Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
 
   5
   6#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   7
   8/*
   9 * There are no locks covering percpu hardirq/softirq time.
  10 * They are only modified in vtime_account, on corresponding CPU
  11 * with interrupts disabled. So, writes are safe.
  12 * They are read and saved off onto struct rq in update_rq_clock().
  13 * This may result in other CPU reading this CPU's irq time and can
  14 * race with irq/vtime_account on this CPU. We would either get old
  15 * or new value with a side effect of accounting a slice of irq time to wrong
  16 * task when irq is in progress while we read rq->clock. That is a worthy
  17 * compromise in place of having locks on each irq in account_system_time.
  18 */
  19DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  20
  21static int sched_clock_irqtime;
  22
  23void enable_sched_clock_irqtime(void)
  24{
  25	sched_clock_irqtime = 1;
  26}
  27
  28void disable_sched_clock_irqtime(void)
  29{
  30	sched_clock_irqtime = 0;
  31}
  32
  33static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  34				  enum cpu_usage_stat idx)
  35{
  36	u64 *cpustat = kcpustat_this_cpu->cpustat;
  37
  38	u64_stats_update_begin(&irqtime->sync);
  39	cpustat[idx] += delta;
  40	irqtime->total += delta;
  41	irqtime->tick_delta += delta;
  42	u64_stats_update_end(&irqtime->sync);
  43}
  44
  45/*
  46 * Called after incrementing preempt_count on {soft,}irq_enter
  47 * and before decrementing preempt_count on {soft,}irq_exit.
  48 */
  49void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
  50{
  51	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  52	unsigned int pc;
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
  62	pc = irq_count() - offset;
  63
  64	/*
  65	 * We do not account for softirq time from ksoftirqd here.
  66	 * We want to continue accounting softirq time to ksoftirqd thread
  67	 * in that case, so as not to confuse scheduler with a special task
  68	 * that do not consume any time, but still wants to run.
  69	 */
  70	if (pc & HARDIRQ_MASK)
  71		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  72	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
  73		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  74}
 
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
  83
  84	return delta;
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		task_group_account_field(p, CPUTIME_NICE, cputime);
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		task_group_account_field(p, CPUTIME_USER, cputime);
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 229
 230#ifdef CONFIG_SCHED_CORE
 231/*
 232 * Account for forceidle time due to core scheduling.
 233 *
 234 * REQUIRES: schedstat is enabled.
 235 */
 236void __account_forceidle_time(struct task_struct *p, u64 delta)
 237{
 238	__schedstat_add(p->stats.core_forceidle_sum, delta);
 239
 240	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
 241}
 242#endif
 243
 244/*
 245 * When a guest is interrupted for a longer amount of time, missed clock
 246 * ticks are not redelivered later. Due to that, this function may on
 247 * occasion account more time than the calling functions think elapsed.
 248 */
 249static __always_inline u64 steal_account_process_time(u64 maxtime)
 250{
 251#ifdef CONFIG_PARAVIRT
 252	if (static_key_false(&paravirt_steal_enabled)) {
 253		u64 steal;
 254
 255		steal = paravirt_steal_clock(smp_processor_id());
 256		steal -= this_rq()->prev_steal_time;
 257		steal = min(steal, maxtime);
 258		account_steal_time(steal);
 259		this_rq()->prev_steal_time += steal;
 260
 261		return steal;
 262	}
 263#endif
 264	return 0;
 265}
 266
 267/*
 268 * Account how much elapsed time was spent in steal, irq, or softirq time.
 269 */
 270static inline u64 account_other_time(u64 max)
 271{
 272	u64 accounted;
 273
 274	lockdep_assert_irqs_disabled();
 275
 276	accounted = steal_account_process_time(max);
 277
 278	if (accounted < max)
 279		accounted += irqtime_tick_accounted(max - accounted);
 280
 281	return accounted;
 282}
 283
 284#ifdef CONFIG_64BIT
 285static inline u64 read_sum_exec_runtime(struct task_struct *t)
 286{
 287	return t->se.sum_exec_runtime;
 288}
 289#else
 290static u64 read_sum_exec_runtime(struct task_struct *t)
 291{
 292	u64 ns;
 293	struct rq_flags rf;
 294	struct rq *rq;
 295
 296	rq = task_rq_lock(t, &rf);
 297	ns = t->se.sum_exec_runtime;
 298	task_rq_unlock(rq, t, &rf);
 299
 300	return ns;
 301}
 302#endif
 303
 304/*
 305 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 306 * tasks (sum on group iteration) belonging to @tsk's group.
 307 */
 308void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 309{
 310	struct signal_struct *sig = tsk->signal;
 311	u64 utime, stime;
 312	struct task_struct *t;
 313	unsigned int seq, nextseq;
 314	unsigned long flags;
 315
 316	/*
 317	 * Update current task runtime to account pending time since last
 318	 * scheduler action or thread_group_cputime() call. This thread group
 319	 * might have other running tasks on different CPUs, but updating
 320	 * their runtime can affect syscall performance, so we skip account
 321	 * those pending times and rely only on values updated on tick or
 322	 * other scheduler action.
 323	 */
 324	if (same_thread_group(current, tsk))
 325		(void) task_sched_runtime(current);
 326
 327	rcu_read_lock();
 328	/* Attempt a lockless read on the first round. */
 329	nextseq = 0;
 330	do {
 331		seq = nextseq;
 332		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 333		times->utime = sig->utime;
 334		times->stime = sig->stime;
 335		times->sum_exec_runtime = sig->sum_sched_runtime;
 336
 337		for_each_thread(tsk, t) {
 338			task_cputime(t, &utime, &stime);
 339			times->utime += utime;
 340			times->stime += stime;
 341			times->sum_exec_runtime += read_sum_exec_runtime(t);
 342		}
 343		/* If lockless access failed, take the lock. */
 344		nextseq = 1;
 345	} while (need_seqretry(&sig->stats_lock, seq));
 346	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 347	rcu_read_unlock();
 348}
 349
 350#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 351/*
 352 * Account a tick to a process and cpustat
 353 * @p: the process that the CPU time gets accounted to
 354 * @user_tick: is the tick from userspace
 355 * @rq: the pointer to rq
 356 *
 357 * Tick demultiplexing follows the order
 358 * - pending hardirq update
 359 * - pending softirq update
 360 * - user_time
 361 * - idle_time
 362 * - system time
 363 *   - check for guest_time
 364 *   - else account as system_time
 365 *
 366 * Check for hardirq is done both for system and user time as there is
 367 * no timer going off while we are on hardirq and hence we may never get an
 368 * opportunity to update it solely in system time.
 369 * p->stime and friends are only updated on system time and not on irq
 370 * softirq as those do not count in task exec_runtime any more.
 371 */
 372static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 373					 int ticks)
 374{
 375	u64 other, cputime = TICK_NSEC * ticks;
 376
 377	/*
 378	 * When returning from idle, many ticks can get accounted at
 379	 * once, including some ticks of steal, irq, and softirq time.
 380	 * Subtract those ticks from the amount of time accounted to
 381	 * idle, or potentially user or system time. Due to rounding,
 382	 * other time can exceed ticks occasionally.
 383	 */
 384	other = account_other_time(ULONG_MAX);
 385	if (other >= cputime)
 386		return;
 387
 388	cputime -= other;
 389
 390	if (this_cpu_ksoftirqd() == p) {
 391		/*
 392		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 393		 * So, we have to handle it separately here.
 394		 * Also, p->stime needs to be updated for ksoftirqd.
 395		 */
 396		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 397	} else if (user_tick) {
 398		account_user_time(p, cputime);
 399	} else if (p == this_rq()->idle) {
 400		account_idle_time(cputime);
 401	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 402		account_guest_time(p, cputime);
 403	} else {
 404		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 405	}
 406}
 407
 408static void irqtime_account_idle_ticks(int ticks)
 409{
 410	irqtime_account_process_tick(current, 0, ticks);
 411}
 412#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 413static inline void irqtime_account_idle_ticks(int ticks) { }
 414static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 415						int nr_ticks) { }
 416#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 417
 418/*
 419 * Use precise platform statistics if available:
 420 */
 421#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 422
 423# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 424void vtime_task_switch(struct task_struct *prev)
 425{
 426	if (is_idle_task(prev))
 427		vtime_account_idle(prev);
 428	else
 429		vtime_account_kernel(prev);
 430
 431	vtime_flush(prev);
 432	arch_vtime_task_switch(prev);
 433}
 434# endif
 435
 436void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
 
 
 
 
 
 
 
 
 
 437{
 438	unsigned int pc = irq_count() - offset;
 439
 440	if (pc & HARDIRQ_OFFSET) {
 441		vtime_account_hardirq(tsk);
 442	} else if (pc & SOFTIRQ_OFFSET) {
 443		vtime_account_softirq(tsk);
 444	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
 445		   is_idle_task(tsk)) {
 446		vtime_account_idle(tsk);
 447	} else {
 448		vtime_account_kernel(tsk);
 449	}
 450}
 
 
 451
 452void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 453		    u64 *ut, u64 *st)
 454{
 455	*ut = curr->utime;
 456	*st = curr->stime;
 457}
 458
 459void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 460{
 461	*ut = p->utime;
 462	*st = p->stime;
 463}
 464EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 465
 466void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 467{
 468	struct task_cputime cputime;
 469
 470	thread_group_cputime(p, &cputime);
 471
 472	*ut = cputime.utime;
 473	*st = cputime.stime;
 474}
 475
 476#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 477
 478/*
 479 * Account a single tick of CPU time.
 480 * @p: the process that the CPU time gets accounted to
 481 * @user_tick: indicates if the tick is a user or a system tick
 482 */
 483void account_process_tick(struct task_struct *p, int user_tick)
 484{
 485	u64 cputime, steal;
 486
 487	if (vtime_accounting_enabled_this_cpu())
 488		return;
 489
 490	if (sched_clock_irqtime) {
 491		irqtime_account_process_tick(p, user_tick, 1);
 492		return;
 493	}
 494
 495	cputime = TICK_NSEC;
 496	steal = steal_account_process_time(ULONG_MAX);
 497
 498	if (steal >= cputime)
 499		return;
 500
 501	cputime -= steal;
 502
 503	if (user_tick)
 504		account_user_time(p, cputime);
 505	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 506		account_system_time(p, HARDIRQ_OFFSET, cputime);
 507	else
 508		account_idle_time(cputime);
 509}
 510
 511/*
 512 * Account multiple ticks of idle time.
 513 * @ticks: number of stolen ticks
 514 */
 515void account_idle_ticks(unsigned long ticks)
 516{
 517	u64 cputime, steal;
 518
 519	if (sched_clock_irqtime) {
 520		irqtime_account_idle_ticks(ticks);
 521		return;
 522	}
 523
 524	cputime = ticks * TICK_NSEC;
 525	steal = steal_account_process_time(ULONG_MAX);
 526
 527	if (steal >= cputime)
 528		return;
 529
 530	cputime -= steal;
 531	account_idle_time(cputime);
 532}
 533
 534/*
 535 * Adjust tick based cputime random precision against scheduler runtime
 536 * accounting.
 537 *
 538 * Tick based cputime accounting depend on random scheduling timeslices of a
 539 * task to be interrupted or not by the timer.  Depending on these
 540 * circumstances, the number of these interrupts may be over or
 541 * under-optimistic, matching the real user and system cputime with a variable
 542 * precision.
 543 *
 544 * Fix this by scaling these tick based values against the total runtime
 545 * accounted by the CFS scheduler.
 546 *
 547 * This code provides the following guarantees:
 548 *
 549 *   stime + utime == rtime
 550 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 551 *
 552 * Assuming that rtime_i+1 >= rtime_i.
 553 */
 554void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 555		    u64 *ut, u64 *st)
 556{
 557	u64 rtime, stime, utime;
 558	unsigned long flags;
 559
 560	/* Serialize concurrent callers such that we can honour our guarantees */
 561	raw_spin_lock_irqsave(&prev->lock, flags);
 562	rtime = curr->sum_exec_runtime;
 563
 564	/*
 565	 * This is possible under two circumstances:
 566	 *  - rtime isn't monotonic after all (a bug);
 567	 *  - we got reordered by the lock.
 568	 *
 569	 * In both cases this acts as a filter such that the rest of the code
 570	 * can assume it is monotonic regardless of anything else.
 571	 */
 572	if (prev->stime + prev->utime >= rtime)
 573		goto out;
 574
 575	stime = curr->stime;
 576	utime = curr->utime;
 577
 578	/*
 579	 * If either stime or utime are 0, assume all runtime is userspace.
 580	 * Once a task gets some ticks, the monotonicity code at 'update:'
 581	 * will ensure things converge to the observed ratio.
 582	 */
 583	if (stime == 0) {
 584		utime = rtime;
 585		goto update;
 586	}
 587
 588	if (utime == 0) {
 589		stime = rtime;
 590		goto update;
 591	}
 592
 593	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 594
 595update:
 596	/*
 597	 * Make sure stime doesn't go backwards; this preserves monotonicity
 598	 * for utime because rtime is monotonic.
 599	 *
 600	 *  utime_i+1 = rtime_i+1 - stime_i
 601	 *            = rtime_i+1 - (rtime_i - utime_i)
 602	 *            = (rtime_i+1 - rtime_i) + utime_i
 603	 *            >= utime_i
 604	 */
 605	if (stime < prev->stime)
 606		stime = prev->stime;
 607	utime = rtime - stime;
 608
 609	/*
 610	 * Make sure utime doesn't go backwards; this still preserves
 611	 * monotonicity for stime, analogous argument to above.
 612	 */
 613	if (utime < prev->utime) {
 614		utime = prev->utime;
 615		stime = rtime - utime;
 616	}
 617
 618	prev->stime = stime;
 619	prev->utime = utime;
 620out:
 621	*ut = prev->utime;
 622	*st = prev->stime;
 623	raw_spin_unlock_irqrestore(&prev->lock, flags);
 624}
 625
 626void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 627{
 628	struct task_cputime cputime = {
 629		.sum_exec_runtime = p->se.sum_exec_runtime,
 630	};
 631
 632	if (task_cputime(p, &cputime.utime, &cputime.stime))
 633		cputime.sum_exec_runtime = task_sched_runtime(p);
 634	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 635}
 636EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 637
 638void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 639{
 640	struct task_cputime cputime;
 641
 642	thread_group_cputime(p, &cputime);
 643	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 644}
 645#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 646
 647#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 648static u64 vtime_delta(struct vtime *vtime)
 649{
 650	unsigned long long clock;
 651
 652	clock = sched_clock();
 653	if (clock < vtime->starttime)
 654		return 0;
 655
 656	return clock - vtime->starttime;
 657}
 658
 659static u64 get_vtime_delta(struct vtime *vtime)
 660{
 661	u64 delta = vtime_delta(vtime);
 662	u64 other;
 663
 664	/*
 665	 * Unlike tick based timing, vtime based timing never has lost
 666	 * ticks, and no need for steal time accounting to make up for
 667	 * lost ticks. Vtime accounts a rounded version of actual
 668	 * elapsed time. Limit account_other_time to prevent rounding
 669	 * errors from causing elapsed vtime to go negative.
 670	 */
 671	other = account_other_time(delta);
 672	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 673	vtime->starttime += delta;
 674
 675	return delta - other;
 676}
 677
 678static void vtime_account_system(struct task_struct *tsk,
 679				 struct vtime *vtime)
 680{
 681	vtime->stime += get_vtime_delta(vtime);
 682	if (vtime->stime >= TICK_NSEC) {
 683		account_system_time(tsk, irq_count(), vtime->stime);
 684		vtime->stime = 0;
 685	}
 686}
 687
 688static void vtime_account_guest(struct task_struct *tsk,
 689				struct vtime *vtime)
 690{
 691	vtime->gtime += get_vtime_delta(vtime);
 692	if (vtime->gtime >= TICK_NSEC) {
 693		account_guest_time(tsk, vtime->gtime);
 694		vtime->gtime = 0;
 695	}
 696}
 697
 698static void __vtime_account_kernel(struct task_struct *tsk,
 699				   struct vtime *vtime)
 700{
 701	/* We might have scheduled out from guest path */
 702	if (vtime->state == VTIME_GUEST)
 703		vtime_account_guest(tsk, vtime);
 704	else
 705		vtime_account_system(tsk, vtime);
 706}
 707
 708void vtime_account_kernel(struct task_struct *tsk)
 709{
 710	struct vtime *vtime = &tsk->vtime;
 711
 712	if (!vtime_delta(vtime))
 713		return;
 714
 715	write_seqcount_begin(&vtime->seqcount);
 716	__vtime_account_kernel(tsk, vtime);
 717	write_seqcount_end(&vtime->seqcount);
 718}
 719
 720void vtime_user_enter(struct task_struct *tsk)
 721{
 722	struct vtime *vtime = &tsk->vtime;
 723
 724	write_seqcount_begin(&vtime->seqcount);
 725	vtime_account_system(tsk, vtime);
 726	vtime->state = VTIME_USER;
 727	write_seqcount_end(&vtime->seqcount);
 728}
 729
 730void vtime_user_exit(struct task_struct *tsk)
 731{
 732	struct vtime *vtime = &tsk->vtime;
 733
 734	write_seqcount_begin(&vtime->seqcount);
 735	vtime->utime += get_vtime_delta(vtime);
 736	if (vtime->utime >= TICK_NSEC) {
 737		account_user_time(tsk, vtime->utime);
 738		vtime->utime = 0;
 739	}
 740	vtime->state = VTIME_SYS;
 741	write_seqcount_end(&vtime->seqcount);
 742}
 743
 744void vtime_guest_enter(struct task_struct *tsk)
 745{
 746	struct vtime *vtime = &tsk->vtime;
 747	/*
 748	 * The flags must be updated under the lock with
 749	 * the vtime_starttime flush and update.
 750	 * That enforces a right ordering and update sequence
 751	 * synchronization against the reader (task_gtime())
 752	 * that can thus safely catch up with a tickless delta.
 753	 */
 754	write_seqcount_begin(&vtime->seqcount);
 755	vtime_account_system(tsk, vtime);
 756	tsk->flags |= PF_VCPU;
 757	vtime->state = VTIME_GUEST;
 758	write_seqcount_end(&vtime->seqcount);
 759}
 760EXPORT_SYMBOL_GPL(vtime_guest_enter);
 761
 762void vtime_guest_exit(struct task_struct *tsk)
 763{
 764	struct vtime *vtime = &tsk->vtime;
 765
 766	write_seqcount_begin(&vtime->seqcount);
 767	vtime_account_guest(tsk, vtime);
 768	tsk->flags &= ~PF_VCPU;
 769	vtime->state = VTIME_SYS;
 770	write_seqcount_end(&vtime->seqcount);
 771}
 772EXPORT_SYMBOL_GPL(vtime_guest_exit);
 773
 774void vtime_account_idle(struct task_struct *tsk)
 775{
 776	account_idle_time(get_vtime_delta(&tsk->vtime));
 777}
 778
 779void vtime_task_switch_generic(struct task_struct *prev)
 780{
 781	struct vtime *vtime = &prev->vtime;
 782
 783	write_seqcount_begin(&vtime->seqcount);
 784	if (vtime->state == VTIME_IDLE)
 785		vtime_account_idle(prev);
 786	else
 787		__vtime_account_kernel(prev, vtime);
 788	vtime->state = VTIME_INACTIVE;
 789	vtime->cpu = -1;
 790	write_seqcount_end(&vtime->seqcount);
 791
 792	vtime = &current->vtime;
 793
 794	write_seqcount_begin(&vtime->seqcount);
 795	if (is_idle_task(current))
 796		vtime->state = VTIME_IDLE;
 797	else if (current->flags & PF_VCPU)
 798		vtime->state = VTIME_GUEST;
 799	else
 800		vtime->state = VTIME_SYS;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = smp_processor_id();
 803	write_seqcount_end(&vtime->seqcount);
 804}
 805
 806void vtime_init_idle(struct task_struct *t, int cpu)
 807{
 808	struct vtime *vtime = &t->vtime;
 809	unsigned long flags;
 810
 811	local_irq_save(flags);
 812	write_seqcount_begin(&vtime->seqcount);
 813	vtime->state = VTIME_IDLE;
 814	vtime->starttime = sched_clock();
 815	vtime->cpu = cpu;
 816	write_seqcount_end(&vtime->seqcount);
 817	local_irq_restore(flags);
 818}
 819
 820u64 task_gtime(struct task_struct *t)
 821{
 822	struct vtime *vtime = &t->vtime;
 823	unsigned int seq;
 824	u64 gtime;
 825
 826	if (!vtime_accounting_enabled())
 827		return t->gtime;
 828
 829	do {
 830		seq = read_seqcount_begin(&vtime->seqcount);
 831
 832		gtime = t->gtime;
 833		if (vtime->state == VTIME_GUEST)
 834			gtime += vtime->gtime + vtime_delta(vtime);
 835
 836	} while (read_seqcount_retry(&vtime->seqcount, seq));
 837
 838	return gtime;
 839}
 840
 841/*
 842 * Fetch cputime raw values from fields of task_struct and
 843 * add up the pending nohz execution time since the last
 844 * cputime snapshot.
 845 */
 846bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 847{
 848	struct vtime *vtime = &t->vtime;
 849	unsigned int seq;
 850	u64 delta;
 851	int ret;
 852
 853	if (!vtime_accounting_enabled()) {
 854		*utime = t->utime;
 855		*stime = t->stime;
 856		return false;
 857	}
 858
 859	do {
 860		ret = false;
 861		seq = read_seqcount_begin(&vtime->seqcount);
 862
 863		*utime = t->utime;
 864		*stime = t->stime;
 865
 866		/* Task is sleeping or idle, nothing to add */
 867		if (vtime->state < VTIME_SYS)
 868			continue;
 869
 870		ret = true;
 871		delta = vtime_delta(vtime);
 872
 873		/*
 874		 * Task runs either in user (including guest) or kernel space,
 875		 * add pending nohz time to the right place.
 876		 */
 877		if (vtime->state == VTIME_SYS)
 878			*stime += vtime->stime + delta;
 879		else
 880			*utime += vtime->utime + delta;
 881	} while (read_seqcount_retry(&vtime->seqcount, seq));
 882
 883	return ret;
 884}
 885
 886static int vtime_state_fetch(struct vtime *vtime, int cpu)
 887{
 888	int state = READ_ONCE(vtime->state);
 889
 890	/*
 891	 * We raced against a context switch, fetch the
 892	 * kcpustat task again.
 893	 */
 894	if (vtime->cpu != cpu && vtime->cpu != -1)
 895		return -EAGAIN;
 896
 897	/*
 898	 * Two possible things here:
 899	 * 1) We are seeing the scheduling out task (prev) or any past one.
 900	 * 2) We are seeing the scheduling in task (next) but it hasn't
 901	 *    passed though vtime_task_switch() yet so the pending
 902	 *    cputime of the prev task may not be flushed yet.
 903	 *
 904	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 905	 */
 906	if (state == VTIME_INACTIVE)
 907		return -EAGAIN;
 908
 909	return state;
 910}
 911
 912static u64 kcpustat_user_vtime(struct vtime *vtime)
 913{
 914	if (vtime->state == VTIME_USER)
 915		return vtime->utime + vtime_delta(vtime);
 916	else if (vtime->state == VTIME_GUEST)
 917		return vtime->gtime + vtime_delta(vtime);
 918	return 0;
 919}
 920
 921static int kcpustat_field_vtime(u64 *cpustat,
 922				struct task_struct *tsk,
 923				enum cpu_usage_stat usage,
 924				int cpu, u64 *val)
 925{
 926	struct vtime *vtime = &tsk->vtime;
 927	unsigned int seq;
 928
 929	do {
 930		int state;
 931
 932		seq = read_seqcount_begin(&vtime->seqcount);
 933
 934		state = vtime_state_fetch(vtime, cpu);
 935		if (state < 0)
 936			return state;
 937
 938		*val = cpustat[usage];
 939
 940		/*
 941		 * Nice VS unnice cputime accounting may be inaccurate if
 942		 * the nice value has changed since the last vtime update.
 943		 * But proper fix would involve interrupting target on nice
 944		 * updates which is a no go on nohz_full (although the scheduler
 945		 * may still interrupt the target if rescheduling is needed...)
 946		 */
 947		switch (usage) {
 948		case CPUTIME_SYSTEM:
 949			if (state == VTIME_SYS)
 950				*val += vtime->stime + vtime_delta(vtime);
 951			break;
 952		case CPUTIME_USER:
 953			if (task_nice(tsk) <= 0)
 954				*val += kcpustat_user_vtime(vtime);
 955			break;
 956		case CPUTIME_NICE:
 957			if (task_nice(tsk) > 0)
 958				*val += kcpustat_user_vtime(vtime);
 959			break;
 960		case CPUTIME_GUEST:
 961			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 962				*val += vtime->gtime + vtime_delta(vtime);
 963			break;
 964		case CPUTIME_GUEST_NICE:
 965			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 966				*val += vtime->gtime + vtime_delta(vtime);
 967			break;
 968		default:
 969			break;
 970		}
 971	} while (read_seqcount_retry(&vtime->seqcount, seq));
 972
 973	return 0;
 974}
 975
 976u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 977		   enum cpu_usage_stat usage, int cpu)
 978{
 979	u64 *cpustat = kcpustat->cpustat;
 980	u64 val = cpustat[usage];
 981	struct rq *rq;
 982	int err;
 983
 984	if (!vtime_accounting_enabled_cpu(cpu))
 985		return val;
 986
 987	rq = cpu_rq(cpu);
 988
 989	for (;;) {
 990		struct task_struct *curr;
 991
 992		rcu_read_lock();
 993		curr = rcu_dereference(rq->curr);
 994		if (WARN_ON_ONCE(!curr)) {
 995			rcu_read_unlock();
 996			return cpustat[usage];
 997		}
 998
 999		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1000		rcu_read_unlock();
1001
1002		if (!err)
1003			return val;
1004
1005		cpu_relax();
1006	}
1007}
1008EXPORT_SYMBOL_GPL(kcpustat_field);
1009
1010static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1011				    const struct kernel_cpustat *src,
1012				    struct task_struct *tsk, int cpu)
1013{
1014	struct vtime *vtime = &tsk->vtime;
1015	unsigned int seq;
1016
1017	do {
1018		u64 *cpustat;
1019		u64 delta;
1020		int state;
1021
1022		seq = read_seqcount_begin(&vtime->seqcount);
1023
1024		state = vtime_state_fetch(vtime, cpu);
1025		if (state < 0)
1026			return state;
1027
1028		*dst = *src;
1029		cpustat = dst->cpustat;
1030
1031		/* Task is sleeping, dead or idle, nothing to add */
1032		if (state < VTIME_SYS)
1033			continue;
1034
1035		delta = vtime_delta(vtime);
1036
1037		/*
1038		 * Task runs either in user (including guest) or kernel space,
1039		 * add pending nohz time to the right place.
1040		 */
1041		if (state == VTIME_SYS) {
1042			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1043		} else if (state == VTIME_USER) {
1044			if (task_nice(tsk) > 0)
1045				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1046			else
1047				cpustat[CPUTIME_USER] += vtime->utime + delta;
1048		} else {
1049			WARN_ON_ONCE(state != VTIME_GUEST);
1050			if (task_nice(tsk) > 0) {
1051				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1052				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1053			} else {
1054				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1055				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1056			}
1057		}
1058	} while (read_seqcount_retry(&vtime->seqcount, seq));
1059
1060	return 0;
1061}
1062
1063void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1064{
1065	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1066	struct rq *rq;
1067	int err;
1068
1069	if (!vtime_accounting_enabled_cpu(cpu)) {
1070		*dst = *src;
1071		return;
1072	}
1073
1074	rq = cpu_rq(cpu);
1075
1076	for (;;) {
1077		struct task_struct *curr;
1078
1079		rcu_read_lock();
1080		curr = rcu_dereference(rq->curr);
1081		if (WARN_ON_ONCE(!curr)) {
1082			rcu_read_unlock();
1083			*dst = *src;
1084			return;
1085		}
1086
1087		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1088		rcu_read_unlock();
1089
1090		if (!err)
1091			return;
1092
1093		cpu_relax();
1094	}
1095}
1096EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1097
1098#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
   5#include "sched.h"
   6
   7#ifdef CONFIG_IRQ_TIME_ACCOUNTING
   8
   9/*
  10 * There are no locks covering percpu hardirq/softirq time.
  11 * They are only modified in vtime_account, on corresponding CPU
  12 * with interrupts disabled. So, writes are safe.
  13 * They are read and saved off onto struct rq in update_rq_clock().
  14 * This may result in other CPU reading this CPU's irq time and can
  15 * race with irq/vtime_account on this CPU. We would either get old
  16 * or new value with a side effect of accounting a slice of irq time to wrong
  17 * task when irq is in progress while we read rq->clock. That is a worthy
  18 * compromise in place of having locks on each irq in account_system_time.
  19 */
  20DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
  21
  22static int sched_clock_irqtime;
  23
  24void enable_sched_clock_irqtime(void)
  25{
  26	sched_clock_irqtime = 1;
  27}
  28
  29void disable_sched_clock_irqtime(void)
  30{
  31	sched_clock_irqtime = 0;
  32}
  33
  34static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  35				  enum cpu_usage_stat idx)
  36{
  37	u64 *cpustat = kcpustat_this_cpu->cpustat;
  38
  39	u64_stats_update_begin(&irqtime->sync);
  40	cpustat[idx] += delta;
  41	irqtime->total += delta;
  42	irqtime->tick_delta += delta;
  43	u64_stats_update_end(&irqtime->sync);
  44}
  45
  46/*
  47 * Called before incrementing preempt_count on {soft,}irq_enter
  48 * and before decrementing preempt_count on {soft,}irq_exit.
  49 */
  50void irqtime_account_irq(struct task_struct *curr)
  51{
  52	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
 
  53	s64 delta;
  54	int cpu;
  55
  56	if (!sched_clock_irqtime)
  57		return;
  58
  59	cpu = smp_processor_id();
  60	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  61	irqtime->irq_start_time += delta;
 
  62
  63	/*
  64	 * We do not account for softirq time from ksoftirqd here.
  65	 * We want to continue accounting softirq time to ksoftirqd thread
  66	 * in that case, so as not to confuse scheduler with a special task
  67	 * that do not consume any time, but still wants to run.
  68	 */
  69	if (hardirq_count())
  70		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  71	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
  73}
  74EXPORT_SYMBOL_GPL(irqtime_account_irq);
  75
  76static u64 irqtime_tick_accounted(u64 maxtime)
  77{
  78	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  79	u64 delta;
  80
  81	delta = min(irqtime->tick_delta, maxtime);
  82	irqtime->tick_delta -= delta;
  83
  84	return delta;
  85}
  86
  87#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  88
  89#define sched_clock_irqtime	(0)
  90
  91static u64 irqtime_tick_accounted(u64 dummy)
  92{
  93	return 0;
  94}
  95
  96#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
  97
  98static inline void task_group_account_field(struct task_struct *p, int index,
  99					    u64 tmp)
 100{
 101	/*
 102	 * Since all updates are sure to touch the root cgroup, we
 103	 * get ourselves ahead and touch it first. If the root cgroup
 104	 * is the only cgroup, then nothing else should be necessary.
 105	 *
 106	 */
 107	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 108
 109	cgroup_account_cputime_field(p, index, tmp);
 110}
 111
 112/*
 113 * Account user CPU time to a process.
 114 * @p: the process that the CPU time gets accounted to
 115 * @cputime: the CPU time spent in user space since the last update
 116 */
 117void account_user_time(struct task_struct *p, u64 cputime)
 118{
 119	int index;
 120
 121	/* Add user time to process. */
 122	p->utime += cputime;
 123	account_group_user_time(p, cputime);
 124
 125	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 126
 127	/* Add user time to cpustat. */
 128	task_group_account_field(p, index, cputime);
 129
 130	/* Account for user time used */
 131	acct_account_cputime(p);
 132}
 133
 134/*
 135 * Account guest CPU time to a process.
 136 * @p: the process that the CPU time gets accounted to
 137 * @cputime: the CPU time spent in virtual machine since the last update
 138 */
 139void account_guest_time(struct task_struct *p, u64 cputime)
 140{
 141	u64 *cpustat = kcpustat_this_cpu->cpustat;
 142
 143	/* Add guest time to process. */
 144	p->utime += cputime;
 145	account_group_user_time(p, cputime);
 146	p->gtime += cputime;
 147
 148	/* Add guest time to cpustat. */
 149	if (task_nice(p) > 0) {
 150		cpustat[CPUTIME_NICE] += cputime;
 151		cpustat[CPUTIME_GUEST_NICE] += cputime;
 152	} else {
 153		cpustat[CPUTIME_USER] += cputime;
 154		cpustat[CPUTIME_GUEST] += cputime;
 155	}
 156}
 157
 158/*
 159 * Account system CPU time to a process and desired cpustat field
 160 * @p: the process that the CPU time gets accounted to
 161 * @cputime: the CPU time spent in kernel space since the last update
 162 * @index: pointer to cpustat field that has to be updated
 163 */
 164void account_system_index_time(struct task_struct *p,
 165			       u64 cputime, enum cpu_usage_stat index)
 166{
 167	/* Add system time to process. */
 168	p->stime += cputime;
 169	account_group_system_time(p, cputime);
 170
 171	/* Add system time to cpustat. */
 172	task_group_account_field(p, index, cputime);
 173
 174	/* Account for system time used */
 175	acct_account_cputime(p);
 176}
 177
 178/*
 179 * Account system CPU time to a process.
 180 * @p: the process that the CPU time gets accounted to
 181 * @hardirq_offset: the offset to subtract from hardirq_count()
 182 * @cputime: the CPU time spent in kernel space since the last update
 183 */
 184void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 185{
 186	int index;
 187
 188	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 189		account_guest_time(p, cputime);
 190		return;
 191	}
 192
 193	if (hardirq_count() - hardirq_offset)
 194		index = CPUTIME_IRQ;
 195	else if (in_serving_softirq())
 196		index = CPUTIME_SOFTIRQ;
 197	else
 198		index = CPUTIME_SYSTEM;
 199
 200	account_system_index_time(p, cputime, index);
 201}
 202
 203/*
 204 * Account for involuntary wait time.
 205 * @cputime: the CPU time spent in involuntary wait
 206 */
 207void account_steal_time(u64 cputime)
 208{
 209	u64 *cpustat = kcpustat_this_cpu->cpustat;
 210
 211	cpustat[CPUTIME_STEAL] += cputime;
 212}
 213
 214/*
 215 * Account for idle time.
 216 * @cputime: the CPU time spent in idle wait
 217 */
 218void account_idle_time(u64 cputime)
 219{
 220	u64 *cpustat = kcpustat_this_cpu->cpustat;
 221	struct rq *rq = this_rq();
 222
 223	if (atomic_read(&rq->nr_iowait) > 0)
 224		cpustat[CPUTIME_IOWAIT] += cputime;
 225	else
 226		cpustat[CPUTIME_IDLE] += cputime;
 227}
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229/*
 230 * When a guest is interrupted for a longer amount of time, missed clock
 231 * ticks are not redelivered later. Due to that, this function may on
 232 * occasion account more time than the calling functions think elapsed.
 233 */
 234static __always_inline u64 steal_account_process_time(u64 maxtime)
 235{
 236#ifdef CONFIG_PARAVIRT
 237	if (static_key_false(&paravirt_steal_enabled)) {
 238		u64 steal;
 239
 240		steal = paravirt_steal_clock(smp_processor_id());
 241		steal -= this_rq()->prev_steal_time;
 242		steal = min(steal, maxtime);
 243		account_steal_time(steal);
 244		this_rq()->prev_steal_time += steal;
 245
 246		return steal;
 247	}
 248#endif
 249	return 0;
 250}
 251
 252/*
 253 * Account how much elapsed time was spent in steal, irq, or softirq time.
 254 */
 255static inline u64 account_other_time(u64 max)
 256{
 257	u64 accounted;
 258
 259	lockdep_assert_irqs_disabled();
 260
 261	accounted = steal_account_process_time(max);
 262
 263	if (accounted < max)
 264		accounted += irqtime_tick_accounted(max - accounted);
 265
 266	return accounted;
 267}
 268
 269#ifdef CONFIG_64BIT
 270static inline u64 read_sum_exec_runtime(struct task_struct *t)
 271{
 272	return t->se.sum_exec_runtime;
 273}
 274#else
 275static u64 read_sum_exec_runtime(struct task_struct *t)
 276{
 277	u64 ns;
 278	struct rq_flags rf;
 279	struct rq *rq;
 280
 281	rq = task_rq_lock(t, &rf);
 282	ns = t->se.sum_exec_runtime;
 283	task_rq_unlock(rq, t, &rf);
 284
 285	return ns;
 286}
 287#endif
 288
 289/*
 290 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 291 * tasks (sum on group iteration) belonging to @tsk's group.
 292 */
 293void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 294{
 295	struct signal_struct *sig = tsk->signal;
 296	u64 utime, stime;
 297	struct task_struct *t;
 298	unsigned int seq, nextseq;
 299	unsigned long flags;
 300
 301	/*
 302	 * Update current task runtime to account pending time since last
 303	 * scheduler action or thread_group_cputime() call. This thread group
 304	 * might have other running tasks on different CPUs, but updating
 305	 * their runtime can affect syscall performance, so we skip account
 306	 * those pending times and rely only on values updated on tick or
 307	 * other scheduler action.
 308	 */
 309	if (same_thread_group(current, tsk))
 310		(void) task_sched_runtime(current);
 311
 312	rcu_read_lock();
 313	/* Attempt a lockless read on the first round. */
 314	nextseq = 0;
 315	do {
 316		seq = nextseq;
 317		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 318		times->utime = sig->utime;
 319		times->stime = sig->stime;
 320		times->sum_exec_runtime = sig->sum_sched_runtime;
 321
 322		for_each_thread(tsk, t) {
 323			task_cputime(t, &utime, &stime);
 324			times->utime += utime;
 325			times->stime += stime;
 326			times->sum_exec_runtime += read_sum_exec_runtime(t);
 327		}
 328		/* If lockless access failed, take the lock. */
 329		nextseq = 1;
 330	} while (need_seqretry(&sig->stats_lock, seq));
 331	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 332	rcu_read_unlock();
 333}
 334
 335#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 336/*
 337 * Account a tick to a process and cpustat
 338 * @p: the process that the CPU time gets accounted to
 339 * @user_tick: is the tick from userspace
 340 * @rq: the pointer to rq
 341 *
 342 * Tick demultiplexing follows the order
 343 * - pending hardirq update
 344 * - pending softirq update
 345 * - user_time
 346 * - idle_time
 347 * - system time
 348 *   - check for guest_time
 349 *   - else account as system_time
 350 *
 351 * Check for hardirq is done both for system and user time as there is
 352 * no timer going off while we are on hardirq and hence we may never get an
 353 * opportunity to update it solely in system time.
 354 * p->stime and friends are only updated on system time and not on irq
 355 * softirq as those do not count in task exec_runtime any more.
 356 */
 357static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 358					 int ticks)
 359{
 360	u64 other, cputime = TICK_NSEC * ticks;
 361
 362	/*
 363	 * When returning from idle, many ticks can get accounted at
 364	 * once, including some ticks of steal, irq, and softirq time.
 365	 * Subtract those ticks from the amount of time accounted to
 366	 * idle, or potentially user or system time. Due to rounding,
 367	 * other time can exceed ticks occasionally.
 368	 */
 369	other = account_other_time(ULONG_MAX);
 370	if (other >= cputime)
 371		return;
 372
 373	cputime -= other;
 374
 375	if (this_cpu_ksoftirqd() == p) {
 376		/*
 377		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 378		 * So, we have to handle it separately here.
 379		 * Also, p->stime needs to be updated for ksoftirqd.
 380		 */
 381		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 382	} else if (user_tick) {
 383		account_user_time(p, cputime);
 384	} else if (p == this_rq()->idle) {
 385		account_idle_time(cputime);
 386	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 387		account_guest_time(p, cputime);
 388	} else {
 389		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 390	}
 391}
 392
 393static void irqtime_account_idle_ticks(int ticks)
 394{
 395	irqtime_account_process_tick(current, 0, ticks);
 396}
 397#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 398static inline void irqtime_account_idle_ticks(int ticks) { }
 399static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 400						int nr_ticks) { }
 401#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 402
 403/*
 404 * Use precise platform statistics if available:
 405 */
 406#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 407
 408# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 409void vtime_task_switch(struct task_struct *prev)
 410{
 411	if (is_idle_task(prev))
 412		vtime_account_idle(prev);
 413	else
 414		vtime_account_kernel(prev);
 415
 416	vtime_flush(prev);
 417	arch_vtime_task_switch(prev);
 418}
 419# endif
 420
 421/*
 422 * Archs that account the whole time spent in the idle task
 423 * (outside irq) as idle time can rely on this and just implement
 424 * vtime_account_kernel() and vtime_account_idle(). Archs that
 425 * have other meaning of the idle time (s390 only includes the
 426 * time spent by the CPU when it's in low power mode) must override
 427 * vtime_account().
 428 */
 429#ifndef __ARCH_HAS_VTIME_ACCOUNT
 430void vtime_account_irq_enter(struct task_struct *tsk)
 431{
 432	if (!in_interrupt() && is_idle_task(tsk))
 
 
 
 
 
 
 
 433		vtime_account_idle(tsk);
 434	else
 435		vtime_account_kernel(tsk);
 
 436}
 437EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
 438#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 439
 440void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 441		    u64 *ut, u64 *st)
 442{
 443	*ut = curr->utime;
 444	*st = curr->stime;
 445}
 446
 447void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 448{
 449	*ut = p->utime;
 450	*st = p->stime;
 451}
 452EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 453
 454void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 455{
 456	struct task_cputime cputime;
 457
 458	thread_group_cputime(p, &cputime);
 459
 460	*ut = cputime.utime;
 461	*st = cputime.stime;
 462}
 463
 464#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 465
 466/*
 467 * Account a single tick of CPU time.
 468 * @p: the process that the CPU time gets accounted to
 469 * @user_tick: indicates if the tick is a user or a system tick
 470 */
 471void account_process_tick(struct task_struct *p, int user_tick)
 472{
 473	u64 cputime, steal;
 474
 475	if (vtime_accounting_enabled_this_cpu())
 476		return;
 477
 478	if (sched_clock_irqtime) {
 479		irqtime_account_process_tick(p, user_tick, 1);
 480		return;
 481	}
 482
 483	cputime = TICK_NSEC;
 484	steal = steal_account_process_time(ULONG_MAX);
 485
 486	if (steal >= cputime)
 487		return;
 488
 489	cputime -= steal;
 490
 491	if (user_tick)
 492		account_user_time(p, cputime);
 493	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 494		account_system_time(p, HARDIRQ_OFFSET, cputime);
 495	else
 496		account_idle_time(cputime);
 497}
 498
 499/*
 500 * Account multiple ticks of idle time.
 501 * @ticks: number of stolen ticks
 502 */
 503void account_idle_ticks(unsigned long ticks)
 504{
 505	u64 cputime, steal;
 506
 507	if (sched_clock_irqtime) {
 508		irqtime_account_idle_ticks(ticks);
 509		return;
 510	}
 511
 512	cputime = ticks * TICK_NSEC;
 513	steal = steal_account_process_time(ULONG_MAX);
 514
 515	if (steal >= cputime)
 516		return;
 517
 518	cputime -= steal;
 519	account_idle_time(cputime);
 520}
 521
 522/*
 523 * Adjust tick based cputime random precision against scheduler runtime
 524 * accounting.
 525 *
 526 * Tick based cputime accounting depend on random scheduling timeslices of a
 527 * task to be interrupted or not by the timer.  Depending on these
 528 * circumstances, the number of these interrupts may be over or
 529 * under-optimistic, matching the real user and system cputime with a variable
 530 * precision.
 531 *
 532 * Fix this by scaling these tick based values against the total runtime
 533 * accounted by the CFS scheduler.
 534 *
 535 * This code provides the following guarantees:
 536 *
 537 *   stime + utime == rtime
 538 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 539 *
 540 * Assuming that rtime_i+1 >= rtime_i.
 541 */
 542void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 543		    u64 *ut, u64 *st)
 544{
 545	u64 rtime, stime, utime;
 546	unsigned long flags;
 547
 548	/* Serialize concurrent callers such that we can honour our guarantees */
 549	raw_spin_lock_irqsave(&prev->lock, flags);
 550	rtime = curr->sum_exec_runtime;
 551
 552	/*
 553	 * This is possible under two circumstances:
 554	 *  - rtime isn't monotonic after all (a bug);
 555	 *  - we got reordered by the lock.
 556	 *
 557	 * In both cases this acts as a filter such that the rest of the code
 558	 * can assume it is monotonic regardless of anything else.
 559	 */
 560	if (prev->stime + prev->utime >= rtime)
 561		goto out;
 562
 563	stime = curr->stime;
 564	utime = curr->utime;
 565
 566	/*
 567	 * If either stime or utime are 0, assume all runtime is userspace.
 568	 * Once a task gets some ticks, the monotonicy code at 'update:'
 569	 * will ensure things converge to the observed ratio.
 570	 */
 571	if (stime == 0) {
 572		utime = rtime;
 573		goto update;
 574	}
 575
 576	if (utime == 0) {
 577		stime = rtime;
 578		goto update;
 579	}
 580
 581	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 582
 583update:
 584	/*
 585	 * Make sure stime doesn't go backwards; this preserves monotonicity
 586	 * for utime because rtime is monotonic.
 587	 *
 588	 *  utime_i+1 = rtime_i+1 - stime_i
 589	 *            = rtime_i+1 - (rtime_i - utime_i)
 590	 *            = (rtime_i+1 - rtime_i) + utime_i
 591	 *            >= utime_i
 592	 */
 593	if (stime < prev->stime)
 594		stime = prev->stime;
 595	utime = rtime - stime;
 596
 597	/*
 598	 * Make sure utime doesn't go backwards; this still preserves
 599	 * monotonicity for stime, analogous argument to above.
 600	 */
 601	if (utime < prev->utime) {
 602		utime = prev->utime;
 603		stime = rtime - utime;
 604	}
 605
 606	prev->stime = stime;
 607	prev->utime = utime;
 608out:
 609	*ut = prev->utime;
 610	*st = prev->stime;
 611	raw_spin_unlock_irqrestore(&prev->lock, flags);
 612}
 613
 614void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 615{
 616	struct task_cputime cputime = {
 617		.sum_exec_runtime = p->se.sum_exec_runtime,
 618	};
 619
 620	task_cputime(p, &cputime.utime, &cputime.stime);
 
 621	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 622}
 623EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 624
 625void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 626{
 627	struct task_cputime cputime;
 628
 629	thread_group_cputime(p, &cputime);
 630	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 631}
 632#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 633
 634#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 635static u64 vtime_delta(struct vtime *vtime)
 636{
 637	unsigned long long clock;
 638
 639	clock = sched_clock();
 640	if (clock < vtime->starttime)
 641		return 0;
 642
 643	return clock - vtime->starttime;
 644}
 645
 646static u64 get_vtime_delta(struct vtime *vtime)
 647{
 648	u64 delta = vtime_delta(vtime);
 649	u64 other;
 650
 651	/*
 652	 * Unlike tick based timing, vtime based timing never has lost
 653	 * ticks, and no need for steal time accounting to make up for
 654	 * lost ticks. Vtime accounts a rounded version of actual
 655	 * elapsed time. Limit account_other_time to prevent rounding
 656	 * errors from causing elapsed vtime to go negative.
 657	 */
 658	other = account_other_time(delta);
 659	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 660	vtime->starttime += delta;
 661
 662	return delta - other;
 663}
 664
 665static void vtime_account_system(struct task_struct *tsk,
 666				 struct vtime *vtime)
 667{
 668	vtime->stime += get_vtime_delta(vtime);
 669	if (vtime->stime >= TICK_NSEC) {
 670		account_system_time(tsk, irq_count(), vtime->stime);
 671		vtime->stime = 0;
 672	}
 673}
 674
 675static void vtime_account_guest(struct task_struct *tsk,
 676				struct vtime *vtime)
 677{
 678	vtime->gtime += get_vtime_delta(vtime);
 679	if (vtime->gtime >= TICK_NSEC) {
 680		account_guest_time(tsk, vtime->gtime);
 681		vtime->gtime = 0;
 682	}
 683}
 684
 685static void __vtime_account_kernel(struct task_struct *tsk,
 686				   struct vtime *vtime)
 687{
 688	/* We might have scheduled out from guest path */
 689	if (vtime->state == VTIME_GUEST)
 690		vtime_account_guest(tsk, vtime);
 691	else
 692		vtime_account_system(tsk, vtime);
 693}
 694
 695void vtime_account_kernel(struct task_struct *tsk)
 696{
 697	struct vtime *vtime = &tsk->vtime;
 698
 699	if (!vtime_delta(vtime))
 700		return;
 701
 702	write_seqcount_begin(&vtime->seqcount);
 703	__vtime_account_kernel(tsk, vtime);
 704	write_seqcount_end(&vtime->seqcount);
 705}
 706
 707void vtime_user_enter(struct task_struct *tsk)
 708{
 709	struct vtime *vtime = &tsk->vtime;
 710
 711	write_seqcount_begin(&vtime->seqcount);
 712	vtime_account_system(tsk, vtime);
 713	vtime->state = VTIME_USER;
 714	write_seqcount_end(&vtime->seqcount);
 715}
 716
 717void vtime_user_exit(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime->utime += get_vtime_delta(vtime);
 723	if (vtime->utime >= TICK_NSEC) {
 724		account_user_time(tsk, vtime->utime);
 725		vtime->utime = 0;
 726	}
 727	vtime->state = VTIME_SYS;
 728	write_seqcount_end(&vtime->seqcount);
 729}
 730
 731void vtime_guest_enter(struct task_struct *tsk)
 732{
 733	struct vtime *vtime = &tsk->vtime;
 734	/*
 735	 * The flags must be updated under the lock with
 736	 * the vtime_starttime flush and update.
 737	 * That enforces a right ordering and update sequence
 738	 * synchronization against the reader (task_gtime())
 739	 * that can thus safely catch up with a tickless delta.
 740	 */
 741	write_seqcount_begin(&vtime->seqcount);
 742	vtime_account_system(tsk, vtime);
 743	tsk->flags |= PF_VCPU;
 744	vtime->state = VTIME_GUEST;
 745	write_seqcount_end(&vtime->seqcount);
 746}
 747EXPORT_SYMBOL_GPL(vtime_guest_enter);
 748
 749void vtime_guest_exit(struct task_struct *tsk)
 750{
 751	struct vtime *vtime = &tsk->vtime;
 752
 753	write_seqcount_begin(&vtime->seqcount);
 754	vtime_account_guest(tsk, vtime);
 755	tsk->flags &= ~PF_VCPU;
 756	vtime->state = VTIME_SYS;
 757	write_seqcount_end(&vtime->seqcount);
 758}
 759EXPORT_SYMBOL_GPL(vtime_guest_exit);
 760
 761void vtime_account_idle(struct task_struct *tsk)
 762{
 763	account_idle_time(get_vtime_delta(&tsk->vtime));
 764}
 765
 766void vtime_task_switch_generic(struct task_struct *prev)
 767{
 768	struct vtime *vtime = &prev->vtime;
 769
 770	write_seqcount_begin(&vtime->seqcount);
 771	if (vtime->state == VTIME_IDLE)
 772		vtime_account_idle(prev);
 773	else
 774		__vtime_account_kernel(prev, vtime);
 775	vtime->state = VTIME_INACTIVE;
 776	vtime->cpu = -1;
 777	write_seqcount_end(&vtime->seqcount);
 778
 779	vtime = &current->vtime;
 780
 781	write_seqcount_begin(&vtime->seqcount);
 782	if (is_idle_task(current))
 783		vtime->state = VTIME_IDLE;
 784	else if (current->flags & PF_VCPU)
 785		vtime->state = VTIME_GUEST;
 786	else
 787		vtime->state = VTIME_SYS;
 788	vtime->starttime = sched_clock();
 789	vtime->cpu = smp_processor_id();
 790	write_seqcount_end(&vtime->seqcount);
 791}
 792
 793void vtime_init_idle(struct task_struct *t, int cpu)
 794{
 795	struct vtime *vtime = &t->vtime;
 796	unsigned long flags;
 797
 798	local_irq_save(flags);
 799	write_seqcount_begin(&vtime->seqcount);
 800	vtime->state = VTIME_IDLE;
 801	vtime->starttime = sched_clock();
 802	vtime->cpu = cpu;
 803	write_seqcount_end(&vtime->seqcount);
 804	local_irq_restore(flags);
 805}
 806
 807u64 task_gtime(struct task_struct *t)
 808{
 809	struct vtime *vtime = &t->vtime;
 810	unsigned int seq;
 811	u64 gtime;
 812
 813	if (!vtime_accounting_enabled())
 814		return t->gtime;
 815
 816	do {
 817		seq = read_seqcount_begin(&vtime->seqcount);
 818
 819		gtime = t->gtime;
 820		if (vtime->state == VTIME_GUEST)
 821			gtime += vtime->gtime + vtime_delta(vtime);
 822
 823	} while (read_seqcount_retry(&vtime->seqcount, seq));
 824
 825	return gtime;
 826}
 827
 828/*
 829 * Fetch cputime raw values from fields of task_struct and
 830 * add up the pending nohz execution time since the last
 831 * cputime snapshot.
 832 */
 833void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 834{
 835	struct vtime *vtime = &t->vtime;
 836	unsigned int seq;
 837	u64 delta;
 
 838
 839	if (!vtime_accounting_enabled()) {
 840		*utime = t->utime;
 841		*stime = t->stime;
 842		return;
 843	}
 844
 845	do {
 
 846		seq = read_seqcount_begin(&vtime->seqcount);
 847
 848		*utime = t->utime;
 849		*stime = t->stime;
 850
 851		/* Task is sleeping or idle, nothing to add */
 852		if (vtime->state < VTIME_SYS)
 853			continue;
 854
 
 855		delta = vtime_delta(vtime);
 856
 857		/*
 858		 * Task runs either in user (including guest) or kernel space,
 859		 * add pending nohz time to the right place.
 860		 */
 861		if (vtime->state == VTIME_SYS)
 862			*stime += vtime->stime + delta;
 863		else
 864			*utime += vtime->utime + delta;
 865	} while (read_seqcount_retry(&vtime->seqcount, seq));
 
 
 866}
 867
 868static int vtime_state_fetch(struct vtime *vtime, int cpu)
 869{
 870	int state = READ_ONCE(vtime->state);
 871
 872	/*
 873	 * We raced against a context switch, fetch the
 874	 * kcpustat task again.
 875	 */
 876	if (vtime->cpu != cpu && vtime->cpu != -1)
 877		return -EAGAIN;
 878
 879	/*
 880	 * Two possible things here:
 881	 * 1) We are seeing the scheduling out task (prev) or any past one.
 882	 * 2) We are seeing the scheduling in task (next) but it hasn't
 883	 *    passed though vtime_task_switch() yet so the pending
 884	 *    cputime of the prev task may not be flushed yet.
 885	 *
 886	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 887	 */
 888	if (state == VTIME_INACTIVE)
 889		return -EAGAIN;
 890
 891	return state;
 892}
 893
 894static u64 kcpustat_user_vtime(struct vtime *vtime)
 895{
 896	if (vtime->state == VTIME_USER)
 897		return vtime->utime + vtime_delta(vtime);
 898	else if (vtime->state == VTIME_GUEST)
 899		return vtime->gtime + vtime_delta(vtime);
 900	return 0;
 901}
 902
 903static int kcpustat_field_vtime(u64 *cpustat,
 904				struct task_struct *tsk,
 905				enum cpu_usage_stat usage,
 906				int cpu, u64 *val)
 907{
 908	struct vtime *vtime = &tsk->vtime;
 909	unsigned int seq;
 910
 911	do {
 912		int state;
 913
 914		seq = read_seqcount_begin(&vtime->seqcount);
 915
 916		state = vtime_state_fetch(vtime, cpu);
 917		if (state < 0)
 918			return state;
 919
 920		*val = cpustat[usage];
 921
 922		/*
 923		 * Nice VS unnice cputime accounting may be inaccurate if
 924		 * the nice value has changed since the last vtime update.
 925		 * But proper fix would involve interrupting target on nice
 926		 * updates which is a no go on nohz_full (although the scheduler
 927		 * may still interrupt the target if rescheduling is needed...)
 928		 */
 929		switch (usage) {
 930		case CPUTIME_SYSTEM:
 931			if (state == VTIME_SYS)
 932				*val += vtime->stime + vtime_delta(vtime);
 933			break;
 934		case CPUTIME_USER:
 935			if (task_nice(tsk) <= 0)
 936				*val += kcpustat_user_vtime(vtime);
 937			break;
 938		case CPUTIME_NICE:
 939			if (task_nice(tsk) > 0)
 940				*val += kcpustat_user_vtime(vtime);
 941			break;
 942		case CPUTIME_GUEST:
 943			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 944				*val += vtime->gtime + vtime_delta(vtime);
 945			break;
 946		case CPUTIME_GUEST_NICE:
 947			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 948				*val += vtime->gtime + vtime_delta(vtime);
 949			break;
 950		default:
 951			break;
 952		}
 953	} while (read_seqcount_retry(&vtime->seqcount, seq));
 954
 955	return 0;
 956}
 957
 958u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 959		   enum cpu_usage_stat usage, int cpu)
 960{
 961	u64 *cpustat = kcpustat->cpustat;
 962	u64 val = cpustat[usage];
 963	struct rq *rq;
 964	int err;
 965
 966	if (!vtime_accounting_enabled_cpu(cpu))
 967		return val;
 968
 969	rq = cpu_rq(cpu);
 970
 971	for (;;) {
 972		struct task_struct *curr;
 973
 974		rcu_read_lock();
 975		curr = rcu_dereference(rq->curr);
 976		if (WARN_ON_ONCE(!curr)) {
 977			rcu_read_unlock();
 978			return cpustat[usage];
 979		}
 980
 981		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 982		rcu_read_unlock();
 983
 984		if (!err)
 985			return val;
 986
 987		cpu_relax();
 988	}
 989}
 990EXPORT_SYMBOL_GPL(kcpustat_field);
 991
 992static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
 993				    const struct kernel_cpustat *src,
 994				    struct task_struct *tsk, int cpu)
 995{
 996	struct vtime *vtime = &tsk->vtime;
 997	unsigned int seq;
 998
 999	do {
1000		u64 *cpustat;
1001		u64 delta;
1002		int state;
1003
1004		seq = read_seqcount_begin(&vtime->seqcount);
1005
1006		state = vtime_state_fetch(vtime, cpu);
1007		if (state < 0)
1008			return state;
1009
1010		*dst = *src;
1011		cpustat = dst->cpustat;
1012
1013		/* Task is sleeping, dead or idle, nothing to add */
1014		if (state < VTIME_SYS)
1015			continue;
1016
1017		delta = vtime_delta(vtime);
1018
1019		/*
1020		 * Task runs either in user (including guest) or kernel space,
1021		 * add pending nohz time to the right place.
1022		 */
1023		if (state == VTIME_SYS) {
1024			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1025		} else if (state == VTIME_USER) {
1026			if (task_nice(tsk) > 0)
1027				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1028			else
1029				cpustat[CPUTIME_USER] += vtime->utime + delta;
1030		} else {
1031			WARN_ON_ONCE(state != VTIME_GUEST);
1032			if (task_nice(tsk) > 0) {
1033				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1034				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1035			} else {
1036				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1037				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1038			}
1039		}
1040	} while (read_seqcount_retry(&vtime->seqcount, seq));
1041
1042	return 0;
1043}
1044
1045void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1046{
1047	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1048	struct rq *rq;
1049	int err;
1050
1051	if (!vtime_accounting_enabled_cpu(cpu)) {
1052		*dst = *src;
1053		return;
1054	}
1055
1056	rq = cpu_rq(cpu);
1057
1058	for (;;) {
1059		struct task_struct *curr;
1060
1061		rcu_read_lock();
1062		curr = rcu_dereference(rq->curr);
1063		if (WARN_ON_ONCE(!curr)) {
1064			rcu_read_unlock();
1065			*dst = *src;
1066			return;
1067		}
1068
1069		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1070		rcu_read_unlock();
1071
1072		if (!err)
1073			return;
1074
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1079
1080#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */