 * Updates the per-CPU time idle statistics counters
 542 */
 543static void
 544update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 545{
 546	ktime_t delta;
 547
 548	if (ts->idle_active) {
 549		delta = ktime_sub(now, ts->idle_entrytime);
 550		if (nr_iowait_cpu(cpu) > 0)
 551			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 552		else
 553			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 554		ts->idle_entrytime = now;
 555	}
 556
 557	if (last_update_time)
 558		*last_update_time = ktime_to_us(now);
 559
 560}
 561
 562static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 563{
 564	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 565	ts->idle_active = 0;
 566
 567	sched_clock_idle_wakeup_event();
 568}
 569
 570static void tick_nohz_start_idle(struct tick_sched *ts)
 571{
 572	ts->idle_entrytime = ktime_get();
 573	ts->idle_active = 1;
 574	sched_clock_idle_sleep_event();
 575}
 576
 577/**
 578 * get_cpu_idle_time_us - get the total idle time of a CPU
 579 * @cpu: CPU number to query
 580 * @last_update_time: variable to store update time in. Do not update
 581 * counters if NULL.
 582 *
 583 * Return the cumulative idle time (since boot) for a given
 584 * CPU, in microseconds.
 585 *
 586 * This time is measured via accounting rather than sampling,
 587 * and is as accurate as ktime_get() is.
 588 *
 589 * This function returns -1 if NOHZ is not enabled.
 590 */
 591u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 592{
 593	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 594	ktime_t now, idle;
 595
 596	if (!tick_nohz_active)
 597		return -1;
 598
 599	now = ktime_get();
 600	if (last_update_time) {
 601		update_ts_time_stats(cpu, ts, now, last_update_time);
 602		idle = ts->idle_sleeptime;
 603	} else {
 604		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 605			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 606
 607			idle = ktime_add(ts->idle_sleeptime, delta);
 608		} else {
 609			idle = ts->idle_sleeptime;
 610		}
 611	}
 612
 613	return ktime_to_us(idle);
 614
 615}
 616EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 617
 618/**
 619 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 620 * @cpu: CPU number to query
 621 * @last_update_time: variable to store update time in. Do not update
 622 * counters if NULL.
 623 *
 624 * Return the cumulative iowait time (since boot) for a given
 625 * CPU, in microseconds.
 626 *
 627 * This time is measured via accounting rather than sampling,
 628 * and is as accurate as ktime_get() is.
 629 *
 630 * This function returns -1 if NOHZ is not enabled.
 631 */
 632u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 633{
 634	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 635	ktime_t now, iowait;
 636
 637	if (!tick_nohz_active)
 638		return -1;
 639
 640	now = ktime_get();
 641	if (last_update_time) {
 642		update_ts_time_stats(cpu, ts, now, last_update_time);
 643		iowait = ts->iowait_sleeptime;
 644	} else {
 645		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 646			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 647
 648			iowait = ktime_add(ts->iowait_sleeptime, delta);
 649		} else {
 650			iowait = ts->iowait_sleeptime;
 651		}
 652	}
 653
 654	return ktime_to_us(iowait);
 655}
 656EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 657
 658static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 659{
 660	hrtimer_cancel(&ts->sched_timer);
 661	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 662
 663	/* Forward the time to expire in the future */
 664	hrtimer_forward(&ts->sched_timer, now, tick_period);
 665
 666	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 667		hrtimer_start_expires(&ts->sched_timer,
 668				      HRTIMER_MODE_ABS_PINNED_HARD);
 669	} else {
 670		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 671	}
 672
 673	/*
 674	 * Reset to make sure next tick stop doesn't get fooled by past
 675	 * cached clock deadline.
 676	 */
 677	ts->next_tick = 0;
 678}
 679
 680static inline bool local_timer_softirq_pending(void)
 681{
 682	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 683}
 684
 685static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 686{
 687	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 688	unsigned long basejiff;
 689	unsigned int seq;
 690
 691	/* Read jiffies and the time when jiffies were updated last */
 692	do {
 693		seq = read_seqcount_begin(&jiffies_seq);
 694		basemono = last_jiffies_update;
 695		basejiff = jiffies;
 696	} while (read_seqcount_retry(&jiffies_seq, seq));
 697	ts->last_jiffies = basejiff;
 698	ts->timer_expires_base = basemono;
 699
 700	/*
 701	 * Keep the periodic tick, when RCU, architecture or irq_work
 702	 * requests it.
 703	 * Aside of that check whether the local timer softirq is
 704	 * pending. If so its a bad idea to call get_next_timer_interrupt()
 705	 * because there is an already expired timer, so it will request
 706	 * immeditate expiry, which rearms the hardware timer with a
 707	 * minimal delta which brings us back to this place
 708	 * immediately. Lather, rinse and repeat...
 709	 */
 710	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 711	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 712		next_tick = basemono + TICK_NSEC;
 713	} else {
 714		/*
 715		 * Get the next pending timer. If high resolution
 716		 * timers are enabled this only takes the timer wheel
 717		 * timers into account. If high resolution timers are
 718		 * disabled this also looks at the next expiring
 719		 * hrtimer.
 720		 */
 721		next_tmr = get_next_timer_interrupt(basejiff, basemono);
 722		ts->next_timer = next_tmr;
 723		/* Take the next rcu event into account */
 724		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 725	}
 726
 727	/*
 728	 * If the tick is due in the next period, keep it ticking or
 729	 * force prod the timer.
 730	 */
 731	delta = next_tick - basemono;
 732	if (delta <= (u64)TICK_NSEC) {
 733		/*
 734		 * Tell the timer code that the base is not idle, i.e. undo
 735		 * the effect of get_next_timer_interrupt():
 736		 */
 737		timer_clear_idle();
 738		/*
 739		 * We've not stopped the tick yet, and there's a timer in the
 740		 * next period, so no point in stopping it either, bail.
 741		 */
 742		if (!ts->tick_stopped) {
 743			ts->timer_expires = 0;
 744			goto out;
 745		}
 746	}
 747
 748	/*
 749	 * If this CPU is the one which had the do_timer() duty last, we limit
 750	 * the sleep time to the timekeeping max_deferment value.
 751	 * Otherwise we can sleep as long as we want.
 752	 */
 753	delta = timekeeping_max_deferment();
 754	if (cpu != tick_do_timer_cpu &&
 755	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 756		delta = KTIME_MAX;
 757
 758	/* Calculate the next expiry time */
 759	if (delta < (KTIME_MAX - basemono))
 760		expires = basemono + delta;
 761	else
 762		expires = KTIME_MAX;
 763
 764	ts->timer_expires = min_t(u64, expires, next_tick);
 765
 766out:
 767	return ts->timer_expires;
 768}
 769
 770static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 771{
 772	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 773	u64 basemono = ts->timer_expires_base;
 774	u64 expires = ts->timer_expires;
 775	ktime_t tick = expires;
 776
 777	/* Make sure we won't be trying to stop it twice in a row. */
 778	ts->timer_expires_base = 0;
 779
 780	/*
 781	 * If this CPU is the one which updates jiffies, then give up
 782	 * the assignment and let it be taken by the CPU which runs
 783	 * the tick timer next, which might be this CPU as well. If we
 784	 * don't drop this here the jiffies might be stale and
 785	 * do_timer() never invoked. Keep track of the fact that it
 786	 * was the one which had the do_timer() duty last.
 787	 */
 788	if (cpu == tick_do_timer_cpu) {
 789		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 790		ts->do_timer_last = 1;
 791	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 792		ts->do_timer_last = 0;
 793	}
 794
 795	/* Skip reprogram of event if its not changed */
 796	if (ts->tick_stopped && (expires == ts->next_tick)) {
 797		/* Sanity check: make sure clockevent is actually programmed */
 798		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 799			return;
 800
 801		WARN_ON_ONCE(1);
 802		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 803			    basemono, ts->next_tick, dev->next_event,
 804			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 805	}
 806
 807	/*
 808	 * nohz_stop_sched_tick can be called several times before
 809	 * the nohz_restart_sched_tick is called. This happens when
 810	 * interrupts arrive which do not cause a reschedule. In the
 811	 * first call we save the current tick time, so we can restart
 812	 * the scheduler tick in nohz_restart_sched_tick.
 813	 */
 814	if (!ts->tick_stopped) {
 815		calc_load_nohz_start();
 816		quiet_vmstat();
 817
 818		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 819		ts->tick_stopped = 1;
 820		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 821	}
 822
 823	ts->next_tick = tick;
 824
 825	/*
 826	 * If the expiration time == KTIME_MAX, then we simply stop
 827	 * the tick timer.
 828	 */
 829	if (unlikely(expires == KTIME_MAX)) {
 830		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 831			hrtimer_cancel(&ts->sched_timer);
 
 
 832		return;
 833	}
 834
 835	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 836		hrtimer_start(&ts->sched_timer, tick,
 837			      HRTIMER_MODE_ABS_PINNED_HARD);
 838	} else {
 839		hrtimer_set_expires(&ts->sched_timer, tick);
 840		tick_program_event(tick, 1);
 841	}
 842}
 843
 844static void tick_nohz_retain_tick(struct tick_sched *ts)
 845{
 846	ts->timer_expires_base = 0;
 847}
 848
 849#ifdef CONFIG_NO_HZ_FULL
 850static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 851{
 852	if (tick_nohz_next_event(ts, cpu))
 853		tick_nohz_stop_tick(ts, cpu);
 854	else
 855		tick_nohz_retain_tick(ts);
 856}
 857#endif /* CONFIG_NO_HZ_FULL */
 858
 859static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 860{
 861	/* Update jiffies first */
 862	tick_do_update_jiffies64(now);
 863
 864	/*
 865	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 866	 * the clock forward checks in the enqueue path:
 867	 */
 868	timer_clear_idle();
 869
 870	calc_load_nohz_stop();
 871	touch_softlockup_watchdog_sched();
 872	/*
 873	 * Cancel the scheduled timer and restore the tick
 874	 */
 875	ts->tick_stopped  = 0;
 876	ts->idle_exittime = now;
 877
 878	tick_nohz_restart(ts, now);
 879}
 880
 881static void tick_nohz_full_update_tick(struct tick_sched *ts)
 
 882{
 883#ifdef CONFIG_NO_HZ_FULL
 884	int cpu = smp_processor_id();
 885
 886	if (!tick_nohz_full_cpu(cpu))
 
 
 
 
 
 
 
 
 
 887		return;
 888
 889	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 890		return;
 891
 892	if (can_stop_full_tick(cpu, ts))
 893		tick_nohz_stop_sched_tick(ts, cpu);
 894	else if (ts->tick_stopped)
 895		tick_nohz_restart_sched_tick(ts, ktime_get());
 896#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897}
 898
 899static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 900{
 901	/*
 902	 * If this CPU is offline and it is the one which updates
 903	 * jiffies, then give up the assignment and let it be taken by
 904	 * the CPU which runs the tick timer next. If we don't drop
 905	 * this here the jiffies might be stale and do_timer() never
 906	 * invoked.
 907	 */
 908	if (unlikely(!cpu_online(cpu))) {
 909		if (cpu == tick_do_timer_cpu)
 910			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 911		/*
 912		 * Make sure the CPU doesn't get fooled by obsolete tick
 913		 * deadline if it comes back online later.
 914		 */
 915		ts->next_tick = 0;
 916		return false;
 917	}
 918
 919	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 920		return false;
 921
 922	if (need_resched())
 923		return false;
 924
 925	if (unlikely(local_softirq_pending())) {
 926		static int ratelimit;
 927
 928		if (ratelimit < 10 &&
 929		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 930			pr_warn("NOHZ: local_softirq_pending %02x\n",
 931				(unsigned int) local_softirq_pending());
 932			ratelimit++;
 933		}
 934		return false;
 935	}
 936
 937	if (tick_nohz_full_enabled()) {
 938		/*
 939		 * Keep the tick alive to guarantee timekeeping progression
 940		 * if there are full dynticks CPUs around
 941		 */
 942		if (tick_do_timer_cpu == cpu)
 943			return false;
 944		/*
 945		 * Boot safety: make sure the timekeeping duty has been
 946		 * assigned before entering dyntick-idle mode,
 947		 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
 948		 */
 949		if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
 950			return false;
 951
 952		/* Should not happen for nohz-full */
 953		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 954			return false;
 955	}
 956
 957	return true;
 958}
 959
 960static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
 961{
 962	ktime_t expires;
 963	int cpu = smp_processor_id();
 964
 965	/*
 966	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
 967	 * tick timer expiration time is known already.
 968	 */
 969	if (ts->timer_expires_base)
 970		expires = ts->timer_expires;
 971	else if (can_stop_idle_tick(cpu, ts))
 972		expires = tick_nohz_next_event(ts, cpu);
 973	else
 974		return;
 975
 976	ts->idle_calls++;
 977
 978	if (expires > 0LL) {
 979		int was_stopped = ts->tick_stopped;
 980
 981		tick_nohz_stop_tick(ts, cpu);
 982
 983		ts->idle_sleeps++;
 984		ts->idle_expires = expires;
 985
 986		if (!was_stopped && ts->tick_stopped) {
 987			ts->idle_jiffies = ts->last_jiffies;
 988			nohz_balance_enter_idle(cpu);
 989		}
 990	} else {
 991		tick_nohz_retain_tick(ts);
 992	}
 993}
 994
 995/**
 996 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 997 *
 998 * When the next event is more than a tick into the future, stop the idle tick
 999 */
1000void tick_nohz_idle_stop_tick(void)
1001{
1002	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1003}
1004
1005void tick_nohz_idle_retain_tick(void)
1006{
1007	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1008	/*
1009	 * Undo the effect of get_next_timer_interrupt() called from
1010	 * tick_nohz_next_event().
1011	 */
1012	timer_clear_idle();
1013}
1014
1015/**
1016 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1017 *
1018 * Called when we start the idle loop.
1019 */
1020void tick_nohz_idle_enter(void)
1021{
1022	struct tick_sched *ts;
1023
1024	lockdep_assert_irqs_enabled();
1025
1026	local_irq_disable();
1027
1028	ts = this_cpu_ptr(&tick_cpu_sched);
1029
1030	WARN_ON_ONCE(ts->timer_expires_base);
1031
1032	ts->inidle = 1;
1033	tick_nohz_start_idle(ts);
1034
1035	local_irq_enable();
1036}
1037
1038/**
1039 * tick_nohz_irq_exit - update next tick event from interrupt exit
1040 *
1041 * When an interrupt fires while we are idle and it doesn't cause
1042 * a reschedule, it may still add, modify or delete a timer, enqueue
1043 * an RCU callback, etc...
1044 * So we need to re-calculate and reprogram the next tick event.
1045 */
1046void tick_nohz_irq_exit(void)
1047{
1048	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1049
1050	if (ts->inidle)
1051		tick_nohz_start_idle(ts);
1052	else
1053		tick_nohz_full_update_tick(ts);
1054}
1055
1056/**
1057 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1058 */
1059bool tick_nohz_idle_got_tick(void)
1060{
1061	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1062
1063	if (ts->got_idle_tick) {
1064		ts->got_idle_tick = 0;
1065		return true;
1066	}
1067	return false;
1068}
1069
1070/**
1071 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1072 * or the tick, whatever that expires first. Note that, if the tick has been
1073 * stopped, it returns the next hrtimer.
1074 *
1075 * Called from power state control code with interrupts disabled
1076 */
1077ktime_t tick_nohz_get_next_hrtimer(void)
1078{
1079	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1080}
1081
1082/**
1083 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1084 * @delta_next: duration until the next event if the tick cannot be stopped
1085 *
1086 * Called from power state control code with interrupts disabled
 
 
 
 
1087 */
1088ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1089{
1090	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1091	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1092	int cpu = smp_processor_id();
1093	/*
1094	 * The idle entry time is expected to be a sufficient approximation of
1095	 * the current time at this point.
1096	 */
1097	ktime_t now = ts->idle_entrytime;
1098	ktime_t next_event;
1099
1100	WARN_ON_ONCE(!ts->inidle);
1101
1102	*delta_next = ktime_sub(dev->next_event, now);
1103
1104	if (!can_stop_idle_tick(cpu, ts))
1105		return *delta_next;
1106
1107	next_event = tick_nohz_next_event(ts, cpu);
1108	if (!next_event)
1109		return *delta_next;
1110
1111	/*
1112	 * If the next highres timer to expire is earlier than next_event, the
1113	 * idle governor needs to know that.
1114	 */
1115	next_event = min_t(u64, next_event,
1116			   hrtimer_next_event_without(&ts->sched_timer));
1117
1118	return ktime_sub(next_event, now);
1119}
1120
1121/**
1122 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1123 * for a particular CPU.
1124 *
1125 * Called from the schedutil frequency scaling governor in scheduler context.
1126 */
1127unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1128{
1129	struct tick_sched *ts = tick_get_tick_sched(cpu);
1130
1131	return ts->idle_calls;
1132}
1133
1134/**
1135 * tick_nohz_get_idle_calls - return the current idle calls counter value
1136 *
1137 * Called from the schedutil frequency scaling governor in scheduler context.
1138 */
1139unsigned long tick_nohz_get_idle_calls(void)
1140{
1141	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1142
1143	return ts->idle_calls;
1144}
1145
1146static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 
1147{
1148#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1149	unsigned long ticks;
1150
 
 
1151	if (vtime_accounting_enabled_this_cpu())
1152		return;
1153	/*
1154	 * We stopped the tick in idle. Update process times would miss the
1155	 * time we slept as update_process_times does only a 1 tick
1156	 * accounting. Enforce that this is accounted to idle !
1157	 */
1158	ticks = jiffies - ts->idle_jiffies;
1159	/*
1160	 * We might be one off. Do not randomly account a huge number of ticks!
1161	 */
1162	if (ticks && ticks < LONG_MAX)
1163		account_idle_ticks(ticks);
1164#endif
1165}
1166
1167static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1168{
1169	tick_nohz_restart_sched_tick(ts, now);
1170	tick_nohz_account_idle_ticks(ts);
 
 
 
 
 
1171}
1172
1173void tick_nohz_idle_restart_tick(void)
1174{
1175	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 
 
 
1176
1177	if (ts->tick_stopped)
1178		__tick_nohz_idle_restart_tick(ts, ktime_get());
1179}
1180
1181/**
1182 * tick_nohz_idle_exit - restart the idle tick from the idle task
1183 *
1184 * Restart the idle tick when the CPU is woken up from idle
1185 * This also exit the RCU extended quiescent state. The CPU
1186 * can use RCU again after this function is called.
1187 */
1188void tick_nohz_idle_exit(void)
1189{
1190	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1191	bool idle_active, tick_stopped;
1192	ktime_t now;
1193
1194	local_irq_disable();
1195
1196	WARN_ON_ONCE(!ts->inidle);
1197	WARN_ON_ONCE(ts->timer_expires_base);
1198
1199	ts->inidle = 0;
1200	idle_active = ts->idle_active;
1201	tick_stopped = ts->tick_stopped;
1202
1203	if (idle_active || tick_stopped)
1204		now = ktime_get();
1205
1206	if (idle_active)
1207		tick_nohz_stop_idle(ts, now);
1208
1209	if (tick_stopped)
1210		__tick_nohz_idle_restart_tick(ts, now);
1211
1212	local_irq_enable();
1213}
1214
1215/*
1216 * The nohz low res interrupt handler
1217 */
1218static void tick_nohz_handler(struct clock_event_device *dev)
1219{
1220	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1221	struct pt_regs *regs = get_irq_regs();
1222	ktime_t now = ktime_get();
1223
1224	dev->next_event = KTIME_MAX;
1225
1226	tick_sched_do_timer(ts, now);
1227	tick_sched_handle(ts, regs);
1228
1229	/* No need to reprogram if we are running tickless  */
1230	if (unlikely(ts->tick_stopped))
 
 
 
 
 
1231		return;
 
1232
1233	hrtimer_forward(&ts->sched_timer, now, tick_period);
1234	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1235}
1236
1237static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1238{
1239	if (!tick_nohz_enabled)
1240		return;
1241	ts->nohz_mode = mode;
1242	/* One update is enough */
1243	if (!test_and_set_bit(0, &tick_nohz_active))
1244		timers_update_nohz();
1245}
1246
1247/**
1248 * tick_nohz_switch_to_nohz - switch to nohz mode
1249 */
1250static void tick_nohz_switch_to_nohz(void)
1251{
1252	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1253	ktime_t next;
1254
1255	if (!tick_nohz_enabled)
1256		return;
1257
1258	if (tick_switch_to_oneshot(tick_nohz_handler))
1259		return;
1260
1261	/*
1262	 * Recycle the hrtimer in ts, so we can share the
1263	 * hrtimer_forward with the highres code.
1264	 */
1265	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1266	/* Get the next period */
1267	next = tick_init_jiffy_update();
1268
1269	hrtimer_set_expires(&ts->sched_timer, next);
1270	hrtimer_forward_now(&ts->sched_timer, tick_period);
1271	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1272	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1273}
1274
1275static inline void tick_nohz_irq_enter(void)
1276{
1277	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1278	ktime_t now;
1279
1280	if (!ts->idle_active && !ts->tick_stopped)
1281		return;
1282	now = ktime_get();
1283	if (ts->idle_active)
1284		tick_nohz_stop_idle(ts, now);
 
 
 
 
 
 
 
1285	if (ts->tick_stopped)
1286		tick_nohz_update_jiffies(now);
1287}
1288
1289#else
1290
1291static inline void tick_nohz_switch_to_nohz(void) { }
1292static inline void tick_nohz_irq_enter(void) { }
1293static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1294
1295#endif /* CONFIG_NO_HZ_COMMON */
1296
1297/*
1298 * Called from irq_enter to notify about the possible interruption of idle()
1299 */
1300void tick_irq_enter(void)
1301{
1302	tick_check_oneshot_broadcast_this_cpu();
1303	tick_nohz_irq_enter();
1304}
1305
1306/*
1307 * High resolution timer specific code
1308 */
1309#ifdef CONFIG_HIGH_RES_TIMERS
1310/*
1311 * We rearm the timer until we get disabled by the idle code.
1312 * Called with interrupts disabled.
1313 */
1314static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1315{
1316	struct tick_sched *ts =
1317		container_of(timer, struct tick_sched, sched_timer);
1318	struct pt_regs *regs = get_irq_regs();
1319	ktime_t now = ktime_get();
1320
1321	tick_sched_do_timer(ts, now);
1322
1323	/*
1324	 * Do not call, when we are not in irq context and have
1325	 * no valid regs pointer
1326	 */
1327	if (regs)
1328		tick_sched_handle(ts, regs);
1329	else
1330		ts->next_tick = 0;
1331
1332	/* No need to reprogram if we are in idle or full dynticks mode */
1333	if (unlikely(ts->tick_stopped))
1334		return HRTIMER_NORESTART;
1335
1336	hrtimer_forward(timer, now, tick_period);
1337
1338	return HRTIMER_RESTART;
1339}
1340
1341static int sched_skew_tick;
1342
1343static int __init skew_tick(char *str)
1344{
1345	get_option(&str, &sched_skew_tick);
1346
1347	return 0;
1348}
1349early_param("skew_tick", skew_tick);
1350
1351/**
1352 * tick_setup_sched_timer - setup the tick emulation timer
1353 */
1354void tick_setup_sched_timer(void)
1355{
1356	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1357	ktime_t now = ktime_get();
1358
1359	/*
1360	 * Emulate tick processing via per-CPU hrtimers:
1361	 */
1362	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1363	ts->sched_timer.function = tick_sched_timer;
1364
1365	/* Get the next period (per-CPU) */
1366	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1367
1368	/* Offset the tick to avert jiffies_lock contention. */
1369	if (sched_skew_tick) {
1370		u64 offset = ktime_to_ns(tick_period) >> 1;
1371		do_div(offset, num_possible_cpus());
1372		offset *= smp_processor_id();
1373		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1374	}
1375
1376	hrtimer_forward(&ts->sched_timer, now, tick_period);
1377	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1378	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1379}
1380#endif /* HIGH_RES_TIMERS */
1381
1382#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1383void tick_cancel_sched_timer(int cpu)
1384{
1385	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1386
1387# ifdef CONFIG_HIGH_RES_TIMERS
1388	if (ts->sched_timer.base)
1389		hrtimer_cancel(&ts->sched_timer);
1390# endif
1391
1392	memset(ts, 0, sizeof(*ts));
1393}
1394#endif
1395
1396/**
1397 * Async notification about clocksource changes
1398 */
1399void tick_clock_notify(void)
1400{
1401	int cpu;
1402
1403	for_each_possible_cpu(cpu)
1404		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1405}
1406
1407/*
1408 * Async notification about clock event changes
1409 */
1410void tick_oneshot_notify(void)
1411{
1412	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1413
1414	set_bit(0, &ts->check_clocks);
1415}
1416
1417/**
1418 * Check, if a change happened, which makes oneshot possible.
1419 *
1420 * Called cyclic from the hrtimer softirq (driven by the timer
1421 * softirq) allow_nohz signals, that we can switch into low-res nohz
1422 * mode, because high resolution timers are disabled (either compile
1423 * or runtime). Called with interrupts disabled.
1424 */
1425int tick_check_oneshot_change(int allow_nohz)
1426{
1427	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1428
1429	if (!test_and_clear_bit(0, &ts->check_clocks))
1430		return 0;
1431
1432	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1433		return 0;
1434
1435	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1436		return 0;
1437
1438	if (!allow_nohz)
1439		return 1;
1440
1441	tick_nohz_switch_to_nohz();
1442	return 0;
1443}