Linux Audio

Check our new training course

Loading...
v6.2
    1// SPDX-License-Identifier: GPL-2.0-only
    2/*
    3 *  kernel/sched/core.c
    4 *
    5 *  Core kernel scheduler code and related syscalls
    6 *
    7 *  Copyright (C) 1991-2002  Linus Torvalds
    8 */
    9#include <linux/highmem.h>
   10#include <linux/hrtimer_api.h>
   11#include <linux/ktime_api.h>
   12#include <linux/sched/signal.h>
   13#include <linux/syscalls_api.h>
   14#include <linux/debug_locks.h>
   15#include <linux/prefetch.h>
   16#include <linux/capability.h>
   17#include <linux/pgtable_api.h>
   18#include <linux/wait_bit.h>
   19#include <linux/jiffies.h>
   20#include <linux/spinlock_api.h>
   21#include <linux/cpumask_api.h>
   22#include <linux/lockdep_api.h>
   23#include <linux/hardirq.h>
   24#include <linux/softirq.h>
   25#include <linux/refcount_api.h>
   26#include <linux/topology.h>
   27#include <linux/sched/clock.h>
   28#include <linux/sched/cond_resched.h>
   29#include <linux/sched/cputime.h>
   30#include <linux/sched/debug.h>
   31#include <linux/sched/hotplug.h>
   32#include <linux/sched/init.h>
   33#include <linux/sched/isolation.h>
   34#include <linux/sched/loadavg.h>
   35#include <linux/sched/mm.h>
   36#include <linux/sched/nohz.h>
   37#include <linux/sched/rseq_api.h>
   38#include <linux/sched/rt.h>
   39
   40#include <linux/blkdev.h>
   41#include <linux/context_tracking.h>
   42#include <linux/cpuset.h>
   43#include <linux/delayacct.h>
   44#include <linux/init_task.h>
   45#include <linux/interrupt.h>
   46#include <linux/ioprio.h>
   47#include <linux/kallsyms.h>
   48#include <linux/kcov.h>
   49#include <linux/kprobes.h>
   50#include <linux/llist_api.h>
   51#include <linux/mmu_context.h>
   52#include <linux/mmzone.h>
   53#include <linux/mutex_api.h>
   54#include <linux/nmi.h>
   55#include <linux/nospec.h>
   56#include <linux/perf_event_api.h>
   57#include <linux/profile.h>
   58#include <linux/psi.h>
   59#include <linux/rcuwait_api.h>
   60#include <linux/sched/wake_q.h>
   61#include <linux/scs.h>
   62#include <linux/slab.h>
   63#include <linux/syscalls.h>
   64#include <linux/vtime.h>
   65#include <linux/wait_api.h>
   66#include <linux/workqueue_api.h>
   67
   68#ifdef CONFIG_PREEMPT_DYNAMIC
   69# ifdef CONFIG_GENERIC_ENTRY
   70#  include <linux/entry-common.h>
   71# endif
   72#endif
   73
   74#include <uapi/linux/sched/types.h>
   75
   76#include <asm/irq_regs.h>
   77#include <asm/switch_to.h>
   78#include <asm/tlb.h>
   79
   80#define CREATE_TRACE_POINTS
   81#include <linux/sched/rseq_api.h>
   82#include <trace/events/sched.h>
   83#undef CREATE_TRACE_POINTS
   84
   85#include "sched.h"
   86#include "stats.h"
   87#include "autogroup.h"
   88
   89#include "autogroup.h"
   90#include "pelt.h"
   91#include "smp.h"
   92#include "stats.h"
 
 
 
   93
   94#include "../workqueue_internal.h"
   95#include "../../io_uring/io-wq.h"
   96#include "../smpboot.h"
   97
 
 
 
   98/*
   99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  100 * associated with them) to allow external modules to probe them.
  101 */
  102EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  103EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  104EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
  107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
  108EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
  109EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  110EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  113
  114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  115
  116#ifdef CONFIG_SCHED_DEBUG
  117/*
  118 * Debugging: various feature bits
  119 *
  120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  122 * at compile time and compiler optimization based on features default.
  123 */
  124#define SCHED_FEAT(name, enabled)	\
  125	(1UL << __SCHED_FEAT_##name) * enabled |
  126const_debug unsigned int sysctl_sched_features =
  127#include "features.h"
  128	0;
  129#undef SCHED_FEAT
  130
  131/*
  132 * Print a warning if need_resched is set for the given duration (if
  133 * LATENCY_WARN is enabled).
  134 *
  135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
  136 * per boot.
  137 */
  138__read_mostly int sysctl_resched_latency_warn_ms = 100;
  139__read_mostly int sysctl_resched_latency_warn_once = 1;
  140#endif /* CONFIG_SCHED_DEBUG */
  141
  142/*
  143 * Number of tasks to iterate in a single balance run.
  144 * Limited because this is done with IRQs disabled.
  145 */
  146const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
  147
  148__read_mostly int scheduler_running;
  149
  150#ifdef CONFIG_SCHED_CORE
  151
  152DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
  153
  154/* kernel prio, less is more */
  155static inline int __task_prio(struct task_struct *p)
  156{
  157	if (p->sched_class == &stop_sched_class) /* trumps deadline */
  158		return -2;
  159
  160	if (rt_prio(p->prio)) /* includes deadline */
  161		return p->prio; /* [-1, 99] */
  162
  163	if (p->sched_class == &idle_sched_class)
  164		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
  165
  166	return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
  167}
  168
  169/*
  170 * l(a,b)
  171 * le(a,b) := !l(b,a)
  172 * g(a,b)  := l(b,a)
  173 * ge(a,b) := !l(a,b)
  174 */
 
  175
  176/* real prio, less is less */
  177static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
  178{
  179
  180	int pa = __task_prio(a), pb = __task_prio(b);
  181
  182	if (-pa < -pb)
  183		return true;
  184
  185	if (-pb < -pa)
  186		return false;
  187
  188	if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
  189		return !dl_time_before(a->dl.deadline, b->dl.deadline);
  190
  191	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
  192		return cfs_prio_less(a, b, in_fi);
  193
  194	return false;
  195}
  196
  197static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
  198{
  199	if (a->core_cookie < b->core_cookie)
  200		return true;
  201
  202	if (a->core_cookie > b->core_cookie)
  203		return false;
  204
  205	/* flip prio, so high prio is leftmost */
  206	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
  207		return true;
  208
  209	return false;
  210}
  211
  212#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
  213
  214static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
  215{
  216	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
  217}
  218
  219static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
  220{
  221	const struct task_struct *p = __node_2_sc(node);
  222	unsigned long cookie = (unsigned long)key;
  223
  224	if (cookie < p->core_cookie)
  225		return -1;
  226
  227	if (cookie > p->core_cookie)
  228		return 1;
  229
  230	return 0;
  231}
  232
  233void sched_core_enqueue(struct rq *rq, struct task_struct *p)
  234{
  235	rq->core->core_task_seq++;
  236
  237	if (!p->core_cookie)
  238		return;
  239
  240	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
  241}
  242
  243void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
  244{
  245	rq->core->core_task_seq++;
  246
  247	if (sched_core_enqueued(p)) {
  248		rb_erase(&p->core_node, &rq->core_tree);
  249		RB_CLEAR_NODE(&p->core_node);
  250	}
  251
  252	/*
  253	 * Migrating the last task off the cpu, with the cpu in forced idle
  254	 * state. Reschedule to create an accounting edge for forced idle,
  255	 * and re-examine whether the core is still in forced idle state.
  256	 */
  257	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
  258	    rq->core->core_forceidle_count && rq->curr == rq->idle)
  259		resched_curr(rq);
  260}
  261
  262/*
  263 * Find left-most (aka, highest priority) task matching @cookie.
 
  264 */
  265static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
  266{
  267	struct rb_node *node;
  268
  269	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
  270	/*
  271	 * The idle task always matches any cookie!
  272	 */
  273	if (!node)
  274		return idle_sched_class.pick_task(rq);
  275
  276	return __node_2_sc(node);
  277}
  278
  279static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
  280{
  281	struct rb_node *node = &p->core_node;
  282
  283	node = rb_next(node);
  284	if (!node)
  285		return NULL;
  286
  287	p = container_of(node, struct task_struct, core_node);
  288	if (p->core_cookie != cookie)
  289		return NULL;
  290
  291	return p;
  292}
  293
  294/*
  295 * Magic required such that:
  296 *
  297 *	raw_spin_rq_lock(rq);
  298 *	...
  299 *	raw_spin_rq_unlock(rq);
  300 *
  301 * ends up locking and unlocking the _same_ lock, and all CPUs
  302 * always agree on what rq has what lock.
  303 *
  304 * XXX entirely possible to selectively enable cores, don't bother for now.
  305 */
  306
  307static DEFINE_MUTEX(sched_core_mutex);
  308static atomic_t sched_core_count;
  309static struct cpumask sched_core_mask;
  310
  311static void sched_core_lock(int cpu, unsigned long *flags)
  312{
  313	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  314	int t, i = 0;
  315
  316	local_irq_save(*flags);
  317	for_each_cpu(t, smt_mask)
  318		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
  319}
  320
  321static void sched_core_unlock(int cpu, unsigned long *flags)
  322{
  323	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  324	int t;
  325
  326	for_each_cpu(t, smt_mask)
  327		raw_spin_unlock(&cpu_rq(t)->__lock);
  328	local_irq_restore(*flags);
  329}
  330
  331static void __sched_core_flip(bool enabled)
  332{
  333	unsigned long flags;
  334	int cpu, t;
  335
  336	cpus_read_lock();
  337
  338	/*
  339	 * Toggle the online cores, one by one.
  340	 */
  341	cpumask_copy(&sched_core_mask, cpu_online_mask);
  342	for_each_cpu(cpu, &sched_core_mask) {
  343		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
  344
  345		sched_core_lock(cpu, &flags);
  346
  347		for_each_cpu(t, smt_mask)
  348			cpu_rq(t)->core_enabled = enabled;
  349
  350		cpu_rq(cpu)->core->core_forceidle_start = 0;
  351
  352		sched_core_unlock(cpu, &flags);
  353
  354		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
  355	}
  356
  357	/*
  358	 * Toggle the offline CPUs.
  359	 */
  360	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
  361		cpu_rq(cpu)->core_enabled = enabled;
  362
  363	cpus_read_unlock();
  364}
  365
  366static void sched_core_assert_empty(void)
  367{
  368	int cpu;
  369
  370	for_each_possible_cpu(cpu)
  371		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
  372}
  373
  374static void __sched_core_enable(void)
  375{
  376	static_branch_enable(&__sched_core_enabled);
  377	/*
  378	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
  379	 * and future ones will observe !sched_core_disabled().
  380	 */
  381	synchronize_rcu();
  382	__sched_core_flip(true);
  383	sched_core_assert_empty();
  384}
  385
  386static void __sched_core_disable(void)
  387{
  388	sched_core_assert_empty();
  389	__sched_core_flip(false);
  390	static_branch_disable(&__sched_core_enabled);
  391}
  392
  393void sched_core_get(void)
  394{
  395	if (atomic_inc_not_zero(&sched_core_count))
  396		return;
  397
  398	mutex_lock(&sched_core_mutex);
  399	if (!atomic_read(&sched_core_count))
  400		__sched_core_enable();
  401
  402	smp_mb__before_atomic();
  403	atomic_inc(&sched_core_count);
  404	mutex_unlock(&sched_core_mutex);
  405}
  406
  407static void __sched_core_put(struct work_struct *work)
  408{
  409	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
  410		__sched_core_disable();
  411		mutex_unlock(&sched_core_mutex);
  412	}
  413}
  414
  415void sched_core_put(void)
  416{
  417	static DECLARE_WORK(_work, __sched_core_put);
  418
  419	/*
  420	 * "There can be only one"
  421	 *
  422	 * Either this is the last one, or we don't actually need to do any
  423	 * 'work'. If it is the last *again*, we rely on
  424	 * WORK_STRUCT_PENDING_BIT.
  425	 */
  426	if (!atomic_add_unless(&sched_core_count, -1, 1))
  427		schedule_work(&_work);
  428}
  429
  430#else /* !CONFIG_SCHED_CORE */
  431
  432static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
  433static inline void
  434sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
  435
  436#endif /* CONFIG_SCHED_CORE */
  437
  438/*
  439 * Serialization rules:
  440 *
  441 * Lock order:
  442 *
  443 *   p->pi_lock
  444 *     rq->lock
  445 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  446 *
  447 *  rq1->lock
  448 *    rq2->lock  where: rq1 < rq2
  449 *
  450 * Regular state:
  451 *
  452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  453 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  454 * always looks at the local rq data structures to find the most eligible task
  455 * to run next.
  456 *
  457 * Task enqueue is also under rq->lock, possibly taken from another CPU.
  458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
  459 * the local CPU to avoid bouncing the runqueue state around [ see
  460 * ttwu_queue_wakelist() ]
  461 *
  462 * Task wakeup, specifically wakeups that involve migration, are horribly
  463 * complicated to avoid having to take two rq->locks.
  464 *
  465 * Special state:
  466 *
  467 * System-calls and anything external will use task_rq_lock() which acquires
  468 * both p->pi_lock and rq->lock. As a consequence the state they change is
  469 * stable while holding either lock:
  470 *
  471 *  - sched_setaffinity()/
  472 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
  473 *  - set_user_nice():		p->se.load, p->*prio
  474 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
  475 *				p->se.load, p->rt_priority,
  476 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
  477 *  - sched_setnuma():		p->numa_preferred_nid
  478 *  - sched_move_task():	p->sched_task_group
 
  479 *  - uclamp_update_active()	p->uclamp*
  480 *
  481 * p->state <- TASK_*:
  482 *
  483 *   is changed locklessly using set_current_state(), __set_current_state() or
  484 *   set_special_state(), see their respective comments, or by
  485 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
  486 *   concurrent self.
  487 *
  488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
  489 *
  490 *   is set by activate_task() and cleared by deactivate_task(), under
  491 *   rq->lock. Non-zero indicates the task is runnable, the special
  492 *   ON_RQ_MIGRATING state is used for migration without holding both
  493 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
  494 *
  495 * p->on_cpu <- { 0, 1 }:
  496 *
  497 *   is set by prepare_task() and cleared by finish_task() such that it will be
  498 *   set before p is scheduled-in and cleared after p is scheduled-out, both
  499 *   under rq->lock. Non-zero indicates the task is running on its CPU.
  500 *
  501 *   [ The astute reader will observe that it is possible for two tasks on one
  502 *     CPU to have ->on_cpu = 1 at the same time. ]
  503 *
  504 * task_cpu(p): is changed by set_task_cpu(), the rules are:
  505 *
  506 *  - Don't call set_task_cpu() on a blocked task:
  507 *
  508 *    We don't care what CPU we're not running on, this simplifies hotplug,
  509 *    the CPU assignment of blocked tasks isn't required to be valid.
  510 *
  511 *  - for try_to_wake_up(), called under p->pi_lock:
  512 *
  513 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
  514 *
  515 *  - for migration called under rq->lock:
  516 *    [ see task_on_rq_migrating() in task_rq_lock() ]
  517 *
  518 *    o move_queued_task()
  519 *    o detach_task()
  520 *
  521 *  - for migration called under double_rq_lock():
  522 *
  523 *    o __migrate_swap_task()
  524 *    o push_rt_task() / pull_rt_task()
  525 *    o push_dl_task() / pull_dl_task()
  526 *    o dl_task_offline_migration()
  527 *
  528 */
  529
  530void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
  531{
  532	raw_spinlock_t *lock;
  533
  534	/* Matches synchronize_rcu() in __sched_core_enable() */
  535	preempt_disable();
  536	if (sched_core_disabled()) {
  537		raw_spin_lock_nested(&rq->__lock, subclass);
  538		/* preempt_count *MUST* be > 1 */
  539		preempt_enable_no_resched();
  540		return;
  541	}
  542
  543	for (;;) {
  544		lock = __rq_lockp(rq);
  545		raw_spin_lock_nested(lock, subclass);
  546		if (likely(lock == __rq_lockp(rq))) {
  547			/* preempt_count *MUST* be > 1 */
  548			preempt_enable_no_resched();
  549			return;
  550		}
  551		raw_spin_unlock(lock);
  552	}
  553}
  554
  555bool raw_spin_rq_trylock(struct rq *rq)
  556{
  557	raw_spinlock_t *lock;
  558	bool ret;
  559
  560	/* Matches synchronize_rcu() in __sched_core_enable() */
  561	preempt_disable();
  562	if (sched_core_disabled()) {
  563		ret = raw_spin_trylock(&rq->__lock);
  564		preempt_enable();
  565		return ret;
  566	}
  567
  568	for (;;) {
  569		lock = __rq_lockp(rq);
  570		ret = raw_spin_trylock(lock);
  571		if (!ret || (likely(lock == __rq_lockp(rq)))) {
  572			preempt_enable();
  573			return ret;
  574		}
  575		raw_spin_unlock(lock);
  576	}
  577}
  578
  579void raw_spin_rq_unlock(struct rq *rq)
  580{
  581	raw_spin_unlock(rq_lockp(rq));
  582}
  583
  584#ifdef CONFIG_SMP
  585/*
  586 * double_rq_lock - safely lock two runqueues
  587 */
  588void double_rq_lock(struct rq *rq1, struct rq *rq2)
  589{
  590	lockdep_assert_irqs_disabled();
  591
  592	if (rq_order_less(rq2, rq1))
  593		swap(rq1, rq2);
  594
  595	raw_spin_rq_lock(rq1);
  596	if (__rq_lockp(rq1) != __rq_lockp(rq2))
  597		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
  598
  599	double_rq_clock_clear_update(rq1, rq2);
  600}
  601#endif
  602
  603/*
  604 * __task_rq_lock - lock the rq @p resides on.
  605 */
  606struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  607	__acquires(rq->lock)
  608{
  609	struct rq *rq;
  610
  611	lockdep_assert_held(&p->pi_lock);
  612
  613	for (;;) {
  614		rq = task_rq(p);
  615		raw_spin_rq_lock(rq);
  616		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  617			rq_pin_lock(rq, rf);
  618			return rq;
  619		}
  620		raw_spin_rq_unlock(rq);
  621
  622		while (unlikely(task_on_rq_migrating(p)))
  623			cpu_relax();
  624	}
  625}
  626
  627/*
  628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  629 */
  630struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
  631	__acquires(p->pi_lock)
  632	__acquires(rq->lock)
  633{
  634	struct rq *rq;
  635
  636	for (;;) {
  637		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
  638		rq = task_rq(p);
  639		raw_spin_rq_lock(rq);
  640		/*
  641		 *	move_queued_task()		task_rq_lock()
  642		 *
  643		 *	ACQUIRE (rq->lock)
  644		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
  645		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
  646		 *	[S] ->cpu = new_cpu		[L] task_rq()
  647		 *					[L] ->on_rq
  648		 *	RELEASE (rq->lock)
  649		 *
  650		 * If we observe the old CPU in task_rq_lock(), the acquire of
  651		 * the old rq->lock will fully serialize against the stores.
  652		 *
  653		 * If we observe the new CPU in task_rq_lock(), the address
  654		 * dependency headed by '[L] rq = task_rq()' and the acquire
  655		 * will pair with the WMB to ensure we then also see migrating.
  656		 */
  657		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
  658			rq_pin_lock(rq, rf);
  659			return rq;
  660		}
  661		raw_spin_rq_unlock(rq);
  662		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
  663
  664		while (unlikely(task_on_rq_migrating(p)))
  665			cpu_relax();
  666	}
  667}
  668
  669/*
  670 * RQ-clock updating methods:
  671 */
  672
  673static void update_rq_clock_task(struct rq *rq, s64 delta)
  674{
  675/*
  676 * In theory, the compile should just see 0 here, and optimize out the call
  677 * to sched_rt_avg_update. But I don't trust it...
  678 */
  679	s64 __maybe_unused steal = 0, irq_delta = 0;
  680
  681#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  682	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  683
  684	/*
  685	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
  686	 * this case when a previous update_rq_clock() happened inside a
  687	 * {soft,}irq region.
  688	 *
  689	 * When this happens, we stop ->clock_task and only update the
  690	 * prev_irq_time stamp to account for the part that fit, so that a next
  691	 * update will consume the rest. This ensures ->clock_task is
  692	 * monotonic.
  693	 *
  694	 * It does however cause some slight miss-attribution of {soft,}irq
  695	 * time, a more accurate solution would be to update the irq_time using
  696	 * the current rq->clock timestamp, except that would require using
  697	 * atomic ops.
  698	 */
  699	if (irq_delta > delta)
  700		irq_delta = delta;
  701
  702	rq->prev_irq_time += irq_delta;
  703	delta -= irq_delta;
  704	psi_account_irqtime(rq->curr, irq_delta);
  705#endif
  706#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  707	if (static_key_false((&paravirt_steal_rq_enabled))) {
  708		steal = paravirt_steal_clock(cpu_of(rq));
  709		steal -= rq->prev_steal_time_rq;
  710
  711		if (unlikely(steal > delta))
  712			steal = delta;
  713
  714		rq->prev_steal_time_rq += steal;
  715		delta -= steal;
  716	}
  717#endif
  718
  719	rq->clock_task += delta;
  720
  721#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
  722	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  723		update_irq_load_avg(rq, irq_delta + steal);
  724#endif
  725	update_rq_clock_pelt(rq, delta);
  726}
  727
  728void update_rq_clock(struct rq *rq)
  729{
  730	s64 delta;
  731
  732	lockdep_assert_rq_held(rq);
  733
  734	if (rq->clock_update_flags & RQCF_ACT_SKIP)
  735		return;
  736
  737#ifdef CONFIG_SCHED_DEBUG
  738	if (sched_feat(WARN_DOUBLE_CLOCK))
  739		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
  740	rq->clock_update_flags |= RQCF_UPDATED;
  741#endif
  742
  743	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  744	if (delta < 0)
  745		return;
  746	rq->clock += delta;
  747	update_rq_clock_task(rq, delta);
  748}
  749
 
 
 
 
 
 
 
 
  750#ifdef CONFIG_SCHED_HRTICK
  751/*
  752 * Use HR-timers to deliver accurate preemption points.
  753 */
  754
  755static void hrtick_clear(struct rq *rq)
  756{
  757	if (hrtimer_active(&rq->hrtick_timer))
  758		hrtimer_cancel(&rq->hrtick_timer);
  759}
  760
  761/*
  762 * High-resolution timer tick.
  763 * Runs from hardirq context with interrupts disabled.
  764 */
  765static enum hrtimer_restart hrtick(struct hrtimer *timer)
  766{
  767	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  768	struct rq_flags rf;
  769
  770	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  771
  772	rq_lock(rq, &rf);
  773	update_rq_clock(rq);
  774	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  775	rq_unlock(rq, &rf);
  776
  777	return HRTIMER_NORESTART;
  778}
  779
  780#ifdef CONFIG_SMP
  781
  782static void __hrtick_restart(struct rq *rq)
  783{
  784	struct hrtimer *timer = &rq->hrtick_timer;
  785	ktime_t time = rq->hrtick_time;
  786
  787	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
  788}
  789
  790/*
  791 * called from hardirq (IPI) context
  792 */
  793static void __hrtick_start(void *arg)
  794{
  795	struct rq *rq = arg;
  796	struct rq_flags rf;
  797
  798	rq_lock(rq, &rf);
  799	__hrtick_restart(rq);
  800	rq_unlock(rq, &rf);
  801}
  802
  803/*
  804 * Called to set the hrtick timer state.
  805 *
  806 * called with rq->lock held and irqs disabled
  807 */
  808void hrtick_start(struct rq *rq, u64 delay)
  809{
  810	struct hrtimer *timer = &rq->hrtick_timer;
 
  811	s64 delta;
  812
  813	/*
  814	 * Don't schedule slices shorter than 10000ns, that just
  815	 * doesn't make sense and can cause timer DoS.
  816	 */
  817	delta = max_t(s64, delay, 10000LL);
  818	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
 
 
  819
  820	if (rq == this_rq())
  821		__hrtick_restart(rq);
  822	else
  823		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  824}
  825
  826#else
  827/*
  828 * Called to set the hrtick timer state.
  829 *
  830 * called with rq->lock held and irqs disabled
  831 */
  832void hrtick_start(struct rq *rq, u64 delay)
  833{
  834	/*
  835	 * Don't schedule slices shorter than 10000ns, that just
  836	 * doesn't make sense. Rely on vruntime for fairness.
  837	 */
  838	delay = max_t(u64, delay, 10000LL);
  839	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  840		      HRTIMER_MODE_REL_PINNED_HARD);
  841}
  842
  843#endif /* CONFIG_SMP */
  844
  845static void hrtick_rq_init(struct rq *rq)
  846{
  847#ifdef CONFIG_SMP
  848	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
  849#endif
  850	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
  851	rq->hrtick_timer.function = hrtick;
  852}
  853#else	/* CONFIG_SCHED_HRTICK */
  854static inline void hrtick_clear(struct rq *rq)
  855{
  856}
  857
  858static inline void hrtick_rq_init(struct rq *rq)
  859{
  860}
  861#endif	/* CONFIG_SCHED_HRTICK */
  862
  863/*
  864 * cmpxchg based fetch_or, macro so it works for different integer types
  865 */
  866#define fetch_or(ptr, mask)						\
  867	({								\
  868		typeof(ptr) _ptr = (ptr);				\
  869		typeof(mask) _mask = (mask);				\
  870		typeof(*_ptr) _val = *_ptr;				\
  871									\
  872		do {							\
  873		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
  874	_val;								\
 
 
 
 
  875})
  876
  877#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  878/*
  879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  880 * this avoids any races wrt polling state changes and thereby avoids
  881 * spurious IPIs.
  882 */
  883static inline bool set_nr_and_not_polling(struct task_struct *p)
  884{
  885	struct thread_info *ti = task_thread_info(p);
  886	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  887}
  888
  889/*
  890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  891 *
  892 * If this returns true, then the idle task promises to call
  893 * sched_ttwu_pending() and reschedule soon.
  894 */
  895static bool set_nr_if_polling(struct task_struct *p)
  896{
  897	struct thread_info *ti = task_thread_info(p);
  898	typeof(ti->flags) val = READ_ONCE(ti->flags);
  899
  900	for (;;) {
  901		if (!(val & _TIF_POLLING_NRFLAG))
  902			return false;
  903		if (val & _TIF_NEED_RESCHED)
  904			return true;
  905		if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
 
  906			break;
 
  907	}
  908	return true;
  909}
  910
  911#else
  912static inline bool set_nr_and_not_polling(struct task_struct *p)
  913{
  914	set_tsk_need_resched(p);
  915	return true;
  916}
  917
  918#ifdef CONFIG_SMP
  919static inline bool set_nr_if_polling(struct task_struct *p)
  920{
  921	return false;
  922}
  923#endif
  924#endif
  925
  926static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
  927{
  928	struct wake_q_node *node = &task->wake_q;
  929
  930	/*
  931	 * Atomically grab the task, if ->wake_q is !nil already it means
  932	 * it's already queued (either by us or someone else) and will get the
  933	 * wakeup due to that.
  934	 *
  935	 * In order to ensure that a pending wakeup will observe our pending
  936	 * state, even in the failed case, an explicit smp_mb() must be used.
  937	 */
  938	smp_mb__before_atomic();
  939	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
  940		return false;
  941
  942	/*
  943	 * The head is context local, there can be no concurrency.
  944	 */
  945	*head->lastp = node;
  946	head->lastp = &node->next;
  947	return true;
  948}
  949
  950/**
  951 * wake_q_add() - queue a wakeup for 'later' waking.
  952 * @head: the wake_q_head to add @task to
  953 * @task: the task to queue for 'later' wakeup
  954 *
  955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  957 * instantly.
  958 *
  959 * This function must be used as-if it were wake_up_process(); IOW the task
  960 * must be ready to be woken at this location.
  961 */
  962void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  963{
  964	if (__wake_q_add(head, task))
  965		get_task_struct(task);
  966}
  967
  968/**
  969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
  970 * @head: the wake_q_head to add @task to
  971 * @task: the task to queue for 'later' wakeup
  972 *
  973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
  974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
  975 * instantly.
  976 *
  977 * This function must be used as-if it were wake_up_process(); IOW the task
  978 * must be ready to be woken at this location.
  979 *
  980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
  981 * that already hold reference to @task can call the 'safe' version and trust
  982 * wake_q to do the right thing depending whether or not the @task is already
  983 * queued for wakeup.
  984 */
  985void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
  986{
  987	if (!__wake_q_add(head, task))
  988		put_task_struct(task);
  989}
  990
  991void wake_up_q(struct wake_q_head *head)
  992{
  993	struct wake_q_node *node = head->first;
  994
  995	while (node != WAKE_Q_TAIL) {
  996		struct task_struct *task;
  997
  998		task = container_of(node, struct task_struct, wake_q);
 
  999		/* Task can safely be re-inserted now: */
 1000		node = node->next;
 1001		task->wake_q.next = NULL;
 1002
 1003		/*
 1004		 * wake_up_process() executes a full barrier, which pairs with
 1005		 * the queueing in wake_q_add() so as not to miss wakeups.
 1006		 */
 1007		wake_up_process(task);
 1008		put_task_struct(task);
 1009	}
 1010}
 1011
 1012/*
 1013 * resched_curr - mark rq's current task 'to be rescheduled now'.
 1014 *
 1015 * On UP this means the setting of the need_resched flag, on SMP it
 1016 * might also involve a cross-CPU call to trigger the scheduler on
 1017 * the target CPU.
 1018 */
 1019void resched_curr(struct rq *rq)
 1020{
 1021	struct task_struct *curr = rq->curr;
 1022	int cpu;
 1023
 1024	lockdep_assert_rq_held(rq);
 1025
 1026	if (test_tsk_need_resched(curr))
 1027		return;
 1028
 1029	cpu = cpu_of(rq);
 1030
 1031	if (cpu == smp_processor_id()) {
 1032		set_tsk_need_resched(curr);
 1033		set_preempt_need_resched();
 1034		return;
 1035	}
 1036
 1037	if (set_nr_and_not_polling(curr))
 1038		smp_send_reschedule(cpu);
 1039	else
 1040		trace_sched_wake_idle_without_ipi(cpu);
 1041}
 1042
 1043void resched_cpu(int cpu)
 1044{
 1045	struct rq *rq = cpu_rq(cpu);
 1046	unsigned long flags;
 1047
 1048	raw_spin_rq_lock_irqsave(rq, flags);
 1049	if (cpu_online(cpu) || cpu == smp_processor_id())
 1050		resched_curr(rq);
 1051	raw_spin_rq_unlock_irqrestore(rq, flags);
 1052}
 1053
 1054#ifdef CONFIG_SMP
 1055#ifdef CONFIG_NO_HZ_COMMON
 1056/*
 1057 * In the semi idle case, use the nearest busy CPU for migrating timers
 1058 * from an idle CPU.  This is good for power-savings.
 1059 *
 1060 * We don't do similar optimization for completely idle system, as
 1061 * selecting an idle CPU will add more delays to the timers than intended
 1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 1063 */
 1064int get_nohz_timer_target(void)
 1065{
 1066	int i, cpu = smp_processor_id(), default_cpu = -1;
 1067	struct sched_domain *sd;
 1068	const struct cpumask *hk_mask;
 1069
 1070	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
 1071		if (!idle_cpu(cpu))
 1072			return cpu;
 1073		default_cpu = cpu;
 1074	}
 1075
 1076	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
 1077
 1078	rcu_read_lock();
 1079	for_each_domain(cpu, sd) {
 1080		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
 
 1081			if (cpu == i)
 1082				continue;
 1083
 1084			if (!idle_cpu(i)) {
 1085				cpu = i;
 1086				goto unlock;
 1087			}
 1088		}
 1089	}
 1090
 1091	if (default_cpu == -1)
 1092		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
 1093	cpu = default_cpu;
 1094unlock:
 1095	rcu_read_unlock();
 1096	return cpu;
 1097}
 1098
 1099/*
 1100 * When add_timer_on() enqueues a timer into the timer wheel of an
 1101 * idle CPU then this timer might expire before the next timer event
 1102 * which is scheduled to wake up that CPU. In case of a completely
 1103 * idle system the next event might even be infinite time into the
 1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 1105 * leaves the inner idle loop so the newly added timer is taken into
 1106 * account when the CPU goes back to idle and evaluates the timer
 1107 * wheel for the next timer event.
 1108 */
 1109static void wake_up_idle_cpu(int cpu)
 1110{
 1111	struct rq *rq = cpu_rq(cpu);
 1112
 1113	if (cpu == smp_processor_id())
 1114		return;
 1115
 1116	if (set_nr_and_not_polling(rq->idle))
 1117		smp_send_reschedule(cpu);
 1118	else
 1119		trace_sched_wake_idle_without_ipi(cpu);
 1120}
 1121
 1122static bool wake_up_full_nohz_cpu(int cpu)
 1123{
 1124	/*
 1125	 * We just need the target to call irq_exit() and re-evaluate
 1126	 * the next tick. The nohz full kick at least implies that.
 1127	 * If needed we can still optimize that later with an
 1128	 * empty IRQ.
 1129	 */
 1130	if (cpu_is_offline(cpu))
 1131		return true;  /* Don't try to wake offline CPUs. */
 1132	if (tick_nohz_full_cpu(cpu)) {
 1133		if (cpu != smp_processor_id() ||
 1134		    tick_nohz_tick_stopped())
 1135			tick_nohz_full_kick_cpu(cpu);
 1136		return true;
 1137	}
 1138
 1139	return false;
 1140}
 1141
 1142/*
 1143 * Wake up the specified CPU.  If the CPU is going offline, it is the
 1144 * caller's responsibility to deal with the lost wakeup, for example,
 1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 1146 */
 1147void wake_up_nohz_cpu(int cpu)
 1148{
 1149	if (!wake_up_full_nohz_cpu(cpu))
 1150		wake_up_idle_cpu(cpu);
 1151}
 1152
 1153static void nohz_csd_func(void *info)
 1154{
 1155	struct rq *rq = info;
 1156	int cpu = cpu_of(rq);
 1157	unsigned int flags;
 1158
 1159	/*
 1160	 * Release the rq::nohz_csd.
 1161	 */
 1162	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
 1163	WARN_ON(!(flags & NOHZ_KICK_MASK));
 1164
 1165	rq->idle_balance = idle_cpu(cpu);
 1166	if (rq->idle_balance && !need_resched()) {
 1167		rq->nohz_idle_balance = flags;
 1168		raise_softirq_irqoff(SCHED_SOFTIRQ);
 1169	}
 1170}
 1171
 1172#endif /* CONFIG_NO_HZ_COMMON */
 1173
 1174#ifdef CONFIG_NO_HZ_FULL
 1175bool sched_can_stop_tick(struct rq *rq)
 1176{
 1177	int fifo_nr_running;
 1178
 1179	/* Deadline tasks, even if single, need the tick */
 1180	if (rq->dl.dl_nr_running)
 1181		return false;
 1182
 1183	/*
 1184	 * If there are more than one RR tasks, we need the tick to affect the
 1185	 * actual RR behaviour.
 1186	 */
 1187	if (rq->rt.rr_nr_running) {
 1188		if (rq->rt.rr_nr_running == 1)
 1189			return true;
 1190		else
 1191			return false;
 1192	}
 1193
 1194	/*
 1195	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 1196	 * forced preemption between FIFO tasks.
 1197	 */
 1198	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 1199	if (fifo_nr_running)
 1200		return true;
 1201
 1202	/*
 1203	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 1204	 * if there's more than one we need the tick for involuntary
 1205	 * preemption.
 1206	 */
 1207	if (rq->nr_running > 1)
 1208		return false;
 1209
 1210	return true;
 1211}
 1212#endif /* CONFIG_NO_HZ_FULL */
 1213#endif /* CONFIG_SMP */
 1214
 1215#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 1216			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 1217/*
 1218 * Iterate task_group tree rooted at *from, calling @down when first entering a
 1219 * node and @up when leaving it for the final time.
 1220 *
 1221 * Caller must hold rcu_lock or sufficient equivalent.
 1222 */
 1223int walk_tg_tree_from(struct task_group *from,
 1224			     tg_visitor down, tg_visitor up, void *data)
 1225{
 1226	struct task_group *parent, *child;
 1227	int ret;
 1228
 1229	parent = from;
 1230
 1231down:
 1232	ret = (*down)(parent, data);
 1233	if (ret)
 1234		goto out;
 1235	list_for_each_entry_rcu(child, &parent->children, siblings) {
 1236		parent = child;
 1237		goto down;
 1238
 1239up:
 1240		continue;
 1241	}
 1242	ret = (*up)(parent, data);
 1243	if (ret || parent == from)
 1244		goto out;
 1245
 1246	child = parent;
 1247	parent = parent->parent;
 1248	if (parent)
 1249		goto up;
 1250out:
 1251	return ret;
 1252}
 1253
 1254int tg_nop(struct task_group *tg, void *data)
 1255{
 1256	return 0;
 1257}
 1258#endif
 1259
 1260static void set_load_weight(struct task_struct *p, bool update_load)
 1261{
 1262	int prio = p->static_prio - MAX_RT_PRIO;
 1263	struct load_weight *load = &p->se.load;
 1264
 1265	/*
 1266	 * SCHED_IDLE tasks get minimal weight:
 1267	 */
 1268	if (task_has_idle_policy(p)) {
 1269		load->weight = scale_load(WEIGHT_IDLEPRIO);
 1270		load->inv_weight = WMULT_IDLEPRIO;
 1271		return;
 1272	}
 1273
 1274	/*
 1275	 * SCHED_OTHER tasks have to update their load when changing their
 1276	 * weight
 1277	 */
 1278	if (update_load && p->sched_class == &fair_sched_class) {
 1279		reweight_task(p, prio);
 1280	} else {
 1281		load->weight = scale_load(sched_prio_to_weight[prio]);
 1282		load->inv_weight = sched_prio_to_wmult[prio];
 1283	}
 1284}
 1285
 1286#ifdef CONFIG_UCLAMP_TASK
 1287/*
 1288 * Serializes updates of utilization clamp values
 1289 *
 1290 * The (slow-path) user-space triggers utilization clamp value updates which
 1291 * can require updates on (fast-path) scheduler's data structures used to
 1292 * support enqueue/dequeue operations.
 1293 * While the per-CPU rq lock protects fast-path update operations, user-space
 1294 * requests are serialized using a mutex to reduce the risk of conflicting
 1295 * updates or API abuses.
 1296 */
 1297static DEFINE_MUTEX(uclamp_mutex);
 1298
 1299/* Max allowed minimum utilization */
 1300static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 1301
 1302/* Max allowed maximum utilization */
 1303static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 1304
 1305/*
 1306 * By default RT tasks run at the maximum performance point/capacity of the
 1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 1308 * SCHED_CAPACITY_SCALE.
 1309 *
 1310 * This knob allows admins to change the default behavior when uclamp is being
 1311 * used. In battery powered devices, particularly, running at the maximum
 1312 * capacity and frequency will increase energy consumption and shorten the
 1313 * battery life.
 1314 *
 1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 1316 *
 1317 * This knob will not override the system default sched_util_clamp_min defined
 1318 * above.
 1319 */
 1320static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 1321
 1322/* All clamps are required to be less or equal than these values */
 1323static struct uclamp_se uclamp_default[UCLAMP_CNT];
 1324
 1325/*
 1326 * This static key is used to reduce the uclamp overhead in the fast path. It
 1327 * primarily disables the call to uclamp_rq_{inc, dec}() in
 1328 * enqueue/dequeue_task().
 1329 *
 1330 * This allows users to continue to enable uclamp in their kernel config with
 1331 * minimum uclamp overhead in the fast path.
 1332 *
 1333 * As soon as userspace modifies any of the uclamp knobs, the static key is
 1334 * enabled, since we have an actual users that make use of uclamp
 1335 * functionality.
 1336 *
 1337 * The knobs that would enable this static key are:
 1338 *
 1339 *   * A task modifying its uclamp value with sched_setattr().
 1340 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 1341 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 1342 */
 1343DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 1344
 1345/* Integer rounded range for each bucket */
 1346#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 1347
 1348#define for_each_clamp_id(clamp_id) \
 1349	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 1350
 1351static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 1352{
 1353	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
 
 
 
 
 
 1354}
 1355
 1356static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 1357{
 1358	if (clamp_id == UCLAMP_MIN)
 1359		return 0;
 1360	return SCHED_CAPACITY_SCALE;
 1361}
 1362
 1363static inline void uclamp_se_set(struct uclamp_se *uc_se,
 1364				 unsigned int value, bool user_defined)
 1365{
 1366	uc_se->value = value;
 1367	uc_se->bucket_id = uclamp_bucket_id(value);
 1368	uc_se->user_defined = user_defined;
 1369}
 1370
 1371static inline unsigned int
 1372uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 1373		  unsigned int clamp_value)
 1374{
 1375	/*
 1376	 * Avoid blocked utilization pushing up the frequency when we go
 1377	 * idle (which drops the max-clamp) by retaining the last known
 1378	 * max-clamp.
 1379	 */
 1380	if (clamp_id == UCLAMP_MAX) {
 1381		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 1382		return clamp_value;
 1383	}
 1384
 1385	return uclamp_none(UCLAMP_MIN);
 1386}
 1387
 1388static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 1389				     unsigned int clamp_value)
 1390{
 1391	/* Reset max-clamp retention only on idle exit */
 1392	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1393		return;
 1394
 1395	uclamp_rq_set(rq, clamp_id, clamp_value);
 1396}
 1397
 1398static inline
 1399unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 1400				   unsigned int clamp_value)
 1401{
 1402	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 1403	int bucket_id = UCLAMP_BUCKETS - 1;
 1404
 1405	/*
 1406	 * Since both min and max clamps are max aggregated, find the
 1407	 * top most bucket with tasks in.
 1408	 */
 1409	for ( ; bucket_id >= 0; bucket_id--) {
 1410		if (!bucket[bucket_id].tasks)
 1411			continue;
 1412		return bucket[bucket_id].value;
 1413	}
 1414
 1415	/* No tasks -- default clamp values */
 1416	return uclamp_idle_value(rq, clamp_id, clamp_value);
 1417}
 1418
 1419static void __uclamp_update_util_min_rt_default(struct task_struct *p)
 1420{
 1421	unsigned int default_util_min;
 1422	struct uclamp_se *uc_se;
 1423
 1424	lockdep_assert_held(&p->pi_lock);
 1425
 1426	uc_se = &p->uclamp_req[UCLAMP_MIN];
 1427
 1428	/* Only sync if user didn't override the default */
 1429	if (uc_se->user_defined)
 1430		return;
 1431
 1432	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
 1433	uclamp_se_set(uc_se, default_util_min, false);
 1434}
 1435
 1436static void uclamp_update_util_min_rt_default(struct task_struct *p)
 1437{
 1438	struct rq_flags rf;
 1439	struct rq *rq;
 1440
 1441	if (!rt_task(p))
 1442		return;
 1443
 1444	/* Protect updates to p->uclamp_* */
 1445	rq = task_rq_lock(p, &rf);
 1446	__uclamp_update_util_min_rt_default(p);
 1447	task_rq_unlock(rq, p, &rf);
 1448}
 1449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1450static inline struct uclamp_se
 1451uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
 1452{
 1453	/* Copy by value as we could modify it */
 1454	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
 1455#ifdef CONFIG_UCLAMP_TASK_GROUP
 1456	unsigned int tg_min, tg_max, value;
 1457
 1458	/*
 1459	 * Tasks in autogroups or root task group will be
 1460	 * restricted by system defaults.
 1461	 */
 1462	if (task_group_is_autogroup(task_group(p)))
 1463		return uc_req;
 1464	if (task_group(p) == &root_task_group)
 1465		return uc_req;
 1466
 1467	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
 1468	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
 1469	value = uc_req.value;
 1470	value = clamp(value, tg_min, tg_max);
 1471	uclamp_se_set(&uc_req, value, false);
 1472#endif
 1473
 1474	return uc_req;
 1475}
 1476
 1477/*
 1478 * The effective clamp bucket index of a task depends on, by increasing
 1479 * priority:
 1480 * - the task specific clamp value, when explicitly requested from userspace
 1481 * - the task group effective clamp value, for tasks not either in the root
 1482 *   group or in an autogroup
 1483 * - the system default clamp value, defined by the sysadmin
 1484 */
 1485static inline struct uclamp_se
 1486uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
 1487{
 1488	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
 1489	struct uclamp_se uc_max = uclamp_default[clamp_id];
 1490
 1491	/* System default restrictions always apply */
 1492	if (unlikely(uc_req.value > uc_max.value))
 1493		return uc_max;
 1494
 1495	return uc_req;
 1496}
 1497
 1498unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
 1499{
 1500	struct uclamp_se uc_eff;
 1501
 1502	/* Task currently refcounted: use back-annotated (effective) value */
 1503	if (p->uclamp[clamp_id].active)
 1504		return (unsigned long)p->uclamp[clamp_id].value;
 1505
 1506	uc_eff = uclamp_eff_get(p, clamp_id);
 1507
 1508	return (unsigned long)uc_eff.value;
 1509}
 1510
 1511/*
 1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the
 1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
 1514 * updates the rq's clamp value if required.
 1515 *
 1516 * Tasks can have a task-specific value requested from user-space, track
 1517 * within each bucket the maximum value for tasks refcounted in it.
 1518 * This "local max aggregation" allows to track the exact "requested" value
 1519 * for each bucket when all its RUNNABLE tasks require the same clamp.
 1520 */
 1521static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
 1522				    enum uclamp_id clamp_id)
 1523{
 1524	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1525	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1526	struct uclamp_bucket *bucket;
 1527
 1528	lockdep_assert_rq_held(rq);
 1529
 1530	/* Update task effective clamp */
 1531	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
 1532
 1533	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1534	bucket->tasks++;
 1535	uc_se->active = true;
 1536
 1537	uclamp_idle_reset(rq, clamp_id, uc_se->value);
 1538
 1539	/*
 1540	 * Local max aggregation: rq buckets always track the max
 1541	 * "requested" clamp value of its RUNNABLE tasks.
 1542	 */
 1543	if (bucket->tasks == 1 || uc_se->value > bucket->value)
 1544		bucket->value = uc_se->value;
 1545
 1546	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
 1547		uclamp_rq_set(rq, clamp_id, uc_se->value);
 1548}
 1549
 1550/*
 1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
 1552 * is released. If this is the last task reference counting the rq's max
 1553 * active clamp value, then the rq's clamp value is updated.
 1554 *
 1555 * Both refcounted tasks and rq's cached clamp values are expected to be
 1556 * always valid. If it's detected they are not, as defensive programming,
 1557 * enforce the expected state and warn.
 1558 */
 1559static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
 1560				    enum uclamp_id clamp_id)
 1561{
 1562	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
 1563	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
 1564	struct uclamp_bucket *bucket;
 1565	unsigned int bkt_clamp;
 1566	unsigned int rq_clamp;
 1567
 1568	lockdep_assert_rq_held(rq);
 1569
 1570	/*
 1571	 * If sched_uclamp_used was enabled after task @p was enqueued,
 1572	 * we could end up with unbalanced call to uclamp_rq_dec_id().
 1573	 *
 1574	 * In this case the uc_se->active flag should be false since no uclamp
 1575	 * accounting was performed at enqueue time and we can just return
 1576	 * here.
 1577	 *
 1578	 * Need to be careful of the following enqueue/dequeue ordering
 1579	 * problem too
 1580	 *
 1581	 *	enqueue(taskA)
 1582	 *	// sched_uclamp_used gets enabled
 1583	 *	enqueue(taskB)
 1584	 *	dequeue(taskA)
 1585	 *	// Must not decrement bucket->tasks here
 1586	 *	dequeue(taskB)
 1587	 *
 1588	 * where we could end up with stale data in uc_se and
 1589	 * bucket[uc_se->bucket_id].
 1590	 *
 1591	 * The following check here eliminates the possibility of such race.
 1592	 */
 1593	if (unlikely(!uc_se->active))
 1594		return;
 1595
 1596	bucket = &uc_rq->bucket[uc_se->bucket_id];
 1597
 1598	SCHED_WARN_ON(!bucket->tasks);
 1599	if (likely(bucket->tasks))
 1600		bucket->tasks--;
 1601
 1602	uc_se->active = false;
 1603
 1604	/*
 1605	 * Keep "local max aggregation" simple and accept to (possibly)
 1606	 * overboost some RUNNABLE tasks in the same bucket.
 1607	 * The rq clamp bucket value is reset to its base value whenever
 1608	 * there are no more RUNNABLE tasks refcounting it.
 1609	 */
 1610	if (likely(bucket->tasks))
 1611		return;
 1612
 1613	rq_clamp = uclamp_rq_get(rq, clamp_id);
 1614	/*
 1615	 * Defensive programming: this should never happen. If it happens,
 1616	 * e.g. due to future modification, warn and fixup the expected value.
 1617	 */
 1618	SCHED_WARN_ON(bucket->value > rq_clamp);
 1619	if (bucket->value >= rq_clamp) {
 1620		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
 1621		uclamp_rq_set(rq, clamp_id, bkt_clamp);
 1622	}
 1623}
 1624
 1625static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
 1626{
 1627	enum uclamp_id clamp_id;
 1628
 1629	/*
 1630	 * Avoid any overhead until uclamp is actually used by the userspace.
 1631	 *
 1632	 * The condition is constructed such that a NOP is generated when
 1633	 * sched_uclamp_used is disabled.
 1634	 */
 1635	if (!static_branch_unlikely(&sched_uclamp_used))
 1636		return;
 1637
 1638	if (unlikely(!p->sched_class->uclamp_enabled))
 1639		return;
 1640
 1641	for_each_clamp_id(clamp_id)
 1642		uclamp_rq_inc_id(rq, p, clamp_id);
 1643
 1644	/* Reset clamp idle holding when there is one RUNNABLE task */
 1645	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
 1646		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1647}
 1648
 1649static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
 1650{
 1651	enum uclamp_id clamp_id;
 1652
 1653	/*
 1654	 * Avoid any overhead until uclamp is actually used by the userspace.
 1655	 *
 1656	 * The condition is constructed such that a NOP is generated when
 1657	 * sched_uclamp_used is disabled.
 1658	 */
 1659	if (!static_branch_unlikely(&sched_uclamp_used))
 1660		return;
 1661
 1662	if (unlikely(!p->sched_class->uclamp_enabled))
 1663		return;
 1664
 1665	for_each_clamp_id(clamp_id)
 1666		uclamp_rq_dec_id(rq, p, clamp_id);
 1667}
 1668
 1669static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
 1670				      enum uclamp_id clamp_id)
 1671{
 1672	if (!p->uclamp[clamp_id].active)
 1673		return;
 1674
 1675	uclamp_rq_dec_id(rq, p, clamp_id);
 1676	uclamp_rq_inc_id(rq, p, clamp_id);
 1677
 1678	/*
 1679	 * Make sure to clear the idle flag if we've transiently reached 0
 1680	 * active tasks on rq.
 1681	 */
 1682	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 1683		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
 1684}
 1685
 1686static inline void
 1687uclamp_update_active(struct task_struct *p)
 1688{
 1689	enum uclamp_id clamp_id;
 1690	struct rq_flags rf;
 1691	struct rq *rq;
 1692
 1693	/*
 1694	 * Lock the task and the rq where the task is (or was) queued.
 1695	 *
 1696	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
 1697	 * price to pay to safely serialize util_{min,max} updates with
 1698	 * enqueues, dequeues and migration operations.
 1699	 * This is the same locking schema used by __set_cpus_allowed_ptr().
 1700	 */
 1701	rq = task_rq_lock(p, &rf);
 1702
 1703	/*
 1704	 * Setting the clamp bucket is serialized by task_rq_lock().
 1705	 * If the task is not yet RUNNABLE and its task_struct is not
 1706	 * affecting a valid clamp bucket, the next time it's enqueued,
 1707	 * it will already see the updated clamp bucket value.
 1708	 */
 1709	for_each_clamp_id(clamp_id)
 1710		uclamp_rq_reinc_id(rq, p, clamp_id);
 
 
 1711
 1712	task_rq_unlock(rq, p, &rf);
 1713}
 1714
 1715#ifdef CONFIG_UCLAMP_TASK_GROUP
 1716static inline void
 1717uclamp_update_active_tasks(struct cgroup_subsys_state *css)
 
 1718{
 
 1719	struct css_task_iter it;
 1720	struct task_struct *p;
 1721
 1722	css_task_iter_start(css, 0, &it);
 1723	while ((p = css_task_iter_next(&it)))
 1724		uclamp_update_active(p);
 
 
 
 
 1725	css_task_iter_end(&it);
 1726}
 1727
 1728static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 1729#endif
 1730
 1731#ifdef CONFIG_SYSCTL
 1732#ifdef CONFIG_UCLAMP_TASK
 1733#ifdef CONFIG_UCLAMP_TASK_GROUP
 1734static void uclamp_update_root_tg(void)
 1735{
 1736	struct task_group *tg = &root_task_group;
 1737
 1738	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
 1739		      sysctl_sched_uclamp_util_min, false);
 1740	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
 1741		      sysctl_sched_uclamp_util_max, false);
 1742
 1743	rcu_read_lock();
 1744	cpu_util_update_eff(&root_task_group.css);
 1745	rcu_read_unlock();
 1746}
 1747#else
 1748static void uclamp_update_root_tg(void) { }
 1749#endif
 1750
 1751static void uclamp_sync_util_min_rt_default(void)
 1752{
 1753	struct task_struct *g, *p;
 1754
 1755	/*
 1756	 * copy_process()			sysctl_uclamp
 1757	 *					  uclamp_min_rt = X;
 1758	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
 1759	 *   // link thread			  smp_mb__after_spinlock()
 1760	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
 1761	 *   sched_post_fork()			  for_each_process_thread()
 1762	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
 1763	 *
 1764	 * Ensures that either sched_post_fork() will observe the new
 1765	 * uclamp_min_rt or for_each_process_thread() will observe the new
 1766	 * task.
 1767	 */
 1768	read_lock(&tasklist_lock);
 1769	smp_mb__after_spinlock();
 1770	read_unlock(&tasklist_lock);
 1771
 1772	rcu_read_lock();
 1773	for_each_process_thread(g, p)
 1774		uclamp_update_util_min_rt_default(p);
 1775	rcu_read_unlock();
 1776}
 1777
 1778static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
 1779				void *buffer, size_t *lenp, loff_t *ppos)
 1780{
 1781	bool update_root_tg = false;
 1782	int old_min, old_max, old_min_rt;
 1783	int result;
 1784
 1785	mutex_lock(&uclamp_mutex);
 1786	old_min = sysctl_sched_uclamp_util_min;
 1787	old_max = sysctl_sched_uclamp_util_max;
 1788	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
 1789
 1790	result = proc_dointvec(table, write, buffer, lenp, ppos);
 1791	if (result)
 1792		goto undo;
 1793	if (!write)
 1794		goto done;
 1795
 1796	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
 1797	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
 1798	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
 1799
 1800		result = -EINVAL;
 1801		goto undo;
 1802	}
 1803
 1804	if (old_min != sysctl_sched_uclamp_util_min) {
 1805		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
 1806			      sysctl_sched_uclamp_util_min, false);
 1807		update_root_tg = true;
 1808	}
 1809	if (old_max != sysctl_sched_uclamp_util_max) {
 1810		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
 1811			      sysctl_sched_uclamp_util_max, false);
 1812		update_root_tg = true;
 1813	}
 1814
 1815	if (update_root_tg) {
 1816		static_branch_enable(&sched_uclamp_used);
 1817		uclamp_update_root_tg();
 1818	}
 1819
 1820	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
 1821		static_branch_enable(&sched_uclamp_used);
 1822		uclamp_sync_util_min_rt_default();
 1823	}
 1824
 1825	/*
 1826	 * We update all RUNNABLE tasks only when task groups are in use.
 1827	 * Otherwise, keep it simple and do just a lazy update at each next
 1828	 * task enqueue time.
 1829	 */
 1830
 1831	goto done;
 1832
 1833undo:
 1834	sysctl_sched_uclamp_util_min = old_min;
 1835	sysctl_sched_uclamp_util_max = old_max;
 1836	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
 1837done:
 1838	mutex_unlock(&uclamp_mutex);
 1839
 1840	return result;
 1841}
 1842#endif
 1843#endif
 1844
 1845static int uclamp_validate(struct task_struct *p,
 1846			   const struct sched_attr *attr)
 1847{
 1848	int util_min = p->uclamp_req[UCLAMP_MIN].value;
 1849	int util_max = p->uclamp_req[UCLAMP_MAX].value;
 1850
 1851	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 1852		util_min = attr->sched_util_min;
 1853
 1854		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
 1855			return -EINVAL;
 1856	}
 1857
 1858	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 1859		util_max = attr->sched_util_max;
 
 
 1860
 1861		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
 1862			return -EINVAL;
 1863	}
 1864
 1865	if (util_min != -1 && util_max != -1 && util_min > util_max)
 1866		return -EINVAL;
 1867
 1868	/*
 1869	 * We have valid uclamp attributes; make sure uclamp is enabled.
 1870	 *
 1871	 * We need to do that here, because enabling static branches is a
 1872	 * blocking operation which obviously cannot be done while holding
 1873	 * scheduler locks.
 1874	 */
 1875	static_branch_enable(&sched_uclamp_used);
 1876
 1877	return 0;
 1878}
 1879
 1880static bool uclamp_reset(const struct sched_attr *attr,
 1881			 enum uclamp_id clamp_id,
 1882			 struct uclamp_se *uc_se)
 1883{
 1884	/* Reset on sched class change for a non user-defined clamp value. */
 1885	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
 1886	    !uc_se->user_defined)
 1887		return true;
 1888
 1889	/* Reset on sched_util_{min,max} == -1. */
 1890	if (clamp_id == UCLAMP_MIN &&
 1891	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1892	    attr->sched_util_min == -1) {
 1893		return true;
 1894	}
 1895
 1896	if (clamp_id == UCLAMP_MAX &&
 1897	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1898	    attr->sched_util_max == -1) {
 1899		return true;
 1900	}
 1901
 1902	return false;
 1903}
 1904
 1905static void __setscheduler_uclamp(struct task_struct *p,
 1906				  const struct sched_attr *attr)
 1907{
 1908	enum uclamp_id clamp_id;
 1909
 
 
 
 
 1910	for_each_clamp_id(clamp_id) {
 1911		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 1912		unsigned int value;
 1913
 1914		if (!uclamp_reset(attr, clamp_id, uc_se))
 
 1915			continue;
 1916
 1917		/*
 1918		 * RT by default have a 100% boost value that could be modified
 1919		 * at runtime.
 1920		 */
 1921		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
 1922			value = sysctl_sched_uclamp_util_min_rt_default;
 1923		else
 1924			value = uclamp_none(clamp_id);
 1925
 1926		uclamp_se_set(uc_se, value, false);
 1927
 1928	}
 1929
 1930	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
 1931		return;
 1932
 1933	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
 1934	    attr->sched_util_min != -1) {
 1935		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
 1936			      attr->sched_util_min, true);
 1937	}
 1938
 1939	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
 1940	    attr->sched_util_max != -1) {
 1941		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
 1942			      attr->sched_util_max, true);
 1943	}
 1944}
 1945
 1946static void uclamp_fork(struct task_struct *p)
 1947{
 1948	enum uclamp_id clamp_id;
 1949
 1950	/*
 1951	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
 1952	 * as the task is still at its early fork stages.
 1953	 */
 1954	for_each_clamp_id(clamp_id)
 1955		p->uclamp[clamp_id].active = false;
 1956
 1957	if (likely(!p->sched_reset_on_fork))
 1958		return;
 1959
 1960	for_each_clamp_id(clamp_id) {
 1961		uclamp_se_set(&p->uclamp_req[clamp_id],
 1962			      uclamp_none(clamp_id), false);
 1963	}
 1964}
 1965
 1966static void uclamp_post_fork(struct task_struct *p)
 1967{
 1968	uclamp_update_util_min_rt_default(p);
 1969}
 1970
 1971static void __init init_uclamp_rq(struct rq *rq)
 1972{
 1973	enum uclamp_id clamp_id;
 1974	struct uclamp_rq *uc_rq = rq->uclamp;
 1975
 1976	for_each_clamp_id(clamp_id) {
 1977		uc_rq[clamp_id] = (struct uclamp_rq) {
 1978			.value = uclamp_none(clamp_id)
 1979		};
 1980	}
 1981
 1982	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
 1983}
 1984
 1985static void __init init_uclamp(void)
 1986{
 1987	struct uclamp_se uc_max = {};
 1988	enum uclamp_id clamp_id;
 1989	int cpu;
 1990
 1991	for_each_possible_cpu(cpu)
 1992		init_uclamp_rq(cpu_rq(cpu));
 1993
 1994	for_each_clamp_id(clamp_id) {
 1995		uclamp_se_set(&init_task.uclamp_req[clamp_id],
 1996			      uclamp_none(clamp_id), false);
 1997	}
 1998
 1999	/* System defaults allow max clamp values for both indexes */
 2000	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
 2001	for_each_clamp_id(clamp_id) {
 2002		uclamp_default[clamp_id] = uc_max;
 2003#ifdef CONFIG_UCLAMP_TASK_GROUP
 2004		root_task_group.uclamp_req[clamp_id] = uc_max;
 2005		root_task_group.uclamp[clamp_id] = uc_max;
 2006#endif
 2007	}
 2008}
 2009
 2010#else /* CONFIG_UCLAMP_TASK */
 2011static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
 2012static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
 2013static inline int uclamp_validate(struct task_struct *p,
 2014				  const struct sched_attr *attr)
 2015{
 2016	return -EOPNOTSUPP;
 2017}
 2018static void __setscheduler_uclamp(struct task_struct *p,
 2019				  const struct sched_attr *attr) { }
 2020static inline void uclamp_fork(struct task_struct *p) { }
 2021static inline void uclamp_post_fork(struct task_struct *p) { }
 2022static inline void init_uclamp(void) { }
 2023#endif /* CONFIG_UCLAMP_TASK */
 2024
 2025bool sched_task_on_rq(struct task_struct *p)
 2026{
 2027	return task_on_rq_queued(p);
 2028}
 2029
 2030unsigned long get_wchan(struct task_struct *p)
 2031{
 2032	unsigned long ip = 0;
 2033	unsigned int state;
 2034
 2035	if (!p || p == current)
 2036		return 0;
 2037
 2038	/* Only get wchan if task is blocked and we can keep it that way. */
 2039	raw_spin_lock_irq(&p->pi_lock);
 2040	state = READ_ONCE(p->__state);
 2041	smp_rmb(); /* see try_to_wake_up() */
 2042	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
 2043		ip = __get_wchan(p);
 2044	raw_spin_unlock_irq(&p->pi_lock);
 2045
 2046	return ip;
 2047}
 2048
 2049static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 2050{
 2051	if (!(flags & ENQUEUE_NOCLOCK))
 2052		update_rq_clock(rq);
 2053
 2054	if (!(flags & ENQUEUE_RESTORE)) {
 2055		sched_info_enqueue(rq, p);
 2056		psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
 2057	}
 2058
 2059	uclamp_rq_inc(rq, p);
 2060	p->sched_class->enqueue_task(rq, p, flags);
 2061
 2062	if (sched_core_enabled(rq))
 2063		sched_core_enqueue(rq, p);
 2064}
 2065
 2066static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 2067{
 2068	if (sched_core_enabled(rq))
 2069		sched_core_dequeue(rq, p, flags);
 2070
 2071	if (!(flags & DEQUEUE_NOCLOCK))
 2072		update_rq_clock(rq);
 2073
 2074	if (!(flags & DEQUEUE_SAVE)) {
 2075		sched_info_dequeue(rq, p);
 2076		psi_dequeue(p, flags & DEQUEUE_SLEEP);
 2077	}
 2078
 2079	uclamp_rq_dec(rq, p);
 2080	p->sched_class->dequeue_task(rq, p, flags);
 2081}
 2082
 2083void activate_task(struct rq *rq, struct task_struct *p, int flags)
 2084{
 2085	enqueue_task(rq, p, flags);
 2086
 2087	p->on_rq = TASK_ON_RQ_QUEUED;
 2088}
 2089
 2090void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 2091{
 2092	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
 2093
 2094	dequeue_task(rq, p, flags);
 2095}
 2096
 2097static inline int __normal_prio(int policy, int rt_prio, int nice)
 
 
 
 2098{
 2099	int prio;
 2100
 2101	if (dl_policy(policy))
 2102		prio = MAX_DL_PRIO - 1;
 2103	else if (rt_policy(policy))
 2104		prio = MAX_RT_PRIO - 1 - rt_prio;
 2105	else
 2106		prio = NICE_TO_PRIO(nice);
 2107
 2108	return prio;
 2109}
 2110
 2111/*
 2112 * Calculate the expected normal priority: i.e. priority
 2113 * without taking RT-inheritance into account. Might be
 2114 * boosted by interactivity modifiers. Changes upon fork,
 2115 * setprio syscalls, and whenever the interactivity
 2116 * estimator recalculates.
 2117 */
 2118static inline int normal_prio(struct task_struct *p)
 2119{
 2120	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
 
 
 
 
 
 
 
 
 2121}
 2122
 2123/*
 2124 * Calculate the current priority, i.e. the priority
 2125 * taken into account by the scheduler. This value might
 2126 * be boosted by RT tasks, or might be boosted by
 2127 * interactivity modifiers. Will be RT if the task got
 2128 * RT-boosted. If not then it returns p->normal_prio.
 2129 */
 2130static int effective_prio(struct task_struct *p)
 2131{
 2132	p->normal_prio = normal_prio(p);
 2133	/*
 2134	 * If we are RT tasks or we were boosted to RT priority,
 2135	 * keep the priority unchanged. Otherwise, update priority
 2136	 * to the normal priority:
 2137	 */
 2138	if (!rt_prio(p->prio))
 2139		return p->normal_prio;
 2140	return p->prio;
 2141}
 2142
 2143/**
 2144 * task_curr - is this task currently executing on a CPU?
 2145 * @p: the task in question.
 2146 *
 2147 * Return: 1 if the task is currently executing. 0 otherwise.
 2148 */
 2149inline int task_curr(const struct task_struct *p)
 2150{
 2151	return cpu_curr(task_cpu(p)) == p;
 2152}
 2153
 2154/*
 2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 2156 * use the balance_callback list if you want balancing.
 2157 *
 2158 * this means any call to check_class_changed() must be followed by a call to
 2159 * balance_callback().
 2160 */
 2161static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 2162				       const struct sched_class *prev_class,
 2163				       int oldprio)
 2164{
 2165	if (prev_class != p->sched_class) {
 2166		if (prev_class->switched_from)
 2167			prev_class->switched_from(rq, p);
 2168
 2169		p->sched_class->switched_to(rq, p);
 2170	} else if (oldprio != p->prio || dl_task(p))
 2171		p->sched_class->prio_changed(rq, p, oldprio);
 2172}
 2173
 2174void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 2175{
 2176	if (p->sched_class == rq->curr->sched_class)
 2177		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 2178	else if (sched_class_above(p->sched_class, rq->curr->sched_class))
 2179		resched_curr(rq);
 2180
 2181	/*
 2182	 * A queue event has occurred, and we're going to schedule.  In
 2183	 * this case, we can save a useless back to back clock update.
 2184	 */
 2185	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 2186		rq_clock_skip_update(rq);
 2187}
 2188
 2189#ifdef CONFIG_SMP
 2190
 2191static void
 2192__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
 2193
 2194static int __set_cpus_allowed_ptr(struct task_struct *p,
 2195				  struct affinity_context *ctx);
 2196
 2197static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
 2198{
 2199	struct affinity_context ac = {
 2200		.new_mask  = cpumask_of(rq->cpu),
 2201		.flags     = SCA_MIGRATE_DISABLE,
 2202	};
 2203
 2204	if (likely(!p->migration_disabled))
 2205		return;
 2206
 2207	if (p->cpus_ptr != &p->cpus_mask)
 2208		return;
 2209
 2210	/*
 2211	 * Violates locking rules! see comment in __do_set_cpus_allowed().
 2212	 */
 2213	__do_set_cpus_allowed(p, &ac);
 2214}
 2215
 2216void migrate_disable(void)
 2217{
 2218	struct task_struct *p = current;
 2219
 2220	if (p->migration_disabled) {
 2221		p->migration_disabled++;
 2222		return;
 2223	}
 2224
 2225	preempt_disable();
 2226	this_rq()->nr_pinned++;
 2227	p->migration_disabled = 1;
 2228	preempt_enable();
 2229}
 2230EXPORT_SYMBOL_GPL(migrate_disable);
 2231
 2232void migrate_enable(void)
 2233{
 2234	struct task_struct *p = current;
 2235	struct affinity_context ac = {
 2236		.new_mask  = &p->cpus_mask,
 2237		.flags     = SCA_MIGRATE_ENABLE,
 2238	};
 2239
 2240	if (p->migration_disabled > 1) {
 2241		p->migration_disabled--;
 2242		return;
 2243	}
 2244
 2245	if (WARN_ON_ONCE(!p->migration_disabled))
 2246		return;
 2247
 2248	/*
 2249	 * Ensure stop_task runs either before or after this, and that
 2250	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
 2251	 */
 2252	preempt_disable();
 2253	if (p->cpus_ptr != &p->cpus_mask)
 2254		__set_cpus_allowed_ptr(p, &ac);
 2255	/*
 2256	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
 2257	 * regular cpus_mask, otherwise things that race (eg.
 2258	 * select_fallback_rq) get confused.
 2259	 */
 2260	barrier();
 2261	p->migration_disabled = 0;
 2262	this_rq()->nr_pinned--;
 2263	preempt_enable();
 2264}
 2265EXPORT_SYMBOL_GPL(migrate_enable);
 2266
 2267static inline bool rq_has_pinned_tasks(struct rq *rq)
 2268{
 2269	return rq->nr_pinned;
 2270}
 2271
 2272/*
 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
 2274 * __set_cpus_allowed_ptr() and select_fallback_rq().
 2275 */
 2276static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
 2277{
 2278	/* When not in the task's cpumask, no point in looking further. */
 2279	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 2280		return false;
 2281
 2282	/* migrate_disabled() must be allowed to finish. */
 2283	if (is_migration_disabled(p))
 2284		return cpu_online(cpu);
 2285
 2286	/* Non kernel threads are not allowed during either online or offline. */
 2287	if (!(p->flags & PF_KTHREAD))
 2288		return cpu_active(cpu) && task_cpu_possible(cpu, p);
 2289
 2290	/* KTHREAD_IS_PER_CPU is always allowed. */
 2291	if (kthread_is_per_cpu(p))
 2292		return cpu_online(cpu);
 2293
 2294	/* Regular kernel threads don't get to stay during offline. */
 2295	if (cpu_dying(cpu))
 2296		return false;
 2297
 2298	/* But are allowed during online. */
 2299	return cpu_online(cpu);
 2300}
 2301
 2302/*
 2303 * This is how migration works:
 2304 *
 2305 * 1) we invoke migration_cpu_stop() on the target CPU using
 2306 *    stop_one_cpu().
 2307 * 2) stopper starts to run (implicitly forcing the migrated thread
 2308 *    off the CPU)
 2309 * 3) it checks whether the migrated task is still in the wrong runqueue.
 2310 * 4) if it's in the wrong runqueue then the migration thread removes
 2311 *    it and puts it into the right queue.
 2312 * 5) stopper completes and stop_one_cpu() returns and the migration
 2313 *    is done.
 2314 */
 2315
 2316/*
 2317 * move_queued_task - move a queued task to new rq.
 2318 *
 2319 * Returns (locked) new rq. Old rq's lock is released.
 2320 */
 2321static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
 2322				   struct task_struct *p, int new_cpu)
 2323{
 2324	lockdep_assert_rq_held(rq);
 2325
 2326	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
 2327	set_task_cpu(p, new_cpu);
 2328	rq_unlock(rq, rf);
 2329
 2330	rq = cpu_rq(new_cpu);
 2331
 2332	rq_lock(rq, rf);
 2333	WARN_ON_ONCE(task_cpu(p) != new_cpu);
 2334	activate_task(rq, p, 0);
 2335	check_preempt_curr(rq, p, 0);
 2336
 2337	return rq;
 2338}
 2339
 2340struct migration_arg {
 2341	struct task_struct		*task;
 2342	int				dest_cpu;
 2343	struct set_affinity_pending	*pending;
 2344};
 2345
 2346/*
 2347 * @refs: number of wait_for_completion()
 2348 * @stop_pending: is @stop_work in use
 2349 */
 2350struct set_affinity_pending {
 2351	refcount_t		refs;
 2352	unsigned int		stop_pending;
 2353	struct completion	done;
 2354	struct cpu_stop_work	stop_work;
 2355	struct migration_arg	arg;
 2356};
 2357
 2358/*
 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing
 2360 * this because either it can't run here any more (set_cpus_allowed()
 2361 * away from this CPU, or CPU going down), or because we're
 2362 * attempting to rebalance this task on exec (sched_exec).
 2363 *
 2364 * So we race with normal scheduler movements, but that's OK, as long
 2365 * as the task is no longer on this CPU.
 2366 */
 2367static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
 2368				 struct task_struct *p, int dest_cpu)
 2369{
 2370	/* Affinity changed (again). */
 2371	if (!is_cpu_allowed(p, dest_cpu))
 2372		return rq;
 2373
 2374	update_rq_clock(rq);
 2375	rq = move_queued_task(rq, rf, p, dest_cpu);
 2376
 2377	return rq;
 2378}
 2379
 2380/*
 2381 * migration_cpu_stop - this will be executed by a highprio stopper thread
 2382 * and performs thread migration by bumping thread off CPU then
 2383 * 'pushing' onto another runqueue.
 2384 */
 2385static int migration_cpu_stop(void *data)
 2386{
 2387	struct migration_arg *arg = data;
 2388	struct set_affinity_pending *pending = arg->pending;
 2389	struct task_struct *p = arg->task;
 2390	struct rq *rq = this_rq();
 2391	bool complete = false;
 2392	struct rq_flags rf;
 2393
 2394	/*
 2395	 * The original target CPU might have gone down and we might
 2396	 * be on another CPU but it doesn't matter.
 2397	 */
 2398	local_irq_save(rf.flags);
 2399	/*
 2400	 * We need to explicitly wake pending tasks before running
 2401	 * __migrate_task() such that we will not miss enforcing cpus_ptr
 2402	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
 2403	 */
 2404	flush_smp_call_function_queue();
 2405
 2406	raw_spin_lock(&p->pi_lock);
 2407	rq_lock(rq, &rf);
 2408
 2409	/*
 2410	 * If we were passed a pending, then ->stop_pending was set, thus
 2411	 * p->migration_pending must have remained stable.
 2412	 */
 2413	WARN_ON_ONCE(pending && pending != p->migration_pending);
 2414
 2415	/*
 2416	 * If task_rq(p) != rq, it cannot be migrated here, because we're
 2417	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
 2418	 * we're holding p->pi_lock.
 2419	 */
 2420	if (task_rq(p) == rq) {
 2421		if (is_migration_disabled(p))
 2422			goto out;
 2423
 2424		if (pending) {
 2425			p->migration_pending = NULL;
 2426			complete = true;
 2427
 2428			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
 2429				goto out;
 2430		}
 2431
 2432		if (task_on_rq_queued(p))
 2433			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
 2434		else
 2435			p->wake_cpu = arg->dest_cpu;
 2436
 2437		/*
 2438		 * XXX __migrate_task() can fail, at which point we might end
 2439		 * up running on a dodgy CPU, AFAICT this can only happen
 2440		 * during CPU hotplug, at which point we'll get pushed out
 2441		 * anyway, so it's probably not a big deal.
 2442		 */
 2443
 2444	} else if (pending) {
 2445		/*
 2446		 * This happens when we get migrated between migrate_enable()'s
 2447		 * preempt_enable() and scheduling the stopper task. At that
 2448		 * point we're a regular task again and not current anymore.
 2449		 *
 2450		 * A !PREEMPT kernel has a giant hole here, which makes it far
 2451		 * more likely.
 2452		 */
 2453
 2454		/*
 2455		 * The task moved before the stopper got to run. We're holding
 2456		 * ->pi_lock, so the allowed mask is stable - if it got
 2457		 * somewhere allowed, we're done.
 2458		 */
 2459		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
 2460			p->migration_pending = NULL;
 2461			complete = true;
 2462			goto out;
 2463		}
 2464
 2465		/*
 2466		 * When migrate_enable() hits a rq mis-match we can't reliably
 2467		 * determine is_migration_disabled() and so have to chase after
 2468		 * it.
 2469		 */
 2470		WARN_ON_ONCE(!pending->stop_pending);
 2471		task_rq_unlock(rq, p, &rf);
 2472		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
 2473				    &pending->arg, &pending->stop_work);
 2474		return 0;
 2475	}
 2476out:
 2477	if (pending)
 2478		pending->stop_pending = false;
 2479	task_rq_unlock(rq, p, &rf);
 2480
 2481	if (complete)
 2482		complete_all(&pending->done);
 2483
 2484	return 0;
 2485}
 2486
 2487int push_cpu_stop(void *arg)
 2488{
 2489	struct rq *lowest_rq = NULL, *rq = this_rq();
 2490	struct task_struct *p = arg;
 2491
 2492	raw_spin_lock_irq(&p->pi_lock);
 2493	raw_spin_rq_lock(rq);
 2494
 2495	if (task_rq(p) != rq)
 2496		goto out_unlock;
 2497
 2498	if (is_migration_disabled(p)) {
 2499		p->migration_flags |= MDF_PUSH;
 2500		goto out_unlock;
 2501	}
 2502
 2503	p->migration_flags &= ~MDF_PUSH;
 2504
 2505	if (p->sched_class->find_lock_rq)
 2506		lowest_rq = p->sched_class->find_lock_rq(p, rq);
 2507
 2508	if (!lowest_rq)
 2509		goto out_unlock;
 2510
 2511	// XXX validate p is still the highest prio task
 2512	if (task_rq(p) == rq) {
 2513		deactivate_task(rq, p, 0);
 2514		set_task_cpu(p, lowest_rq->cpu);
 2515		activate_task(lowest_rq, p, 0);
 2516		resched_curr(lowest_rq);
 2517	}
 2518
 2519	double_unlock_balance(rq, lowest_rq);
 2520
 2521out_unlock:
 2522	rq->push_busy = false;
 2523	raw_spin_rq_unlock(rq);
 2524	raw_spin_unlock_irq(&p->pi_lock);
 2525
 2526	put_task_struct(p);
 2527	return 0;
 2528}
 2529
 2530/*
 2531 * sched_class::set_cpus_allowed must do the below, but is not required to
 2532 * actually call this function.
 2533 */
 2534void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
 2535{
 2536	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
 2537		p->cpus_ptr = ctx->new_mask;
 2538		return;
 2539	}
 2540
 2541	cpumask_copy(&p->cpus_mask, ctx->new_mask);
 2542	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
 2543
 2544	/*
 2545	 * Swap in a new user_cpus_ptr if SCA_USER flag set
 2546	 */
 2547	if (ctx->flags & SCA_USER)
 2548		swap(p->user_cpus_ptr, ctx->user_mask);
 2549}
 2550
 2551static void
 2552__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
 2553{
 2554	struct rq *rq = task_rq(p);
 2555	bool queued, running;
 2556
 2557	/*
 2558	 * This here violates the locking rules for affinity, since we're only
 2559	 * supposed to change these variables while holding both rq->lock and
 2560	 * p->pi_lock.
 2561	 *
 2562	 * HOWEVER, it magically works, because ttwu() is the only code that
 2563	 * accesses these variables under p->pi_lock and only does so after
 2564	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
 2565	 * before finish_task().
 2566	 *
 2567	 * XXX do further audits, this smells like something putrid.
 2568	 */
 2569	if (ctx->flags & SCA_MIGRATE_DISABLE)
 2570		SCHED_WARN_ON(!p->on_cpu);
 2571	else
 2572		lockdep_assert_held(&p->pi_lock);
 2573
 2574	queued = task_on_rq_queued(p);
 2575	running = task_current(rq, p);
 2576
 2577	if (queued) {
 2578		/*
 2579		 * Because __kthread_bind() calls this on blocked tasks without
 2580		 * holding rq->lock.
 2581		 */
 2582		lockdep_assert_rq_held(rq);
 2583		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 2584	}
 2585	if (running)
 2586		put_prev_task(rq, p);
 2587
 2588	p->sched_class->set_cpus_allowed(p, ctx);
 2589
 2590	if (queued)
 2591		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 2592	if (running)
 2593		set_next_task(rq, p);
 2594}
 2595
 2596/*
 2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
 2598 * affinity (if any) should be destroyed too.
 2599 */
 2600void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 2601{
 2602	struct affinity_context ac = {
 2603		.new_mask  = new_mask,
 2604		.user_mask = NULL,
 2605		.flags     = SCA_USER,	/* clear the user requested mask */
 2606	};
 2607	union cpumask_rcuhead {
 2608		cpumask_t cpumask;
 2609		struct rcu_head rcu;
 2610	};
 2611
 2612	__do_set_cpus_allowed(p, &ac);
 2613
 2614	/*
 2615	 * Because this is called with p->pi_lock held, it is not possible
 2616	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
 2617	 * kfree_rcu().
 2618	 */
 2619	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
 2620}
 2621
 2622static cpumask_t *alloc_user_cpus_ptr(int node)
 2623{
 2624	/*
 2625	 * See do_set_cpus_allowed() above for the rcu_head usage.
 2626	 */
 2627	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
 2628
 2629	return kmalloc_node(size, GFP_KERNEL, node);
 2630}
 2631
 2632int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
 2633		      int node)
 2634{
 2635	cpumask_t *user_mask;
 2636	unsigned long flags;
 2637
 2638	/*
 2639	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
 2640	 * may differ by now due to racing.
 2641	 */
 2642	dst->user_cpus_ptr = NULL;
 2643
 2644	/*
 2645	 * This check is racy and losing the race is a valid situation.
 2646	 * It is not worth the extra overhead of taking the pi_lock on
 2647	 * every fork/clone.
 2648	 */
 2649	if (data_race(!src->user_cpus_ptr))
 2650		return 0;
 2651
 2652	user_mask = alloc_user_cpus_ptr(node);
 2653	if (!user_mask)
 2654		return -ENOMEM;
 2655
 2656	/*
 2657	 * Use pi_lock to protect content of user_cpus_ptr
 2658	 *
 2659	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
 2660	 * do_set_cpus_allowed().
 2661	 */
 2662	raw_spin_lock_irqsave(&src->pi_lock, flags);
 2663	if (src->user_cpus_ptr) {
 2664		swap(dst->user_cpus_ptr, user_mask);
 2665		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
 2666	}
 2667	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
 2668
 2669	if (unlikely(user_mask))
 2670		kfree(user_mask);
 2671
 2672	return 0;
 2673}
 2674
 2675static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
 2676{
 2677	struct cpumask *user_mask = NULL;
 2678
 2679	swap(p->user_cpus_ptr, user_mask);
 2680
 2681	return user_mask;
 2682}
 2683
 2684void release_user_cpus_ptr(struct task_struct *p)
 2685{
 2686	kfree(clear_user_cpus_ptr(p));
 2687}
 2688
 2689/*
 2690 * This function is wildly self concurrent; here be dragons.
 2691 *
 2692 *
 2693 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
 2694 * designated task is enqueued on an allowed CPU. If that task is currently
 2695 * running, we have to kick it out using the CPU stopper.
 2696 *
 2697 * Migrate-Disable comes along and tramples all over our nice sandcastle.
 2698 * Consider:
 2699 *
 2700 *     Initial conditions: P0->cpus_mask = [0, 1]
 2701 *
 2702 *     P0@CPU0                  P1
 2703 *
 2704 *     migrate_disable();
 2705 *     <preempted>
 2706 *                              set_cpus_allowed_ptr(P0, [1]);
 2707 *
 2708 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
 2709 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
 2710 * This means we need the following scheme:
 2711 *
 2712 *     P0@CPU0                  P1
 2713 *
 2714 *     migrate_disable();
 2715 *     <preempted>
 2716 *                              set_cpus_allowed_ptr(P0, [1]);
 2717 *                                <blocks>
 2718 *     <resumes>
 2719 *     migrate_enable();
 2720 *       __set_cpus_allowed_ptr();
 2721 *       <wakes local stopper>
 2722 *                         `--> <woken on migration completion>
 2723 *
 2724 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
 2725 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
 2726 * task p are serialized by p->pi_lock, which we can leverage: the one that
 2727 * should come into effect at the end of the Migrate-Disable region is the last
 2728 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
 2729 * but we still need to properly signal those waiting tasks at the appropriate
 2730 * moment.
 2731 *
 2732 * This is implemented using struct set_affinity_pending. The first
 2733 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
 2734 * setup an instance of that struct and install it on the targeted task_struct.
 2735 * Any and all further callers will reuse that instance. Those then wait for
 2736 * a completion signaled at the tail of the CPU stopper callback (1), triggered
 2737 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
 2738 *
 2739 *
 2740 * (1) In the cases covered above. There is one more where the completion is
 2741 * signaled within affine_move_task() itself: when a subsequent affinity request
 2742 * occurs after the stopper bailed out due to the targeted task still being
 2743 * Migrate-Disable. Consider:
 2744 *
 2745 *     Initial conditions: P0->cpus_mask = [0, 1]
 2746 *
 2747 *     CPU0		  P1				P2
 2748 *     <P0>
 2749 *       migrate_disable();
 2750 *       <preempted>
 2751 *                        set_cpus_allowed_ptr(P0, [1]);
 2752 *                          <blocks>
 2753 *     <migration/0>
 2754 *       migration_cpu_stop()
 2755 *         is_migration_disabled()
 2756 *           <bails>
 2757 *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
 2758 *                                                         <signal completion>
 2759 *                          <awakes>
 2760 *
 2761 * Note that the above is safe vs a concurrent migrate_enable(), as any
 2762 * pending affinity completion is preceded by an uninstallation of
 2763 * p->migration_pending done with p->pi_lock held.
 2764 */
 2765static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
 2766			    int dest_cpu, unsigned int flags)
 2767	__releases(rq->lock)
 2768	__releases(p->pi_lock)
 2769{
 2770	struct set_affinity_pending my_pending = { }, *pending = NULL;
 2771	bool stop_pending, complete = false;
 2772
 2773	/* Can the task run on the task's current CPU? If so, we're done */
 2774	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
 2775		struct task_struct *push_task = NULL;
 2776
 2777		if ((flags & SCA_MIGRATE_ENABLE) &&
 2778		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
 2779			rq->push_busy = true;
 2780			push_task = get_task_struct(p);
 2781		}
 2782
 2783		/*
 2784		 * If there are pending waiters, but no pending stop_work,
 2785		 * then complete now.
 2786		 */
 2787		pending = p->migration_pending;
 2788		if (pending && !pending->stop_pending) {
 2789			p->migration_pending = NULL;
 2790			complete = true;
 2791		}
 2792
 2793		task_rq_unlock(rq, p, rf);
 2794
 2795		if (push_task) {
 2796			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
 2797					    p, &rq->push_work);
 2798		}
 2799
 2800		if (complete)
 2801			complete_all(&pending->done);
 2802
 2803		return 0;
 2804	}
 2805
 2806	if (!(flags & SCA_MIGRATE_ENABLE)) {
 2807		/* serialized by p->pi_lock */
 2808		if (!p->migration_pending) {
 2809			/* Install the request */
 2810			refcount_set(&my_pending.refs, 1);
 2811			init_completion(&my_pending.done);
 2812			my_pending.arg = (struct migration_arg) {
 2813				.task = p,
 2814				.dest_cpu = dest_cpu,
 2815				.pending = &my_pending,
 2816			};
 2817
 2818			p->migration_pending = &my_pending;
 2819		} else {
 2820			pending = p->migration_pending;
 2821			refcount_inc(&pending->refs);
 2822			/*
 2823			 * Affinity has changed, but we've already installed a
 2824			 * pending. migration_cpu_stop() *must* see this, else
 2825			 * we risk a completion of the pending despite having a
 2826			 * task on a disallowed CPU.
 2827			 *
 2828			 * Serialized by p->pi_lock, so this is safe.
 2829			 */
 2830			pending->arg.dest_cpu = dest_cpu;
 2831		}
 2832	}
 2833	pending = p->migration_pending;
 2834	/*
 2835	 * - !MIGRATE_ENABLE:
 2836	 *   we'll have installed a pending if there wasn't one already.
 2837	 *
 2838	 * - MIGRATE_ENABLE:
 2839	 *   we're here because the current CPU isn't matching anymore,
 2840	 *   the only way that can happen is because of a concurrent
 2841	 *   set_cpus_allowed_ptr() call, which should then still be
 2842	 *   pending completion.
 2843	 *
 2844	 * Either way, we really should have a @pending here.
 2845	 */
 2846	if (WARN_ON_ONCE(!pending)) {
 2847		task_rq_unlock(rq, p, rf);
 2848		return -EINVAL;
 2849	}
 2850
 2851	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
 2852		/*
 2853		 * MIGRATE_ENABLE gets here because 'p == current', but for
 2854		 * anything else we cannot do is_migration_disabled(), punt
 2855		 * and have the stopper function handle it all race-free.
 2856		 */
 2857		stop_pending = pending->stop_pending;
 2858		if (!stop_pending)
 2859			pending->stop_pending = true;
 2860
 2861		if (flags & SCA_MIGRATE_ENABLE)
 2862			p->migration_flags &= ~MDF_PUSH;
 2863
 2864		task_rq_unlock(rq, p, rf);
 2865
 2866		if (!stop_pending) {
 2867			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
 2868					    &pending->arg, &pending->stop_work);
 2869		}
 2870
 2871		if (flags & SCA_MIGRATE_ENABLE)
 2872			return 0;
 2873	} else {
 2874
 2875		if (!is_migration_disabled(p)) {
 2876			if (task_on_rq_queued(p))
 2877				rq = move_queued_task(rq, rf, p, dest_cpu);
 2878
 2879			if (!pending->stop_pending) {
 2880				p->migration_pending = NULL;
 2881				complete = true;
 2882			}
 2883		}
 2884		task_rq_unlock(rq, p, rf);
 2885
 2886		if (complete)
 2887			complete_all(&pending->done);
 2888	}
 2889
 2890	wait_for_completion(&pending->done);
 2891
 2892	if (refcount_dec_and_test(&pending->refs))
 2893		wake_up_var(&pending->refs); /* No UaF, just an address */
 2894
 2895	/*
 2896	 * Block the original owner of &pending until all subsequent callers
 2897	 * have seen the completion and decremented the refcount
 2898	 */
 2899	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
 2900
 2901	/* ARGH */
 2902	WARN_ON_ONCE(my_pending.stop_pending);
 2903
 2904	return 0;
 2905}
 2906
 2907/*
 2908 * Called with both p->pi_lock and rq->lock held; drops both before returning.
 2909 */
 2910static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
 2911					 struct affinity_context *ctx,
 2912					 struct rq *rq,
 2913					 struct rq_flags *rf)
 2914	__releases(rq->lock)
 2915	__releases(p->pi_lock)
 2916{
 2917	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
 2918	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 2919	bool kthread = p->flags & PF_KTHREAD;
 2920	unsigned int dest_cpu;
 
 
 2921	int ret = 0;
 2922
 
 2923	update_rq_clock(rq);
 2924
 2925	if (kthread || is_migration_disabled(p)) {
 2926		/*
 2927		 * Kernel threads are allowed on online && !active CPUs,
 2928		 * however, during cpu-hot-unplug, even these might get pushed
 2929		 * away if not KTHREAD_IS_PER_CPU.
 2930		 *
 2931		 * Specifically, migration_disabled() tasks must not fail the
 2932		 * cpumask_any_and_distribute() pick below, esp. so on
 2933		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
 2934		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
 2935		 */
 2936		cpu_valid_mask = cpu_online_mask;
 2937	}
 2938
 2939	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
 2940		ret = -EINVAL;
 2941		goto out;
 2942	}
 2943
 2944	/*
 2945	 * Must re-check here, to close a race against __kthread_bind(),
 2946	 * sched_setaffinity() is not guaranteed to observe the flag.
 2947	 */
 2948	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
 2949		ret = -EINVAL;
 2950		goto out;
 2951	}
 2952
 2953	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
 2954		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
 2955			if (ctx->flags & SCA_USER)
 2956				swap(p->user_cpus_ptr, ctx->user_mask);
 2957			goto out;
 2958		}
 2959
 2960		if (WARN_ON_ONCE(p == current &&
 2961				 is_migration_disabled(p) &&
 2962				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
 2963			ret = -EBUSY;
 2964			goto out;
 2965		}
 2966	}
 2967
 2968	/*
 2969	 * Picking a ~random cpu helps in cases where we are changing affinity
 2970	 * for groups of tasks (ie. cpuset), so that load balancing is not
 2971	 * immediately required to distribute the tasks within their new mask.
 2972	 */
 2973	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
 2974	if (dest_cpu >= nr_cpu_ids) {
 2975		ret = -EINVAL;
 2976		goto out;
 2977	}
 2978
 2979	__do_set_cpus_allowed(p, ctx);
 2980
 2981	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 2982
 
 
 
 
 
 
 
 
 
 
 
 
 
 2983out:
 2984	task_rq_unlock(rq, p, rf);
 2985
 2986	return ret;
 2987}
 2988
 2989/*
 2990 * Change a given task's CPU affinity. Migrate the thread to a
 2991 * proper CPU and schedule it away if the CPU it's executing on
 2992 * is removed from the allowed bitmask.
 2993 *
 2994 * NOTE: the caller must have a valid reference to the task, the
 2995 * task must not exit() & deallocate itself prematurely. The
 2996 * call is not atomic; no spinlocks may be held.
 2997 */
 2998static int __set_cpus_allowed_ptr(struct task_struct *p,
 2999				  struct affinity_context *ctx)
 3000{
 3001	struct rq_flags rf;
 3002	struct rq *rq;
 3003
 3004	rq = task_rq_lock(p, &rf);
 3005	/*
 3006	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
 3007	 * flags are set.
 3008	 */
 3009	if (p->user_cpus_ptr &&
 3010	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
 3011	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
 3012		ctx->new_mask = rq->scratch_mask;
 3013
 3014	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
 3015}
 3016
 3017int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
 3018{
 3019	struct affinity_context ac = {
 3020		.new_mask  = new_mask,
 3021		.flags     = 0,
 3022	};
 3023
 3024	return __set_cpus_allowed_ptr(p, &ac);
 3025}
 3026EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
 3027
 3028/*
 3029 * Change a given task's CPU affinity to the intersection of its current
 3030 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
 3031 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
 3032 * affinity or use cpu_online_mask instead.
 3033 *
 3034 * If the resulting mask is empty, leave the affinity unchanged and return
 3035 * -EINVAL.
 3036 */
 3037static int restrict_cpus_allowed_ptr(struct task_struct *p,
 3038				     struct cpumask *new_mask,
 3039				     const struct cpumask *subset_mask)
 3040{
 3041	struct affinity_context ac = {
 3042		.new_mask  = new_mask,
 3043		.flags     = 0,
 3044	};
 3045	struct rq_flags rf;
 3046	struct rq *rq;
 3047	int err;
 3048
 3049	rq = task_rq_lock(p, &rf);
 3050
 3051	/*
 3052	 * Forcefully restricting the affinity of a deadline task is
 3053	 * likely to cause problems, so fail and noisily override the
 3054	 * mask entirely.
 3055	 */
 3056	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
 3057		err = -EPERM;
 3058		goto err_unlock;
 3059	}
 3060
 3061	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
 3062		err = -EINVAL;
 3063		goto err_unlock;
 3064	}
 3065
 3066	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
 3067
 3068err_unlock:
 3069	task_rq_unlock(rq, p, &rf);
 3070	return err;
 3071}
 3072
 3073/*
 3074 * Restrict the CPU affinity of task @p so that it is a subset of
 3075 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
 3076 * old affinity mask. If the resulting mask is empty, we warn and walk
 3077 * up the cpuset hierarchy until we find a suitable mask.
 3078 */
 3079void force_compatible_cpus_allowed_ptr(struct task_struct *p)
 3080{
 3081	cpumask_var_t new_mask;
 3082	const struct cpumask *override_mask = task_cpu_possible_mask(p);
 3083
 3084	alloc_cpumask_var(&new_mask, GFP_KERNEL);
 3085
 3086	/*
 3087	 * __migrate_task() can fail silently in the face of concurrent
 3088	 * offlining of the chosen destination CPU, so take the hotplug
 3089	 * lock to ensure that the migration succeeds.
 3090	 */
 3091	cpus_read_lock();
 3092	if (!cpumask_available(new_mask))
 3093		goto out_set_mask;
 3094
 3095	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
 3096		goto out_free_mask;
 3097
 3098	/*
 3099	 * We failed to find a valid subset of the affinity mask for the
 3100	 * task, so override it based on its cpuset hierarchy.
 3101	 */
 3102	cpuset_cpus_allowed(p, new_mask);
 3103	override_mask = new_mask;
 3104
 3105out_set_mask:
 3106	if (printk_ratelimit()) {
 3107		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
 3108				task_pid_nr(p), p->comm,
 3109				cpumask_pr_args(override_mask));
 3110	}
 3111
 3112	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
 3113out_free_mask:
 3114	cpus_read_unlock();
 3115	free_cpumask_var(new_mask);
 3116}
 3117
 3118static int
 3119__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
 3120
 3121/*
 3122 * Restore the affinity of a task @p which was previously restricted by a
 3123 * call to force_compatible_cpus_allowed_ptr().
 3124 *
 3125 * It is the caller's responsibility to serialise this with any calls to
 3126 * force_compatible_cpus_allowed_ptr(@p).
 3127 */
 3128void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
 3129{
 3130	struct affinity_context ac = {
 3131		.new_mask  = task_user_cpus(p),
 3132		.flags     = 0,
 3133	};
 3134	int ret;
 3135
 3136	/*
 3137	 * Try to restore the old affinity mask with __sched_setaffinity().
 3138	 * Cpuset masking will be done there too.
 3139	 */
 3140	ret = __sched_setaffinity(p, &ac);
 3141	WARN_ON_ONCE(ret);
 3142}
 3143
 3144void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
 3145{
 3146#ifdef CONFIG_SCHED_DEBUG
 3147	unsigned int state = READ_ONCE(p->__state);
 3148
 3149	/*
 3150	 * We should never call set_task_cpu() on a blocked task,
 3151	 * ttwu() will sort out the placement.
 3152	 */
 3153	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
 
 3154
 3155	/*
 3156	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
 3157	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
 3158	 * time relying on p->on_rq.
 3159	 */
 3160	WARN_ON_ONCE(state == TASK_RUNNING &&
 3161		     p->sched_class == &fair_sched_class &&
 3162		     (p->on_rq && !task_on_rq_migrating(p)));
 3163
 3164#ifdef CONFIG_LOCKDEP
 3165	/*
 3166	 * The caller should hold either p->pi_lock or rq->lock, when changing
 3167	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
 3168	 *
 3169	 * sched_move_task() holds both and thus holding either pins the cgroup,
 3170	 * see task_group().
 3171	 *
 3172	 * Furthermore, all task_rq users should acquire both locks, see
 3173	 * task_rq_lock().
 3174	 */
 3175	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
 3176				      lockdep_is_held(__rq_lockp(task_rq(p)))));
 3177#endif
 3178	/*
 3179	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
 3180	 */
 3181	WARN_ON_ONCE(!cpu_online(new_cpu));
 3182
 3183	WARN_ON_ONCE(is_migration_disabled(p));
 3184#endif
 3185
 3186	trace_sched_migrate_task(p, new_cpu);
 3187
 3188	if (task_cpu(p) != new_cpu) {
 3189		if (p->sched_class->migrate_task_rq)
 3190			p->sched_class->migrate_task_rq(p, new_cpu);
 3191		p->se.nr_migrations++;
 3192		rseq_migrate(p);
 3193		perf_event_task_migrate(p);
 3194	}
 3195
 3196	__set_task_cpu(p, new_cpu);
 3197}
 3198
 3199#ifdef CONFIG_NUMA_BALANCING
 3200static void __migrate_swap_task(struct task_struct *p, int cpu)
 3201{
 3202	if (task_on_rq_queued(p)) {
 3203		struct rq *src_rq, *dst_rq;
 3204		struct rq_flags srf, drf;
 3205
 3206		src_rq = task_rq(p);
 3207		dst_rq = cpu_rq(cpu);
 3208
 3209		rq_pin_lock(src_rq, &srf);
 3210		rq_pin_lock(dst_rq, &drf);
 3211
 3212		deactivate_task(src_rq, p, 0);
 3213		set_task_cpu(p, cpu);
 3214		activate_task(dst_rq, p, 0);
 3215		check_preempt_curr(dst_rq, p, 0);
 3216
 3217		rq_unpin_lock(dst_rq, &drf);
 3218		rq_unpin_lock(src_rq, &srf);
 3219
 3220	} else {
 3221		/*
 3222		 * Task isn't running anymore; make it appear like we migrated
 3223		 * it before it went to sleep. This means on wakeup we make the
 3224		 * previous CPU our target instead of where it really is.
 3225		 */
 3226		p->wake_cpu = cpu;
 3227	}
 3228}
 3229
 3230struct migration_swap_arg {
 3231	struct task_struct *src_task, *dst_task;
 3232	int src_cpu, dst_cpu;
 3233};
 3234
 3235static int migrate_swap_stop(void *data)
 3236{
 3237	struct migration_swap_arg *arg = data;
 3238	struct rq *src_rq, *dst_rq;
 3239	int ret = -EAGAIN;
 3240
 3241	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
 3242		return -EAGAIN;
 3243
 3244	src_rq = cpu_rq(arg->src_cpu);
 3245	dst_rq = cpu_rq(arg->dst_cpu);
 3246
 3247	double_raw_lock(&arg->src_task->pi_lock,
 3248			&arg->dst_task->pi_lock);
 3249	double_rq_lock(src_rq, dst_rq);
 3250
 3251	if (task_cpu(arg->dst_task) != arg->dst_cpu)
 3252		goto unlock;
 3253
 3254	if (task_cpu(arg->src_task) != arg->src_cpu)
 3255		goto unlock;
 3256
 3257	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
 3258		goto unlock;
 3259
 3260	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
 3261		goto unlock;
 3262
 3263	__migrate_swap_task(arg->src_task, arg->dst_cpu);
 3264	__migrate_swap_task(arg->dst_task, arg->src_cpu);
 3265
 3266	ret = 0;
 3267
 3268unlock:
 3269	double_rq_unlock(src_rq, dst_rq);
 3270	raw_spin_unlock(&arg->dst_task->pi_lock);
 3271	raw_spin_unlock(&arg->src_task->pi_lock);
 3272
 3273	return ret;
 3274}
 3275
 3276/*
 3277 * Cross migrate two tasks
 3278 */
 3279int migrate_swap(struct task_struct *cur, struct task_struct *p,
 3280		int target_cpu, int curr_cpu)
 3281{
 3282	struct migration_swap_arg arg;
 3283	int ret = -EINVAL;
 3284
 3285	arg = (struct migration_swap_arg){
 3286		.src_task = cur,
 3287		.src_cpu = curr_cpu,
 3288		.dst_task = p,
 3289		.dst_cpu = target_cpu,
 3290	};
 3291
 3292	if (arg.src_cpu == arg.dst_cpu)
 3293		goto out;
 3294
 3295	/*
 3296	 * These three tests are all lockless; this is OK since all of them
 3297	 * will be re-checked with proper locks held further down the line.
 3298	 */
 3299	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
 3300		goto out;
 3301
 3302	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
 3303		goto out;
 3304
 3305	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
 3306		goto out;
 3307
 3308	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
 3309	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
 3310
 3311out:
 3312	return ret;
 3313}
 3314#endif /* CONFIG_NUMA_BALANCING */
 3315
 3316/*
 3317 * wait_task_inactive - wait for a thread to unschedule.
 3318 *
 3319 * Wait for the thread to block in any of the states set in @match_state.
 3320 * If it changes, i.e. @p might have woken up, then return zero.  When we
 3321 * succeed in waiting for @p to be off its CPU, we return a positive number
 3322 * (its total switch count).  If a second call a short while later returns the
 3323 * same number, the caller can be sure that @p has remained unscheduled the
 3324 * whole time.
 3325 *
 3326 * The caller must ensure that the task *will* unschedule sometime soon,
 3327 * else this function might spin for a *long* time. This function can't
 3328 * be called with interrupts off, or it may introduce deadlock with
 3329 * smp_call_function() if an IPI is sent by the same process we are
 3330 * waiting to become inactive.
 3331 */
 3332unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
 3333{
 3334	int running, queued;
 3335	struct rq_flags rf;
 3336	unsigned long ncsw;
 3337	struct rq *rq;
 3338
 3339	for (;;) {
 3340		/*
 3341		 * We do the initial early heuristics without holding
 3342		 * any task-queue locks at all. We'll only try to get
 3343		 * the runqueue lock when things look like they will
 3344		 * work out!
 3345		 */
 3346		rq = task_rq(p);
 3347
 3348		/*
 3349		 * If the task is actively running on another CPU
 3350		 * still, just relax and busy-wait without holding
 3351		 * any locks.
 3352		 *
 3353		 * NOTE! Since we don't hold any locks, it's not
 3354		 * even sure that "rq" stays as the right runqueue!
 3355		 * But we don't care, since "task_on_cpu()" will
 3356		 * return false if the runqueue has changed and p
 3357		 * is actually now running somewhere else!
 3358		 */
 3359		while (task_on_cpu(rq, p)) {
 3360			if (!(READ_ONCE(p->__state) & match_state))
 3361				return 0;
 3362			cpu_relax();
 3363		}
 3364
 3365		/*
 3366		 * Ok, time to look more closely! We need the rq
 3367		 * lock now, to be *sure*. If we're wrong, we'll
 3368		 * just go back and repeat.
 3369		 */
 3370		rq = task_rq_lock(p, &rf);
 3371		trace_sched_wait_task(p);
 3372		running = task_on_cpu(rq, p);
 3373		queued = task_on_rq_queued(p);
 3374		ncsw = 0;
 3375		if (READ_ONCE(p->__state) & match_state)
 3376			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
 3377		task_rq_unlock(rq, p, &rf);
 3378
 3379		/*
 3380		 * If it changed from the expected state, bail out now.
 3381		 */
 3382		if (unlikely(!ncsw))
 3383			break;
 3384
 3385		/*
 3386		 * Was it really running after all now that we
 3387		 * checked with the proper locks actually held?
 3388		 *
 3389		 * Oops. Go back and try again..
 3390		 */
 3391		if (unlikely(running)) {
 3392			cpu_relax();
 3393			continue;
 3394		}
 3395
 3396		/*
 3397		 * It's not enough that it's not actively running,
 3398		 * it must be off the runqueue _entirely_, and not
 3399		 * preempted!
 3400		 *
 3401		 * So if it was still runnable (but just not actively
 3402		 * running right now), it's preempted, and we should
 3403		 * yield - it could be a while.
 3404		 */
 3405		if (unlikely(queued)) {
 3406			ktime_t to = NSEC_PER_SEC / HZ;
 3407
 3408			set_current_state(TASK_UNINTERRUPTIBLE);
 3409			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
 3410			continue;
 3411		}
 3412
 3413		/*
 3414		 * Ahh, all good. It wasn't running, and it wasn't
 3415		 * runnable, which means that it will never become
 3416		 * running in the future either. We're all done!
 3417		 */
 3418		break;
 3419	}
 3420
 3421	return ncsw;
 3422}
 3423
 3424/***
 3425 * kick_process - kick a running thread to enter/exit the kernel
 3426 * @p: the to-be-kicked thread
 3427 *
 3428 * Cause a process which is running on another CPU to enter
 3429 * kernel-mode, without any delay. (to get signals handled.)
 3430 *
 3431 * NOTE: this function doesn't have to take the runqueue lock,
 3432 * because all it wants to ensure is that the remote task enters
 3433 * the kernel. If the IPI races and the task has been migrated
 3434 * to another CPU then no harm is done and the purpose has been
 3435 * achieved as well.
 3436 */
 3437void kick_process(struct task_struct *p)
 3438{
 3439	int cpu;
 3440
 3441	preempt_disable();
 3442	cpu = task_cpu(p);
 3443	if ((cpu != smp_processor_id()) && task_curr(p))
 3444		smp_send_reschedule(cpu);
 3445	preempt_enable();
 3446}
 3447EXPORT_SYMBOL_GPL(kick_process);
 3448
 3449/*
 3450 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
 3451 *
 3452 * A few notes on cpu_active vs cpu_online:
 3453 *
 3454 *  - cpu_active must be a subset of cpu_online
 3455 *
 3456 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
 3457 *    see __set_cpus_allowed_ptr(). At this point the newly online
 3458 *    CPU isn't yet part of the sched domains, and balancing will not
 3459 *    see it.
 3460 *
 3461 *  - on CPU-down we clear cpu_active() to mask the sched domains and
 3462 *    avoid the load balancer to place new tasks on the to be removed
 3463 *    CPU. Existing tasks will remain running there and will be taken
 3464 *    off.
 3465 *
 3466 * This means that fallback selection must not select !active CPUs.
 3467 * And can assume that any active CPU must be online. Conversely
 3468 * select_task_rq() below may allow selection of !active CPUs in order
 3469 * to satisfy the above rules.
 3470 */
 3471static int select_fallback_rq(int cpu, struct task_struct *p)
 3472{
 3473	int nid = cpu_to_node(cpu);
 3474	const struct cpumask *nodemask = NULL;
 3475	enum { cpuset, possible, fail } state = cpuset;
 3476	int dest_cpu;
 3477
 3478	/*
 3479	 * If the node that the CPU is on has been offlined, cpu_to_node()
 3480	 * will return -1. There is no CPU on the node, and we should
 3481	 * select the CPU on the other node.
 3482	 */
 3483	if (nid != -1) {
 3484		nodemask = cpumask_of_node(nid);
 3485
 3486		/* Look for allowed, online CPU in same node. */
 3487		for_each_cpu(dest_cpu, nodemask) {
 3488			if (is_cpu_allowed(p, dest_cpu))
 
 
 3489				return dest_cpu;
 3490		}
 3491	}
 3492
 3493	for (;;) {
 3494		/* Any allowed, online CPU? */
 3495		for_each_cpu(dest_cpu, p->cpus_ptr) {
 3496			if (!is_cpu_allowed(p, dest_cpu))
 3497				continue;
 3498
 3499			goto out;
 3500		}
 3501
 3502		/* No more Mr. Nice Guy. */
 3503		switch (state) {
 3504		case cpuset:
 3505			if (cpuset_cpus_allowed_fallback(p)) {
 
 3506				state = possible;
 3507				break;
 3508			}
 3509			fallthrough;
 3510		case possible:
 3511			/*
 3512			 * XXX When called from select_task_rq() we only
 3513			 * hold p->pi_lock and again violate locking order.
 3514			 *
 3515			 * More yuck to audit.
 3516			 */
 3517			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
 3518			state = fail;
 3519			break;
 
 3520		case fail:
 3521			BUG();
 3522			break;
 3523		}
 3524	}
 3525
 3526out:
 3527	if (state != cpuset) {
 3528		/*
 3529		 * Don't tell them about moving exiting tasks or
 3530		 * kernel threads (both mm NULL), since they never
 3531		 * leave kernel.
 3532		 */
 3533		if (p->mm && printk_ratelimit()) {
 3534			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
 3535					task_pid_nr(p), p->comm, cpu);
 3536		}
 3537	}
 3538
 3539	return dest_cpu;
 3540}
 3541
 3542/*
 3543 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
 3544 */
 3545static inline
 3546int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
 3547{
 3548	lockdep_assert_held(&p->pi_lock);
 3549
 3550	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
 3551		cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
 3552	else
 3553		cpu = cpumask_any(p->cpus_ptr);
 3554
 3555	/*
 3556	 * In order not to call set_task_cpu() on a blocking task we need
 3557	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
 3558	 * CPU.
 3559	 *
 3560	 * Since this is common to all placement strategies, this lives here.
 3561	 *
 3562	 * [ this allows ->select_task() to simply return task_cpu(p) and
 3563	 *   not worry about this generic constraint ]
 3564	 */
 3565	if (unlikely(!is_cpu_allowed(p, cpu)))
 3566		cpu = select_fallback_rq(task_cpu(p), p);
 3567
 3568	return cpu;
 3569}
 3570
 3571void sched_set_stop_task(int cpu, struct task_struct *stop)
 3572{
 3573	static struct lock_class_key stop_pi_lock;
 3574	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 3575	struct task_struct *old_stop = cpu_rq(cpu)->stop;
 3576
 3577	if (stop) {
 3578		/*
 3579		 * Make it appear like a SCHED_FIFO task, its something
 3580		 * userspace knows about and won't get confused about.
 3581		 *
 3582		 * Also, it will make PI more or less work without too
 3583		 * much confusion -- but then, stop work should not
 3584		 * rely on PI working anyway.
 3585		 */
 3586		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 3587
 3588		stop->sched_class = &stop_sched_class;
 3589
 3590		/*
 3591		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
 3592		 * adjust the effective priority of a task. As a result,
 3593		 * rt_mutex_setprio() can trigger (RT) balancing operations,
 3594		 * which can then trigger wakeups of the stop thread to push
 3595		 * around the current task.
 3596		 *
 3597		 * The stop task itself will never be part of the PI-chain, it
 3598		 * never blocks, therefore that ->pi_lock recursion is safe.
 3599		 * Tell lockdep about this by placing the stop->pi_lock in its
 3600		 * own class.
 3601		 */
 3602		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
 3603	}
 3604
 3605	cpu_rq(cpu)->stop = stop;
 3606
 3607	if (old_stop) {
 3608		/*
 3609		 * Reset it back to a normal scheduling class so that
 3610		 * it can die in pieces.
 3611		 */
 3612		old_stop->sched_class = &rt_sched_class;
 3613	}
 3614}
 3615
 3616#else /* CONFIG_SMP */
 3617
 3618static inline int __set_cpus_allowed_ptr(struct task_struct *p,
 3619					 struct affinity_context *ctx)
 3620{
 3621	return set_cpus_allowed_ptr(p, ctx->new_mask);
 3622}
 3623
 3624static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
 3625
 3626static inline bool rq_has_pinned_tasks(struct rq *rq)
 3627{
 3628	return false;
 3629}
 3630
 3631static inline cpumask_t *alloc_user_cpus_ptr(int node)
 3632{
 3633	return NULL;
 3634}
 3635
 3636#endif /* !CONFIG_SMP */
 3637
 3638static void
 3639ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
 3640{
 3641	struct rq *rq;
 3642
 3643	if (!schedstat_enabled())
 3644		return;
 3645
 3646	rq = this_rq();
 3647
 3648#ifdef CONFIG_SMP
 3649	if (cpu == rq->cpu) {
 3650		__schedstat_inc(rq->ttwu_local);
 3651		__schedstat_inc(p->stats.nr_wakeups_local);
 3652	} else {
 3653		struct sched_domain *sd;
 3654
 3655		__schedstat_inc(p->stats.nr_wakeups_remote);
 3656		rcu_read_lock();
 3657		for_each_domain(rq->cpu, sd) {
 3658			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 3659				__schedstat_inc(sd->ttwu_wake_remote);
 3660				break;
 3661			}
 3662		}
 3663		rcu_read_unlock();
 3664	}
 3665
 3666	if (wake_flags & WF_MIGRATED)
 3667		__schedstat_inc(p->stats.nr_wakeups_migrate);
 3668#endif /* CONFIG_SMP */
 3669
 3670	__schedstat_inc(rq->ttwu_count);
 3671	__schedstat_inc(p->stats.nr_wakeups);
 3672
 3673	if (wake_flags & WF_SYNC)
 3674		__schedstat_inc(p->stats.nr_wakeups_sync);
 3675}
 3676
 3677/*
 3678 * Mark the task runnable and perform wakeup-preemption.
 3679 */
 3680static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
 3681			   struct rq_flags *rf)
 3682{
 3683	check_preempt_curr(rq, p, wake_flags);
 3684	WRITE_ONCE(p->__state, TASK_RUNNING);
 3685	trace_sched_wakeup(p);
 3686
 3687#ifdef CONFIG_SMP
 3688	if (p->sched_class->task_woken) {
 3689		/*
 3690		 * Our task @p is fully woken up and running; so it's safe to
 3691		 * drop the rq->lock, hereafter rq is only used for statistics.
 3692		 */
 3693		rq_unpin_lock(rq, rf);
 3694		p->sched_class->task_woken(rq, p);
 3695		rq_repin_lock(rq, rf);
 3696	}
 3697
 3698	if (rq->idle_stamp) {
 3699		u64 delta = rq_clock(rq) - rq->idle_stamp;
 3700		u64 max = 2*rq->max_idle_balance_cost;
 3701
 3702		update_avg(&rq->avg_idle, delta);
 3703
 3704		if (rq->avg_idle > max)
 3705			rq->avg_idle = max;
 3706
 3707		rq->wake_stamp = jiffies;
 3708		rq->wake_avg_idle = rq->avg_idle / 2;
 3709
 3710		rq->idle_stamp = 0;
 3711	}
 3712#endif
 3713}
 3714
 3715static void
 3716ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
 3717		 struct rq_flags *rf)
 3718{
 3719	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
 3720
 3721	lockdep_assert_rq_held(rq);
 3722
 3723	if (p->sched_contributes_to_load)
 3724		rq->nr_uninterruptible--;
 3725
 3726#ifdef CONFIG_SMP
 3727	if (wake_flags & WF_MIGRATED)
 3728		en_flags |= ENQUEUE_MIGRATED;
 3729	else
 3730#endif
 3731	if (p->in_iowait) {
 3732		delayacct_blkio_end(p);
 3733		atomic_dec(&task_rq(p)->nr_iowait);
 3734	}
 3735
 3736	activate_task(rq, p, en_flags);
 3737	ttwu_do_wakeup(rq, p, wake_flags, rf);
 3738}
 3739
 3740/*
 3741 * Consider @p being inside a wait loop:
 3742 *
 3743 *   for (;;) {
 3744 *      set_current_state(TASK_UNINTERRUPTIBLE);
 3745 *
 3746 *      if (CONDITION)
 3747 *         break;
 3748 *
 3749 *      schedule();
 3750 *   }
 3751 *   __set_current_state(TASK_RUNNING);
 3752 *
 3753 * between set_current_state() and schedule(). In this case @p is still
 3754 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
 3755 * an atomic manner.
 3756 *
 3757 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
 3758 * then schedule() must still happen and p->state can be changed to
 3759 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
 3760 * need to do a full wakeup with enqueue.
 3761 *
 3762 * Returns: %true when the wakeup is done,
 3763 *          %false otherwise.
 3764 */
 3765static int ttwu_runnable(struct task_struct *p, int wake_flags)
 3766{
 3767	struct rq_flags rf;
 3768	struct rq *rq;
 3769	int ret = 0;
 3770
 3771	rq = __task_rq_lock(p, &rf);
 3772	if (task_on_rq_queued(p)) {
 3773		/* check_preempt_curr() may use rq clock */
 3774		update_rq_clock(rq);
 3775		ttwu_do_wakeup(rq, p, wake_flags, &rf);
 3776		ret = 1;
 3777	}
 3778	__task_rq_unlock(rq, &rf);
 3779
 3780	return ret;
 3781}
 3782
 3783#ifdef CONFIG_SMP
 3784void sched_ttwu_pending(void *arg)
 3785{
 3786	struct llist_node *llist = arg;
 3787	struct rq *rq = this_rq();
 3788	struct task_struct *p, *t;
 3789	struct rq_flags rf;
 3790
 3791	if (!llist)
 3792		return;
 3793
 
 
 
 
 
 
 
 3794	rq_lock_irqsave(rq, &rf);
 3795	update_rq_clock(rq);
 3796
 3797	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
 3798		if (WARN_ON_ONCE(p->on_cpu))
 3799			smp_cond_load_acquire(&p->on_cpu, !VAL);
 3800
 3801		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
 3802			set_task_cpu(p, cpu_of(rq));
 3803
 3804		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
 3805	}
 3806
 3807	/*
 3808	 * Must be after enqueueing at least once task such that
 3809	 * idle_cpu() does not observe a false-negative -- if it does,
 3810	 * it is possible for select_idle_siblings() to stack a number
 3811	 * of tasks on this CPU during that window.
 3812	 *
 3813	 * It is ok to clear ttwu_pending when another task pending.
 3814	 * We will receive IPI after local irq enabled and then enqueue it.
 3815	 * Since now nr_running > 0, idle_cpu() will always get correct result.
 3816	 */
 3817	WRITE_ONCE(rq->ttwu_pending, 0);
 3818	rq_unlock_irqrestore(rq, &rf);
 3819}
 3820
 3821void send_call_function_single_ipi(int cpu)
 3822{
 3823	struct rq *rq = cpu_rq(cpu);
 3824
 3825	if (!set_nr_if_polling(rq->idle))
 3826		arch_send_call_function_single_ipi(cpu);
 3827	else
 3828		trace_sched_wake_idle_without_ipi(cpu);
 3829}
 3830
 3831/*
 3832 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
 3833 * necessary. The wakee CPU on receipt of the IPI will queue the task
 3834 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
 3835 * of the wakeup instead of the waker.
 3836 */
 3837static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3838{
 3839	struct rq *rq = cpu_rq(cpu);
 3840
 3841	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
 3842
 3843	WRITE_ONCE(rq->ttwu_pending, 1);
 3844	__smp_call_single_queue(cpu, &p->wake_entry.llist);
 3845}
 3846
 3847void wake_up_if_idle(int cpu)
 3848{
 3849	struct rq *rq = cpu_rq(cpu);
 3850	struct rq_flags rf;
 3851
 3852	rcu_read_lock();
 3853
 3854	if (!is_idle_task(rcu_dereference(rq->curr)))
 3855		goto out;
 3856
 3857	rq_lock_irqsave(rq, &rf);
 3858	if (is_idle_task(rq->curr))
 3859		resched_curr(rq);
 3860	/* Else CPU is not idle, do nothing here: */
 3861	rq_unlock_irqrestore(rq, &rf);
 
 
 
 
 3862
 3863out:
 3864	rcu_read_unlock();
 3865}
 3866
 3867bool cpus_share_cache(int this_cpu, int that_cpu)
 3868{
 3869	if (this_cpu == that_cpu)
 3870		return true;
 3871
 3872	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
 3873}
 3874
 3875static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
 3876{
 3877	/*
 3878	 * Do not complicate things with the async wake_list while the CPU is
 3879	 * in hotplug state.
 3880	 */
 3881	if (!cpu_active(cpu))
 3882		return false;
 3883
 3884	/* Ensure the task will still be allowed to run on the CPU. */
 3885	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
 3886		return false;
 3887
 3888	/*
 3889	 * If the CPU does not share cache, then queue the task on the
 3890	 * remote rqs wakelist to avoid accessing remote data.
 3891	 */
 3892	if (!cpus_share_cache(smp_processor_id(), cpu))
 3893		return true;
 3894
 3895	if (cpu == smp_processor_id())
 3896		return false;
 3897
 3898	/*
 3899	 * If the wakee cpu is idle, or the task is descheduling and the
 3900	 * only running task on the CPU, then use the wakelist to offload
 3901	 * the task activation to the idle (or soon-to-be-idle) CPU as
 3902	 * the current CPU is likely busy. nr_running is checked to
 3903	 * avoid unnecessary task stacking.
 3904	 *
 3905	 * Note that we can only get here with (wakee) p->on_rq=0,
 3906	 * p->on_cpu can be whatever, we've done the dequeue, so
 3907	 * the wakee has been accounted out of ->nr_running.
 3908	 */
 3909	if (!cpu_rq(cpu)->nr_running)
 3910		return true;
 3911
 3912	return false;
 3913}
 3914
 3915static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3916{
 3917	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
 
 
 
 3918		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
 3919		__ttwu_queue_wakelist(p, cpu, wake_flags);
 3920		return true;
 3921	}
 3922
 3923	return false;
 3924}
 3925
 3926#else /* !CONFIG_SMP */
 3927
 3928static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
 3929{
 3930	return false;
 3931}
 3932
 3933#endif /* CONFIG_SMP */
 3934
 3935static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
 3936{
 3937	struct rq *rq = cpu_rq(cpu);
 3938	struct rq_flags rf;
 3939
 3940	if (ttwu_queue_wakelist(p, cpu, wake_flags))
 3941		return;
 3942
 3943	rq_lock(rq, &rf);
 3944	update_rq_clock(rq);
 3945	ttwu_do_activate(rq, p, wake_flags, &rf);
 3946	rq_unlock(rq, &rf);
 3947}
 3948
 3949/*
 3950 * Invoked from try_to_wake_up() to check whether the task can be woken up.
 3951 *
 3952 * The caller holds p::pi_lock if p != current or has preemption
 3953 * disabled when p == current.
 3954 *
 3955 * The rules of PREEMPT_RT saved_state:
 3956 *
 3957 *   The related locking code always holds p::pi_lock when updating
 3958 *   p::saved_state, which means the code is fully serialized in both cases.
 3959 *
 3960 *   The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
 3961 *   bits set. This allows to distinguish all wakeup scenarios.
 3962 */
 3963static __always_inline
 3964bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
 3965{
 3966	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
 3967		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
 3968			     state != TASK_RTLOCK_WAIT);
 3969	}
 3970
 3971	if (READ_ONCE(p->__state) & state) {
 3972		*success = 1;
 3973		return true;
 3974	}
 3975
 3976#ifdef CONFIG_PREEMPT_RT
 3977	/*
 3978	 * Saved state preserves the task state across blocking on
 3979	 * an RT lock.  If the state matches, set p::saved_state to
 3980	 * TASK_RUNNING, but do not wake the task because it waits
 3981	 * for a lock wakeup. Also indicate success because from
 3982	 * the regular waker's point of view this has succeeded.
 3983	 *
 3984	 * After acquiring the lock the task will restore p::__state
 3985	 * from p::saved_state which ensures that the regular
 3986	 * wakeup is not lost. The restore will also set
 3987	 * p::saved_state to TASK_RUNNING so any further tests will
 3988	 * not result in false positives vs. @success
 3989	 */
 3990	if (p->saved_state & state) {
 3991		p->saved_state = TASK_RUNNING;
 3992		*success = 1;
 3993	}
 3994#endif
 3995	return false;
 3996}
 3997
 3998/*
 3999 * Notes on Program-Order guarantees on SMP systems.
 4000 *
 4001 *  MIGRATION
 4002 *
 4003 * The basic program-order guarantee on SMP systems is that when a task [t]
 4004 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
 4005 * execution on its new CPU [c1].
 4006 *
 4007 * For migration (of runnable tasks) this is provided by the following means:
 4008 *
 4009 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
 4010 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
 4011 *     rq(c1)->lock (if not at the same time, then in that order).
 4012 *  C) LOCK of the rq(c1)->lock scheduling in task
 4013 *
 4014 * Release/acquire chaining guarantees that B happens after A and C after B.
 4015 * Note: the CPU doing B need not be c0 or c1
 4016 *
 4017 * Example:
 4018 *
 4019 *   CPU0            CPU1            CPU2
 4020 *
 4021 *   LOCK rq(0)->lock
 4022 *   sched-out X
 4023 *   sched-in Y
 4024 *   UNLOCK rq(0)->lock
 4025 *
 4026 *                                   LOCK rq(0)->lock // orders against CPU0
 4027 *                                   dequeue X
 4028 *                                   UNLOCK rq(0)->lock
 4029 *
 4030 *                                   LOCK rq(1)->lock
 4031 *                                   enqueue X
 4032 *                                   UNLOCK rq(1)->lock
 4033 *
 4034 *                   LOCK rq(1)->lock // orders against CPU2
 4035 *                   sched-out Z
 4036 *                   sched-in X
 4037 *                   UNLOCK rq(1)->lock
 4038 *
 4039 *
 4040 *  BLOCKING -- aka. SLEEP + WAKEUP
 4041 *
 4042 * For blocking we (obviously) need to provide the same guarantee as for
 4043 * migration. However the means are completely different as there is no lock
 4044 * chain to provide order. Instead we do:
 4045 *
 4046 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
 4047 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
 4048 *
 4049 * Example:
 4050 *
 4051 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
 4052 *
 4053 *   LOCK rq(0)->lock LOCK X->pi_lock
 4054 *   dequeue X
 4055 *   sched-out X
 4056 *   smp_store_release(X->on_cpu, 0);
 4057 *
 4058 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
 4059 *                    X->state = WAKING
 4060 *                    set_task_cpu(X,2)
 4061 *
 4062 *                    LOCK rq(2)->lock
 4063 *                    enqueue X
 4064 *                    X->state = RUNNING
 4065 *                    UNLOCK rq(2)->lock
 4066 *
 4067 *                                          LOCK rq(2)->lock // orders against CPU1
 4068 *                                          sched-out Z
 4069 *                                          sched-in X
 4070 *                                          UNLOCK rq(2)->lock
 4071 *
 4072 *                    UNLOCK X->pi_lock
 4073 *   UNLOCK rq(0)->lock
 4074 *
 4075 *
 4076 * However, for wakeups there is a second guarantee we must provide, namely we
 4077 * must ensure that CONDITION=1 done by the caller can not be reordered with
 4078 * accesses to the task state; see try_to_wake_up() and set_current_state().
 4079 */
 4080
 4081/**
 4082 * try_to_wake_up - wake up a thread
 4083 * @p: the thread to be awakened
 4084 * @state: the mask of task states that can be woken
 4085 * @wake_flags: wake modifier flags (WF_*)
 4086 *
 4087 * Conceptually does:
 4088 *
 4089 *   If (@state & @p->state) @p->state = TASK_RUNNING.
 4090 *
 4091 * If the task was not queued/runnable, also place it back on a runqueue.
 4092 *
 4093 * This function is atomic against schedule() which would dequeue the task.
 4094 *
 4095 * It issues a full memory barrier before accessing @p->state, see the comment
 4096 * with set_current_state().
 4097 *
 4098 * Uses p->pi_lock to serialize against concurrent wake-ups.
 4099 *
 4100 * Relies on p->pi_lock stabilizing:
 4101 *  - p->sched_class
 4102 *  - p->cpus_ptr
 4103 *  - p->sched_task_group
 4104 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
 4105 *
 4106 * Tries really hard to only take one task_rq(p)->lock for performance.
 4107 * Takes rq->lock in:
 4108 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
 4109 *  - ttwu_queue()       -- new rq, for enqueue of the task;
 4110 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
 4111 *
 4112 * As a consequence we race really badly with just about everything. See the
 4113 * many memory barriers and their comments for details.
 4114 *
 4115 * Return: %true if @p->state changes (an actual wakeup was done),
 4116 *	   %false otherwise.
 4117 */
 4118static int
 4119try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
 4120{
 4121	unsigned long flags;
 4122	int cpu, success = 0;
 4123
 4124	preempt_disable();
 4125	if (p == current) {
 4126		/*
 4127		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
 4128		 * == smp_processor_id()'. Together this means we can special
 4129		 * case the whole 'p->on_rq && ttwu_runnable()' case below
 4130		 * without taking any locks.
 4131		 *
 4132		 * In particular:
 4133		 *  - we rely on Program-Order guarantees for all the ordering,
 4134		 *  - we're serialized against set_special_state() by virtue of
 4135		 *    it disabling IRQs (this allows not taking ->pi_lock).
 4136		 */
 4137		if (!ttwu_state_match(p, state, &success))
 4138			goto out;
 4139
 
 4140		trace_sched_waking(p);
 4141		WRITE_ONCE(p->__state, TASK_RUNNING);
 4142		trace_sched_wakeup(p);
 4143		goto out;
 4144	}
 4145
 4146	/*
 4147	 * If we are going to wake up a thread waiting for CONDITION we
 4148	 * need to ensure that CONDITION=1 done by the caller can not be
 4149	 * reordered with p->state check below. This pairs with smp_store_mb()
 4150	 * in set_current_state() that the waiting thread does.
 4151	 */
 4152	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4153	smp_mb__after_spinlock();
 4154	if (!ttwu_state_match(p, state, &success))
 4155		goto unlock;
 4156
 4157	trace_sched_waking(p);
 4158
 
 
 
 4159	/*
 4160	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
 4161	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
 4162	 * in smp_cond_load_acquire() below.
 4163	 *
 4164	 * sched_ttwu_pending()			try_to_wake_up()
 4165	 *   STORE p->on_rq = 1			  LOAD p->state
 4166	 *   UNLOCK rq->lock
 4167	 *
 4168	 * __schedule() (switch to task 'p')
 4169	 *   LOCK rq->lock			  smp_rmb();
 4170	 *   smp_mb__after_spinlock();
 4171	 *   UNLOCK rq->lock
 4172	 *
 4173	 * [task p]
 4174	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
 4175	 *
 4176	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4177	 * __schedule().  See the comment for smp_mb__after_spinlock().
 4178	 *
 4179	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
 4180	 */
 4181	smp_rmb();
 4182	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
 4183		goto unlock;
 4184
 
 
 
 
 
 4185#ifdef CONFIG_SMP
 4186	/*
 4187	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
 4188	 * possible to, falsely, observe p->on_cpu == 0.
 4189	 *
 4190	 * One must be running (->on_cpu == 1) in order to remove oneself
 4191	 * from the runqueue.
 4192	 *
 4193	 * __schedule() (switch to task 'p')	try_to_wake_up()
 4194	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
 4195	 *   UNLOCK rq->lock
 4196	 *
 4197	 * __schedule() (put 'p' to sleep)
 4198	 *   LOCK rq->lock			  smp_rmb();
 4199	 *   smp_mb__after_spinlock();
 4200	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
 4201	 *
 4202	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
 4203	 * __schedule().  See the comment for smp_mb__after_spinlock().
 4204	 *
 4205	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
 4206	 * schedule()'s deactivate_task() has 'happened' and p will no longer
 4207	 * care about it's own p->state. See the comment in __schedule().
 4208	 */
 4209	smp_acquire__after_ctrl_dep();
 4210
 4211	/*
 4212	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
 4213	 * == 0), which means we need to do an enqueue, change p->state to
 4214	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
 4215	 * enqueue, such as ttwu_queue_wakelist().
 4216	 */
 4217	WRITE_ONCE(p->__state, TASK_WAKING);
 4218
 4219	/*
 4220	 * If the owning (remote) CPU is still in the middle of schedule() with
 4221	 * this task as prev, considering queueing p on the remote CPUs wake_list
 4222	 * which potentially sends an IPI instead of spinning on p->on_cpu to
 4223	 * let the waker make forward progress. This is safe because IRQs are
 4224	 * disabled and the IPI will deliver after on_cpu is cleared.
 4225	 *
 4226	 * Ensure we load task_cpu(p) after p->on_cpu:
 4227	 *
 4228	 * set_task_cpu(p, cpu);
 4229	 *   STORE p->cpu = @cpu
 4230	 * __schedule() (switch to task 'p')
 4231	 *   LOCK rq->lock
 4232	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
 4233	 *   STORE p->on_cpu = 1		LOAD p->cpu
 4234	 *
 4235	 * to ensure we observe the correct CPU on which the task is currently
 4236	 * scheduling.
 4237	 */
 4238	if (smp_load_acquire(&p->on_cpu) &&
 4239	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
 4240		goto unlock;
 4241
 4242	/*
 4243	 * If the owning (remote) CPU is still in the middle of schedule() with
 4244	 * this task as prev, wait until it's done referencing the task.
 4245	 *
 4246	 * Pairs with the smp_store_release() in finish_task().
 4247	 *
 4248	 * This ensures that tasks getting woken will be fully ordered against
 4249	 * their previous state and preserve Program Order.
 4250	 */
 4251	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4252
 4253	cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
 4254	if (task_cpu(p) != cpu) {
 4255		if (p->in_iowait) {
 4256			delayacct_blkio_end(p);
 4257			atomic_dec(&task_rq(p)->nr_iowait);
 4258		}
 4259
 4260		wake_flags |= WF_MIGRATED;
 4261		psi_ttwu_dequeue(p);
 4262		set_task_cpu(p, cpu);
 4263	}
 4264#else
 4265	cpu = task_cpu(p);
 4266#endif /* CONFIG_SMP */
 4267
 4268	ttwu_queue(p, cpu, wake_flags);
 4269unlock:
 4270	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4271out:
 4272	if (success)
 4273		ttwu_stat(p, task_cpu(p), wake_flags);
 4274	preempt_enable();
 4275
 4276	return success;
 4277}
 4278
 4279static bool __task_needs_rq_lock(struct task_struct *p)
 4280{
 4281	unsigned int state = READ_ONCE(p->__state);
 4282
 4283	/*
 4284	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
 4285	 * the task is blocked. Make sure to check @state since ttwu() can drop
 4286	 * locks at the end, see ttwu_queue_wakelist().
 4287	 */
 4288	if (state == TASK_RUNNING || state == TASK_WAKING)
 4289		return true;
 4290
 4291	/*
 4292	 * Ensure we load p->on_rq after p->__state, otherwise it would be
 4293	 * possible to, falsely, observe p->on_rq == 0.
 4294	 *
 4295	 * See try_to_wake_up() for a longer comment.
 4296	 */
 4297	smp_rmb();
 4298	if (p->on_rq)
 4299		return true;
 4300
 4301#ifdef CONFIG_SMP
 4302	/*
 4303	 * Ensure the task has finished __schedule() and will not be referenced
 4304	 * anymore. Again, see try_to_wake_up() for a longer comment.
 4305	 */
 4306	smp_rmb();
 4307	smp_cond_load_acquire(&p->on_cpu, !VAL);
 4308#endif
 4309
 4310	return false;
 4311}
 4312
 4313/**
 4314 * task_call_func - Invoke a function on task in fixed state
 4315 * @p: Process for which the function is to be invoked, can be @current.
 4316 * @func: Function to invoke.
 4317 * @arg: Argument to function.
 4318 *
 4319 * Fix the task in it's current state by avoiding wakeups and or rq operations
 4320 * and call @func(@arg) on it.  This function can use ->on_rq and task_curr()
 4321 * to work out what the state is, if required.  Given that @func can be invoked
 4322 * with a runqueue lock held, it had better be quite lightweight.
 
 
 4323 *
 4324 * Returns:
 4325 *   Whatever @func returns
 
 
 4326 */
 4327int task_call_func(struct task_struct *p, task_call_f func, void *arg)
 4328{
 4329	struct rq *rq = NULL;
 4330	struct rq_flags rf;
 4331	int ret;
 4332
 4333	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4334
 4335	if (__task_needs_rq_lock(p))
 
 
 4336		rq = __task_rq_lock(p, &rf);
 4337
 4338	/*
 4339	 * At this point the task is pinned; either:
 4340	 *  - blocked and we're holding off wakeups	 (pi->lock)
 4341	 *  - woken, and we're holding off enqueue	 (rq->lock)
 4342	 *  - queued, and we're holding off schedule	 (rq->lock)
 4343	 *  - running, and we're holding off de-schedule (rq->lock)
 4344	 *
 4345	 * The called function (@func) can use: task_curr(), p->on_rq and
 4346	 * p->__state to differentiate between these states.
 4347	 */
 4348	ret = func(p, arg);
 4349
 4350	if (rq)
 4351		rq_unlock(rq, &rf);
 4352
 4353	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
 
 
 
 
 
 
 
 
 
 
 4354	return ret;
 4355}
 4356
 4357/**
 4358 * cpu_curr_snapshot - Return a snapshot of the currently running task
 4359 * @cpu: The CPU on which to snapshot the task.
 4360 *
 4361 * Returns the task_struct pointer of the task "currently" running on
 4362 * the specified CPU.  If the same task is running on that CPU throughout,
 4363 * the return value will be a pointer to that task's task_struct structure.
 4364 * If the CPU did any context switches even vaguely concurrently with the
 4365 * execution of this function, the return value will be a pointer to the
 4366 * task_struct structure of a randomly chosen task that was running on
 4367 * that CPU somewhere around the time that this function was executing.
 4368 *
 4369 * If the specified CPU was offline, the return value is whatever it
 4370 * is, perhaps a pointer to the task_struct structure of that CPU's idle
 4371 * task, but there is no guarantee.  Callers wishing a useful return
 4372 * value must take some action to ensure that the specified CPU remains
 4373 * online throughout.
 4374 *
 4375 * This function executes full memory barriers before and after fetching
 4376 * the pointer, which permits the caller to confine this function's fetch
 4377 * with respect to the caller's accesses to other shared variables.
 4378 */
 4379struct task_struct *cpu_curr_snapshot(int cpu)
 4380{
 4381	struct task_struct *t;
 4382
 4383	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4384	t = rcu_dereference(cpu_curr(cpu));
 4385	smp_mb(); /* Pairing determined by caller's synchronization design. */
 4386	return t;
 4387}
 4388
 4389/**
 4390 * wake_up_process - Wake up a specific process
 4391 * @p: The process to be woken up.
 4392 *
 4393 * Attempt to wake up the nominated process and move it to the set of runnable
 4394 * processes.
 4395 *
 4396 * Return: 1 if the process was woken up, 0 if it was already running.
 4397 *
 4398 * This function executes a full memory barrier before accessing the task state.
 4399 */
 4400int wake_up_process(struct task_struct *p)
 4401{
 4402	return try_to_wake_up(p, TASK_NORMAL, 0);
 4403}
 4404EXPORT_SYMBOL(wake_up_process);
 4405
 4406int wake_up_state(struct task_struct *p, unsigned int state)
 4407{
 4408	return try_to_wake_up(p, state, 0);
 4409}
 4410
 4411/*
 4412 * Perform scheduler related setup for a newly forked process p.
 4413 * p is forked by current.
 4414 *
 4415 * __sched_fork() is basic setup used by init_idle() too:
 4416 */
 4417static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
 4418{
 4419	p->on_rq			= 0;
 4420
 4421	p->se.on_rq			= 0;
 4422	p->se.exec_start		= 0;
 4423	p->se.sum_exec_runtime		= 0;
 4424	p->se.prev_sum_exec_runtime	= 0;
 4425	p->se.nr_migrations		= 0;
 4426	p->se.vruntime			= 0;
 4427	INIT_LIST_HEAD(&p->se.group_node);
 4428
 4429#ifdef CONFIG_FAIR_GROUP_SCHED
 4430	p->se.cfs_rq			= NULL;
 4431#endif
 4432
 4433#ifdef CONFIG_SCHEDSTATS
 4434	/* Even if schedstat is disabled, there should not be garbage */
 4435	memset(&p->stats, 0, sizeof(p->stats));
 4436#endif
 4437
 4438	RB_CLEAR_NODE(&p->dl.rb_node);
 4439	init_dl_task_timer(&p->dl);
 4440	init_dl_inactive_task_timer(&p->dl);
 4441	__dl_clear_params(p);
 4442
 4443	INIT_LIST_HEAD(&p->rt.run_list);
 4444	p->rt.timeout		= 0;
 4445	p->rt.time_slice	= sched_rr_timeslice;
 4446	p->rt.on_rq		= 0;
 4447	p->rt.on_list		= 0;
 4448
 4449#ifdef CONFIG_PREEMPT_NOTIFIERS
 4450	INIT_HLIST_HEAD(&p->preempt_notifiers);
 4451#endif
 4452
 4453#ifdef CONFIG_COMPACTION
 4454	p->capture_control = NULL;
 4455#endif
 4456	init_numa_balancing(clone_flags, p);
 4457#ifdef CONFIG_SMP
 4458	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 4459	p->migration_pending = NULL;
 4460#endif
 4461}
 4462
 4463DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
 4464
 4465#ifdef CONFIG_NUMA_BALANCING
 4466
 4467int sysctl_numa_balancing_mode;
 4468
 4469static void __set_numabalancing_state(bool enabled)
 4470{
 4471	if (enabled)
 4472		static_branch_enable(&sched_numa_balancing);
 4473	else
 4474		static_branch_disable(&sched_numa_balancing);
 4475}
 4476
 4477void set_numabalancing_state(bool enabled)
 4478{
 4479	if (enabled)
 4480		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
 4481	else
 4482		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
 4483	__set_numabalancing_state(enabled);
 4484}
 4485
 4486#ifdef CONFIG_PROC_SYSCTL
 4487static void reset_memory_tiering(void)
 4488{
 4489	struct pglist_data *pgdat;
 4490
 4491	for_each_online_pgdat(pgdat) {
 4492		pgdat->nbp_threshold = 0;
 4493		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
 4494		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
 4495	}
 4496}
 4497
 4498static int sysctl_numa_balancing(struct ctl_table *table, int write,
 4499			  void *buffer, size_t *lenp, loff_t *ppos)
 4500{
 4501	struct ctl_table t;
 4502	int err;
 4503	int state = sysctl_numa_balancing_mode;
 4504
 4505	if (write && !capable(CAP_SYS_ADMIN))
 4506		return -EPERM;
 4507
 4508	t = *table;
 4509	t.data = &state;
 4510	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4511	if (err < 0)
 4512		return err;
 4513	if (write) {
 4514		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
 4515		    (state & NUMA_BALANCING_MEMORY_TIERING))
 4516			reset_memory_tiering();
 4517		sysctl_numa_balancing_mode = state;
 4518		__set_numabalancing_state(state);
 4519	}
 4520	return err;
 4521}
 4522#endif
 4523#endif
 4524
 4525#ifdef CONFIG_SCHEDSTATS
 4526
 4527DEFINE_STATIC_KEY_FALSE(sched_schedstats);
 
 4528
 4529static void set_schedstats(bool enabled)
 4530{
 4531	if (enabled)
 4532		static_branch_enable(&sched_schedstats);
 4533	else
 4534		static_branch_disable(&sched_schedstats);
 4535}
 4536
 4537void force_schedstat_enabled(void)
 4538{
 4539	if (!schedstat_enabled()) {
 4540		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
 4541		static_branch_enable(&sched_schedstats);
 4542	}
 4543}
 4544
 4545static int __init setup_schedstats(char *str)
 4546{
 4547	int ret = 0;
 4548	if (!str)
 4549		goto out;
 4550
 
 
 
 
 
 4551	if (!strcmp(str, "enable")) {
 4552		set_schedstats(true);
 4553		ret = 1;
 4554	} else if (!strcmp(str, "disable")) {
 4555		set_schedstats(false);
 4556		ret = 1;
 4557	}
 4558out:
 4559	if (!ret)
 4560		pr_warn("Unable to parse schedstats=\n");
 4561
 4562	return ret;
 4563}
 4564__setup("schedstats=", setup_schedstats);
 4565
 
 
 
 
 
 4566#ifdef CONFIG_PROC_SYSCTL
 4567static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
 4568		size_t *lenp, loff_t *ppos)
 4569{
 4570	struct ctl_table t;
 4571	int err;
 4572	int state = static_branch_likely(&sched_schedstats);
 4573
 4574	if (write && !capable(CAP_SYS_ADMIN))
 4575		return -EPERM;
 4576
 4577	t = *table;
 4578	t.data = &state;
 4579	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
 4580	if (err < 0)
 4581		return err;
 4582	if (write)
 4583		set_schedstats(state);
 4584	return err;
 4585}
 4586#endif /* CONFIG_PROC_SYSCTL */
 
 
 4587#endif /* CONFIG_SCHEDSTATS */
 4588
 4589#ifdef CONFIG_SYSCTL
 4590static struct ctl_table sched_core_sysctls[] = {
 4591#ifdef CONFIG_SCHEDSTATS
 4592	{
 4593		.procname       = "sched_schedstats",
 4594		.data           = NULL,
 4595		.maxlen         = sizeof(unsigned int),
 4596		.mode           = 0644,
 4597		.proc_handler   = sysctl_schedstats,
 4598		.extra1         = SYSCTL_ZERO,
 4599		.extra2         = SYSCTL_ONE,
 4600	},
 4601#endif /* CONFIG_SCHEDSTATS */
 4602#ifdef CONFIG_UCLAMP_TASK
 4603	{
 4604		.procname       = "sched_util_clamp_min",
 4605		.data           = &sysctl_sched_uclamp_util_min,
 4606		.maxlen         = sizeof(unsigned int),
 4607		.mode           = 0644,
 4608		.proc_handler   = sysctl_sched_uclamp_handler,
 4609	},
 4610	{
 4611		.procname       = "sched_util_clamp_max",
 4612		.data           = &sysctl_sched_uclamp_util_max,
 4613		.maxlen         = sizeof(unsigned int),
 4614		.mode           = 0644,
 4615		.proc_handler   = sysctl_sched_uclamp_handler,
 4616	},
 4617	{
 4618		.procname       = "sched_util_clamp_min_rt_default",
 4619		.data           = &sysctl_sched_uclamp_util_min_rt_default,
 4620		.maxlen         = sizeof(unsigned int),
 4621		.mode           = 0644,
 4622		.proc_handler   = sysctl_sched_uclamp_handler,
 4623	},
 4624#endif /* CONFIG_UCLAMP_TASK */
 4625#ifdef CONFIG_NUMA_BALANCING
 4626	{
 4627		.procname	= "numa_balancing",
 4628		.data		= NULL, /* filled in by handler */
 4629		.maxlen		= sizeof(unsigned int),
 4630		.mode		= 0644,
 4631		.proc_handler	= sysctl_numa_balancing,
 4632		.extra1		= SYSCTL_ZERO,
 4633		.extra2		= SYSCTL_FOUR,
 4634	},
 4635#endif /* CONFIG_NUMA_BALANCING */
 4636	{}
 4637};
 4638static int __init sched_core_sysctl_init(void)
 4639{
 4640	register_sysctl_init("kernel", sched_core_sysctls);
 4641	return 0;
 4642}
 4643late_initcall(sched_core_sysctl_init);
 4644#endif /* CONFIG_SYSCTL */
 4645
 4646/*
 4647 * fork()/clone()-time setup:
 4648 */
 4649int sched_fork(unsigned long clone_flags, struct task_struct *p)
 4650{
 
 
 4651	__sched_fork(clone_flags, p);
 4652	/*
 4653	 * We mark the process as NEW here. This guarantees that
 4654	 * nobody will actually run it, and a signal or other external
 4655	 * event cannot wake it up and insert it on the runqueue either.
 4656	 */
 4657	p->__state = TASK_NEW;
 4658
 4659	/*
 4660	 * Make sure we do not leak PI boosting priority to the child.
 4661	 */
 4662	p->prio = current->normal_prio;
 4663
 4664	uclamp_fork(p);
 4665
 4666	/*
 4667	 * Revert to default priority/policy on fork if requested.
 4668	 */
 4669	if (unlikely(p->sched_reset_on_fork)) {
 4670		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 4671			p->policy = SCHED_NORMAL;
 4672			p->static_prio = NICE_TO_PRIO(0);
 4673			p->rt_priority = 0;
 4674		} else if (PRIO_TO_NICE(p->static_prio) < 0)
 4675			p->static_prio = NICE_TO_PRIO(0);
 4676
 4677		p->prio = p->normal_prio = p->static_prio;
 4678		set_load_weight(p, false);
 4679
 4680		/*
 4681		 * We don't need the reset flag anymore after the fork. It has
 4682		 * fulfilled its duty:
 4683		 */
 4684		p->sched_reset_on_fork = 0;
 4685	}
 4686
 4687	if (dl_prio(p->prio))
 4688		return -EAGAIN;
 4689	else if (rt_prio(p->prio))
 4690		p->sched_class = &rt_sched_class;
 4691	else
 4692		p->sched_class = &fair_sched_class;
 4693
 4694	init_entity_runnable_average(&p->se);
 4695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4696
 4697#ifdef CONFIG_SCHED_INFO
 4698	if (likely(sched_info_on()))
 4699		memset(&p->sched_info, 0, sizeof(p->sched_info));
 4700#endif
 4701#if defined(CONFIG_SMP)
 4702	p->on_cpu = 0;
 4703#endif
 4704	init_task_preempt_count(p);
 4705#ifdef CONFIG_SMP
 4706	plist_node_init(&p->pushable_tasks, MAX_PRIO);
 4707	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 4708#endif
 4709	return 0;
 4710}
 4711
 4712void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
 4713{
 4714	unsigned long flags;
 4715
 4716	/*
 4717	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
 4718	 * required yet, but lockdep gets upset if rules are violated.
 4719	 */
 4720	raw_spin_lock_irqsave(&p->pi_lock, flags);
 4721#ifdef CONFIG_CGROUP_SCHED
 4722	if (1) {
 4723		struct task_group *tg;
 4724		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
 4725				  struct task_group, css);
 4726		tg = autogroup_task_group(p, tg);
 4727		p->sched_task_group = tg;
 4728	}
 4729#endif
 4730	rseq_migrate(p);
 4731	/*
 4732	 * We're setting the CPU for the first time, we don't migrate,
 4733	 * so use __set_task_cpu().
 4734	 */
 4735	__set_task_cpu(p, smp_processor_id());
 4736	if (p->sched_class->task_fork)
 4737		p->sched_class->task_fork(p);
 4738	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 4739}
 4740
 4741void sched_post_fork(struct task_struct *p)
 4742{
 4743	uclamp_post_fork(p);
 4744}
 4745
 4746unsigned long to_ratio(u64 period, u64 runtime)
 4747{
 4748	if (runtime == RUNTIME_INF)
 4749		return BW_UNIT;
 4750
 4751	/*
 4752	 * Doing this here saves a lot of checks in all
 4753	 * the calling paths, and returning zero seems
 4754	 * safe for them anyway.
 4755	 */
 4756	if (period == 0)
 4757		return 0;
 4758
 4759	return div64_u64(runtime << BW_SHIFT, period);
 4760}
 4761
 4762/*
 4763 * wake_up_new_task - wake up a newly created task for the first time.
 4764 *
 4765 * This function will do some initial scheduler statistics housekeeping
 4766 * that must be done for every newly created context, then puts the task
 4767 * on the runqueue and wakes it.
 4768 */
 4769void wake_up_new_task(struct task_struct *p)
 4770{
 4771	struct rq_flags rf;
 4772	struct rq *rq;
 4773
 4774	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
 4775	WRITE_ONCE(p->__state, TASK_RUNNING);
 4776#ifdef CONFIG_SMP
 4777	/*
 4778	 * Fork balancing, do it here and not earlier because:
 4779	 *  - cpus_ptr can change in the fork path
 4780	 *  - any previously selected CPU might disappear through hotplug
 4781	 *
 4782	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
 4783	 * as we're not fully set-up yet.
 4784	 */
 4785	p->recent_used_cpu = task_cpu(p);
 4786	rseq_migrate(p);
 4787	__set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
 4788#endif
 4789	rq = __task_rq_lock(p, &rf);
 4790	update_rq_clock(rq);
 4791	post_init_entity_util_avg(p);
 4792
 4793	activate_task(rq, p, ENQUEUE_NOCLOCK);
 4794	trace_sched_wakeup_new(p);
 4795	check_preempt_curr(rq, p, WF_FORK);
 4796#ifdef CONFIG_SMP
 4797	if (p->sched_class->task_woken) {
 4798		/*
 4799		 * Nothing relies on rq->lock after this, so it's fine to
 4800		 * drop it.
 4801		 */
 4802		rq_unpin_lock(rq, &rf);
 4803		p->sched_class->task_woken(rq, p);
 4804		rq_repin_lock(rq, &rf);
 4805	}
 4806#endif
 4807	task_rq_unlock(rq, p, &rf);
 4808}
 4809
 4810#ifdef CONFIG_PREEMPT_NOTIFIERS
 4811
 4812static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
 4813
 4814void preempt_notifier_inc(void)
 4815{
 4816	static_branch_inc(&preempt_notifier_key);
 4817}
 4818EXPORT_SYMBOL_GPL(preempt_notifier_inc);
 4819
 4820void preempt_notifier_dec(void)
 4821{
 4822	static_branch_dec(&preempt_notifier_key);
 4823}
 4824EXPORT_SYMBOL_GPL(preempt_notifier_dec);
 4825
 4826/**
 4827 * preempt_notifier_register - tell me when current is being preempted & rescheduled
 4828 * @notifier: notifier struct to register
 4829 */
 4830void preempt_notifier_register(struct preempt_notifier *notifier)
 4831{
 4832	if (!static_branch_unlikely(&preempt_notifier_key))
 4833		WARN(1, "registering preempt_notifier while notifiers disabled\n");
 4834
 4835	hlist_add_head(&notifier->link, &current->preempt_notifiers);
 4836}
 4837EXPORT_SYMBOL_GPL(preempt_notifier_register);
 4838
 4839/**
 4840 * preempt_notifier_unregister - no longer interested in preemption notifications
 4841 * @notifier: notifier struct to unregister
 4842 *
 4843 * This is *not* safe to call from within a preemption notifier.
 4844 */
 4845void preempt_notifier_unregister(struct preempt_notifier *notifier)
 4846{
 4847	hlist_del(&notifier->link);
 4848}
 4849EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
 4850
 4851static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4852{
 4853	struct preempt_notifier *notifier;
 4854
 4855	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4856		notifier->ops->sched_in(notifier, raw_smp_processor_id());
 4857}
 4858
 4859static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4860{
 4861	if (static_branch_unlikely(&preempt_notifier_key))
 4862		__fire_sched_in_preempt_notifiers(curr);
 4863}
 4864
 4865static void
 4866__fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4867				   struct task_struct *next)
 4868{
 4869	struct preempt_notifier *notifier;
 4870
 4871	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
 4872		notifier->ops->sched_out(notifier, next);
 4873}
 4874
 4875static __always_inline void
 4876fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4877				 struct task_struct *next)
 4878{
 4879	if (static_branch_unlikely(&preempt_notifier_key))
 4880		__fire_sched_out_preempt_notifiers(curr, next);
 4881}
 4882
 4883#else /* !CONFIG_PREEMPT_NOTIFIERS */
 4884
 4885static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
 4886{
 4887}
 4888
 4889static inline void
 4890fire_sched_out_preempt_notifiers(struct task_struct *curr,
 4891				 struct task_struct *next)
 4892{
 4893}
 4894
 4895#endif /* CONFIG_PREEMPT_NOTIFIERS */
 4896
 4897static inline void prepare_task(struct task_struct *next)
 4898{
 4899#ifdef CONFIG_SMP
 4900	/*
 4901	 * Claim the task as running, we do this before switching to it
 4902	 * such that any running task will have this set.
 4903	 *
 4904	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
 4905	 * its ordering comment.
 4906	 */
 4907	WRITE_ONCE(next->on_cpu, 1);
 4908#endif
 4909}
 4910
 4911static inline void finish_task(struct task_struct *prev)
 4912{
 4913#ifdef CONFIG_SMP
 4914	/*
 4915	 * This must be the very last reference to @prev from this CPU. After
 4916	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
 4917	 * must ensure this doesn't happen until the switch is completely
 4918	 * finished.
 4919	 *
 4920	 * In particular, the load of prev->state in finish_task_switch() must
 4921	 * happen before this.
 4922	 *
 4923	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
 4924	 */
 4925	smp_store_release(&prev->on_cpu, 0);
 4926#endif
 4927}
 4928
 4929#ifdef CONFIG_SMP
 4930
 4931static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
 4932{
 4933	void (*func)(struct rq *rq);
 4934	struct balance_callback *next;
 4935
 4936	lockdep_assert_rq_held(rq);
 4937
 4938	while (head) {
 4939		func = (void (*)(struct rq *))head->func;
 4940		next = head->next;
 4941		head->next = NULL;
 4942		head = next;
 4943
 4944		func(rq);
 4945	}
 4946}
 4947
 4948static void balance_push(struct rq *rq);
 4949
 4950/*
 4951 * balance_push_callback is a right abuse of the callback interface and plays
 4952 * by significantly different rules.
 4953 *
 4954 * Where the normal balance_callback's purpose is to be ran in the same context
 4955 * that queued it (only later, when it's safe to drop rq->lock again),
 4956 * balance_push_callback is specifically targeted at __schedule().
 4957 *
 4958 * This abuse is tolerated because it places all the unlikely/odd cases behind
 4959 * a single test, namely: rq->balance_callback == NULL.
 4960 */
 4961struct balance_callback balance_push_callback = {
 4962	.next = NULL,
 4963	.func = balance_push,
 4964};
 4965
 4966static inline struct balance_callback *
 4967__splice_balance_callbacks(struct rq *rq, bool split)
 4968{
 4969	struct balance_callback *head = rq->balance_callback;
 4970
 4971	if (likely(!head))
 4972		return NULL;
 4973
 4974	lockdep_assert_rq_held(rq);
 4975	/*
 4976	 * Must not take balance_push_callback off the list when
 4977	 * splice_balance_callbacks() and balance_callbacks() are not
 4978	 * in the same rq->lock section.
 4979	 *
 4980	 * In that case it would be possible for __schedule() to interleave
 4981	 * and observe the list empty.
 4982	 */
 4983	if (split && head == &balance_push_callback)
 4984		head = NULL;
 4985	else
 4986		rq->balance_callback = NULL;
 4987
 4988	return head;
 4989}
 4990
 4991static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 4992{
 4993	return __splice_balance_callbacks(rq, true);
 4994}
 4995
 4996static void __balance_callbacks(struct rq *rq)
 4997{
 4998	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
 4999}
 5000
 5001static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5002{
 5003	unsigned long flags;
 5004
 5005	if (unlikely(head)) {
 5006		raw_spin_rq_lock_irqsave(rq, flags);
 5007		do_balance_callbacks(rq, head);
 5008		raw_spin_rq_unlock_irqrestore(rq, flags);
 5009	}
 5010}
 5011
 5012#else
 5013
 5014static inline void __balance_callbacks(struct rq *rq)
 5015{
 5016}
 5017
 5018static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
 5019{
 5020	return NULL;
 5021}
 5022
 5023static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
 5024{
 5025}
 5026
 5027#endif
 5028
 5029static inline void
 5030prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
 5031{
 5032	/*
 5033	 * Since the runqueue lock will be released by the next
 5034	 * task (which is an invalid locking op but in the case
 5035	 * of the scheduler it's an obvious special-case), so we
 5036	 * do an early lockdep release here:
 5037	 */
 5038	rq_unpin_lock(rq, rf);
 5039	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
 5040#ifdef CONFIG_DEBUG_SPINLOCK
 5041	/* this is a valid case when another task releases the spinlock */
 5042	rq_lockp(rq)->owner = next;
 5043#endif
 5044}
 5045
 5046static inline void finish_lock_switch(struct rq *rq)
 5047{
 5048	/*
 5049	 * If we are tracking spinlock dependencies then we have to
 5050	 * fix up the runqueue lock - which gets 'carried over' from
 5051	 * prev into current:
 5052	 */
 5053	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
 5054	__balance_callbacks(rq);
 5055	raw_spin_rq_unlock_irq(rq);
 5056}
 5057
 5058/*
 5059 * NOP if the arch has not defined these:
 5060 */
 5061
 5062#ifndef prepare_arch_switch
 5063# define prepare_arch_switch(next)	do { } while (0)
 5064#endif
 5065
 5066#ifndef finish_arch_post_lock_switch
 5067# define finish_arch_post_lock_switch()	do { } while (0)
 5068#endif
 5069
 5070static inline void kmap_local_sched_out(void)
 5071{
 5072#ifdef CONFIG_KMAP_LOCAL
 5073	if (unlikely(current->kmap_ctrl.idx))
 5074		__kmap_local_sched_out();
 5075#endif
 5076}
 5077
 5078static inline void kmap_local_sched_in(void)
 5079{
 5080#ifdef CONFIG_KMAP_LOCAL
 5081	if (unlikely(current->kmap_ctrl.idx))
 5082		__kmap_local_sched_in();
 5083#endif
 5084}
 5085
 5086/**
 5087 * prepare_task_switch - prepare to switch tasks
 5088 * @rq: the runqueue preparing to switch
 5089 * @prev: the current task that is being switched out
 5090 * @next: the task we are going to switch to.
 5091 *
 5092 * This is called with the rq lock held and interrupts off. It must
 5093 * be paired with a subsequent finish_task_switch after the context
 5094 * switch.
 5095 *
 5096 * prepare_task_switch sets up locking and calls architecture specific
 5097 * hooks.
 5098 */
 5099static inline void
 5100prepare_task_switch(struct rq *rq, struct task_struct *prev,
 5101		    struct task_struct *next)
 5102{
 5103	kcov_prepare_switch(prev);
 5104	sched_info_switch(rq, prev, next);
 5105	perf_event_task_sched_out(prev, next);
 5106	rseq_preempt(prev);
 5107	fire_sched_out_preempt_notifiers(prev, next);
 5108	kmap_local_sched_out();
 5109	prepare_task(next);
 5110	prepare_arch_switch(next);
 5111}
 5112
 5113/**
 5114 * finish_task_switch - clean up after a task-switch
 5115 * @prev: the thread we just switched away from.
 5116 *
 5117 * finish_task_switch must be called after the context switch, paired
 5118 * with a prepare_task_switch call before the context switch.
 5119 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 5120 * and do any other architecture-specific cleanup actions.
 5121 *
 5122 * Note that we may have delayed dropping an mm in context_switch(). If
 5123 * so, we finish that here outside of the runqueue lock. (Doing it
 5124 * with the lock held can cause deadlocks; see schedule() for
 5125 * details.)
 5126 *
 5127 * The context switch have flipped the stack from under us and restored the
 5128 * local variables which were saved when this task called schedule() in the
 5129 * past. prev == current is still correct but we need to recalculate this_rq
 5130 * because prev may have moved to another CPU.
 5131 */
 5132static struct rq *finish_task_switch(struct task_struct *prev)
 5133	__releases(rq->lock)
 5134{
 5135	struct rq *rq = this_rq();
 5136	struct mm_struct *mm = rq->prev_mm;
 5137	unsigned int prev_state;
 5138
 5139	/*
 5140	 * The previous task will have left us with a preempt_count of 2
 5141	 * because it left us after:
 5142	 *
 5143	 *	schedule()
 5144	 *	  preempt_disable();			// 1
 5145	 *	  __schedule()
 5146	 *	    raw_spin_lock_irq(&rq->lock)	// 2
 5147	 *
 5148	 * Also, see FORK_PREEMPT_COUNT.
 5149	 */
 5150	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
 5151		      "corrupted preempt_count: %s/%d/0x%x\n",
 5152		      current->comm, current->pid, preempt_count()))
 5153		preempt_count_set(FORK_PREEMPT_COUNT);
 5154
 5155	rq->prev_mm = NULL;
 5156
 5157	/*
 5158	 * A task struct has one reference for the use as "current".
 5159	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
 5160	 * schedule one last time. The schedule call will never return, and
 5161	 * the scheduled task must drop that reference.
 5162	 *
 5163	 * We must observe prev->state before clearing prev->on_cpu (in
 5164	 * finish_task), otherwise a concurrent wakeup can get prev
 5165	 * running on another CPU and we could rave with its RUNNING -> DEAD
 5166	 * transition, resulting in a double drop.
 5167	 */
 5168	prev_state = READ_ONCE(prev->__state);
 5169	vtime_task_switch(prev);
 5170	perf_event_task_sched_in(prev, current);
 5171	finish_task(prev);
 5172	tick_nohz_task_switch();
 5173	finish_lock_switch(rq);
 5174	finish_arch_post_lock_switch();
 5175	kcov_finish_switch(current);
 5176	/*
 5177	 * kmap_local_sched_out() is invoked with rq::lock held and
 5178	 * interrupts disabled. There is no requirement for that, but the
 5179	 * sched out code does not have an interrupt enabled section.
 5180	 * Restoring the maps on sched in does not require interrupts being
 5181	 * disabled either.
 5182	 */
 5183	kmap_local_sched_in();
 5184
 5185	fire_sched_in_preempt_notifiers(current);
 5186	/*
 5187	 * When switching through a kernel thread, the loop in
 5188	 * membarrier_{private,global}_expedited() may have observed that
 5189	 * kernel thread and not issued an IPI. It is therefore possible to
 5190	 * schedule between user->kernel->user threads without passing though
 5191	 * switch_mm(). Membarrier requires a barrier after storing to
 5192	 * rq->curr, before returning to userspace, so provide them here:
 5193	 *
 5194	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
 5195	 *   provided by mmdrop(),
 5196	 * - a sync_core for SYNC_CORE.
 5197	 */
 5198	if (mm) {
 5199		membarrier_mm_sync_core_before_usermode(mm);
 5200		mmdrop_sched(mm);
 5201	}
 5202	if (unlikely(prev_state == TASK_DEAD)) {
 5203		if (prev->sched_class->task_dead)
 5204			prev->sched_class->task_dead(prev);
 5205
 
 
 
 
 
 
 5206		/* Task is done with its stack. */
 5207		put_task_stack(prev);
 5208
 5209		put_task_struct_rcu_user(prev);
 5210	}
 5211
 
 5212	return rq;
 5213}
 5214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5215/**
 5216 * schedule_tail - first thing a freshly forked thread must call.
 5217 * @prev: the thread we just switched away from.
 5218 */
 5219asmlinkage __visible void schedule_tail(struct task_struct *prev)
 5220	__releases(rq->lock)
 5221{
 
 
 5222	/*
 5223	 * New tasks start with FORK_PREEMPT_COUNT, see there and
 5224	 * finish_task_switch() for details.
 5225	 *
 5226	 * finish_task_switch() will drop rq->lock() and lower preempt_count
 5227	 * and the preempt_enable() will end up enabling preemption (on
 5228	 * PREEMPT_COUNT kernels).
 5229	 */
 5230
 5231	finish_task_switch(prev);
 
 5232	preempt_enable();
 5233
 5234	if (current->set_child_tid)
 5235		put_user(task_pid_vnr(current), current->set_child_tid);
 5236
 5237	calculate_sigpending();
 5238}
 5239
 5240/*
 5241 * context_switch - switch to the new MM and the new thread's register state.
 5242 */
 5243static __always_inline struct rq *
 5244context_switch(struct rq *rq, struct task_struct *prev,
 5245	       struct task_struct *next, struct rq_flags *rf)
 5246{
 5247	prepare_task_switch(rq, prev, next);
 5248
 5249	/*
 5250	 * For paravirt, this is coupled with an exit in switch_to to
 5251	 * combine the page table reload and the switch backend into
 5252	 * one hypercall.
 5253	 */
 5254	arch_start_context_switch(prev);
 5255
 5256	/*
 5257	 * kernel -> kernel   lazy + transfer active
 5258	 *   user -> kernel   lazy + mmgrab() active
 5259	 *
 5260	 * kernel ->   user   switch + mmdrop() active
 5261	 *   user ->   user   switch
 5262	 */
 5263	if (!next->mm) {                                // to kernel
 5264		enter_lazy_tlb(prev->active_mm, next);
 5265
 5266		next->active_mm = prev->active_mm;
 5267		if (prev->mm)                           // from user
 5268			mmgrab(prev->active_mm);
 5269		else
 5270			prev->active_mm = NULL;
 5271	} else {                                        // to user
 5272		membarrier_switch_mm(rq, prev->active_mm, next->mm);
 5273		/*
 5274		 * sys_membarrier() requires an smp_mb() between setting
 5275		 * rq->curr / membarrier_switch_mm() and returning to userspace.
 5276		 *
 5277		 * The below provides this either through switch_mm(), or in
 5278		 * case 'prev->active_mm == next->mm' through
 5279		 * finish_task_switch()'s mmdrop().
 5280		 */
 5281		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 5282		lru_gen_use_mm(next->mm);
 5283
 5284		if (!prev->mm) {                        // from kernel
 5285			/* will mmdrop() in finish_task_switch(). */
 5286			rq->prev_mm = prev->active_mm;
 5287			prev->active_mm = NULL;
 5288		}
 5289	}
 5290
 5291	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 5292
 5293	prepare_lock_switch(rq, next, rf);
 5294
 5295	/* Here we just switch the register state and the stack. */
 5296	switch_to(prev, next, prev);
 5297	barrier();
 5298
 5299	return finish_task_switch(prev);
 5300}
 5301
 5302/*
 5303 * nr_running and nr_context_switches:
 5304 *
 5305 * externally visible scheduler statistics: current number of runnable
 5306 * threads, total number of context switches performed since bootup.
 5307 */
 5308unsigned int nr_running(void)
 5309{
 5310	unsigned int i, sum = 0;
 5311
 5312	for_each_online_cpu(i)
 5313		sum += cpu_rq(i)->nr_running;
 5314
 5315	return sum;
 5316}
 5317
 5318/*
 5319 * Check if only the current task is running on the CPU.
 5320 *
 5321 * Caution: this function does not check that the caller has disabled
 5322 * preemption, thus the result might have a time-of-check-to-time-of-use
 5323 * race.  The caller is responsible to use it correctly, for example:
 5324 *
 5325 * - from a non-preemptible section (of course)
 5326 *
 5327 * - from a thread that is bound to a single CPU
 5328 *
 5329 * - in a loop with very short iterations (e.g. a polling loop)
 5330 */
 5331bool single_task_running(void)
 5332{
 5333	return raw_rq()->nr_running == 1;
 5334}
 5335EXPORT_SYMBOL(single_task_running);
 5336
 5337unsigned long long nr_context_switches(void)
 5338{
 5339	int i;
 5340	unsigned long long sum = 0;
 5341
 5342	for_each_possible_cpu(i)
 5343		sum += cpu_rq(i)->nr_switches;
 5344
 5345	return sum;
 5346}
 5347
 5348/*
 5349 * Consumers of these two interfaces, like for example the cpuidle menu
 5350 * governor, are using nonsensical data. Preferring shallow idle state selection
 5351 * for a CPU that has IO-wait which might not even end up running the task when
 5352 * it does become runnable.
 5353 */
 5354
 5355unsigned int nr_iowait_cpu(int cpu)
 5356{
 5357	return atomic_read(&cpu_rq(cpu)->nr_iowait);
 5358}
 5359
 5360/*
 5361 * IO-wait accounting, and how it's mostly bollocks (on SMP).
 5362 *
 5363 * The idea behind IO-wait account is to account the idle time that we could
 5364 * have spend running if it were not for IO. That is, if we were to improve the
 5365 * storage performance, we'd have a proportional reduction in IO-wait time.
 5366 *
 5367 * This all works nicely on UP, where, when a task blocks on IO, we account
 5368 * idle time as IO-wait, because if the storage were faster, it could've been
 5369 * running and we'd not be idle.
 5370 *
 5371 * This has been extended to SMP, by doing the same for each CPU. This however
 5372 * is broken.
 5373 *
 5374 * Imagine for instance the case where two tasks block on one CPU, only the one
 5375 * CPU will have IO-wait accounted, while the other has regular idle. Even
 5376 * though, if the storage were faster, both could've ran at the same time,
 5377 * utilising both CPUs.
 5378 *
 5379 * This means, that when looking globally, the current IO-wait accounting on
 5380 * SMP is a lower bound, by reason of under accounting.
 5381 *
 5382 * Worse, since the numbers are provided per CPU, they are sometimes
 5383 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
 5384 * associated with any one particular CPU, it can wake to another CPU than it
 5385 * blocked on. This means the per CPU IO-wait number is meaningless.
 5386 *
 5387 * Task CPU affinities can make all that even more 'interesting'.
 5388 */
 5389
 5390unsigned int nr_iowait(void)
 5391{
 5392	unsigned int i, sum = 0;
 5393
 5394	for_each_possible_cpu(i)
 5395		sum += nr_iowait_cpu(i);
 5396
 5397	return sum;
 5398}
 5399
 5400#ifdef CONFIG_SMP
 5401
 5402/*
 5403 * sched_exec - execve() is a valuable balancing opportunity, because at
 5404 * this point the task has the smallest effective memory and cache footprint.
 5405 */
 5406void sched_exec(void)
 5407{
 5408	struct task_struct *p = current;
 5409	unsigned long flags;
 5410	int dest_cpu;
 5411
 5412	raw_spin_lock_irqsave(&p->pi_lock, flags);
 5413	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
 5414	if (dest_cpu == smp_processor_id())
 5415		goto unlock;
 5416
 5417	if (likely(cpu_active(dest_cpu))) {
 5418		struct migration_arg arg = { p, dest_cpu };
 5419
 5420		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5421		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
 5422		return;
 5423	}
 5424unlock:
 5425	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 5426}
 5427
 5428#endif
 5429
 5430DEFINE_PER_CPU(struct kernel_stat, kstat);
 5431DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
 5432
 5433EXPORT_PER_CPU_SYMBOL(kstat);
 5434EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
 5435
 5436/*
 5437 * The function fair_sched_class.update_curr accesses the struct curr
 5438 * and its field curr->exec_start; when called from task_sched_runtime(),
 5439 * we observe a high rate of cache misses in practice.
 5440 * Prefetching this data results in improved performance.
 5441 */
 5442static inline void prefetch_curr_exec_start(struct task_struct *p)
 5443{
 5444#ifdef CONFIG_FAIR_GROUP_SCHED
 5445	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
 5446#else
 5447	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
 5448#endif
 5449	prefetch(curr);
 5450	prefetch(&curr->exec_start);
 5451}
 5452
 5453/*
 5454 * Return accounted runtime for the task.
 5455 * In case the task is currently running, return the runtime plus current's
 5456 * pending runtime that have not been accounted yet.
 5457 */
 5458unsigned long long task_sched_runtime(struct task_struct *p)
 5459{
 5460	struct rq_flags rf;
 5461	struct rq *rq;
 5462	u64 ns;
 5463
 5464#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
 5465	/*
 5466	 * 64-bit doesn't need locks to atomically read a 64-bit value.
 5467	 * So we have a optimization chance when the task's delta_exec is 0.
 5468	 * Reading ->on_cpu is racy, but this is ok.
 5469	 *
 5470	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
 5471	 * If we race with it entering CPU, unaccounted time is 0. This is
 5472	 * indistinguishable from the read occurring a few cycles earlier.
 5473	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
 5474	 * been accounted, so we're correct here as well.
 5475	 */
 5476	if (!p->on_cpu || !task_on_rq_queued(p))
 5477		return p->se.sum_exec_runtime;
 5478#endif
 5479
 5480	rq = task_rq_lock(p, &rf);
 5481	/*
 5482	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
 5483	 * project cycles that may never be accounted to this
 5484	 * thread, breaking clock_gettime().
 5485	 */
 5486	if (task_current(rq, p) && task_on_rq_queued(p)) {
 5487		prefetch_curr_exec_start(p);
 5488		update_rq_clock(rq);
 5489		p->sched_class->update_curr(rq);
 5490	}
 5491	ns = p->se.sum_exec_runtime;
 5492	task_rq_unlock(rq, p, &rf);
 5493
 5494	return ns;
 5495}
 5496
 5497#ifdef CONFIG_SCHED_DEBUG
 5498static u64 cpu_resched_latency(struct rq *rq)
 5499{
 5500	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
 5501	u64 resched_latency, now = rq_clock(rq);
 5502	static bool warned_once;
 5503
 5504	if (sysctl_resched_latency_warn_once && warned_once)
 5505		return 0;
 5506
 5507	if (!need_resched() || !latency_warn_ms)
 5508		return 0;
 5509
 5510	if (system_state == SYSTEM_BOOTING)
 5511		return 0;
 5512
 5513	if (!rq->last_seen_need_resched_ns) {
 5514		rq->last_seen_need_resched_ns = now;
 5515		rq->ticks_without_resched = 0;
 5516		return 0;
 5517	}
 5518
 5519	rq->ticks_without_resched++;
 5520	resched_latency = now - rq->last_seen_need_resched_ns;
 5521	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
 5522		return 0;
 5523
 5524	warned_once = true;
 5525
 5526	return resched_latency;
 5527}
 5528
 5529static int __init setup_resched_latency_warn_ms(char *str)
 5530{
 5531	long val;
 5532
 5533	if ((kstrtol(str, 0, &val))) {
 5534		pr_warn("Unable to set resched_latency_warn_ms\n");
 5535		return 1;
 5536	}
 5537
 5538	sysctl_resched_latency_warn_ms = val;
 5539	return 1;
 5540}
 5541__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
 5542#else
 5543static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
 5544#endif /* CONFIG_SCHED_DEBUG */
 5545
 5546/*
 5547 * This function gets called by the timer code, with HZ frequency.
 5548 * We call it with interrupts disabled.
 5549 */
 5550void scheduler_tick(void)
 5551{
 5552	int cpu = smp_processor_id();
 5553	struct rq *rq = cpu_rq(cpu);
 5554	struct task_struct *curr = rq->curr;
 5555	struct rq_flags rf;
 5556	unsigned long thermal_pressure;
 5557	u64 resched_latency;
 5558
 5559	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5560		arch_scale_freq_tick();
 5561
 
 5562	sched_clock_tick();
 5563
 5564	rq_lock(rq, &rf);
 5565
 5566	update_rq_clock(rq);
 5567	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
 5568	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
 5569	curr->sched_class->task_tick(rq, curr, 0);
 5570	if (sched_feat(LATENCY_WARN))
 5571		resched_latency = cpu_resched_latency(rq);
 5572	calc_global_load_tick(rq);
 5573	sched_core_tick(rq);
 5574
 5575	rq_unlock(rq, &rf);
 5576
 5577	if (sched_feat(LATENCY_WARN) && resched_latency)
 5578		resched_latency_warn(cpu, resched_latency);
 5579
 5580	perf_event_task_tick();
 5581
 5582#ifdef CONFIG_SMP
 5583	rq->idle_balance = idle_cpu(cpu);
 5584	trigger_load_balance(rq);
 5585#endif
 5586}
 5587
 5588#ifdef CONFIG_NO_HZ_FULL
 5589
 5590struct tick_work {
 5591	int			cpu;
 5592	atomic_t		state;
 5593	struct delayed_work	work;
 5594};
 5595/* Values for ->state, see diagram below. */
 5596#define TICK_SCHED_REMOTE_OFFLINE	0
 5597#define TICK_SCHED_REMOTE_OFFLINING	1
 5598#define TICK_SCHED_REMOTE_RUNNING	2
 5599
 5600/*
 5601 * State diagram for ->state:
 5602 *
 5603 *
 5604 *          TICK_SCHED_REMOTE_OFFLINE
 5605 *                    |   ^
 5606 *                    |   |
 5607 *                    |   | sched_tick_remote()
 5608 *                    |   |
 5609 *                    |   |
 5610 *                    +--TICK_SCHED_REMOTE_OFFLINING
 5611 *                    |   ^
 5612 *                    |   |
 5613 * sched_tick_start() |   | sched_tick_stop()
 5614 *                    |   |
 5615 *                    V   |
 5616 *          TICK_SCHED_REMOTE_RUNNING
 5617 *
 5618 *
 5619 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
 5620 * and sched_tick_start() are happy to leave the state in RUNNING.
 5621 */
 5622
 5623static struct tick_work __percpu *tick_work_cpu;
 5624
 5625static void sched_tick_remote(struct work_struct *work)
 5626{
 5627	struct delayed_work *dwork = to_delayed_work(work);
 5628	struct tick_work *twork = container_of(dwork, struct tick_work, work);
 5629	int cpu = twork->cpu;
 5630	struct rq *rq = cpu_rq(cpu);
 5631	struct task_struct *curr;
 5632	struct rq_flags rf;
 5633	u64 delta;
 5634	int os;
 5635
 5636	/*
 5637	 * Handle the tick only if it appears the remote CPU is running in full
 5638	 * dynticks mode. The check is racy by nature, but missing a tick or
 5639	 * having one too much is no big deal because the scheduler tick updates
 5640	 * statistics and checks timeslices in a time-independent way, regardless
 5641	 * of when exactly it is running.
 5642	 */
 5643	if (!tick_nohz_tick_stopped_cpu(cpu))
 5644		goto out_requeue;
 5645
 5646	rq_lock_irq(rq, &rf);
 5647	curr = rq->curr;
 5648	if (cpu_is_offline(cpu))
 5649		goto out_unlock;
 5650
 5651	update_rq_clock(rq);
 5652
 5653	if (!is_idle_task(curr)) {
 5654		/*
 5655		 * Make sure the next tick runs within a reasonable
 5656		 * amount of time.
 5657		 */
 5658		delta = rq_clock_task(rq) - curr->se.exec_start;
 5659		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
 5660	}
 5661	curr->sched_class->task_tick(rq, curr, 0);
 5662
 5663	calc_load_nohz_remote(rq);
 5664out_unlock:
 5665	rq_unlock_irq(rq, &rf);
 5666out_requeue:
 5667
 5668	/*
 5669	 * Run the remote tick once per second (1Hz). This arbitrary
 5670	 * frequency is large enough to avoid overload but short enough
 5671	 * to keep scheduler internal stats reasonably up to date.  But
 5672	 * first update state to reflect hotplug activity if required.
 5673	 */
 5674	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
 5675	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
 5676	if (os == TICK_SCHED_REMOTE_RUNNING)
 5677		queue_delayed_work(system_unbound_wq, dwork, HZ);
 5678}
 5679
 5680static void sched_tick_start(int cpu)
 5681{
 5682	int os;
 5683	struct tick_work *twork;
 5684
 5685	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5686		return;
 5687
 5688	WARN_ON_ONCE(!tick_work_cpu);
 5689
 5690	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5691	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
 5692	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
 5693	if (os == TICK_SCHED_REMOTE_OFFLINE) {
 5694		twork->cpu = cpu;
 5695		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
 5696		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
 5697	}
 5698}
 5699
 5700#ifdef CONFIG_HOTPLUG_CPU
 5701static void sched_tick_stop(int cpu)
 5702{
 5703	struct tick_work *twork;
 5704	int os;
 5705
 5706	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
 5707		return;
 5708
 5709	WARN_ON_ONCE(!tick_work_cpu);
 5710
 5711	twork = per_cpu_ptr(tick_work_cpu, cpu);
 5712	/* There cannot be competing actions, but don't rely on stop-machine. */
 5713	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
 5714	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
 5715	/* Don't cancel, as this would mess up the state machine. */
 5716}
 5717#endif /* CONFIG_HOTPLUG_CPU */
 5718
 5719int __init sched_tick_offload_init(void)
 5720{
 5721	tick_work_cpu = alloc_percpu(struct tick_work);
 5722	BUG_ON(!tick_work_cpu);
 5723	return 0;
 5724}
 5725
 5726#else /* !CONFIG_NO_HZ_FULL */
 5727static inline void sched_tick_start(int cpu) { }
 5728static inline void sched_tick_stop(int cpu) { }
 5729#endif
 5730
 5731#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
 5732				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
 5733/*
 5734 * If the value passed in is equal to the current preempt count
 5735 * then we just disabled preemption. Start timing the latency.
 5736 */
 5737static inline void preempt_latency_start(int val)
 5738{
 5739	if (preempt_count() == val) {
 5740		unsigned long ip = get_lock_parent_ip();
 5741#ifdef CONFIG_DEBUG_PREEMPT
 5742		current->preempt_disable_ip = ip;
 5743#endif
 5744		trace_preempt_off(CALLER_ADDR0, ip);
 5745	}
 5746}
 5747
 5748void preempt_count_add(int val)
 5749{
 5750#ifdef CONFIG_DEBUG_PREEMPT
 5751	/*
 5752	 * Underflow?
 5753	 */
 5754	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
 5755		return;
 5756#endif
 5757	__preempt_count_add(val);
 5758#ifdef CONFIG_DEBUG_PREEMPT
 5759	/*
 5760	 * Spinlock count overflowing soon?
 5761	 */
 5762	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
 5763				PREEMPT_MASK - 10);
 5764#endif
 5765	preempt_latency_start(val);
 5766}
 5767EXPORT_SYMBOL(preempt_count_add);
 5768NOKPROBE_SYMBOL(preempt_count_add);
 5769
 5770/*
 5771 * If the value passed in equals to the current preempt count
 5772 * then we just enabled preemption. Stop timing the latency.
 5773 */
 5774static inline void preempt_latency_stop(int val)
 5775{
 5776	if (preempt_count() == val)
 5777		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
 5778}
 5779
 5780void preempt_count_sub(int val)
 5781{
 5782#ifdef CONFIG_DEBUG_PREEMPT
 5783	/*
 5784	 * Underflow?
 5785	 */
 5786	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
 5787		return;
 5788	/*
 5789	 * Is the spinlock portion underflowing?
 5790	 */
 5791	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
 5792			!(preempt_count() & PREEMPT_MASK)))
 5793		return;
 5794#endif
 5795
 5796	preempt_latency_stop(val);
 5797	__preempt_count_sub(val);
 5798}
 5799EXPORT_SYMBOL(preempt_count_sub);
 5800NOKPROBE_SYMBOL(preempt_count_sub);
 5801
 5802#else
 5803static inline void preempt_latency_start(int val) { }
 5804static inline void preempt_latency_stop(int val) { }
 5805#endif
 5806
 5807static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
 5808{
 5809#ifdef CONFIG_DEBUG_PREEMPT
 5810	return p->preempt_disable_ip;
 5811#else
 5812	return 0;
 5813#endif
 5814}
 5815
 5816/*
 5817 * Print scheduling while atomic bug:
 5818 */
 5819static noinline void __schedule_bug(struct task_struct *prev)
 5820{
 5821	/* Save this before calling printk(), since that will clobber it */
 5822	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
 5823
 5824	if (oops_in_progress)
 5825		return;
 5826
 5827	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
 5828		prev->comm, prev->pid, preempt_count());
 5829
 5830	debug_show_held_locks(prev);
 5831	print_modules();
 5832	if (irqs_disabled())
 5833		print_irqtrace_events(prev);
 5834	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
 5835	    && in_atomic_preempt_off()) {
 5836		pr_err("Preemption disabled at:");
 5837		print_ip_sym(KERN_ERR, preempt_disable_ip);
 5838	}
 5839	check_panic_on_warn("scheduling while atomic");
 
 5840
 5841	dump_stack();
 5842	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5843}
 5844
 5845/*
 5846 * Various schedule()-time debugging checks and statistics:
 5847 */
 5848static inline void schedule_debug(struct task_struct *prev, bool preempt)
 5849{
 5850#ifdef CONFIG_SCHED_STACK_END_CHECK
 5851	if (task_stack_end_corrupted(prev))
 5852		panic("corrupted stack end detected inside scheduler\n");
 5853
 5854	if (task_scs_end_corrupted(prev))
 5855		panic("corrupted shadow stack detected inside scheduler\n");
 5856#endif
 5857
 5858#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 5859	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
 5860		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
 5861			prev->comm, prev->pid, prev->non_block_count);
 5862		dump_stack();
 5863		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
 5864	}
 5865#endif
 5866
 5867	if (unlikely(in_atomic_preempt_off())) {
 5868		__schedule_bug(prev);
 5869		preempt_count_set(PREEMPT_DISABLED);
 5870	}
 5871	rcu_sleep_check();
 5872	SCHED_WARN_ON(ct_state() == CONTEXT_USER);
 5873
 5874	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
 5875
 5876	schedstat_inc(this_rq()->sched_count);
 5877}
 5878
 5879static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
 5880				  struct rq_flags *rf)
 5881{
 5882#ifdef CONFIG_SMP
 5883	const struct sched_class *class;
 5884	/*
 5885	 * We must do the balancing pass before put_prev_task(), such
 5886	 * that when we release the rq->lock the task is in the same
 5887	 * state as before we took rq->lock.
 5888	 *
 5889	 * We can terminate the balance pass as soon as we know there is
 5890	 * a runnable task of @class priority or higher.
 5891	 */
 5892	for_class_range(class, prev->sched_class, &idle_sched_class) {
 5893		if (class->balance(rq, prev, rf))
 5894			break;
 5895	}
 5896#endif
 5897
 5898	put_prev_task(rq, prev);
 5899}
 5900
 5901/*
 5902 * Pick up the highest-prio task:
 5903 */
 5904static inline struct task_struct *
 5905__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5906{
 5907	const struct sched_class *class;
 5908	struct task_struct *p;
 5909
 5910	/*
 5911	 * Optimization: we know that if all tasks are in the fair class we can
 5912	 * call that function directly, but only if the @prev task wasn't of a
 5913	 * higher scheduling class, because otherwise those lose the
 5914	 * opportunity to pull in more work from other CPUs.
 5915	 */
 5916	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
 5917		   rq->nr_running == rq->cfs.h_nr_running)) {
 5918
 5919		p = pick_next_task_fair(rq, prev, rf);
 5920		if (unlikely(p == RETRY_TASK))
 5921			goto restart;
 5922
 5923		/* Assume the next prioritized class is idle_sched_class */
 5924		if (!p) {
 5925			put_prev_task(rq, prev);
 5926			p = pick_next_task_idle(rq);
 5927		}
 5928
 5929		return p;
 5930	}
 5931
 5932restart:
 5933	put_prev_task_balance(rq, prev, rf);
 5934
 5935	for_each_class(class) {
 5936		p = class->pick_next_task(rq);
 5937		if (p)
 5938			return p;
 5939	}
 5940
 5941	BUG(); /* The idle class should always have a runnable task. */
 5942}
 5943
 5944#ifdef CONFIG_SCHED_CORE
 5945static inline bool is_task_rq_idle(struct task_struct *t)
 5946{
 5947	return (task_rq(t)->idle == t);
 5948}
 5949
 5950static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
 5951{
 5952	return is_task_rq_idle(a) || (a->core_cookie == cookie);
 5953}
 5954
 5955static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
 5956{
 5957	if (is_task_rq_idle(a) || is_task_rq_idle(b))
 5958		return true;
 5959
 5960	return a->core_cookie == b->core_cookie;
 5961}
 5962
 5963static inline struct task_struct *pick_task(struct rq *rq)
 5964{
 5965	const struct sched_class *class;
 5966	struct task_struct *p;
 5967
 5968	for_each_class(class) {
 5969		p = class->pick_task(rq);
 5970		if (p)
 5971			return p;
 5972	}
 5973
 5974	BUG(); /* The idle class should always have a runnable task. */
 5975}
 5976
 5977extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
 5978
 5979static void queue_core_balance(struct rq *rq);
 5980
 5981static struct task_struct *
 5982pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 5983{
 5984	struct task_struct *next, *p, *max = NULL;
 5985	const struct cpumask *smt_mask;
 5986	bool fi_before = false;
 5987	bool core_clock_updated = (rq == rq->core);
 5988	unsigned long cookie;
 5989	int i, cpu, occ = 0;
 5990	struct rq *rq_i;
 5991	bool need_sync;
 5992
 5993	if (!sched_core_enabled(rq))
 5994		return __pick_next_task(rq, prev, rf);
 5995
 5996	cpu = cpu_of(rq);
 5997
 5998	/* Stopper task is switching into idle, no need core-wide selection. */
 5999	if (cpu_is_offline(cpu)) {
 6000		/*
 6001		 * Reset core_pick so that we don't enter the fastpath when
 6002		 * coming online. core_pick would already be migrated to
 6003		 * another cpu during offline.
 6004		 */
 6005		rq->core_pick = NULL;
 6006		return __pick_next_task(rq, prev, rf);
 6007	}
 6008
 6009	/*
 6010	 * If there were no {en,de}queues since we picked (IOW, the task
 6011	 * pointers are all still valid), and we haven't scheduled the last
 6012	 * pick yet, do so now.
 6013	 *
 6014	 * rq->core_pick can be NULL if no selection was made for a CPU because
 6015	 * it was either offline or went offline during a sibling's core-wide
 6016	 * selection. In this case, do a core-wide selection.
 6017	 */
 6018	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
 6019	    rq->core->core_pick_seq != rq->core_sched_seq &&
 6020	    rq->core_pick) {
 6021		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
 6022
 6023		next = rq->core_pick;
 6024		if (next != prev) {
 6025			put_prev_task(rq, prev);
 6026			set_next_task(rq, next);
 6027		}
 6028
 6029		rq->core_pick = NULL;
 6030		goto out;
 6031	}
 6032
 6033	put_prev_task_balance(rq, prev, rf);
 6034
 6035	smt_mask = cpu_smt_mask(cpu);
 6036	need_sync = !!rq->core->core_cookie;
 6037
 6038	/* reset state */
 6039	rq->core->core_cookie = 0UL;
 6040	if (rq->core->core_forceidle_count) {
 6041		if (!core_clock_updated) {
 6042			update_rq_clock(rq->core);
 6043			core_clock_updated = true;
 6044		}
 6045		sched_core_account_forceidle(rq);
 6046		/* reset after accounting force idle */
 6047		rq->core->core_forceidle_start = 0;
 6048		rq->core->core_forceidle_count = 0;
 6049		rq->core->core_forceidle_occupation = 0;
 6050		need_sync = true;
 6051		fi_before = true;
 6052	}
 6053
 6054	/*
 6055	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
 6056	 *
 6057	 * @task_seq guards the task state ({en,de}queues)
 6058	 * @pick_seq is the @task_seq we did a selection on
 6059	 * @sched_seq is the @pick_seq we scheduled
 6060	 *
 6061	 * However, preemptions can cause multiple picks on the same task set.
 6062	 * 'Fix' this by also increasing @task_seq for every pick.
 6063	 */
 6064	rq->core->core_task_seq++;
 6065
 6066	/*
 6067	 * Optimize for common case where this CPU has no cookies
 6068	 * and there are no cookied tasks running on siblings.
 6069	 */
 6070	if (!need_sync) {
 6071		next = pick_task(rq);
 6072		if (!next->core_cookie) {
 6073			rq->core_pick = NULL;
 6074			/*
 6075			 * For robustness, update the min_vruntime_fi for
 6076			 * unconstrained picks as well.
 6077			 */
 6078			WARN_ON_ONCE(fi_before);
 6079			task_vruntime_update(rq, next, false);
 6080			goto out_set_next;
 6081		}
 6082	}
 6083
 6084	/*
 6085	 * For each thread: do the regular task pick and find the max prio task
 6086	 * amongst them.
 6087	 *
 6088	 * Tie-break prio towards the current CPU
 6089	 */
 6090	for_each_cpu_wrap(i, smt_mask, cpu) {
 6091		rq_i = cpu_rq(i);
 6092
 6093		/*
 6094		 * Current cpu always has its clock updated on entrance to
 6095		 * pick_next_task(). If the current cpu is not the core,
 6096		 * the core may also have been updated above.
 6097		 */
 6098		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
 6099			update_rq_clock(rq_i);
 6100
 6101		p = rq_i->core_pick = pick_task(rq_i);
 6102		if (!max || prio_less(max, p, fi_before))
 6103			max = p;
 6104	}
 6105
 6106	cookie = rq->core->core_cookie = max->core_cookie;
 6107
 6108	/*
 6109	 * For each thread: try and find a runnable task that matches @max or
 6110	 * force idle.
 6111	 */
 6112	for_each_cpu(i, smt_mask) {
 6113		rq_i = cpu_rq(i);
 6114		p = rq_i->core_pick;
 6115
 6116		if (!cookie_equals(p, cookie)) {
 6117			p = NULL;
 6118			if (cookie)
 6119				p = sched_core_find(rq_i, cookie);
 6120			if (!p)
 6121				p = idle_sched_class.pick_task(rq_i);
 6122		}
 6123
 6124		rq_i->core_pick = p;
 6125
 6126		if (p == rq_i->idle) {
 6127			if (rq_i->nr_running) {
 6128				rq->core->core_forceidle_count++;
 6129				if (!fi_before)
 6130					rq->core->core_forceidle_seq++;
 6131			}
 6132		} else {
 6133			occ++;
 6134		}
 6135	}
 6136
 6137	if (schedstat_enabled() && rq->core->core_forceidle_count) {
 6138		rq->core->core_forceidle_start = rq_clock(rq->core);
 6139		rq->core->core_forceidle_occupation = occ;
 6140	}
 6141
 6142	rq->core->core_pick_seq = rq->core->core_task_seq;
 6143	next = rq->core_pick;
 6144	rq->core_sched_seq = rq->core->core_pick_seq;
 6145
 6146	/* Something should have been selected for current CPU */
 6147	WARN_ON_ONCE(!next);
 6148
 6149	/*
 6150	 * Reschedule siblings
 6151	 *
 6152	 * NOTE: L1TF -- at this point we're no longer running the old task and
 6153	 * sending an IPI (below) ensures the sibling will no longer be running
 6154	 * their task. This ensures there is no inter-sibling overlap between
 6155	 * non-matching user state.
 6156	 */
 6157	for_each_cpu(i, smt_mask) {
 6158		rq_i = cpu_rq(i);
 6159
 6160		/*
 6161		 * An online sibling might have gone offline before a task
 6162		 * could be picked for it, or it might be offline but later
 6163		 * happen to come online, but its too late and nothing was
 6164		 * picked for it.  That's Ok - it will pick tasks for itself,
 6165		 * so ignore it.
 6166		 */
 6167		if (!rq_i->core_pick)
 6168			continue;
 6169
 6170		/*
 6171		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
 6172		 * fi_before     fi      update?
 6173		 *  0            0       1
 6174		 *  0            1       1
 6175		 *  1            0       1
 6176		 *  1            1       0
 6177		 */
 6178		if (!(fi_before && rq->core->core_forceidle_count))
 6179			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
 6180
 6181		rq_i->core_pick->core_occupation = occ;
 6182
 6183		if (i == cpu) {
 6184			rq_i->core_pick = NULL;
 6185			continue;
 6186		}
 6187
 6188		/* Did we break L1TF mitigation requirements? */
 6189		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
 6190
 6191		if (rq_i->curr == rq_i->core_pick) {
 6192			rq_i->core_pick = NULL;
 6193			continue;
 6194		}
 6195
 6196		resched_curr(rq_i);
 6197	}
 6198
 6199out_set_next:
 6200	set_next_task(rq, next);
 6201out:
 6202	if (rq->core->core_forceidle_count && next == rq->idle)
 6203		queue_core_balance(rq);
 6204
 6205	return next;
 6206}
 6207
 6208static bool try_steal_cookie(int this, int that)
 6209{
 6210	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
 6211	struct task_struct *p;
 6212	unsigned long cookie;
 6213	bool success = false;
 6214
 6215	local_irq_disable();
 6216	double_rq_lock(dst, src);
 6217
 6218	cookie = dst->core->core_cookie;
 6219	if (!cookie)
 6220		goto unlock;
 6221
 6222	if (dst->curr != dst->idle)
 6223		goto unlock;
 6224
 6225	p = sched_core_find(src, cookie);
 6226	if (p == src->idle)
 6227		goto unlock;
 6228
 6229	do {
 6230		if (p == src->core_pick || p == src->curr)
 6231			goto next;
 6232
 6233		if (!is_cpu_allowed(p, this))
 6234			goto next;
 6235
 6236		if (p->core_occupation > dst->idle->core_occupation)
 6237			goto next;
 6238
 6239		deactivate_task(src, p, 0);
 6240		set_task_cpu(p, this);
 6241		activate_task(dst, p, 0);
 6242
 6243		resched_curr(dst);
 6244
 6245		success = true;
 6246		break;
 6247
 6248next:
 6249		p = sched_core_next(p, cookie);
 6250	} while (p);
 6251
 6252unlock:
 6253	double_rq_unlock(dst, src);
 6254	local_irq_enable();
 6255
 6256	return success;
 6257}
 6258
 6259static bool steal_cookie_task(int cpu, struct sched_domain *sd)
 6260{
 6261	int i;
 6262
 6263	for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
 6264		if (i == cpu)
 6265			continue;
 6266
 6267		if (need_resched())
 6268			break;
 6269
 6270		if (try_steal_cookie(cpu, i))
 6271			return true;
 6272	}
 6273
 6274	return false;
 6275}
 6276
 6277static void sched_core_balance(struct rq *rq)
 6278{
 6279	struct sched_domain *sd;
 6280	int cpu = cpu_of(rq);
 6281
 6282	preempt_disable();
 6283	rcu_read_lock();
 6284	raw_spin_rq_unlock_irq(rq);
 6285	for_each_domain(cpu, sd) {
 6286		if (need_resched())
 6287			break;
 6288
 6289		if (steal_cookie_task(cpu, sd))
 6290			break;
 6291	}
 6292	raw_spin_rq_lock_irq(rq);
 6293	rcu_read_unlock();
 6294	preempt_enable();
 6295}
 6296
 6297static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
 6298
 6299static void queue_core_balance(struct rq *rq)
 6300{
 6301	if (!sched_core_enabled(rq))
 6302		return;
 6303
 6304	if (!rq->core->core_cookie)
 6305		return;
 6306
 6307	if (!rq->nr_running) /* not forced idle */
 6308		return;
 6309
 6310	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
 6311}
 6312
 6313static void sched_core_cpu_starting(unsigned int cpu)
 6314{
 6315	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6316	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6317	unsigned long flags;
 6318	int t;
 6319
 6320	sched_core_lock(cpu, &flags);
 6321
 6322	WARN_ON_ONCE(rq->core != rq);
 6323
 6324	/* if we're the first, we'll be our own leader */
 6325	if (cpumask_weight(smt_mask) == 1)
 6326		goto unlock;
 6327
 6328	/* find the leader */
 6329	for_each_cpu(t, smt_mask) {
 6330		if (t == cpu)
 6331			continue;
 6332		rq = cpu_rq(t);
 6333		if (rq->core == rq) {
 6334			core_rq = rq;
 6335			break;
 6336		}
 6337	}
 6338
 6339	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
 6340		goto unlock;
 6341
 6342	/* install and validate core_rq */
 6343	for_each_cpu(t, smt_mask) {
 6344		rq = cpu_rq(t);
 6345
 6346		if (t == cpu)
 6347			rq->core = core_rq;
 6348
 6349		WARN_ON_ONCE(rq->core != core_rq);
 6350	}
 6351
 6352unlock:
 6353	sched_core_unlock(cpu, &flags);
 6354}
 6355
 6356static void sched_core_cpu_deactivate(unsigned int cpu)
 6357{
 6358	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
 6359	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
 6360	unsigned long flags;
 6361	int t;
 6362
 6363	sched_core_lock(cpu, &flags);
 6364
 6365	/* if we're the last man standing, nothing to do */
 6366	if (cpumask_weight(smt_mask) == 1) {
 6367		WARN_ON_ONCE(rq->core != rq);
 6368		goto unlock;
 6369	}
 6370
 6371	/* if we're not the leader, nothing to do */
 6372	if (rq->core != rq)
 6373		goto unlock;
 6374
 6375	/* find a new leader */
 6376	for_each_cpu(t, smt_mask) {
 6377		if (t == cpu)
 6378			continue;
 6379		core_rq = cpu_rq(t);
 6380		break;
 6381	}
 6382
 6383	if (WARN_ON_ONCE(!core_rq)) /* impossible */
 6384		goto unlock;
 6385
 6386	/* copy the shared state to the new leader */
 6387	core_rq->core_task_seq             = rq->core_task_seq;
 6388	core_rq->core_pick_seq             = rq->core_pick_seq;
 6389	core_rq->core_cookie               = rq->core_cookie;
 6390	core_rq->core_forceidle_count      = rq->core_forceidle_count;
 6391	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
 6392	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
 6393
 6394	/*
 6395	 * Accounting edge for forced idle is handled in pick_next_task().
 6396	 * Don't need another one here, since the hotplug thread shouldn't
 6397	 * have a cookie.
 6398	 */
 6399	core_rq->core_forceidle_start = 0;
 6400
 6401	/* install new leader */
 6402	for_each_cpu(t, smt_mask) {
 6403		rq = cpu_rq(t);
 6404		rq->core = core_rq;
 6405	}
 6406
 6407unlock:
 6408	sched_core_unlock(cpu, &flags);
 6409}
 6410
 6411static inline void sched_core_cpu_dying(unsigned int cpu)
 6412{
 6413	struct rq *rq = cpu_rq(cpu);
 6414
 6415	if (rq->core != rq)
 6416		rq->core = rq;
 6417}
 6418
 6419#else /* !CONFIG_SCHED_CORE */
 6420
 6421static inline void sched_core_cpu_starting(unsigned int cpu) {}
 6422static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
 6423static inline void sched_core_cpu_dying(unsigned int cpu) {}
 6424
 6425static struct task_struct *
 6426pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 6427{
 6428	return __pick_next_task(rq, prev, rf);
 6429}
 6430
 6431#endif /* CONFIG_SCHED_CORE */
 6432
 6433/*
 6434 * Constants for the sched_mode argument of __schedule().
 6435 *
 6436 * The mode argument allows RT enabled kernels to differentiate a
 6437 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
 6438 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
 6439 * optimize the AND operation out and just check for zero.
 6440 */
 6441#define SM_NONE			0x0
 6442#define SM_PREEMPT		0x1
 6443#define SM_RTLOCK_WAIT		0x2
 6444
 6445#ifndef CONFIG_PREEMPT_RT
 6446# define SM_MASK_PREEMPT	(~0U)
 6447#else
 6448# define SM_MASK_PREEMPT	SM_PREEMPT
 6449#endif
 6450
 6451/*
 6452 * __schedule() is the main scheduler function.
 6453 *
 6454 * The main means of driving the scheduler and thus entering this function are:
 6455 *
 6456 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 6457 *
 6458 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 6459 *      paths. For example, see arch/x86/entry_64.S.
 6460 *
 6461 *      To drive preemption between tasks, the scheduler sets the flag in timer
 6462 *      interrupt handler scheduler_tick().
 6463 *
 6464 *   3. Wakeups don't really cause entry into schedule(). They add a
 6465 *      task to the run-queue and that's it.
 6466 *
 6467 *      Now, if the new task added to the run-queue preempts the current
 6468 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 6469 *      called on the nearest possible occasion:
 6470 *
 6471 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
 6472 *
 6473 *         - in syscall or exception context, at the next outmost
 6474 *           preempt_enable(). (this might be as soon as the wake_up()'s
 6475 *           spin_unlock()!)
 6476 *
 6477 *         - in IRQ context, return from interrupt-handler to
 6478 *           preemptible context
 6479 *
 6480 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
 6481 *         then at the next:
 6482 *
 6483 *          - cond_resched() call
 6484 *          - explicit schedule() call
 6485 *          - return from syscall or exception to user-space
 6486 *          - return from interrupt-handler to user-space
 6487 *
 6488 * WARNING: must be called with preemption disabled!
 6489 */
 6490static void __sched notrace __schedule(unsigned int sched_mode)
 6491{
 6492	struct task_struct *prev, *next;
 6493	unsigned long *switch_count;
 6494	unsigned long prev_state;
 6495	struct rq_flags rf;
 6496	struct rq *rq;
 6497	int cpu;
 6498
 6499	cpu = smp_processor_id();
 6500	rq = cpu_rq(cpu);
 6501	prev = rq->curr;
 6502
 6503	schedule_debug(prev, !!sched_mode);
 6504
 6505	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
 6506		hrtick_clear(rq);
 6507
 6508	local_irq_disable();
 6509	rcu_note_context_switch(!!sched_mode);
 6510
 6511	/*
 6512	 * Make sure that signal_pending_state()->signal_pending() below
 6513	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
 6514	 * done by the caller to avoid the race with signal_wake_up():
 6515	 *
 6516	 * __set_current_state(@state)		signal_wake_up()
 6517	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
 6518	 *					  wake_up_state(p, state)
 6519	 *   LOCK rq->lock			    LOCK p->pi_state
 6520	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
 6521	 *     if (signal_pending_state())	    if (p->state & @state)
 6522	 *
 6523	 * Also, the membarrier system call requires a full memory barrier
 6524	 * after coming from user-space, before storing to rq->curr.
 6525	 */
 6526	rq_lock(rq, &rf);
 6527	smp_mb__after_spinlock();
 6528
 6529	/* Promote REQ to ACT */
 6530	rq->clock_update_flags <<= 1;
 6531	update_rq_clock(rq);
 6532
 6533	switch_count = &prev->nivcsw;
 6534
 6535	/*
 6536	 * We must load prev->state once (task_struct::state is volatile), such
 6537	 * that we form a control dependency vs deactivate_task() below.
 
 
 
 6538	 */
 6539	prev_state = READ_ONCE(prev->__state);
 6540	if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
 6541		if (signal_pending_state(prev_state, prev)) {
 6542			WRITE_ONCE(prev->__state, TASK_RUNNING);
 6543		} else {
 6544			prev->sched_contributes_to_load =
 6545				(prev_state & TASK_UNINTERRUPTIBLE) &&
 6546				!(prev_state & TASK_NOLOAD) &&
 6547				!(prev_state & TASK_FROZEN);
 6548
 6549			if (prev->sched_contributes_to_load)
 6550				rq->nr_uninterruptible++;
 6551
 6552			/*
 6553			 * __schedule()			ttwu()
 6554			 *   prev_state = prev->state;    if (p->on_rq && ...)
 6555			 *   if (prev_state)		    goto out;
 6556			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
 6557			 *				  p->state = TASK_WAKING
 6558			 *
 6559			 * Where __schedule() and ttwu() have matching control dependencies.
 6560			 *
 6561			 * After this, schedule() must not care about p->state any more.
 6562			 */
 6563			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
 6564
 6565			if (prev->in_iowait) {
 6566				atomic_inc(&rq->nr_iowait);
 6567				delayacct_blkio_start();
 6568			}
 6569		}
 6570		switch_count = &prev->nvcsw;
 6571	}
 6572
 6573	next = pick_next_task(rq, prev, &rf);
 6574	clear_tsk_need_resched(prev);
 6575	clear_preempt_need_resched();
 6576#ifdef CONFIG_SCHED_DEBUG
 6577	rq->last_seen_need_resched_ns = 0;
 6578#endif
 6579
 6580	if (likely(prev != next)) {
 6581		rq->nr_switches++;
 6582		/*
 6583		 * RCU users of rcu_dereference(rq->curr) may not see
 6584		 * changes to task_struct made by pick_next_task().
 6585		 */
 6586		RCU_INIT_POINTER(rq->curr, next);
 6587		/*
 6588		 * The membarrier system call requires each architecture
 6589		 * to have a full memory barrier after updating
 6590		 * rq->curr, before returning to user-space.
 6591		 *
 6592		 * Here are the schemes providing that barrier on the
 6593		 * various architectures:
 6594		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
 6595		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
 6596		 * - finish_lock_switch() for weakly-ordered
 6597		 *   architectures where spin_unlock is a full barrier,
 6598		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
 6599		 *   is a RELEASE barrier),
 6600		 */
 6601		++*switch_count;
 6602
 6603		migrate_disable_switch(rq, prev);
 6604		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
 6605
 6606		trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
 6607
 6608		/* Also unlocks the rq: */
 6609		rq = context_switch(rq, prev, next, &rf);
 6610	} else {
 6611		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
 6612
 6613		rq_unpin_lock(rq, &rf);
 6614		__balance_callbacks(rq);
 6615		raw_spin_rq_unlock_irq(rq);
 6616	}
 
 
 6617}
 6618
 6619void __noreturn do_task_dead(void)
 6620{
 6621	/* Causes final put_task_struct in finish_task_switch(): */
 6622	set_special_state(TASK_DEAD);
 6623
 6624	/* Tell freezer to ignore us: */
 6625	current->flags |= PF_NOFREEZE;
 6626
 6627	__schedule(SM_NONE);
 6628	BUG();
 6629
 6630	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
 6631	for (;;)
 6632		cpu_relax();
 6633}
 6634
 6635static inline void sched_submit_work(struct task_struct *tsk)
 6636{
 6637	unsigned int task_flags;
 6638
 6639	if (task_is_running(tsk))
 6640		return;
 6641
 6642	task_flags = tsk->flags;
 6643	/*
 6644	 * If a worker goes to sleep, notify and ask workqueue whether it
 6645	 * wants to wake up a task to maintain concurrency.
 
 
 
 
 6646	 */
 6647	if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6648		if (task_flags & PF_WQ_WORKER)
 
 6649			wq_worker_sleeping(tsk);
 6650		else
 6651			io_wq_worker_sleeping(tsk);
 
 6652	}
 6653
 6654	/*
 6655	 * spinlock and rwlock must not flush block requests.  This will
 6656	 * deadlock if the callback attempts to acquire a lock which is
 6657	 * already acquired.
 6658	 */
 6659	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
 6660
 6661	/*
 6662	 * If we are going to sleep and we have plugged IO queued,
 6663	 * make sure to submit it to avoid deadlocks.
 6664	 */
 6665	blk_flush_plug(tsk->plug, true);
 
 6666}
 6667
 6668static void sched_update_worker(struct task_struct *tsk)
 6669{
 6670	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
 6671		if (tsk->flags & PF_WQ_WORKER)
 6672			wq_worker_running(tsk);
 6673		else
 6674			io_wq_worker_running(tsk);
 6675	}
 6676}
 6677
 6678asmlinkage __visible void __sched schedule(void)
 6679{
 6680	struct task_struct *tsk = current;
 6681
 6682	sched_submit_work(tsk);
 6683	do {
 6684		preempt_disable();
 6685		__schedule(SM_NONE);
 6686		sched_preempt_enable_no_resched();
 6687	} while (need_resched());
 6688	sched_update_worker(tsk);
 6689}
 6690EXPORT_SYMBOL(schedule);
 6691
 6692/*
 6693 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
 6694 * state (have scheduled out non-voluntarily) by making sure that all
 6695 * tasks have either left the run queue or have gone into user space.
 6696 * As idle tasks do not do either, they must not ever be preempted
 6697 * (schedule out non-voluntarily).
 6698 *
 6699 * schedule_idle() is similar to schedule_preempt_disable() except that it
 6700 * never enables preemption because it does not call sched_submit_work().
 6701 */
 6702void __sched schedule_idle(void)
 6703{
 6704	/*
 6705	 * As this skips calling sched_submit_work(), which the idle task does
 6706	 * regardless because that function is a nop when the task is in a
 6707	 * TASK_RUNNING state, make sure this isn't used someplace that the
 6708	 * current task can be in any other state. Note, idle is always in the
 6709	 * TASK_RUNNING state.
 6710	 */
 6711	WARN_ON_ONCE(current->__state);
 6712	do {
 6713		__schedule(SM_NONE);
 6714	} while (need_resched());
 6715}
 6716
 6717#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
 6718asmlinkage __visible void __sched schedule_user(void)
 6719{
 6720	/*
 6721	 * If we come here after a random call to set_need_resched(),
 6722	 * or we have been woken up remotely but the IPI has not yet arrived,
 6723	 * we haven't yet exited the RCU idle mode. Do it here manually until
 6724	 * we find a better solution.
 6725	 *
 6726	 * NB: There are buggy callers of this function.  Ideally we
 6727	 * should warn if prev_state != CONTEXT_USER, but that will trigger
 6728	 * too frequently to make sense yet.
 6729	 */
 6730	enum ctx_state prev_state = exception_enter();
 6731	schedule();
 6732	exception_exit(prev_state);
 6733}
 6734#endif
 6735
 6736/**
 6737 * schedule_preempt_disabled - called with preemption disabled
 6738 *
 6739 * Returns with preemption disabled. Note: preempt_count must be 1
 6740 */
 6741void __sched schedule_preempt_disabled(void)
 6742{
 6743	sched_preempt_enable_no_resched();
 6744	schedule();
 6745	preempt_disable();
 6746}
 6747
 6748#ifdef CONFIG_PREEMPT_RT
 6749void __sched notrace schedule_rtlock(void)
 6750{
 6751	do {
 6752		preempt_disable();
 6753		__schedule(SM_RTLOCK_WAIT);
 6754		sched_preempt_enable_no_resched();
 6755	} while (need_resched());
 6756}
 6757NOKPROBE_SYMBOL(schedule_rtlock);
 6758#endif
 6759
 6760static void __sched notrace preempt_schedule_common(void)
 6761{
 6762	do {
 6763		/*
 6764		 * Because the function tracer can trace preempt_count_sub()
 6765		 * and it also uses preempt_enable/disable_notrace(), if
 6766		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6767		 * by the function tracer will call this function again and
 6768		 * cause infinite recursion.
 6769		 *
 6770		 * Preemption must be disabled here before the function
 6771		 * tracer can trace. Break up preempt_disable() into two
 6772		 * calls. One to disable preemption without fear of being
 6773		 * traced. The other to still record the preemption latency,
 6774		 * which can also be traced by the function tracer.
 6775		 */
 6776		preempt_disable_notrace();
 6777		preempt_latency_start(1);
 6778		__schedule(SM_PREEMPT);
 6779		preempt_latency_stop(1);
 6780		preempt_enable_no_resched_notrace();
 6781
 6782		/*
 6783		 * Check again in case we missed a preemption opportunity
 6784		 * between schedule and now.
 6785		 */
 6786	} while (need_resched());
 6787}
 6788
 6789#ifdef CONFIG_PREEMPTION
 6790/*
 6791 * This is the entry point to schedule() from in-kernel preemption
 6792 * off of preempt_enable.
 6793 */
 6794asmlinkage __visible void __sched notrace preempt_schedule(void)
 6795{
 6796	/*
 6797	 * If there is a non-zero preempt_count or interrupts are disabled,
 6798	 * we do not want to preempt the current task. Just return..
 6799	 */
 6800	if (likely(!preemptible()))
 6801		return;
 
 6802	preempt_schedule_common();
 6803}
 6804NOKPROBE_SYMBOL(preempt_schedule);
 6805EXPORT_SYMBOL(preempt_schedule);
 6806
 6807#ifdef CONFIG_PREEMPT_DYNAMIC
 6808#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6809#ifndef preempt_schedule_dynamic_enabled
 6810#define preempt_schedule_dynamic_enabled	preempt_schedule
 6811#define preempt_schedule_dynamic_disabled	NULL
 6812#endif
 6813DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
 6814EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
 6815#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6816static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
 6817void __sched notrace dynamic_preempt_schedule(void)
 6818{
 6819	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
 6820		return;
 6821	preempt_schedule();
 6822}
 6823NOKPROBE_SYMBOL(dynamic_preempt_schedule);
 6824EXPORT_SYMBOL(dynamic_preempt_schedule);
 6825#endif
 6826#endif
 6827
 6828/**
 6829 * preempt_schedule_notrace - preempt_schedule called by tracing
 6830 *
 6831 * The tracing infrastructure uses preempt_enable_notrace to prevent
 6832 * recursion and tracing preempt enabling caused by the tracing
 6833 * infrastructure itself. But as tracing can happen in areas coming
 6834 * from userspace or just about to enter userspace, a preempt enable
 6835 * can occur before user_exit() is called. This will cause the scheduler
 6836 * to be called when the system is still in usermode.
 6837 *
 6838 * To prevent this, the preempt_enable_notrace will use this function
 6839 * instead of preempt_schedule() to exit user context if needed before
 6840 * calling the scheduler.
 6841 */
 6842asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
 6843{
 6844	enum ctx_state prev_ctx;
 6845
 6846	if (likely(!preemptible()))
 6847		return;
 6848
 6849	do {
 6850		/*
 6851		 * Because the function tracer can trace preempt_count_sub()
 6852		 * and it also uses preempt_enable/disable_notrace(), if
 6853		 * NEED_RESCHED is set, the preempt_enable_notrace() called
 6854		 * by the function tracer will call this function again and
 6855		 * cause infinite recursion.
 6856		 *
 6857		 * Preemption must be disabled here before the function
 6858		 * tracer can trace. Break up preempt_disable() into two
 6859		 * calls. One to disable preemption without fear of being
 6860		 * traced. The other to still record the preemption latency,
 6861		 * which can also be traced by the function tracer.
 6862		 */
 6863		preempt_disable_notrace();
 6864		preempt_latency_start(1);
 6865		/*
 6866		 * Needs preempt disabled in case user_exit() is traced
 6867		 * and the tracer calls preempt_enable_notrace() causing
 6868		 * an infinite recursion.
 6869		 */
 6870		prev_ctx = exception_enter();
 6871		__schedule(SM_PREEMPT);
 6872		exception_exit(prev_ctx);
 6873
 6874		preempt_latency_stop(1);
 6875		preempt_enable_no_resched_notrace();
 6876	} while (need_resched());
 6877}
 6878EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
 6879
 6880#ifdef CONFIG_PREEMPT_DYNAMIC
 6881#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 6882#ifndef preempt_schedule_notrace_dynamic_enabled
 6883#define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
 6884#define preempt_schedule_notrace_dynamic_disabled	NULL
 6885#endif
 6886DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
 6887EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
 6888#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 6889static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
 6890void __sched notrace dynamic_preempt_schedule_notrace(void)
 6891{
 6892	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
 6893		return;
 6894	preempt_schedule_notrace();
 6895}
 6896NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
 6897EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
 6898#endif
 6899#endif
 6900
 6901#endif /* CONFIG_PREEMPTION */
 6902
 6903/*
 6904 * This is the entry point to schedule() from kernel preemption
 6905 * off of irq context.
 6906 * Note, that this is called and return with irqs disabled. This will
 6907 * protect us against recursive calling from irq.
 6908 */
 6909asmlinkage __visible void __sched preempt_schedule_irq(void)
 6910{
 6911	enum ctx_state prev_state;
 6912
 6913	/* Catch callers which need to be fixed */
 6914	BUG_ON(preempt_count() || !irqs_disabled());
 6915
 6916	prev_state = exception_enter();
 6917
 6918	do {
 6919		preempt_disable();
 6920		local_irq_enable();
 6921		__schedule(SM_PREEMPT);
 6922		local_irq_disable();
 6923		sched_preempt_enable_no_resched();
 6924	} while (need_resched());
 6925
 6926	exception_exit(prev_state);
 6927}
 6928
 6929int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
 6930			  void *key)
 6931{
 6932	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
 6933	return try_to_wake_up(curr->private, mode, wake_flags);
 6934}
 6935EXPORT_SYMBOL(default_wake_function);
 6936
 6937static void __setscheduler_prio(struct task_struct *p, int prio)
 6938{
 6939	if (dl_prio(prio))
 6940		p->sched_class = &dl_sched_class;
 6941	else if (rt_prio(prio))
 6942		p->sched_class = &rt_sched_class;
 6943	else
 6944		p->sched_class = &fair_sched_class;
 6945
 6946	p->prio = prio;
 6947}
 6948
 6949#ifdef CONFIG_RT_MUTEXES
 6950
 6951static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
 6952{
 6953	if (pi_task)
 6954		prio = min(prio, pi_task->prio);
 6955
 6956	return prio;
 6957}
 6958
 6959static inline int rt_effective_prio(struct task_struct *p, int prio)
 6960{
 6961	struct task_struct *pi_task = rt_mutex_get_top_task(p);
 6962
 6963	return __rt_effective_prio(pi_task, prio);
 6964}
 6965
 6966/*
 6967 * rt_mutex_setprio - set the current priority of a task
 6968 * @p: task to boost
 6969 * @pi_task: donor task
 6970 *
 6971 * This function changes the 'effective' priority of a task. It does
 6972 * not touch ->normal_prio like __setscheduler().
 6973 *
 6974 * Used by the rt_mutex code to implement priority inheritance
 6975 * logic. Call site only calls if the priority of the task changed.
 6976 */
 6977void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
 6978{
 6979	int prio, oldprio, queued, running, queue_flag =
 6980		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 6981	const struct sched_class *prev_class;
 6982	struct rq_flags rf;
 6983	struct rq *rq;
 6984
 6985	/* XXX used to be waiter->prio, not waiter->task->prio */
 6986	prio = __rt_effective_prio(pi_task, p->normal_prio);
 6987
 6988	/*
 6989	 * If nothing changed; bail early.
 6990	 */
 6991	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
 6992		return;
 6993
 6994	rq = __task_rq_lock(p, &rf);
 6995	update_rq_clock(rq);
 6996	/*
 6997	 * Set under pi_lock && rq->lock, such that the value can be used under
 6998	 * either lock.
 6999	 *
 7000	 * Note that there is loads of tricky to make this pointer cache work
 7001	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
 7002	 * ensure a task is de-boosted (pi_task is set to NULL) before the
 7003	 * task is allowed to run again (and can exit). This ensures the pointer
 7004	 * points to a blocked task -- which guarantees the task is present.
 7005	 */
 7006	p->pi_top_task = pi_task;
 7007
 7008	/*
 7009	 * For FIFO/RR we only need to set prio, if that matches we're done.
 7010	 */
 7011	if (prio == p->prio && !dl_prio(prio))
 7012		goto out_unlock;
 7013
 7014	/*
 7015	 * Idle task boosting is a nono in general. There is one
 7016	 * exception, when PREEMPT_RT and NOHZ is active:
 7017	 *
 7018	 * The idle task calls get_next_timer_interrupt() and holds
 7019	 * the timer wheel base->lock on the CPU and another CPU wants
 7020	 * to access the timer (probably to cancel it). We can safely
 7021	 * ignore the boosting request, as the idle CPU runs this code
 7022	 * with interrupts disabled and will complete the lock
 7023	 * protected section without being interrupted. So there is no
 7024	 * real need to boost.
 7025	 */
 7026	if (unlikely(p == rq->idle)) {
 7027		WARN_ON(p != rq->curr);
 7028		WARN_ON(p->pi_blocked_on);
 7029		goto out_unlock;
 7030	}
 7031
 7032	trace_sched_pi_setprio(p, pi_task);
 7033	oldprio = p->prio;
 7034
 7035	if (oldprio == prio)
 7036		queue_flag &= ~DEQUEUE_MOVE;
 7037
 7038	prev_class = p->sched_class;
 7039	queued = task_on_rq_queued(p);
 7040	running = task_current(rq, p);
 7041	if (queued)
 7042		dequeue_task(rq, p, queue_flag);
 7043	if (running)
 7044		put_prev_task(rq, p);
 7045
 7046	/*
 7047	 * Boosting condition are:
 7048	 * 1. -rt task is running and holds mutex A
 7049	 *      --> -dl task blocks on mutex A
 7050	 *
 7051	 * 2. -dl task is running and holds mutex A
 7052	 *      --> -dl task blocks on mutex A and could preempt the
 7053	 *          running task
 7054	 */
 7055	if (dl_prio(prio)) {
 7056		if (!dl_prio(p->normal_prio) ||
 7057		    (pi_task && dl_prio(pi_task->prio) &&
 7058		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
 7059			p->dl.pi_se = pi_task->dl.pi_se;
 7060			queue_flag |= ENQUEUE_REPLENISH;
 7061		} else {
 7062			p->dl.pi_se = &p->dl;
 7063		}
 7064	} else if (rt_prio(prio)) {
 7065		if (dl_prio(oldprio))
 7066			p->dl.pi_se = &p->dl;
 7067		if (oldprio < prio)
 7068			queue_flag |= ENQUEUE_HEAD;
 
 7069	} else {
 7070		if (dl_prio(oldprio))
 7071			p->dl.pi_se = &p->dl;
 7072		if (rt_prio(oldprio))
 7073			p->rt.timeout = 0;
 
 7074	}
 7075
 7076	__setscheduler_prio(p, prio);
 7077
 7078	if (queued)
 7079		enqueue_task(rq, p, queue_flag);
 7080	if (running)
 7081		set_next_task(rq, p);
 7082
 7083	check_class_changed(rq, p, prev_class, oldprio);
 7084out_unlock:
 7085	/* Avoid rq from going away on us: */
 7086	preempt_disable();
 
 7087
 7088	rq_unpin_lock(rq, &rf);
 7089	__balance_callbacks(rq);
 7090	raw_spin_rq_unlock(rq);
 7091
 7092	preempt_enable();
 7093}
 7094#else
 7095static inline int rt_effective_prio(struct task_struct *p, int prio)
 7096{
 7097	return prio;
 7098}
 7099#endif
 7100
 7101void set_user_nice(struct task_struct *p, long nice)
 7102{
 7103	bool queued, running;
 7104	int old_prio;
 7105	struct rq_flags rf;
 7106	struct rq *rq;
 7107
 7108	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
 7109		return;
 7110	/*
 7111	 * We have to be careful, if called from sys_setpriority(),
 7112	 * the task might be in the middle of scheduling on another CPU.
 7113	 */
 7114	rq = task_rq_lock(p, &rf);
 7115	update_rq_clock(rq);
 7116
 7117	/*
 7118	 * The RT priorities are set via sched_setscheduler(), but we still
 7119	 * allow the 'normal' nice value to be set - but as expected
 7120	 * it won't have any effect on scheduling until the task is
 7121	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
 7122	 */
 7123	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
 7124		p->static_prio = NICE_TO_PRIO(nice);
 7125		goto out_unlock;
 7126	}
 7127	queued = task_on_rq_queued(p);
 7128	running = task_current(rq, p);
 7129	if (queued)
 7130		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
 7131	if (running)
 7132		put_prev_task(rq, p);
 7133
 7134	p->static_prio = NICE_TO_PRIO(nice);
 7135	set_load_weight(p, true);
 7136	old_prio = p->prio;
 7137	p->prio = effective_prio(p);
 7138
 7139	if (queued)
 7140		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 7141	if (running)
 7142		set_next_task(rq, p);
 7143
 7144	/*
 7145	 * If the task increased its priority or is running and
 7146	 * lowered its priority, then reschedule its CPU:
 7147	 */
 7148	p->sched_class->prio_changed(rq, p, old_prio);
 7149
 7150out_unlock:
 7151	task_rq_unlock(rq, p, &rf);
 7152}
 7153EXPORT_SYMBOL(set_user_nice);
 7154
 7155/*
 7156 * is_nice_reduction - check if nice value is an actual reduction
 7157 *
 7158 * Similar to can_nice() but does not perform a capability check.
 7159 *
 7160 * @p: task
 7161 * @nice: nice value
 7162 */
 7163static bool is_nice_reduction(const struct task_struct *p, const int nice)
 7164{
 7165	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
 7166	int nice_rlim = nice_to_rlimit(nice);
 7167
 7168	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
 7169}
 7170
 7171/*
 7172 * can_nice - check if a task can reduce its nice value
 7173 * @p: task
 7174 * @nice: nice value
 7175 */
 7176int can_nice(const struct task_struct *p, const int nice)
 7177{
 7178	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
 7179}
 7180
 7181#ifdef __ARCH_WANT_SYS_NICE
 7182
 7183/*
 7184 * sys_nice - change the priority of the current process.
 7185 * @increment: priority increment
 7186 *
 7187 * sys_setpriority is a more generic, but much slower function that
 7188 * does similar things.
 7189 */
 7190SYSCALL_DEFINE1(nice, int, increment)
 7191{
 7192	long nice, retval;
 7193
 7194	/*
 7195	 * Setpriority might change our priority at the same moment.
 7196	 * We don't have to worry. Conceptually one call occurs first
 7197	 * and we have a single winner.
 7198	 */
 7199	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
 7200	nice = task_nice(current) + increment;
 7201
 7202	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
 7203	if (increment < 0 && !can_nice(current, nice))
 7204		return -EPERM;
 7205
 7206	retval = security_task_setnice(current, nice);
 7207	if (retval)
 7208		return retval;
 7209
 7210	set_user_nice(current, nice);
 7211	return 0;
 7212}
 7213
 7214#endif
 7215
 7216/**
 7217 * task_prio - return the priority value of a given task.
 7218 * @p: the task in question.
 7219 *
 7220 * Return: The priority value as seen by users in /proc.
 7221 *
 7222 * sched policy         return value   kernel prio    user prio/nice
 7223 *
 7224 * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19]
 7225 * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99]
 7226 * deadline                     -101             -1           0
 7227 */
 7228int task_prio(const struct task_struct *p)
 7229{
 7230	return p->prio - MAX_RT_PRIO;
 7231}
 7232
 7233/**
 7234 * idle_cpu - is a given CPU idle currently?
 7235 * @cpu: the processor in question.
 7236 *
 7237 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7238 */
 7239int idle_cpu(int cpu)
 7240{
 7241	struct rq *rq = cpu_rq(cpu);
 7242
 7243	if (rq->curr != rq->idle)
 7244		return 0;
 7245
 7246	if (rq->nr_running)
 7247		return 0;
 7248
 7249#ifdef CONFIG_SMP
 7250	if (rq->ttwu_pending)
 7251		return 0;
 7252#endif
 7253
 7254	return 1;
 7255}
 7256
 7257/**
 7258 * available_idle_cpu - is a given CPU idle for enqueuing work.
 7259 * @cpu: the CPU in question.
 7260 *
 7261 * Return: 1 if the CPU is currently idle. 0 otherwise.
 7262 */
 7263int available_idle_cpu(int cpu)
 7264{
 7265	if (!idle_cpu(cpu))
 7266		return 0;
 7267
 7268	if (vcpu_is_preempted(cpu))
 7269		return 0;
 7270
 7271	return 1;
 7272}
 7273
 7274/**
 7275 * idle_task - return the idle task for a given CPU.
 7276 * @cpu: the processor in question.
 7277 *
 7278 * Return: The idle task for the CPU @cpu.
 7279 */
 7280struct task_struct *idle_task(int cpu)
 7281{
 7282	return cpu_rq(cpu)->idle;
 7283}
 7284
 7285#ifdef CONFIG_SMP
 7286/*
 7287 * This function computes an effective utilization for the given CPU, to be
 7288 * used for frequency selection given the linear relation: f = u * f_max.
 7289 *
 7290 * The scheduler tracks the following metrics:
 7291 *
 7292 *   cpu_util_{cfs,rt,dl,irq}()
 7293 *   cpu_bw_dl()
 7294 *
 7295 * Where the cfs,rt and dl util numbers are tracked with the same metric and
 7296 * synchronized windows and are thus directly comparable.
 7297 *
 7298 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
 7299 * which excludes things like IRQ and steal-time. These latter are then accrued
 7300 * in the irq utilization.
 7301 *
 7302 * The DL bandwidth number otoh is not a measured metric but a value computed
 7303 * based on the task model parameters and gives the minimal utilization
 7304 * required to meet deadlines.
 7305 */
 7306unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
 7307				 enum cpu_util_type type,
 7308				 struct task_struct *p)
 7309{
 7310	unsigned long dl_util, util, irq, max;
 7311	struct rq *rq = cpu_rq(cpu);
 7312
 7313	max = arch_scale_cpu_capacity(cpu);
 7314
 7315	if (!uclamp_is_used() &&
 7316	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
 7317		return max;
 7318	}
 7319
 7320	/*
 7321	 * Early check to see if IRQ/steal time saturates the CPU, can be
 7322	 * because of inaccuracies in how we track these -- see
 7323	 * update_irq_load_avg().
 7324	 */
 7325	irq = cpu_util_irq(rq);
 7326	if (unlikely(irq >= max))
 7327		return max;
 7328
 7329	/*
 7330	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
 7331	 * CFS tasks and we use the same metric to track the effective
 7332	 * utilization (PELT windows are synchronized) we can directly add them
 7333	 * to obtain the CPU's actual utilization.
 7334	 *
 7335	 * CFS and RT utilization can be boosted or capped, depending on
 7336	 * utilization clamp constraints requested by currently RUNNABLE
 7337	 * tasks.
 7338	 * When there are no CFS RUNNABLE tasks, clamps are released and
 7339	 * frequency will be gracefully reduced with the utilization decay.
 7340	 */
 7341	util = util_cfs + cpu_util_rt(rq);
 7342	if (type == FREQUENCY_UTIL)
 7343		util = uclamp_rq_util_with(rq, util, p);
 7344
 7345	dl_util = cpu_util_dl(rq);
 7346
 7347	/*
 7348	 * For frequency selection we do not make cpu_util_dl() a permanent part
 7349	 * of this sum because we want to use cpu_bw_dl() later on, but we need
 7350	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
 7351	 * that we select f_max when there is no idle time.
 7352	 *
 7353	 * NOTE: numerical errors or stop class might cause us to not quite hit
 7354	 * saturation when we should -- something for later.
 7355	 */
 7356	if (util + dl_util >= max)
 7357		return max;
 7358
 7359	/*
 7360	 * OTOH, for energy computation we need the estimated running time, so
 7361	 * include util_dl and ignore dl_bw.
 7362	 */
 7363	if (type == ENERGY_UTIL)
 7364		util += dl_util;
 7365
 7366	/*
 7367	 * There is still idle time; further improve the number by using the
 7368	 * irq metric. Because IRQ/steal time is hidden from the task clock we
 7369	 * need to scale the task numbers:
 7370	 *
 7371	 *              max - irq
 7372	 *   U' = irq + --------- * U
 7373	 *                 max
 7374	 */
 7375	util = scale_irq_capacity(util, irq, max);
 7376	util += irq;
 7377
 7378	/*
 7379	 * Bandwidth required by DEADLINE must always be granted while, for
 7380	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
 7381	 * to gracefully reduce the frequency when no tasks show up for longer
 7382	 * periods of time.
 7383	 *
 7384	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
 7385	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
 7386	 * an interface. So, we only do the latter for now.
 7387	 */
 7388	if (type == FREQUENCY_UTIL)
 7389		util += cpu_bw_dl(rq);
 7390
 7391	return min(max, util);
 7392}
 7393
 7394unsigned long sched_cpu_util(int cpu)
 7395{
 7396	return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
 7397}
 7398#endif /* CONFIG_SMP */
 7399
 7400/**
 7401 * find_process_by_pid - find a process with a matching PID value.
 7402 * @pid: the pid in question.
 7403 *
 7404 * The task of @pid, if found. %NULL otherwise.
 7405 */
 7406static struct task_struct *find_process_by_pid(pid_t pid)
 7407{
 7408	return pid ? find_task_by_vpid(pid) : current;
 7409}
 7410
 7411/*
 7412 * sched_setparam() passes in -1 for its policy, to let the functions
 7413 * it calls know not to change it.
 7414 */
 7415#define SETPARAM_POLICY	-1
 7416
 7417static void __setscheduler_params(struct task_struct *p,
 7418		const struct sched_attr *attr)
 7419{
 7420	int policy = attr->sched_policy;
 7421
 7422	if (policy == SETPARAM_POLICY)
 7423		policy = p->policy;
 7424
 7425	p->policy = policy;
 7426
 7427	if (dl_policy(policy))
 7428		__setparam_dl(p, attr);
 7429	else if (fair_policy(policy))
 7430		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
 7431
 7432	/*
 7433	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
 7434	 * !rt_policy. Always setting this ensures that things like
 7435	 * getparam()/getattr() don't report silly values for !rt tasks.
 7436	 */
 7437	p->rt_priority = attr->sched_priority;
 7438	p->normal_prio = normal_prio(p);
 7439	set_load_weight(p, true);
 7440}
 7441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7442/*
 7443 * Check the target process has a UID that matches the current process's:
 7444 */
 7445static bool check_same_owner(struct task_struct *p)
 7446{
 7447	const struct cred *cred = current_cred(), *pcred;
 7448	bool match;
 7449
 7450	rcu_read_lock();
 7451	pcred = __task_cred(p);
 7452	match = (uid_eq(cred->euid, pcred->euid) ||
 7453		 uid_eq(cred->euid, pcred->uid));
 7454	rcu_read_unlock();
 7455	return match;
 7456}
 7457
 7458/*
 7459 * Allow unprivileged RT tasks to decrease priority.
 7460 * Only issue a capable test if needed and only once to avoid an audit
 7461 * event on permitted non-privileged operations:
 7462 */
 7463static int user_check_sched_setscheduler(struct task_struct *p,
 7464					 const struct sched_attr *attr,
 7465					 int policy, int reset_on_fork)
 7466{
 7467	if (fair_policy(policy)) {
 7468		if (attr->sched_nice < task_nice(p) &&
 7469		    !is_nice_reduction(p, attr->sched_nice))
 7470			goto req_priv;
 7471	}
 7472
 7473	if (rt_policy(policy)) {
 7474		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
 7475
 7476		/* Can't set/change the rt policy: */
 7477		if (policy != p->policy && !rlim_rtprio)
 7478			goto req_priv;
 7479
 7480		/* Can't increase priority: */
 7481		if (attr->sched_priority > p->rt_priority &&
 7482		    attr->sched_priority > rlim_rtprio)
 7483			goto req_priv;
 7484	}
 7485
 7486	/*
 7487	 * Can't set/change SCHED_DEADLINE policy at all for now
 7488	 * (safest behavior); in the future we would like to allow
 7489	 * unprivileged DL tasks to increase their relative deadline
 7490	 * or reduce their runtime (both ways reducing utilization)
 7491	 */
 7492	if (dl_policy(policy))
 7493		goto req_priv;
 7494
 7495	/*
 7496	 * Treat SCHED_IDLE as nice 20. Only allow a switch to
 7497	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
 7498	 */
 7499	if (task_has_idle_policy(p) && !idle_policy(policy)) {
 7500		if (!is_nice_reduction(p, task_nice(p)))
 7501			goto req_priv;
 7502	}
 7503
 7504	/* Can't change other user's priorities: */
 7505	if (!check_same_owner(p))
 7506		goto req_priv;
 7507
 7508	/* Normal users shall not reset the sched_reset_on_fork flag: */
 7509	if (p->sched_reset_on_fork && !reset_on_fork)
 7510		goto req_priv;
 7511
 7512	return 0;
 7513
 7514req_priv:
 7515	if (!capable(CAP_SYS_NICE))
 7516		return -EPERM;
 7517
 7518	return 0;
 7519}
 7520
 7521static int __sched_setscheduler(struct task_struct *p,
 7522				const struct sched_attr *attr,
 7523				bool user, bool pi)
 7524{
 7525	int oldpolicy = -1, policy = attr->sched_policy;
 7526	int retval, oldprio, newprio, queued, running;
 
 
 7527	const struct sched_class *prev_class;
 7528	struct balance_callback *head;
 7529	struct rq_flags rf;
 7530	int reset_on_fork;
 7531	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
 7532	struct rq *rq;
 7533
 7534	/* The pi code expects interrupts enabled */
 7535	BUG_ON(pi && in_interrupt());
 7536recheck:
 7537	/* Double check policy once rq lock held: */
 7538	if (policy < 0) {
 7539		reset_on_fork = p->sched_reset_on_fork;
 7540		policy = oldpolicy = p->policy;
 7541	} else {
 7542		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
 7543
 7544		if (!valid_policy(policy))
 7545			return -EINVAL;
 7546	}
 7547
 7548	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
 7549		return -EINVAL;
 7550
 7551	/*
 7552	 * Valid priorities for SCHED_FIFO and SCHED_RR are
 7553	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
 7554	 * SCHED_BATCH and SCHED_IDLE is 0.
 7555	 */
 7556	if (attr->sched_priority > MAX_RT_PRIO-1)
 
 7557		return -EINVAL;
 7558	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
 7559	    (rt_policy(policy) != (attr->sched_priority != 0)))
 7560		return -EINVAL;
 7561
 7562	if (user) {
 7563		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
 7564		if (retval)
 7565			return retval;
 
 
 
 
 
 7566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7567		if (attr->sched_flags & SCHED_FLAG_SUGOV)
 7568			return -EINVAL;
 7569
 7570		retval = security_task_setscheduler(p);
 7571		if (retval)
 7572			return retval;
 7573	}
 7574
 7575	/* Update task specific "requested" clamps */
 7576	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
 7577		retval = uclamp_validate(p, attr);
 7578		if (retval)
 7579			return retval;
 7580	}
 7581
 7582	if (pi)
 7583		cpuset_read_lock();
 7584
 7585	/*
 7586	 * Make sure no PI-waiters arrive (or leave) while we are
 7587	 * changing the priority of the task:
 7588	 *
 7589	 * To be able to change p->policy safely, the appropriate
 7590	 * runqueue lock must be held.
 7591	 */
 7592	rq = task_rq_lock(p, &rf);
 7593	update_rq_clock(rq);
 7594
 7595	/*
 7596	 * Changing the policy of the stop threads its a very bad idea:
 7597	 */
 7598	if (p == rq->stop) {
 7599		retval = -EINVAL;
 7600		goto unlock;
 7601	}
 7602
 7603	/*
 7604	 * If not changing anything there's no need to proceed further,
 7605	 * but store a possible modification of reset_on_fork.
 7606	 */
 7607	if (unlikely(policy == p->policy)) {
 7608		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
 7609			goto change;
 7610		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
 7611			goto change;
 7612		if (dl_policy(policy) && dl_param_changed(p, attr))
 7613			goto change;
 7614		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
 7615			goto change;
 7616
 7617		p->sched_reset_on_fork = reset_on_fork;
 7618		retval = 0;
 7619		goto unlock;
 7620	}
 7621change:
 7622
 7623	if (user) {
 7624#ifdef CONFIG_RT_GROUP_SCHED
 7625		/*
 7626		 * Do not allow realtime tasks into groups that have no runtime
 7627		 * assigned.
 7628		 */
 7629		if (rt_bandwidth_enabled() && rt_policy(policy) &&
 7630				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
 7631				!task_group_is_autogroup(task_group(p))) {
 7632			retval = -EPERM;
 7633			goto unlock;
 7634		}
 7635#endif
 7636#ifdef CONFIG_SMP
 7637		if (dl_bandwidth_enabled() && dl_policy(policy) &&
 7638				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
 7639			cpumask_t *span = rq->rd->span;
 7640
 7641			/*
 7642			 * Don't allow tasks with an affinity mask smaller than
 7643			 * the entire root_domain to become SCHED_DEADLINE. We
 7644			 * will also fail if there's no bandwidth available.
 7645			 */
 7646			if (!cpumask_subset(span, p->cpus_ptr) ||
 7647			    rq->rd->dl_bw.bw == 0) {
 7648				retval = -EPERM;
 7649				goto unlock;
 7650			}
 7651		}
 7652#endif
 7653	}
 7654
 7655	/* Re-check policy now with rq lock held: */
 7656	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
 7657		policy = oldpolicy = -1;
 7658		task_rq_unlock(rq, p, &rf);
 7659		if (pi)
 7660			cpuset_read_unlock();
 7661		goto recheck;
 7662	}
 7663
 7664	/*
 7665	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
 7666	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
 7667	 * is available.
 7668	 */
 7669	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
 7670		retval = -EBUSY;
 7671		goto unlock;
 7672	}
 7673
 7674	p->sched_reset_on_fork = reset_on_fork;
 7675	oldprio = p->prio;
 7676
 7677	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
 7678	if (pi) {
 7679		/*
 7680		 * Take priority boosted tasks into account. If the new
 7681		 * effective priority is unchanged, we just store the new
 7682		 * normal parameters and do not touch the scheduler class and
 7683		 * the runqueue. This will be done when the task deboost
 7684		 * itself.
 7685		 */
 7686		newprio = rt_effective_prio(p, newprio);
 7687		if (newprio == oldprio)
 7688			queue_flags &= ~DEQUEUE_MOVE;
 7689	}
 7690
 7691	queued = task_on_rq_queued(p);
 7692	running = task_current(rq, p);
 7693	if (queued)
 7694		dequeue_task(rq, p, queue_flags);
 7695	if (running)
 7696		put_prev_task(rq, p);
 7697
 7698	prev_class = p->sched_class;
 7699
 7700	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
 7701		__setscheduler_params(p, attr);
 7702		__setscheduler_prio(p, newprio);
 7703	}
 7704	__setscheduler_uclamp(p, attr);
 7705
 7706	if (queued) {
 7707		/*
 7708		 * We enqueue to tail when the priority of a task is
 7709		 * increased (user space view).
 7710		 */
 7711		if (oldprio < p->prio)
 7712			queue_flags |= ENQUEUE_HEAD;
 7713
 7714		enqueue_task(rq, p, queue_flags);
 7715	}
 7716	if (running)
 7717		set_next_task(rq, p);
 7718
 7719	check_class_changed(rq, p, prev_class, oldprio);
 7720
 7721	/* Avoid rq from going away on us: */
 7722	preempt_disable();
 7723	head = splice_balance_callbacks(rq);
 7724	task_rq_unlock(rq, p, &rf);
 7725
 7726	if (pi) {
 7727		cpuset_read_unlock();
 7728		rt_mutex_adjust_pi(p);
 7729	}
 7730
 7731	/* Run balance callbacks after we've adjusted the PI chain: */
 7732	balance_callbacks(rq, head);
 7733	preempt_enable();
 7734
 7735	return 0;
 7736
 7737unlock:
 7738	task_rq_unlock(rq, p, &rf);
 7739	if (pi)
 7740		cpuset_read_unlock();
 7741	return retval;
 7742}
 7743
 7744static int _sched_setscheduler(struct task_struct *p, int policy,
 7745			       const struct sched_param *param, bool check)
 7746{
 7747	struct sched_attr attr = {
 7748		.sched_policy   = policy,
 7749		.sched_priority = param->sched_priority,
 7750		.sched_nice	= PRIO_TO_NICE(p->static_prio),
 7751	};
 7752
 7753	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
 7754	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
 7755		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 7756		policy &= ~SCHED_RESET_ON_FORK;
 7757		attr.sched_policy = policy;
 7758	}
 7759
 7760	return __sched_setscheduler(p, &attr, check, true);
 7761}
 7762/**
 7763 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 7764 * @p: the task in question.
 7765 * @policy: new policy.
 7766 * @param: structure containing the new RT priority.
 7767 *
 7768 * Use sched_set_fifo(), read its comment.
 7769 *
 7770 * Return: 0 on success. An error code otherwise.
 7771 *
 7772 * NOTE that the task may be already dead.
 7773 */
 7774int sched_setscheduler(struct task_struct *p, int policy,
 7775		       const struct sched_param *param)
 7776{
 7777	return _sched_setscheduler(p, policy, param, true);
 7778}
 7779
 7780int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
 7781{
 7782	return __sched_setscheduler(p, attr, true, true);
 7783}
 7784
 7785int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
 7786{
 7787	return __sched_setscheduler(p, attr, false, true);
 7788}
 7789EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
 7790
 7791/**
 7792 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 7793 * @p: the task in question.
 7794 * @policy: new policy.
 7795 * @param: structure containing the new RT priority.
 7796 *
 7797 * Just like sched_setscheduler, only don't bother checking if the
 7798 * current context has permission.  For example, this is needed in
 7799 * stop_machine(): we create temporary high priority worker threads,
 7800 * but our caller might not have that capability.
 7801 *
 7802 * Return: 0 on success. An error code otherwise.
 7803 */
 7804int sched_setscheduler_nocheck(struct task_struct *p, int policy,
 7805			       const struct sched_param *param)
 7806{
 7807	return _sched_setscheduler(p, policy, param, false);
 7808}
 7809
 7810/*
 7811 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
 7812 * incapable of resource management, which is the one thing an OS really should
 7813 * be doing.
 7814 *
 7815 * This is of course the reason it is limited to privileged users only.
 7816 *
 7817 * Worse still; it is fundamentally impossible to compose static priority
 7818 * workloads. You cannot take two correctly working static prio workloads
 7819 * and smash them together and still expect them to work.
 7820 *
 7821 * For this reason 'all' FIFO tasks the kernel creates are basically at:
 7822 *
 7823 *   MAX_RT_PRIO / 2
 7824 *
 7825 * The administrator _MUST_ configure the system, the kernel simply doesn't
 7826 * know enough information to make a sensible choice.
 7827 */
 7828void sched_set_fifo(struct task_struct *p)
 7829{
 7830	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
 7831	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7832}
 7833EXPORT_SYMBOL_GPL(sched_set_fifo);
 7834
 7835/*
 7836 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
 7837 */
 7838void sched_set_fifo_low(struct task_struct *p)
 7839{
 7840	struct sched_param sp = { .sched_priority = 1 };
 7841	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
 7842}
 7843EXPORT_SYMBOL_GPL(sched_set_fifo_low);
 7844
 7845void sched_set_normal(struct task_struct *p, int nice)
 7846{
 7847	struct sched_attr attr = {
 7848		.sched_policy = SCHED_NORMAL,
 7849		.sched_nice = nice,
 7850	};
 7851	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
 7852}
 7853EXPORT_SYMBOL_GPL(sched_set_normal);
 7854
 7855static int
 7856do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
 7857{
 7858	struct sched_param lparam;
 7859	struct task_struct *p;
 7860	int retval;
 7861
 7862	if (!param || pid < 0)
 7863		return -EINVAL;
 7864	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
 7865		return -EFAULT;
 7866
 7867	rcu_read_lock();
 7868	retval = -ESRCH;
 7869	p = find_process_by_pid(pid);
 7870	if (likely(p))
 7871		get_task_struct(p);
 7872	rcu_read_unlock();
 7873
 7874	if (likely(p)) {
 7875		retval = sched_setscheduler(p, policy, &lparam);
 7876		put_task_struct(p);
 7877	}
 7878
 7879	return retval;
 7880}
 7881
 7882/*
 7883 * Mimics kernel/events/core.c perf_copy_attr().
 7884 */
 7885static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
 7886{
 7887	u32 size;
 7888	int ret;
 7889
 7890	/* Zero the full structure, so that a short copy will be nice: */
 7891	memset(attr, 0, sizeof(*attr));
 7892
 7893	ret = get_user(size, &uattr->size);
 7894	if (ret)
 7895		return ret;
 7896
 7897	/* ABI compatibility quirk: */
 7898	if (!size)
 7899		size = SCHED_ATTR_SIZE_VER0;
 7900	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
 7901		goto err_size;
 7902
 7903	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
 7904	if (ret) {
 7905		if (ret == -E2BIG)
 7906			goto err_size;
 7907		return ret;
 7908	}
 7909
 7910	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
 7911	    size < SCHED_ATTR_SIZE_VER1)
 7912		return -EINVAL;
 7913
 7914	/*
 7915	 * XXX: Do we want to be lenient like existing syscalls; or do we want
 7916	 * to be strict and return an error on out-of-bounds values?
 7917	 */
 7918	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
 7919
 7920	return 0;
 7921
 7922err_size:
 7923	put_user(sizeof(*attr), &uattr->size);
 7924	return -E2BIG;
 7925}
 7926
 7927static void get_params(struct task_struct *p, struct sched_attr *attr)
 7928{
 7929	if (task_has_dl_policy(p))
 7930		__getparam_dl(p, attr);
 7931	else if (task_has_rt_policy(p))
 7932		attr->sched_priority = p->rt_priority;
 7933	else
 7934		attr->sched_nice = task_nice(p);
 7935}
 7936
 7937/**
 7938 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 7939 * @pid: the pid in question.
 7940 * @policy: new policy.
 7941 * @param: structure containing the new RT priority.
 7942 *
 7943 * Return: 0 on success. An error code otherwise.
 7944 */
 7945SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
 7946{
 7947	if (policy < 0)
 7948		return -EINVAL;
 7949
 7950	return do_sched_setscheduler(pid, policy, param);
 7951}
 7952
 7953/**
 7954 * sys_sched_setparam - set/change the RT priority of a thread
 7955 * @pid: the pid in question.
 7956 * @param: structure containing the new RT priority.
 7957 *
 7958 * Return: 0 on success. An error code otherwise.
 7959 */
 7960SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
 7961{
 7962	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
 7963}
 7964
 7965/**
 7966 * sys_sched_setattr - same as above, but with extended sched_attr
 7967 * @pid: the pid in question.
 7968 * @uattr: structure containing the extended parameters.
 7969 * @flags: for future extension.
 7970 */
 7971SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
 7972			       unsigned int, flags)
 7973{
 7974	struct sched_attr attr;
 7975	struct task_struct *p;
 7976	int retval;
 7977
 7978	if (!uattr || pid < 0 || flags)
 7979		return -EINVAL;
 7980
 7981	retval = sched_copy_attr(uattr, &attr);
 7982	if (retval)
 7983		return retval;
 7984
 7985	if ((int)attr.sched_policy < 0)
 7986		return -EINVAL;
 7987	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
 7988		attr.sched_policy = SETPARAM_POLICY;
 7989
 7990	rcu_read_lock();
 7991	retval = -ESRCH;
 7992	p = find_process_by_pid(pid);
 7993	if (likely(p))
 7994		get_task_struct(p);
 7995	rcu_read_unlock();
 7996
 7997	if (likely(p)) {
 7998		if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
 7999			get_params(p, &attr);
 8000		retval = sched_setattr(p, &attr);
 8001		put_task_struct(p);
 8002	}
 8003
 8004	return retval;
 8005}
 8006
 8007/**
 8008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 8009 * @pid: the pid in question.
 8010 *
 8011 * Return: On success, the policy of the thread. Otherwise, a negative error
 8012 * code.
 8013 */
 8014SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
 8015{
 8016	struct task_struct *p;
 8017	int retval;
 8018
 8019	if (pid < 0)
 8020		return -EINVAL;
 8021
 8022	retval = -ESRCH;
 8023	rcu_read_lock();
 8024	p = find_process_by_pid(pid);
 8025	if (p) {
 8026		retval = security_task_getscheduler(p);
 8027		if (!retval)
 8028			retval = p->policy
 8029				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
 8030	}
 8031	rcu_read_unlock();
 8032	return retval;
 8033}
 8034
 8035/**
 8036 * sys_sched_getparam - get the RT priority of a thread
 8037 * @pid: the pid in question.
 8038 * @param: structure containing the RT priority.
 8039 *
 8040 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 8041 * code.
 8042 */
 8043SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
 8044{
 8045	struct sched_param lp = { .sched_priority = 0 };
 8046	struct task_struct *p;
 8047	int retval;
 8048
 8049	if (!param || pid < 0)
 8050		return -EINVAL;
 8051
 8052	rcu_read_lock();
 8053	p = find_process_by_pid(pid);
 8054	retval = -ESRCH;
 8055	if (!p)
 8056		goto out_unlock;
 8057
 8058	retval = security_task_getscheduler(p);
 8059	if (retval)
 8060		goto out_unlock;
 8061
 8062	if (task_has_rt_policy(p))
 8063		lp.sched_priority = p->rt_priority;
 8064	rcu_read_unlock();
 8065
 8066	/*
 8067	 * This one might sleep, we cannot do it with a spinlock held ...
 8068	 */
 8069	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
 8070
 8071	return retval;
 8072
 8073out_unlock:
 8074	rcu_read_unlock();
 8075	return retval;
 8076}
 8077
 8078/*
 8079 * Copy the kernel size attribute structure (which might be larger
 8080 * than what user-space knows about) to user-space.
 8081 *
 8082 * Note that all cases are valid: user-space buffer can be larger or
 8083 * smaller than the kernel-space buffer. The usual case is that both
 8084 * have the same size.
 8085 */
 8086static int
 8087sched_attr_copy_to_user(struct sched_attr __user *uattr,
 8088			struct sched_attr *kattr,
 8089			unsigned int usize)
 8090{
 8091	unsigned int ksize = sizeof(*kattr);
 8092
 8093	if (!access_ok(uattr, usize))
 8094		return -EFAULT;
 8095
 8096	/*
 8097	 * sched_getattr() ABI forwards and backwards compatibility:
 8098	 *
 8099	 * If usize == ksize then we just copy everything to user-space and all is good.
 8100	 *
 8101	 * If usize < ksize then we only copy as much as user-space has space for,
 8102	 * this keeps ABI compatibility as well. We skip the rest.
 8103	 *
 8104	 * If usize > ksize then user-space is using a newer version of the ABI,
 8105	 * which part the kernel doesn't know about. Just ignore it - tooling can
 8106	 * detect the kernel's knowledge of attributes from the attr->size value
 8107	 * which is set to ksize in this case.
 8108	 */
 8109	kattr->size = min(usize, ksize);
 8110
 8111	if (copy_to_user(uattr, kattr, kattr->size))
 8112		return -EFAULT;
 8113
 8114	return 0;
 8115}
 8116
 8117/**
 8118 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
 8119 * @pid: the pid in question.
 8120 * @uattr: structure containing the extended parameters.
 8121 * @usize: sizeof(attr) for fwd/bwd comp.
 8122 * @flags: for future extension.
 8123 */
 8124SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
 8125		unsigned int, usize, unsigned int, flags)
 8126{
 8127	struct sched_attr kattr = { };
 8128	struct task_struct *p;
 8129	int retval;
 8130
 8131	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
 8132	    usize < SCHED_ATTR_SIZE_VER0 || flags)
 8133		return -EINVAL;
 8134
 8135	rcu_read_lock();
 8136	p = find_process_by_pid(pid);
 8137	retval = -ESRCH;
 8138	if (!p)
 8139		goto out_unlock;
 8140
 8141	retval = security_task_getscheduler(p);
 8142	if (retval)
 8143		goto out_unlock;
 8144
 8145	kattr.sched_policy = p->policy;
 8146	if (p->sched_reset_on_fork)
 8147		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
 8148	get_params(p, &kattr);
 8149	kattr.sched_flags &= SCHED_FLAG_ALL;
 
 
 
 
 8150
 8151#ifdef CONFIG_UCLAMP_TASK
 8152	/*
 8153	 * This could race with another potential updater, but this is fine
 8154	 * because it'll correctly read the old or the new value. We don't need
 8155	 * to guarantee who wins the race as long as it doesn't return garbage.
 8156	 */
 8157	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
 8158	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
 8159#endif
 8160
 8161	rcu_read_unlock();
 8162
 8163	return sched_attr_copy_to_user(uattr, &kattr, usize);
 8164
 8165out_unlock:
 8166	rcu_read_unlock();
 8167	return retval;
 8168}
 8169
 8170#ifdef CONFIG_SMP
 8171int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
 8172{
 8173	int ret = 0;
 8174
 8175	/*
 8176	 * If the task isn't a deadline task or admission control is
 8177	 * disabled then we don't care about affinity changes.
 8178	 */
 8179	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
 8180		return 0;
 8181
 8182	/*
 8183	 * Since bandwidth control happens on root_domain basis,
 8184	 * if admission test is enabled, we only admit -deadline
 8185	 * tasks allowed to run on all the CPUs in the task's
 8186	 * root_domain.
 8187	 */
 8188	rcu_read_lock();
 8189	if (!cpumask_subset(task_rq(p)->rd->span, mask))
 8190		ret = -EBUSY;
 8191	rcu_read_unlock();
 8192	return ret;
 8193}
 8194#endif
 8195
 8196static int
 8197__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
 8198{
 8199	int retval;
 8200	cpumask_var_t cpus_allowed, new_mask;
 8201
 8202	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
 8203		return -ENOMEM;
 8204
 8205	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
 8206		retval = -ENOMEM;
 8207		goto out_free_cpus_allowed;
 8208	}
 8209
 8210	cpuset_cpus_allowed(p, cpus_allowed);
 8211	cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
 8212
 8213	ctx->new_mask = new_mask;
 8214	ctx->flags |= SCA_CHECK;
 8215
 8216	retval = dl_task_check_affinity(p, new_mask);
 8217	if (retval)
 8218		goto out_free_new_mask;
 8219
 8220	retval = __set_cpus_allowed_ptr(p, ctx);
 8221	if (retval)
 8222		goto out_free_new_mask;
 8223
 8224	cpuset_cpus_allowed(p, cpus_allowed);
 8225	if (!cpumask_subset(new_mask, cpus_allowed)) {
 8226		/*
 8227		 * We must have raced with a concurrent cpuset update.
 8228		 * Just reset the cpumask to the cpuset's cpus_allowed.
 8229		 */
 8230		cpumask_copy(new_mask, cpus_allowed);
 8231
 8232		/*
 8233		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
 8234		 * will restore the previous user_cpus_ptr value.
 8235		 *
 8236		 * In the unlikely event a previous user_cpus_ptr exists,
 8237		 * we need to further restrict the mask to what is allowed
 8238		 * by that old user_cpus_ptr.
 8239		 */
 8240		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
 8241			bool empty = !cpumask_and(new_mask, new_mask,
 8242						  ctx->user_mask);
 8243
 8244			if (WARN_ON_ONCE(empty))
 8245				cpumask_copy(new_mask, cpus_allowed);
 8246		}
 8247		__set_cpus_allowed_ptr(p, ctx);
 8248		retval = -EINVAL;
 8249	}
 8250
 8251out_free_new_mask:
 8252	free_cpumask_var(new_mask);
 8253out_free_cpus_allowed:
 8254	free_cpumask_var(cpus_allowed);
 8255	return retval;
 8256}
 8257
 8258long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
 8259{
 8260	struct affinity_context ac;
 8261	struct cpumask *user_mask;
 8262	struct task_struct *p;
 8263	int retval;
 8264
 8265	rcu_read_lock();
 8266
 8267	p = find_process_by_pid(pid);
 8268	if (!p) {
 8269		rcu_read_unlock();
 8270		return -ESRCH;
 8271	}
 8272
 8273	/* Prevent p going away */
 8274	get_task_struct(p);
 8275	rcu_read_unlock();
 8276
 8277	if (p->flags & PF_NO_SETAFFINITY) {
 8278		retval = -EINVAL;
 8279		goto out_put_task;
 8280	}
 8281
 
 
 
 
 
 
 
 
 8282	if (!check_same_owner(p)) {
 8283		rcu_read_lock();
 8284		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
 8285			rcu_read_unlock();
 8286			retval = -EPERM;
 8287			goto out_put_task;
 8288		}
 8289		rcu_read_unlock();
 8290	}
 8291
 8292	retval = security_task_setscheduler(p);
 8293	if (retval)
 8294		goto out_put_task;
 
 
 
 
 8295
 8296	/*
 8297	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
 8298	 * alloc_user_cpus_ptr() returns NULL.
 
 
 8299	 */
 8300	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
 8301	if (user_mask) {
 8302		cpumask_copy(user_mask, in_mask);
 8303	} else if (IS_ENABLED(CONFIG_SMP)) {
 8304		retval = -ENOMEM;
 8305		goto out_put_task;
 
 
 
 8306	}
 
 
 
 8307
 8308	ac = (struct affinity_context){
 8309		.new_mask  = in_mask,
 8310		.user_mask = user_mask,
 8311		.flags     = SCA_USER,
 8312	};
 8313
 8314	retval = __sched_setaffinity(p, &ac);
 8315	kfree(ac.user_mask);
 8316
 
 
 
 
 
 
 
 8317out_put_task:
 8318	put_task_struct(p);
 8319	return retval;
 8320}
 8321
 8322static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
 8323			     struct cpumask *new_mask)
 8324{
 8325	if (len < cpumask_size())
 8326		cpumask_clear(new_mask);
 8327	else if (len > cpumask_size())
 8328		len = cpumask_size();
 8329
 8330	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
 8331}
 8332
 8333/**
 8334 * sys_sched_setaffinity - set the CPU affinity of a process
 8335 * @pid: pid of the process
 8336 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8337 * @user_mask_ptr: user-space pointer to the new CPU mask
 8338 *
 8339 * Return: 0 on success. An error code otherwise.
 8340 */
 8341SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
 8342		unsigned long __user *, user_mask_ptr)
 8343{
 8344	cpumask_var_t new_mask;
 8345	int retval;
 8346
 8347	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
 8348		return -ENOMEM;
 8349
 8350	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
 8351	if (retval == 0)
 8352		retval = sched_setaffinity(pid, new_mask);
 8353	free_cpumask_var(new_mask);
 8354	return retval;
 8355}
 8356
 8357long sched_getaffinity(pid_t pid, struct cpumask *mask)
 8358{
 8359	struct task_struct *p;
 8360	unsigned long flags;
 8361	int retval;
 8362
 8363	rcu_read_lock();
 8364
 8365	retval = -ESRCH;
 8366	p = find_process_by_pid(pid);
 8367	if (!p)
 8368		goto out_unlock;
 8369
 8370	retval = security_task_getscheduler(p);
 8371	if (retval)
 8372		goto out_unlock;
 8373
 8374	raw_spin_lock_irqsave(&p->pi_lock, flags);
 8375	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
 8376	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 8377
 8378out_unlock:
 8379	rcu_read_unlock();
 8380
 8381	return retval;
 8382}
 8383
 8384/**
 8385 * sys_sched_getaffinity - get the CPU affinity of a process
 8386 * @pid: pid of the process
 8387 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 8388 * @user_mask_ptr: user-space pointer to hold the current CPU mask
 8389 *
 8390 * Return: size of CPU mask copied to user_mask_ptr on success. An
 8391 * error code otherwise.
 8392 */
 8393SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
 8394		unsigned long __user *, user_mask_ptr)
 8395{
 8396	int ret;
 8397	cpumask_var_t mask;
 8398
 8399	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
 8400		return -EINVAL;
 8401	if (len & (sizeof(unsigned long)-1))
 8402		return -EINVAL;
 8403
 8404	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
 8405		return -ENOMEM;
 8406
 8407	ret = sched_getaffinity(pid, mask);
 8408	if (ret == 0) {
 8409		unsigned int retlen = min(len, cpumask_size());
 8410
 8411		if (copy_to_user(user_mask_ptr, mask, retlen))
 8412			ret = -EFAULT;
 8413		else
 8414			ret = retlen;
 8415	}
 8416	free_cpumask_var(mask);
 8417
 8418	return ret;
 8419}
 8420
 
 
 
 
 
 
 
 
 8421static void do_sched_yield(void)
 8422{
 8423	struct rq_flags rf;
 8424	struct rq *rq;
 8425
 8426	rq = this_rq_lock_irq(&rf);
 8427
 8428	schedstat_inc(rq->yld_count);
 8429	current->sched_class->yield_task(rq);
 8430
 
 
 
 
 8431	preempt_disable();
 8432	rq_unlock_irq(rq, &rf);
 8433	sched_preempt_enable_no_resched();
 8434
 8435	schedule();
 8436}
 8437
 8438/**
 8439 * sys_sched_yield - yield the current processor to other threads.
 8440 *
 8441 * This function yields the current CPU to other tasks. If there are no
 8442 * other threads running on this CPU then this function will return.
 8443 *
 8444 * Return: 0.
 8445 */
 8446SYSCALL_DEFINE0(sched_yield)
 8447{
 8448	do_sched_yield();
 8449	return 0;
 8450}
 8451
 8452#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
 8453int __sched __cond_resched(void)
 8454{
 8455	if (should_resched(0)) {
 8456		preempt_schedule_common();
 8457		return 1;
 8458	}
 8459	/*
 8460	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
 8461	 * whether the current CPU is in an RCU read-side critical section,
 8462	 * so the tick can report quiescent states even for CPUs looping
 8463	 * in kernel context.  In contrast, in non-preemptible kernels,
 8464	 * RCU readers leave no in-memory hints, which means that CPU-bound
 8465	 * processes executing in kernel context might never report an
 8466	 * RCU quiescent state.  Therefore, the following code causes
 8467	 * cond_resched() to report a quiescent state, but only when RCU
 8468	 * is in urgent need of one.
 8469	 */
 8470#ifndef CONFIG_PREEMPT_RCU
 8471	rcu_all_qs();
 8472#endif
 8473	return 0;
 8474}
 8475EXPORT_SYMBOL(__cond_resched);
 8476#endif
 8477
 8478#ifdef CONFIG_PREEMPT_DYNAMIC
 8479#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8480#define cond_resched_dynamic_enabled	__cond_resched
 8481#define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
 8482DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
 8483EXPORT_STATIC_CALL_TRAMP(cond_resched);
 8484
 8485#define might_resched_dynamic_enabled	__cond_resched
 8486#define might_resched_dynamic_disabled	((void *)&__static_call_return0)
 8487DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
 8488EXPORT_STATIC_CALL_TRAMP(might_resched);
 8489#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8490static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
 8491int __sched dynamic_cond_resched(void)
 8492{
 8493	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
 8494		return 0;
 8495	return __cond_resched();
 8496}
 8497EXPORT_SYMBOL(dynamic_cond_resched);
 8498
 8499static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
 8500int __sched dynamic_might_resched(void)
 8501{
 8502	if (!static_branch_unlikely(&sk_dynamic_might_resched))
 8503		return 0;
 8504	return __cond_resched();
 8505}
 8506EXPORT_SYMBOL(dynamic_might_resched);
 8507#endif
 8508#endif
 8509
 8510/*
 8511 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
 8512 * call schedule, and on return reacquire the lock.
 8513 *
 8514 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
 8515 * operations here to prevent schedule() from being called twice (once via
 8516 * spin_unlock(), once by hand).
 8517 */
 8518int __cond_resched_lock(spinlock_t *lock)
 8519{
 8520	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8521	int ret = 0;
 8522
 8523	lockdep_assert_held(lock);
 8524
 8525	if (spin_needbreak(lock) || resched) {
 8526		spin_unlock(lock);
 8527		if (!_cond_resched())
 
 
 8528			cpu_relax();
 8529		ret = 1;
 8530		spin_lock(lock);
 8531	}
 8532	return ret;
 8533}
 8534EXPORT_SYMBOL(__cond_resched_lock);
 8535
 8536int __cond_resched_rwlock_read(rwlock_t *lock)
 8537{
 8538	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8539	int ret = 0;
 8540
 8541	lockdep_assert_held_read(lock);
 8542
 8543	if (rwlock_needbreak(lock) || resched) {
 8544		read_unlock(lock);
 8545		if (!_cond_resched())
 8546			cpu_relax();
 8547		ret = 1;
 8548		read_lock(lock);
 8549	}
 8550	return ret;
 8551}
 8552EXPORT_SYMBOL(__cond_resched_rwlock_read);
 8553
 8554int __cond_resched_rwlock_write(rwlock_t *lock)
 8555{
 8556	int resched = should_resched(PREEMPT_LOCK_OFFSET);
 8557	int ret = 0;
 8558
 8559	lockdep_assert_held_write(lock);
 8560
 8561	if (rwlock_needbreak(lock) || resched) {
 8562		write_unlock(lock);
 8563		if (!_cond_resched())
 8564			cpu_relax();
 8565		ret = 1;
 8566		write_lock(lock);
 8567	}
 8568	return ret;
 8569}
 8570EXPORT_SYMBOL(__cond_resched_rwlock_write);
 8571
 8572#ifdef CONFIG_PREEMPT_DYNAMIC
 8573
 8574#ifdef CONFIG_GENERIC_ENTRY
 8575#include <linux/entry-common.h>
 8576#endif
 8577
 8578/*
 8579 * SC:cond_resched
 8580 * SC:might_resched
 8581 * SC:preempt_schedule
 8582 * SC:preempt_schedule_notrace
 8583 * SC:irqentry_exit_cond_resched
 8584 *
 8585 *
 8586 * NONE:
 8587 *   cond_resched               <- __cond_resched
 8588 *   might_resched              <- RET0
 8589 *   preempt_schedule           <- NOP
 8590 *   preempt_schedule_notrace   <- NOP
 8591 *   irqentry_exit_cond_resched <- NOP
 8592 *
 8593 * VOLUNTARY:
 8594 *   cond_resched               <- __cond_resched
 8595 *   might_resched              <- __cond_resched
 8596 *   preempt_schedule           <- NOP
 8597 *   preempt_schedule_notrace   <- NOP
 8598 *   irqentry_exit_cond_resched <- NOP
 8599 *
 8600 * FULL:
 8601 *   cond_resched               <- RET0
 8602 *   might_resched              <- RET0
 8603 *   preempt_schedule           <- preempt_schedule
 8604 *   preempt_schedule_notrace   <- preempt_schedule_notrace
 8605 *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
 8606 */
 8607
 8608enum {
 8609	preempt_dynamic_undefined = -1,
 8610	preempt_dynamic_none,
 8611	preempt_dynamic_voluntary,
 8612	preempt_dynamic_full,
 8613};
 8614
 8615int preempt_dynamic_mode = preempt_dynamic_undefined;
 8616
 8617int sched_dynamic_mode(const char *str)
 8618{
 8619	if (!strcmp(str, "none"))
 8620		return preempt_dynamic_none;
 8621
 8622	if (!strcmp(str, "voluntary"))
 8623		return preempt_dynamic_voluntary;
 8624
 8625	if (!strcmp(str, "full"))
 8626		return preempt_dynamic_full;
 8627
 8628	return -EINVAL;
 8629}
 8630
 8631#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 8632#define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
 8633#define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
 8634#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
 8635#define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
 8636#define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
 8637#else
 8638#error "Unsupported PREEMPT_DYNAMIC mechanism"
 8639#endif
 8640
 8641void sched_dynamic_update(int mode)
 8642{
 8643	/*
 8644	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
 8645	 * the ZERO state, which is invalid.
 8646	 */
 8647	preempt_dynamic_enable(cond_resched);
 8648	preempt_dynamic_enable(might_resched);
 8649	preempt_dynamic_enable(preempt_schedule);
 8650	preempt_dynamic_enable(preempt_schedule_notrace);
 8651	preempt_dynamic_enable(irqentry_exit_cond_resched);
 8652
 8653	switch (mode) {
 8654	case preempt_dynamic_none:
 8655		preempt_dynamic_enable(cond_resched);
 8656		preempt_dynamic_disable(might_resched);
 8657		preempt_dynamic_disable(preempt_schedule);
 8658		preempt_dynamic_disable(preempt_schedule_notrace);
 8659		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8660		pr_info("Dynamic Preempt: none\n");
 8661		break;
 8662
 8663	case preempt_dynamic_voluntary:
 8664		preempt_dynamic_enable(cond_resched);
 8665		preempt_dynamic_enable(might_resched);
 8666		preempt_dynamic_disable(preempt_schedule);
 8667		preempt_dynamic_disable(preempt_schedule_notrace);
 8668		preempt_dynamic_disable(irqentry_exit_cond_resched);
 8669		pr_info("Dynamic Preempt: voluntary\n");
 8670		break;
 8671
 8672	case preempt_dynamic_full:
 8673		preempt_dynamic_disable(cond_resched);
 8674		preempt_dynamic_disable(might_resched);
 8675		preempt_dynamic_enable(preempt_schedule);
 8676		preempt_dynamic_enable(preempt_schedule_notrace);
 8677		preempt_dynamic_enable(irqentry_exit_cond_resched);
 8678		pr_info("Dynamic Preempt: full\n");
 8679		break;
 8680	}
 8681
 8682	preempt_dynamic_mode = mode;
 8683}
 8684
 8685static int __init setup_preempt_mode(char *str)
 8686{
 8687	int mode = sched_dynamic_mode(str);
 8688	if (mode < 0) {
 8689		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
 8690		return 0;
 8691	}
 8692
 8693	sched_dynamic_update(mode);
 8694	return 1;
 8695}
 8696__setup("preempt=", setup_preempt_mode);
 8697
 8698static void __init preempt_dynamic_init(void)
 8699{
 8700	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
 8701		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
 8702			sched_dynamic_update(preempt_dynamic_none);
 8703		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
 8704			sched_dynamic_update(preempt_dynamic_voluntary);
 8705		} else {
 8706			/* Default static call setting, nothing to do */
 8707			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
 8708			preempt_dynamic_mode = preempt_dynamic_full;
 8709			pr_info("Dynamic Preempt: full\n");
 8710		}
 8711	}
 8712}
 8713
 8714#define PREEMPT_MODEL_ACCESSOR(mode) \
 8715	bool preempt_model_##mode(void)						 \
 8716	{									 \
 8717		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
 8718		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
 8719	}									 \
 8720	EXPORT_SYMBOL_GPL(preempt_model_##mode)
 8721
 8722PREEMPT_MODEL_ACCESSOR(none);
 8723PREEMPT_MODEL_ACCESSOR(voluntary);
 8724PREEMPT_MODEL_ACCESSOR(full);
 8725
 8726#else /* !CONFIG_PREEMPT_DYNAMIC */
 8727
 8728static inline void preempt_dynamic_init(void) { }
 8729
 8730#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
 8731
 8732/**
 8733 * yield - yield the current processor to other threads.
 8734 *
 8735 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 8736 *
 8737 * The scheduler is at all times free to pick the calling task as the most
 8738 * eligible task to run, if removing the yield() call from your code breaks
 8739 * it, it's already broken.
 8740 *
 8741 * Typical broken usage is:
 8742 *
 8743 * while (!event)
 8744 *	yield();
 8745 *
 8746 * where one assumes that yield() will let 'the other' process run that will
 8747 * make event true. If the current task is a SCHED_FIFO task that will never
 8748 * happen. Never use yield() as a progress guarantee!!
 8749 *
 8750 * If you want to use yield() to wait for something, use wait_event().
 8751 * If you want to use yield() to be 'nice' for others, use cond_resched().
 8752 * If you still want to use yield(), do not!
 8753 */
 8754void __sched yield(void)
 8755{
 8756	set_current_state(TASK_RUNNING);
 8757	do_sched_yield();
 8758}
 8759EXPORT_SYMBOL(yield);
 8760
 8761/**
 8762 * yield_to - yield the current processor to another thread in
 8763 * your thread group, or accelerate that thread toward the
 8764 * processor it's on.
 8765 * @p: target task
 8766 * @preempt: whether task preemption is allowed or not
 8767 *
 8768 * It's the caller's job to ensure that the target task struct
 8769 * can't go away on us before we can do any checks.
 8770 *
 8771 * Return:
 8772 *	true (>0) if we indeed boosted the target task.
 8773 *	false (0) if we failed to boost the target.
 8774 *	-ESRCH if there's no task to yield to.
 8775 */
 8776int __sched yield_to(struct task_struct *p, bool preempt)
 8777{
 8778	struct task_struct *curr = current;
 8779	struct rq *rq, *p_rq;
 8780	unsigned long flags;
 8781	int yielded = 0;
 8782
 8783	local_irq_save(flags);
 8784	rq = this_rq();
 8785
 8786again:
 8787	p_rq = task_rq(p);
 8788	/*
 8789	 * If we're the only runnable task on the rq and target rq also
 8790	 * has only one task, there's absolutely no point in yielding.
 8791	 */
 8792	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
 8793		yielded = -ESRCH;
 8794		goto out_irq;
 8795	}
 8796
 8797	double_rq_lock(rq, p_rq);
 8798	if (task_rq(p) != p_rq) {
 8799		double_rq_unlock(rq, p_rq);
 8800		goto again;
 8801	}
 8802
 8803	if (!curr->sched_class->yield_to_task)
 8804		goto out_unlock;
 8805
 8806	if (curr->sched_class != p->sched_class)
 8807		goto out_unlock;
 8808
 8809	if (task_on_cpu(p_rq, p) || !task_is_running(p))
 8810		goto out_unlock;
 8811
 8812	yielded = curr->sched_class->yield_to_task(rq, p);
 8813	if (yielded) {
 8814		schedstat_inc(rq->yld_count);
 8815		/*
 8816		 * Make p's CPU reschedule; pick_next_entity takes care of
 8817		 * fairness.
 8818		 */
 8819		if (preempt && rq != p_rq)
 8820			resched_curr(p_rq);
 8821	}
 8822
 8823out_unlock:
 8824	double_rq_unlock(rq, p_rq);
 8825out_irq:
 8826	local_irq_restore(flags);
 8827
 8828	if (yielded > 0)
 8829		schedule();
 8830
 8831	return yielded;
 8832}
 8833EXPORT_SYMBOL_GPL(yield_to);
 8834
 8835int io_schedule_prepare(void)
 8836{
 8837	int old_iowait = current->in_iowait;
 8838
 8839	current->in_iowait = 1;
 8840	blk_flush_plug(current->plug, true);
 
 8841	return old_iowait;
 8842}
 8843
 8844void io_schedule_finish(int token)
 8845{
 8846	current->in_iowait = token;
 8847}
 8848
 8849/*
 8850 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
 8851 * that process accounting knows that this is a task in IO wait state.
 8852 */
 8853long __sched io_schedule_timeout(long timeout)
 8854{
 8855	int token;
 8856	long ret;
 8857
 8858	token = io_schedule_prepare();
 8859	ret = schedule_timeout(timeout);
 8860	io_schedule_finish(token);
 8861
 8862	return ret;
 8863}
 8864EXPORT_SYMBOL(io_schedule_timeout);
 8865
 8866void __sched io_schedule(void)
 8867{
 8868	int token;
 8869
 8870	token = io_schedule_prepare();
 8871	schedule();
 8872	io_schedule_finish(token);
 8873}
 8874EXPORT_SYMBOL(io_schedule);
 8875
 8876/**
 8877 * sys_sched_get_priority_max - return maximum RT priority.
 8878 * @policy: scheduling class.
 8879 *
 8880 * Return: On success, this syscall returns the maximum
 8881 * rt_priority that can be used by a given scheduling class.
 8882 * On failure, a negative error code is returned.
 8883 */
 8884SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
 8885{
 8886	int ret = -EINVAL;
 8887
 8888	switch (policy) {
 8889	case SCHED_FIFO:
 8890	case SCHED_RR:
 8891		ret = MAX_RT_PRIO-1;
 8892		break;
 8893	case SCHED_DEADLINE:
 8894	case SCHED_NORMAL:
 8895	case SCHED_BATCH:
 8896	case SCHED_IDLE:
 8897		ret = 0;
 8898		break;
 8899	}
 8900	return ret;
 8901}
 8902
 8903/**
 8904 * sys_sched_get_priority_min - return minimum RT priority.
 8905 * @policy: scheduling class.
 8906 *
 8907 * Return: On success, this syscall returns the minimum
 8908 * rt_priority that can be used by a given scheduling class.
 8909 * On failure, a negative error code is returned.
 8910 */
 8911SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
 8912{
 8913	int ret = -EINVAL;
 8914
 8915	switch (policy) {
 8916	case SCHED_FIFO:
 8917	case SCHED_RR:
 8918		ret = 1;
 8919		break;
 8920	case SCHED_DEADLINE:
 8921	case SCHED_NORMAL:
 8922	case SCHED_BATCH:
 8923	case SCHED_IDLE:
 8924		ret = 0;
 8925	}
 8926	return ret;
 8927}
 8928
 8929static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
 8930{
 8931	struct task_struct *p;
 8932	unsigned int time_slice;
 8933	struct rq_flags rf;
 8934	struct rq *rq;
 8935	int retval;
 8936
 8937	if (pid < 0)
 8938		return -EINVAL;
 8939
 8940	retval = -ESRCH;
 8941	rcu_read_lock();
 8942	p = find_process_by_pid(pid);
 8943	if (!p)
 8944		goto out_unlock;
 8945
 8946	retval = security_task_getscheduler(p);
 8947	if (retval)
 8948		goto out_unlock;
 8949
 8950	rq = task_rq_lock(p, &rf);
 8951	time_slice = 0;
 8952	if (p->sched_class->get_rr_interval)
 8953		time_slice = p->sched_class->get_rr_interval(rq, p);
 8954	task_rq_unlock(rq, p, &rf);
 8955
 8956	rcu_read_unlock();
 8957	jiffies_to_timespec64(time_slice, t);
 8958	return 0;
 8959
 8960out_unlock:
 8961	rcu_read_unlock();
 8962	return retval;
 8963}
 8964
 8965/**
 8966 * sys_sched_rr_get_interval - return the default timeslice of a process.
 8967 * @pid: pid of the process.
 8968 * @interval: userspace pointer to the timeslice value.
 8969 *
 8970 * this syscall writes the default timeslice value of a given process
 8971 * into the user-space timespec buffer. A value of '0' means infinity.
 8972 *
 8973 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 8974 * an error code.
 8975 */
 8976SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
 8977		struct __kernel_timespec __user *, interval)
 8978{
 8979	struct timespec64 t;
 8980	int retval = sched_rr_get_interval(pid, &t);
 8981
 8982	if (retval == 0)
 8983		retval = put_timespec64(&t, interval);
 8984
 8985	return retval;
 8986}
 8987
 8988#ifdef CONFIG_COMPAT_32BIT_TIME
 8989SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
 8990		struct old_timespec32 __user *, interval)
 8991{
 8992	struct timespec64 t;
 8993	int retval = sched_rr_get_interval(pid, &t);
 8994
 8995	if (retval == 0)
 8996		retval = put_old_timespec32(&t, interval);
 8997	return retval;
 8998}
 8999#endif
 9000
 9001void sched_show_task(struct task_struct *p)
 9002{
 9003	unsigned long free = 0;
 9004	int ppid;
 9005
 9006	if (!try_get_task_stack(p))
 9007		return;
 9008
 9009	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
 9010
 9011	if (task_is_running(p))
 9012		pr_cont("  running task    ");
 9013#ifdef CONFIG_DEBUG_STACK_USAGE
 9014	free = stack_not_used(p);
 9015#endif
 9016	ppid = 0;
 9017	rcu_read_lock();
 9018	if (pid_alive(p))
 9019		ppid = task_pid_nr(rcu_dereference(p->real_parent));
 9020	rcu_read_unlock();
 9021	pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
 9022		free, task_pid_nr(p), ppid,
 9023		read_task_thread_flags(p));
 9024
 9025	print_worker_info(KERN_INFO, p);
 9026	print_stop_info(KERN_INFO, p);
 9027	show_stack(p, NULL, KERN_INFO);
 9028	put_task_stack(p);
 9029}
 9030EXPORT_SYMBOL_GPL(sched_show_task);
 9031
 9032static inline bool
 9033state_filter_match(unsigned long state_filter, struct task_struct *p)
 9034{
 9035	unsigned int state = READ_ONCE(p->__state);
 9036
 9037	/* no filter, everything matches */
 9038	if (!state_filter)
 9039		return true;
 9040
 9041	/* filter, but doesn't match */
 9042	if (!(state & state_filter))
 9043		return false;
 9044
 9045	/*
 9046	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
 9047	 * TASK_KILLABLE).
 9048	 */
 9049	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
 9050		return false;
 9051
 9052	return true;
 9053}
 9054
 9055
 9056void show_state_filter(unsigned int state_filter)
 9057{
 9058	struct task_struct *g, *p;
 9059
 9060	rcu_read_lock();
 9061	for_each_process_thread(g, p) {
 9062		/*
 9063		 * reset the NMI-timeout, listing all files on a slow
 9064		 * console might take a lot of time:
 9065		 * Also, reset softlockup watchdogs on all CPUs, because
 9066		 * another CPU might be blocked waiting for us to process
 9067		 * an IPI.
 9068		 */
 9069		touch_nmi_watchdog();
 9070		touch_all_softlockup_watchdogs();
 9071		if (state_filter_match(state_filter, p))
 9072			sched_show_task(p);
 9073	}
 9074
 9075#ifdef CONFIG_SCHED_DEBUG
 9076	if (!state_filter)
 9077		sysrq_sched_debug_show();
 9078#endif
 9079	rcu_read_unlock();
 9080	/*
 9081	 * Only show locks if all tasks are dumped:
 9082	 */
 9083	if (!state_filter)
 9084		debug_show_all_locks();
 9085}
 9086
 9087/**
 9088 * init_idle - set up an idle thread for a given CPU
 9089 * @idle: task in question
 9090 * @cpu: CPU the idle task belongs to
 9091 *
 9092 * NOTE: this function does not set the idle thread's NEED_RESCHED
 9093 * flag, to make booting more robust.
 9094 */
 9095void __init init_idle(struct task_struct *idle, int cpu)
 9096{
 9097#ifdef CONFIG_SMP
 9098	struct affinity_context ac = (struct affinity_context) {
 9099		.new_mask  = cpumask_of(cpu),
 9100		.flags     = 0,
 9101	};
 9102#endif
 9103	struct rq *rq = cpu_rq(cpu);
 9104	unsigned long flags;
 9105
 9106	__sched_fork(0, idle);
 9107
 9108	raw_spin_lock_irqsave(&idle->pi_lock, flags);
 9109	raw_spin_rq_lock(rq);
 9110
 9111	idle->__state = TASK_RUNNING;
 9112	idle->se.exec_start = sched_clock();
 9113	/*
 9114	 * PF_KTHREAD should already be set at this point; regardless, make it
 9115	 * look like a proper per-CPU kthread.
 9116	 */
 9117	idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
 9118	kthread_set_per_cpu(idle, cpu);
 9119
 9120#ifdef CONFIG_SMP
 9121	/*
 9122	 * It's possible that init_idle() gets called multiple times on a task,
 9123	 * in that case do_set_cpus_allowed() will not do the right thing.
 9124	 *
 9125	 * And since this is boot we can forgo the serialization.
 9126	 */
 9127	set_cpus_allowed_common(idle, &ac);
 9128#endif
 9129	/*
 9130	 * We're having a chicken and egg problem, even though we are
 9131	 * holding rq->lock, the CPU isn't yet set to this CPU so the
 9132	 * lockdep check in task_group() will fail.
 9133	 *
 9134	 * Similar case to sched_fork(). / Alternatively we could
 9135	 * use task_rq_lock() here and obtain the other rq->lock.
 9136	 *
 9137	 * Silence PROVE_RCU
 9138	 */
 9139	rcu_read_lock();
 9140	__set_task_cpu(idle, cpu);
 9141	rcu_read_unlock();
 9142
 9143	rq->idle = idle;
 9144	rcu_assign_pointer(rq->curr, idle);
 9145	idle->on_rq = TASK_ON_RQ_QUEUED;
 9146#ifdef CONFIG_SMP
 9147	idle->on_cpu = 1;
 9148#endif
 9149	raw_spin_rq_unlock(rq);
 9150	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
 9151
 9152	/* Set the preempt count _outside_ the spinlocks! */
 9153	init_idle_preempt_count(idle, cpu);
 9154
 9155	/*
 9156	 * The idle tasks have their own, simple scheduling class:
 9157	 */
 9158	idle->sched_class = &idle_sched_class;
 9159	ftrace_graph_init_idle_task(idle, cpu);
 9160	vtime_init_idle(idle, cpu);
 9161#ifdef CONFIG_SMP
 9162	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
 9163#endif
 9164}
 9165
 9166#ifdef CONFIG_SMP
 9167
 9168int cpuset_cpumask_can_shrink(const struct cpumask *cur,
 9169			      const struct cpumask *trial)
 9170{
 9171	int ret = 1;
 9172
 9173	if (cpumask_empty(cur))
 9174		return ret;
 9175
 9176	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
 9177
 9178	return ret;
 9179}
 9180
 9181int task_can_attach(struct task_struct *p,
 9182		    const struct cpumask *cs_effective_cpus)
 9183{
 9184	int ret = 0;
 9185
 9186	/*
 9187	 * Kthreads which disallow setaffinity shouldn't be moved
 9188	 * to a new cpuset; we don't want to change their CPU
 9189	 * affinity and isolating such threads by their set of
 9190	 * allowed nodes is unnecessary.  Thus, cpusets are not
 9191	 * applicable for such threads.  This prevents checking for
 9192	 * success of set_cpus_allowed_ptr() on all attached tasks
 9193	 * before cpus_mask may be changed.
 9194	 */
 9195	if (p->flags & PF_NO_SETAFFINITY) {
 9196		ret = -EINVAL;
 9197		goto out;
 9198	}
 9199
 9200	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
 9201					      cs_effective_cpus)) {
 9202		int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
 9203
 9204		if (unlikely(cpu >= nr_cpu_ids))
 9205			return -EINVAL;
 9206		ret = dl_cpu_busy(cpu, p);
 9207	}
 9208
 9209out:
 9210	return ret;
 9211}
 9212
 9213bool sched_smp_initialized __read_mostly;
 9214
 9215#ifdef CONFIG_NUMA_BALANCING
 9216/* Migrate current task p to target_cpu */
 9217int migrate_task_to(struct task_struct *p, int target_cpu)
 9218{
 9219	struct migration_arg arg = { p, target_cpu };
 9220	int curr_cpu = task_cpu(p);
 9221
 9222	if (curr_cpu == target_cpu)
 9223		return 0;
 9224
 9225	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
 9226		return -EINVAL;
 9227
 9228	/* TODO: This is not properly updating schedstats */
 9229
 9230	trace_sched_move_numa(p, curr_cpu, target_cpu);
 9231	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
 9232}
 9233
 9234/*
 9235 * Requeue a task on a given node and accurately track the number of NUMA
 9236 * tasks on the runqueues
 9237 */
 9238void sched_setnuma(struct task_struct *p, int nid)
 9239{
 9240	bool queued, running;
 9241	struct rq_flags rf;
 9242	struct rq *rq;
 9243
 9244	rq = task_rq_lock(p, &rf);
 9245	queued = task_on_rq_queued(p);
 9246	running = task_current(rq, p);
 9247
 9248	if (queued)
 9249		dequeue_task(rq, p, DEQUEUE_SAVE);
 9250	if (running)
 9251		put_prev_task(rq, p);
 9252
 9253	p->numa_preferred_nid = nid;
 9254
 9255	if (queued)
 9256		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
 9257	if (running)
 9258		set_next_task(rq, p);
 9259	task_rq_unlock(rq, p, &rf);
 9260}
 9261#endif /* CONFIG_NUMA_BALANCING */
 9262
 9263#ifdef CONFIG_HOTPLUG_CPU
 9264/*
 9265 * Ensure that the idle task is using init_mm right before its CPU goes
 9266 * offline.
 9267 */
 9268void idle_task_exit(void)
 9269{
 9270	struct mm_struct *mm = current->active_mm;
 9271
 9272	BUG_ON(cpu_online(smp_processor_id()));
 9273	BUG_ON(current != this_rq()->idle);
 9274
 9275	if (mm != &init_mm) {
 9276		switch_mm(mm, &init_mm, current);
 9277		finish_arch_post_lock_switch();
 9278	}
 9279
 9280	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
 9281}
 9282
 9283static int __balance_push_cpu_stop(void *arg)
 
 
 
 
 
 
 
 
 
 9284{
 9285	struct task_struct *p = arg;
 9286	struct rq *rq = this_rq();
 9287	struct rq_flags rf;
 9288	int cpu;
 9289
 9290	raw_spin_lock_irq(&p->pi_lock);
 9291	rq_lock(rq, &rf);
 9292
 9293	update_rq_clock(rq);
 
 
 
 9294
 9295	if (task_rq(p) == rq && task_on_rq_queued(p)) {
 9296		cpu = select_fallback_rq(rq->cpu, p);
 9297		rq = __migrate_task(rq, &rf, p, cpu);
 
 
 
 9298	}
 9299
 9300	rq_unlock(rq, &rf);
 9301	raw_spin_unlock_irq(&p->pi_lock);
 9302
 9303	put_task_struct(p);
 9304
 9305	return 0;
 9306}
 9307
 9308static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
 9309
 9310/*
 9311 * Ensure we only run per-cpu kthreads once the CPU goes !active.
 
 9312 *
 9313 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
 9314 * effective when the hotplug motion is down.
 9315 */
 9316static void balance_push(struct rq *rq)
 9317{
 9318	struct task_struct *push_task = rq->curr;
 9319
 9320	lockdep_assert_rq_held(rq);
 
 
 9321
 9322	/*
 9323	 * Ensure the thing is persistent until balance_push_set(.on = false);
 
 
 
 
 
 
 9324	 */
 9325	rq->balance_callback = &balance_push_callback;
 9326
 9327	/*
 9328	 * Only active while going offline and when invoked on the outgoing
 9329	 * CPU.
 
 9330	 */
 9331	if (!cpu_dying(rq->cpu) || rq != this_rq())
 9332		return;
 9333
 9334	/*
 9335	 * Both the cpu-hotplug and stop task are in this case and are
 9336	 * required to complete the hotplug process.
 9337	 */
 9338	if (kthread_is_per_cpu(push_task) ||
 9339	    is_migration_disabled(push_task)) {
 
 
 
 9340
 9341		/*
 9342		 * If this is the idle task on the outgoing CPU try to wake
 9343		 * up the hotplug control thread which might wait for the
 9344		 * last task to vanish. The rcuwait_active() check is
 9345		 * accurate here because the waiter is pinned on this CPU
 9346		 * and can't obviously be running in parallel.
 9347		 *
 9348		 * On RT kernels this also has to check whether there are
 9349		 * pinned and scheduled out tasks on the runqueue. They
 9350		 * need to leave the migrate disabled section first.
 9351		 */
 9352		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
 9353		    rcuwait_active(&rq->hotplug_wait)) {
 9354			raw_spin_rq_unlock(rq);
 9355			rcuwait_wake_up(&rq->hotplug_wait);
 9356			raw_spin_rq_lock(rq);
 9357		}
 9358		return;
 9359	}
 9360
 9361	get_task_struct(push_task);
 9362	/*
 9363	 * Temporarily drop rq->lock such that we can wake-up the stop task.
 9364	 * Both preemption and IRQs are still disabled.
 9365	 */
 9366	raw_spin_rq_unlock(rq);
 9367	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
 9368			    this_cpu_ptr(&push_work));
 9369	/*
 9370	 * At this point need_resched() is true and we'll take the loop in
 9371	 * schedule(). The next pick is obviously going to be the stop task
 9372	 * which kthread_is_per_cpu() and will push this task away.
 9373	 */
 9374	raw_spin_rq_lock(rq);
 9375}
 9376
 9377static void balance_push_set(int cpu, bool on)
 9378{
 9379	struct rq *rq = cpu_rq(cpu);
 9380	struct rq_flags rf;
 
 
 
 
 
 9381
 9382	rq_lock_irqsave(rq, &rf);
 9383	if (on) {
 9384		WARN_ON_ONCE(rq->balance_callback);
 9385		rq->balance_callback = &balance_push_callback;
 9386	} else if (rq->balance_callback == &balance_push_callback) {
 9387		rq->balance_callback = NULL;
 
 
 
 
 9388	}
 9389	rq_unlock_irqrestore(rq, &rf);
 9390}
 9391
 9392/*
 9393 * Invoked from a CPUs hotplug control thread after the CPU has been marked
 9394 * inactive. All tasks which are not per CPU kernel threads are either
 9395 * pushed off this CPU now via balance_push() or placed on a different CPU
 9396 * during wakeup. Wait until the CPU is quiescent.
 9397 */
 9398static void balance_hotplug_wait(void)
 9399{
 9400	struct rq *rq = this_rq();
 9401
 9402	rcuwait_wait_event(&rq->hotplug_wait,
 9403			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
 9404			   TASK_UNINTERRUPTIBLE);
 9405}
 9406
 9407#else
 9408
 9409static inline void balance_push(struct rq *rq)
 9410{
 9411}
 9412
 9413static inline void balance_push_set(int cpu, bool on)
 9414{
 9415}
 9416
 9417static inline void balance_hotplug_wait(void)
 9418{
 9419}
 9420
 9421#endif /* CONFIG_HOTPLUG_CPU */
 9422
 9423void set_rq_online(struct rq *rq)
 9424{
 9425	if (!rq->online) {
 9426		const struct sched_class *class;
 9427
 9428		cpumask_set_cpu(rq->cpu, rq->rd->online);
 9429		rq->online = 1;
 9430
 9431		for_each_class(class) {
 9432			if (class->rq_online)
 9433				class->rq_online(rq);
 9434		}
 9435	}
 9436}
 9437
 9438void set_rq_offline(struct rq *rq)
 9439{
 9440	if (rq->online) {
 9441		const struct sched_class *class;
 9442
 9443		for_each_class(class) {
 9444			if (class->rq_offline)
 9445				class->rq_offline(rq);
 9446		}
 9447
 9448		cpumask_clear_cpu(rq->cpu, rq->rd->online);
 9449		rq->online = 0;
 9450	}
 9451}
 9452
 9453/*
 9454 * used to mark begin/end of suspend/resume:
 9455 */
 9456static int num_cpus_frozen;
 9457
 9458/*
 9459 * Update cpusets according to cpu_active mask.  If cpusets are
 9460 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 9461 * around partition_sched_domains().
 9462 *
 9463 * If we come here as part of a suspend/resume, don't touch cpusets because we
 9464 * want to restore it back to its original state upon resume anyway.
 9465 */
 9466static void cpuset_cpu_active(void)
 9467{
 9468	if (cpuhp_tasks_frozen) {
 9469		/*
 9470		 * num_cpus_frozen tracks how many CPUs are involved in suspend
 9471		 * resume sequence. As long as this is not the last online
 9472		 * operation in the resume sequence, just build a single sched
 9473		 * domain, ignoring cpusets.
 9474		 */
 9475		partition_sched_domains(1, NULL, NULL);
 9476		if (--num_cpus_frozen)
 9477			return;
 9478		/*
 9479		 * This is the last CPU online operation. So fall through and
 9480		 * restore the original sched domains by considering the
 9481		 * cpuset configurations.
 9482		 */
 9483		cpuset_force_rebuild();
 9484	}
 9485	cpuset_update_active_cpus();
 9486}
 9487
 9488static int cpuset_cpu_inactive(unsigned int cpu)
 9489{
 9490	if (!cpuhp_tasks_frozen) {
 9491		int ret = dl_cpu_busy(cpu, NULL);
 9492
 9493		if (ret)
 9494			return ret;
 9495		cpuset_update_active_cpus();
 9496	} else {
 9497		num_cpus_frozen++;
 9498		partition_sched_domains(1, NULL, NULL);
 9499	}
 9500	return 0;
 9501}
 9502
 9503int sched_cpu_activate(unsigned int cpu)
 9504{
 9505	struct rq *rq = cpu_rq(cpu);
 9506	struct rq_flags rf;
 9507
 9508	/*
 9509	 * Clear the balance_push callback and prepare to schedule
 9510	 * regular tasks.
 9511	 */
 9512	balance_push_set(cpu, false);
 9513
 9514#ifdef CONFIG_SCHED_SMT
 9515	/*
 9516	 * When going up, increment the number of cores with SMT present.
 9517	 */
 9518	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9519		static_branch_inc_cpuslocked(&sched_smt_present);
 9520#endif
 9521	set_cpu_active(cpu, true);
 9522
 9523	if (sched_smp_initialized) {
 9524		sched_update_numa(cpu, true);
 9525		sched_domains_numa_masks_set(cpu);
 9526		cpuset_cpu_active();
 9527	}
 9528
 9529	/*
 9530	 * Put the rq online, if not already. This happens:
 9531	 *
 9532	 * 1) In the early boot process, because we build the real domains
 9533	 *    after all CPUs have been brought up.
 9534	 *
 9535	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
 9536	 *    domains.
 9537	 */
 9538	rq_lock_irqsave(rq, &rf);
 9539	if (rq->rd) {
 9540		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9541		set_rq_online(rq);
 9542	}
 9543	rq_unlock_irqrestore(rq, &rf);
 9544
 9545	return 0;
 9546}
 9547
 9548int sched_cpu_deactivate(unsigned int cpu)
 9549{
 9550	struct rq *rq = cpu_rq(cpu);
 9551	struct rq_flags rf;
 9552	int ret;
 9553
 9554	/*
 9555	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
 9556	 * load balancing when not active
 9557	 */
 9558	nohz_balance_exit_idle(rq);
 9559
 9560	set_cpu_active(cpu, false);
 9561
 9562	/*
 9563	 * From this point forward, this CPU will refuse to run any task that
 9564	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
 9565	 * push those tasks away until this gets cleared, see
 9566	 * sched_cpu_dying().
 9567	 */
 9568	balance_push_set(cpu, true);
 9569
 9570	/*
 9571	 * We've cleared cpu_active_mask / set balance_push, wait for all
 9572	 * preempt-disabled and RCU users of this state to go away such that
 9573	 * all new such users will observe it.
 9574	 *
 9575	 * Specifically, we rely on ttwu to no longer target this CPU, see
 9576	 * ttwu_queue_cond() and is_cpu_allowed().
 9577	 *
 9578	 * Do sync before park smpboot threads to take care the rcu boost case.
 9579	 */
 9580	synchronize_rcu();
 9581
 9582	rq_lock_irqsave(rq, &rf);
 9583	if (rq->rd) {
 9584		update_rq_clock(rq);
 9585		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
 9586		set_rq_offline(rq);
 9587	}
 9588	rq_unlock_irqrestore(rq, &rf);
 9589
 9590#ifdef CONFIG_SCHED_SMT
 9591	/*
 9592	 * When going down, decrement the number of cores with SMT present.
 9593	 */
 9594	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
 9595		static_branch_dec_cpuslocked(&sched_smt_present);
 9596
 9597	sched_core_cpu_deactivate(cpu);
 9598#endif
 9599
 9600	if (!sched_smp_initialized)
 9601		return 0;
 9602
 9603	sched_update_numa(cpu, false);
 9604	ret = cpuset_cpu_inactive(cpu);
 9605	if (ret) {
 9606		balance_push_set(cpu, false);
 9607		set_cpu_active(cpu, true);
 9608		sched_update_numa(cpu, true);
 9609		return ret;
 9610	}
 9611	sched_domains_numa_masks_clear(cpu);
 9612	return 0;
 9613}
 9614
 9615static void sched_rq_cpu_starting(unsigned int cpu)
 9616{
 9617	struct rq *rq = cpu_rq(cpu);
 9618
 9619	rq->calc_load_update = calc_load_update;
 9620	update_max_interval();
 9621}
 9622
 9623int sched_cpu_starting(unsigned int cpu)
 9624{
 9625	sched_core_cpu_starting(cpu);
 9626	sched_rq_cpu_starting(cpu);
 9627	sched_tick_start(cpu);
 9628	return 0;
 9629}
 9630
 9631#ifdef CONFIG_HOTPLUG_CPU
 9632
 9633/*
 9634 * Invoked immediately before the stopper thread is invoked to bring the
 9635 * CPU down completely. At this point all per CPU kthreads except the
 9636 * hotplug thread (current) and the stopper thread (inactive) have been
 9637 * either parked or have been unbound from the outgoing CPU. Ensure that
 9638 * any of those which might be on the way out are gone.
 9639 *
 9640 * If after this point a bound task is being woken on this CPU then the
 9641 * responsible hotplug callback has failed to do it's job.
 9642 * sched_cpu_dying() will catch it with the appropriate fireworks.
 9643 */
 9644int sched_cpu_wait_empty(unsigned int cpu)
 9645{
 9646	balance_hotplug_wait();
 9647	return 0;
 9648}
 9649
 9650/*
 9651 * Since this CPU is going 'away' for a while, fold any nr_active delta we
 9652 * might have. Called from the CPU stopper task after ensuring that the
 9653 * stopper is the last running task on the CPU, so nr_active count is
 9654 * stable. We need to take the teardown thread which is calling this into
 9655 * account, so we hand in adjust = 1 to the load calculation.
 9656 *
 9657 * Also see the comment "Global load-average calculations".
 9658 */
 9659static void calc_load_migrate(struct rq *rq)
 9660{
 9661	long delta = calc_load_fold_active(rq, 1);
 9662
 9663	if (delta)
 9664		atomic_long_add(delta, &calc_load_tasks);
 9665}
 9666
 9667static void dump_rq_tasks(struct rq *rq, const char *loglvl)
 9668{
 9669	struct task_struct *g, *p;
 9670	int cpu = cpu_of(rq);
 9671
 9672	lockdep_assert_rq_held(rq);
 9673
 9674	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
 9675	for_each_process_thread(g, p) {
 9676		if (task_cpu(p) != cpu)
 9677			continue;
 9678
 9679		if (!task_on_rq_queued(p))
 9680			continue;
 9681
 9682		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
 9683	}
 9684}
 9685
 9686int sched_cpu_dying(unsigned int cpu)
 9687{
 9688	struct rq *rq = cpu_rq(cpu);
 9689	struct rq_flags rf;
 9690
 9691	/* Handle pending wakeups and then migrate everything off */
 9692	sched_tick_stop(cpu);
 9693
 9694	rq_lock_irqsave(rq, &rf);
 9695	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
 9696		WARN(true, "Dying CPU not properly vacated!");
 9697		dump_rq_tasks(rq, KERN_WARNING);
 9698	}
 
 
 9699	rq_unlock_irqrestore(rq, &rf);
 9700
 9701	calc_load_migrate(rq);
 9702	update_max_interval();
 
 9703	hrtick_clear(rq);
 9704	sched_core_cpu_dying(cpu);
 9705	return 0;
 9706}
 9707#endif
 9708
 9709void __init sched_init_smp(void)
 9710{
 9711	sched_init_numa(NUMA_NO_NODE);
 9712
 9713	/*
 9714	 * There's no userspace yet to cause hotplug operations; hence all the
 9715	 * CPU masks are stable and all blatant races in the below code cannot
 9716	 * happen.
 9717	 */
 9718	mutex_lock(&sched_domains_mutex);
 9719	sched_init_domains(cpu_active_mask);
 9720	mutex_unlock(&sched_domains_mutex);
 9721
 9722	/* Move init over to a non-isolated CPU */
 9723	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
 9724		BUG();
 9725	current->flags &= ~PF_NO_SETAFFINITY;
 9726	sched_init_granularity();
 9727
 9728	init_sched_rt_class();
 9729	init_sched_dl_class();
 9730
 9731	sched_smp_initialized = true;
 9732}
 9733
 9734static int __init migration_init(void)
 9735{
 9736	sched_cpu_starting(smp_processor_id());
 9737	return 0;
 9738}
 9739early_initcall(migration_init);
 9740
 9741#else
 9742void __init sched_init_smp(void)
 9743{
 9744	sched_init_granularity();
 9745}
 9746#endif /* CONFIG_SMP */
 9747
 9748int in_sched_functions(unsigned long addr)
 9749{
 9750	return in_lock_functions(addr) ||
 9751		(addr >= (unsigned long)__sched_text_start
 9752		&& addr < (unsigned long)__sched_text_end);
 9753}
 9754
 9755#ifdef CONFIG_CGROUP_SCHED
 9756/*
 9757 * Default task group.
 9758 * Every task in system belongs to this group at bootup.
 9759 */
 9760struct task_group root_task_group;
 9761LIST_HEAD(task_groups);
 9762
 9763/* Cacheline aligned slab cache for task_group */
 9764static struct kmem_cache *task_group_cache __read_mostly;
 9765#endif
 9766
 
 
 
 9767void __init sched_init(void)
 9768{
 9769	unsigned long ptr = 0;
 9770	int i;
 9771
 9772	/* Make sure the linker didn't screw up */
 9773	BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
 9774	       &fair_sched_class != &rt_sched_class + 1 ||
 9775	       &rt_sched_class   != &dl_sched_class + 1);
 9776#ifdef CONFIG_SMP
 9777	BUG_ON(&dl_sched_class != &stop_sched_class + 1);
 9778#endif
 9779
 9780	wait_bit_init();
 9781
 9782#ifdef CONFIG_FAIR_GROUP_SCHED
 9783	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9784#endif
 9785#ifdef CONFIG_RT_GROUP_SCHED
 9786	ptr += 2 * nr_cpu_ids * sizeof(void **);
 9787#endif
 9788	if (ptr) {
 9789		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
 9790
 9791#ifdef CONFIG_FAIR_GROUP_SCHED
 9792		root_task_group.se = (struct sched_entity **)ptr;
 9793		ptr += nr_cpu_ids * sizeof(void **);
 9794
 9795		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
 9796		ptr += nr_cpu_ids * sizeof(void **);
 9797
 9798		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
 9799		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
 9800#endif /* CONFIG_FAIR_GROUP_SCHED */
 9801#ifdef CONFIG_RT_GROUP_SCHED
 9802		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
 9803		ptr += nr_cpu_ids * sizeof(void **);
 9804
 9805		root_task_group.rt_rq = (struct rt_rq **)ptr;
 9806		ptr += nr_cpu_ids * sizeof(void **);
 9807
 9808#endif /* CONFIG_RT_GROUP_SCHED */
 9809	}
 
 
 
 
 
 
 
 
 9810
 9811	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
 
 9812
 9813#ifdef CONFIG_SMP
 9814	init_defrootdomain();
 9815#endif
 9816
 9817#ifdef CONFIG_RT_GROUP_SCHED
 9818	init_rt_bandwidth(&root_task_group.rt_bandwidth,
 9819			global_rt_period(), global_rt_runtime());
 9820#endif /* CONFIG_RT_GROUP_SCHED */
 9821
 9822#ifdef CONFIG_CGROUP_SCHED
 9823	task_group_cache = KMEM_CACHE(task_group, 0);
 9824
 9825	list_add(&root_task_group.list, &task_groups);
 9826	INIT_LIST_HEAD(&root_task_group.children);
 9827	INIT_LIST_HEAD(&root_task_group.siblings);
 9828	autogroup_init(&init_task);
 9829#endif /* CONFIG_CGROUP_SCHED */
 9830
 9831	for_each_possible_cpu(i) {
 9832		struct rq *rq;
 9833
 9834		rq = cpu_rq(i);
 9835		raw_spin_lock_init(&rq->__lock);
 9836		rq->nr_running = 0;
 9837		rq->calc_load_active = 0;
 9838		rq->calc_load_update = jiffies + LOAD_FREQ;
 9839		init_cfs_rq(&rq->cfs);
 9840		init_rt_rq(&rq->rt);
 9841		init_dl_rq(&rq->dl);
 9842#ifdef CONFIG_FAIR_GROUP_SCHED
 9843		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
 9844		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 9845		/*
 9846		 * How much CPU bandwidth does root_task_group get?
 9847		 *
 9848		 * In case of task-groups formed thr' the cgroup filesystem, it
 9849		 * gets 100% of the CPU resources in the system. This overall
 9850		 * system CPU resource is divided among the tasks of
 9851		 * root_task_group and its child task-groups in a fair manner,
 9852		 * based on each entity's (task or task-group's) weight
 9853		 * (se->load.weight).
 9854		 *
 9855		 * In other words, if root_task_group has 10 tasks of weight
 9856		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
 9857		 * then A0's share of the CPU resource is:
 9858		 *
 9859		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
 9860		 *
 9861		 * We achieve this by letting root_task_group's tasks sit
 9862		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
 9863		 */
 9864		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
 9865#endif /* CONFIG_FAIR_GROUP_SCHED */
 9866
 9867		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
 9868#ifdef CONFIG_RT_GROUP_SCHED
 9869		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
 9870#endif
 9871#ifdef CONFIG_SMP
 9872		rq->sd = NULL;
 9873		rq->rd = NULL;
 9874		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
 9875		rq->balance_callback = &balance_push_callback;
 9876		rq->active_balance = 0;
 9877		rq->next_balance = jiffies;
 9878		rq->push_cpu = 0;
 9879		rq->cpu = i;
 9880		rq->online = 0;
 9881		rq->idle_stamp = 0;
 9882		rq->avg_idle = 2*sysctl_sched_migration_cost;
 9883		rq->wake_stamp = jiffies;
 9884		rq->wake_avg_idle = rq->avg_idle;
 9885		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
 9886
 9887		INIT_LIST_HEAD(&rq->cfs_tasks);
 9888
 9889		rq_attach_root(rq, &def_root_domain);
 9890#ifdef CONFIG_NO_HZ_COMMON
 9891		rq->last_blocked_load_update_tick = jiffies;
 9892		atomic_set(&rq->nohz_flags, 0);
 9893
 9894		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
 9895#endif
 9896#ifdef CONFIG_HOTPLUG_CPU
 9897		rcuwait_init(&rq->hotplug_wait);
 9898#endif
 9899#endif /* CONFIG_SMP */
 9900		hrtick_rq_init(rq);
 9901		atomic_set(&rq->nr_iowait, 0);
 9902
 9903#ifdef CONFIG_SCHED_CORE
 9904		rq->core = rq;
 9905		rq->core_pick = NULL;
 9906		rq->core_enabled = 0;
 9907		rq->core_tree = RB_ROOT;
 9908		rq->core_forceidle_count = 0;
 9909		rq->core_forceidle_occupation = 0;
 9910		rq->core_forceidle_start = 0;
 9911
 9912		rq->core_cookie = 0UL;
 9913#endif
 9914		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
 9915	}
 9916
 9917	set_load_weight(&init_task, false);
 9918
 9919	/*
 9920	 * The boot idle thread does lazy MMU switching as well:
 9921	 */
 9922	mmgrab(&init_mm);
 9923	enter_lazy_tlb(&init_mm, current);
 9924
 9925	/*
 9926	 * The idle task doesn't need the kthread struct to function, but it
 9927	 * is dressed up as a per-CPU kthread and thus needs to play the part
 9928	 * if we want to avoid special-casing it in code that deals with per-CPU
 9929	 * kthreads.
 9930	 */
 9931	WARN_ON(!set_kthread_struct(current));
 9932
 9933	/*
 9934	 * Make us the idle thread. Technically, schedule() should not be
 9935	 * called from this thread, however somewhere below it might be,
 9936	 * but because we are the idle thread, we just pick up running again
 9937	 * when this runqueue becomes "idle".
 9938	 */
 9939	init_idle(current, smp_processor_id());
 9940
 9941	calc_load_update = jiffies + LOAD_FREQ;
 9942
 9943#ifdef CONFIG_SMP
 9944	idle_thread_set_boot_cpu();
 9945	balance_push_set(smp_processor_id(), false);
 9946#endif
 9947	init_sched_fair_class();
 9948
 
 
 9949	psi_init();
 9950
 9951	init_uclamp();
 9952
 9953	preempt_dynamic_init();
 9954
 9955	scheduler_running = 1;
 9956}
 9957
 9958#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 
 
 
 
 
 
 9959
 9960void __might_sleep(const char *file, int line)
 9961{
 9962	unsigned int state = get_current_state();
 9963	/*
 9964	 * Blocking primitives will set (and therefore destroy) current->state,
 9965	 * since we will exit with TASK_RUNNING make sure we enter with it,
 9966	 * otherwise we will destroy state.
 9967	 */
 9968	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
 9969			"do not call blocking ops when !TASK_RUNNING; "
 9970			"state=%x set at [<%p>] %pS\n", state,
 
 9971			(void *)current->task_state_change,
 9972			(void *)current->task_state_change);
 9973
 9974	__might_resched(file, line, 0);
 9975}
 9976EXPORT_SYMBOL(__might_sleep);
 9977
 9978static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
 9979{
 9980	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
 9981		return;
 9982
 9983	if (preempt_count() == preempt_offset)
 9984		return;
 9985
 9986	pr_err("Preemption disabled at:");
 9987	print_ip_sym(KERN_ERR, ip);
 9988}
 9989
 9990static inline bool resched_offsets_ok(unsigned int offsets)
 9991{
 9992	unsigned int nested = preempt_count();
 9993
 9994	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
 9995
 9996	return nested == offsets;
 9997}
 9998
 9999void __might_resched(const char *file, int line, unsigned int offsets)
10000{
10001	/* Ratelimiting timestamp: */
10002	static unsigned long prev_jiffy;
10003
10004	unsigned long preempt_disable_ip;
10005
10006	/* WARN_ON_ONCE() by default, no rate limit required: */
10007	rcu_sleep_check();
10008
10009	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10010	     !is_idle_task(current) && !current->non_block_count) ||
10011	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10012	    oops_in_progress)
10013		return;
10014
10015	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10016		return;
10017	prev_jiffy = jiffies;
10018
10019	/* Save this before calling printk(), since that will clobber it: */
10020	preempt_disable_ip = get_preempt_disable_ip(current);
10021
10022	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10023	       file, line);
10024	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10025	       in_atomic(), irqs_disabled(), current->non_block_count,
10026	       current->pid, current->comm);
10027	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10028	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
10029
10030	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10031		pr_err("RCU nest depth: %d, expected: %u\n",
10032		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10033	}
10034
10035	if (task_stack_end_corrupted(current))
10036		pr_emerg("Thread overran stack, or stack corrupted\n");
10037
10038	debug_show_held_locks(current);
10039	if (irqs_disabled())
10040		print_irqtrace_events(current);
10041
10042	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10043				 preempt_disable_ip);
10044
 
10045	dump_stack();
10046	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10047}
10048EXPORT_SYMBOL(__might_resched);
10049
10050void __cant_sleep(const char *file, int line, int preempt_offset)
10051{
10052	static unsigned long prev_jiffy;
10053
10054	if (irqs_disabled())
10055		return;
10056
10057	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10058		return;
10059
10060	if (preempt_count() > preempt_offset)
10061		return;
10062
10063	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10064		return;
10065	prev_jiffy = jiffies;
10066
10067	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10068	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10069			in_atomic(), irqs_disabled(),
10070			current->pid, current->comm);
10071
10072	debug_show_held_locks(current);
10073	dump_stack();
10074	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10075}
10076EXPORT_SYMBOL_GPL(__cant_sleep);
10077
10078#ifdef CONFIG_SMP
10079void __cant_migrate(const char *file, int line)
10080{
10081	static unsigned long prev_jiffy;
10082
10083	if (irqs_disabled())
10084		return;
10085
10086	if (is_migration_disabled(current))
10087		return;
10088
10089	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10090		return;
10091
10092	if (preempt_count() > 0)
10093		return;
10094
10095	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10096		return;
10097	prev_jiffy = jiffies;
10098
10099	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10100	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10101	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
10102	       current->pid, current->comm);
10103
10104	debug_show_held_locks(current);
10105	dump_stack();
10106	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10107}
10108EXPORT_SYMBOL_GPL(__cant_migrate);
10109#endif
10110#endif
10111
10112#ifdef CONFIG_MAGIC_SYSRQ
10113void normalize_rt_tasks(void)
10114{
10115	struct task_struct *g, *p;
10116	struct sched_attr attr = {
10117		.sched_policy = SCHED_NORMAL,
10118	};
10119
10120	read_lock(&tasklist_lock);
10121	for_each_process_thread(g, p) {
10122		/*
10123		 * Only normalize user tasks:
10124		 */
10125		if (p->flags & PF_KTHREAD)
10126			continue;
10127
10128		p->se.exec_start = 0;
10129		schedstat_set(p->stats.wait_start,  0);
10130		schedstat_set(p->stats.sleep_start, 0);
10131		schedstat_set(p->stats.block_start, 0);
10132
10133		if (!dl_task(p) && !rt_task(p)) {
10134			/*
10135			 * Renice negative nice level userspace
10136			 * tasks back to 0:
10137			 */
10138			if (task_nice(p) < 0)
10139				set_user_nice(p, 0);
10140			continue;
10141		}
10142
10143		__sched_setscheduler(p, &attr, false, false);
10144	}
10145	read_unlock(&tasklist_lock);
10146}
10147
10148#endif /* CONFIG_MAGIC_SYSRQ */
10149
10150#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10151/*
10152 * These functions are only useful for the IA64 MCA handling, or kdb.
10153 *
10154 * They can only be called when the whole system has been
10155 * stopped - every CPU needs to be quiescent, and no scheduling
10156 * activity can take place. Using them for anything else would
10157 * be a serious bug, and as a result, they aren't even visible
10158 * under any other configuration.
10159 */
10160
10161/**
10162 * curr_task - return the current task for a given CPU.
10163 * @cpu: the processor in question.
10164 *
10165 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10166 *
10167 * Return: The current task for @cpu.
10168 */
10169struct task_struct *curr_task(int cpu)
10170{
10171	return cpu_curr(cpu);
10172}
10173
10174#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10175
10176#ifdef CONFIG_IA64
10177/**
10178 * ia64_set_curr_task - set the current task for a given CPU.
10179 * @cpu: the processor in question.
10180 * @p: the task pointer to set.
10181 *
10182 * Description: This function must only be used when non-maskable interrupts
10183 * are serviced on a separate stack. It allows the architecture to switch the
10184 * notion of the current task on a CPU in a non-blocking manner. This function
10185 * must be called with all CPU's synchronized, and interrupts disabled, the
10186 * and caller must save the original value of the current task (see
10187 * curr_task() above) and restore that value before reenabling interrupts and
10188 * re-starting the system.
10189 *
10190 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10191 */
10192void ia64_set_curr_task(int cpu, struct task_struct *p)
10193{
10194	cpu_curr(cpu) = p;
10195}
10196
10197#endif
10198
10199#ifdef CONFIG_CGROUP_SCHED
10200/* task_group_lock serializes the addition/removal of task groups */
10201static DEFINE_SPINLOCK(task_group_lock);
10202
10203static inline void alloc_uclamp_sched_group(struct task_group *tg,
10204					    struct task_group *parent)
10205{
10206#ifdef CONFIG_UCLAMP_TASK_GROUP
10207	enum uclamp_id clamp_id;
10208
10209	for_each_clamp_id(clamp_id) {
10210		uclamp_se_set(&tg->uclamp_req[clamp_id],
10211			      uclamp_none(clamp_id), false);
10212		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10213	}
10214#endif
10215}
10216
10217static void sched_free_group(struct task_group *tg)
10218{
10219	free_fair_sched_group(tg);
10220	free_rt_sched_group(tg);
10221	autogroup_free(tg);
10222	kmem_cache_free(task_group_cache, tg);
10223}
10224
10225static void sched_free_group_rcu(struct rcu_head *rcu)
10226{
10227	sched_free_group(container_of(rcu, struct task_group, rcu));
10228}
10229
10230static void sched_unregister_group(struct task_group *tg)
10231{
10232	unregister_fair_sched_group(tg);
10233	unregister_rt_sched_group(tg);
10234	/*
10235	 * We have to wait for yet another RCU grace period to expire, as
10236	 * print_cfs_stats() might run concurrently.
10237	 */
10238	call_rcu(&tg->rcu, sched_free_group_rcu);
10239}
10240
10241/* allocate runqueue etc for a new task group */
10242struct task_group *sched_create_group(struct task_group *parent)
10243{
10244	struct task_group *tg;
10245
10246	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10247	if (!tg)
10248		return ERR_PTR(-ENOMEM);
10249
10250	if (!alloc_fair_sched_group(tg, parent))
10251		goto err;
10252
10253	if (!alloc_rt_sched_group(tg, parent))
10254		goto err;
10255
10256	alloc_uclamp_sched_group(tg, parent);
10257
10258	return tg;
10259
10260err:
10261	sched_free_group(tg);
10262	return ERR_PTR(-ENOMEM);
10263}
10264
10265void sched_online_group(struct task_group *tg, struct task_group *parent)
10266{
10267	unsigned long flags;
10268
10269	spin_lock_irqsave(&task_group_lock, flags);
10270	list_add_rcu(&tg->list, &task_groups);
10271
10272	/* Root should already exist: */
10273	WARN_ON(!parent);
10274
10275	tg->parent = parent;
10276	INIT_LIST_HEAD(&tg->children);
10277	list_add_rcu(&tg->siblings, &parent->children);
10278	spin_unlock_irqrestore(&task_group_lock, flags);
10279
10280	online_fair_sched_group(tg);
10281}
10282
10283/* rcu callback to free various structures associated with a task group */
10284static void sched_unregister_group_rcu(struct rcu_head *rhp)
10285{
10286	/* Now it should be safe to free those cfs_rqs: */
10287	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10288}
10289
10290void sched_destroy_group(struct task_group *tg)
10291{
10292	/* Wait for possible concurrent references to cfs_rqs complete: */
10293	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10294}
10295
10296void sched_release_group(struct task_group *tg)
10297{
10298	unsigned long flags;
10299
10300	/*
10301	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10302	 * sched_cfs_period_timer()).
10303	 *
10304	 * For this to be effective, we have to wait for all pending users of
10305	 * this task group to leave their RCU critical section to ensure no new
10306	 * user will see our dying task group any more. Specifically ensure
10307	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10308	 *
10309	 * We therefore defer calling unregister_fair_sched_group() to
10310	 * sched_unregister_group() which is guarantied to get called only after the
10311	 * current RCU grace period has expired.
10312	 */
10313	spin_lock_irqsave(&task_group_lock, flags);
10314	list_del_rcu(&tg->list);
10315	list_del_rcu(&tg->siblings);
10316	spin_unlock_irqrestore(&task_group_lock, flags);
10317}
10318
10319static void sched_change_group(struct task_struct *tsk)
10320{
10321	struct task_group *tg;
10322
10323	/*
10324	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10325	 * which is pointless here. Thus, we pass "true" to task_css_check()
10326	 * to prevent lockdep warnings.
10327	 */
10328	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10329			  struct task_group, css);
10330	tg = autogroup_task_group(tsk, tg);
10331	tsk->sched_task_group = tg;
10332
10333#ifdef CONFIG_FAIR_GROUP_SCHED
10334	if (tsk->sched_class->task_change_group)
10335		tsk->sched_class->task_change_group(tsk);
10336	else
10337#endif
10338		set_task_rq(tsk, task_cpu(tsk));
10339}
10340
10341/*
10342 * Change task's runqueue when it moves between groups.
10343 *
10344 * The caller of this function should have put the task in its new group by
10345 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10346 * its new group.
10347 */
10348void sched_move_task(struct task_struct *tsk)
10349{
10350	int queued, running, queue_flags =
10351		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10352	struct rq_flags rf;
10353	struct rq *rq;
10354
10355	rq = task_rq_lock(tsk, &rf);
10356	update_rq_clock(rq);
10357
10358	running = task_current(rq, tsk);
10359	queued = task_on_rq_queued(tsk);
10360
10361	if (queued)
10362		dequeue_task(rq, tsk, queue_flags);
10363	if (running)
10364		put_prev_task(rq, tsk);
10365
10366	sched_change_group(tsk);
10367
10368	if (queued)
10369		enqueue_task(rq, tsk, queue_flags);
10370	if (running) {
10371		set_next_task(rq, tsk);
10372		/*
10373		 * After changing group, the running task may have joined a
10374		 * throttled one but it's still the running task. Trigger a
10375		 * resched to make sure that task can still run.
10376		 */
10377		resched_curr(rq);
10378	}
10379
10380	task_rq_unlock(rq, tsk, &rf);
10381}
10382
10383static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10384{
10385	return css ? container_of(css, struct task_group, css) : NULL;
10386}
10387
10388static struct cgroup_subsys_state *
10389cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10390{
10391	struct task_group *parent = css_tg(parent_css);
10392	struct task_group *tg;
10393
10394	if (!parent) {
10395		/* This is early initialization for the top cgroup */
10396		return &root_task_group.css;
10397	}
10398
10399	tg = sched_create_group(parent);
10400	if (IS_ERR(tg))
10401		return ERR_PTR(-ENOMEM);
10402
10403	return &tg->css;
10404}
10405
10406/* Expose task group only after completing cgroup initialization */
10407static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10408{
10409	struct task_group *tg = css_tg(css);
10410	struct task_group *parent = css_tg(css->parent);
10411
10412	if (parent)
10413		sched_online_group(tg, parent);
10414
10415#ifdef CONFIG_UCLAMP_TASK_GROUP
10416	/* Propagate the effective uclamp value for the new group */
10417	mutex_lock(&uclamp_mutex);
10418	rcu_read_lock();
10419	cpu_util_update_eff(css);
10420	rcu_read_unlock();
10421	mutex_unlock(&uclamp_mutex);
10422#endif
10423
10424	return 0;
10425}
10426
10427static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10428{
10429	struct task_group *tg = css_tg(css);
10430
10431	sched_release_group(tg);
10432}
10433
10434static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10435{
10436	struct task_group *tg = css_tg(css);
10437
10438	/*
10439	 * Relies on the RCU grace period between css_released() and this.
10440	 */
10441	sched_unregister_group(tg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10442}
10443
10444#ifdef CONFIG_RT_GROUP_SCHED
10445static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10446{
10447	struct task_struct *task;
10448	struct cgroup_subsys_state *css;
 
10449
10450	cgroup_taskset_for_each(task, css, tset) {
 
10451		if (!sched_rt_can_attach(css_tg(css), task))
10452			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10453	}
10454	return 0;
10455}
10456#endif
10457
10458static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10459{
10460	struct task_struct *task;
10461	struct cgroup_subsys_state *css;
10462
10463	cgroup_taskset_for_each(task, css, tset)
10464		sched_move_task(task);
10465}
10466
10467#ifdef CONFIG_UCLAMP_TASK_GROUP
10468static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10469{
10470	struct cgroup_subsys_state *top_css = css;
10471	struct uclamp_se *uc_parent = NULL;
10472	struct uclamp_se *uc_se = NULL;
10473	unsigned int eff[UCLAMP_CNT];
10474	enum uclamp_id clamp_id;
10475	unsigned int clamps;
10476
10477	lockdep_assert_held(&uclamp_mutex);
10478	SCHED_WARN_ON(!rcu_read_lock_held());
10479
10480	css_for_each_descendant_pre(css, top_css) {
10481		uc_parent = css_tg(css)->parent
10482			? css_tg(css)->parent->uclamp : NULL;
10483
10484		for_each_clamp_id(clamp_id) {
10485			/* Assume effective clamps matches requested clamps */
10486			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10487			/* Cap effective clamps with parent's effective clamps */
10488			if (uc_parent &&
10489			    eff[clamp_id] > uc_parent[clamp_id].value) {
10490				eff[clamp_id] = uc_parent[clamp_id].value;
10491			}
10492		}
10493		/* Ensure protection is always capped by limit */
10494		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10495
10496		/* Propagate most restrictive effective clamps */
10497		clamps = 0x0;
10498		uc_se = css_tg(css)->uclamp;
10499		for_each_clamp_id(clamp_id) {
10500			if (eff[clamp_id] == uc_se[clamp_id].value)
10501				continue;
10502			uc_se[clamp_id].value = eff[clamp_id];
10503			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10504			clamps |= (0x1 << clamp_id);
10505		}
10506		if (!clamps) {
10507			css = css_rightmost_descendant(css);
10508			continue;
10509		}
10510
10511		/* Immediately update descendants RUNNABLE tasks */
10512		uclamp_update_active_tasks(css);
10513	}
10514}
10515
10516/*
10517 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10518 * C expression. Since there is no way to convert a macro argument (N) into a
10519 * character constant, use two levels of macros.
10520 */
10521#define _POW10(exp) ((unsigned int)1e##exp)
10522#define POW10(exp) _POW10(exp)
10523
10524struct uclamp_request {
10525#define UCLAMP_PERCENT_SHIFT	2
10526#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10527	s64 percent;
10528	u64 util;
10529	int ret;
10530};
10531
10532static inline struct uclamp_request
10533capacity_from_percent(char *buf)
10534{
10535	struct uclamp_request req = {
10536		.percent = UCLAMP_PERCENT_SCALE,
10537		.util = SCHED_CAPACITY_SCALE,
10538		.ret = 0,
10539	};
10540
10541	buf = strim(buf);
10542	if (strcmp(buf, "max")) {
10543		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10544					     &req.percent);
10545		if (req.ret)
10546			return req;
10547		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10548			req.ret = -ERANGE;
10549			return req;
10550		}
10551
10552		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10553		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10554	}
10555
10556	return req;
10557}
10558
10559static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10560				size_t nbytes, loff_t off,
10561				enum uclamp_id clamp_id)
10562{
10563	struct uclamp_request req;
10564	struct task_group *tg;
10565
10566	req = capacity_from_percent(buf);
10567	if (req.ret)
10568		return req.ret;
10569
10570	static_branch_enable(&sched_uclamp_used);
10571
10572	mutex_lock(&uclamp_mutex);
10573	rcu_read_lock();
10574
10575	tg = css_tg(of_css(of));
10576	if (tg->uclamp_req[clamp_id].value != req.util)
10577		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10578
10579	/*
10580	 * Because of not recoverable conversion rounding we keep track of the
10581	 * exact requested value
10582	 */
10583	tg->uclamp_pct[clamp_id] = req.percent;
10584
10585	/* Update effective clamps to track the most restrictive value */
10586	cpu_util_update_eff(of_css(of));
10587
10588	rcu_read_unlock();
10589	mutex_unlock(&uclamp_mutex);
10590
10591	return nbytes;
10592}
10593
10594static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10595				    char *buf, size_t nbytes,
10596				    loff_t off)
10597{
10598	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10599}
10600
10601static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10602				    char *buf, size_t nbytes,
10603				    loff_t off)
10604{
10605	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10606}
10607
10608static inline void cpu_uclamp_print(struct seq_file *sf,
10609				    enum uclamp_id clamp_id)
10610{
10611	struct task_group *tg;
10612	u64 util_clamp;
10613	u64 percent;
10614	u32 rem;
10615
10616	rcu_read_lock();
10617	tg = css_tg(seq_css(sf));
10618	util_clamp = tg->uclamp_req[clamp_id].value;
10619	rcu_read_unlock();
10620
10621	if (util_clamp == SCHED_CAPACITY_SCALE) {
10622		seq_puts(sf, "max\n");
10623		return;
10624	}
10625
10626	percent = tg->uclamp_pct[clamp_id];
10627	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10628	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10629}
10630
10631static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10632{
10633	cpu_uclamp_print(sf, UCLAMP_MIN);
10634	return 0;
10635}
10636
10637static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10638{
10639	cpu_uclamp_print(sf, UCLAMP_MAX);
10640	return 0;
10641}
10642#endif /* CONFIG_UCLAMP_TASK_GROUP */
10643
10644#ifdef CONFIG_FAIR_GROUP_SCHED
10645static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10646				struct cftype *cftype, u64 shareval)
10647{
10648	if (shareval > scale_load_down(ULONG_MAX))
10649		shareval = MAX_SHARES;
10650	return sched_group_set_shares(css_tg(css), scale_load(shareval));
10651}
10652
10653static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10654			       struct cftype *cft)
10655{
10656	struct task_group *tg = css_tg(css);
10657
10658	return (u64) scale_load_down(tg->shares);
10659}
10660
10661#ifdef CONFIG_CFS_BANDWIDTH
10662static DEFINE_MUTEX(cfs_constraints_mutex);
10663
10664const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10665static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10666/* More than 203 days if BW_SHIFT equals 20. */
10667static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10668
10669static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10670
10671static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10672				u64 burst)
10673{
10674	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10675	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10676
10677	if (tg == &root_task_group)
10678		return -EINVAL;
10679
10680	/*
10681	 * Ensure we have at some amount of bandwidth every period.  This is
10682	 * to prevent reaching a state of large arrears when throttled via
10683	 * entity_tick() resulting in prolonged exit starvation.
10684	 */
10685	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10686		return -EINVAL;
10687
10688	/*
10689	 * Likewise, bound things on the other side by preventing insane quota
10690	 * periods.  This also allows us to normalize in computing quota
10691	 * feasibility.
10692	 */
10693	if (period > max_cfs_quota_period)
10694		return -EINVAL;
10695
10696	/*
10697	 * Bound quota to defend quota against overflow during bandwidth shift.
10698	 */
10699	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10700		return -EINVAL;
10701
10702	if (quota != RUNTIME_INF && (burst > quota ||
10703				     burst + quota > max_cfs_runtime))
10704		return -EINVAL;
10705
10706	/*
10707	 * Prevent race between setting of cfs_rq->runtime_enabled and
10708	 * unthrottle_offline_cfs_rqs().
10709	 */
10710	cpus_read_lock();
10711	mutex_lock(&cfs_constraints_mutex);
10712	ret = __cfs_schedulable(tg, period, quota);
10713	if (ret)
10714		goto out_unlock;
10715
10716	runtime_enabled = quota != RUNTIME_INF;
10717	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10718	/*
10719	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10720	 * before making related changes, and on->off must occur afterwards
10721	 */
10722	if (runtime_enabled && !runtime_was_enabled)
10723		cfs_bandwidth_usage_inc();
10724	raw_spin_lock_irq(&cfs_b->lock);
10725	cfs_b->period = ns_to_ktime(period);
10726	cfs_b->quota = quota;
10727	cfs_b->burst = burst;
10728
10729	__refill_cfs_bandwidth_runtime(cfs_b);
10730
10731	/* Restart the period timer (if active) to handle new period expiry: */
10732	if (runtime_enabled)
10733		start_cfs_bandwidth(cfs_b);
10734
10735	raw_spin_unlock_irq(&cfs_b->lock);
10736
10737	for_each_online_cpu(i) {
10738		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10739		struct rq *rq = cfs_rq->rq;
10740		struct rq_flags rf;
10741
10742		rq_lock_irq(rq, &rf);
10743		cfs_rq->runtime_enabled = runtime_enabled;
10744		cfs_rq->runtime_remaining = 0;
10745
10746		if (cfs_rq->throttled)
10747			unthrottle_cfs_rq(cfs_rq);
10748		rq_unlock_irq(rq, &rf);
10749	}
10750	if (runtime_was_enabled && !runtime_enabled)
10751		cfs_bandwidth_usage_dec();
10752out_unlock:
10753	mutex_unlock(&cfs_constraints_mutex);
10754	cpus_read_unlock();
10755
10756	return ret;
10757}
10758
10759static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10760{
10761	u64 quota, period, burst;
10762
10763	period = ktime_to_ns(tg->cfs_bandwidth.period);
10764	burst = tg->cfs_bandwidth.burst;
10765	if (cfs_quota_us < 0)
10766		quota = RUNTIME_INF;
10767	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10768		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10769	else
10770		return -EINVAL;
10771
10772	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10773}
10774
10775static long tg_get_cfs_quota(struct task_group *tg)
10776{
10777	u64 quota_us;
10778
10779	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10780		return -1;
10781
10782	quota_us = tg->cfs_bandwidth.quota;
10783	do_div(quota_us, NSEC_PER_USEC);
10784
10785	return quota_us;
10786}
10787
10788static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10789{
10790	u64 quota, period, burst;
10791
10792	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10793		return -EINVAL;
10794
10795	period = (u64)cfs_period_us * NSEC_PER_USEC;
10796	quota = tg->cfs_bandwidth.quota;
10797	burst = tg->cfs_bandwidth.burst;
10798
10799	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10800}
10801
10802static long tg_get_cfs_period(struct task_group *tg)
10803{
10804	u64 cfs_period_us;
10805
10806	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10807	do_div(cfs_period_us, NSEC_PER_USEC);
10808
10809	return cfs_period_us;
10810}
10811
10812static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10813{
10814	u64 quota, period, burst;
10815
10816	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10817		return -EINVAL;
10818
10819	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10820	period = ktime_to_ns(tg->cfs_bandwidth.period);
10821	quota = tg->cfs_bandwidth.quota;
10822
10823	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10824}
10825
10826static long tg_get_cfs_burst(struct task_group *tg)
10827{
10828	u64 burst_us;
10829
10830	burst_us = tg->cfs_bandwidth.burst;
10831	do_div(burst_us, NSEC_PER_USEC);
10832
10833	return burst_us;
10834}
10835
10836static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10837				  struct cftype *cft)
10838{
10839	return tg_get_cfs_quota(css_tg(css));
10840}
10841
10842static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10843				   struct cftype *cftype, s64 cfs_quota_us)
10844{
10845	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10846}
10847
10848static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10849				   struct cftype *cft)
10850{
10851	return tg_get_cfs_period(css_tg(css));
10852}
10853
10854static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10855				    struct cftype *cftype, u64 cfs_period_us)
10856{
10857	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10858}
10859
10860static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10861				  struct cftype *cft)
10862{
10863	return tg_get_cfs_burst(css_tg(css));
10864}
10865
10866static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10867				   struct cftype *cftype, u64 cfs_burst_us)
10868{
10869	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10870}
10871
10872struct cfs_schedulable_data {
10873	struct task_group *tg;
10874	u64 period, quota;
10875};
10876
10877/*
10878 * normalize group quota/period to be quota/max_period
10879 * note: units are usecs
10880 */
10881static u64 normalize_cfs_quota(struct task_group *tg,
10882			       struct cfs_schedulable_data *d)
10883{
10884	u64 quota, period;
10885
10886	if (tg == d->tg) {
10887		period = d->period;
10888		quota = d->quota;
10889	} else {
10890		period = tg_get_cfs_period(tg);
10891		quota = tg_get_cfs_quota(tg);
10892	}
10893
10894	/* note: these should typically be equivalent */
10895	if (quota == RUNTIME_INF || quota == -1)
10896		return RUNTIME_INF;
10897
10898	return to_ratio(period, quota);
10899}
10900
10901static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10902{
10903	struct cfs_schedulable_data *d = data;
10904	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10905	s64 quota = 0, parent_quota = -1;
10906
10907	if (!tg->parent) {
10908		quota = RUNTIME_INF;
10909	} else {
10910		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10911
10912		quota = normalize_cfs_quota(tg, d);
10913		parent_quota = parent_b->hierarchical_quota;
10914
10915		/*
10916		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10917		 * always take the min.  On cgroup1, only inherit when no
10918		 * limit is set:
10919		 */
10920		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10921			quota = min(quota, parent_quota);
10922		} else {
10923			if (quota == RUNTIME_INF)
10924				quota = parent_quota;
10925			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10926				return -EINVAL;
10927		}
10928	}
10929	cfs_b->hierarchical_quota = quota;
10930
10931	return 0;
10932}
10933
10934static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10935{
10936	int ret;
10937	struct cfs_schedulable_data data = {
10938		.tg = tg,
10939		.period = period,
10940		.quota = quota,
10941	};
10942
10943	if (quota != RUNTIME_INF) {
10944		do_div(data.period, NSEC_PER_USEC);
10945		do_div(data.quota, NSEC_PER_USEC);
10946	}
10947
10948	rcu_read_lock();
10949	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10950	rcu_read_unlock();
10951
10952	return ret;
10953}
10954
10955static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10956{
10957	struct task_group *tg = css_tg(seq_css(sf));
10958	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10959
10960	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10961	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10962	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10963
10964	if (schedstat_enabled() && tg != &root_task_group) {
10965		struct sched_statistics *stats;
10966		u64 ws = 0;
10967		int i;
10968
10969		for_each_possible_cpu(i) {
10970			stats = __schedstats_from_se(tg->se[i]);
10971			ws += schedstat_val(stats->wait_sum);
10972		}
10973
10974		seq_printf(sf, "wait_sum %llu\n", ws);
10975	}
10976
10977	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10978	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10979
10980	return 0;
10981}
10982#endif /* CONFIG_CFS_BANDWIDTH */
10983#endif /* CONFIG_FAIR_GROUP_SCHED */
10984
10985#ifdef CONFIG_RT_GROUP_SCHED
10986static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10987				struct cftype *cft, s64 val)
10988{
10989	return sched_group_set_rt_runtime(css_tg(css), val);
10990}
10991
10992static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10993			       struct cftype *cft)
10994{
10995	return sched_group_rt_runtime(css_tg(css));
10996}
10997
10998static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10999				    struct cftype *cftype, u64 rt_period_us)
11000{
11001	return sched_group_set_rt_period(css_tg(css), rt_period_us);
11002}
11003
11004static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11005				   struct cftype *cft)
11006{
11007	return sched_group_rt_period(css_tg(css));
11008}
11009#endif /* CONFIG_RT_GROUP_SCHED */
11010
11011#ifdef CONFIG_FAIR_GROUP_SCHED
11012static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11013			       struct cftype *cft)
11014{
11015	return css_tg(css)->idle;
11016}
11017
11018static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11019				struct cftype *cft, s64 idle)
11020{
11021	return sched_group_set_idle(css_tg(css), idle);
11022}
11023#endif
11024
11025static struct cftype cpu_legacy_files[] = {
11026#ifdef CONFIG_FAIR_GROUP_SCHED
11027	{
11028		.name = "shares",
11029		.read_u64 = cpu_shares_read_u64,
11030		.write_u64 = cpu_shares_write_u64,
11031	},
11032	{
11033		.name = "idle",
11034		.read_s64 = cpu_idle_read_s64,
11035		.write_s64 = cpu_idle_write_s64,
11036	},
11037#endif
11038#ifdef CONFIG_CFS_BANDWIDTH
11039	{
11040		.name = "cfs_quota_us",
11041		.read_s64 = cpu_cfs_quota_read_s64,
11042		.write_s64 = cpu_cfs_quota_write_s64,
11043	},
11044	{
11045		.name = "cfs_period_us",
11046		.read_u64 = cpu_cfs_period_read_u64,
11047		.write_u64 = cpu_cfs_period_write_u64,
11048	},
11049	{
11050		.name = "cfs_burst_us",
11051		.read_u64 = cpu_cfs_burst_read_u64,
11052		.write_u64 = cpu_cfs_burst_write_u64,
11053	},
11054	{
11055		.name = "stat",
11056		.seq_show = cpu_cfs_stat_show,
11057	},
11058#endif
11059#ifdef CONFIG_RT_GROUP_SCHED
11060	{
11061		.name = "rt_runtime_us",
11062		.read_s64 = cpu_rt_runtime_read,
11063		.write_s64 = cpu_rt_runtime_write,
11064	},
11065	{
11066		.name = "rt_period_us",
11067		.read_u64 = cpu_rt_period_read_uint,
11068		.write_u64 = cpu_rt_period_write_uint,
11069	},
11070#endif
11071#ifdef CONFIG_UCLAMP_TASK_GROUP
11072	{
11073		.name = "uclamp.min",
11074		.flags = CFTYPE_NOT_ON_ROOT,
11075		.seq_show = cpu_uclamp_min_show,
11076		.write = cpu_uclamp_min_write,
11077	},
11078	{
11079		.name = "uclamp.max",
11080		.flags = CFTYPE_NOT_ON_ROOT,
11081		.seq_show = cpu_uclamp_max_show,
11082		.write = cpu_uclamp_max_write,
11083	},
11084#endif
11085	{ }	/* Terminate */
11086};
11087
11088static int cpu_extra_stat_show(struct seq_file *sf,
11089			       struct cgroup_subsys_state *css)
11090{
11091#ifdef CONFIG_CFS_BANDWIDTH
11092	{
11093		struct task_group *tg = css_tg(css);
11094		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11095		u64 throttled_usec, burst_usec;
11096
11097		throttled_usec = cfs_b->throttled_time;
11098		do_div(throttled_usec, NSEC_PER_USEC);
11099		burst_usec = cfs_b->burst_time;
11100		do_div(burst_usec, NSEC_PER_USEC);
11101
11102		seq_printf(sf, "nr_periods %d\n"
11103			   "nr_throttled %d\n"
11104			   "throttled_usec %llu\n"
11105			   "nr_bursts %d\n"
11106			   "burst_usec %llu\n",
11107			   cfs_b->nr_periods, cfs_b->nr_throttled,
11108			   throttled_usec, cfs_b->nr_burst, burst_usec);
11109	}
11110#endif
11111	return 0;
11112}
11113
11114#ifdef CONFIG_FAIR_GROUP_SCHED
11115static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11116			       struct cftype *cft)
11117{
11118	struct task_group *tg = css_tg(css);
11119	u64 weight = scale_load_down(tg->shares);
11120
11121	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11122}
11123
11124static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11125				struct cftype *cft, u64 weight)
11126{
11127	/*
11128	 * cgroup weight knobs should use the common MIN, DFL and MAX
11129	 * values which are 1, 100 and 10000 respectively.  While it loses
11130	 * a bit of range on both ends, it maps pretty well onto the shares
11131	 * value used by scheduler and the round-trip conversions preserve
11132	 * the original value over the entire range.
11133	 */
11134	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11135		return -ERANGE;
11136
11137	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11138
11139	return sched_group_set_shares(css_tg(css), scale_load(weight));
11140}
11141
11142static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11143				    struct cftype *cft)
11144{
11145	unsigned long weight = scale_load_down(css_tg(css)->shares);
11146	int last_delta = INT_MAX;
11147	int prio, delta;
11148
11149	/* find the closest nice value to the current weight */
11150	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11151		delta = abs(sched_prio_to_weight[prio] - weight);
11152		if (delta >= last_delta)
11153			break;
11154		last_delta = delta;
11155	}
11156
11157	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11158}
11159
11160static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11161				     struct cftype *cft, s64 nice)
11162{
11163	unsigned long weight;
11164	int idx;
11165
11166	if (nice < MIN_NICE || nice > MAX_NICE)
11167		return -ERANGE;
11168
11169	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11170	idx = array_index_nospec(idx, 40);
11171	weight = sched_prio_to_weight[idx];
11172
11173	return sched_group_set_shares(css_tg(css), scale_load(weight));
11174}
11175#endif
11176
11177static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11178						  long period, long quota)
11179{
11180	if (quota < 0)
11181		seq_puts(sf, "max");
11182	else
11183		seq_printf(sf, "%ld", quota);
11184
11185	seq_printf(sf, " %ld\n", period);
11186}
11187
11188/* caller should put the current value in *@periodp before calling */
11189static int __maybe_unused cpu_period_quota_parse(char *buf,
11190						 u64 *periodp, u64 *quotap)
11191{
11192	char tok[21];	/* U64_MAX */
11193
11194	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11195		return -EINVAL;
11196
11197	*periodp *= NSEC_PER_USEC;
11198
11199	if (sscanf(tok, "%llu", quotap))
11200		*quotap *= NSEC_PER_USEC;
11201	else if (!strcmp(tok, "max"))
11202		*quotap = RUNTIME_INF;
11203	else
11204		return -EINVAL;
11205
11206	return 0;
11207}
11208
11209#ifdef CONFIG_CFS_BANDWIDTH
11210static int cpu_max_show(struct seq_file *sf, void *v)
11211{
11212	struct task_group *tg = css_tg(seq_css(sf));
11213
11214	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11215	return 0;
11216}
11217
11218static ssize_t cpu_max_write(struct kernfs_open_file *of,
11219			     char *buf, size_t nbytes, loff_t off)
11220{
11221	struct task_group *tg = css_tg(of_css(of));
11222	u64 period = tg_get_cfs_period(tg);
11223	u64 burst = tg_get_cfs_burst(tg);
11224	u64 quota;
11225	int ret;
11226
11227	ret = cpu_period_quota_parse(buf, &period, &quota);
11228	if (!ret)
11229		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11230	return ret ?: nbytes;
11231}
11232#endif
11233
11234static struct cftype cpu_files[] = {
11235#ifdef CONFIG_FAIR_GROUP_SCHED
11236	{
11237		.name = "weight",
11238		.flags = CFTYPE_NOT_ON_ROOT,
11239		.read_u64 = cpu_weight_read_u64,
11240		.write_u64 = cpu_weight_write_u64,
11241	},
11242	{
11243		.name = "weight.nice",
11244		.flags = CFTYPE_NOT_ON_ROOT,
11245		.read_s64 = cpu_weight_nice_read_s64,
11246		.write_s64 = cpu_weight_nice_write_s64,
11247	},
11248	{
11249		.name = "idle",
11250		.flags = CFTYPE_NOT_ON_ROOT,
11251		.read_s64 = cpu_idle_read_s64,
11252		.write_s64 = cpu_idle_write_s64,
11253	},
11254#endif
11255#ifdef CONFIG_CFS_BANDWIDTH
11256	{
11257		.name = "max",
11258		.flags = CFTYPE_NOT_ON_ROOT,
11259		.seq_show = cpu_max_show,
11260		.write = cpu_max_write,
11261	},
11262	{
11263		.name = "max.burst",
11264		.flags = CFTYPE_NOT_ON_ROOT,
11265		.read_u64 = cpu_cfs_burst_read_u64,
11266		.write_u64 = cpu_cfs_burst_write_u64,
11267	},
11268#endif
11269#ifdef CONFIG_UCLAMP_TASK_GROUP
11270	{
11271		.name = "uclamp.min",
11272		.flags = CFTYPE_NOT_ON_ROOT,
11273		.seq_show = cpu_uclamp_min_show,
11274		.write = cpu_uclamp_min_write,
11275	},
11276	{
11277		.name = "uclamp.max",
11278		.flags = CFTYPE_NOT_ON_ROOT,
11279		.seq_show = cpu_uclamp_max_show,
11280		.write = cpu_uclamp_max_write,
11281	},
11282#endif
11283	{ }	/* terminate */
11284};
11285
11286struct cgroup_subsys cpu_cgrp_subsys = {
11287	.css_alloc	= cpu_cgroup_css_alloc,
11288	.css_online	= cpu_cgroup_css_online,
11289	.css_released	= cpu_cgroup_css_released,
11290	.css_free	= cpu_cgroup_css_free,
11291	.css_extra_stat_show = cpu_extra_stat_show,
11292#ifdef CONFIG_RT_GROUP_SCHED
11293	.can_attach	= cpu_cgroup_can_attach,
11294#endif
11295	.attach		= cpu_cgroup_attach,
11296	.legacy_cftypes	= cpu_legacy_files,
11297	.dfl_cftypes	= cpu_files,
11298	.early_init	= true,
11299	.threaded	= true,
11300};
11301
11302#endif	/* CONFIG_CGROUP_SCHED */
11303
11304void dump_cpu_task(int cpu)
11305{
11306	if (cpu == smp_processor_id() && in_hardirq()) {
11307		struct pt_regs *regs;
11308
11309		regs = get_irq_regs();
11310		if (regs) {
11311			show_regs(regs);
11312			return;
11313		}
11314	}
11315
11316	if (trigger_single_cpu_backtrace(cpu))
11317		return;
11318
11319	pr_info("Task dump for CPU %d:\n", cpu);
11320	sched_show_task(cpu_curr(cpu));
11321}
11322
11323/*
11324 * Nice levels are multiplicative, with a gentle 10% change for every
11325 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11326 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11327 * that remained on nice 0.
11328 *
11329 * The "10% effect" is relative and cumulative: from _any_ nice level,
11330 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11331 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11332 * If a task goes up by ~10% and another task goes down by ~10% then
11333 * the relative distance between them is ~25%.)
11334 */
11335const int sched_prio_to_weight[40] = {
11336 /* -20 */     88761,     71755,     56483,     46273,     36291,
11337 /* -15 */     29154,     23254,     18705,     14949,     11916,
11338 /* -10 */      9548,      7620,      6100,      4904,      3906,
11339 /*  -5 */      3121,      2501,      1991,      1586,      1277,
11340 /*   0 */      1024,       820,       655,       526,       423,
11341 /*   5 */       335,       272,       215,       172,       137,
11342 /*  10 */       110,        87,        70,        56,        45,
11343 /*  15 */        36,        29,        23,        18,        15,
11344};
11345
11346/*
11347 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11348 *
11349 * In cases where the weight does not change often, we can use the
11350 * precalculated inverse to speed up arithmetics by turning divisions
11351 * into multiplications:
11352 */
11353const u32 sched_prio_to_wmult[40] = {
11354 /* -20 */     48388,     59856,     76040,     92818,    118348,
11355 /* -15 */    147320,    184698,    229616,    287308,    360437,
11356 /* -10 */    449829,    563644,    704093,    875809,   1099582,
11357 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11358 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11359 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11360 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11361 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11362};
11363
11364void call_trace_sched_update_nr_running(struct rq *rq, int count)
11365{
11366        trace_sched_update_nr_running_tp(rq, count);
11367}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  kernel/sched/core.c
   4 *
   5 *  Core kernel scheduler code and related syscalls
   6 *
   7 *  Copyright (C) 1991-2002  Linus Torvalds
   8 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9#define CREATE_TRACE_POINTS
 
  10#include <trace/events/sched.h>
  11#undef CREATE_TRACE_POINTS
  12
  13#include "sched.h"
 
 
  14
  15#include <linux/nospec.h>
  16
  17#include <linux/kcov.h>
  18#include <linux/scs.h>
  19
  20#include <asm/switch_to.h>
  21#include <asm/tlb.h>
  22
  23#include "../workqueue_internal.h"
  24#include "../../fs/io-wq.h"
  25#include "../smpboot.h"
  26
  27#include "pelt.h"
  28#include "smp.h"
  29
  30/*
  31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
  32 * associated with them) to allow external modules to probe them.
  33 */
  34EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
  35EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
  36EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
  37EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
  38EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
 
 
  39EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
  40EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
  41EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
  42EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
  43
  44DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  45
  46#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
  47/*
  48 * Debugging: various feature bits
  49 *
  50 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
  51 * sysctl_sched_features, defined in sched.h, to allow constants propagation
  52 * at compile time and compiler optimization based on features default.
  53 */
  54#define SCHED_FEAT(name, enabled)	\
  55	(1UL << __SCHED_FEAT_##name) * enabled |
  56const_debug unsigned int sysctl_sched_features =
  57#include "features.h"
  58	0;
  59#undef SCHED_FEAT
  60#endif
 
 
 
 
 
 
 
 
 
 
  61
  62/*
  63 * Number of tasks to iterate in a single balance run.
  64 * Limited because this is done with IRQs disabled.
  65 */
  66const_debug unsigned int sysctl_sched_nr_migrate = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68/*
  69 * period over which we measure -rt task CPU usage in us.
  70 * default: 1s
 
 
  71 */
  72unsigned int sysctl_sched_rt_period = 1000000;
  73
  74__read_mostly int scheduler_running;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/*
  77 * part of the period that we allow rt tasks to run in us.
  78 * default: 0.95s
  79 */
  80int sysctl_sched_rt_runtime = 950000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82
  83/*
  84 * Serialization rules:
  85 *
  86 * Lock order:
  87 *
  88 *   p->pi_lock
  89 *     rq->lock
  90 *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
  91 *
  92 *  rq1->lock
  93 *    rq2->lock  where: rq1 < rq2
  94 *
  95 * Regular state:
  96 *
  97 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
  98 * local CPU's rq->lock, it optionally removes the task from the runqueue and
  99 * always looks at the local rq data structures to find the most elegible task
 100 * to run next.
 101 *
 102 * Task enqueue is also under rq->lock, possibly taken from another CPU.
 103 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
 104 * the local CPU to avoid bouncing the runqueue state around [ see
 105 * ttwu_queue_wakelist() ]
 106 *
 107 * Task wakeup, specifically wakeups that involve migration, are horribly
 108 * complicated to avoid having to take two rq->locks.
 109 *
 110 * Special state:
 111 *
 112 * System-calls and anything external will use task_rq_lock() which acquires
 113 * both p->pi_lock and rq->lock. As a consequence the state they change is
 114 * stable while holding either lock:
 115 *
 116 *  - sched_setaffinity()/
 117 *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
 118 *  - set_user_nice():		p->se.load, p->*prio
 119 *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
 120 *				p->se.load, p->rt_priority,
 121 *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
 122 *  - sched_setnuma():		p->numa_preferred_nid
 123 *  - sched_move_task()/
 124 *    cpu_cgroup_fork():	p->sched_task_group
 125 *  - uclamp_update_active()	p->uclamp*
 126 *
 127 * p->state <- TASK_*:
 128 *
 129 *   is changed locklessly using set_current_state(), __set_current_state() or
 130 *   set_special_state(), see their respective comments, or by
 131 *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
 132 *   concurrent self.
 133 *
 134 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
 135 *
 136 *   is set by activate_task() and cleared by deactivate_task(), under
 137 *   rq->lock. Non-zero indicates the task is runnable, the special
 138 *   ON_RQ_MIGRATING state is used for migration without holding both
 139 *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
 140 *
 141 * p->on_cpu <- { 0, 1 }:
 142 *
 143 *   is set by prepare_task() and cleared by finish_task() such that it will be
 144 *   set before p is scheduled-in and cleared after p is scheduled-out, both
 145 *   under rq->lock. Non-zero indicates the task is running on its CPU.
 146 *
 147 *   [ The astute reader will observe that it is possible for two tasks on one
 148 *     CPU to have ->on_cpu = 1 at the same time. ]
 149 *
 150 * task_cpu(p): is changed by set_task_cpu(), the rules are:
 151 *
 152 *  - Don't call set_task_cpu() on a blocked task:
 153 *
 154 *    We don't care what CPU we're not running on, this simplifies hotplug,
 155 *    the CPU assignment of blocked tasks isn't required to be valid.
 156 *
 157 *  - for try_to_wake_up(), called under p->pi_lock:
 158 *
 159 *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
 160 *
 161 *  - for migration called under rq->lock:
 162 *    [ see task_on_rq_migrating() in task_rq_lock() ]
 163 *
 164 *    o move_queued_task()
 165 *    o detach_task()
 166 *
 167 *  - for migration called under double_rq_lock():
 168 *
 169 *    o __migrate_swap_task()
 170 *    o push_rt_task() / pull_rt_task()
 171 *    o push_dl_task() / pull_dl_task()
 172 *    o dl_task_offline_migration()
 173 *
 174 */
 175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 176/*
 177 * __task_rq_lock - lock the rq @p resides on.
 178 */
 179struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 180	__acquires(rq->lock)
 181{
 182	struct rq *rq;
 183
 184	lockdep_assert_held(&p->pi_lock);
 185
 186	for (;;) {
 187		rq = task_rq(p);
 188		raw_spin_lock(&rq->lock);
 189		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 190			rq_pin_lock(rq, rf);
 191			return rq;
 192		}
 193		raw_spin_unlock(&rq->lock);
 194
 195		while (unlikely(task_on_rq_migrating(p)))
 196			cpu_relax();
 197	}
 198}
 199
 200/*
 201 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 202 */
 203struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 204	__acquires(p->pi_lock)
 205	__acquires(rq->lock)
 206{
 207	struct rq *rq;
 208
 209	for (;;) {
 210		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 211		rq = task_rq(p);
 212		raw_spin_lock(&rq->lock);
 213		/*
 214		 *	move_queued_task()		task_rq_lock()
 215		 *
 216		 *	ACQUIRE (rq->lock)
 217		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
 218		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
 219		 *	[S] ->cpu = new_cpu		[L] task_rq()
 220		 *					[L] ->on_rq
 221		 *	RELEASE (rq->lock)
 222		 *
 223		 * If we observe the old CPU in task_rq_lock(), the acquire of
 224		 * the old rq->lock will fully serialize against the stores.
 225		 *
 226		 * If we observe the new CPU in task_rq_lock(), the address
 227		 * dependency headed by '[L] rq = task_rq()' and the acquire
 228		 * will pair with the WMB to ensure we then also see migrating.
 229		 */
 230		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 231			rq_pin_lock(rq, rf);
 232			return rq;
 233		}
 234		raw_spin_unlock(&rq->lock);
 235		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 236
 237		while (unlikely(task_on_rq_migrating(p)))
 238			cpu_relax();
 239	}
 240}
 241
 242/*
 243 * RQ-clock updating methods:
 244 */
 245
 246static void update_rq_clock_task(struct rq *rq, s64 delta)
 247{
 248/*
 249 * In theory, the compile should just see 0 here, and optimize out the call
 250 * to sched_rt_avg_update. But I don't trust it...
 251 */
 252	s64 __maybe_unused steal = 0, irq_delta = 0;
 253
 254#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 255	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 256
 257	/*
 258	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
 259	 * this case when a previous update_rq_clock() happened inside a
 260	 * {soft,}irq region.
 261	 *
 262	 * When this happens, we stop ->clock_task and only update the
 263	 * prev_irq_time stamp to account for the part that fit, so that a next
 264	 * update will consume the rest. This ensures ->clock_task is
 265	 * monotonic.
 266	 *
 267	 * It does however cause some slight miss-attribution of {soft,}irq
 268	 * time, a more accurate solution would be to update the irq_time using
 269	 * the current rq->clock timestamp, except that would require using
 270	 * atomic ops.
 271	 */
 272	if (irq_delta > delta)
 273		irq_delta = delta;
 274
 275	rq->prev_irq_time += irq_delta;
 276	delta -= irq_delta;
 
 277#endif
 278#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 279	if (static_key_false((&paravirt_steal_rq_enabled))) {
 280		steal = paravirt_steal_clock(cpu_of(rq));
 281		steal -= rq->prev_steal_time_rq;
 282
 283		if (unlikely(steal > delta))
 284			steal = delta;
 285
 286		rq->prev_steal_time_rq += steal;
 287		delta -= steal;
 288	}
 289#endif
 290
 291	rq->clock_task += delta;
 292
 293#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 294	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 295		update_irq_load_avg(rq, irq_delta + steal);
 296#endif
 297	update_rq_clock_pelt(rq, delta);
 298}
 299
 300void update_rq_clock(struct rq *rq)
 301{
 302	s64 delta;
 303
 304	lockdep_assert_held(&rq->lock);
 305
 306	if (rq->clock_update_flags & RQCF_ACT_SKIP)
 307		return;
 308
 309#ifdef CONFIG_SCHED_DEBUG
 310	if (sched_feat(WARN_DOUBLE_CLOCK))
 311		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
 312	rq->clock_update_flags |= RQCF_UPDATED;
 313#endif
 314
 315	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 316	if (delta < 0)
 317		return;
 318	rq->clock += delta;
 319	update_rq_clock_task(rq, delta);
 320}
 321
 322static inline void
 323rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
 324{
 325	csd->flags = 0;
 326	csd->func = func;
 327	csd->info = rq;
 328}
 329
 330#ifdef CONFIG_SCHED_HRTICK
 331/*
 332 * Use HR-timers to deliver accurate preemption points.
 333 */
 334
 335static void hrtick_clear(struct rq *rq)
 336{
 337	if (hrtimer_active(&rq->hrtick_timer))
 338		hrtimer_cancel(&rq->hrtick_timer);
 339}
 340
 341/*
 342 * High-resolution timer tick.
 343 * Runs from hardirq context with interrupts disabled.
 344 */
 345static enum hrtimer_restart hrtick(struct hrtimer *timer)
 346{
 347	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 348	struct rq_flags rf;
 349
 350	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 351
 352	rq_lock(rq, &rf);
 353	update_rq_clock(rq);
 354	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 355	rq_unlock(rq, &rf);
 356
 357	return HRTIMER_NORESTART;
 358}
 359
 360#ifdef CONFIG_SMP
 361
 362static void __hrtick_restart(struct rq *rq)
 363{
 364	struct hrtimer *timer = &rq->hrtick_timer;
 
 365
 366	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
 367}
 368
 369/*
 370 * called from hardirq (IPI) context
 371 */
 372static void __hrtick_start(void *arg)
 373{
 374	struct rq *rq = arg;
 375	struct rq_flags rf;
 376
 377	rq_lock(rq, &rf);
 378	__hrtick_restart(rq);
 379	rq_unlock(rq, &rf);
 380}
 381
 382/*
 383 * Called to set the hrtick timer state.
 384 *
 385 * called with rq->lock held and irqs disabled
 386 */
 387void hrtick_start(struct rq *rq, u64 delay)
 388{
 389	struct hrtimer *timer = &rq->hrtick_timer;
 390	ktime_t time;
 391	s64 delta;
 392
 393	/*
 394	 * Don't schedule slices shorter than 10000ns, that just
 395	 * doesn't make sense and can cause timer DoS.
 396	 */
 397	delta = max_t(s64, delay, 10000LL);
 398	time = ktime_add_ns(timer->base->get_time(), delta);
 399
 400	hrtimer_set_expires(timer, time);
 401
 402	if (rq == this_rq())
 403		__hrtick_restart(rq);
 404	else
 405		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 406}
 407
 408#else
 409/*
 410 * Called to set the hrtick timer state.
 411 *
 412 * called with rq->lock held and irqs disabled
 413 */
 414void hrtick_start(struct rq *rq, u64 delay)
 415{
 416	/*
 417	 * Don't schedule slices shorter than 10000ns, that just
 418	 * doesn't make sense. Rely on vruntime for fairness.
 419	 */
 420	delay = max_t(u64, delay, 10000LL);
 421	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 422		      HRTIMER_MODE_REL_PINNED_HARD);
 423}
 424
 425#endif /* CONFIG_SMP */
 426
 427static void hrtick_rq_init(struct rq *rq)
 428{
 429#ifdef CONFIG_SMP
 430	rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
 431#endif
 432	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
 433	rq->hrtick_timer.function = hrtick;
 434}
 435#else	/* CONFIG_SCHED_HRTICK */
 436static inline void hrtick_clear(struct rq *rq)
 437{
 438}
 439
 440static inline void hrtick_rq_init(struct rq *rq)
 441{
 442}
 443#endif	/* CONFIG_SCHED_HRTICK */
 444
 445/*
 446 * cmpxchg based fetch_or, macro so it works for different integer types
 447 */
 448#define fetch_or(ptr, mask)						\
 449	({								\
 450		typeof(ptr) _ptr = (ptr);				\
 451		typeof(mask) _mask = (mask);				\
 452		typeof(*_ptr) _old, _val = *_ptr;			\
 453									\
 454		for (;;) {						\
 455			_old = cmpxchg(_ptr, _val, _val | _mask);	\
 456			if (_old == _val)				\
 457				break;					\
 458			_val = _old;					\
 459		}							\
 460	_old;								\
 461})
 462
 463#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 464/*
 465 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 466 * this avoids any races wrt polling state changes and thereby avoids
 467 * spurious IPIs.
 468 */
 469static bool set_nr_and_not_polling(struct task_struct *p)
 470{
 471	struct thread_info *ti = task_thread_info(p);
 472	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 473}
 474
 475/*
 476 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 477 *
 478 * If this returns true, then the idle task promises to call
 479 * sched_ttwu_pending() and reschedule soon.
 480 */
 481static bool set_nr_if_polling(struct task_struct *p)
 482{
 483	struct thread_info *ti = task_thread_info(p);
 484	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 485
 486	for (;;) {
 487		if (!(val & _TIF_POLLING_NRFLAG))
 488			return false;
 489		if (val & _TIF_NEED_RESCHED)
 490			return true;
 491		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 492		if (old == val)
 493			break;
 494		val = old;
 495	}
 496	return true;
 497}
 498
 499#else
 500static bool set_nr_and_not_polling(struct task_struct *p)
 501{
 502	set_tsk_need_resched(p);
 503	return true;
 504}
 505
 506#ifdef CONFIG_SMP
 507static bool set_nr_if_polling(struct task_struct *p)
 508{
 509	return false;
 510}
 511#endif
 512#endif
 513
 514static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
 515{
 516	struct wake_q_node *node = &task->wake_q;
 517
 518	/*
 519	 * Atomically grab the task, if ->wake_q is !nil already it means
 520	 * its already queued (either by us or someone else) and will get the
 521	 * wakeup due to that.
 522	 *
 523	 * In order to ensure that a pending wakeup will observe our pending
 524	 * state, even in the failed case, an explicit smp_mb() must be used.
 525	 */
 526	smp_mb__before_atomic();
 527	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
 528		return false;
 529
 530	/*
 531	 * The head is context local, there can be no concurrency.
 532	 */
 533	*head->lastp = node;
 534	head->lastp = &node->next;
 535	return true;
 536}
 537
 538/**
 539 * wake_q_add() - queue a wakeup for 'later' waking.
 540 * @head: the wake_q_head to add @task to
 541 * @task: the task to queue for 'later' wakeup
 542 *
 543 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 544 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 545 * instantly.
 546 *
 547 * This function must be used as-if it were wake_up_process(); IOW the task
 548 * must be ready to be woken at this location.
 549 */
 550void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 551{
 552	if (__wake_q_add(head, task))
 553		get_task_struct(task);
 554}
 555
 556/**
 557 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
 558 * @head: the wake_q_head to add @task to
 559 * @task: the task to queue for 'later' wakeup
 560 *
 561 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
 562 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
 563 * instantly.
 564 *
 565 * This function must be used as-if it were wake_up_process(); IOW the task
 566 * must be ready to be woken at this location.
 567 *
 568 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
 569 * that already hold reference to @task can call the 'safe' version and trust
 570 * wake_q to do the right thing depending whether or not the @task is already
 571 * queued for wakeup.
 572 */
 573void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
 574{
 575	if (!__wake_q_add(head, task))
 576		put_task_struct(task);
 577}
 578
 579void wake_up_q(struct wake_q_head *head)
 580{
 581	struct wake_q_node *node = head->first;
 582
 583	while (node != WAKE_Q_TAIL) {
 584		struct task_struct *task;
 585
 586		task = container_of(node, struct task_struct, wake_q);
 587		BUG_ON(!task);
 588		/* Task can safely be re-inserted now: */
 589		node = node->next;
 590		task->wake_q.next = NULL;
 591
 592		/*
 593		 * wake_up_process() executes a full barrier, which pairs with
 594		 * the queueing in wake_q_add() so as not to miss wakeups.
 595		 */
 596		wake_up_process(task);
 597		put_task_struct(task);
 598	}
 599}
 600
 601/*
 602 * resched_curr - mark rq's current task 'to be rescheduled now'.
 603 *
 604 * On UP this means the setting of the need_resched flag, on SMP it
 605 * might also involve a cross-CPU call to trigger the scheduler on
 606 * the target CPU.
 607 */
 608void resched_curr(struct rq *rq)
 609{
 610	struct task_struct *curr = rq->curr;
 611	int cpu;
 612
 613	lockdep_assert_held(&rq->lock);
 614
 615	if (test_tsk_need_resched(curr))
 616		return;
 617
 618	cpu = cpu_of(rq);
 619
 620	if (cpu == smp_processor_id()) {
 621		set_tsk_need_resched(curr);
 622		set_preempt_need_resched();
 623		return;
 624	}
 625
 626	if (set_nr_and_not_polling(curr))
 627		smp_send_reschedule(cpu);
 628	else
 629		trace_sched_wake_idle_without_ipi(cpu);
 630}
 631
 632void resched_cpu(int cpu)
 633{
 634	struct rq *rq = cpu_rq(cpu);
 635	unsigned long flags;
 636
 637	raw_spin_lock_irqsave(&rq->lock, flags);
 638	if (cpu_online(cpu) || cpu == smp_processor_id())
 639		resched_curr(rq);
 640	raw_spin_unlock_irqrestore(&rq->lock, flags);
 641}
 642
 643#ifdef CONFIG_SMP
 644#ifdef CONFIG_NO_HZ_COMMON
 645/*
 646 * In the semi idle case, use the nearest busy CPU for migrating timers
 647 * from an idle CPU.  This is good for power-savings.
 648 *
 649 * We don't do similar optimization for completely idle system, as
 650 * selecting an idle CPU will add more delays to the timers than intended
 651 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
 652 */
 653int get_nohz_timer_target(void)
 654{
 655	int i, cpu = smp_processor_id(), default_cpu = -1;
 656	struct sched_domain *sd;
 
 657
 658	if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
 659		if (!idle_cpu(cpu))
 660			return cpu;
 661		default_cpu = cpu;
 662	}
 663
 
 
 664	rcu_read_lock();
 665	for_each_domain(cpu, sd) {
 666		for_each_cpu_and(i, sched_domain_span(sd),
 667			housekeeping_cpumask(HK_FLAG_TIMER)) {
 668			if (cpu == i)
 669				continue;
 670
 671			if (!idle_cpu(i)) {
 672				cpu = i;
 673				goto unlock;
 674			}
 675		}
 676	}
 677
 678	if (default_cpu == -1)
 679		default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
 680	cpu = default_cpu;
 681unlock:
 682	rcu_read_unlock();
 683	return cpu;
 684}
 685
 686/*
 687 * When add_timer_on() enqueues a timer into the timer wheel of an
 688 * idle CPU then this timer might expire before the next timer event
 689 * which is scheduled to wake up that CPU. In case of a completely
 690 * idle system the next event might even be infinite time into the
 691 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 692 * leaves the inner idle loop so the newly added timer is taken into
 693 * account when the CPU goes back to idle and evaluates the timer
 694 * wheel for the next timer event.
 695 */
 696static void wake_up_idle_cpu(int cpu)
 697{
 698	struct rq *rq = cpu_rq(cpu);
 699
 700	if (cpu == smp_processor_id())
 701		return;
 702
 703	if (set_nr_and_not_polling(rq->idle))
 704		smp_send_reschedule(cpu);
 705	else
 706		trace_sched_wake_idle_without_ipi(cpu);
 707}
 708
 709static bool wake_up_full_nohz_cpu(int cpu)
 710{
 711	/*
 712	 * We just need the target to call irq_exit() and re-evaluate
 713	 * the next tick. The nohz full kick at least implies that.
 714	 * If needed we can still optimize that later with an
 715	 * empty IRQ.
 716	 */
 717	if (cpu_is_offline(cpu))
 718		return true;  /* Don't try to wake offline CPUs. */
 719	if (tick_nohz_full_cpu(cpu)) {
 720		if (cpu != smp_processor_id() ||
 721		    tick_nohz_tick_stopped())
 722			tick_nohz_full_kick_cpu(cpu);
 723		return true;
 724	}
 725
 726	return false;
 727}
 728
 729/*
 730 * Wake up the specified CPU.  If the CPU is going offline, it is the
 731 * caller's responsibility to deal with the lost wakeup, for example,
 732 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
 733 */
 734void wake_up_nohz_cpu(int cpu)
 735{
 736	if (!wake_up_full_nohz_cpu(cpu))
 737		wake_up_idle_cpu(cpu);
 738}
 739
 740static void nohz_csd_func(void *info)
 741{
 742	struct rq *rq = info;
 743	int cpu = cpu_of(rq);
 744	unsigned int flags;
 745
 746	/*
 747	 * Release the rq::nohz_csd.
 748	 */
 749	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
 750	WARN_ON(!(flags & NOHZ_KICK_MASK));
 751
 752	rq->idle_balance = idle_cpu(cpu);
 753	if (rq->idle_balance && !need_resched()) {
 754		rq->nohz_idle_balance = flags;
 755		raise_softirq_irqoff(SCHED_SOFTIRQ);
 756	}
 757}
 758
 759#endif /* CONFIG_NO_HZ_COMMON */
 760
 761#ifdef CONFIG_NO_HZ_FULL
 762bool sched_can_stop_tick(struct rq *rq)
 763{
 764	int fifo_nr_running;
 765
 766	/* Deadline tasks, even if single, need the tick */
 767	if (rq->dl.dl_nr_running)
 768		return false;
 769
 770	/*
 771	 * If there are more than one RR tasks, we need the tick to effect the
 772	 * actual RR behaviour.
 773	 */
 774	if (rq->rt.rr_nr_running) {
 775		if (rq->rt.rr_nr_running == 1)
 776			return true;
 777		else
 778			return false;
 779	}
 780
 781	/*
 782	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 783	 * forced preemption between FIFO tasks.
 784	 */
 785	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 786	if (fifo_nr_running)
 787		return true;
 788
 789	/*
 790	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 791	 * if there's more than one we need the tick for involuntary
 792	 * preemption.
 793	 */
 794	if (rq->nr_running > 1)
 795		return false;
 796
 797	return true;
 798}
 799#endif /* CONFIG_NO_HZ_FULL */
 800#endif /* CONFIG_SMP */
 801
 802#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 803			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 804/*
 805 * Iterate task_group tree rooted at *from, calling @down when first entering a
 806 * node and @up when leaving it for the final time.
 807 *
 808 * Caller must hold rcu_lock or sufficient equivalent.
 809 */
 810int walk_tg_tree_from(struct task_group *from,
 811			     tg_visitor down, tg_visitor up, void *data)
 812{
 813	struct task_group *parent, *child;
 814	int ret;
 815
 816	parent = from;
 817
 818down:
 819	ret = (*down)(parent, data);
 820	if (ret)
 821		goto out;
 822	list_for_each_entry_rcu(child, &parent->children, siblings) {
 823		parent = child;
 824		goto down;
 825
 826up:
 827		continue;
 828	}
 829	ret = (*up)(parent, data);
 830	if (ret || parent == from)
 831		goto out;
 832
 833	child = parent;
 834	parent = parent->parent;
 835	if (parent)
 836		goto up;
 837out:
 838	return ret;
 839}
 840
 841int tg_nop(struct task_group *tg, void *data)
 842{
 843	return 0;
 844}
 845#endif
 846
 847static void set_load_weight(struct task_struct *p, bool update_load)
 848{
 849	int prio = p->static_prio - MAX_RT_PRIO;
 850	struct load_weight *load = &p->se.load;
 851
 852	/*
 853	 * SCHED_IDLE tasks get minimal weight:
 854	 */
 855	if (task_has_idle_policy(p)) {
 856		load->weight = scale_load(WEIGHT_IDLEPRIO);
 857		load->inv_weight = WMULT_IDLEPRIO;
 858		return;
 859	}
 860
 861	/*
 862	 * SCHED_OTHER tasks have to update their load when changing their
 863	 * weight
 864	 */
 865	if (update_load && p->sched_class == &fair_sched_class) {
 866		reweight_task(p, prio);
 867	} else {
 868		load->weight = scale_load(sched_prio_to_weight[prio]);
 869		load->inv_weight = sched_prio_to_wmult[prio];
 870	}
 871}
 872
 873#ifdef CONFIG_UCLAMP_TASK
 874/*
 875 * Serializes updates of utilization clamp values
 876 *
 877 * The (slow-path) user-space triggers utilization clamp value updates which
 878 * can require updates on (fast-path) scheduler's data structures used to
 879 * support enqueue/dequeue operations.
 880 * While the per-CPU rq lock protects fast-path update operations, user-space
 881 * requests are serialized using a mutex to reduce the risk of conflicting
 882 * updates or API abuses.
 883 */
 884static DEFINE_MUTEX(uclamp_mutex);
 885
 886/* Max allowed minimum utilization */
 887unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
 888
 889/* Max allowed maximum utilization */
 890unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
 891
 892/*
 893 * By default RT tasks run at the maximum performance point/capacity of the
 894 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
 895 * SCHED_CAPACITY_SCALE.
 896 *
 897 * This knob allows admins to change the default behavior when uclamp is being
 898 * used. In battery powered devices, particularly, running at the maximum
 899 * capacity and frequency will increase energy consumption and shorten the
 900 * battery life.
 901 *
 902 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
 903 *
 904 * This knob will not override the system default sched_util_clamp_min defined
 905 * above.
 906 */
 907unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
 908
 909/* All clamps are required to be less or equal than these values */
 910static struct uclamp_se uclamp_default[UCLAMP_CNT];
 911
 912/*
 913 * This static key is used to reduce the uclamp overhead in the fast path. It
 914 * primarily disables the call to uclamp_rq_{inc, dec}() in
 915 * enqueue/dequeue_task().
 916 *
 917 * This allows users to continue to enable uclamp in their kernel config with
 918 * minimum uclamp overhead in the fast path.
 919 *
 920 * As soon as userspace modifies any of the uclamp knobs, the static key is
 921 * enabled, since we have an actual users that make use of uclamp
 922 * functionality.
 923 *
 924 * The knobs that would enable this static key are:
 925 *
 926 *   * A task modifying its uclamp value with sched_setattr().
 927 *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
 928 *   * An admin modifying the cgroup cpu.uclamp.{min, max}
 929 */
 930DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
 931
 932/* Integer rounded range for each bucket */
 933#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
 934
 935#define for_each_clamp_id(clamp_id) \
 936	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
 937
 938static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
 939{
 940	return clamp_value / UCLAMP_BUCKET_DELTA;
 941}
 942
 943static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
 944{
 945	return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
 946}
 947
 948static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
 949{
 950	if (clamp_id == UCLAMP_MIN)
 951		return 0;
 952	return SCHED_CAPACITY_SCALE;
 953}
 954
 955static inline void uclamp_se_set(struct uclamp_se *uc_se,
 956				 unsigned int value, bool user_defined)
 957{
 958	uc_se->value = value;
 959	uc_se->bucket_id = uclamp_bucket_id(value);
 960	uc_se->user_defined = user_defined;
 961}
 962
 963static inline unsigned int
 964uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
 965		  unsigned int clamp_value)
 966{
 967	/*
 968	 * Avoid blocked utilization pushing up the frequency when we go
 969	 * idle (which drops the max-clamp) by retaining the last known
 970	 * max-clamp.
 971	 */
 972	if (clamp_id == UCLAMP_MAX) {
 973		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
 974		return clamp_value;
 975	}
 976
 977	return uclamp_none(UCLAMP_MIN);
 978}
 979
 980static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
 981				     unsigned int clamp_value)
 982{
 983	/* Reset max-clamp retention only on idle exit */
 984	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
 985		return;
 986
 987	WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
 988}
 989
 990static inline
 991unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
 992				   unsigned int clamp_value)
 993{
 994	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
 995	int bucket_id = UCLAMP_BUCKETS - 1;
 996
 997	/*
 998	 * Since both min and max clamps are max aggregated, find the
 999	 * top most bucket with tasks in.
1000	 */
1001	for ( ; bucket_id >= 0; bucket_id--) {
1002		if (!bucket[bucket_id].tasks)
1003			continue;
1004		return bucket[bucket_id].value;
1005	}
1006
1007	/* No tasks -- default clamp values */
1008	return uclamp_idle_value(rq, clamp_id, clamp_value);
1009}
1010
1011static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1012{
1013	unsigned int default_util_min;
1014	struct uclamp_se *uc_se;
1015
1016	lockdep_assert_held(&p->pi_lock);
1017
1018	uc_se = &p->uclamp_req[UCLAMP_MIN];
1019
1020	/* Only sync if user didn't override the default */
1021	if (uc_se->user_defined)
1022		return;
1023
1024	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1025	uclamp_se_set(uc_se, default_util_min, false);
1026}
1027
1028static void uclamp_update_util_min_rt_default(struct task_struct *p)
1029{
1030	struct rq_flags rf;
1031	struct rq *rq;
1032
1033	if (!rt_task(p))
1034		return;
1035
1036	/* Protect updates to p->uclamp_* */
1037	rq = task_rq_lock(p, &rf);
1038	__uclamp_update_util_min_rt_default(p);
1039	task_rq_unlock(rq, p, &rf);
1040}
1041
1042static void uclamp_sync_util_min_rt_default(void)
1043{
1044	struct task_struct *g, *p;
1045
1046	/*
1047	 * copy_process()			sysctl_uclamp
1048	 *					  uclamp_min_rt = X;
1049	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1050	 *   // link thread			  smp_mb__after_spinlock()
1051	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1052	 *   sched_post_fork()			  for_each_process_thread()
1053	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1054	 *
1055	 * Ensures that either sched_post_fork() will observe the new
1056	 * uclamp_min_rt or for_each_process_thread() will observe the new
1057	 * task.
1058	 */
1059	read_lock(&tasklist_lock);
1060	smp_mb__after_spinlock();
1061	read_unlock(&tasklist_lock);
1062
1063	rcu_read_lock();
1064	for_each_process_thread(g, p)
1065		uclamp_update_util_min_rt_default(p);
1066	rcu_read_unlock();
1067}
1068
1069static inline struct uclamp_se
1070uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1071{
 
1072	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1073#ifdef CONFIG_UCLAMP_TASK_GROUP
1074	struct uclamp_se uc_max;
1075
1076	/*
1077	 * Tasks in autogroups or root task group will be
1078	 * restricted by system defaults.
1079	 */
1080	if (task_group_is_autogroup(task_group(p)))
1081		return uc_req;
1082	if (task_group(p) == &root_task_group)
1083		return uc_req;
1084
1085	uc_max = task_group(p)->uclamp[clamp_id];
1086	if (uc_req.value > uc_max.value || !uc_req.user_defined)
1087		return uc_max;
 
 
1088#endif
1089
1090	return uc_req;
1091}
1092
1093/*
1094 * The effective clamp bucket index of a task depends on, by increasing
1095 * priority:
1096 * - the task specific clamp value, when explicitly requested from userspace
1097 * - the task group effective clamp value, for tasks not either in the root
1098 *   group or in an autogroup
1099 * - the system default clamp value, defined by the sysadmin
1100 */
1101static inline struct uclamp_se
1102uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1103{
1104	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1105	struct uclamp_se uc_max = uclamp_default[clamp_id];
1106
1107	/* System default restrictions always apply */
1108	if (unlikely(uc_req.value > uc_max.value))
1109		return uc_max;
1110
1111	return uc_req;
1112}
1113
1114unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1115{
1116	struct uclamp_se uc_eff;
1117
1118	/* Task currently refcounted: use back-annotated (effective) value */
1119	if (p->uclamp[clamp_id].active)
1120		return (unsigned long)p->uclamp[clamp_id].value;
1121
1122	uc_eff = uclamp_eff_get(p, clamp_id);
1123
1124	return (unsigned long)uc_eff.value;
1125}
1126
1127/*
1128 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1129 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1130 * updates the rq's clamp value if required.
1131 *
1132 * Tasks can have a task-specific value requested from user-space, track
1133 * within each bucket the maximum value for tasks refcounted in it.
1134 * This "local max aggregation" allows to track the exact "requested" value
1135 * for each bucket when all its RUNNABLE tasks require the same clamp.
1136 */
1137static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1138				    enum uclamp_id clamp_id)
1139{
1140	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1141	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1142	struct uclamp_bucket *bucket;
1143
1144	lockdep_assert_held(&rq->lock);
1145
1146	/* Update task effective clamp */
1147	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1148
1149	bucket = &uc_rq->bucket[uc_se->bucket_id];
1150	bucket->tasks++;
1151	uc_se->active = true;
1152
1153	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1154
1155	/*
1156	 * Local max aggregation: rq buckets always track the max
1157	 * "requested" clamp value of its RUNNABLE tasks.
1158	 */
1159	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1160		bucket->value = uc_se->value;
1161
1162	if (uc_se->value > READ_ONCE(uc_rq->value))
1163		WRITE_ONCE(uc_rq->value, uc_se->value);
1164}
1165
1166/*
1167 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1168 * is released. If this is the last task reference counting the rq's max
1169 * active clamp value, then the rq's clamp value is updated.
1170 *
1171 * Both refcounted tasks and rq's cached clamp values are expected to be
1172 * always valid. If it's detected they are not, as defensive programming,
1173 * enforce the expected state and warn.
1174 */
1175static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1176				    enum uclamp_id clamp_id)
1177{
1178	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1179	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1180	struct uclamp_bucket *bucket;
1181	unsigned int bkt_clamp;
1182	unsigned int rq_clamp;
1183
1184	lockdep_assert_held(&rq->lock);
1185
1186	/*
1187	 * If sched_uclamp_used was enabled after task @p was enqueued,
1188	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1189	 *
1190	 * In this case the uc_se->active flag should be false since no uclamp
1191	 * accounting was performed at enqueue time and we can just return
1192	 * here.
1193	 *
1194	 * Need to be careful of the following enqeueue/dequeue ordering
1195	 * problem too
1196	 *
1197	 *	enqueue(taskA)
1198	 *	// sched_uclamp_used gets enabled
1199	 *	enqueue(taskB)
1200	 *	dequeue(taskA)
1201	 *	// Must not decrement bukcet->tasks here
1202	 *	dequeue(taskB)
1203	 *
1204	 * where we could end up with stale data in uc_se and
1205	 * bucket[uc_se->bucket_id].
1206	 *
1207	 * The following check here eliminates the possibility of such race.
1208	 */
1209	if (unlikely(!uc_se->active))
1210		return;
1211
1212	bucket = &uc_rq->bucket[uc_se->bucket_id];
1213
1214	SCHED_WARN_ON(!bucket->tasks);
1215	if (likely(bucket->tasks))
1216		bucket->tasks--;
1217
1218	uc_se->active = false;
1219
1220	/*
1221	 * Keep "local max aggregation" simple and accept to (possibly)
1222	 * overboost some RUNNABLE tasks in the same bucket.
1223	 * The rq clamp bucket value is reset to its base value whenever
1224	 * there are no more RUNNABLE tasks refcounting it.
1225	 */
1226	if (likely(bucket->tasks))
1227		return;
1228
1229	rq_clamp = READ_ONCE(uc_rq->value);
1230	/*
1231	 * Defensive programming: this should never happen. If it happens,
1232	 * e.g. due to future modification, warn and fixup the expected value.
1233	 */
1234	SCHED_WARN_ON(bucket->value > rq_clamp);
1235	if (bucket->value >= rq_clamp) {
1236		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1237		WRITE_ONCE(uc_rq->value, bkt_clamp);
1238	}
1239}
1240
1241static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1242{
1243	enum uclamp_id clamp_id;
1244
1245	/*
1246	 * Avoid any overhead until uclamp is actually used by the userspace.
1247	 *
1248	 * The condition is constructed such that a NOP is generated when
1249	 * sched_uclamp_used is disabled.
1250	 */
1251	if (!static_branch_unlikely(&sched_uclamp_used))
1252		return;
1253
1254	if (unlikely(!p->sched_class->uclamp_enabled))
1255		return;
1256
1257	for_each_clamp_id(clamp_id)
1258		uclamp_rq_inc_id(rq, p, clamp_id);
1259
1260	/* Reset clamp idle holding when there is one RUNNABLE task */
1261	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1262		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1263}
1264
1265static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1266{
1267	enum uclamp_id clamp_id;
1268
1269	/*
1270	 * Avoid any overhead until uclamp is actually used by the userspace.
1271	 *
1272	 * The condition is constructed such that a NOP is generated when
1273	 * sched_uclamp_used is disabled.
1274	 */
1275	if (!static_branch_unlikely(&sched_uclamp_used))
1276		return;
1277
1278	if (unlikely(!p->sched_class->uclamp_enabled))
1279		return;
1280
1281	for_each_clamp_id(clamp_id)
1282		uclamp_rq_dec_id(rq, p, clamp_id);
1283}
1284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285static inline void
1286uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1287{
 
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	/*
1292	 * Lock the task and the rq where the task is (or was) queued.
1293	 *
1294	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1295	 * price to pay to safely serialize util_{min,max} updates with
1296	 * enqueues, dequeues and migration operations.
1297	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1298	 */
1299	rq = task_rq_lock(p, &rf);
1300
1301	/*
1302	 * Setting the clamp bucket is serialized by task_rq_lock().
1303	 * If the task is not yet RUNNABLE and its task_struct is not
1304	 * affecting a valid clamp bucket, the next time it's enqueued,
1305	 * it will already see the updated clamp bucket value.
1306	 */
1307	if (p->uclamp[clamp_id].active) {
1308		uclamp_rq_dec_id(rq, p, clamp_id);
1309		uclamp_rq_inc_id(rq, p, clamp_id);
1310	}
1311
1312	task_rq_unlock(rq, p, &rf);
1313}
1314
1315#ifdef CONFIG_UCLAMP_TASK_GROUP
1316static inline void
1317uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1318			   unsigned int clamps)
1319{
1320	enum uclamp_id clamp_id;
1321	struct css_task_iter it;
1322	struct task_struct *p;
1323
1324	css_task_iter_start(css, 0, &it);
1325	while ((p = css_task_iter_next(&it))) {
1326		for_each_clamp_id(clamp_id) {
1327			if ((0x1 << clamp_id) & clamps)
1328				uclamp_update_active(p, clamp_id);
1329		}
1330	}
1331	css_task_iter_end(&it);
1332}
1333
1334static void cpu_util_update_eff(struct cgroup_subsys_state *css);
 
 
 
 
 
1335static void uclamp_update_root_tg(void)
1336{
1337	struct task_group *tg = &root_task_group;
1338
1339	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1340		      sysctl_sched_uclamp_util_min, false);
1341	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1342		      sysctl_sched_uclamp_util_max, false);
1343
1344	rcu_read_lock();
1345	cpu_util_update_eff(&root_task_group.css);
1346	rcu_read_unlock();
1347}
1348#else
1349static void uclamp_update_root_tg(void) { }
1350#endif
1351
1352int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353				void *buffer, size_t *lenp, loff_t *ppos)
1354{
1355	bool update_root_tg = false;
1356	int old_min, old_max, old_min_rt;
1357	int result;
1358
1359	mutex_lock(&uclamp_mutex);
1360	old_min = sysctl_sched_uclamp_util_min;
1361	old_max = sysctl_sched_uclamp_util_max;
1362	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1363
1364	result = proc_dointvec(table, write, buffer, lenp, ppos);
1365	if (result)
1366		goto undo;
1367	if (!write)
1368		goto done;
1369
1370	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1371	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1372	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1373
1374		result = -EINVAL;
1375		goto undo;
1376	}
1377
1378	if (old_min != sysctl_sched_uclamp_util_min) {
1379		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1380			      sysctl_sched_uclamp_util_min, false);
1381		update_root_tg = true;
1382	}
1383	if (old_max != sysctl_sched_uclamp_util_max) {
1384		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1385			      sysctl_sched_uclamp_util_max, false);
1386		update_root_tg = true;
1387	}
1388
1389	if (update_root_tg) {
1390		static_branch_enable(&sched_uclamp_used);
1391		uclamp_update_root_tg();
1392	}
1393
1394	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1395		static_branch_enable(&sched_uclamp_used);
1396		uclamp_sync_util_min_rt_default();
1397	}
1398
1399	/*
1400	 * We update all RUNNABLE tasks only when task groups are in use.
1401	 * Otherwise, keep it simple and do just a lazy update at each next
1402	 * task enqueue time.
1403	 */
1404
1405	goto done;
1406
1407undo:
1408	sysctl_sched_uclamp_util_min = old_min;
1409	sysctl_sched_uclamp_util_max = old_max;
1410	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1411done:
1412	mutex_unlock(&uclamp_mutex);
1413
1414	return result;
1415}
 
 
1416
1417static int uclamp_validate(struct task_struct *p,
1418			   const struct sched_attr *attr)
1419{
1420	unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1421	unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
 
 
 
 
 
 
 
1422
1423	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1424		lower_bound = attr->sched_util_min;
1425	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1426		upper_bound = attr->sched_util_max;
1427
1428	if (lower_bound > upper_bound)
1429		return -EINVAL;
1430	if (upper_bound > SCHED_CAPACITY_SCALE)
 
 
1431		return -EINVAL;
1432
1433	/*
1434	 * We have valid uclamp attributes; make sure uclamp is enabled.
1435	 *
1436	 * We need to do that here, because enabling static branches is a
1437	 * blocking operation which obviously cannot be done while holding
1438	 * scheduler locks.
1439	 */
1440	static_branch_enable(&sched_uclamp_used);
1441
1442	return 0;
1443}
1444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445static void __setscheduler_uclamp(struct task_struct *p,
1446				  const struct sched_attr *attr)
1447{
1448	enum uclamp_id clamp_id;
1449
1450	/*
1451	 * On scheduling class change, reset to default clamps for tasks
1452	 * without a task-specific value.
1453	 */
1454	for_each_clamp_id(clamp_id) {
1455		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
 
1456
1457		/* Keep using defined clamps across class changes */
1458		if (uc_se->user_defined)
1459			continue;
1460
1461		/*
1462		 * RT by default have a 100% boost value that could be modified
1463		 * at runtime.
1464		 */
1465		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1466			__uclamp_update_util_min_rt_default(p);
1467		else
1468			uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
 
 
1469
1470	}
1471
1472	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1473		return;
1474
1475	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
 
1476		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1477			      attr->sched_util_min, true);
1478	}
1479
1480	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
 
1481		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1482			      attr->sched_util_max, true);
1483	}
1484}
1485
1486static void uclamp_fork(struct task_struct *p)
1487{
1488	enum uclamp_id clamp_id;
1489
1490	/*
1491	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1492	 * as the task is still at its early fork stages.
1493	 */
1494	for_each_clamp_id(clamp_id)
1495		p->uclamp[clamp_id].active = false;
1496
1497	if (likely(!p->sched_reset_on_fork))
1498		return;
1499
1500	for_each_clamp_id(clamp_id) {
1501		uclamp_se_set(&p->uclamp_req[clamp_id],
1502			      uclamp_none(clamp_id), false);
1503	}
1504}
1505
1506static void uclamp_post_fork(struct task_struct *p)
1507{
1508	uclamp_update_util_min_rt_default(p);
1509}
1510
1511static void __init init_uclamp_rq(struct rq *rq)
1512{
1513	enum uclamp_id clamp_id;
1514	struct uclamp_rq *uc_rq = rq->uclamp;
1515
1516	for_each_clamp_id(clamp_id) {
1517		uc_rq[clamp_id] = (struct uclamp_rq) {
1518			.value = uclamp_none(clamp_id)
1519		};
1520	}
1521
1522	rq->uclamp_flags = 0;
1523}
1524
1525static void __init init_uclamp(void)
1526{
1527	struct uclamp_se uc_max = {};
1528	enum uclamp_id clamp_id;
1529	int cpu;
1530
1531	for_each_possible_cpu(cpu)
1532		init_uclamp_rq(cpu_rq(cpu));
1533
1534	for_each_clamp_id(clamp_id) {
1535		uclamp_se_set(&init_task.uclamp_req[clamp_id],
1536			      uclamp_none(clamp_id), false);
1537	}
1538
1539	/* System defaults allow max clamp values for both indexes */
1540	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1541	for_each_clamp_id(clamp_id) {
1542		uclamp_default[clamp_id] = uc_max;
1543#ifdef CONFIG_UCLAMP_TASK_GROUP
1544		root_task_group.uclamp_req[clamp_id] = uc_max;
1545		root_task_group.uclamp[clamp_id] = uc_max;
1546#endif
1547	}
1548}
1549
1550#else /* CONFIG_UCLAMP_TASK */
1551static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1552static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1553static inline int uclamp_validate(struct task_struct *p,
1554				  const struct sched_attr *attr)
1555{
1556	return -EOPNOTSUPP;
1557}
1558static void __setscheduler_uclamp(struct task_struct *p,
1559				  const struct sched_attr *attr) { }
1560static inline void uclamp_fork(struct task_struct *p) { }
1561static inline void uclamp_post_fork(struct task_struct *p) { }
1562static inline void init_uclamp(void) { }
1563#endif /* CONFIG_UCLAMP_TASK */
1564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1566{
1567	if (!(flags & ENQUEUE_NOCLOCK))
1568		update_rq_clock(rq);
1569
1570	if (!(flags & ENQUEUE_RESTORE)) {
1571		sched_info_queued(rq, p);
1572		psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1573	}
1574
1575	uclamp_rq_inc(rq, p);
1576	p->sched_class->enqueue_task(rq, p, flags);
 
 
 
1577}
1578
1579static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1580{
 
 
 
1581	if (!(flags & DEQUEUE_NOCLOCK))
1582		update_rq_clock(rq);
1583
1584	if (!(flags & DEQUEUE_SAVE)) {
1585		sched_info_dequeued(rq, p);
1586		psi_dequeue(p, flags & DEQUEUE_SLEEP);
1587	}
1588
1589	uclamp_rq_dec(rq, p);
1590	p->sched_class->dequeue_task(rq, p, flags);
1591}
1592
1593void activate_task(struct rq *rq, struct task_struct *p, int flags)
1594{
1595	enqueue_task(rq, p, flags);
1596
1597	p->on_rq = TASK_ON_RQ_QUEUED;
1598}
1599
1600void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1601{
1602	p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1603
1604	dequeue_task(rq, p, flags);
1605}
1606
1607/*
1608 * __normal_prio - return the priority that is based on the static prio
1609 */
1610static inline int __normal_prio(struct task_struct *p)
1611{
1612	return p->static_prio;
 
 
 
 
 
 
 
 
 
1613}
1614
1615/*
1616 * Calculate the expected normal priority: i.e. priority
1617 * without taking RT-inheritance into account. Might be
1618 * boosted by interactivity modifiers. Changes upon fork,
1619 * setprio syscalls, and whenever the interactivity
1620 * estimator recalculates.
1621 */
1622static inline int normal_prio(struct task_struct *p)
1623{
1624	int prio;
1625
1626	if (task_has_dl_policy(p))
1627		prio = MAX_DL_PRIO-1;
1628	else if (task_has_rt_policy(p))
1629		prio = MAX_RT_PRIO-1 - p->rt_priority;
1630	else
1631		prio = __normal_prio(p);
1632	return prio;
1633}
1634
1635/*
1636 * Calculate the current priority, i.e. the priority
1637 * taken into account by the scheduler. This value might
1638 * be boosted by RT tasks, or might be boosted by
1639 * interactivity modifiers. Will be RT if the task got
1640 * RT-boosted. If not then it returns p->normal_prio.
1641 */
1642static int effective_prio(struct task_struct *p)
1643{
1644	p->normal_prio = normal_prio(p);
1645	/*
1646	 * If we are RT tasks or we were boosted to RT priority,
1647	 * keep the priority unchanged. Otherwise, update priority
1648	 * to the normal priority:
1649	 */
1650	if (!rt_prio(p->prio))
1651		return p->normal_prio;
1652	return p->prio;
1653}
1654
1655/**
1656 * task_curr - is this task currently executing on a CPU?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if the task is currently executing. 0 otherwise.
1660 */
1661inline int task_curr(const struct task_struct *p)
1662{
1663	return cpu_curr(task_cpu(p)) == p;
1664}
1665
1666/*
1667 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1668 * use the balance_callback list if you want balancing.
1669 *
1670 * this means any call to check_class_changed() must be followed by a call to
1671 * balance_callback().
1672 */
1673static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1674				       const struct sched_class *prev_class,
1675				       int oldprio)
1676{
1677	if (prev_class != p->sched_class) {
1678		if (prev_class->switched_from)
1679			prev_class->switched_from(rq, p);
1680
1681		p->sched_class->switched_to(rq, p);
1682	} else if (oldprio != p->prio || dl_task(p))
1683		p->sched_class->prio_changed(rq, p, oldprio);
1684}
1685
1686void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1687{
1688	if (p->sched_class == rq->curr->sched_class)
1689		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1690	else if (p->sched_class > rq->curr->sched_class)
1691		resched_curr(rq);
1692
1693	/*
1694	 * A queue event has occurred, and we're going to schedule.  In
1695	 * this case, we can save a useless back to back clock update.
1696	 */
1697	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1698		rq_clock_skip_update(rq);
1699}
1700
1701#ifdef CONFIG_SMP
1702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703/*
1704 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1705 * __set_cpus_allowed_ptr() and select_fallback_rq().
1706 */
1707static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1708{
 
1709	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1710		return false;
1711
1712	if (is_per_cpu_kthread(p))
 
1713		return cpu_online(cpu);
1714
1715	return cpu_active(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1716}
1717
1718/*
1719 * This is how migration works:
1720 *
1721 * 1) we invoke migration_cpu_stop() on the target CPU using
1722 *    stop_one_cpu().
1723 * 2) stopper starts to run (implicitly forcing the migrated thread
1724 *    off the CPU)
1725 * 3) it checks whether the migrated task is still in the wrong runqueue.
1726 * 4) if it's in the wrong runqueue then the migration thread removes
1727 *    it and puts it into the right queue.
1728 * 5) stopper completes and stop_one_cpu() returns and the migration
1729 *    is done.
1730 */
1731
1732/*
1733 * move_queued_task - move a queued task to new rq.
1734 *
1735 * Returns (locked) new rq. Old rq's lock is released.
1736 */
1737static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1738				   struct task_struct *p, int new_cpu)
1739{
1740	lockdep_assert_held(&rq->lock);
1741
1742	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1743	set_task_cpu(p, new_cpu);
1744	rq_unlock(rq, rf);
1745
1746	rq = cpu_rq(new_cpu);
1747
1748	rq_lock(rq, rf);
1749	BUG_ON(task_cpu(p) != new_cpu);
1750	activate_task(rq, p, 0);
1751	check_preempt_curr(rq, p, 0);
1752
1753	return rq;
1754}
1755
1756struct migration_arg {
1757	struct task_struct *task;
1758	int dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
1759};
1760
1761/*
1762 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1763 * this because either it can't run here any more (set_cpus_allowed()
1764 * away from this CPU, or CPU going down), or because we're
1765 * attempting to rebalance this task on exec (sched_exec).
1766 *
1767 * So we race with normal scheduler movements, but that's OK, as long
1768 * as the task is no longer on this CPU.
1769 */
1770static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1771				 struct task_struct *p, int dest_cpu)
1772{
1773	/* Affinity changed (again). */
1774	if (!is_cpu_allowed(p, dest_cpu))
1775		return rq;
1776
1777	update_rq_clock(rq);
1778	rq = move_queued_task(rq, rf, p, dest_cpu);
1779
1780	return rq;
1781}
1782
1783/*
1784 * migration_cpu_stop - this will be executed by a highprio stopper thread
1785 * and performs thread migration by bumping thread off CPU then
1786 * 'pushing' onto another runqueue.
1787 */
1788static int migration_cpu_stop(void *data)
1789{
1790	struct migration_arg *arg = data;
 
1791	struct task_struct *p = arg->task;
1792	struct rq *rq = this_rq();
 
1793	struct rq_flags rf;
1794
1795	/*
1796	 * The original target CPU might have gone down and we might
1797	 * be on another CPU but it doesn't matter.
1798	 */
1799	local_irq_disable();
1800	/*
1801	 * We need to explicitly wake pending tasks before running
1802	 * __migrate_task() such that we will not miss enforcing cpus_ptr
1803	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1804	 */
1805	flush_smp_call_function_from_idle();
1806
1807	raw_spin_lock(&p->pi_lock);
1808	rq_lock(rq, &rf);
 
 
 
 
 
 
 
1809	/*
1810	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1811	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1812	 * we're holding p->pi_lock.
1813	 */
1814	if (task_rq(p) == rq) {
 
 
 
 
 
 
 
 
 
 
 
1815		if (task_on_rq_queued(p))
1816			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1817		else
1818			p->wake_cpu = arg->dest_cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819	}
1820	rq_unlock(rq, &rf);
1821	raw_spin_unlock(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822
1823	local_irq_enable();
1824	return 0;
1825}
1826
1827/*
1828 * sched_class::set_cpus_allowed must do the below, but is not required to
1829 * actually call this function.
1830 */
1831void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1832{
1833	cpumask_copy(&p->cpus_mask, new_mask);
1834	p->nr_cpus_allowed = cpumask_weight(new_mask);
 
 
 
 
 
 
 
 
 
 
 
1835}
1836
1837void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
 
1838{
1839	struct rq *rq = task_rq(p);
1840	bool queued, running;
1841
1842	lockdep_assert_held(&p->pi_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843
1844	queued = task_on_rq_queued(p);
1845	running = task_current(rq, p);
1846
1847	if (queued) {
1848		/*
1849		 * Because __kthread_bind() calls this on blocked tasks without
1850		 * holding rq->lock.
1851		 */
1852		lockdep_assert_held(&rq->lock);
1853		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1854	}
1855	if (running)
1856		put_prev_task(rq, p);
1857
1858	p->sched_class->set_cpus_allowed(p, new_mask);
1859
1860	if (queued)
1861		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1862	if (running)
1863		set_next_task(rq, p);
1864}
1865
1866/*
1867 * Change a given task's CPU affinity. Migrate the thread to a
1868 * proper CPU and schedule it away if the CPU it's executing on
1869 * is removed from the allowed bitmask.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870 *
1871 * NOTE: the caller must have a valid reference to the task, the
1872 * task must not exit() & deallocate itself prematurely. The
1873 * call is not atomic; no spinlocks may be held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874 */
1875static int __set_cpus_allowed_ptr(struct task_struct *p,
1876				  const struct cpumask *new_mask, bool check)
 
 
 
 
1877{
 
1878	const struct cpumask *cpu_valid_mask = cpu_active_mask;
 
1879	unsigned int dest_cpu;
1880	struct rq_flags rf;
1881	struct rq *rq;
1882	int ret = 0;
1883
1884	rq = task_rq_lock(p, &rf);
1885	update_rq_clock(rq);
1886
1887	if (p->flags & PF_KTHREAD) {
1888		/*
1889		 * Kernel threads are allowed on online && !active CPUs
 
 
 
 
 
 
 
1890		 */
1891		cpu_valid_mask = cpu_online_mask;
1892	}
1893
 
 
 
 
 
1894	/*
1895	 * Must re-check here, to close a race against __kthread_bind(),
1896	 * sched_setaffinity() is not guaranteed to observe the flag.
1897	 */
1898	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1899		ret = -EINVAL;
1900		goto out;
1901	}
1902
1903	if (cpumask_equal(&p->cpus_mask, new_mask))
1904		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1905
1906	/*
1907	 * Picking a ~random cpu helps in cases where we are changing affinity
1908	 * for groups of tasks (ie. cpuset), so that load balancing is not
1909	 * immediately required to distribute the tasks within their new mask.
1910	 */
1911	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1912	if (dest_cpu >= nr_cpu_ids) {
1913		ret = -EINVAL;
1914		goto out;
1915	}
1916
1917	do_set_cpus_allowed(p, new_mask);
1918
1919	if (p->flags & PF_KTHREAD) {
1920		/*
1921		 * For kernel threads that do indeed end up on online &&
1922		 * !active we want to ensure they are strict per-CPU threads.
1923		 */
1924		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1925			!cpumask_intersects(new_mask, cpu_active_mask) &&
1926			p->nr_cpus_allowed != 1);
1927	}
1928
1929	/* Can the task run on the task's current CPU? If so, we're done */
1930	if (cpumask_test_cpu(task_cpu(p), new_mask))
1931		goto out;
1932
1933	if (task_running(rq, p) || p->state == TASK_WAKING) {
1934		struct migration_arg arg = { p, dest_cpu };
1935		/* Need help from migration thread: drop lock and wait. */
1936		task_rq_unlock(rq, p, &rf);
1937		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1938		return 0;
1939	} else if (task_on_rq_queued(p)) {
1940		/*
1941		 * OK, since we're going to drop the lock immediately
1942		 * afterwards anyway.
1943		 */
1944		rq = move_queued_task(rq, &rf, p, dest_cpu);
1945	}
1946out:
1947	task_rq_unlock(rq, p, &rf);
1948
1949	return ret;
1950}
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1953{
1954	return __set_cpus_allowed_ptr(p, new_mask, false);
 
 
 
 
 
1955}
1956EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1959{
1960#ifdef CONFIG_SCHED_DEBUG
 
 
1961	/*
1962	 * We should never call set_task_cpu() on a blocked task,
1963	 * ttwu() will sort out the placement.
1964	 */
1965	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1966			!p->on_rq);
1967
1968	/*
1969	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1970	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1971	 * time relying on p->on_rq.
1972	 */
1973	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1974		     p->sched_class == &fair_sched_class &&
1975		     (p->on_rq && !task_on_rq_migrating(p)));
1976
1977#ifdef CONFIG_LOCKDEP
1978	/*
1979	 * The caller should hold either p->pi_lock or rq->lock, when changing
1980	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1981	 *
1982	 * sched_move_task() holds both and thus holding either pins the cgroup,
1983	 * see task_group().
1984	 *
1985	 * Furthermore, all task_rq users should acquire both locks, see
1986	 * task_rq_lock().
1987	 */
1988	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1989				      lockdep_is_held(&task_rq(p)->lock)));
1990#endif
1991	/*
1992	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1993	 */
1994	WARN_ON_ONCE(!cpu_online(new_cpu));
 
 
1995#endif
1996
1997	trace_sched_migrate_task(p, new_cpu);
1998
1999	if (task_cpu(p) != new_cpu) {
2000		if (p->sched_class->migrate_task_rq)
2001			p->sched_class->migrate_task_rq(p, new_cpu);
2002		p->se.nr_migrations++;
2003		rseq_migrate(p);
2004		perf_event_task_migrate(p);
2005	}
2006
2007	__set_task_cpu(p, new_cpu);
2008}
2009
2010#ifdef CONFIG_NUMA_BALANCING
2011static void __migrate_swap_task(struct task_struct *p, int cpu)
2012{
2013	if (task_on_rq_queued(p)) {
2014		struct rq *src_rq, *dst_rq;
2015		struct rq_flags srf, drf;
2016
2017		src_rq = task_rq(p);
2018		dst_rq = cpu_rq(cpu);
2019
2020		rq_pin_lock(src_rq, &srf);
2021		rq_pin_lock(dst_rq, &drf);
2022
2023		deactivate_task(src_rq, p, 0);
2024		set_task_cpu(p, cpu);
2025		activate_task(dst_rq, p, 0);
2026		check_preempt_curr(dst_rq, p, 0);
2027
2028		rq_unpin_lock(dst_rq, &drf);
2029		rq_unpin_lock(src_rq, &srf);
2030
2031	} else {
2032		/*
2033		 * Task isn't running anymore; make it appear like we migrated
2034		 * it before it went to sleep. This means on wakeup we make the
2035		 * previous CPU our target instead of where it really is.
2036		 */
2037		p->wake_cpu = cpu;
2038	}
2039}
2040
2041struct migration_swap_arg {
2042	struct task_struct *src_task, *dst_task;
2043	int src_cpu, dst_cpu;
2044};
2045
2046static int migrate_swap_stop(void *data)
2047{
2048	struct migration_swap_arg *arg = data;
2049	struct rq *src_rq, *dst_rq;
2050	int ret = -EAGAIN;
2051
2052	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2053		return -EAGAIN;
2054
2055	src_rq = cpu_rq(arg->src_cpu);
2056	dst_rq = cpu_rq(arg->dst_cpu);
2057
2058	double_raw_lock(&arg->src_task->pi_lock,
2059			&arg->dst_task->pi_lock);
2060	double_rq_lock(src_rq, dst_rq);
2061
2062	if (task_cpu(arg->dst_task) != arg->dst_cpu)
2063		goto unlock;
2064
2065	if (task_cpu(arg->src_task) != arg->src_cpu)
2066		goto unlock;
2067
2068	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2069		goto unlock;
2070
2071	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2072		goto unlock;
2073
2074	__migrate_swap_task(arg->src_task, arg->dst_cpu);
2075	__migrate_swap_task(arg->dst_task, arg->src_cpu);
2076
2077	ret = 0;
2078
2079unlock:
2080	double_rq_unlock(src_rq, dst_rq);
2081	raw_spin_unlock(&arg->dst_task->pi_lock);
2082	raw_spin_unlock(&arg->src_task->pi_lock);
2083
2084	return ret;
2085}
2086
2087/*
2088 * Cross migrate two tasks
2089 */
2090int migrate_swap(struct task_struct *cur, struct task_struct *p,
2091		int target_cpu, int curr_cpu)
2092{
2093	struct migration_swap_arg arg;
2094	int ret = -EINVAL;
2095
2096	arg = (struct migration_swap_arg){
2097		.src_task = cur,
2098		.src_cpu = curr_cpu,
2099		.dst_task = p,
2100		.dst_cpu = target_cpu,
2101	};
2102
2103	if (arg.src_cpu == arg.dst_cpu)
2104		goto out;
2105
2106	/*
2107	 * These three tests are all lockless; this is OK since all of them
2108	 * will be re-checked with proper locks held further down the line.
2109	 */
2110	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2111		goto out;
2112
2113	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2114		goto out;
2115
2116	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2117		goto out;
2118
2119	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2120	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2121
2122out:
2123	return ret;
2124}
2125#endif /* CONFIG_NUMA_BALANCING */
2126
2127/*
2128 * wait_task_inactive - wait for a thread to unschedule.
2129 *
2130 * If @match_state is nonzero, it's the @p->state value just checked and
2131 * not expected to change.  If it changes, i.e. @p might have woken up,
2132 * then return zero.  When we succeed in waiting for @p to be off its CPU,
2133 * we return a positive number (its total switch count).  If a second call
2134 * a short while later returns the same number, the caller can be sure that
2135 * @p has remained unscheduled the whole time.
2136 *
2137 * The caller must ensure that the task *will* unschedule sometime soon,
2138 * else this function might spin for a *long* time. This function can't
2139 * be called with interrupts off, or it may introduce deadlock with
2140 * smp_call_function() if an IPI is sent by the same process we are
2141 * waiting to become inactive.
2142 */
2143unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144{
2145	int running, queued;
2146	struct rq_flags rf;
2147	unsigned long ncsw;
2148	struct rq *rq;
2149
2150	for (;;) {
2151		/*
2152		 * We do the initial early heuristics without holding
2153		 * any task-queue locks at all. We'll only try to get
2154		 * the runqueue lock when things look like they will
2155		 * work out!
2156		 */
2157		rq = task_rq(p);
2158
2159		/*
2160		 * If the task is actively running on another CPU
2161		 * still, just relax and busy-wait without holding
2162		 * any locks.
2163		 *
2164		 * NOTE! Since we don't hold any locks, it's not
2165		 * even sure that "rq" stays as the right runqueue!
2166		 * But we don't care, since "task_running()" will
2167		 * return false if the runqueue has changed and p
2168		 * is actually now running somewhere else!
2169		 */
2170		while (task_running(rq, p)) {
2171			if (match_state && unlikely(p->state != match_state))
2172				return 0;
2173			cpu_relax();
2174		}
2175
2176		/*
2177		 * Ok, time to look more closely! We need the rq
2178		 * lock now, to be *sure*. If we're wrong, we'll
2179		 * just go back and repeat.
2180		 */
2181		rq = task_rq_lock(p, &rf);
2182		trace_sched_wait_task(p);
2183		running = task_running(rq, p);
2184		queued = task_on_rq_queued(p);
2185		ncsw = 0;
2186		if (!match_state || p->state == match_state)
2187			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2188		task_rq_unlock(rq, p, &rf);
2189
2190		/*
2191		 * If it changed from the expected state, bail out now.
2192		 */
2193		if (unlikely(!ncsw))
2194			break;
2195
2196		/*
2197		 * Was it really running after all now that we
2198		 * checked with the proper locks actually held?
2199		 *
2200		 * Oops. Go back and try again..
2201		 */
2202		if (unlikely(running)) {
2203			cpu_relax();
2204			continue;
2205		}
2206
2207		/*
2208		 * It's not enough that it's not actively running,
2209		 * it must be off the runqueue _entirely_, and not
2210		 * preempted!
2211		 *
2212		 * So if it was still runnable (but just not actively
2213		 * running right now), it's preempted, and we should
2214		 * yield - it could be a while.
2215		 */
2216		if (unlikely(queued)) {
2217			ktime_t to = NSEC_PER_SEC / HZ;
2218
2219			set_current_state(TASK_UNINTERRUPTIBLE);
2220			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2221			continue;
2222		}
2223
2224		/*
2225		 * Ahh, all good. It wasn't running, and it wasn't
2226		 * runnable, which means that it will never become
2227		 * running in the future either. We're all done!
2228		 */
2229		break;
2230	}
2231
2232	return ncsw;
2233}
2234
2235/***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesn't have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248void kick_process(struct task_struct *p)
2249{
2250	int cpu;
2251
2252	preempt_disable();
2253	cpu = task_cpu(p);
2254	if ((cpu != smp_processor_id()) && task_curr(p))
2255		smp_send_reschedule(cpu);
2256	preempt_enable();
2257}
2258EXPORT_SYMBOL_GPL(kick_process);
2259
2260/*
2261 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2262 *
2263 * A few notes on cpu_active vs cpu_online:
2264 *
2265 *  - cpu_active must be a subset of cpu_online
2266 *
2267 *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2268 *    see __set_cpus_allowed_ptr(). At this point the newly online
2269 *    CPU isn't yet part of the sched domains, and balancing will not
2270 *    see it.
2271 *
2272 *  - on CPU-down we clear cpu_active() to mask the sched domains and
2273 *    avoid the load balancer to place new tasks on the to be removed
2274 *    CPU. Existing tasks will remain running there and will be taken
2275 *    off.
2276 *
2277 * This means that fallback selection must not select !active CPUs.
2278 * And can assume that any active CPU must be online. Conversely
2279 * select_task_rq() below may allow selection of !active CPUs in order
2280 * to satisfy the above rules.
2281 */
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284	int nid = cpu_to_node(cpu);
2285	const struct cpumask *nodemask = NULL;
2286	enum { cpuset, possible, fail } state = cpuset;
2287	int dest_cpu;
2288
2289	/*
2290	 * If the node that the CPU is on has been offlined, cpu_to_node()
2291	 * will return -1. There is no CPU on the node, and we should
2292	 * select the CPU on the other node.
2293	 */
2294	if (nid != -1) {
2295		nodemask = cpumask_of_node(nid);
2296
2297		/* Look for allowed, online CPU in same node. */
2298		for_each_cpu(dest_cpu, nodemask) {
2299			if (!cpu_active(dest_cpu))
2300				continue;
2301			if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2302				return dest_cpu;
2303		}
2304	}
2305
2306	for (;;) {
2307		/* Any allowed, online CPU? */
2308		for_each_cpu(dest_cpu, p->cpus_ptr) {
2309			if (!is_cpu_allowed(p, dest_cpu))
2310				continue;
2311
2312			goto out;
2313		}
2314
2315		/* No more Mr. Nice Guy. */
2316		switch (state) {
2317		case cpuset:
2318			if (IS_ENABLED(CONFIG_CPUSETS)) {
2319				cpuset_cpus_allowed_fallback(p);
2320				state = possible;
2321				break;
2322			}
2323			fallthrough;
2324		case possible:
2325			do_set_cpus_allowed(p, cpu_possible_mask);
 
 
 
 
 
 
2326			state = fail;
2327			break;
2328
2329		case fail:
2330			BUG();
2331			break;
2332		}
2333	}
2334
2335out:
2336	if (state != cpuset) {
2337		/*
2338		 * Don't tell them about moving exiting tasks or
2339		 * kernel threads (both mm NULL), since they never
2340		 * leave kernel.
2341		 */
2342		if (p->mm && printk_ratelimit()) {
2343			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2344					task_pid_nr(p), p->comm, cpu);
2345		}
2346	}
2347
2348	return dest_cpu;
2349}
2350
2351/*
2352 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2353 */
2354static inline
2355int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2356{
2357	lockdep_assert_held(&p->pi_lock);
2358
2359	if (p->nr_cpus_allowed > 1)
2360		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2361	else
2362		cpu = cpumask_any(p->cpus_ptr);
2363
2364	/*
2365	 * In order not to call set_task_cpu() on a blocking task we need
2366	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2367	 * CPU.
2368	 *
2369	 * Since this is common to all placement strategies, this lives here.
2370	 *
2371	 * [ this allows ->select_task() to simply return task_cpu(p) and
2372	 *   not worry about this generic constraint ]
2373	 */
2374	if (unlikely(!is_cpu_allowed(p, cpu)))
2375		cpu = select_fallback_rq(task_cpu(p), p);
2376
2377	return cpu;
2378}
2379
2380void sched_set_stop_task(int cpu, struct task_struct *stop)
2381{
 
2382	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2383	struct task_struct *old_stop = cpu_rq(cpu)->stop;
2384
2385	if (stop) {
2386		/*
2387		 * Make it appear like a SCHED_FIFO task, its something
2388		 * userspace knows about and won't get confused about.
2389		 *
2390		 * Also, it will make PI more or less work without too
2391		 * much confusion -- but then, stop work should not
2392		 * rely on PI working anyway.
2393		 */
2394		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2395
2396		stop->sched_class = &stop_sched_class;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397	}
2398
2399	cpu_rq(cpu)->stop = stop;
2400
2401	if (old_stop) {
2402		/*
2403		 * Reset it back to a normal scheduling class so that
2404		 * it can die in pieces.
2405		 */
2406		old_stop->sched_class = &rt_sched_class;
2407	}
2408}
2409
2410#else
2411
2412static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2413					 const struct cpumask *new_mask, bool check)
2414{
2415	return set_cpus_allowed_ptr(p, new_mask);
2416}
2417
2418#endif /* CONFIG_SMP */
 
 
 
 
 
 
 
 
 
 
 
 
2419
2420static void
2421ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2422{
2423	struct rq *rq;
2424
2425	if (!schedstat_enabled())
2426		return;
2427
2428	rq = this_rq();
2429
2430#ifdef CONFIG_SMP
2431	if (cpu == rq->cpu) {
2432		__schedstat_inc(rq->ttwu_local);
2433		__schedstat_inc(p->se.statistics.nr_wakeups_local);
2434	} else {
2435		struct sched_domain *sd;
2436
2437		__schedstat_inc(p->se.statistics.nr_wakeups_remote);
2438		rcu_read_lock();
2439		for_each_domain(rq->cpu, sd) {
2440			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2441				__schedstat_inc(sd->ttwu_wake_remote);
2442				break;
2443			}
2444		}
2445		rcu_read_unlock();
2446	}
2447
2448	if (wake_flags & WF_MIGRATED)
2449		__schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2450#endif /* CONFIG_SMP */
2451
2452	__schedstat_inc(rq->ttwu_count);
2453	__schedstat_inc(p->se.statistics.nr_wakeups);
2454
2455	if (wake_flags & WF_SYNC)
2456		__schedstat_inc(p->se.statistics.nr_wakeups_sync);
2457}
2458
2459/*
2460 * Mark the task runnable and perform wakeup-preemption.
2461 */
2462static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2463			   struct rq_flags *rf)
2464{
2465	check_preempt_curr(rq, p, wake_flags);
2466	p->state = TASK_RUNNING;
2467	trace_sched_wakeup(p);
2468
2469#ifdef CONFIG_SMP
2470	if (p->sched_class->task_woken) {
2471		/*
2472		 * Our task @p is fully woken up and running; so its safe to
2473		 * drop the rq->lock, hereafter rq is only used for statistics.
2474		 */
2475		rq_unpin_lock(rq, rf);
2476		p->sched_class->task_woken(rq, p);
2477		rq_repin_lock(rq, rf);
2478	}
2479
2480	if (rq->idle_stamp) {
2481		u64 delta = rq_clock(rq) - rq->idle_stamp;
2482		u64 max = 2*rq->max_idle_balance_cost;
2483
2484		update_avg(&rq->avg_idle, delta);
2485
2486		if (rq->avg_idle > max)
2487			rq->avg_idle = max;
2488
 
 
 
2489		rq->idle_stamp = 0;
2490	}
2491#endif
2492}
2493
2494static void
2495ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2496		 struct rq_flags *rf)
2497{
2498	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2499
2500	lockdep_assert_held(&rq->lock);
2501
2502	if (p->sched_contributes_to_load)
2503		rq->nr_uninterruptible--;
2504
2505#ifdef CONFIG_SMP
2506	if (wake_flags & WF_MIGRATED)
2507		en_flags |= ENQUEUE_MIGRATED;
 
2508#endif
 
 
 
 
2509
2510	activate_task(rq, p, en_flags);
2511	ttwu_do_wakeup(rq, p, wake_flags, rf);
2512}
2513
2514/*
2515 * Consider @p being inside a wait loop:
2516 *
2517 *   for (;;) {
2518 *      set_current_state(TASK_UNINTERRUPTIBLE);
2519 *
2520 *      if (CONDITION)
2521 *         break;
2522 *
2523 *      schedule();
2524 *   }
2525 *   __set_current_state(TASK_RUNNING);
2526 *
2527 * between set_current_state() and schedule(). In this case @p is still
2528 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2529 * an atomic manner.
2530 *
2531 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2532 * then schedule() must still happen and p->state can be changed to
2533 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2534 * need to do a full wakeup with enqueue.
2535 *
2536 * Returns: %true when the wakeup is done,
2537 *          %false otherwise.
2538 */
2539static int ttwu_runnable(struct task_struct *p, int wake_flags)
2540{
2541	struct rq_flags rf;
2542	struct rq *rq;
2543	int ret = 0;
2544
2545	rq = __task_rq_lock(p, &rf);
2546	if (task_on_rq_queued(p)) {
2547		/* check_preempt_curr() may use rq clock */
2548		update_rq_clock(rq);
2549		ttwu_do_wakeup(rq, p, wake_flags, &rf);
2550		ret = 1;
2551	}
2552	__task_rq_unlock(rq, &rf);
2553
2554	return ret;
2555}
2556
2557#ifdef CONFIG_SMP
2558void sched_ttwu_pending(void *arg)
2559{
2560	struct llist_node *llist = arg;
2561	struct rq *rq = this_rq();
2562	struct task_struct *p, *t;
2563	struct rq_flags rf;
2564
2565	if (!llist)
2566		return;
2567
2568	/*
2569	 * rq::ttwu_pending racy indication of out-standing wakeups.
2570	 * Races such that false-negatives are possible, since they
2571	 * are shorter lived that false-positives would be.
2572	 */
2573	WRITE_ONCE(rq->ttwu_pending, 0);
2574
2575	rq_lock_irqsave(rq, &rf);
2576	update_rq_clock(rq);
2577
2578	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2579		if (WARN_ON_ONCE(p->on_cpu))
2580			smp_cond_load_acquire(&p->on_cpu, !VAL);
2581
2582		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2583			set_task_cpu(p, cpu_of(rq));
2584
2585		ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2586	}
2587
 
 
 
 
 
 
 
 
 
 
 
2588	rq_unlock_irqrestore(rq, &rf);
2589}
2590
2591void send_call_function_single_ipi(int cpu)
2592{
2593	struct rq *rq = cpu_rq(cpu);
2594
2595	if (!set_nr_if_polling(rq->idle))
2596		arch_send_call_function_single_ipi(cpu);
2597	else
2598		trace_sched_wake_idle_without_ipi(cpu);
2599}
2600
2601/*
2602 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2603 * necessary. The wakee CPU on receipt of the IPI will queue the task
2604 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2605 * of the wakeup instead of the waker.
2606 */
2607static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2608{
2609	struct rq *rq = cpu_rq(cpu);
2610
2611	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2612
2613	WRITE_ONCE(rq->ttwu_pending, 1);
2614	__smp_call_single_queue(cpu, &p->wake_entry.llist);
2615}
2616
2617void wake_up_if_idle(int cpu)
2618{
2619	struct rq *rq = cpu_rq(cpu);
2620	struct rq_flags rf;
2621
2622	rcu_read_lock();
2623
2624	if (!is_idle_task(rcu_dereference(rq->curr)))
2625		goto out;
2626
2627	if (set_nr_if_polling(rq->idle)) {
2628		trace_sched_wake_idle_without_ipi(cpu);
2629	} else {
2630		rq_lock_irqsave(rq, &rf);
2631		if (is_idle_task(rq->curr))
2632			smp_send_reschedule(cpu);
2633		/* Else CPU is not idle, do nothing here: */
2634		rq_unlock_irqrestore(rq, &rf);
2635	}
2636
2637out:
2638	rcu_read_unlock();
2639}
2640
2641bool cpus_share_cache(int this_cpu, int that_cpu)
2642{
 
 
 
2643	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2644}
2645
2646static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2647{
2648	/*
 
 
 
 
 
 
 
 
 
 
 
2649	 * If the CPU does not share cache, then queue the task on the
2650	 * remote rqs wakelist to avoid accessing remote data.
2651	 */
2652	if (!cpus_share_cache(smp_processor_id(), cpu))
2653		return true;
2654
 
 
 
2655	/*
2656	 * If the task is descheduling and the only running task on the
2657	 * CPU then use the wakelist to offload the task activation to
2658	 * the soon-to-be-idle CPU as the current CPU is likely busy.
2659	 * nr_running is checked to avoid unnecessary task stacking.
 
 
 
 
 
2660	 */
2661	if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
2662		return true;
2663
2664	return false;
2665}
2666
2667static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2668{
2669	if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2670		if (WARN_ON_ONCE(cpu == smp_processor_id()))
2671			return false;
2672
2673		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2674		__ttwu_queue_wakelist(p, cpu, wake_flags);
2675		return true;
2676	}
2677
2678	return false;
2679}
2680
2681#else /* !CONFIG_SMP */
2682
2683static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2684{
2685	return false;
2686}
2687
2688#endif /* CONFIG_SMP */
2689
2690static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2691{
2692	struct rq *rq = cpu_rq(cpu);
2693	struct rq_flags rf;
2694
2695	if (ttwu_queue_wakelist(p, cpu, wake_flags))
2696		return;
2697
2698	rq_lock(rq, &rf);
2699	update_rq_clock(rq);
2700	ttwu_do_activate(rq, p, wake_flags, &rf);
2701	rq_unlock(rq, &rf);
2702}
2703
2704/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705 * Notes on Program-Order guarantees on SMP systems.
2706 *
2707 *  MIGRATION
2708 *
2709 * The basic program-order guarantee on SMP systems is that when a task [t]
2710 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2711 * execution on its new CPU [c1].
2712 *
2713 * For migration (of runnable tasks) this is provided by the following means:
2714 *
2715 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
2716 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
2717 *     rq(c1)->lock (if not at the same time, then in that order).
2718 *  C) LOCK of the rq(c1)->lock scheduling in task
2719 *
2720 * Release/acquire chaining guarantees that B happens after A and C after B.
2721 * Note: the CPU doing B need not be c0 or c1
2722 *
2723 * Example:
2724 *
2725 *   CPU0            CPU1            CPU2
2726 *
2727 *   LOCK rq(0)->lock
2728 *   sched-out X
2729 *   sched-in Y
2730 *   UNLOCK rq(0)->lock
2731 *
2732 *                                   LOCK rq(0)->lock // orders against CPU0
2733 *                                   dequeue X
2734 *                                   UNLOCK rq(0)->lock
2735 *
2736 *                                   LOCK rq(1)->lock
2737 *                                   enqueue X
2738 *                                   UNLOCK rq(1)->lock
2739 *
2740 *                   LOCK rq(1)->lock // orders against CPU2
2741 *                   sched-out Z
2742 *                   sched-in X
2743 *                   UNLOCK rq(1)->lock
2744 *
2745 *
2746 *  BLOCKING -- aka. SLEEP + WAKEUP
2747 *
2748 * For blocking we (obviously) need to provide the same guarantee as for
2749 * migration. However the means are completely different as there is no lock
2750 * chain to provide order. Instead we do:
2751 *
2752 *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
2753 *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2754 *
2755 * Example:
2756 *
2757 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
2758 *
2759 *   LOCK rq(0)->lock LOCK X->pi_lock
2760 *   dequeue X
2761 *   sched-out X
2762 *   smp_store_release(X->on_cpu, 0);
2763 *
2764 *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
2765 *                    X->state = WAKING
2766 *                    set_task_cpu(X,2)
2767 *
2768 *                    LOCK rq(2)->lock
2769 *                    enqueue X
2770 *                    X->state = RUNNING
2771 *                    UNLOCK rq(2)->lock
2772 *
2773 *                                          LOCK rq(2)->lock // orders against CPU1
2774 *                                          sched-out Z
2775 *                                          sched-in X
2776 *                                          UNLOCK rq(2)->lock
2777 *
2778 *                    UNLOCK X->pi_lock
2779 *   UNLOCK rq(0)->lock
2780 *
2781 *
2782 * However, for wakeups there is a second guarantee we must provide, namely we
2783 * must ensure that CONDITION=1 done by the caller can not be reordered with
2784 * accesses to the task state; see try_to_wake_up() and set_current_state().
2785 */
2786
2787/**
2788 * try_to_wake_up - wake up a thread
2789 * @p: the thread to be awakened
2790 * @state: the mask of task states that can be woken
2791 * @wake_flags: wake modifier flags (WF_*)
2792 *
2793 * Conceptually does:
2794 *
2795 *   If (@state & @p->state) @p->state = TASK_RUNNING.
2796 *
2797 * If the task was not queued/runnable, also place it back on a runqueue.
2798 *
2799 * This function is atomic against schedule() which would dequeue the task.
2800 *
2801 * It issues a full memory barrier before accessing @p->state, see the comment
2802 * with set_current_state().
2803 *
2804 * Uses p->pi_lock to serialize against concurrent wake-ups.
2805 *
2806 * Relies on p->pi_lock stabilizing:
2807 *  - p->sched_class
2808 *  - p->cpus_ptr
2809 *  - p->sched_task_group
2810 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2811 *
2812 * Tries really hard to only take one task_rq(p)->lock for performance.
2813 * Takes rq->lock in:
2814 *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
2815 *  - ttwu_queue()       -- new rq, for enqueue of the task;
2816 *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2817 *
2818 * As a consequence we race really badly with just about everything. See the
2819 * many memory barriers and their comments for details.
2820 *
2821 * Return: %true if @p->state changes (an actual wakeup was done),
2822 *	   %false otherwise.
2823 */
2824static int
2825try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2826{
2827	unsigned long flags;
2828	int cpu, success = 0;
2829
2830	preempt_disable();
2831	if (p == current) {
2832		/*
2833		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2834		 * == smp_processor_id()'. Together this means we can special
2835		 * case the whole 'p->on_rq && ttwu_runnable()' case below
2836		 * without taking any locks.
2837		 *
2838		 * In particular:
2839		 *  - we rely on Program-Order guarantees for all the ordering,
2840		 *  - we're serialized against set_special_state() by virtue of
2841		 *    it disabling IRQs (this allows not taking ->pi_lock).
2842		 */
2843		if (!(p->state & state))
2844			goto out;
2845
2846		success = 1;
2847		trace_sched_waking(p);
2848		p->state = TASK_RUNNING;
2849		trace_sched_wakeup(p);
2850		goto out;
2851	}
2852
2853	/*
2854	 * If we are going to wake up a thread waiting for CONDITION we
2855	 * need to ensure that CONDITION=1 done by the caller can not be
2856	 * reordered with p->state check below. This pairs with smp_store_mb()
2857	 * in set_current_state() that the waiting thread does.
2858	 */
2859	raw_spin_lock_irqsave(&p->pi_lock, flags);
2860	smp_mb__after_spinlock();
2861	if (!(p->state & state))
2862		goto unlock;
2863
2864	trace_sched_waking(p);
2865
2866	/* We're going to change ->state: */
2867	success = 1;
2868
2869	/*
2870	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2871	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2872	 * in smp_cond_load_acquire() below.
2873	 *
2874	 * sched_ttwu_pending()			try_to_wake_up()
2875	 *   STORE p->on_rq = 1			  LOAD p->state
2876	 *   UNLOCK rq->lock
2877	 *
2878	 * __schedule() (switch to task 'p')
2879	 *   LOCK rq->lock			  smp_rmb();
2880	 *   smp_mb__after_spinlock();
2881	 *   UNLOCK rq->lock
2882	 *
2883	 * [task p]
2884	 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
2885	 *
2886	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2887	 * __schedule().  See the comment for smp_mb__after_spinlock().
2888	 *
2889	 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2890	 */
2891	smp_rmb();
2892	if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
2893		goto unlock;
2894
2895	if (p->in_iowait) {
2896		delayacct_blkio_end(p);
2897		atomic_dec(&task_rq(p)->nr_iowait);
2898	}
2899
2900#ifdef CONFIG_SMP
2901	/*
2902	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2903	 * possible to, falsely, observe p->on_cpu == 0.
2904	 *
2905	 * One must be running (->on_cpu == 1) in order to remove oneself
2906	 * from the runqueue.
2907	 *
2908	 * __schedule() (switch to task 'p')	try_to_wake_up()
2909	 *   STORE p->on_cpu = 1		  LOAD p->on_rq
2910	 *   UNLOCK rq->lock
2911	 *
2912	 * __schedule() (put 'p' to sleep)
2913	 *   LOCK rq->lock			  smp_rmb();
2914	 *   smp_mb__after_spinlock();
2915	 *   STORE p->on_rq = 0			  LOAD p->on_cpu
2916	 *
2917	 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2918	 * __schedule().  See the comment for smp_mb__after_spinlock().
2919	 *
2920	 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
2921	 * schedule()'s deactivate_task() has 'happened' and p will no longer
2922	 * care about it's own p->state. See the comment in __schedule().
2923	 */
2924	smp_acquire__after_ctrl_dep();
2925
2926	/*
2927	 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
2928	 * == 0), which means we need to do an enqueue, change p->state to
2929	 * TASK_WAKING such that we can unlock p->pi_lock before doing the
2930	 * enqueue, such as ttwu_queue_wakelist().
2931	 */
2932	p->state = TASK_WAKING;
2933
2934	/*
2935	 * If the owning (remote) CPU is still in the middle of schedule() with
2936	 * this task as prev, considering queueing p on the remote CPUs wake_list
2937	 * which potentially sends an IPI instead of spinning on p->on_cpu to
2938	 * let the waker make forward progress. This is safe because IRQs are
2939	 * disabled and the IPI will deliver after on_cpu is cleared.
2940	 *
2941	 * Ensure we load task_cpu(p) after p->on_cpu:
2942	 *
2943	 * set_task_cpu(p, cpu);
2944	 *   STORE p->cpu = @cpu
2945	 * __schedule() (switch to task 'p')
2946	 *   LOCK rq->lock
2947	 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
2948	 *   STORE p->on_cpu = 1		LOAD p->cpu
2949	 *
2950	 * to ensure we observe the correct CPU on which the task is currently
2951	 * scheduling.
2952	 */
2953	if (smp_load_acquire(&p->on_cpu) &&
2954	    ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
2955		goto unlock;
2956
2957	/*
2958	 * If the owning (remote) CPU is still in the middle of schedule() with
2959	 * this task as prev, wait until its done referencing the task.
2960	 *
2961	 * Pairs with the smp_store_release() in finish_task().
2962	 *
2963	 * This ensures that tasks getting woken will be fully ordered against
2964	 * their previous state and preserve Program Order.
2965	 */
2966	smp_cond_load_acquire(&p->on_cpu, !VAL);
2967
2968	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2969	if (task_cpu(p) != cpu) {
 
 
 
 
 
2970		wake_flags |= WF_MIGRATED;
2971		psi_ttwu_dequeue(p);
2972		set_task_cpu(p, cpu);
2973	}
2974#else
2975	cpu = task_cpu(p);
2976#endif /* CONFIG_SMP */
2977
2978	ttwu_queue(p, cpu, wake_flags);
2979unlock:
2980	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981out:
2982	if (success)
2983		ttwu_stat(p, task_cpu(p), wake_flags);
2984	preempt_enable();
2985
2986	return success;
2987}
2988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989/**
2990 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2991 * @p: Process for which the function is to be invoked.
2992 * @func: Function to invoke.
2993 * @arg: Argument to function.
2994 *
2995 * If the specified task can be quickly locked into a definite state
2996 * (either sleeping or on a given runqueue), arrange to keep it in that
2997 * state while invoking @func(@arg).  This function can use ->on_rq and
2998 * task_curr() to work out what the state is, if required.  Given that
2999 * @func can be invoked with a runqueue lock held, it had better be quite
3000 * lightweight.
3001 *
3002 * Returns:
3003 *	@false if the task slipped out from under the locks.
3004 *	@true if the task was locked onto a runqueue or is sleeping.
3005 *		However, @func can override this by returning @false.
3006 */
3007bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3008{
3009	bool ret = false;
3010	struct rq_flags rf;
3011	struct rq *rq;
 
 
3012
3013	lockdep_assert_irqs_enabled();
3014	raw_spin_lock_irq(&p->pi_lock);
3015	if (p->on_rq) {
3016		rq = __task_rq_lock(p, &rf);
3017		if (task_rq(p) == rq)
3018			ret = func(p, arg);
 
 
 
 
 
 
 
 
 
 
 
 
3019		rq_unlock(rq, &rf);
3020	} else {
3021		switch (p->state) {
3022		case TASK_RUNNING:
3023		case TASK_WAKING:
3024			break;
3025		default:
3026			smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3027			if (!p->on_rq)
3028				ret = func(p, arg);
3029		}
3030	}
3031	raw_spin_unlock_irq(&p->pi_lock);
3032	return ret;
3033}
3034
3035/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3036 * wake_up_process - Wake up a specific process
3037 * @p: The process to be woken up.
3038 *
3039 * Attempt to wake up the nominated process and move it to the set of runnable
3040 * processes.
3041 *
3042 * Return: 1 if the process was woken up, 0 if it was already running.
3043 *
3044 * This function executes a full memory barrier before accessing the task state.
3045 */
3046int wake_up_process(struct task_struct *p)
3047{
3048	return try_to_wake_up(p, TASK_NORMAL, 0);
3049}
3050EXPORT_SYMBOL(wake_up_process);
3051
3052int wake_up_state(struct task_struct *p, unsigned int state)
3053{
3054	return try_to_wake_up(p, state, 0);
3055}
3056
3057/*
3058 * Perform scheduler related setup for a newly forked process p.
3059 * p is forked by current.
3060 *
3061 * __sched_fork() is basic setup used by init_idle() too:
3062 */
3063static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3064{
3065	p->on_rq			= 0;
3066
3067	p->se.on_rq			= 0;
3068	p->se.exec_start		= 0;
3069	p->se.sum_exec_runtime		= 0;
3070	p->se.prev_sum_exec_runtime	= 0;
3071	p->se.nr_migrations		= 0;
3072	p->se.vruntime			= 0;
3073	INIT_LIST_HEAD(&p->se.group_node);
3074
3075#ifdef CONFIG_FAIR_GROUP_SCHED
3076	p->se.cfs_rq			= NULL;
3077#endif
3078
3079#ifdef CONFIG_SCHEDSTATS
3080	/* Even if schedstat is disabled, there should not be garbage */
3081	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3082#endif
3083
3084	RB_CLEAR_NODE(&p->dl.rb_node);
3085	init_dl_task_timer(&p->dl);
3086	init_dl_inactive_task_timer(&p->dl);
3087	__dl_clear_params(p);
3088
3089	INIT_LIST_HEAD(&p->rt.run_list);
3090	p->rt.timeout		= 0;
3091	p->rt.time_slice	= sched_rr_timeslice;
3092	p->rt.on_rq		= 0;
3093	p->rt.on_list		= 0;
3094
3095#ifdef CONFIG_PREEMPT_NOTIFIERS
3096	INIT_HLIST_HEAD(&p->preempt_notifiers);
3097#endif
3098
3099#ifdef CONFIG_COMPACTION
3100	p->capture_control = NULL;
3101#endif
3102	init_numa_balancing(clone_flags, p);
3103#ifdef CONFIG_SMP
3104	p->wake_entry.u_flags = CSD_TYPE_TTWU;
 
3105#endif
3106}
3107
3108DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3109
3110#ifdef CONFIG_NUMA_BALANCING
3111
3112void set_numabalancing_state(bool enabled)
 
 
3113{
3114	if (enabled)
3115		static_branch_enable(&sched_numa_balancing);
3116	else
3117		static_branch_disable(&sched_numa_balancing);
3118}
3119
 
 
 
 
 
 
 
 
 
3120#ifdef CONFIG_PROC_SYSCTL
3121int sysctl_numa_balancing(struct ctl_table *table, int write,
 
 
 
 
 
 
 
 
 
 
 
3122			  void *buffer, size_t *lenp, loff_t *ppos)
3123{
3124	struct ctl_table t;
3125	int err;
3126	int state = static_branch_likely(&sched_numa_balancing);
3127
3128	if (write && !capable(CAP_SYS_ADMIN))
3129		return -EPERM;
3130
3131	t = *table;
3132	t.data = &state;
3133	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3134	if (err < 0)
3135		return err;
3136	if (write)
3137		set_numabalancing_state(state);
 
 
 
 
 
3138	return err;
3139}
3140#endif
3141#endif
3142
3143#ifdef CONFIG_SCHEDSTATS
3144
3145DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3146static bool __initdata __sched_schedstats = false;
3147
3148static void set_schedstats(bool enabled)
3149{
3150	if (enabled)
3151		static_branch_enable(&sched_schedstats);
3152	else
3153		static_branch_disable(&sched_schedstats);
3154}
3155
3156void force_schedstat_enabled(void)
3157{
3158	if (!schedstat_enabled()) {
3159		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3160		static_branch_enable(&sched_schedstats);
3161	}
3162}
3163
3164static int __init setup_schedstats(char *str)
3165{
3166	int ret = 0;
3167	if (!str)
3168		goto out;
3169
3170	/*
3171	 * This code is called before jump labels have been set up, so we can't
3172	 * change the static branch directly just yet.  Instead set a temporary
3173	 * variable so init_schedstats() can do it later.
3174	 */
3175	if (!strcmp(str, "enable")) {
3176		__sched_schedstats = true;
3177		ret = 1;
3178	} else if (!strcmp(str, "disable")) {
3179		__sched_schedstats = false;
3180		ret = 1;
3181	}
3182out:
3183	if (!ret)
3184		pr_warn("Unable to parse schedstats=\n");
3185
3186	return ret;
3187}
3188__setup("schedstats=", setup_schedstats);
3189
3190static void __init init_schedstats(void)
3191{
3192	set_schedstats(__sched_schedstats);
3193}
3194
3195#ifdef CONFIG_PROC_SYSCTL
3196int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3197		size_t *lenp, loff_t *ppos)
3198{
3199	struct ctl_table t;
3200	int err;
3201	int state = static_branch_likely(&sched_schedstats);
3202
3203	if (write && !capable(CAP_SYS_ADMIN))
3204		return -EPERM;
3205
3206	t = *table;
3207	t.data = &state;
3208	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3209	if (err < 0)
3210		return err;
3211	if (write)
3212		set_schedstats(state);
3213	return err;
3214}
3215#endif /* CONFIG_PROC_SYSCTL */
3216#else  /* !CONFIG_SCHEDSTATS */
3217static inline void init_schedstats(void) {}
3218#endif /* CONFIG_SCHEDSTATS */
3219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3220/*
3221 * fork()/clone()-time setup:
3222 */
3223int sched_fork(unsigned long clone_flags, struct task_struct *p)
3224{
3225	unsigned long flags;
3226
3227	__sched_fork(clone_flags, p);
3228	/*
3229	 * We mark the process as NEW here. This guarantees that
3230	 * nobody will actually run it, and a signal or other external
3231	 * event cannot wake it up and insert it on the runqueue either.
3232	 */
3233	p->state = TASK_NEW;
3234
3235	/*
3236	 * Make sure we do not leak PI boosting priority to the child.
3237	 */
3238	p->prio = current->normal_prio;
3239
3240	uclamp_fork(p);
3241
3242	/*
3243	 * Revert to default priority/policy on fork if requested.
3244	 */
3245	if (unlikely(p->sched_reset_on_fork)) {
3246		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3247			p->policy = SCHED_NORMAL;
3248			p->static_prio = NICE_TO_PRIO(0);
3249			p->rt_priority = 0;
3250		} else if (PRIO_TO_NICE(p->static_prio) < 0)
3251			p->static_prio = NICE_TO_PRIO(0);
3252
3253		p->prio = p->normal_prio = __normal_prio(p);
3254		set_load_weight(p, false);
3255
3256		/*
3257		 * We don't need the reset flag anymore after the fork. It has
3258		 * fulfilled its duty:
3259		 */
3260		p->sched_reset_on_fork = 0;
3261	}
3262
3263	if (dl_prio(p->prio))
3264		return -EAGAIN;
3265	else if (rt_prio(p->prio))
3266		p->sched_class = &rt_sched_class;
3267	else
3268		p->sched_class = &fair_sched_class;
3269
3270	init_entity_runnable_average(&p->se);
3271
3272	/*
3273	 * The child is not yet in the pid-hash so no cgroup attach races,
3274	 * and the cgroup is pinned to this child due to cgroup_fork()
3275	 * is ran before sched_fork().
3276	 *
3277	 * Silence PROVE_RCU.
3278	 */
3279	raw_spin_lock_irqsave(&p->pi_lock, flags);
3280	rseq_migrate(p);
3281	/*
3282	 * We're setting the CPU for the first time, we don't migrate,
3283	 * so use __set_task_cpu().
3284	 */
3285	__set_task_cpu(p, smp_processor_id());
3286	if (p->sched_class->task_fork)
3287		p->sched_class->task_fork(p);
3288	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3289
3290#ifdef CONFIG_SCHED_INFO
3291	if (likely(sched_info_on()))
3292		memset(&p->sched_info, 0, sizeof(p->sched_info));
3293#endif
3294#if defined(CONFIG_SMP)
3295	p->on_cpu = 0;
3296#endif
3297	init_task_preempt_count(p);
3298#ifdef CONFIG_SMP
3299	plist_node_init(&p->pushable_tasks, MAX_PRIO);
3300	RB_CLEAR_NODE(&p->pushable_dl_tasks);
3301#endif
3302	return 0;
3303}
3304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3305void sched_post_fork(struct task_struct *p)
3306{
3307	uclamp_post_fork(p);
3308}
3309
3310unsigned long to_ratio(u64 period, u64 runtime)
3311{
3312	if (runtime == RUNTIME_INF)
3313		return BW_UNIT;
3314
3315	/*
3316	 * Doing this here saves a lot of checks in all
3317	 * the calling paths, and returning zero seems
3318	 * safe for them anyway.
3319	 */
3320	if (period == 0)
3321		return 0;
3322
3323	return div64_u64(runtime << BW_SHIFT, period);
3324}
3325
3326/*
3327 * wake_up_new_task - wake up a newly created task for the first time.
3328 *
3329 * This function will do some initial scheduler statistics housekeeping
3330 * that must be done for every newly created context, then puts the task
3331 * on the runqueue and wakes it.
3332 */
3333void wake_up_new_task(struct task_struct *p)
3334{
3335	struct rq_flags rf;
3336	struct rq *rq;
3337
3338	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3339	p->state = TASK_RUNNING;
3340#ifdef CONFIG_SMP
3341	/*
3342	 * Fork balancing, do it here and not earlier because:
3343	 *  - cpus_ptr can change in the fork path
3344	 *  - any previously selected CPU might disappear through hotplug
3345	 *
3346	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3347	 * as we're not fully set-up yet.
3348	 */
3349	p->recent_used_cpu = task_cpu(p);
3350	rseq_migrate(p);
3351	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3352#endif
3353	rq = __task_rq_lock(p, &rf);
3354	update_rq_clock(rq);
3355	post_init_entity_util_avg(p);
3356
3357	activate_task(rq, p, ENQUEUE_NOCLOCK);
3358	trace_sched_wakeup_new(p);
3359	check_preempt_curr(rq, p, WF_FORK);
3360#ifdef CONFIG_SMP
3361	if (p->sched_class->task_woken) {
3362		/*
3363		 * Nothing relies on rq->lock after this, so its fine to
3364		 * drop it.
3365		 */
3366		rq_unpin_lock(rq, &rf);
3367		p->sched_class->task_woken(rq, p);
3368		rq_repin_lock(rq, &rf);
3369	}
3370#endif
3371	task_rq_unlock(rq, p, &rf);
3372}
3373
3374#ifdef CONFIG_PREEMPT_NOTIFIERS
3375
3376static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3377
3378void preempt_notifier_inc(void)
3379{
3380	static_branch_inc(&preempt_notifier_key);
3381}
3382EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3383
3384void preempt_notifier_dec(void)
3385{
3386	static_branch_dec(&preempt_notifier_key);
3387}
3388EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3389
3390/**
3391 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3392 * @notifier: notifier struct to register
3393 */
3394void preempt_notifier_register(struct preempt_notifier *notifier)
3395{
3396	if (!static_branch_unlikely(&preempt_notifier_key))
3397		WARN(1, "registering preempt_notifier while notifiers disabled\n");
3398
3399	hlist_add_head(&notifier->link, &current->preempt_notifiers);
3400}
3401EXPORT_SYMBOL_GPL(preempt_notifier_register);
3402
3403/**
3404 * preempt_notifier_unregister - no longer interested in preemption notifications
3405 * @notifier: notifier struct to unregister
3406 *
3407 * This is *not* safe to call from within a preemption notifier.
3408 */
3409void preempt_notifier_unregister(struct preempt_notifier *notifier)
3410{
3411	hlist_del(&notifier->link);
3412}
3413EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3414
3415static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3416{
3417	struct preempt_notifier *notifier;
3418
3419	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3420		notifier->ops->sched_in(notifier, raw_smp_processor_id());
3421}
3422
3423static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3424{
3425	if (static_branch_unlikely(&preempt_notifier_key))
3426		__fire_sched_in_preempt_notifiers(curr);
3427}
3428
3429static void
3430__fire_sched_out_preempt_notifiers(struct task_struct *curr,
3431				   struct task_struct *next)
3432{
3433	struct preempt_notifier *notifier;
3434
3435	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3436		notifier->ops->sched_out(notifier, next);
3437}
3438
3439static __always_inline void
3440fire_sched_out_preempt_notifiers(struct task_struct *curr,
3441				 struct task_struct *next)
3442{
3443	if (static_branch_unlikely(&preempt_notifier_key))
3444		__fire_sched_out_preempt_notifiers(curr, next);
3445}
3446
3447#else /* !CONFIG_PREEMPT_NOTIFIERS */
3448
3449static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3450{
3451}
3452
3453static inline void
3454fire_sched_out_preempt_notifiers(struct task_struct *curr,
3455				 struct task_struct *next)
3456{
3457}
3458
3459#endif /* CONFIG_PREEMPT_NOTIFIERS */
3460
3461static inline void prepare_task(struct task_struct *next)
3462{
3463#ifdef CONFIG_SMP
3464	/*
3465	 * Claim the task as running, we do this before switching to it
3466	 * such that any running task will have this set.
3467	 *
3468	 * See the ttwu() WF_ON_CPU case and its ordering comment.
 
3469	 */
3470	WRITE_ONCE(next->on_cpu, 1);
3471#endif
3472}
3473
3474static inline void finish_task(struct task_struct *prev)
3475{
3476#ifdef CONFIG_SMP
3477	/*
3478	 * This must be the very last reference to @prev from this CPU. After
3479	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3480	 * must ensure this doesn't happen until the switch is completely
3481	 * finished.
3482	 *
3483	 * In particular, the load of prev->state in finish_task_switch() must
3484	 * happen before this.
3485	 *
3486	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3487	 */
3488	smp_store_release(&prev->on_cpu, 0);
3489#endif
3490}
3491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3492static inline void
3493prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3494{
3495	/*
3496	 * Since the runqueue lock will be released by the next
3497	 * task (which is an invalid locking op but in the case
3498	 * of the scheduler it's an obvious special-case), so we
3499	 * do an early lockdep release here:
3500	 */
3501	rq_unpin_lock(rq, rf);
3502	spin_release(&rq->lock.dep_map, _THIS_IP_);
3503#ifdef CONFIG_DEBUG_SPINLOCK
3504	/* this is a valid case when another task releases the spinlock */
3505	rq->lock.owner = next;
3506#endif
3507}
3508
3509static inline void finish_lock_switch(struct rq *rq)
3510{
3511	/*
3512	 * If we are tracking spinlock dependencies then we have to
3513	 * fix up the runqueue lock - which gets 'carried over' from
3514	 * prev into current:
3515	 */
3516	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3517	raw_spin_unlock_irq(&rq->lock);
 
3518}
3519
3520/*
3521 * NOP if the arch has not defined these:
3522 */
3523
3524#ifndef prepare_arch_switch
3525# define prepare_arch_switch(next)	do { } while (0)
3526#endif
3527
3528#ifndef finish_arch_post_lock_switch
3529# define finish_arch_post_lock_switch()	do { } while (0)
3530#endif
3531
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3532/**
3533 * prepare_task_switch - prepare to switch tasks
3534 * @rq: the runqueue preparing to switch
3535 * @prev: the current task that is being switched out
3536 * @next: the task we are going to switch to.
3537 *
3538 * This is called with the rq lock held and interrupts off. It must
3539 * be paired with a subsequent finish_task_switch after the context
3540 * switch.
3541 *
3542 * prepare_task_switch sets up locking and calls architecture specific
3543 * hooks.
3544 */
3545static inline void
3546prepare_task_switch(struct rq *rq, struct task_struct *prev,
3547		    struct task_struct *next)
3548{
3549	kcov_prepare_switch(prev);
3550	sched_info_switch(rq, prev, next);
3551	perf_event_task_sched_out(prev, next);
3552	rseq_preempt(prev);
3553	fire_sched_out_preempt_notifiers(prev, next);
 
3554	prepare_task(next);
3555	prepare_arch_switch(next);
3556}
3557
3558/**
3559 * finish_task_switch - clean up after a task-switch
3560 * @prev: the thread we just switched away from.
3561 *
3562 * finish_task_switch must be called after the context switch, paired
3563 * with a prepare_task_switch call before the context switch.
3564 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3565 * and do any other architecture-specific cleanup actions.
3566 *
3567 * Note that we may have delayed dropping an mm in context_switch(). If
3568 * so, we finish that here outside of the runqueue lock. (Doing it
3569 * with the lock held can cause deadlocks; see schedule() for
3570 * details.)
3571 *
3572 * The context switch have flipped the stack from under us and restored the
3573 * local variables which were saved when this task called schedule() in the
3574 * past. prev == current is still correct but we need to recalculate this_rq
3575 * because prev may have moved to another CPU.
3576 */
3577static struct rq *finish_task_switch(struct task_struct *prev)
3578	__releases(rq->lock)
3579{
3580	struct rq *rq = this_rq();
3581	struct mm_struct *mm = rq->prev_mm;
3582	long prev_state;
3583
3584	/*
3585	 * The previous task will have left us with a preempt_count of 2
3586	 * because it left us after:
3587	 *
3588	 *	schedule()
3589	 *	  preempt_disable();			// 1
3590	 *	  __schedule()
3591	 *	    raw_spin_lock_irq(&rq->lock)	// 2
3592	 *
3593	 * Also, see FORK_PREEMPT_COUNT.
3594	 */
3595	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3596		      "corrupted preempt_count: %s/%d/0x%x\n",
3597		      current->comm, current->pid, preempt_count()))
3598		preempt_count_set(FORK_PREEMPT_COUNT);
3599
3600	rq->prev_mm = NULL;
3601
3602	/*
3603	 * A task struct has one reference for the use as "current".
3604	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3605	 * schedule one last time. The schedule call will never return, and
3606	 * the scheduled task must drop that reference.
3607	 *
3608	 * We must observe prev->state before clearing prev->on_cpu (in
3609	 * finish_task), otherwise a concurrent wakeup can get prev
3610	 * running on another CPU and we could rave with its RUNNING -> DEAD
3611	 * transition, resulting in a double drop.
3612	 */
3613	prev_state = prev->state;
3614	vtime_task_switch(prev);
3615	perf_event_task_sched_in(prev, current);
3616	finish_task(prev);
 
3617	finish_lock_switch(rq);
3618	finish_arch_post_lock_switch();
3619	kcov_finish_switch(current);
 
 
 
 
 
 
 
 
3620
3621	fire_sched_in_preempt_notifiers(current);
3622	/*
3623	 * When switching through a kernel thread, the loop in
3624	 * membarrier_{private,global}_expedited() may have observed that
3625	 * kernel thread and not issued an IPI. It is therefore possible to
3626	 * schedule between user->kernel->user threads without passing though
3627	 * switch_mm(). Membarrier requires a barrier after storing to
3628	 * rq->curr, before returning to userspace, so provide them here:
3629	 *
3630	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3631	 *   provided by mmdrop(),
3632	 * - a sync_core for SYNC_CORE.
3633	 */
3634	if (mm) {
3635		membarrier_mm_sync_core_before_usermode(mm);
3636		mmdrop(mm);
3637	}
3638	if (unlikely(prev_state == TASK_DEAD)) {
3639		if (prev->sched_class->task_dead)
3640			prev->sched_class->task_dead(prev);
3641
3642		/*
3643		 * Remove function-return probe instances associated with this
3644		 * task and put them back on the free list.
3645		 */
3646		kprobe_flush_task(prev);
3647
3648		/* Task is done with its stack. */
3649		put_task_stack(prev);
3650
3651		put_task_struct_rcu_user(prev);
3652	}
3653
3654	tick_nohz_task_switch();
3655	return rq;
3656}
3657
3658#ifdef CONFIG_SMP
3659
3660/* rq->lock is NOT held, but preemption is disabled */
3661static void __balance_callback(struct rq *rq)
3662{
3663	struct callback_head *head, *next;
3664	void (*func)(struct rq *rq);
3665	unsigned long flags;
3666
3667	raw_spin_lock_irqsave(&rq->lock, flags);
3668	head = rq->balance_callback;
3669	rq->balance_callback = NULL;
3670	while (head) {
3671		func = (void (*)(struct rq *))head->func;
3672		next = head->next;
3673		head->next = NULL;
3674		head = next;
3675
3676		func(rq);
3677	}
3678	raw_spin_unlock_irqrestore(&rq->lock, flags);
3679}
3680
3681static inline void balance_callback(struct rq *rq)
3682{
3683	if (unlikely(rq->balance_callback))
3684		__balance_callback(rq);
3685}
3686
3687#else
3688
3689static inline void balance_callback(struct rq *rq)
3690{
3691}
3692
3693#endif
3694
3695/**
3696 * schedule_tail - first thing a freshly forked thread must call.
3697 * @prev: the thread we just switched away from.
3698 */
3699asmlinkage __visible void schedule_tail(struct task_struct *prev)
3700	__releases(rq->lock)
3701{
3702	struct rq *rq;
3703
3704	/*
3705	 * New tasks start with FORK_PREEMPT_COUNT, see there and
3706	 * finish_task_switch() for details.
3707	 *
3708	 * finish_task_switch() will drop rq->lock() and lower preempt_count
3709	 * and the preempt_enable() will end up enabling preemption (on
3710	 * PREEMPT_COUNT kernels).
3711	 */
3712
3713	rq = finish_task_switch(prev);
3714	balance_callback(rq);
3715	preempt_enable();
3716
3717	if (current->set_child_tid)
3718		put_user(task_pid_vnr(current), current->set_child_tid);
3719
3720	calculate_sigpending();
3721}
3722
3723/*
3724 * context_switch - switch to the new MM and the new thread's register state.
3725 */
3726static __always_inline struct rq *
3727context_switch(struct rq *rq, struct task_struct *prev,
3728	       struct task_struct *next, struct rq_flags *rf)
3729{
3730	prepare_task_switch(rq, prev, next);
3731
3732	/*
3733	 * For paravirt, this is coupled with an exit in switch_to to
3734	 * combine the page table reload and the switch backend into
3735	 * one hypercall.
3736	 */
3737	arch_start_context_switch(prev);
3738
3739	/*
3740	 * kernel -> kernel   lazy + transfer active
3741	 *   user -> kernel   lazy + mmgrab() active
3742	 *
3743	 * kernel ->   user   switch + mmdrop() active
3744	 *   user ->   user   switch
3745	 */
3746	if (!next->mm) {                                // to kernel
3747		enter_lazy_tlb(prev->active_mm, next);
3748
3749		next->active_mm = prev->active_mm;
3750		if (prev->mm)                           // from user
3751			mmgrab(prev->active_mm);
3752		else
3753			prev->active_mm = NULL;
3754	} else {                                        // to user
3755		membarrier_switch_mm(rq, prev->active_mm, next->mm);
3756		/*
3757		 * sys_membarrier() requires an smp_mb() between setting
3758		 * rq->curr / membarrier_switch_mm() and returning to userspace.
3759		 *
3760		 * The below provides this either through switch_mm(), or in
3761		 * case 'prev->active_mm == next->mm' through
3762		 * finish_task_switch()'s mmdrop().
3763		 */
3764		switch_mm_irqs_off(prev->active_mm, next->mm, next);
 
3765
3766		if (!prev->mm) {                        // from kernel
3767			/* will mmdrop() in finish_task_switch(). */
3768			rq->prev_mm = prev->active_mm;
3769			prev->active_mm = NULL;
3770		}
3771	}
3772
3773	rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3774
3775	prepare_lock_switch(rq, next, rf);
3776
3777	/* Here we just switch the register state and the stack. */
3778	switch_to(prev, next, prev);
3779	barrier();
3780
3781	return finish_task_switch(prev);
3782}
3783
3784/*
3785 * nr_running and nr_context_switches:
3786 *
3787 * externally visible scheduler statistics: current number of runnable
3788 * threads, total number of context switches performed since bootup.
3789 */
3790unsigned long nr_running(void)
3791{
3792	unsigned long i, sum = 0;
3793
3794	for_each_online_cpu(i)
3795		sum += cpu_rq(i)->nr_running;
3796
3797	return sum;
3798}
3799
3800/*
3801 * Check if only the current task is running on the CPU.
3802 *
3803 * Caution: this function does not check that the caller has disabled
3804 * preemption, thus the result might have a time-of-check-to-time-of-use
3805 * race.  The caller is responsible to use it correctly, for example:
3806 *
3807 * - from a non-preemptible section (of course)
3808 *
3809 * - from a thread that is bound to a single CPU
3810 *
3811 * - in a loop with very short iterations (e.g. a polling loop)
3812 */
3813bool single_task_running(void)
3814{
3815	return raw_rq()->nr_running == 1;
3816}
3817EXPORT_SYMBOL(single_task_running);
3818
3819unsigned long long nr_context_switches(void)
3820{
3821	int i;
3822	unsigned long long sum = 0;
3823
3824	for_each_possible_cpu(i)
3825		sum += cpu_rq(i)->nr_switches;
3826
3827	return sum;
3828}
3829
3830/*
3831 * Consumers of these two interfaces, like for example the cpuidle menu
3832 * governor, are using nonsensical data. Preferring shallow idle state selection
3833 * for a CPU that has IO-wait which might not even end up running the task when
3834 * it does become runnable.
3835 */
3836
3837unsigned long nr_iowait_cpu(int cpu)
3838{
3839	return atomic_read(&cpu_rq(cpu)->nr_iowait);
3840}
3841
3842/*
3843 * IO-wait accounting, and how its mostly bollocks (on SMP).
3844 *
3845 * The idea behind IO-wait account is to account the idle time that we could
3846 * have spend running if it were not for IO. That is, if we were to improve the
3847 * storage performance, we'd have a proportional reduction in IO-wait time.
3848 *
3849 * This all works nicely on UP, where, when a task blocks on IO, we account
3850 * idle time as IO-wait, because if the storage were faster, it could've been
3851 * running and we'd not be idle.
3852 *
3853 * This has been extended to SMP, by doing the same for each CPU. This however
3854 * is broken.
3855 *
3856 * Imagine for instance the case where two tasks block on one CPU, only the one
3857 * CPU will have IO-wait accounted, while the other has regular idle. Even
3858 * though, if the storage were faster, both could've ran at the same time,
3859 * utilising both CPUs.
3860 *
3861 * This means, that when looking globally, the current IO-wait accounting on
3862 * SMP is a lower bound, by reason of under accounting.
3863 *
3864 * Worse, since the numbers are provided per CPU, they are sometimes
3865 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3866 * associated with any one particular CPU, it can wake to another CPU than it
3867 * blocked on. This means the per CPU IO-wait number is meaningless.
3868 *
3869 * Task CPU affinities can make all that even more 'interesting'.
3870 */
3871
3872unsigned long nr_iowait(void)
3873{
3874	unsigned long i, sum = 0;
3875
3876	for_each_possible_cpu(i)
3877		sum += nr_iowait_cpu(i);
3878
3879	return sum;
3880}
3881
3882#ifdef CONFIG_SMP
3883
3884/*
3885 * sched_exec - execve() is a valuable balancing opportunity, because at
3886 * this point the task has the smallest effective memory and cache footprint.
3887 */
3888void sched_exec(void)
3889{
3890	struct task_struct *p = current;
3891	unsigned long flags;
3892	int dest_cpu;
3893
3894	raw_spin_lock_irqsave(&p->pi_lock, flags);
3895	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3896	if (dest_cpu == smp_processor_id())
3897		goto unlock;
3898
3899	if (likely(cpu_active(dest_cpu))) {
3900		struct migration_arg arg = { p, dest_cpu };
3901
3902		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3903		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3904		return;
3905	}
3906unlock:
3907	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3908}
3909
3910#endif
3911
3912DEFINE_PER_CPU(struct kernel_stat, kstat);
3913DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3914
3915EXPORT_PER_CPU_SYMBOL(kstat);
3916EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3917
3918/*
3919 * The function fair_sched_class.update_curr accesses the struct curr
3920 * and its field curr->exec_start; when called from task_sched_runtime(),
3921 * we observe a high rate of cache misses in practice.
3922 * Prefetching this data results in improved performance.
3923 */
3924static inline void prefetch_curr_exec_start(struct task_struct *p)
3925{
3926#ifdef CONFIG_FAIR_GROUP_SCHED
3927	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3928#else
3929	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3930#endif
3931	prefetch(curr);
3932	prefetch(&curr->exec_start);
3933}
3934
3935/*
3936 * Return accounted runtime for the task.
3937 * In case the task is currently running, return the runtime plus current's
3938 * pending runtime that have not been accounted yet.
3939 */
3940unsigned long long task_sched_runtime(struct task_struct *p)
3941{
3942	struct rq_flags rf;
3943	struct rq *rq;
3944	u64 ns;
3945
3946#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3947	/*
3948	 * 64-bit doesn't need locks to atomically read a 64-bit value.
3949	 * So we have a optimization chance when the task's delta_exec is 0.
3950	 * Reading ->on_cpu is racy, but this is ok.
3951	 *
3952	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3953	 * If we race with it entering CPU, unaccounted time is 0. This is
3954	 * indistinguishable from the read occurring a few cycles earlier.
3955	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3956	 * been accounted, so we're correct here as well.
3957	 */
3958	if (!p->on_cpu || !task_on_rq_queued(p))
3959		return p->se.sum_exec_runtime;
3960#endif
3961
3962	rq = task_rq_lock(p, &rf);
3963	/*
3964	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3965	 * project cycles that may never be accounted to this
3966	 * thread, breaking clock_gettime().
3967	 */
3968	if (task_current(rq, p) && task_on_rq_queued(p)) {
3969		prefetch_curr_exec_start(p);
3970		update_rq_clock(rq);
3971		p->sched_class->update_curr(rq);
3972	}
3973	ns = p->se.sum_exec_runtime;
3974	task_rq_unlock(rq, p, &rf);
3975
3976	return ns;
3977}
3978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3979/*
3980 * This function gets called by the timer code, with HZ frequency.
3981 * We call it with interrupts disabled.
3982 */
3983void scheduler_tick(void)
3984{
3985	int cpu = smp_processor_id();
3986	struct rq *rq = cpu_rq(cpu);
3987	struct task_struct *curr = rq->curr;
3988	struct rq_flags rf;
3989	unsigned long thermal_pressure;
 
 
 
 
3990
3991	arch_scale_freq_tick();
3992	sched_clock_tick();
3993
3994	rq_lock(rq, &rf);
3995
3996	update_rq_clock(rq);
3997	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3998	update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3999	curr->sched_class->task_tick(rq, curr, 0);
 
 
4000	calc_global_load_tick(rq);
4001	psi_task_tick(rq);
4002
4003	rq_unlock(rq, &rf);
4004
 
 
 
4005	perf_event_task_tick();
4006
4007#ifdef CONFIG_SMP
4008	rq->idle_balance = idle_cpu(cpu);
4009	trigger_load_balance(rq);
4010#endif
4011}
4012
4013#ifdef CONFIG_NO_HZ_FULL
4014
4015struct tick_work {
4016	int			cpu;
4017	atomic_t		state;
4018	struct delayed_work	work;
4019};
4020/* Values for ->state, see diagram below. */
4021#define TICK_SCHED_REMOTE_OFFLINE	0
4022#define TICK_SCHED_REMOTE_OFFLINING	1
4023#define TICK_SCHED_REMOTE_RUNNING	2
4024
4025/*
4026 * State diagram for ->state:
4027 *
4028 *
4029 *          TICK_SCHED_REMOTE_OFFLINE
4030 *                    |   ^
4031 *                    |   |
4032 *                    |   | sched_tick_remote()
4033 *                    |   |
4034 *                    |   |
4035 *                    +--TICK_SCHED_REMOTE_OFFLINING
4036 *                    |   ^
4037 *                    |   |
4038 * sched_tick_start() |   | sched_tick_stop()
4039 *                    |   |
4040 *                    V   |
4041 *          TICK_SCHED_REMOTE_RUNNING
4042 *
4043 *
4044 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4045 * and sched_tick_start() are happy to leave the state in RUNNING.
4046 */
4047
4048static struct tick_work __percpu *tick_work_cpu;
4049
4050static void sched_tick_remote(struct work_struct *work)
4051{
4052	struct delayed_work *dwork = to_delayed_work(work);
4053	struct tick_work *twork = container_of(dwork, struct tick_work, work);
4054	int cpu = twork->cpu;
4055	struct rq *rq = cpu_rq(cpu);
4056	struct task_struct *curr;
4057	struct rq_flags rf;
4058	u64 delta;
4059	int os;
4060
4061	/*
4062	 * Handle the tick only if it appears the remote CPU is running in full
4063	 * dynticks mode. The check is racy by nature, but missing a tick or
4064	 * having one too much is no big deal because the scheduler tick updates
4065	 * statistics and checks timeslices in a time-independent way, regardless
4066	 * of when exactly it is running.
4067	 */
4068	if (!tick_nohz_tick_stopped_cpu(cpu))
4069		goto out_requeue;
4070
4071	rq_lock_irq(rq, &rf);
4072	curr = rq->curr;
4073	if (cpu_is_offline(cpu))
4074		goto out_unlock;
4075
4076	update_rq_clock(rq);
4077
4078	if (!is_idle_task(curr)) {
4079		/*
4080		 * Make sure the next tick runs within a reasonable
4081		 * amount of time.
4082		 */
4083		delta = rq_clock_task(rq) - curr->se.exec_start;
4084		WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4085	}
4086	curr->sched_class->task_tick(rq, curr, 0);
4087
4088	calc_load_nohz_remote(rq);
4089out_unlock:
4090	rq_unlock_irq(rq, &rf);
4091out_requeue:
4092
4093	/*
4094	 * Run the remote tick once per second (1Hz). This arbitrary
4095	 * frequency is large enough to avoid overload but short enough
4096	 * to keep scheduler internal stats reasonably up to date.  But
4097	 * first update state to reflect hotplug activity if required.
4098	 */
4099	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4100	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4101	if (os == TICK_SCHED_REMOTE_RUNNING)
4102		queue_delayed_work(system_unbound_wq, dwork, HZ);
4103}
4104
4105static void sched_tick_start(int cpu)
4106{
4107	int os;
4108	struct tick_work *twork;
4109
4110	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4111		return;
4112
4113	WARN_ON_ONCE(!tick_work_cpu);
4114
4115	twork = per_cpu_ptr(tick_work_cpu, cpu);
4116	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4117	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4118	if (os == TICK_SCHED_REMOTE_OFFLINE) {
4119		twork->cpu = cpu;
4120		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4121		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4122	}
4123}
4124
4125#ifdef CONFIG_HOTPLUG_CPU
4126static void sched_tick_stop(int cpu)
4127{
4128	struct tick_work *twork;
4129	int os;
4130
4131	if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4132		return;
4133
4134	WARN_ON_ONCE(!tick_work_cpu);
4135
4136	twork = per_cpu_ptr(tick_work_cpu, cpu);
4137	/* There cannot be competing actions, but don't rely on stop-machine. */
4138	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4139	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4140	/* Don't cancel, as this would mess up the state machine. */
4141}
4142#endif /* CONFIG_HOTPLUG_CPU */
4143
4144int __init sched_tick_offload_init(void)
4145{
4146	tick_work_cpu = alloc_percpu(struct tick_work);
4147	BUG_ON(!tick_work_cpu);
4148	return 0;
4149}
4150
4151#else /* !CONFIG_NO_HZ_FULL */
4152static inline void sched_tick_start(int cpu) { }
4153static inline void sched_tick_stop(int cpu) { }
4154#endif
4155
4156#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4157				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4158/*
4159 * If the value passed in is equal to the current preempt count
4160 * then we just disabled preemption. Start timing the latency.
4161 */
4162static inline void preempt_latency_start(int val)
4163{
4164	if (preempt_count() == val) {
4165		unsigned long ip = get_lock_parent_ip();
4166#ifdef CONFIG_DEBUG_PREEMPT
4167		current->preempt_disable_ip = ip;
4168#endif
4169		trace_preempt_off(CALLER_ADDR0, ip);
4170	}
4171}
4172
4173void preempt_count_add(int val)
4174{
4175#ifdef CONFIG_DEBUG_PREEMPT
4176	/*
4177	 * Underflow?
4178	 */
4179	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4180		return;
4181#endif
4182	__preempt_count_add(val);
4183#ifdef CONFIG_DEBUG_PREEMPT
4184	/*
4185	 * Spinlock count overflowing soon?
4186	 */
4187	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4188				PREEMPT_MASK - 10);
4189#endif
4190	preempt_latency_start(val);
4191}
4192EXPORT_SYMBOL(preempt_count_add);
4193NOKPROBE_SYMBOL(preempt_count_add);
4194
4195/*
4196 * If the value passed in equals to the current preempt count
4197 * then we just enabled preemption. Stop timing the latency.
4198 */
4199static inline void preempt_latency_stop(int val)
4200{
4201	if (preempt_count() == val)
4202		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4203}
4204
4205void preempt_count_sub(int val)
4206{
4207#ifdef CONFIG_DEBUG_PREEMPT
4208	/*
4209	 * Underflow?
4210	 */
4211	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4212		return;
4213	/*
4214	 * Is the spinlock portion underflowing?
4215	 */
4216	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4217			!(preempt_count() & PREEMPT_MASK)))
4218		return;
4219#endif
4220
4221	preempt_latency_stop(val);
4222	__preempt_count_sub(val);
4223}
4224EXPORT_SYMBOL(preempt_count_sub);
4225NOKPROBE_SYMBOL(preempt_count_sub);
4226
4227#else
4228static inline void preempt_latency_start(int val) { }
4229static inline void preempt_latency_stop(int val) { }
4230#endif
4231
4232static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4233{
4234#ifdef CONFIG_DEBUG_PREEMPT
4235	return p->preempt_disable_ip;
4236#else
4237	return 0;
4238#endif
4239}
4240
4241/*
4242 * Print scheduling while atomic bug:
4243 */
4244static noinline void __schedule_bug(struct task_struct *prev)
4245{
4246	/* Save this before calling printk(), since that will clobber it */
4247	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4248
4249	if (oops_in_progress)
4250		return;
4251
4252	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4253		prev->comm, prev->pid, preempt_count());
4254
4255	debug_show_held_locks(prev);
4256	print_modules();
4257	if (irqs_disabled())
4258		print_irqtrace_events(prev);
4259	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4260	    && in_atomic_preempt_off()) {
4261		pr_err("Preemption disabled at:");
4262		print_ip_sym(KERN_ERR, preempt_disable_ip);
4263	}
4264	if (panic_on_warn)
4265		panic("scheduling while atomic\n");
4266
4267	dump_stack();
4268	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4269}
4270
4271/*
4272 * Various schedule()-time debugging checks and statistics:
4273 */
4274static inline void schedule_debug(struct task_struct *prev, bool preempt)
4275{
4276#ifdef CONFIG_SCHED_STACK_END_CHECK
4277	if (task_stack_end_corrupted(prev))
4278		panic("corrupted stack end detected inside scheduler\n");
4279
4280	if (task_scs_end_corrupted(prev))
4281		panic("corrupted shadow stack detected inside scheduler\n");
4282#endif
4283
4284#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4285	if (!preempt && prev->state && prev->non_block_count) {
4286		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4287			prev->comm, prev->pid, prev->non_block_count);
4288		dump_stack();
4289		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4290	}
4291#endif
4292
4293	if (unlikely(in_atomic_preempt_off())) {
4294		__schedule_bug(prev);
4295		preempt_count_set(PREEMPT_DISABLED);
4296	}
4297	rcu_sleep_check();
 
4298
4299	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4300
4301	schedstat_inc(this_rq()->sched_count);
4302}
4303
4304static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4305				  struct rq_flags *rf)
4306{
4307#ifdef CONFIG_SMP
4308	const struct sched_class *class;
4309	/*
4310	 * We must do the balancing pass before put_prev_task(), such
4311	 * that when we release the rq->lock the task is in the same
4312	 * state as before we took rq->lock.
4313	 *
4314	 * We can terminate the balance pass as soon as we know there is
4315	 * a runnable task of @class priority or higher.
4316	 */
4317	for_class_range(class, prev->sched_class, &idle_sched_class) {
4318		if (class->balance(rq, prev, rf))
4319			break;
4320	}
4321#endif
4322
4323	put_prev_task(rq, prev);
4324}
4325
4326/*
4327 * Pick up the highest-prio task:
4328 */
4329static inline struct task_struct *
4330pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4331{
4332	const struct sched_class *class;
4333	struct task_struct *p;
4334
4335	/*
4336	 * Optimization: we know that if all tasks are in the fair class we can
4337	 * call that function directly, but only if the @prev task wasn't of a
4338	 * higher scheduling class, because otherwise those loose the
4339	 * opportunity to pull in more work from other CPUs.
4340	 */
4341	if (likely(prev->sched_class <= &fair_sched_class &&
4342		   rq->nr_running == rq->cfs.h_nr_running)) {
4343
4344		p = pick_next_task_fair(rq, prev, rf);
4345		if (unlikely(p == RETRY_TASK))
4346			goto restart;
4347
4348		/* Assumes fair_sched_class->next == idle_sched_class */
4349		if (!p) {
4350			put_prev_task(rq, prev);
4351			p = pick_next_task_idle(rq);
4352		}
4353
4354		return p;
4355	}
4356
4357restart:
4358	put_prev_task_balance(rq, prev, rf);
4359
4360	for_each_class(class) {
4361		p = class->pick_next_task(rq);
4362		if (p)
4363			return p;
4364	}
4365
4366	/* The idle class should always have a runnable task: */
4367	BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4368}
4369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4370/*
4371 * __schedule() is the main scheduler function.
4372 *
4373 * The main means of driving the scheduler and thus entering this function are:
4374 *
4375 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4376 *
4377 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4378 *      paths. For example, see arch/x86/entry_64.S.
4379 *
4380 *      To drive preemption between tasks, the scheduler sets the flag in timer
4381 *      interrupt handler scheduler_tick().
4382 *
4383 *   3. Wakeups don't really cause entry into schedule(). They add a
4384 *      task to the run-queue and that's it.
4385 *
4386 *      Now, if the new task added to the run-queue preempts the current
4387 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4388 *      called on the nearest possible occasion:
4389 *
4390 *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4391 *
4392 *         - in syscall or exception context, at the next outmost
4393 *           preempt_enable(). (this might be as soon as the wake_up()'s
4394 *           spin_unlock()!)
4395 *
4396 *         - in IRQ context, return from interrupt-handler to
4397 *           preemptible context
4398 *
4399 *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4400 *         then at the next:
4401 *
4402 *          - cond_resched() call
4403 *          - explicit schedule() call
4404 *          - return from syscall or exception to user-space
4405 *          - return from interrupt-handler to user-space
4406 *
4407 * WARNING: must be called with preemption disabled!
4408 */
4409static void __sched notrace __schedule(bool preempt)
4410{
4411	struct task_struct *prev, *next;
4412	unsigned long *switch_count;
4413	unsigned long prev_state;
4414	struct rq_flags rf;
4415	struct rq *rq;
4416	int cpu;
4417
4418	cpu = smp_processor_id();
4419	rq = cpu_rq(cpu);
4420	prev = rq->curr;
4421
4422	schedule_debug(prev, preempt);
4423
4424	if (sched_feat(HRTICK))
4425		hrtick_clear(rq);
4426
4427	local_irq_disable();
4428	rcu_note_context_switch(preempt);
4429
4430	/*
4431	 * Make sure that signal_pending_state()->signal_pending() below
4432	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4433	 * done by the caller to avoid the race with signal_wake_up():
4434	 *
4435	 * __set_current_state(@state)		signal_wake_up()
4436	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
4437	 *					  wake_up_state(p, state)
4438	 *   LOCK rq->lock			    LOCK p->pi_state
4439	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
4440	 *     if (signal_pending_state())	    if (p->state & @state)
4441	 *
4442	 * Also, the membarrier system call requires a full memory barrier
4443	 * after coming from user-space, before storing to rq->curr.
4444	 */
4445	rq_lock(rq, &rf);
4446	smp_mb__after_spinlock();
4447
4448	/* Promote REQ to ACT */
4449	rq->clock_update_flags <<= 1;
4450	update_rq_clock(rq);
4451
4452	switch_count = &prev->nivcsw;
4453
4454	/*
4455	 * We must load prev->state once (task_struct::state is volatile), such
4456	 * that:
4457	 *
4458	 *  - we form a control dependency vs deactivate_task() below.
4459	 *  - ptrace_{,un}freeze_traced() can change ->state underneath us.
4460	 */
4461	prev_state = prev->state;
4462	if (!preempt && prev_state) {
4463		if (signal_pending_state(prev_state, prev)) {
4464			prev->state = TASK_RUNNING;
4465		} else {
4466			prev->sched_contributes_to_load =
4467				(prev_state & TASK_UNINTERRUPTIBLE) &&
4468				!(prev_state & TASK_NOLOAD) &&
4469				!(prev->flags & PF_FROZEN);
4470
4471			if (prev->sched_contributes_to_load)
4472				rq->nr_uninterruptible++;
4473
4474			/*
4475			 * __schedule()			ttwu()
4476			 *   prev_state = prev->state;    if (p->on_rq && ...)
4477			 *   if (prev_state)		    goto out;
4478			 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
4479			 *				  p->state = TASK_WAKING
4480			 *
4481			 * Where __schedule() and ttwu() have matching control dependencies.
4482			 *
4483			 * After this, schedule() must not care about p->state any more.
4484			 */
4485			deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4486
4487			if (prev->in_iowait) {
4488				atomic_inc(&rq->nr_iowait);
4489				delayacct_blkio_start();
4490			}
4491		}
4492		switch_count = &prev->nvcsw;
4493	}
4494
4495	next = pick_next_task(rq, prev, &rf);
4496	clear_tsk_need_resched(prev);
4497	clear_preempt_need_resched();
 
 
 
4498
4499	if (likely(prev != next)) {
4500		rq->nr_switches++;
4501		/*
4502		 * RCU users of rcu_dereference(rq->curr) may not see
4503		 * changes to task_struct made by pick_next_task().
4504		 */
4505		RCU_INIT_POINTER(rq->curr, next);
4506		/*
4507		 * The membarrier system call requires each architecture
4508		 * to have a full memory barrier after updating
4509		 * rq->curr, before returning to user-space.
4510		 *
4511		 * Here are the schemes providing that barrier on the
4512		 * various architectures:
4513		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4514		 *   switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4515		 * - finish_lock_switch() for weakly-ordered
4516		 *   architectures where spin_unlock is a full barrier,
4517		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4518		 *   is a RELEASE barrier),
4519		 */
4520		++*switch_count;
4521
 
4522		psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4523
4524		trace_sched_switch(preempt, prev, next);
4525
4526		/* Also unlocks the rq: */
4527		rq = context_switch(rq, prev, next, &rf);
4528	} else {
4529		rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4530		rq_unlock_irq(rq, &rf);
 
 
 
4531	}
4532
4533	balance_callback(rq);
4534}
4535
4536void __noreturn do_task_dead(void)
4537{
4538	/* Causes final put_task_struct in finish_task_switch(): */
4539	set_special_state(TASK_DEAD);
4540
4541	/* Tell freezer to ignore us: */
4542	current->flags |= PF_NOFREEZE;
4543
4544	__schedule(false);
4545	BUG();
4546
4547	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4548	for (;;)
4549		cpu_relax();
4550}
4551
4552static inline void sched_submit_work(struct task_struct *tsk)
4553{
4554	if (!tsk->state)
 
 
4555		return;
4556
 
4557	/*
4558	 * If a worker went to sleep, notify and ask workqueue whether
4559	 * it wants to wake up a task to maintain concurrency.
4560	 * As this function is called inside the schedule() context,
4561	 * we disable preemption to avoid it calling schedule() again
4562	 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4563	 * requires it.
4564	 */
4565	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4566		preempt_disable();
4567		if (tsk->flags & PF_WQ_WORKER)
4568			wq_worker_sleeping(tsk);
4569		else
4570			io_wq_worker_sleeping(tsk);
4571		preempt_enable_no_resched();
4572	}
4573
4574	if (tsk_is_pi_blocked(tsk))
4575		return;
 
 
 
 
4576
4577	/*
4578	 * If we are going to sleep and we have plugged IO queued,
4579	 * make sure to submit it to avoid deadlocks.
4580	 */
4581	if (blk_needs_flush_plug(tsk))
4582		blk_schedule_flush_plug(tsk);
4583}
4584
4585static void sched_update_worker(struct task_struct *tsk)
4586{
4587	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4588		if (tsk->flags & PF_WQ_WORKER)
4589			wq_worker_running(tsk);
4590		else
4591			io_wq_worker_running(tsk);
4592	}
4593}
4594
4595asmlinkage __visible void __sched schedule(void)
4596{
4597	struct task_struct *tsk = current;
4598
4599	sched_submit_work(tsk);
4600	do {
4601		preempt_disable();
4602		__schedule(false);
4603		sched_preempt_enable_no_resched();
4604	} while (need_resched());
4605	sched_update_worker(tsk);
4606}
4607EXPORT_SYMBOL(schedule);
4608
4609/*
4610 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4611 * state (have scheduled out non-voluntarily) by making sure that all
4612 * tasks have either left the run queue or have gone into user space.
4613 * As idle tasks do not do either, they must not ever be preempted
4614 * (schedule out non-voluntarily).
4615 *
4616 * schedule_idle() is similar to schedule_preempt_disable() except that it
4617 * never enables preemption because it does not call sched_submit_work().
4618 */
4619void __sched schedule_idle(void)
4620{
4621	/*
4622	 * As this skips calling sched_submit_work(), which the idle task does
4623	 * regardless because that function is a nop when the task is in a
4624	 * TASK_RUNNING state, make sure this isn't used someplace that the
4625	 * current task can be in any other state. Note, idle is always in the
4626	 * TASK_RUNNING state.
4627	 */
4628	WARN_ON_ONCE(current->state);
4629	do {
4630		__schedule(false);
4631	} while (need_resched());
4632}
4633
4634#ifdef CONFIG_CONTEXT_TRACKING
4635asmlinkage __visible void __sched schedule_user(void)
4636{
4637	/*
4638	 * If we come here after a random call to set_need_resched(),
4639	 * or we have been woken up remotely but the IPI has not yet arrived,
4640	 * we haven't yet exited the RCU idle mode. Do it here manually until
4641	 * we find a better solution.
4642	 *
4643	 * NB: There are buggy callers of this function.  Ideally we
4644	 * should warn if prev_state != CONTEXT_USER, but that will trigger
4645	 * too frequently to make sense yet.
4646	 */
4647	enum ctx_state prev_state = exception_enter();
4648	schedule();
4649	exception_exit(prev_state);
4650}
4651#endif
4652
4653/**
4654 * schedule_preempt_disabled - called with preemption disabled
4655 *
4656 * Returns with preemption disabled. Note: preempt_count must be 1
4657 */
4658void __sched schedule_preempt_disabled(void)
4659{
4660	sched_preempt_enable_no_resched();
4661	schedule();
4662	preempt_disable();
4663}
4664
 
 
 
 
 
 
 
 
 
 
 
 
4665static void __sched notrace preempt_schedule_common(void)
4666{
4667	do {
4668		/*
4669		 * Because the function tracer can trace preempt_count_sub()
4670		 * and it also uses preempt_enable/disable_notrace(), if
4671		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4672		 * by the function tracer will call this function again and
4673		 * cause infinite recursion.
4674		 *
4675		 * Preemption must be disabled here before the function
4676		 * tracer can trace. Break up preempt_disable() into two
4677		 * calls. One to disable preemption without fear of being
4678		 * traced. The other to still record the preemption latency,
4679		 * which can also be traced by the function tracer.
4680		 */
4681		preempt_disable_notrace();
4682		preempt_latency_start(1);
4683		__schedule(true);
4684		preempt_latency_stop(1);
4685		preempt_enable_no_resched_notrace();
4686
4687		/*
4688		 * Check again in case we missed a preemption opportunity
4689		 * between schedule and now.
4690		 */
4691	} while (need_resched());
4692}
4693
4694#ifdef CONFIG_PREEMPTION
4695/*
4696 * This is the entry point to schedule() from in-kernel preemption
4697 * off of preempt_enable.
4698 */
4699asmlinkage __visible void __sched notrace preempt_schedule(void)
4700{
4701	/*
4702	 * If there is a non-zero preempt_count or interrupts are disabled,
4703	 * we do not want to preempt the current task. Just return..
4704	 */
4705	if (likely(!preemptible()))
4706		return;
4707
4708	preempt_schedule_common();
4709}
4710NOKPROBE_SYMBOL(preempt_schedule);
4711EXPORT_SYMBOL(preempt_schedule);
4712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4713/**
4714 * preempt_schedule_notrace - preempt_schedule called by tracing
4715 *
4716 * The tracing infrastructure uses preempt_enable_notrace to prevent
4717 * recursion and tracing preempt enabling caused by the tracing
4718 * infrastructure itself. But as tracing can happen in areas coming
4719 * from userspace or just about to enter userspace, a preempt enable
4720 * can occur before user_exit() is called. This will cause the scheduler
4721 * to be called when the system is still in usermode.
4722 *
4723 * To prevent this, the preempt_enable_notrace will use this function
4724 * instead of preempt_schedule() to exit user context if needed before
4725 * calling the scheduler.
4726 */
4727asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4728{
4729	enum ctx_state prev_ctx;
4730
4731	if (likely(!preemptible()))
4732		return;
4733
4734	do {
4735		/*
4736		 * Because the function tracer can trace preempt_count_sub()
4737		 * and it also uses preempt_enable/disable_notrace(), if
4738		 * NEED_RESCHED is set, the preempt_enable_notrace() called
4739		 * by the function tracer will call this function again and
4740		 * cause infinite recursion.
4741		 *
4742		 * Preemption must be disabled here before the function
4743		 * tracer can trace. Break up preempt_disable() into two
4744		 * calls. One to disable preemption without fear of being
4745		 * traced. The other to still record the preemption latency,
4746		 * which can also be traced by the function tracer.
4747		 */
4748		preempt_disable_notrace();
4749		preempt_latency_start(1);
4750		/*
4751		 * Needs preempt disabled in case user_exit() is traced
4752		 * and the tracer calls preempt_enable_notrace() causing
4753		 * an infinite recursion.
4754		 */
4755		prev_ctx = exception_enter();
4756		__schedule(true);
4757		exception_exit(prev_ctx);
4758
4759		preempt_latency_stop(1);
4760		preempt_enable_no_resched_notrace();
4761	} while (need_resched());
4762}
4763EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4765#endif /* CONFIG_PREEMPTION */
4766
4767/*
4768 * This is the entry point to schedule() from kernel preemption
4769 * off of irq context.
4770 * Note, that this is called and return with irqs disabled. This will
4771 * protect us against recursive calling from irq.
4772 */
4773asmlinkage __visible void __sched preempt_schedule_irq(void)
4774{
4775	enum ctx_state prev_state;
4776
4777	/* Catch callers which need to be fixed */
4778	BUG_ON(preempt_count() || !irqs_disabled());
4779
4780	prev_state = exception_enter();
4781
4782	do {
4783		preempt_disable();
4784		local_irq_enable();
4785		__schedule(true);
4786		local_irq_disable();
4787		sched_preempt_enable_no_resched();
4788	} while (need_resched());
4789
4790	exception_exit(prev_state);
4791}
4792
4793int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4794			  void *key)
4795{
4796	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
4797	return try_to_wake_up(curr->private, mode, wake_flags);
4798}
4799EXPORT_SYMBOL(default_wake_function);
4800
 
 
 
 
 
 
 
 
 
 
 
 
4801#ifdef CONFIG_RT_MUTEXES
4802
4803static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4804{
4805	if (pi_task)
4806		prio = min(prio, pi_task->prio);
4807
4808	return prio;
4809}
4810
4811static inline int rt_effective_prio(struct task_struct *p, int prio)
4812{
4813	struct task_struct *pi_task = rt_mutex_get_top_task(p);
4814
4815	return __rt_effective_prio(pi_task, prio);
4816}
4817
4818/*
4819 * rt_mutex_setprio - set the current priority of a task
4820 * @p: task to boost
4821 * @pi_task: donor task
4822 *
4823 * This function changes the 'effective' priority of a task. It does
4824 * not touch ->normal_prio like __setscheduler().
4825 *
4826 * Used by the rt_mutex code to implement priority inheritance
4827 * logic. Call site only calls if the priority of the task changed.
4828 */
4829void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4830{
4831	int prio, oldprio, queued, running, queue_flag =
4832		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4833	const struct sched_class *prev_class;
4834	struct rq_flags rf;
4835	struct rq *rq;
4836
4837	/* XXX used to be waiter->prio, not waiter->task->prio */
4838	prio = __rt_effective_prio(pi_task, p->normal_prio);
4839
4840	/*
4841	 * If nothing changed; bail early.
4842	 */
4843	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4844		return;
4845
4846	rq = __task_rq_lock(p, &rf);
4847	update_rq_clock(rq);
4848	/*
4849	 * Set under pi_lock && rq->lock, such that the value can be used under
4850	 * either lock.
4851	 *
4852	 * Note that there is loads of tricky to make this pointer cache work
4853	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4854	 * ensure a task is de-boosted (pi_task is set to NULL) before the
4855	 * task is allowed to run again (and can exit). This ensures the pointer
4856	 * points to a blocked task -- which guaratees the task is present.
4857	 */
4858	p->pi_top_task = pi_task;
4859
4860	/*
4861	 * For FIFO/RR we only need to set prio, if that matches we're done.
4862	 */
4863	if (prio == p->prio && !dl_prio(prio))
4864		goto out_unlock;
4865
4866	/*
4867	 * Idle task boosting is a nono in general. There is one
4868	 * exception, when PREEMPT_RT and NOHZ is active:
4869	 *
4870	 * The idle task calls get_next_timer_interrupt() and holds
4871	 * the timer wheel base->lock on the CPU and another CPU wants
4872	 * to access the timer (probably to cancel it). We can safely
4873	 * ignore the boosting request, as the idle CPU runs this code
4874	 * with interrupts disabled and will complete the lock
4875	 * protected section without being interrupted. So there is no
4876	 * real need to boost.
4877	 */
4878	if (unlikely(p == rq->idle)) {
4879		WARN_ON(p != rq->curr);
4880		WARN_ON(p->pi_blocked_on);
4881		goto out_unlock;
4882	}
4883
4884	trace_sched_pi_setprio(p, pi_task);
4885	oldprio = p->prio;
4886
4887	if (oldprio == prio)
4888		queue_flag &= ~DEQUEUE_MOVE;
4889
4890	prev_class = p->sched_class;
4891	queued = task_on_rq_queued(p);
4892	running = task_current(rq, p);
4893	if (queued)
4894		dequeue_task(rq, p, queue_flag);
4895	if (running)
4896		put_prev_task(rq, p);
4897
4898	/*
4899	 * Boosting condition are:
4900	 * 1. -rt task is running and holds mutex A
4901	 *      --> -dl task blocks on mutex A
4902	 *
4903	 * 2. -dl task is running and holds mutex A
4904	 *      --> -dl task blocks on mutex A and could preempt the
4905	 *          running task
4906	 */
4907	if (dl_prio(prio)) {
4908		if (!dl_prio(p->normal_prio) ||
4909		    (pi_task && dl_prio(pi_task->prio) &&
4910		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
4911			p->dl.dl_boosted = 1;
4912			queue_flag |= ENQUEUE_REPLENISH;
4913		} else
4914			p->dl.dl_boosted = 0;
4915		p->sched_class = &dl_sched_class;
4916	} else if (rt_prio(prio)) {
4917		if (dl_prio(oldprio))
4918			p->dl.dl_boosted = 0;
4919		if (oldprio < prio)
4920			queue_flag |= ENQUEUE_HEAD;
4921		p->sched_class = &rt_sched_class;
4922	} else {
4923		if (dl_prio(oldprio))
4924			p->dl.dl_boosted = 0;
4925		if (rt_prio(oldprio))
4926			p->rt.timeout = 0;
4927		p->sched_class = &fair_sched_class;
4928	}
4929
4930	p->prio = prio;
4931
4932	if (queued)
4933		enqueue_task(rq, p, queue_flag);
4934	if (running)
4935		set_next_task(rq, p);
4936
4937	check_class_changed(rq, p, prev_class, oldprio);
4938out_unlock:
4939	/* Avoid rq from going away on us: */
4940	preempt_disable();
4941	__task_rq_unlock(rq, &rf);
4942
4943	balance_callback(rq);
 
 
 
4944	preempt_enable();
4945}
4946#else
4947static inline int rt_effective_prio(struct task_struct *p, int prio)
4948{
4949	return prio;
4950}
4951#endif
4952
4953void set_user_nice(struct task_struct *p, long nice)
4954{
4955	bool queued, running;
4956	int old_prio;
4957	struct rq_flags rf;
4958	struct rq *rq;
4959
4960	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4961		return;
4962	/*
4963	 * We have to be careful, if called from sys_setpriority(),
4964	 * the task might be in the middle of scheduling on another CPU.
4965	 */
4966	rq = task_rq_lock(p, &rf);
4967	update_rq_clock(rq);
4968
4969	/*
4970	 * The RT priorities are set via sched_setscheduler(), but we still
4971	 * allow the 'normal' nice value to be set - but as expected
4972	 * it wont have any effect on scheduling until the task is
4973	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4974	 */
4975	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4976		p->static_prio = NICE_TO_PRIO(nice);
4977		goto out_unlock;
4978	}
4979	queued = task_on_rq_queued(p);
4980	running = task_current(rq, p);
4981	if (queued)
4982		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4983	if (running)
4984		put_prev_task(rq, p);
4985
4986	p->static_prio = NICE_TO_PRIO(nice);
4987	set_load_weight(p, true);
4988	old_prio = p->prio;
4989	p->prio = effective_prio(p);
4990
4991	if (queued)
4992		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4993	if (running)
4994		set_next_task(rq, p);
4995
4996	/*
4997	 * If the task increased its priority or is running and
4998	 * lowered its priority, then reschedule its CPU:
4999	 */
5000	p->sched_class->prio_changed(rq, p, old_prio);
5001
5002out_unlock:
5003	task_rq_unlock(rq, p, &rf);
5004}
5005EXPORT_SYMBOL(set_user_nice);
5006
5007/*
5008 * can_nice - check if a task can reduce its nice value
 
 
 
5009 * @p: task
5010 * @nice: nice value
5011 */
5012int can_nice(const struct task_struct *p, const int nice)
5013{
5014	/* Convert nice value [19,-20] to rlimit style value [1,40]: */
5015	int nice_rlim = nice_to_rlimit(nice);
5016
5017	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5018		capable(CAP_SYS_NICE));
 
 
 
 
 
 
 
 
 
5019}
5020
5021#ifdef __ARCH_WANT_SYS_NICE
5022
5023/*
5024 * sys_nice - change the priority of the current process.
5025 * @increment: priority increment
5026 *
5027 * sys_setpriority is a more generic, but much slower function that
5028 * does similar things.
5029 */
5030SYSCALL_DEFINE1(nice, int, increment)
5031{
5032	long nice, retval;
5033
5034	/*
5035	 * Setpriority might change our priority at the same moment.
5036	 * We don't have to worry. Conceptually one call occurs first
5037	 * and we have a single winner.
5038	 */
5039	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5040	nice = task_nice(current) + increment;
5041
5042	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5043	if (increment < 0 && !can_nice(current, nice))
5044		return -EPERM;
5045
5046	retval = security_task_setnice(current, nice);
5047	if (retval)
5048		return retval;
5049
5050	set_user_nice(current, nice);
5051	return 0;
5052}
5053
5054#endif
5055
5056/**
5057 * task_prio - return the priority value of a given task.
5058 * @p: the task in question.
5059 *
5060 * Return: The priority value as seen by users in /proc.
5061 * RT tasks are offset by -200. Normal tasks are centered
5062 * around 0, value goes from -16 to +15.
 
 
 
 
5063 */
5064int task_prio(const struct task_struct *p)
5065{
5066	return p->prio - MAX_RT_PRIO;
5067}
5068
5069/**
5070 * idle_cpu - is a given CPU idle currently?
5071 * @cpu: the processor in question.
5072 *
5073 * Return: 1 if the CPU is currently idle. 0 otherwise.
5074 */
5075int idle_cpu(int cpu)
5076{
5077	struct rq *rq = cpu_rq(cpu);
5078
5079	if (rq->curr != rq->idle)
5080		return 0;
5081
5082	if (rq->nr_running)
5083		return 0;
5084
5085#ifdef CONFIG_SMP
5086	if (rq->ttwu_pending)
5087		return 0;
5088#endif
5089
5090	return 1;
5091}
5092
5093/**
5094 * available_idle_cpu - is a given CPU idle for enqueuing work.
5095 * @cpu: the CPU in question.
5096 *
5097 * Return: 1 if the CPU is currently idle. 0 otherwise.
5098 */
5099int available_idle_cpu(int cpu)
5100{
5101	if (!idle_cpu(cpu))
5102		return 0;
5103
5104	if (vcpu_is_preempted(cpu))
5105		return 0;
5106
5107	return 1;
5108}
5109
5110/**
5111 * idle_task - return the idle task for a given CPU.
5112 * @cpu: the processor in question.
5113 *
5114 * Return: The idle task for the CPU @cpu.
5115 */
5116struct task_struct *idle_task(int cpu)
5117{
5118	return cpu_rq(cpu)->idle;
5119}
5120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5121/**
5122 * find_process_by_pid - find a process with a matching PID value.
5123 * @pid: the pid in question.
5124 *
5125 * The task of @pid, if found. %NULL otherwise.
5126 */
5127static struct task_struct *find_process_by_pid(pid_t pid)
5128{
5129	return pid ? find_task_by_vpid(pid) : current;
5130}
5131
5132/*
5133 * sched_setparam() passes in -1 for its policy, to let the functions
5134 * it calls know not to change it.
5135 */
5136#define SETPARAM_POLICY	-1
5137
5138static void __setscheduler_params(struct task_struct *p,
5139		const struct sched_attr *attr)
5140{
5141	int policy = attr->sched_policy;
5142
5143	if (policy == SETPARAM_POLICY)
5144		policy = p->policy;
5145
5146	p->policy = policy;
5147
5148	if (dl_policy(policy))
5149		__setparam_dl(p, attr);
5150	else if (fair_policy(policy))
5151		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5152
5153	/*
5154	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5155	 * !rt_policy. Always setting this ensures that things like
5156	 * getparam()/getattr() don't report silly values for !rt tasks.
5157	 */
5158	p->rt_priority = attr->sched_priority;
5159	p->normal_prio = normal_prio(p);
5160	set_load_weight(p, true);
5161}
5162
5163/* Actually do priority change: must hold pi & rq lock. */
5164static void __setscheduler(struct rq *rq, struct task_struct *p,
5165			   const struct sched_attr *attr, bool keep_boost)
5166{
5167	/*
5168	 * If params can't change scheduling class changes aren't allowed
5169	 * either.
5170	 */
5171	if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5172		return;
5173
5174	__setscheduler_params(p, attr);
5175
5176	/*
5177	 * Keep a potential priority boosting if called from
5178	 * sched_setscheduler().
5179	 */
5180	p->prio = normal_prio(p);
5181	if (keep_boost)
5182		p->prio = rt_effective_prio(p, p->prio);
5183
5184	if (dl_prio(p->prio))
5185		p->sched_class = &dl_sched_class;
5186	else if (rt_prio(p->prio))
5187		p->sched_class = &rt_sched_class;
5188	else
5189		p->sched_class = &fair_sched_class;
5190}
5191
5192/*
5193 * Check the target process has a UID that matches the current process's:
5194 */
5195static bool check_same_owner(struct task_struct *p)
5196{
5197	const struct cred *cred = current_cred(), *pcred;
5198	bool match;
5199
5200	rcu_read_lock();
5201	pcred = __task_cred(p);
5202	match = (uid_eq(cred->euid, pcred->euid) ||
5203		 uid_eq(cred->euid, pcred->uid));
5204	rcu_read_unlock();
5205	return match;
5206}
5207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5208static int __sched_setscheduler(struct task_struct *p,
5209				const struct sched_attr *attr,
5210				bool user, bool pi)
5211{
5212	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5213		      MAX_RT_PRIO - 1 - attr->sched_priority;
5214	int retval, oldprio, oldpolicy = -1, queued, running;
5215	int new_effective_prio, policy = attr->sched_policy;
5216	const struct sched_class *prev_class;
 
5217	struct rq_flags rf;
5218	int reset_on_fork;
5219	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5220	struct rq *rq;
5221
5222	/* The pi code expects interrupts enabled */
5223	BUG_ON(pi && in_interrupt());
5224recheck:
5225	/* Double check policy once rq lock held: */
5226	if (policy < 0) {
5227		reset_on_fork = p->sched_reset_on_fork;
5228		policy = oldpolicy = p->policy;
5229	} else {
5230		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5231
5232		if (!valid_policy(policy))
5233			return -EINVAL;
5234	}
5235
5236	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5237		return -EINVAL;
5238
5239	/*
5240	 * Valid priorities for SCHED_FIFO and SCHED_RR are
5241	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5242	 * SCHED_BATCH and SCHED_IDLE is 0.
5243	 */
5244	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5245	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5246		return -EINVAL;
5247	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5248	    (rt_policy(policy) != (attr->sched_priority != 0)))
5249		return -EINVAL;
5250
5251	/*
5252	 * Allow unprivileged RT tasks to decrease priority:
5253	 */
5254	if (user && !capable(CAP_SYS_NICE)) {
5255		if (fair_policy(policy)) {
5256			if (attr->sched_nice < task_nice(p) &&
5257			    !can_nice(p, attr->sched_nice))
5258				return -EPERM;
5259		}
5260
5261		if (rt_policy(policy)) {
5262			unsigned long rlim_rtprio =
5263					task_rlimit(p, RLIMIT_RTPRIO);
5264
5265			/* Can't set/change the rt policy: */
5266			if (policy != p->policy && !rlim_rtprio)
5267				return -EPERM;
5268
5269			/* Can't increase priority: */
5270			if (attr->sched_priority > p->rt_priority &&
5271			    attr->sched_priority > rlim_rtprio)
5272				return -EPERM;
5273		}
5274
5275		 /*
5276		  * Can't set/change SCHED_DEADLINE policy at all for now
5277		  * (safest behavior); in the future we would like to allow
5278		  * unprivileged DL tasks to increase their relative deadline
5279		  * or reduce their runtime (both ways reducing utilization)
5280		  */
5281		if (dl_policy(policy))
5282			return -EPERM;
5283
5284		/*
5285		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5286		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5287		 */
5288		if (task_has_idle_policy(p) && !idle_policy(policy)) {
5289			if (!can_nice(p, task_nice(p)))
5290				return -EPERM;
5291		}
5292
5293		/* Can't change other user's priorities: */
5294		if (!check_same_owner(p))
5295			return -EPERM;
5296
5297		/* Normal users shall not reset the sched_reset_on_fork flag: */
5298		if (p->sched_reset_on_fork && !reset_on_fork)
5299			return -EPERM;
5300	}
5301
5302	if (user) {
5303		if (attr->sched_flags & SCHED_FLAG_SUGOV)
5304			return -EINVAL;
5305
5306		retval = security_task_setscheduler(p);
5307		if (retval)
5308			return retval;
5309	}
5310
5311	/* Update task specific "requested" clamps */
5312	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5313		retval = uclamp_validate(p, attr);
5314		if (retval)
5315			return retval;
5316	}
5317
5318	if (pi)
5319		cpuset_read_lock();
5320
5321	/*
5322	 * Make sure no PI-waiters arrive (or leave) while we are
5323	 * changing the priority of the task:
5324	 *
5325	 * To be able to change p->policy safely, the appropriate
5326	 * runqueue lock must be held.
5327	 */
5328	rq = task_rq_lock(p, &rf);
5329	update_rq_clock(rq);
5330
5331	/*
5332	 * Changing the policy of the stop threads its a very bad idea:
5333	 */
5334	if (p == rq->stop) {
5335		retval = -EINVAL;
5336		goto unlock;
5337	}
5338
5339	/*
5340	 * If not changing anything there's no need to proceed further,
5341	 * but store a possible modification of reset_on_fork.
5342	 */
5343	if (unlikely(policy == p->policy)) {
5344		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5345			goto change;
5346		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5347			goto change;
5348		if (dl_policy(policy) && dl_param_changed(p, attr))
5349			goto change;
5350		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5351			goto change;
5352
5353		p->sched_reset_on_fork = reset_on_fork;
5354		retval = 0;
5355		goto unlock;
5356	}
5357change:
5358
5359	if (user) {
5360#ifdef CONFIG_RT_GROUP_SCHED
5361		/*
5362		 * Do not allow realtime tasks into groups that have no runtime
5363		 * assigned.
5364		 */
5365		if (rt_bandwidth_enabled() && rt_policy(policy) &&
5366				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5367				!task_group_is_autogroup(task_group(p))) {
5368			retval = -EPERM;
5369			goto unlock;
5370		}
5371#endif
5372#ifdef CONFIG_SMP
5373		if (dl_bandwidth_enabled() && dl_policy(policy) &&
5374				!(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5375			cpumask_t *span = rq->rd->span;
5376
5377			/*
5378			 * Don't allow tasks with an affinity mask smaller than
5379			 * the entire root_domain to become SCHED_DEADLINE. We
5380			 * will also fail if there's no bandwidth available.
5381			 */
5382			if (!cpumask_subset(span, p->cpus_ptr) ||
5383			    rq->rd->dl_bw.bw == 0) {
5384				retval = -EPERM;
5385				goto unlock;
5386			}
5387		}
5388#endif
5389	}
5390
5391	/* Re-check policy now with rq lock held: */
5392	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5393		policy = oldpolicy = -1;
5394		task_rq_unlock(rq, p, &rf);
5395		if (pi)
5396			cpuset_read_unlock();
5397		goto recheck;
5398	}
5399
5400	/*
5401	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5402	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5403	 * is available.
5404	 */
5405	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5406		retval = -EBUSY;
5407		goto unlock;
5408	}
5409
5410	p->sched_reset_on_fork = reset_on_fork;
5411	oldprio = p->prio;
5412
 
5413	if (pi) {
5414		/*
5415		 * Take priority boosted tasks into account. If the new
5416		 * effective priority is unchanged, we just store the new
5417		 * normal parameters and do not touch the scheduler class and
5418		 * the runqueue. This will be done when the task deboost
5419		 * itself.
5420		 */
5421		new_effective_prio = rt_effective_prio(p, newprio);
5422		if (new_effective_prio == oldprio)
5423			queue_flags &= ~DEQUEUE_MOVE;
5424	}
5425
5426	queued = task_on_rq_queued(p);
5427	running = task_current(rq, p);
5428	if (queued)
5429		dequeue_task(rq, p, queue_flags);
5430	if (running)
5431		put_prev_task(rq, p);
5432
5433	prev_class = p->sched_class;
5434
5435	__setscheduler(rq, p, attr, pi);
 
 
 
5436	__setscheduler_uclamp(p, attr);
5437
5438	if (queued) {
5439		/*
5440		 * We enqueue to tail when the priority of a task is
5441		 * increased (user space view).
5442		 */
5443		if (oldprio < p->prio)
5444			queue_flags |= ENQUEUE_HEAD;
5445
5446		enqueue_task(rq, p, queue_flags);
5447	}
5448	if (running)
5449		set_next_task(rq, p);
5450
5451	check_class_changed(rq, p, prev_class, oldprio);
5452
5453	/* Avoid rq from going away on us: */
5454	preempt_disable();
 
5455	task_rq_unlock(rq, p, &rf);
5456
5457	if (pi) {
5458		cpuset_read_unlock();
5459		rt_mutex_adjust_pi(p);
5460	}
5461
5462	/* Run balance callbacks after we've adjusted the PI chain: */
5463	balance_callback(rq);
5464	preempt_enable();
5465
5466	return 0;
5467
5468unlock:
5469	task_rq_unlock(rq, p, &rf);
5470	if (pi)
5471		cpuset_read_unlock();
5472	return retval;
5473}
5474
5475static int _sched_setscheduler(struct task_struct *p, int policy,
5476			       const struct sched_param *param, bool check)
5477{
5478	struct sched_attr attr = {
5479		.sched_policy   = policy,
5480		.sched_priority = param->sched_priority,
5481		.sched_nice	= PRIO_TO_NICE(p->static_prio),
5482	};
5483
5484	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5485	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5486		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5487		policy &= ~SCHED_RESET_ON_FORK;
5488		attr.sched_policy = policy;
5489	}
5490
5491	return __sched_setscheduler(p, &attr, check, true);
5492}
5493/**
5494 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5495 * @p: the task in question.
5496 * @policy: new policy.
5497 * @param: structure containing the new RT priority.
5498 *
5499 * Use sched_set_fifo(), read its comment.
5500 *
5501 * Return: 0 on success. An error code otherwise.
5502 *
5503 * NOTE that the task may be already dead.
5504 */
5505int sched_setscheduler(struct task_struct *p, int policy,
5506		       const struct sched_param *param)
5507{
5508	return _sched_setscheduler(p, policy, param, true);
5509}
5510
5511int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5512{
5513	return __sched_setscheduler(p, attr, true, true);
5514}
5515
5516int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5517{
5518	return __sched_setscheduler(p, attr, false, true);
5519}
 
5520
5521/**
5522 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5523 * @p: the task in question.
5524 * @policy: new policy.
5525 * @param: structure containing the new RT priority.
5526 *
5527 * Just like sched_setscheduler, only don't bother checking if the
5528 * current context has permission.  For example, this is needed in
5529 * stop_machine(): we create temporary high priority worker threads,
5530 * but our caller might not have that capability.
5531 *
5532 * Return: 0 on success. An error code otherwise.
5533 */
5534int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5535			       const struct sched_param *param)
5536{
5537	return _sched_setscheduler(p, policy, param, false);
5538}
5539
5540/*
5541 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5542 * incapable of resource management, which is the one thing an OS really should
5543 * be doing.
5544 *
5545 * This is of course the reason it is limited to privileged users only.
5546 *
5547 * Worse still; it is fundamentally impossible to compose static priority
5548 * workloads. You cannot take two correctly working static prio workloads
5549 * and smash them together and still expect them to work.
5550 *
5551 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5552 *
5553 *   MAX_RT_PRIO / 2
5554 *
5555 * The administrator _MUST_ configure the system, the kernel simply doesn't
5556 * know enough information to make a sensible choice.
5557 */
5558void sched_set_fifo(struct task_struct *p)
5559{
5560	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5561	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5562}
5563EXPORT_SYMBOL_GPL(sched_set_fifo);
5564
5565/*
5566 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5567 */
5568void sched_set_fifo_low(struct task_struct *p)
5569{
5570	struct sched_param sp = { .sched_priority = 1 };
5571	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5572}
5573EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5574
5575void sched_set_normal(struct task_struct *p, int nice)
5576{
5577	struct sched_attr attr = {
5578		.sched_policy = SCHED_NORMAL,
5579		.sched_nice = nice,
5580	};
5581	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5582}
5583EXPORT_SYMBOL_GPL(sched_set_normal);
5584
5585static int
5586do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5587{
5588	struct sched_param lparam;
5589	struct task_struct *p;
5590	int retval;
5591
5592	if (!param || pid < 0)
5593		return -EINVAL;
5594	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5595		return -EFAULT;
5596
5597	rcu_read_lock();
5598	retval = -ESRCH;
5599	p = find_process_by_pid(pid);
5600	if (likely(p))
5601		get_task_struct(p);
5602	rcu_read_unlock();
5603
5604	if (likely(p)) {
5605		retval = sched_setscheduler(p, policy, &lparam);
5606		put_task_struct(p);
5607	}
5608
5609	return retval;
5610}
5611
5612/*
5613 * Mimics kernel/events/core.c perf_copy_attr().
5614 */
5615static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5616{
5617	u32 size;
5618	int ret;
5619
5620	/* Zero the full structure, so that a short copy will be nice: */
5621	memset(attr, 0, sizeof(*attr));
5622
5623	ret = get_user(size, &uattr->size);
5624	if (ret)
5625		return ret;
5626
5627	/* ABI compatibility quirk: */
5628	if (!size)
5629		size = SCHED_ATTR_SIZE_VER0;
5630	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5631		goto err_size;
5632
5633	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5634	if (ret) {
5635		if (ret == -E2BIG)
5636			goto err_size;
5637		return ret;
5638	}
5639
5640	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5641	    size < SCHED_ATTR_SIZE_VER1)
5642		return -EINVAL;
5643
5644	/*
5645	 * XXX: Do we want to be lenient like existing syscalls; or do we want
5646	 * to be strict and return an error on out-of-bounds values?
5647	 */
5648	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5649
5650	return 0;
5651
5652err_size:
5653	put_user(sizeof(*attr), &uattr->size);
5654	return -E2BIG;
5655}
5656
 
 
 
 
 
 
 
 
 
 
5657/**
5658 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5659 * @pid: the pid in question.
5660 * @policy: new policy.
5661 * @param: structure containing the new RT priority.
5662 *
5663 * Return: 0 on success. An error code otherwise.
5664 */
5665SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5666{
5667	if (policy < 0)
5668		return -EINVAL;
5669
5670	return do_sched_setscheduler(pid, policy, param);
5671}
5672
5673/**
5674 * sys_sched_setparam - set/change the RT priority of a thread
5675 * @pid: the pid in question.
5676 * @param: structure containing the new RT priority.
5677 *
5678 * Return: 0 on success. An error code otherwise.
5679 */
5680SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5681{
5682	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5683}
5684
5685/**
5686 * sys_sched_setattr - same as above, but with extended sched_attr
5687 * @pid: the pid in question.
5688 * @uattr: structure containing the extended parameters.
5689 * @flags: for future extension.
5690 */
5691SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5692			       unsigned int, flags)
5693{
5694	struct sched_attr attr;
5695	struct task_struct *p;
5696	int retval;
5697
5698	if (!uattr || pid < 0 || flags)
5699		return -EINVAL;
5700
5701	retval = sched_copy_attr(uattr, &attr);
5702	if (retval)
5703		return retval;
5704
5705	if ((int)attr.sched_policy < 0)
5706		return -EINVAL;
5707	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5708		attr.sched_policy = SETPARAM_POLICY;
5709
5710	rcu_read_lock();
5711	retval = -ESRCH;
5712	p = find_process_by_pid(pid);
5713	if (likely(p))
5714		get_task_struct(p);
5715	rcu_read_unlock();
5716
5717	if (likely(p)) {
 
 
5718		retval = sched_setattr(p, &attr);
5719		put_task_struct(p);
5720	}
5721
5722	return retval;
5723}
5724
5725/**
5726 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5727 * @pid: the pid in question.
5728 *
5729 * Return: On success, the policy of the thread. Otherwise, a negative error
5730 * code.
5731 */
5732SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5733{
5734	struct task_struct *p;
5735	int retval;
5736
5737	if (pid < 0)
5738		return -EINVAL;
5739
5740	retval = -ESRCH;
5741	rcu_read_lock();
5742	p = find_process_by_pid(pid);
5743	if (p) {
5744		retval = security_task_getscheduler(p);
5745		if (!retval)
5746			retval = p->policy
5747				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5748	}
5749	rcu_read_unlock();
5750	return retval;
5751}
5752
5753/**
5754 * sys_sched_getparam - get the RT priority of a thread
5755 * @pid: the pid in question.
5756 * @param: structure containing the RT priority.
5757 *
5758 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5759 * code.
5760 */
5761SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5762{
5763	struct sched_param lp = { .sched_priority = 0 };
5764	struct task_struct *p;
5765	int retval;
5766
5767	if (!param || pid < 0)
5768		return -EINVAL;
5769
5770	rcu_read_lock();
5771	p = find_process_by_pid(pid);
5772	retval = -ESRCH;
5773	if (!p)
5774		goto out_unlock;
5775
5776	retval = security_task_getscheduler(p);
5777	if (retval)
5778		goto out_unlock;
5779
5780	if (task_has_rt_policy(p))
5781		lp.sched_priority = p->rt_priority;
5782	rcu_read_unlock();
5783
5784	/*
5785	 * This one might sleep, we cannot do it with a spinlock held ...
5786	 */
5787	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5788
5789	return retval;
5790
5791out_unlock:
5792	rcu_read_unlock();
5793	return retval;
5794}
5795
5796/*
5797 * Copy the kernel size attribute structure (which might be larger
5798 * than what user-space knows about) to user-space.
5799 *
5800 * Note that all cases are valid: user-space buffer can be larger or
5801 * smaller than the kernel-space buffer. The usual case is that both
5802 * have the same size.
5803 */
5804static int
5805sched_attr_copy_to_user(struct sched_attr __user *uattr,
5806			struct sched_attr *kattr,
5807			unsigned int usize)
5808{
5809	unsigned int ksize = sizeof(*kattr);
5810
5811	if (!access_ok(uattr, usize))
5812		return -EFAULT;
5813
5814	/*
5815	 * sched_getattr() ABI forwards and backwards compatibility:
5816	 *
5817	 * If usize == ksize then we just copy everything to user-space and all is good.
5818	 *
5819	 * If usize < ksize then we only copy as much as user-space has space for,
5820	 * this keeps ABI compatibility as well. We skip the rest.
5821	 *
5822	 * If usize > ksize then user-space is using a newer version of the ABI,
5823	 * which part the kernel doesn't know about. Just ignore it - tooling can
5824	 * detect the kernel's knowledge of attributes from the attr->size value
5825	 * which is set to ksize in this case.
5826	 */
5827	kattr->size = min(usize, ksize);
5828
5829	if (copy_to_user(uattr, kattr, kattr->size))
5830		return -EFAULT;
5831
5832	return 0;
5833}
5834
5835/**
5836 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5837 * @pid: the pid in question.
5838 * @uattr: structure containing the extended parameters.
5839 * @usize: sizeof(attr) for fwd/bwd comp.
5840 * @flags: for future extension.
5841 */
5842SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5843		unsigned int, usize, unsigned int, flags)
5844{
5845	struct sched_attr kattr = { };
5846	struct task_struct *p;
5847	int retval;
5848
5849	if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5850	    usize < SCHED_ATTR_SIZE_VER0 || flags)
5851		return -EINVAL;
5852
5853	rcu_read_lock();
5854	p = find_process_by_pid(pid);
5855	retval = -ESRCH;
5856	if (!p)
5857		goto out_unlock;
5858
5859	retval = security_task_getscheduler(p);
5860	if (retval)
5861		goto out_unlock;
5862
5863	kattr.sched_policy = p->policy;
5864	if (p->sched_reset_on_fork)
5865		kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5866	if (task_has_dl_policy(p))
5867		__getparam_dl(p, &kattr);
5868	else if (task_has_rt_policy(p))
5869		kattr.sched_priority = p->rt_priority;
5870	else
5871		kattr.sched_nice = task_nice(p);
5872
5873#ifdef CONFIG_UCLAMP_TASK
5874	/*
5875	 * This could race with another potential updater, but this is fine
5876	 * because it'll correctly read the old or the new value. We don't need
5877	 * to guarantee who wins the race as long as it doesn't return garbage.
5878	 */
5879	kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5880	kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5881#endif
5882
5883	rcu_read_unlock();
5884
5885	return sched_attr_copy_to_user(uattr, &kattr, usize);
5886
5887out_unlock:
5888	rcu_read_unlock();
5889	return retval;
5890}
5891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5892long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5893{
5894	cpumask_var_t cpus_allowed, new_mask;
 
5895	struct task_struct *p;
5896	int retval;
5897
5898	rcu_read_lock();
5899
5900	p = find_process_by_pid(pid);
5901	if (!p) {
5902		rcu_read_unlock();
5903		return -ESRCH;
5904	}
5905
5906	/* Prevent p going away */
5907	get_task_struct(p);
5908	rcu_read_unlock();
5909
5910	if (p->flags & PF_NO_SETAFFINITY) {
5911		retval = -EINVAL;
5912		goto out_put_task;
5913	}
5914	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5915		retval = -ENOMEM;
5916		goto out_put_task;
5917	}
5918	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5919		retval = -ENOMEM;
5920		goto out_free_cpus_allowed;
5921	}
5922	retval = -EPERM;
5923	if (!check_same_owner(p)) {
5924		rcu_read_lock();
5925		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5926			rcu_read_unlock();
5927			goto out_free_new_mask;
 
5928		}
5929		rcu_read_unlock();
5930	}
5931
5932	retval = security_task_setscheduler(p);
5933	if (retval)
5934		goto out_free_new_mask;
5935
5936
5937	cpuset_cpus_allowed(p, cpus_allowed);
5938	cpumask_and(new_mask, in_mask, cpus_allowed);
5939
5940	/*
5941	 * Since bandwidth control happens on root_domain basis,
5942	 * if admission test is enabled, we only admit -deadline
5943	 * tasks allowed to run on all the CPUs in the task's
5944	 * root_domain.
5945	 */
5946#ifdef CONFIG_SMP
5947	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5948		rcu_read_lock();
5949		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5950			retval = -EBUSY;
5951			rcu_read_unlock();
5952			goto out_free_new_mask;
5953		}
5954		rcu_read_unlock();
5955	}
5956#endif
5957again:
5958	retval = __set_cpus_allowed_ptr(p, new_mask, true);
5959
5960	if (!retval) {
5961		cpuset_cpus_allowed(p, cpus_allowed);
5962		if (!cpumask_subset(new_mask, cpus_allowed)) {
5963			/*
5964			 * We must have raced with a concurrent cpuset
5965			 * update. Just reset the cpus_allowed to the
5966			 * cpuset's cpus_allowed
5967			 */
5968			cpumask_copy(new_mask, cpus_allowed);
5969			goto again;
5970		}
5971	}
5972out_free_new_mask:
5973	free_cpumask_var(new_mask);
5974out_free_cpus_allowed:
5975	free_cpumask_var(cpus_allowed);
5976out_put_task:
5977	put_task_struct(p);
5978	return retval;
5979}
5980
5981static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5982			     struct cpumask *new_mask)
5983{
5984	if (len < cpumask_size())
5985		cpumask_clear(new_mask);
5986	else if (len > cpumask_size())
5987		len = cpumask_size();
5988
5989	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5990}
5991
5992/**
5993 * sys_sched_setaffinity - set the CPU affinity of a process
5994 * @pid: pid of the process
5995 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5996 * @user_mask_ptr: user-space pointer to the new CPU mask
5997 *
5998 * Return: 0 on success. An error code otherwise.
5999 */
6000SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6001		unsigned long __user *, user_mask_ptr)
6002{
6003	cpumask_var_t new_mask;
6004	int retval;
6005
6006	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6007		return -ENOMEM;
6008
6009	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6010	if (retval == 0)
6011		retval = sched_setaffinity(pid, new_mask);
6012	free_cpumask_var(new_mask);
6013	return retval;
6014}
6015
6016long sched_getaffinity(pid_t pid, struct cpumask *mask)
6017{
6018	struct task_struct *p;
6019	unsigned long flags;
6020	int retval;
6021
6022	rcu_read_lock();
6023
6024	retval = -ESRCH;
6025	p = find_process_by_pid(pid);
6026	if (!p)
6027		goto out_unlock;
6028
6029	retval = security_task_getscheduler(p);
6030	if (retval)
6031		goto out_unlock;
6032
6033	raw_spin_lock_irqsave(&p->pi_lock, flags);
6034	cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6035	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6036
6037out_unlock:
6038	rcu_read_unlock();
6039
6040	return retval;
6041}
6042
6043/**
6044 * sys_sched_getaffinity - get the CPU affinity of a process
6045 * @pid: pid of the process
6046 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6047 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6048 *
6049 * Return: size of CPU mask copied to user_mask_ptr on success. An
6050 * error code otherwise.
6051 */
6052SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6053		unsigned long __user *, user_mask_ptr)
6054{
6055	int ret;
6056	cpumask_var_t mask;
6057
6058	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6059		return -EINVAL;
6060	if (len & (sizeof(unsigned long)-1))
6061		return -EINVAL;
6062
6063	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6064		return -ENOMEM;
6065
6066	ret = sched_getaffinity(pid, mask);
6067	if (ret == 0) {
6068		unsigned int retlen = min(len, cpumask_size());
6069
6070		if (copy_to_user(user_mask_ptr, mask, retlen))
6071			ret = -EFAULT;
6072		else
6073			ret = retlen;
6074	}
6075	free_cpumask_var(mask);
6076
6077	return ret;
6078}
6079
6080/**
6081 * sys_sched_yield - yield the current processor to other threads.
6082 *
6083 * This function yields the current CPU to other tasks. If there are no
6084 * other threads running on this CPU then this function will return.
6085 *
6086 * Return: 0.
6087 */
6088static void do_sched_yield(void)
6089{
6090	struct rq_flags rf;
6091	struct rq *rq;
6092
6093	rq = this_rq_lock_irq(&rf);
6094
6095	schedstat_inc(rq->yld_count);
6096	current->sched_class->yield_task(rq);
6097
6098	/*
6099	 * Since we are going to call schedule() anyway, there's
6100	 * no need to preempt or enable interrupts:
6101	 */
6102	preempt_disable();
6103	rq_unlock(rq, &rf);
6104	sched_preempt_enable_no_resched();
6105
6106	schedule();
6107}
6108
 
 
 
 
 
 
 
 
6109SYSCALL_DEFINE0(sched_yield)
6110{
6111	do_sched_yield();
6112	return 0;
6113}
6114
6115#ifndef CONFIG_PREEMPTION
6116int __sched _cond_resched(void)
6117{
6118	if (should_resched(0)) {
6119		preempt_schedule_common();
6120		return 1;
6121	}
 
 
 
 
 
 
 
 
 
 
 
 
6122	rcu_all_qs();
 
6123	return 0;
6124}
6125EXPORT_SYMBOL(_cond_resched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6126#endif
6127
6128/*
6129 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6130 * call schedule, and on return reacquire the lock.
6131 *
6132 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6133 * operations here to prevent schedule() from being called twice (once via
6134 * spin_unlock(), once by hand).
6135 */
6136int __cond_resched_lock(spinlock_t *lock)
6137{
6138	int resched = should_resched(PREEMPT_LOCK_OFFSET);
6139	int ret = 0;
6140
6141	lockdep_assert_held(lock);
6142
6143	if (spin_needbreak(lock) || resched) {
6144		spin_unlock(lock);
6145		if (resched)
6146			preempt_schedule_common();
6147		else
6148			cpu_relax();
6149		ret = 1;
6150		spin_lock(lock);
6151	}
6152	return ret;
6153}
6154EXPORT_SYMBOL(__cond_resched_lock);
6155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6156/**
6157 * yield - yield the current processor to other threads.
6158 *
6159 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6160 *
6161 * The scheduler is at all times free to pick the calling task as the most
6162 * eligible task to run, if removing the yield() call from your code breaks
6163 * it, its already broken.
6164 *
6165 * Typical broken usage is:
6166 *
6167 * while (!event)
6168 *	yield();
6169 *
6170 * where one assumes that yield() will let 'the other' process run that will
6171 * make event true. If the current task is a SCHED_FIFO task that will never
6172 * happen. Never use yield() as a progress guarantee!!
6173 *
6174 * If you want to use yield() to wait for something, use wait_event().
6175 * If you want to use yield() to be 'nice' for others, use cond_resched().
6176 * If you still want to use yield(), do not!
6177 */
6178void __sched yield(void)
6179{
6180	set_current_state(TASK_RUNNING);
6181	do_sched_yield();
6182}
6183EXPORT_SYMBOL(yield);
6184
6185/**
6186 * yield_to - yield the current processor to another thread in
6187 * your thread group, or accelerate that thread toward the
6188 * processor it's on.
6189 * @p: target task
6190 * @preempt: whether task preemption is allowed or not
6191 *
6192 * It's the caller's job to ensure that the target task struct
6193 * can't go away on us before we can do any checks.
6194 *
6195 * Return:
6196 *	true (>0) if we indeed boosted the target task.
6197 *	false (0) if we failed to boost the target.
6198 *	-ESRCH if there's no task to yield to.
6199 */
6200int __sched yield_to(struct task_struct *p, bool preempt)
6201{
6202	struct task_struct *curr = current;
6203	struct rq *rq, *p_rq;
6204	unsigned long flags;
6205	int yielded = 0;
6206
6207	local_irq_save(flags);
6208	rq = this_rq();
6209
6210again:
6211	p_rq = task_rq(p);
6212	/*
6213	 * If we're the only runnable task on the rq and target rq also
6214	 * has only one task, there's absolutely no point in yielding.
6215	 */
6216	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6217		yielded = -ESRCH;
6218		goto out_irq;
6219	}
6220
6221	double_rq_lock(rq, p_rq);
6222	if (task_rq(p) != p_rq) {
6223		double_rq_unlock(rq, p_rq);
6224		goto again;
6225	}
6226
6227	if (!curr->sched_class->yield_to_task)
6228		goto out_unlock;
6229
6230	if (curr->sched_class != p->sched_class)
6231		goto out_unlock;
6232
6233	if (task_running(p_rq, p) || p->state)
6234		goto out_unlock;
6235
6236	yielded = curr->sched_class->yield_to_task(rq, p);
6237	if (yielded) {
6238		schedstat_inc(rq->yld_count);
6239		/*
6240		 * Make p's CPU reschedule; pick_next_entity takes care of
6241		 * fairness.
6242		 */
6243		if (preempt && rq != p_rq)
6244			resched_curr(p_rq);
6245	}
6246
6247out_unlock:
6248	double_rq_unlock(rq, p_rq);
6249out_irq:
6250	local_irq_restore(flags);
6251
6252	if (yielded > 0)
6253		schedule();
6254
6255	return yielded;
6256}
6257EXPORT_SYMBOL_GPL(yield_to);
6258
6259int io_schedule_prepare(void)
6260{
6261	int old_iowait = current->in_iowait;
6262
6263	current->in_iowait = 1;
6264	blk_schedule_flush_plug(current);
6265
6266	return old_iowait;
6267}
6268
6269void io_schedule_finish(int token)
6270{
6271	current->in_iowait = token;
6272}
6273
6274/*
6275 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6276 * that process accounting knows that this is a task in IO wait state.
6277 */
6278long __sched io_schedule_timeout(long timeout)
6279{
6280	int token;
6281	long ret;
6282
6283	token = io_schedule_prepare();
6284	ret = schedule_timeout(timeout);
6285	io_schedule_finish(token);
6286
6287	return ret;
6288}
6289EXPORT_SYMBOL(io_schedule_timeout);
6290
6291void __sched io_schedule(void)
6292{
6293	int token;
6294
6295	token = io_schedule_prepare();
6296	schedule();
6297	io_schedule_finish(token);
6298}
6299EXPORT_SYMBOL(io_schedule);
6300
6301/**
6302 * sys_sched_get_priority_max - return maximum RT priority.
6303 * @policy: scheduling class.
6304 *
6305 * Return: On success, this syscall returns the maximum
6306 * rt_priority that can be used by a given scheduling class.
6307 * On failure, a negative error code is returned.
6308 */
6309SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6310{
6311	int ret = -EINVAL;
6312
6313	switch (policy) {
6314	case SCHED_FIFO:
6315	case SCHED_RR:
6316		ret = MAX_USER_RT_PRIO-1;
6317		break;
6318	case SCHED_DEADLINE:
6319	case SCHED_NORMAL:
6320	case SCHED_BATCH:
6321	case SCHED_IDLE:
6322		ret = 0;
6323		break;
6324	}
6325	return ret;
6326}
6327
6328/**
6329 * sys_sched_get_priority_min - return minimum RT priority.
6330 * @policy: scheduling class.
6331 *
6332 * Return: On success, this syscall returns the minimum
6333 * rt_priority that can be used by a given scheduling class.
6334 * On failure, a negative error code is returned.
6335 */
6336SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6337{
6338	int ret = -EINVAL;
6339
6340	switch (policy) {
6341	case SCHED_FIFO:
6342	case SCHED_RR:
6343		ret = 1;
6344		break;
6345	case SCHED_DEADLINE:
6346	case SCHED_NORMAL:
6347	case SCHED_BATCH:
6348	case SCHED_IDLE:
6349		ret = 0;
6350	}
6351	return ret;
6352}
6353
6354static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6355{
6356	struct task_struct *p;
6357	unsigned int time_slice;
6358	struct rq_flags rf;
6359	struct rq *rq;
6360	int retval;
6361
6362	if (pid < 0)
6363		return -EINVAL;
6364
6365	retval = -ESRCH;
6366	rcu_read_lock();
6367	p = find_process_by_pid(pid);
6368	if (!p)
6369		goto out_unlock;
6370
6371	retval = security_task_getscheduler(p);
6372	if (retval)
6373		goto out_unlock;
6374
6375	rq = task_rq_lock(p, &rf);
6376	time_slice = 0;
6377	if (p->sched_class->get_rr_interval)
6378		time_slice = p->sched_class->get_rr_interval(rq, p);
6379	task_rq_unlock(rq, p, &rf);
6380
6381	rcu_read_unlock();
6382	jiffies_to_timespec64(time_slice, t);
6383	return 0;
6384
6385out_unlock:
6386	rcu_read_unlock();
6387	return retval;
6388}
6389
6390/**
6391 * sys_sched_rr_get_interval - return the default timeslice of a process.
6392 * @pid: pid of the process.
6393 * @interval: userspace pointer to the timeslice value.
6394 *
6395 * this syscall writes the default timeslice value of a given process
6396 * into the user-space timespec buffer. A value of '0' means infinity.
6397 *
6398 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6399 * an error code.
6400 */
6401SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6402		struct __kernel_timespec __user *, interval)
6403{
6404	struct timespec64 t;
6405	int retval = sched_rr_get_interval(pid, &t);
6406
6407	if (retval == 0)
6408		retval = put_timespec64(&t, interval);
6409
6410	return retval;
6411}
6412
6413#ifdef CONFIG_COMPAT_32BIT_TIME
6414SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6415		struct old_timespec32 __user *, interval)
6416{
6417	struct timespec64 t;
6418	int retval = sched_rr_get_interval(pid, &t);
6419
6420	if (retval == 0)
6421		retval = put_old_timespec32(&t, interval);
6422	return retval;
6423}
6424#endif
6425
6426void sched_show_task(struct task_struct *p)
6427{
6428	unsigned long free = 0;
6429	int ppid;
6430
6431	if (!try_get_task_stack(p))
6432		return;
6433
6434	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6435
6436	if (p->state == TASK_RUNNING)
6437		pr_cont("  running task    ");
6438#ifdef CONFIG_DEBUG_STACK_USAGE
6439	free = stack_not_used(p);
6440#endif
6441	ppid = 0;
6442	rcu_read_lock();
6443	if (pid_alive(p))
6444		ppid = task_pid_nr(rcu_dereference(p->real_parent));
6445	rcu_read_unlock();
6446	pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6447		free, task_pid_nr(p), ppid,
6448		(unsigned long)task_thread_info(p)->flags);
6449
6450	print_worker_info(KERN_INFO, p);
 
6451	show_stack(p, NULL, KERN_INFO);
6452	put_task_stack(p);
6453}
6454EXPORT_SYMBOL_GPL(sched_show_task);
6455
6456static inline bool
6457state_filter_match(unsigned long state_filter, struct task_struct *p)
6458{
 
 
6459	/* no filter, everything matches */
6460	if (!state_filter)
6461		return true;
6462
6463	/* filter, but doesn't match */
6464	if (!(p->state & state_filter))
6465		return false;
6466
6467	/*
6468	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6469	 * TASK_KILLABLE).
6470	 */
6471	if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6472		return false;
6473
6474	return true;
6475}
6476
6477
6478void show_state_filter(unsigned long state_filter)
6479{
6480	struct task_struct *g, *p;
6481
6482	rcu_read_lock();
6483	for_each_process_thread(g, p) {
6484		/*
6485		 * reset the NMI-timeout, listing all files on a slow
6486		 * console might take a lot of time:
6487		 * Also, reset softlockup watchdogs on all CPUs, because
6488		 * another CPU might be blocked waiting for us to process
6489		 * an IPI.
6490		 */
6491		touch_nmi_watchdog();
6492		touch_all_softlockup_watchdogs();
6493		if (state_filter_match(state_filter, p))
6494			sched_show_task(p);
6495	}
6496
6497#ifdef CONFIG_SCHED_DEBUG
6498	if (!state_filter)
6499		sysrq_sched_debug_show();
6500#endif
6501	rcu_read_unlock();
6502	/*
6503	 * Only show locks if all tasks are dumped:
6504	 */
6505	if (!state_filter)
6506		debug_show_all_locks();
6507}
6508
6509/**
6510 * init_idle - set up an idle thread for a given CPU
6511 * @idle: task in question
6512 * @cpu: CPU the idle task belongs to
6513 *
6514 * NOTE: this function does not set the idle thread's NEED_RESCHED
6515 * flag, to make booting more robust.
6516 */
6517void init_idle(struct task_struct *idle, int cpu)
6518{
 
 
 
 
 
 
6519	struct rq *rq = cpu_rq(cpu);
6520	unsigned long flags;
6521
6522	__sched_fork(0, idle);
6523
6524	raw_spin_lock_irqsave(&idle->pi_lock, flags);
6525	raw_spin_lock(&rq->lock);
6526
6527	idle->state = TASK_RUNNING;
6528	idle->se.exec_start = sched_clock();
6529	idle->flags |= PF_IDLE;
6530
6531	scs_task_reset(idle);
6532	kasan_unpoison_task_stack(idle);
 
 
6533
6534#ifdef CONFIG_SMP
6535	/*
6536	 * Its possible that init_idle() gets called multiple times on a task,
6537	 * in that case do_set_cpus_allowed() will not do the right thing.
6538	 *
6539	 * And since this is boot we can forgo the serialization.
6540	 */
6541	set_cpus_allowed_common(idle, cpumask_of(cpu));
6542#endif
6543	/*
6544	 * We're having a chicken and egg problem, even though we are
6545	 * holding rq->lock, the CPU isn't yet set to this CPU so the
6546	 * lockdep check in task_group() will fail.
6547	 *
6548	 * Similar case to sched_fork(). / Alternatively we could
6549	 * use task_rq_lock() here and obtain the other rq->lock.
6550	 *
6551	 * Silence PROVE_RCU
6552	 */
6553	rcu_read_lock();
6554	__set_task_cpu(idle, cpu);
6555	rcu_read_unlock();
6556
6557	rq->idle = idle;
6558	rcu_assign_pointer(rq->curr, idle);
6559	idle->on_rq = TASK_ON_RQ_QUEUED;
6560#ifdef CONFIG_SMP
6561	idle->on_cpu = 1;
6562#endif
6563	raw_spin_unlock(&rq->lock);
6564	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6565
6566	/* Set the preempt count _outside_ the spinlocks! */
6567	init_idle_preempt_count(idle, cpu);
6568
6569	/*
6570	 * The idle tasks have their own, simple scheduling class:
6571	 */
6572	idle->sched_class = &idle_sched_class;
6573	ftrace_graph_init_idle_task(idle, cpu);
6574	vtime_init_idle(idle, cpu);
6575#ifdef CONFIG_SMP
6576	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6577#endif
6578}
6579
6580#ifdef CONFIG_SMP
6581
6582int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6583			      const struct cpumask *trial)
6584{
6585	int ret = 1;
6586
6587	if (!cpumask_weight(cur))
6588		return ret;
6589
6590	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6591
6592	return ret;
6593}
6594
6595int task_can_attach(struct task_struct *p,
6596		    const struct cpumask *cs_cpus_allowed)
6597{
6598	int ret = 0;
6599
6600	/*
6601	 * Kthreads which disallow setaffinity shouldn't be moved
6602	 * to a new cpuset; we don't want to change their CPU
6603	 * affinity and isolating such threads by their set of
6604	 * allowed nodes is unnecessary.  Thus, cpusets are not
6605	 * applicable for such threads.  This prevents checking for
6606	 * success of set_cpus_allowed_ptr() on all attached tasks
6607	 * before cpus_mask may be changed.
6608	 */
6609	if (p->flags & PF_NO_SETAFFINITY) {
6610		ret = -EINVAL;
6611		goto out;
6612	}
6613
6614	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6615					      cs_cpus_allowed))
6616		ret = dl_task_can_attach(p, cs_cpus_allowed);
 
 
 
 
 
6617
6618out:
6619	return ret;
6620}
6621
6622bool sched_smp_initialized __read_mostly;
6623
6624#ifdef CONFIG_NUMA_BALANCING
6625/* Migrate current task p to target_cpu */
6626int migrate_task_to(struct task_struct *p, int target_cpu)
6627{
6628	struct migration_arg arg = { p, target_cpu };
6629	int curr_cpu = task_cpu(p);
6630
6631	if (curr_cpu == target_cpu)
6632		return 0;
6633
6634	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6635		return -EINVAL;
6636
6637	/* TODO: This is not properly updating schedstats */
6638
6639	trace_sched_move_numa(p, curr_cpu, target_cpu);
6640	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6641}
6642
6643/*
6644 * Requeue a task on a given node and accurately track the number of NUMA
6645 * tasks on the runqueues
6646 */
6647void sched_setnuma(struct task_struct *p, int nid)
6648{
6649	bool queued, running;
6650	struct rq_flags rf;
6651	struct rq *rq;
6652
6653	rq = task_rq_lock(p, &rf);
6654	queued = task_on_rq_queued(p);
6655	running = task_current(rq, p);
6656
6657	if (queued)
6658		dequeue_task(rq, p, DEQUEUE_SAVE);
6659	if (running)
6660		put_prev_task(rq, p);
6661
6662	p->numa_preferred_nid = nid;
6663
6664	if (queued)
6665		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6666	if (running)
6667		set_next_task(rq, p);
6668	task_rq_unlock(rq, p, &rf);
6669}
6670#endif /* CONFIG_NUMA_BALANCING */
6671
6672#ifdef CONFIG_HOTPLUG_CPU
6673/*
6674 * Ensure that the idle task is using init_mm right before its CPU goes
6675 * offline.
6676 */
6677void idle_task_exit(void)
6678{
6679	struct mm_struct *mm = current->active_mm;
6680
6681	BUG_ON(cpu_online(smp_processor_id()));
6682	BUG_ON(current != this_rq()->idle);
6683
6684	if (mm != &init_mm) {
6685		switch_mm(mm, &init_mm, current);
6686		finish_arch_post_lock_switch();
6687	}
6688
6689	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6690}
6691
6692/*
6693 * Since this CPU is going 'away' for a while, fold any nr_active delta
6694 * we might have. Assumes we're called after migrate_tasks() so that the
6695 * nr_active count is stable. We need to take the teardown thread which
6696 * is calling this into account, so we hand in adjust = 1 to the load
6697 * calculation.
6698 *
6699 * Also see the comment "Global load-average calculations".
6700 */
6701static void calc_load_migrate(struct rq *rq)
6702{
6703	long delta = calc_load_fold_active(rq, 1);
6704	if (delta)
6705		atomic_long_add(delta, &calc_load_tasks);
6706}
 
 
 
6707
6708static struct task_struct *__pick_migrate_task(struct rq *rq)
6709{
6710	const struct sched_class *class;
6711	struct task_struct *next;
6712
6713	for_each_class(class) {
6714		next = class->pick_next_task(rq);
6715		if (next) {
6716			next->sched_class->put_prev_task(rq, next);
6717			return next;
6718		}
6719	}
6720
6721	/* The idle class should always have a runnable task */
6722	BUG();
 
 
 
 
6723}
6724
 
 
6725/*
6726 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6727 * try_to_wake_up()->select_task_rq().
6728 *
6729 * Called with rq->lock held even though we'er in stop_machine() and
6730 * there's no concurrency possible, we hold the required locks anyway
6731 * because of lock validation efforts.
6732 */
6733static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6734{
6735	struct rq *rq = dead_rq;
6736	struct task_struct *next, *stop = rq->stop;
6737	struct rq_flags orf = *rf;
6738	int dest_cpu;
6739
6740	/*
6741	 * Fudge the rq selection such that the below task selection loop
6742	 * doesn't get stuck on the currently eligible stop task.
6743	 *
6744	 * We're currently inside stop_machine() and the rq is either stuck
6745	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6746	 * either way we should never end up calling schedule() until we're
6747	 * done here.
6748	 */
6749	rq->stop = NULL;
6750
6751	/*
6752	 * put_prev_task() and pick_next_task() sched
6753	 * class method both need to have an up-to-date
6754	 * value of rq->clock[_task]
6755	 */
6756	update_rq_clock(rq);
 
6757
6758	for (;;) {
6759		/*
6760		 * There's this thread running, bail when that's the only
6761		 * remaining thread:
6762		 */
6763		if (rq->nr_running == 1)
6764			break;
6765
6766		next = __pick_migrate_task(rq);
6767
6768		/*
6769		 * Rules for changing task_struct::cpus_mask are holding
6770		 * both pi_lock and rq->lock, such that holding either
6771		 * stabilizes the mask.
 
 
6772		 *
6773		 * Drop rq->lock is not quite as disastrous as it usually is
6774		 * because !cpu_active at this point, which means load-balance
6775		 * will not interfere. Also, stop-machine.
6776		 */
6777		rq_unlock(rq, rf);
6778		raw_spin_lock(&next->pi_lock);
6779		rq_relock(rq, rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6780
6781		/*
6782		 * Since we're inside stop-machine, _nothing_ should have
6783		 * changed the task, WARN if weird stuff happened, because in
6784		 * that case the above rq->lock drop is a fail too.
6785		 */
6786		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6787			raw_spin_unlock(&next->pi_lock);
6788			continue;
6789		}
6790
6791		/* Find suitable destination for @next, with force if needed. */
6792		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6793		rq = __migrate_task(rq, rf, next, dest_cpu);
6794		if (rq != dead_rq) {
6795			rq_unlock(rq, rf);
6796			rq = dead_rq;
6797			*rf = orf;
6798			rq_relock(rq, rf);
6799		}
6800		raw_spin_unlock(&next->pi_lock);
6801	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6802
6803	rq->stop = stop;
 
6804}
 
 
 
 
 
 
 
 
 
6805#endif /* CONFIG_HOTPLUG_CPU */
6806
6807void set_rq_online(struct rq *rq)
6808{
6809	if (!rq->online) {
6810		const struct sched_class *class;
6811
6812		cpumask_set_cpu(rq->cpu, rq->rd->online);
6813		rq->online = 1;
6814
6815		for_each_class(class) {
6816			if (class->rq_online)
6817				class->rq_online(rq);
6818		}
6819	}
6820}
6821
6822void set_rq_offline(struct rq *rq)
6823{
6824	if (rq->online) {
6825		const struct sched_class *class;
6826
6827		for_each_class(class) {
6828			if (class->rq_offline)
6829				class->rq_offline(rq);
6830		}
6831
6832		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6833		rq->online = 0;
6834	}
6835}
6836
6837/*
6838 * used to mark begin/end of suspend/resume:
6839 */
6840static int num_cpus_frozen;
6841
6842/*
6843 * Update cpusets according to cpu_active mask.  If cpusets are
6844 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6845 * around partition_sched_domains().
6846 *
6847 * If we come here as part of a suspend/resume, don't touch cpusets because we
6848 * want to restore it back to its original state upon resume anyway.
6849 */
6850static void cpuset_cpu_active(void)
6851{
6852	if (cpuhp_tasks_frozen) {
6853		/*
6854		 * num_cpus_frozen tracks how many CPUs are involved in suspend
6855		 * resume sequence. As long as this is not the last online
6856		 * operation in the resume sequence, just build a single sched
6857		 * domain, ignoring cpusets.
6858		 */
6859		partition_sched_domains(1, NULL, NULL);
6860		if (--num_cpus_frozen)
6861			return;
6862		/*
6863		 * This is the last CPU online operation. So fall through and
6864		 * restore the original sched domains by considering the
6865		 * cpuset configurations.
6866		 */
6867		cpuset_force_rebuild();
6868	}
6869	cpuset_update_active_cpus();
6870}
6871
6872static int cpuset_cpu_inactive(unsigned int cpu)
6873{
6874	if (!cpuhp_tasks_frozen) {
6875		if (dl_cpu_busy(cpu))
6876			return -EBUSY;
 
 
6877		cpuset_update_active_cpus();
6878	} else {
6879		num_cpus_frozen++;
6880		partition_sched_domains(1, NULL, NULL);
6881	}
6882	return 0;
6883}
6884
6885int sched_cpu_activate(unsigned int cpu)
6886{
6887	struct rq *rq = cpu_rq(cpu);
6888	struct rq_flags rf;
6889
 
 
 
 
 
 
6890#ifdef CONFIG_SCHED_SMT
6891	/*
6892	 * When going up, increment the number of cores with SMT present.
6893	 */
6894	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6895		static_branch_inc_cpuslocked(&sched_smt_present);
6896#endif
6897	set_cpu_active(cpu, true);
6898
6899	if (sched_smp_initialized) {
 
6900		sched_domains_numa_masks_set(cpu);
6901		cpuset_cpu_active();
6902	}
6903
6904	/*
6905	 * Put the rq online, if not already. This happens:
6906	 *
6907	 * 1) In the early boot process, because we build the real domains
6908	 *    after all CPUs have been brought up.
6909	 *
6910	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6911	 *    domains.
6912	 */
6913	rq_lock_irqsave(rq, &rf);
6914	if (rq->rd) {
6915		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6916		set_rq_online(rq);
6917	}
6918	rq_unlock_irqrestore(rq, &rf);
6919
6920	return 0;
6921}
6922
6923int sched_cpu_deactivate(unsigned int cpu)
6924{
 
 
6925	int ret;
6926
 
 
 
 
 
 
6927	set_cpu_active(cpu, false);
 
6928	/*
6929	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6930	 * users of this state to go away such that all new such users will
6931	 * observe it.
 
 
 
 
 
 
 
 
 
 
 
6932	 *
6933	 * Do sync before park smpboot threads to take care the rcu boost case.
6934	 */
6935	synchronize_rcu();
6936
 
 
 
 
 
 
 
 
6937#ifdef CONFIG_SCHED_SMT
6938	/*
6939	 * When going down, decrement the number of cores with SMT present.
6940	 */
6941	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6942		static_branch_dec_cpuslocked(&sched_smt_present);
 
 
6943#endif
6944
6945	if (!sched_smp_initialized)
6946		return 0;
6947
 
6948	ret = cpuset_cpu_inactive(cpu);
6949	if (ret) {
 
6950		set_cpu_active(cpu, true);
 
6951		return ret;
6952	}
6953	sched_domains_numa_masks_clear(cpu);
6954	return 0;
6955}
6956
6957static void sched_rq_cpu_starting(unsigned int cpu)
6958{
6959	struct rq *rq = cpu_rq(cpu);
6960
6961	rq->calc_load_update = calc_load_update;
6962	update_max_interval();
6963}
6964
6965int sched_cpu_starting(unsigned int cpu)
6966{
 
6967	sched_rq_cpu_starting(cpu);
6968	sched_tick_start(cpu);
6969	return 0;
6970}
6971
6972#ifdef CONFIG_HOTPLUG_CPU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6973int sched_cpu_dying(unsigned int cpu)
6974{
6975	struct rq *rq = cpu_rq(cpu);
6976	struct rq_flags rf;
6977
6978	/* Handle pending wakeups and then migrate everything off */
6979	sched_tick_stop(cpu);
6980
6981	rq_lock_irqsave(rq, &rf);
6982	if (rq->rd) {
6983		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6984		set_rq_offline(rq);
6985	}
6986	migrate_tasks(rq, &rf);
6987	BUG_ON(rq->nr_running != 1);
6988	rq_unlock_irqrestore(rq, &rf);
6989
6990	calc_load_migrate(rq);
6991	update_max_interval();
6992	nohz_balance_exit_idle(rq);
6993	hrtick_clear(rq);
 
6994	return 0;
6995}
6996#endif
6997
6998void __init sched_init_smp(void)
6999{
7000	sched_init_numa();
7001
7002	/*
7003	 * There's no userspace yet to cause hotplug operations; hence all the
7004	 * CPU masks are stable and all blatant races in the below code cannot
7005	 * happen.
7006	 */
7007	mutex_lock(&sched_domains_mutex);
7008	sched_init_domains(cpu_active_mask);
7009	mutex_unlock(&sched_domains_mutex);
7010
7011	/* Move init over to a non-isolated CPU */
7012	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7013		BUG();
 
7014	sched_init_granularity();
7015
7016	init_sched_rt_class();
7017	init_sched_dl_class();
7018
7019	sched_smp_initialized = true;
7020}
7021
7022static int __init migration_init(void)
7023{
7024	sched_cpu_starting(smp_processor_id());
7025	return 0;
7026}
7027early_initcall(migration_init);
7028
7029#else
7030void __init sched_init_smp(void)
7031{
7032	sched_init_granularity();
7033}
7034#endif /* CONFIG_SMP */
7035
7036int in_sched_functions(unsigned long addr)
7037{
7038	return in_lock_functions(addr) ||
7039		(addr >= (unsigned long)__sched_text_start
7040		&& addr < (unsigned long)__sched_text_end);
7041}
7042
7043#ifdef CONFIG_CGROUP_SCHED
7044/*
7045 * Default task group.
7046 * Every task in system belongs to this group at bootup.
7047 */
7048struct task_group root_task_group;
7049LIST_HEAD(task_groups);
7050
7051/* Cacheline aligned slab cache for task_group */
7052static struct kmem_cache *task_group_cache __read_mostly;
7053#endif
7054
7055DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7056DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7057
7058void __init sched_init(void)
7059{
7060	unsigned long ptr = 0;
7061	int i;
7062
7063	/* Make sure the linker didn't screw up */
7064	BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7065	       &fair_sched_class + 1 != &rt_sched_class ||
7066	       &rt_sched_class + 1   != &dl_sched_class);
7067#ifdef CONFIG_SMP
7068	BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7069#endif
7070
7071	wait_bit_init();
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074	ptr += 2 * nr_cpu_ids * sizeof(void **);
7075#endif
7076#ifdef CONFIG_RT_GROUP_SCHED
7077	ptr += 2 * nr_cpu_ids * sizeof(void **);
7078#endif
7079	if (ptr) {
7080		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7081
7082#ifdef CONFIG_FAIR_GROUP_SCHED
7083		root_task_group.se = (struct sched_entity **)ptr;
7084		ptr += nr_cpu_ids * sizeof(void **);
7085
7086		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7087		ptr += nr_cpu_ids * sizeof(void **);
7088
7089		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7090		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7091#endif /* CONFIG_FAIR_GROUP_SCHED */
7092#ifdef CONFIG_RT_GROUP_SCHED
7093		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7094		ptr += nr_cpu_ids * sizeof(void **);
7095
7096		root_task_group.rt_rq = (struct rt_rq **)ptr;
7097		ptr += nr_cpu_ids * sizeof(void **);
7098
7099#endif /* CONFIG_RT_GROUP_SCHED */
7100	}
7101#ifdef CONFIG_CPUMASK_OFFSTACK
7102	for_each_possible_cpu(i) {
7103		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7104			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7105		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7106			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7107	}
7108#endif /* CONFIG_CPUMASK_OFFSTACK */
7109
7110	init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7111	init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7112
7113#ifdef CONFIG_SMP
7114	init_defrootdomain();
7115#endif
7116
7117#ifdef CONFIG_RT_GROUP_SCHED
7118	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7119			global_rt_period(), global_rt_runtime());
7120#endif /* CONFIG_RT_GROUP_SCHED */
7121
7122#ifdef CONFIG_CGROUP_SCHED
7123	task_group_cache = KMEM_CACHE(task_group, 0);
7124
7125	list_add(&root_task_group.list, &task_groups);
7126	INIT_LIST_HEAD(&root_task_group.children);
7127	INIT_LIST_HEAD(&root_task_group.siblings);
7128	autogroup_init(&init_task);
7129#endif /* CONFIG_CGROUP_SCHED */
7130
7131	for_each_possible_cpu(i) {
7132		struct rq *rq;
7133
7134		rq = cpu_rq(i);
7135		raw_spin_lock_init(&rq->lock);
7136		rq->nr_running = 0;
7137		rq->calc_load_active = 0;
7138		rq->calc_load_update = jiffies + LOAD_FREQ;
7139		init_cfs_rq(&rq->cfs);
7140		init_rt_rq(&rq->rt);
7141		init_dl_rq(&rq->dl);
7142#ifdef CONFIG_FAIR_GROUP_SCHED
7143		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7144		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7145		/*
7146		 * How much CPU bandwidth does root_task_group get?
7147		 *
7148		 * In case of task-groups formed thr' the cgroup filesystem, it
7149		 * gets 100% of the CPU resources in the system. This overall
7150		 * system CPU resource is divided among the tasks of
7151		 * root_task_group and its child task-groups in a fair manner,
7152		 * based on each entity's (task or task-group's) weight
7153		 * (se->load.weight).
7154		 *
7155		 * In other words, if root_task_group has 10 tasks of weight
7156		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7157		 * then A0's share of the CPU resource is:
7158		 *
7159		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7160		 *
7161		 * We achieve this by letting root_task_group's tasks sit
7162		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7163		 */
7164		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7165#endif /* CONFIG_FAIR_GROUP_SCHED */
7166
7167		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7168#ifdef CONFIG_RT_GROUP_SCHED
7169		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7170#endif
7171#ifdef CONFIG_SMP
7172		rq->sd = NULL;
7173		rq->rd = NULL;
7174		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7175		rq->balance_callback = NULL;
7176		rq->active_balance = 0;
7177		rq->next_balance = jiffies;
7178		rq->push_cpu = 0;
7179		rq->cpu = i;
7180		rq->online = 0;
7181		rq->idle_stamp = 0;
7182		rq->avg_idle = 2*sysctl_sched_migration_cost;
 
 
7183		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7184
7185		INIT_LIST_HEAD(&rq->cfs_tasks);
7186
7187		rq_attach_root(rq, &def_root_domain);
7188#ifdef CONFIG_NO_HZ_COMMON
7189		rq->last_blocked_load_update_tick = jiffies;
7190		atomic_set(&rq->nohz_flags, 0);
7191
7192		rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
 
 
 
7193#endif
7194#endif /* CONFIG_SMP */
7195		hrtick_rq_init(rq);
7196		atomic_set(&rq->nr_iowait, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
7197	}
7198
7199	set_load_weight(&init_task, false);
7200
7201	/*
7202	 * The boot idle thread does lazy MMU switching as well:
7203	 */
7204	mmgrab(&init_mm);
7205	enter_lazy_tlb(&init_mm, current);
7206
7207	/*
 
 
 
 
 
 
 
 
7208	 * Make us the idle thread. Technically, schedule() should not be
7209	 * called from this thread, however somewhere below it might be,
7210	 * but because we are the idle thread, we just pick up running again
7211	 * when this runqueue becomes "idle".
7212	 */
7213	init_idle(current, smp_processor_id());
7214
7215	calc_load_update = jiffies + LOAD_FREQ;
7216
7217#ifdef CONFIG_SMP
7218	idle_thread_set_boot_cpu();
 
7219#endif
7220	init_sched_fair_class();
7221
7222	init_schedstats();
7223
7224	psi_init();
7225
7226	init_uclamp();
7227
 
 
7228	scheduler_running = 1;
7229}
7230
7231#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7232static inline int preempt_count_equals(int preempt_offset)
7233{
7234	int nested = preempt_count() + rcu_preempt_depth();
7235
7236	return (nested == preempt_offset);
7237}
7238
7239void __might_sleep(const char *file, int line, int preempt_offset)
7240{
 
7241	/*
7242	 * Blocking primitives will set (and therefore destroy) current->state,
7243	 * since we will exit with TASK_RUNNING make sure we enter with it,
7244	 * otherwise we will destroy state.
7245	 */
7246	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7247			"do not call blocking ops when !TASK_RUNNING; "
7248			"state=%lx set at [<%p>] %pS\n",
7249			current->state,
7250			(void *)current->task_state_change,
7251			(void *)current->task_state_change);
7252
7253	___might_sleep(file, line, preempt_offset);
7254}
7255EXPORT_SYMBOL(__might_sleep);
7256
7257void ___might_sleep(const char *file, int line, int preempt_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7258{
7259	/* Ratelimiting timestamp: */
7260	static unsigned long prev_jiffy;
7261
7262	unsigned long preempt_disable_ip;
7263
7264	/* WARN_ON_ONCE() by default, no rate limit required: */
7265	rcu_sleep_check();
7266
7267	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7268	     !is_idle_task(current) && !current->non_block_count) ||
7269	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7270	    oops_in_progress)
7271		return;
7272
7273	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7274		return;
7275	prev_jiffy = jiffies;
7276
7277	/* Save this before calling printk(), since that will clobber it: */
7278	preempt_disable_ip = get_preempt_disable_ip(current);
7279
7280	printk(KERN_ERR
7281		"BUG: sleeping function called from invalid context at %s:%d\n",
7282			file, line);
7283	printk(KERN_ERR
7284		"in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7285			in_atomic(), irqs_disabled(), current->non_block_count,
7286			current->pid, current->comm);
 
 
 
 
 
7287
7288	if (task_stack_end_corrupted(current))
7289		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7290
7291	debug_show_held_locks(current);
7292	if (irqs_disabled())
7293		print_irqtrace_events(current);
7294	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7295	    && !preempt_count_equals(preempt_offset)) {
7296		pr_err("Preemption disabled at:");
7297		print_ip_sym(KERN_ERR, preempt_disable_ip);
7298	}
7299	dump_stack();
7300	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7301}
7302EXPORT_SYMBOL(___might_sleep);
7303
7304void __cant_sleep(const char *file, int line, int preempt_offset)
7305{
7306	static unsigned long prev_jiffy;
7307
7308	if (irqs_disabled())
7309		return;
7310
7311	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7312		return;
7313
7314	if (preempt_count() > preempt_offset)
7315		return;
7316
7317	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7318		return;
7319	prev_jiffy = jiffies;
7320
7321	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7322	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7323			in_atomic(), irqs_disabled(),
7324			current->pid, current->comm);
7325
7326	debug_show_held_locks(current);
7327	dump_stack();
7328	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7329}
7330EXPORT_SYMBOL_GPL(__cant_sleep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7331#endif
7332
7333#ifdef CONFIG_MAGIC_SYSRQ
7334void normalize_rt_tasks(void)
7335{
7336	struct task_struct *g, *p;
7337	struct sched_attr attr = {
7338		.sched_policy = SCHED_NORMAL,
7339	};
7340
7341	read_lock(&tasklist_lock);
7342	for_each_process_thread(g, p) {
7343		/*
7344		 * Only normalize user tasks:
7345		 */
7346		if (p->flags & PF_KTHREAD)
7347			continue;
7348
7349		p->se.exec_start = 0;
7350		schedstat_set(p->se.statistics.wait_start,  0);
7351		schedstat_set(p->se.statistics.sleep_start, 0);
7352		schedstat_set(p->se.statistics.block_start, 0);
7353
7354		if (!dl_task(p) && !rt_task(p)) {
7355			/*
7356			 * Renice negative nice level userspace
7357			 * tasks back to 0:
7358			 */
7359			if (task_nice(p) < 0)
7360				set_user_nice(p, 0);
7361			continue;
7362		}
7363
7364		__sched_setscheduler(p, &attr, false, false);
7365	}
7366	read_unlock(&tasklist_lock);
7367}
7368
7369#endif /* CONFIG_MAGIC_SYSRQ */
7370
7371#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7372/*
7373 * These functions are only useful for the IA64 MCA handling, or kdb.
7374 *
7375 * They can only be called when the whole system has been
7376 * stopped - every CPU needs to be quiescent, and no scheduling
7377 * activity can take place. Using them for anything else would
7378 * be a serious bug, and as a result, they aren't even visible
7379 * under any other configuration.
7380 */
7381
7382/**
7383 * curr_task - return the current task for a given CPU.
7384 * @cpu: the processor in question.
7385 *
7386 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7387 *
7388 * Return: The current task for @cpu.
7389 */
7390struct task_struct *curr_task(int cpu)
7391{
7392	return cpu_curr(cpu);
7393}
7394
7395#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7396
7397#ifdef CONFIG_IA64
7398/**
7399 * ia64_set_curr_task - set the current task for a given CPU.
7400 * @cpu: the processor in question.
7401 * @p: the task pointer to set.
7402 *
7403 * Description: This function must only be used when non-maskable interrupts
7404 * are serviced on a separate stack. It allows the architecture to switch the
7405 * notion of the current task on a CPU in a non-blocking manner. This function
7406 * must be called with all CPU's synchronized, and interrupts disabled, the
7407 * and caller must save the original value of the current task (see
7408 * curr_task() above) and restore that value before reenabling interrupts and
7409 * re-starting the system.
7410 *
7411 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7412 */
7413void ia64_set_curr_task(int cpu, struct task_struct *p)
7414{
7415	cpu_curr(cpu) = p;
7416}
7417
7418#endif
7419
7420#ifdef CONFIG_CGROUP_SCHED
7421/* task_group_lock serializes the addition/removal of task groups */
7422static DEFINE_SPINLOCK(task_group_lock);
7423
7424static inline void alloc_uclamp_sched_group(struct task_group *tg,
7425					    struct task_group *parent)
7426{
7427#ifdef CONFIG_UCLAMP_TASK_GROUP
7428	enum uclamp_id clamp_id;
7429
7430	for_each_clamp_id(clamp_id) {
7431		uclamp_se_set(&tg->uclamp_req[clamp_id],
7432			      uclamp_none(clamp_id), false);
7433		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7434	}
7435#endif
7436}
7437
7438static void sched_free_group(struct task_group *tg)
7439{
7440	free_fair_sched_group(tg);
7441	free_rt_sched_group(tg);
7442	autogroup_free(tg);
7443	kmem_cache_free(task_group_cache, tg);
7444}
7445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7446/* allocate runqueue etc for a new task group */
7447struct task_group *sched_create_group(struct task_group *parent)
7448{
7449	struct task_group *tg;
7450
7451	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7452	if (!tg)
7453		return ERR_PTR(-ENOMEM);
7454
7455	if (!alloc_fair_sched_group(tg, parent))
7456		goto err;
7457
7458	if (!alloc_rt_sched_group(tg, parent))
7459		goto err;
7460
7461	alloc_uclamp_sched_group(tg, parent);
7462
7463	return tg;
7464
7465err:
7466	sched_free_group(tg);
7467	return ERR_PTR(-ENOMEM);
7468}
7469
7470void sched_online_group(struct task_group *tg, struct task_group *parent)
7471{
7472	unsigned long flags;
7473
7474	spin_lock_irqsave(&task_group_lock, flags);
7475	list_add_rcu(&tg->list, &task_groups);
7476
7477	/* Root should already exist: */
7478	WARN_ON(!parent);
7479
7480	tg->parent = parent;
7481	INIT_LIST_HEAD(&tg->children);
7482	list_add_rcu(&tg->siblings, &parent->children);
7483	spin_unlock_irqrestore(&task_group_lock, flags);
7484
7485	online_fair_sched_group(tg);
7486}
7487
7488/* rcu callback to free various structures associated with a task group */
7489static void sched_free_group_rcu(struct rcu_head *rhp)
7490{
7491	/* Now it should be safe to free those cfs_rqs: */
7492	sched_free_group(container_of(rhp, struct task_group, rcu));
7493}
7494
7495void sched_destroy_group(struct task_group *tg)
7496{
7497	/* Wait for possible concurrent references to cfs_rqs complete: */
7498	call_rcu(&tg->rcu, sched_free_group_rcu);
7499}
7500
7501void sched_offline_group(struct task_group *tg)
7502{
7503	unsigned long flags;
7504
7505	/* End participation in shares distribution: */
7506	unregister_fair_sched_group(tg);
7507
 
 
 
 
 
 
 
 
 
 
7508	spin_lock_irqsave(&task_group_lock, flags);
7509	list_del_rcu(&tg->list);
7510	list_del_rcu(&tg->siblings);
7511	spin_unlock_irqrestore(&task_group_lock, flags);
7512}
7513
7514static void sched_change_group(struct task_struct *tsk, int type)
7515{
7516	struct task_group *tg;
7517
7518	/*
7519	 * All callers are synchronized by task_rq_lock(); we do not use RCU
7520	 * which is pointless here. Thus, we pass "true" to task_css_check()
7521	 * to prevent lockdep warnings.
7522	 */
7523	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7524			  struct task_group, css);
7525	tg = autogroup_task_group(tsk, tg);
7526	tsk->sched_task_group = tg;
7527
7528#ifdef CONFIG_FAIR_GROUP_SCHED
7529	if (tsk->sched_class->task_change_group)
7530		tsk->sched_class->task_change_group(tsk, type);
7531	else
7532#endif
7533		set_task_rq(tsk, task_cpu(tsk));
7534}
7535
7536/*
7537 * Change task's runqueue when it moves between groups.
7538 *
7539 * The caller of this function should have put the task in its new group by
7540 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7541 * its new group.
7542 */
7543void sched_move_task(struct task_struct *tsk)
7544{
7545	int queued, running, queue_flags =
7546		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7547	struct rq_flags rf;
7548	struct rq *rq;
7549
7550	rq = task_rq_lock(tsk, &rf);
7551	update_rq_clock(rq);
7552
7553	running = task_current(rq, tsk);
7554	queued = task_on_rq_queued(tsk);
7555
7556	if (queued)
7557		dequeue_task(rq, tsk, queue_flags);
7558	if (running)
7559		put_prev_task(rq, tsk);
7560
7561	sched_change_group(tsk, TASK_MOVE_GROUP);
7562
7563	if (queued)
7564		enqueue_task(rq, tsk, queue_flags);
7565	if (running) {
7566		set_next_task(rq, tsk);
7567		/*
7568		 * After changing group, the running task may have joined a
7569		 * throttled one but it's still the running task. Trigger a
7570		 * resched to make sure that task can still run.
7571		 */
7572		resched_curr(rq);
7573	}
7574
7575	task_rq_unlock(rq, tsk, &rf);
7576}
7577
7578static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7579{
7580	return css ? container_of(css, struct task_group, css) : NULL;
7581}
7582
7583static struct cgroup_subsys_state *
7584cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7585{
7586	struct task_group *parent = css_tg(parent_css);
7587	struct task_group *tg;
7588
7589	if (!parent) {
7590		/* This is early initialization for the top cgroup */
7591		return &root_task_group.css;
7592	}
7593
7594	tg = sched_create_group(parent);
7595	if (IS_ERR(tg))
7596		return ERR_PTR(-ENOMEM);
7597
7598	return &tg->css;
7599}
7600
7601/* Expose task group only after completing cgroup initialization */
7602static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7603{
7604	struct task_group *tg = css_tg(css);
7605	struct task_group *parent = css_tg(css->parent);
7606
7607	if (parent)
7608		sched_online_group(tg, parent);
7609
7610#ifdef CONFIG_UCLAMP_TASK_GROUP
7611	/* Propagate the effective uclamp value for the new group */
 
 
7612	cpu_util_update_eff(css);
 
 
7613#endif
7614
7615	return 0;
7616}
7617
7618static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7619{
7620	struct task_group *tg = css_tg(css);
7621
7622	sched_offline_group(tg);
7623}
7624
7625static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7626{
7627	struct task_group *tg = css_tg(css);
7628
7629	/*
7630	 * Relies on the RCU grace period between css_released() and this.
7631	 */
7632	sched_free_group(tg);
7633}
7634
7635/*
7636 * This is called before wake_up_new_task(), therefore we really only
7637 * have to set its group bits, all the other stuff does not apply.
7638 */
7639static void cpu_cgroup_fork(struct task_struct *task)
7640{
7641	struct rq_flags rf;
7642	struct rq *rq;
7643
7644	rq = task_rq_lock(task, &rf);
7645
7646	update_rq_clock(rq);
7647	sched_change_group(task, TASK_SET_GROUP);
7648
7649	task_rq_unlock(rq, task, &rf);
7650}
7651
 
7652static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7653{
7654	struct task_struct *task;
7655	struct cgroup_subsys_state *css;
7656	int ret = 0;
7657
7658	cgroup_taskset_for_each(task, css, tset) {
7659#ifdef CONFIG_RT_GROUP_SCHED
7660		if (!sched_rt_can_attach(css_tg(css), task))
7661			return -EINVAL;
7662#endif
7663		/*
7664		 * Serialize against wake_up_new_task() such that if its
7665		 * running, we're sure to observe its full state.
7666		 */
7667		raw_spin_lock_irq(&task->pi_lock);
7668		/*
7669		 * Avoid calling sched_move_task() before wake_up_new_task()
7670		 * has happened. This would lead to problems with PELT, due to
7671		 * move wanting to detach+attach while we're not attached yet.
7672		 */
7673		if (task->state == TASK_NEW)
7674			ret = -EINVAL;
7675		raw_spin_unlock_irq(&task->pi_lock);
7676
7677		if (ret)
7678			break;
7679	}
7680	return ret;
7681}
 
7682
7683static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7684{
7685	struct task_struct *task;
7686	struct cgroup_subsys_state *css;
7687
7688	cgroup_taskset_for_each(task, css, tset)
7689		sched_move_task(task);
7690}
7691
7692#ifdef CONFIG_UCLAMP_TASK_GROUP
7693static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7694{
7695	struct cgroup_subsys_state *top_css = css;
7696	struct uclamp_se *uc_parent = NULL;
7697	struct uclamp_se *uc_se = NULL;
7698	unsigned int eff[UCLAMP_CNT];
7699	enum uclamp_id clamp_id;
7700	unsigned int clamps;
7701
 
 
 
7702	css_for_each_descendant_pre(css, top_css) {
7703		uc_parent = css_tg(css)->parent
7704			? css_tg(css)->parent->uclamp : NULL;
7705
7706		for_each_clamp_id(clamp_id) {
7707			/* Assume effective clamps matches requested clamps */
7708			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7709			/* Cap effective clamps with parent's effective clamps */
7710			if (uc_parent &&
7711			    eff[clamp_id] > uc_parent[clamp_id].value) {
7712				eff[clamp_id] = uc_parent[clamp_id].value;
7713			}
7714		}
7715		/* Ensure protection is always capped by limit */
7716		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7717
7718		/* Propagate most restrictive effective clamps */
7719		clamps = 0x0;
7720		uc_se = css_tg(css)->uclamp;
7721		for_each_clamp_id(clamp_id) {
7722			if (eff[clamp_id] == uc_se[clamp_id].value)
7723				continue;
7724			uc_se[clamp_id].value = eff[clamp_id];
7725			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7726			clamps |= (0x1 << clamp_id);
7727		}
7728		if (!clamps) {
7729			css = css_rightmost_descendant(css);
7730			continue;
7731		}
7732
7733		/* Immediately update descendants RUNNABLE tasks */
7734		uclamp_update_active_tasks(css, clamps);
7735	}
7736}
7737
7738/*
7739 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7740 * C expression. Since there is no way to convert a macro argument (N) into a
7741 * character constant, use two levels of macros.
7742 */
7743#define _POW10(exp) ((unsigned int)1e##exp)
7744#define POW10(exp) _POW10(exp)
7745
7746struct uclamp_request {
7747#define UCLAMP_PERCENT_SHIFT	2
7748#define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
7749	s64 percent;
7750	u64 util;
7751	int ret;
7752};
7753
7754static inline struct uclamp_request
7755capacity_from_percent(char *buf)
7756{
7757	struct uclamp_request req = {
7758		.percent = UCLAMP_PERCENT_SCALE,
7759		.util = SCHED_CAPACITY_SCALE,
7760		.ret = 0,
7761	};
7762
7763	buf = strim(buf);
7764	if (strcmp(buf, "max")) {
7765		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7766					     &req.percent);
7767		if (req.ret)
7768			return req;
7769		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7770			req.ret = -ERANGE;
7771			return req;
7772		}
7773
7774		req.util = req.percent << SCHED_CAPACITY_SHIFT;
7775		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7776	}
7777
7778	return req;
7779}
7780
7781static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7782				size_t nbytes, loff_t off,
7783				enum uclamp_id clamp_id)
7784{
7785	struct uclamp_request req;
7786	struct task_group *tg;
7787
7788	req = capacity_from_percent(buf);
7789	if (req.ret)
7790		return req.ret;
7791
7792	static_branch_enable(&sched_uclamp_used);
7793
7794	mutex_lock(&uclamp_mutex);
7795	rcu_read_lock();
7796
7797	tg = css_tg(of_css(of));
7798	if (tg->uclamp_req[clamp_id].value != req.util)
7799		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7800
7801	/*
7802	 * Because of not recoverable conversion rounding we keep track of the
7803	 * exact requested value
7804	 */
7805	tg->uclamp_pct[clamp_id] = req.percent;
7806
7807	/* Update effective clamps to track the most restrictive value */
7808	cpu_util_update_eff(of_css(of));
7809
7810	rcu_read_unlock();
7811	mutex_unlock(&uclamp_mutex);
7812
7813	return nbytes;
7814}
7815
7816static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7817				    char *buf, size_t nbytes,
7818				    loff_t off)
7819{
7820	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7821}
7822
7823static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7824				    char *buf, size_t nbytes,
7825				    loff_t off)
7826{
7827	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7828}
7829
7830static inline void cpu_uclamp_print(struct seq_file *sf,
7831				    enum uclamp_id clamp_id)
7832{
7833	struct task_group *tg;
7834	u64 util_clamp;
7835	u64 percent;
7836	u32 rem;
7837
7838	rcu_read_lock();
7839	tg = css_tg(seq_css(sf));
7840	util_clamp = tg->uclamp_req[clamp_id].value;
7841	rcu_read_unlock();
7842
7843	if (util_clamp == SCHED_CAPACITY_SCALE) {
7844		seq_puts(sf, "max\n");
7845		return;
7846	}
7847
7848	percent = tg->uclamp_pct[clamp_id];
7849	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7850	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7851}
7852
7853static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7854{
7855	cpu_uclamp_print(sf, UCLAMP_MIN);
7856	return 0;
7857}
7858
7859static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7860{
7861	cpu_uclamp_print(sf, UCLAMP_MAX);
7862	return 0;
7863}
7864#endif /* CONFIG_UCLAMP_TASK_GROUP */
7865
7866#ifdef CONFIG_FAIR_GROUP_SCHED
7867static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7868				struct cftype *cftype, u64 shareval)
7869{
7870	if (shareval > scale_load_down(ULONG_MAX))
7871		shareval = MAX_SHARES;
7872	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7873}
7874
7875static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7876			       struct cftype *cft)
7877{
7878	struct task_group *tg = css_tg(css);
7879
7880	return (u64) scale_load_down(tg->shares);
7881}
7882
7883#ifdef CONFIG_CFS_BANDWIDTH
7884static DEFINE_MUTEX(cfs_constraints_mutex);
7885
7886const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7887static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7888/* More than 203 days if BW_SHIFT equals 20. */
7889static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7890
7891static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7892
7893static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
 
7894{
7895	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7896	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898	if (tg == &root_task_group)
7899		return -EINVAL;
7900
7901	/*
7902	 * Ensure we have at some amount of bandwidth every period.  This is
7903	 * to prevent reaching a state of large arrears when throttled via
7904	 * entity_tick() resulting in prolonged exit starvation.
7905	 */
7906	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7907		return -EINVAL;
7908
7909	/*
7910	 * Likewise, bound things on the otherside by preventing insane quota
7911	 * periods.  This also allows us to normalize in computing quota
7912	 * feasibility.
7913	 */
7914	if (period > max_cfs_quota_period)
7915		return -EINVAL;
7916
7917	/*
7918	 * Bound quota to defend quota against overflow during bandwidth shift.
7919	 */
7920	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7921		return -EINVAL;
7922
 
 
 
 
7923	/*
7924	 * Prevent race between setting of cfs_rq->runtime_enabled and
7925	 * unthrottle_offline_cfs_rqs().
7926	 */
7927	get_online_cpus();
7928	mutex_lock(&cfs_constraints_mutex);
7929	ret = __cfs_schedulable(tg, period, quota);
7930	if (ret)
7931		goto out_unlock;
7932
7933	runtime_enabled = quota != RUNTIME_INF;
7934	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7935	/*
7936	 * If we need to toggle cfs_bandwidth_used, off->on must occur
7937	 * before making related changes, and on->off must occur afterwards
7938	 */
7939	if (runtime_enabled && !runtime_was_enabled)
7940		cfs_bandwidth_usage_inc();
7941	raw_spin_lock_irq(&cfs_b->lock);
7942	cfs_b->period = ns_to_ktime(period);
7943	cfs_b->quota = quota;
 
7944
7945	__refill_cfs_bandwidth_runtime(cfs_b);
7946
7947	/* Restart the period timer (if active) to handle new period expiry: */
7948	if (runtime_enabled)
7949		start_cfs_bandwidth(cfs_b);
7950
7951	raw_spin_unlock_irq(&cfs_b->lock);
7952
7953	for_each_online_cpu(i) {
7954		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7955		struct rq *rq = cfs_rq->rq;
7956		struct rq_flags rf;
7957
7958		rq_lock_irq(rq, &rf);
7959		cfs_rq->runtime_enabled = runtime_enabled;
7960		cfs_rq->runtime_remaining = 0;
7961
7962		if (cfs_rq->throttled)
7963			unthrottle_cfs_rq(cfs_rq);
7964		rq_unlock_irq(rq, &rf);
7965	}
7966	if (runtime_was_enabled && !runtime_enabled)
7967		cfs_bandwidth_usage_dec();
7968out_unlock:
7969	mutex_unlock(&cfs_constraints_mutex);
7970	put_online_cpus();
7971
7972	return ret;
7973}
7974
7975static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7976{
7977	u64 quota, period;
7978
7979	period = ktime_to_ns(tg->cfs_bandwidth.period);
 
7980	if (cfs_quota_us < 0)
7981		quota = RUNTIME_INF;
7982	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7983		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7984	else
7985		return -EINVAL;
7986
7987	return tg_set_cfs_bandwidth(tg, period, quota);
7988}
7989
7990static long tg_get_cfs_quota(struct task_group *tg)
7991{
7992	u64 quota_us;
7993
7994	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7995		return -1;
7996
7997	quota_us = tg->cfs_bandwidth.quota;
7998	do_div(quota_us, NSEC_PER_USEC);
7999
8000	return quota_us;
8001}
8002
8003static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8004{
8005	u64 quota, period;
8006
8007	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8008		return -EINVAL;
8009
8010	period = (u64)cfs_period_us * NSEC_PER_USEC;
8011	quota = tg->cfs_bandwidth.quota;
 
8012
8013	return tg_set_cfs_bandwidth(tg, period, quota);
8014}
8015
8016static long tg_get_cfs_period(struct task_group *tg)
8017{
8018	u64 cfs_period_us;
8019
8020	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8021	do_div(cfs_period_us, NSEC_PER_USEC);
8022
8023	return cfs_period_us;
8024}
8025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8026static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8027				  struct cftype *cft)
8028{
8029	return tg_get_cfs_quota(css_tg(css));
8030}
8031
8032static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8033				   struct cftype *cftype, s64 cfs_quota_us)
8034{
8035	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8036}
8037
8038static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8039				   struct cftype *cft)
8040{
8041	return tg_get_cfs_period(css_tg(css));
8042}
8043
8044static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8045				    struct cftype *cftype, u64 cfs_period_us)
8046{
8047	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8048}
8049
 
 
 
 
 
 
 
 
 
 
 
 
8050struct cfs_schedulable_data {
8051	struct task_group *tg;
8052	u64 period, quota;
8053};
8054
8055/*
8056 * normalize group quota/period to be quota/max_period
8057 * note: units are usecs
8058 */
8059static u64 normalize_cfs_quota(struct task_group *tg,
8060			       struct cfs_schedulable_data *d)
8061{
8062	u64 quota, period;
8063
8064	if (tg == d->tg) {
8065		period = d->period;
8066		quota = d->quota;
8067	} else {
8068		period = tg_get_cfs_period(tg);
8069		quota = tg_get_cfs_quota(tg);
8070	}
8071
8072	/* note: these should typically be equivalent */
8073	if (quota == RUNTIME_INF || quota == -1)
8074		return RUNTIME_INF;
8075
8076	return to_ratio(period, quota);
8077}
8078
8079static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8080{
8081	struct cfs_schedulable_data *d = data;
8082	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8083	s64 quota = 0, parent_quota = -1;
8084
8085	if (!tg->parent) {
8086		quota = RUNTIME_INF;
8087	} else {
8088		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8089
8090		quota = normalize_cfs_quota(tg, d);
8091		parent_quota = parent_b->hierarchical_quota;
8092
8093		/*
8094		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
8095		 * always take the min.  On cgroup1, only inherit when no
8096		 * limit is set:
8097		 */
8098		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8099			quota = min(quota, parent_quota);
8100		} else {
8101			if (quota == RUNTIME_INF)
8102				quota = parent_quota;
8103			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8104				return -EINVAL;
8105		}
8106	}
8107	cfs_b->hierarchical_quota = quota;
8108
8109	return 0;
8110}
8111
8112static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8113{
8114	int ret;
8115	struct cfs_schedulable_data data = {
8116		.tg = tg,
8117		.period = period,
8118		.quota = quota,
8119	};
8120
8121	if (quota != RUNTIME_INF) {
8122		do_div(data.period, NSEC_PER_USEC);
8123		do_div(data.quota, NSEC_PER_USEC);
8124	}
8125
8126	rcu_read_lock();
8127	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8128	rcu_read_unlock();
8129
8130	return ret;
8131}
8132
8133static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8134{
8135	struct task_group *tg = css_tg(seq_css(sf));
8136	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8137
8138	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8139	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8140	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8141
8142	if (schedstat_enabled() && tg != &root_task_group) {
 
8143		u64 ws = 0;
8144		int i;
8145
8146		for_each_possible_cpu(i)
8147			ws += schedstat_val(tg->se[i]->statistics.wait_sum);
 
 
8148
8149		seq_printf(sf, "wait_sum %llu\n", ws);
8150	}
8151
 
 
 
8152	return 0;
8153}
8154#endif /* CONFIG_CFS_BANDWIDTH */
8155#endif /* CONFIG_FAIR_GROUP_SCHED */
8156
8157#ifdef CONFIG_RT_GROUP_SCHED
8158static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8159				struct cftype *cft, s64 val)
8160{
8161	return sched_group_set_rt_runtime(css_tg(css), val);
8162}
8163
8164static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8165			       struct cftype *cft)
8166{
8167	return sched_group_rt_runtime(css_tg(css));
8168}
8169
8170static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8171				    struct cftype *cftype, u64 rt_period_us)
8172{
8173	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8174}
8175
8176static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8177				   struct cftype *cft)
8178{
8179	return sched_group_rt_period(css_tg(css));
8180}
8181#endif /* CONFIG_RT_GROUP_SCHED */
8182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8183static struct cftype cpu_legacy_files[] = {
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185	{
8186		.name = "shares",
8187		.read_u64 = cpu_shares_read_u64,
8188		.write_u64 = cpu_shares_write_u64,
8189	},
 
 
 
 
 
8190#endif
8191#ifdef CONFIG_CFS_BANDWIDTH
8192	{
8193		.name = "cfs_quota_us",
8194		.read_s64 = cpu_cfs_quota_read_s64,
8195		.write_s64 = cpu_cfs_quota_write_s64,
8196	},
8197	{
8198		.name = "cfs_period_us",
8199		.read_u64 = cpu_cfs_period_read_u64,
8200		.write_u64 = cpu_cfs_period_write_u64,
8201	},
8202	{
 
 
 
 
 
8203		.name = "stat",
8204		.seq_show = cpu_cfs_stat_show,
8205	},
8206#endif
8207#ifdef CONFIG_RT_GROUP_SCHED
8208	{
8209		.name = "rt_runtime_us",
8210		.read_s64 = cpu_rt_runtime_read,
8211		.write_s64 = cpu_rt_runtime_write,
8212	},
8213	{
8214		.name = "rt_period_us",
8215		.read_u64 = cpu_rt_period_read_uint,
8216		.write_u64 = cpu_rt_period_write_uint,
8217	},
8218#endif
8219#ifdef CONFIG_UCLAMP_TASK_GROUP
8220	{
8221		.name = "uclamp.min",
8222		.flags = CFTYPE_NOT_ON_ROOT,
8223		.seq_show = cpu_uclamp_min_show,
8224		.write = cpu_uclamp_min_write,
8225	},
8226	{
8227		.name = "uclamp.max",
8228		.flags = CFTYPE_NOT_ON_ROOT,
8229		.seq_show = cpu_uclamp_max_show,
8230		.write = cpu_uclamp_max_write,
8231	},
8232#endif
8233	{ }	/* Terminate */
8234};
8235
8236static int cpu_extra_stat_show(struct seq_file *sf,
8237			       struct cgroup_subsys_state *css)
8238{
8239#ifdef CONFIG_CFS_BANDWIDTH
8240	{
8241		struct task_group *tg = css_tg(css);
8242		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8243		u64 throttled_usec;
8244
8245		throttled_usec = cfs_b->throttled_time;
8246		do_div(throttled_usec, NSEC_PER_USEC);
 
 
8247
8248		seq_printf(sf, "nr_periods %d\n"
8249			   "nr_throttled %d\n"
8250			   "throttled_usec %llu\n",
 
 
8251			   cfs_b->nr_periods, cfs_b->nr_throttled,
8252			   throttled_usec);
8253	}
8254#endif
8255	return 0;
8256}
8257
8258#ifdef CONFIG_FAIR_GROUP_SCHED
8259static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8260			       struct cftype *cft)
8261{
8262	struct task_group *tg = css_tg(css);
8263	u64 weight = scale_load_down(tg->shares);
8264
8265	return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8266}
8267
8268static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8269				struct cftype *cft, u64 weight)
8270{
8271	/*
8272	 * cgroup weight knobs should use the common MIN, DFL and MAX
8273	 * values which are 1, 100 and 10000 respectively.  While it loses
8274	 * a bit of range on both ends, it maps pretty well onto the shares
8275	 * value used by scheduler and the round-trip conversions preserve
8276	 * the original value over the entire range.
8277	 */
8278	if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8279		return -ERANGE;
8280
8281	weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8282
8283	return sched_group_set_shares(css_tg(css), scale_load(weight));
8284}
8285
8286static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8287				    struct cftype *cft)
8288{
8289	unsigned long weight = scale_load_down(css_tg(css)->shares);
8290	int last_delta = INT_MAX;
8291	int prio, delta;
8292
8293	/* find the closest nice value to the current weight */
8294	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8295		delta = abs(sched_prio_to_weight[prio] - weight);
8296		if (delta >= last_delta)
8297			break;
8298		last_delta = delta;
8299	}
8300
8301	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8302}
8303
8304static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8305				     struct cftype *cft, s64 nice)
8306{
8307	unsigned long weight;
8308	int idx;
8309
8310	if (nice < MIN_NICE || nice > MAX_NICE)
8311		return -ERANGE;
8312
8313	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8314	idx = array_index_nospec(idx, 40);
8315	weight = sched_prio_to_weight[idx];
8316
8317	return sched_group_set_shares(css_tg(css), scale_load(weight));
8318}
8319#endif
8320
8321static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8322						  long period, long quota)
8323{
8324	if (quota < 0)
8325		seq_puts(sf, "max");
8326	else
8327		seq_printf(sf, "%ld", quota);
8328
8329	seq_printf(sf, " %ld\n", period);
8330}
8331
8332/* caller should put the current value in *@periodp before calling */
8333static int __maybe_unused cpu_period_quota_parse(char *buf,
8334						 u64 *periodp, u64 *quotap)
8335{
8336	char tok[21];	/* U64_MAX */
8337
8338	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8339		return -EINVAL;
8340
8341	*periodp *= NSEC_PER_USEC;
8342
8343	if (sscanf(tok, "%llu", quotap))
8344		*quotap *= NSEC_PER_USEC;
8345	else if (!strcmp(tok, "max"))
8346		*quotap = RUNTIME_INF;
8347	else
8348		return -EINVAL;
8349
8350	return 0;
8351}
8352
8353#ifdef CONFIG_CFS_BANDWIDTH
8354static int cpu_max_show(struct seq_file *sf, void *v)
8355{
8356	struct task_group *tg = css_tg(seq_css(sf));
8357
8358	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8359	return 0;
8360}
8361
8362static ssize_t cpu_max_write(struct kernfs_open_file *of,
8363			     char *buf, size_t nbytes, loff_t off)
8364{
8365	struct task_group *tg = css_tg(of_css(of));
8366	u64 period = tg_get_cfs_period(tg);
 
8367	u64 quota;
8368	int ret;
8369
8370	ret = cpu_period_quota_parse(buf, &period, &quota);
8371	if (!ret)
8372		ret = tg_set_cfs_bandwidth(tg, period, quota);
8373	return ret ?: nbytes;
8374}
8375#endif
8376
8377static struct cftype cpu_files[] = {
8378#ifdef CONFIG_FAIR_GROUP_SCHED
8379	{
8380		.name = "weight",
8381		.flags = CFTYPE_NOT_ON_ROOT,
8382		.read_u64 = cpu_weight_read_u64,
8383		.write_u64 = cpu_weight_write_u64,
8384	},
8385	{
8386		.name = "weight.nice",
8387		.flags = CFTYPE_NOT_ON_ROOT,
8388		.read_s64 = cpu_weight_nice_read_s64,
8389		.write_s64 = cpu_weight_nice_write_s64,
8390	},
 
 
 
 
 
 
8391#endif
8392#ifdef CONFIG_CFS_BANDWIDTH
8393	{
8394		.name = "max",
8395		.flags = CFTYPE_NOT_ON_ROOT,
8396		.seq_show = cpu_max_show,
8397		.write = cpu_max_write,
8398	},
 
 
 
 
 
 
8399#endif
8400#ifdef CONFIG_UCLAMP_TASK_GROUP
8401	{
8402		.name = "uclamp.min",
8403		.flags = CFTYPE_NOT_ON_ROOT,
8404		.seq_show = cpu_uclamp_min_show,
8405		.write = cpu_uclamp_min_write,
8406	},
8407	{
8408		.name = "uclamp.max",
8409		.flags = CFTYPE_NOT_ON_ROOT,
8410		.seq_show = cpu_uclamp_max_show,
8411		.write = cpu_uclamp_max_write,
8412	},
8413#endif
8414	{ }	/* terminate */
8415};
8416
8417struct cgroup_subsys cpu_cgrp_subsys = {
8418	.css_alloc	= cpu_cgroup_css_alloc,
8419	.css_online	= cpu_cgroup_css_online,
8420	.css_released	= cpu_cgroup_css_released,
8421	.css_free	= cpu_cgroup_css_free,
8422	.css_extra_stat_show = cpu_extra_stat_show,
8423	.fork		= cpu_cgroup_fork,
8424	.can_attach	= cpu_cgroup_can_attach,
 
8425	.attach		= cpu_cgroup_attach,
8426	.legacy_cftypes	= cpu_legacy_files,
8427	.dfl_cftypes	= cpu_files,
8428	.early_init	= true,
8429	.threaded	= true,
8430};
8431
8432#endif	/* CONFIG_CGROUP_SCHED */
8433
8434void dump_cpu_task(int cpu)
8435{
 
 
 
 
 
 
 
 
 
 
 
 
 
8436	pr_info("Task dump for CPU %d:\n", cpu);
8437	sched_show_task(cpu_curr(cpu));
8438}
8439
8440/*
8441 * Nice levels are multiplicative, with a gentle 10% change for every
8442 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8443 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8444 * that remained on nice 0.
8445 *
8446 * The "10% effect" is relative and cumulative: from _any_ nice level,
8447 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8448 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8449 * If a task goes up by ~10% and another task goes down by ~10% then
8450 * the relative distance between them is ~25%.)
8451 */
8452const int sched_prio_to_weight[40] = {
8453 /* -20 */     88761,     71755,     56483,     46273,     36291,
8454 /* -15 */     29154,     23254,     18705,     14949,     11916,
8455 /* -10 */      9548,      7620,      6100,      4904,      3906,
8456 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8457 /*   0 */      1024,       820,       655,       526,       423,
8458 /*   5 */       335,       272,       215,       172,       137,
8459 /*  10 */       110,        87,        70,        56,        45,
8460 /*  15 */        36,        29,        23,        18,        15,
8461};
8462
8463/*
8464 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8465 *
8466 * In cases where the weight does not change often, we can use the
8467 * precalculated inverse to speed up arithmetics by turning divisions
8468 * into multiplications:
8469 */
8470const u32 sched_prio_to_wmult[40] = {
8471 /* -20 */     48388,     59856,     76040,     92818,    118348,
8472 /* -15 */    147320,    184698,    229616,    287308,    360437,
8473 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8474 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8475 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8476 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8477 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8478 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8479};
8480
8481void call_trace_sched_update_nr_running(struct rq *rq, int count)
8482{
8483        trace_sched_update_nr_running_tp(rq, count);
8484}