Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _KERNEL_STATS_H
  3#define _KERNEL_STATS_H
  4
  5#ifdef CONFIG_SCHEDSTATS
  6
  7extern struct static_key_false sched_schedstats;
  8
  9/*
 10 * Expects runqueue lock to be held for atomicity of update
 11 */
 12static inline void
 13rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 14{
 15	if (rq) {
 16		rq->rq_sched_info.run_delay += delta;
 17		rq->rq_sched_info.pcount++;
 18	}
 19}
 20
 21/*
 22 * Expects runqueue lock to be held for atomicity of update
 23 */
 24static inline void
 25rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 26{
 27	if (rq)
 28		rq->rq_cpu_time += delta;
 29}
 30
 31static inline void
 32rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
 33{
 34	if (rq)
 35		rq->rq_sched_info.run_delay += delta;
 36}
 37#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 38#define __schedstat_inc(var)		do { var++; } while (0)
 39#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 40#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 41#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 42#define __schedstat_set(var, val)	do { var = (val); } while (0)
 43#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 44#define   schedstat_val(var)		(var)
 45#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 46
 47void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
 48			       struct sched_statistics *stats);
 49
 50void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
 51			     struct sched_statistics *stats);
 52void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
 53				    struct sched_statistics *stats);
 54
 55static inline void
 56check_schedstat_required(void)
 57{
 58	if (schedstat_enabled())
 59		return;
 60
 61	/* Force schedstat enabled if a dependent tracepoint is active */
 62	if (trace_sched_stat_wait_enabled()    ||
 63	    trace_sched_stat_sleep_enabled()   ||
 64	    trace_sched_stat_iowait_enabled()  ||
 65	    trace_sched_stat_blocked_enabled() ||
 66	    trace_sched_stat_runtime_enabled())
 67		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
 68}
 69
 70#else /* !CONFIG_SCHEDSTATS: */
 71
 72static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 73static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
 74static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 75# define   schedstat_enabled()		0
 76# define __schedstat_inc(var)		do { } while (0)
 77# define   schedstat_inc(var)		do { } while (0)
 78# define __schedstat_add(var, amt)	do { } while (0)
 79# define   schedstat_add(var, amt)	do { } while (0)
 80# define __schedstat_set(var, val)	do { } while (0)
 81# define   schedstat_set(var, val)	do { } while (0)
 82# define   schedstat_val(var)		0
 83# define   schedstat_val_or_zero(var)	0
 84
 85# define __update_stats_wait_start(rq, p, stats)       do { } while (0)
 86# define __update_stats_wait_end(rq, p, stats)         do { } while (0)
 87# define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
 88# define check_schedstat_required()                    do { } while (0)
 89
 90#endif /* CONFIG_SCHEDSTATS */
 91
 92#ifdef CONFIG_FAIR_GROUP_SCHED
 93struct sched_entity_stats {
 94	struct sched_entity     se;
 95	struct sched_statistics stats;
 96} __no_randomize_layout;
 97#endif
 98
 99static inline struct sched_statistics *
100__schedstats_from_se(struct sched_entity *se)
101{
102#ifdef CONFIG_FAIR_GROUP_SCHED
103	if (!entity_is_task(se))
104		return &container_of(se, struct sched_entity_stats, se)->stats;
105#endif
106	return &task_of(se)->stats;
107}
108
109#ifdef CONFIG_PSI
110void psi_task_change(struct task_struct *task, int clear, int set);
111void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112		     bool sleep);
113void psi_account_irqtime(struct task_struct *task, u32 delta);
114
115/*
116 * PSI tracks state that persists across sleeps, such as iowaits and
117 * memory stalls. As a result, it has to distinguish between sleeps,
118 * where a task's runnable state changes, and requeues, where a task
119 * and its state are being moved between CPUs and runqueues.
120 */
121static inline void psi_enqueue(struct task_struct *p, bool wakeup)
122{
123	int clear = 0, set = TSK_RUNNING;
124
125	if (static_branch_likely(&psi_disabled))
126		return;
127
128	if (p->in_memstall)
129		set |= TSK_MEMSTALL_RUNNING;
130
131	if (!wakeup) {
132		if (p->in_memstall)
133			set |= TSK_MEMSTALL;
 
 
134	} else {
135		if (p->in_iowait)
136			clear |= TSK_IOWAIT;
137	}
138
139	psi_task_change(p, clear, set);
140}
141
142static inline void psi_dequeue(struct task_struct *p, bool sleep)
143{
 
 
144	if (static_branch_likely(&psi_disabled))
145		return;
146
147	/*
148	 * A voluntary sleep is a dequeue followed by a task switch. To
149	 * avoid walking all ancestors twice, psi_task_switch() handles
150	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
151	 * Do nothing here.
152	 */
153	if (sleep)
154		return;
 
 
 
 
 
 
 
155
156	psi_task_change(p, p->psi_flags, 0);
157}
158
159static inline void psi_ttwu_dequeue(struct task_struct *p)
160{
161	if (static_branch_likely(&psi_disabled))
162		return;
163	/*
164	 * Is the task being migrated during a wakeup? Make sure to
165	 * deregister its sleep-persistent psi states from the old
166	 * queue, and let psi_enqueue() know it has to requeue.
167	 */
168	if (unlikely(p->psi_flags)) {
169		struct rq_flags rf;
170		struct rq *rq;
 
 
 
 
 
 
171
172		rq = __task_rq_lock(p, &rf);
173		psi_task_change(p, p->psi_flags, 0);
 
174		__task_rq_unlock(rq, &rf);
175	}
176}
177
178static inline void psi_sched_switch(struct task_struct *prev,
179				    struct task_struct *next,
180				    bool sleep)
181{
182	if (static_branch_likely(&psi_disabled))
183		return;
184
185	psi_task_switch(prev, next, sleep);
186}
187
 
 
 
 
 
 
 
 
188#else /* CONFIG_PSI */
189static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
190static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
191static inline void psi_ttwu_dequeue(struct task_struct *p) {}
192static inline void psi_sched_switch(struct task_struct *prev,
193				    struct task_struct *next,
194				    bool sleep) {}
195static inline void psi_account_irqtime(struct task_struct *task, u32 delta) {}
196#endif /* CONFIG_PSI */
197
198#ifdef CONFIG_SCHED_INFO
 
 
 
 
 
199/*
200 * We are interested in knowing how long it was from the *first* time a
201 * task was queued to the time that it finally hit a CPU, we call this routine
202 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
203 * delta taken on each CPU would annul the skew.
204 */
205static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
206{
207	unsigned long long delta = 0;
208
209	if (!t->sched_info.last_queued)
210		return;
211
212	delta = rq_clock(rq) - t->sched_info.last_queued;
213	t->sched_info.last_queued = 0;
 
 
 
214	t->sched_info.run_delay += delta;
215
216	rq_sched_info_dequeue(rq, delta);
217}
218
219/*
220 * Called when a task finally hits the CPU.  We can now calculate how
221 * long it was waiting to run.  We also note when it began so that we
222 * can keep stats on how long its timeslice is.
223 */
224static void sched_info_arrive(struct rq *rq, struct task_struct *t)
225{
226	unsigned long long now, delta = 0;
227
228	if (!t->sched_info.last_queued)
229		return;
230
231	now = rq_clock(rq);
232	delta = now - t->sched_info.last_queued;
233	t->sched_info.last_queued = 0;
234	t->sched_info.run_delay += delta;
235	t->sched_info.last_arrival = now;
236	t->sched_info.pcount++;
237
238	rq_sched_info_arrive(rq, delta);
239}
240
241/*
242 * This function is only called from enqueue_task(), but also only updates
243 * the timestamp if it is already not set.  It's assumed that
244 * sched_info_dequeue() will clear that stamp when appropriate.
245 */
246static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
247{
248	if (!t->sched_info.last_queued)
249		t->sched_info.last_queued = rq_clock(rq);
 
 
250}
251
252/*
253 * Called when a process ceases being the active-running process involuntarily
254 * due, typically, to expiring its time slice (this may also be called when
255 * switching to the idle task).  Now we can calculate how long we ran.
256 * Also, if the process is still in the TASK_RUNNING state, call
257 * sched_info_enqueue() to mark that it has now again started waiting on
258 * the runqueue.
259 */
260static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
261{
262	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
263
264	rq_sched_info_depart(rq, delta);
265
266	if (task_is_running(t))
267		sched_info_enqueue(rq, t);
268}
269
270/*
271 * Called when tasks are switched involuntarily due, typically, to expiring
272 * their time slice.  (This may also be called when switching to or from
273 * the idle task.)  We are only called when prev != next.
274 */
275static inline void
276sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
277{
278	/*
279	 * prev now departs the CPU.  It's not interesting to record
280	 * stats about how efficient we were at scheduling the idle
281	 * process, however.
282	 */
283	if (prev != rq->idle)
284		sched_info_depart(rq, prev);
285
286	if (next != rq->idle)
287		sched_info_arrive(rq, next);
288}
289
 
 
 
 
 
 
 
290#else /* !CONFIG_SCHED_INFO: */
291# define sched_info_enqueue(rq, t)	do { } while (0)
292# define sched_info_dequeue(rq, t)	do { } while (0)
 
 
 
293# define sched_info_switch(rq, t, next)	do { } while (0)
294#endif /* CONFIG_SCHED_INFO */
295
296#endif /* _KERNEL_STATS_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
 
 
  2
  3#ifdef CONFIG_SCHEDSTATS
  4
 
 
  5/*
  6 * Expects runqueue lock to be held for atomicity of update
  7 */
  8static inline void
  9rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
 10{
 11	if (rq) {
 12		rq->rq_sched_info.run_delay += delta;
 13		rq->rq_sched_info.pcount++;
 14	}
 15}
 16
 17/*
 18 * Expects runqueue lock to be held for atomicity of update
 19 */
 20static inline void
 21rq_sched_info_depart(struct rq *rq, unsigned long long delta)
 22{
 23	if (rq)
 24		rq->rq_cpu_time += delta;
 25}
 26
 27static inline void
 28rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
 29{
 30	if (rq)
 31		rq->rq_sched_info.run_delay += delta;
 32}
 33#define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
 34#define __schedstat_inc(var)		do { var++; } while (0)
 35#define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
 36#define __schedstat_add(var, amt)	do { var += (amt); } while (0)
 37#define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
 38#define __schedstat_set(var, val)	do { var = (val); } while (0)
 39#define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
 40#define   schedstat_val(var)		(var)
 41#define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
 42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43#else /* !CONFIG_SCHEDSTATS: */
 
 44static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
 45static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { }
 46static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
 47# define   schedstat_enabled()		0
 48# define __schedstat_inc(var)		do { } while (0)
 49# define   schedstat_inc(var)		do { } while (0)
 50# define __schedstat_add(var, amt)	do { } while (0)
 51# define   schedstat_add(var, amt)	do { } while (0)
 52# define __schedstat_set(var, val)	do { } while (0)
 53# define   schedstat_set(var, val)	do { } while (0)
 54# define   schedstat_val(var)		0
 55# define   schedstat_val_or_zero(var)	0
 
 
 
 
 
 
 56#endif /* CONFIG_SCHEDSTATS */
 57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58#ifdef CONFIG_PSI
 
 
 
 
 
 59/*
 60 * PSI tracks state that persists across sleeps, such as iowaits and
 61 * memory stalls. As a result, it has to distinguish between sleeps,
 62 * where a task's runnable state changes, and requeues, where a task
 63 * and its state are being moved between CPUs and runqueues.
 64 */
 65static inline void psi_enqueue(struct task_struct *p, bool wakeup)
 66{
 67	int clear = 0, set = TSK_RUNNING;
 68
 69	if (static_branch_likely(&psi_disabled))
 70		return;
 71
 72	if (!wakeup || p->sched_psi_wake_requeue) {
 
 
 
 73		if (p->in_memstall)
 74			set |= TSK_MEMSTALL;
 75		if (p->sched_psi_wake_requeue)
 76			p->sched_psi_wake_requeue = 0;
 77	} else {
 78		if (p->in_iowait)
 79			clear |= TSK_IOWAIT;
 80	}
 81
 82	psi_task_change(p, clear, set);
 83}
 84
 85static inline void psi_dequeue(struct task_struct *p, bool sleep)
 86{
 87	int clear = TSK_RUNNING, set = 0;
 88
 89	if (static_branch_likely(&psi_disabled))
 90		return;
 91
 92	if (!sleep) {
 93		if (p->in_memstall)
 94			clear |= TSK_MEMSTALL;
 95	} else {
 96		/*
 97		 * When a task sleeps, schedule() dequeues it before
 98		 * switching to the next one. Merge the clearing of
 99		 * TSK_RUNNING and TSK_ONCPU to save an unnecessary
100		 * psi_task_change() call in psi_sched_switch().
101		 */
102		clear |= TSK_ONCPU;
103
104		if (p->in_iowait)
105			set |= TSK_IOWAIT;
106	}
107
108	psi_task_change(p, clear, set);
109}
110
111static inline void psi_ttwu_dequeue(struct task_struct *p)
112{
113	if (static_branch_likely(&psi_disabled))
114		return;
115	/*
116	 * Is the task being migrated during a wakeup? Make sure to
117	 * deregister its sleep-persistent psi states from the old
118	 * queue, and let psi_enqueue() know it has to requeue.
119	 */
120	if (unlikely(p->in_iowait || p->in_memstall)) {
121		struct rq_flags rf;
122		struct rq *rq;
123		int clear = 0;
124
125		if (p->in_iowait)
126			clear |= TSK_IOWAIT;
127		if (p->in_memstall)
128			clear |= TSK_MEMSTALL;
129
130		rq = __task_rq_lock(p, &rf);
131		psi_task_change(p, clear, 0);
132		p->sched_psi_wake_requeue = 1;
133		__task_rq_unlock(rq, &rf);
134	}
135}
136
137static inline void psi_sched_switch(struct task_struct *prev,
138				    struct task_struct *next,
139				    bool sleep)
140{
141	if (static_branch_likely(&psi_disabled))
142		return;
143
144	psi_task_switch(prev, next, sleep);
145}
146
147static inline void psi_task_tick(struct rq *rq)
148{
149	if (static_branch_likely(&psi_disabled))
150		return;
151
152	if (unlikely(rq->curr->in_memstall))
153		psi_memstall_tick(rq->curr, cpu_of(rq));
154}
155#else /* CONFIG_PSI */
156static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
157static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
158static inline void psi_ttwu_dequeue(struct task_struct *p) {}
159static inline void psi_sched_switch(struct task_struct *prev,
160				    struct task_struct *next,
161				    bool sleep) {}
162static inline void psi_task_tick(struct rq *rq) {}
163#endif /* CONFIG_PSI */
164
165#ifdef CONFIG_SCHED_INFO
166static inline void sched_info_reset_dequeued(struct task_struct *t)
167{
168	t->sched_info.last_queued = 0;
169}
170
171/*
172 * We are interested in knowing how long it was from the *first* time a
173 * task was queued to the time that it finally hit a CPU, we call this routine
174 * from dequeue_task() to account for possible rq->clock skew across CPUs. The
175 * delta taken on each CPU would annul the skew.
176 */
177static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t)
178{
179	unsigned long long now = rq_clock(rq), delta = 0;
 
 
 
180
181	if (sched_info_on()) {
182		if (t->sched_info.last_queued)
183			delta = now - t->sched_info.last_queued;
184	}
185	sched_info_reset_dequeued(t);
186	t->sched_info.run_delay += delta;
187
188	rq_sched_info_dequeued(rq, delta);
189}
190
191/*
192 * Called when a task finally hits the CPU.  We can now calculate how
193 * long it was waiting to run.  We also note when it began so that we
194 * can keep stats on how long its timeslice is.
195 */
196static void sched_info_arrive(struct rq *rq, struct task_struct *t)
197{
198	unsigned long long now = rq_clock(rq), delta = 0;
 
 
 
199
200	if (t->sched_info.last_queued)
201		delta = now - t->sched_info.last_queued;
202	sched_info_reset_dequeued(t);
203	t->sched_info.run_delay += delta;
204	t->sched_info.last_arrival = now;
205	t->sched_info.pcount++;
206
207	rq_sched_info_arrive(rq, delta);
208}
209
210/*
211 * This function is only called from enqueue_task(), but also only updates
212 * the timestamp if it is already not set.  It's assumed that
213 * sched_info_dequeued() will clear that stamp when appropriate.
214 */
215static inline void sched_info_queued(struct rq *rq, struct task_struct *t)
216{
217	if (sched_info_on()) {
218		if (!t->sched_info.last_queued)
219			t->sched_info.last_queued = rq_clock(rq);
220	}
221}
222
223/*
224 * Called when a process ceases being the active-running process involuntarily
225 * due, typically, to expiring its time slice (this may also be called when
226 * switching to the idle task).  Now we can calculate how long we ran.
227 * Also, if the process is still in the TASK_RUNNING state, call
228 * sched_info_queued() to mark that it has now again started waiting on
229 * the runqueue.
230 */
231static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
232{
233	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
234
235	rq_sched_info_depart(rq, delta);
236
237	if (t->state == TASK_RUNNING)
238		sched_info_queued(rq, t);
239}
240
241/*
242 * Called when tasks are switched involuntarily due, typically, to expiring
243 * their time slice.  (This may also be called when switching to or from
244 * the idle task.)  We are only called when prev != next.
245 */
246static inline void
247__sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
248{
249	/*
250	 * prev now departs the CPU.  It's not interesting to record
251	 * stats about how efficient we were at scheduling the idle
252	 * process, however.
253	 */
254	if (prev != rq->idle)
255		sched_info_depart(rq, prev);
256
257	if (next != rq->idle)
258		sched_info_arrive(rq, next);
259}
260
261static inline void
262sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
263{
264	if (sched_info_on())
265		__sched_info_switch(rq, prev, next);
266}
267
268#else /* !CONFIG_SCHED_INFO: */
269# define sched_info_queued(rq, t)	do { } while (0)
270# define sched_info_reset_dequeued(t)	do { } while (0)
271# define sched_info_dequeued(rq, t)	do { } while (0)
272# define sched_info_depart(rq, t)	do { } while (0)
273# define sched_info_arrive(rq, next)	do { } while (0)
274# define sched_info_switch(rq, t, next)	do { } while (0)
275#endif /* CONFIG_SCHED_INFO */