Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
  41	int (*threadfn)(void *data);
  42	void *data;
  43	int node;
  44
  45	/* Result passed back to kthread_create() from kthreadd. */
  46	struct task_struct *result;
  47	struct completion *done;
  48
  49	struct list_head list;
  50};
  51
  52struct kthread {
  53	unsigned long flags;
  54	unsigned int cpu;
  55	int result;
  56	int (*threadfn)(void *);
  57	void *data;
 
  58	struct completion parked;
  59	struct completion exited;
  60#ifdef CONFIG_BLK_CGROUP
  61	struct cgroup_subsys_state *blkcg_css;
  62#endif
  63	/* To store the full name if task comm is truncated. */
  64	char *full_name;
  65};
  66
  67enum KTHREAD_BITS {
  68	KTHREAD_IS_PER_CPU = 0,
  69	KTHREAD_SHOULD_STOP,
  70	KTHREAD_SHOULD_PARK,
  71};
  72
  73static inline struct kthread *to_kthread(struct task_struct *k)
  74{
  75	WARN_ON(!(k->flags & PF_KTHREAD));
  76	return k->worker_private;
  77}
  78
  79/*
  80 * Variant of to_kthread() that doesn't assume @p is a kthread.
  81 *
  82 * Per construction; when:
  83 *
  84 *   (p->flags & PF_KTHREAD) && p->worker_private
  85 *
  86 * the task is both a kthread and struct kthread is persistent. However
  87 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
  88 * begin_new_exec()).
  89 */
  90static inline struct kthread *__to_kthread(struct task_struct *p)
  91{
  92	void *kthread = p->worker_private;
  93	if (kthread && !(p->flags & PF_KTHREAD))
  94		kthread = NULL;
  95	return kthread;
  96}
  97
  98void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
  99{
 100	struct kthread *kthread = to_kthread(tsk);
 101
 102	if (!kthread || !kthread->full_name) {
 103		__get_task_comm(buf, buf_size, tsk);
 104		return;
 105	}
 106
 107	strscpy_pad(buf, kthread->full_name, buf_size);
 108}
 109
 110bool set_kthread_struct(struct task_struct *p)
 111{
 112	struct kthread *kthread;
 113
 114	if (WARN_ON_ONCE(to_kthread(p)))
 115		return false;
 116
 117	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
 118	if (!kthread)
 119		return false;
 120
 121	init_completion(&kthread->exited);
 122	init_completion(&kthread->parked);
 123	p->vfork_done = &kthread->exited;
 124
 125	p->worker_private = kthread;
 126	return true;
 127}
 128
 129void free_kthread_struct(struct task_struct *k)
 130{
 131	struct kthread *kthread;
 132
 133	/*
 134	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
 
 135	 */
 136	kthread = to_kthread(k);
 137	if (!kthread)
 138		return;
 139
 140#ifdef CONFIG_BLK_CGROUP
 141	WARN_ON_ONCE(kthread->blkcg_css);
 142#endif
 143	k->worker_private = NULL;
 144	kfree(kthread->full_name);
 145	kfree(kthread);
 146}
 147
 148/**
 149 * kthread_should_stop - should this kthread return now?
 150 *
 151 * When someone calls kthread_stop() on your kthread, it will be woken
 152 * and this will return true.  You should then return, and your return
 153 * value will be passed through to kthread_stop().
 154 */
 155bool kthread_should_stop(void)
 156{
 157	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 158}
 159EXPORT_SYMBOL(kthread_should_stop);
 160
 161bool __kthread_should_park(struct task_struct *k)
 162{
 163	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 164}
 165EXPORT_SYMBOL_GPL(__kthread_should_park);
 166
 167/**
 168 * kthread_should_park - should this kthread park now?
 169 *
 170 * When someone calls kthread_park() on your kthread, it will be woken
 171 * and this will return true.  You should then do the necessary
 172 * cleanup and call kthread_parkme()
 173 *
 174 * Similar to kthread_should_stop(), but this keeps the thread alive
 175 * and in a park position. kthread_unpark() "restarts" the thread and
 176 * calls the thread function again.
 177 */
 178bool kthread_should_park(void)
 179{
 180	return __kthread_should_park(current);
 181}
 182EXPORT_SYMBOL_GPL(kthread_should_park);
 183
 184/**
 185 * kthread_freezable_should_stop - should this freezable kthread return now?
 186 * @was_frozen: optional out parameter, indicates whether %current was frozen
 187 *
 188 * kthread_should_stop() for freezable kthreads, which will enter
 189 * refrigerator if necessary.  This function is safe from kthread_stop() /
 190 * freezer deadlock and freezable kthreads should use this function instead
 191 * of calling try_to_freeze() directly.
 192 */
 193bool kthread_freezable_should_stop(bool *was_frozen)
 194{
 195	bool frozen = false;
 196
 197	might_sleep();
 198
 199	if (unlikely(freezing(current)))
 200		frozen = __refrigerator(true);
 201
 202	if (was_frozen)
 203		*was_frozen = frozen;
 204
 205	return kthread_should_stop();
 206}
 207EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 208
 209/**
 210 * kthread_func - return the function specified on kthread creation
 211 * @task: kthread task in question
 212 *
 213 * Returns NULL if the task is not a kthread.
 214 */
 215void *kthread_func(struct task_struct *task)
 216{
 217	struct kthread *kthread = __to_kthread(task);
 218	if (kthread)
 219		return kthread->threadfn;
 220	return NULL;
 221}
 222EXPORT_SYMBOL_GPL(kthread_func);
 223
 224/**
 225 * kthread_data - return data value specified on kthread creation
 226 * @task: kthread task in question
 227 *
 228 * Return the data value specified when kthread @task was created.
 229 * The caller is responsible for ensuring the validity of @task when
 230 * calling this function.
 231 */
 232void *kthread_data(struct task_struct *task)
 233{
 234	return to_kthread(task)->data;
 235}
 236EXPORT_SYMBOL_GPL(kthread_data);
 237
 238/**
 239 * kthread_probe_data - speculative version of kthread_data()
 240 * @task: possible kthread task in question
 241 *
 242 * @task could be a kthread task.  Return the data value specified when it
 243 * was created if accessible.  If @task isn't a kthread task or its data is
 244 * inaccessible for any reason, %NULL is returned.  This function requires
 245 * that @task itself is safe to dereference.
 246 */
 247void *kthread_probe_data(struct task_struct *task)
 248{
 249	struct kthread *kthread = __to_kthread(task);
 250	void *data = NULL;
 251
 252	if (kthread)
 253		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 254	return data;
 255}
 256
 257static void __kthread_parkme(struct kthread *self)
 258{
 259	for (;;) {
 260		/*
 261		 * TASK_PARKED is a special state; we must serialize against
 262		 * possible pending wakeups to avoid store-store collisions on
 263		 * task->state.
 264		 *
 265		 * Such a collision might possibly result in the task state
 266		 * changin from TASK_PARKED and us failing the
 267		 * wait_task_inactive() in kthread_park().
 268		 */
 269		set_special_state(TASK_PARKED);
 270		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 271			break;
 272
 273		/*
 274		 * Thread is going to call schedule(), do not preempt it,
 275		 * or the caller of kthread_park() may spend more time in
 276		 * wait_task_inactive().
 277		 */
 278		preempt_disable();
 279		complete(&self->parked);
 280		schedule_preempt_disabled();
 281		preempt_enable();
 282	}
 283	__set_current_state(TASK_RUNNING);
 284}
 285
 286void kthread_parkme(void)
 287{
 288	__kthread_parkme(to_kthread(current));
 289}
 290EXPORT_SYMBOL_GPL(kthread_parkme);
 291
 292/**
 293 * kthread_exit - Cause the current kthread return @result to kthread_stop().
 294 * @result: The integer value to return to kthread_stop().
 295 *
 296 * While kthread_exit can be called directly, it exists so that
 297 * functions which do some additional work in non-modular code such as
 298 * module_put_and_kthread_exit can be implemented.
 299 *
 300 * Does not return.
 301 */
 302void __noreturn kthread_exit(long result)
 303{
 304	struct kthread *kthread = to_kthread(current);
 305	kthread->result = result;
 306	do_exit(0);
 307}
 308
 309/**
 310 * kthread_complete_and_exit - Exit the current kthread.
 311 * @comp: Completion to complete
 312 * @code: The integer value to return to kthread_stop().
 313 *
 314 * If present complete @comp and the reuturn code to kthread_stop().
 315 *
 316 * A kernel thread whose module may be removed after the completion of
 317 * @comp can use this function exit safely.
 318 *
 319 * Does not return.
 320 */
 321void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
 322{
 323	if (comp)
 324		complete(comp);
 325
 326	kthread_exit(code);
 327}
 328EXPORT_SYMBOL(kthread_complete_and_exit);
 329
 330static int kthread(void *_create)
 331{
 332	static const struct sched_param param = { .sched_priority = 0 };
 333	/* Copy data: it's on kthread's stack */
 334	struct kthread_create_info *create = _create;
 335	int (*threadfn)(void *data) = create->threadfn;
 336	void *data = create->data;
 337	struct completion *done;
 338	struct kthread *self;
 339	int ret;
 340
 341	self = to_kthread(current);
 
 342
 343	/* Release the structure when caller killed by a fatal signal. */
 344	done = xchg(&create->done, NULL);
 345	if (!done) {
 346		kfree(create);
 347		kthread_exit(-EINTR);
 
 
 
 
 
 
 348	}
 349
 350	self->threadfn = threadfn;
 351	self->data = data;
 352
 353	/*
 354	 * The new thread inherited kthreadd's priority and CPU mask. Reset
 355	 * back to default in case they have been changed.
 356	 */
 357	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
 358	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
 359
 360	/* OK, tell user we're spawned, wait for stop or wakeup */
 361	__set_current_state(TASK_UNINTERRUPTIBLE);
 362	create->result = current;
 363	/*
 364	 * Thread is going to call schedule(), do not preempt it,
 365	 * or the creator may spend more time in wait_task_inactive().
 366	 */
 367	preempt_disable();
 368	complete(done);
 369	schedule_preempt_disabled();
 370	preempt_enable();
 371
 372	ret = -EINTR;
 373	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 374		cgroup_kthread_ready();
 375		__kthread_parkme(self);
 376		ret = threadfn(data);
 377	}
 378	kthread_exit(ret);
 379}
 380
 381/* called from kernel_clone() to get node information for about to be created task */
 382int tsk_fork_get_node(struct task_struct *tsk)
 383{
 384#ifdef CONFIG_NUMA
 385	if (tsk == kthreadd_task)
 386		return tsk->pref_node_fork;
 387#endif
 388	return NUMA_NO_NODE;
 389}
 390
 391static void create_kthread(struct kthread_create_info *create)
 392{
 393	int pid;
 394
 395#ifdef CONFIG_NUMA
 396	current->pref_node_fork = create->node;
 397#endif
 398	/* We want our own signal handler (we take no signals by default). */
 399	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 400	if (pid < 0) {
 401		/* Release the structure when caller killed by a fatal signal. */
 402		struct completion *done = xchg(&create->done, NULL);
 403
 404		if (!done) {
 405			kfree(create);
 406			return;
 407		}
 408		create->result = ERR_PTR(pid);
 409		complete(done);
 410	}
 411}
 412
 413static __printf(4, 0)
 414struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 415						    void *data, int node,
 416						    const char namefmt[],
 417						    va_list args)
 418{
 419	DECLARE_COMPLETION_ONSTACK(done);
 420	struct task_struct *task;
 421	struct kthread_create_info *create = kmalloc(sizeof(*create),
 422						     GFP_KERNEL);
 423
 424	if (!create)
 425		return ERR_PTR(-ENOMEM);
 426	create->threadfn = threadfn;
 427	create->data = data;
 428	create->node = node;
 429	create->done = &done;
 430
 431	spin_lock(&kthread_create_lock);
 432	list_add_tail(&create->list, &kthread_create_list);
 433	spin_unlock(&kthread_create_lock);
 434
 435	wake_up_process(kthreadd_task);
 436	/*
 437	 * Wait for completion in killable state, for I might be chosen by
 438	 * the OOM killer while kthreadd is trying to allocate memory for
 439	 * new kernel thread.
 440	 */
 441	if (unlikely(wait_for_completion_killable(&done))) {
 442		/*
 443		 * If I was killed by a fatal signal before kthreadd (or new
 444		 * kernel thread) calls complete(), leave the cleanup of this
 445		 * structure to that thread.
 446		 */
 447		if (xchg(&create->done, NULL))
 448			return ERR_PTR(-EINTR);
 449		/*
 450		 * kthreadd (or new kernel thread) will call complete()
 451		 * shortly.
 452		 */
 453		wait_for_completion(&done);
 454	}
 455	task = create->result;
 456	if (!IS_ERR(task)) {
 
 457		char name[TASK_COMM_LEN];
 458		va_list aq;
 459		int len;
 460
 461		/*
 462		 * task is already visible to other tasks, so updating
 463		 * COMM must be protected.
 464		 */
 465		va_copy(aq, args);
 466		len = vsnprintf(name, sizeof(name), namefmt, aq);
 467		va_end(aq);
 468		if (len >= TASK_COMM_LEN) {
 469			struct kthread *kthread = to_kthread(task);
 470
 471			/* leave it truncated when out of memory. */
 472			kthread->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
 473		}
 474		set_task_comm(task, name);
 
 
 
 
 
 
 
 475	}
 476	kfree(create);
 477	return task;
 478}
 479
 480/**
 481 * kthread_create_on_node - create a kthread.
 482 * @threadfn: the function to run until signal_pending(current).
 483 * @data: data ptr for @threadfn.
 484 * @node: task and thread structures for the thread are allocated on this node
 485 * @namefmt: printf-style name for the thread.
 486 *
 487 * Description: This helper function creates and names a kernel
 488 * thread.  The thread will be stopped: use wake_up_process() to start
 489 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 490 * is affine to all CPUs.
 491 *
 492 * If thread is going to be bound on a particular cpu, give its node
 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 494 * When woken, the thread will run @threadfn() with @data as its
 495 * argument. @threadfn() can either return directly if it is a
 496 * standalone thread for which no one will call kthread_stop(), or
 497 * return when 'kthread_should_stop()' is true (which means
 498 * kthread_stop() has been called).  The return value should be zero
 499 * or a negative error number; it will be passed to kthread_stop().
 500 *
 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 502 */
 503struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 504					   void *data, int node,
 505					   const char namefmt[],
 506					   ...)
 507{
 508	struct task_struct *task;
 509	va_list args;
 510
 511	va_start(args, namefmt);
 512	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 513	va_end(args);
 514
 515	return task;
 516}
 517EXPORT_SYMBOL(kthread_create_on_node);
 518
 519static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
 520{
 521	unsigned long flags;
 522
 523	if (!wait_task_inactive(p, state)) {
 524		WARN_ON(1);
 525		return;
 526	}
 527
 528	/* It's safe because the task is inactive. */
 529	raw_spin_lock_irqsave(&p->pi_lock, flags);
 530	do_set_cpus_allowed(p, mask);
 531	p->flags |= PF_NO_SETAFFINITY;
 532	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 533}
 534
 535static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
 536{
 537	__kthread_bind_mask(p, cpumask_of(cpu), state);
 538}
 539
 540void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 541{
 542	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 543}
 544
 545/**
 546 * kthread_bind - bind a just-created kthread to a cpu.
 547 * @p: thread created by kthread_create().
 548 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 549 *
 550 * Description: This function is equivalent to set_cpus_allowed(),
 551 * except that @cpu doesn't need to be online, and the thread must be
 552 * stopped (i.e., just returned from kthread_create()).
 553 */
 554void kthread_bind(struct task_struct *p, unsigned int cpu)
 555{
 556	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 557}
 558EXPORT_SYMBOL(kthread_bind);
 559
 560/**
 561 * kthread_create_on_cpu - Create a cpu bound kthread
 562 * @threadfn: the function to run until signal_pending(current).
 563 * @data: data ptr for @threadfn.
 564 * @cpu: The cpu on which the thread should be bound,
 565 * @namefmt: printf-style name for the thread. Format is restricted
 566 *	     to "name.*%u". Code fills in cpu number.
 567 *
 568 * Description: This helper function creates and names a kernel thread
 569 */
 570struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 571					  void *data, unsigned int cpu,
 572					  const char *namefmt)
 573{
 574	struct task_struct *p;
 575
 576	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 577				   cpu);
 578	if (IS_ERR(p))
 579		return p;
 580	kthread_bind(p, cpu);
 581	/* CPU hotplug need to bind once again when unparking the thread. */
 
 582	to_kthread(p)->cpu = cpu;
 583	return p;
 584}
 585EXPORT_SYMBOL(kthread_create_on_cpu);
 586
 587void kthread_set_per_cpu(struct task_struct *k, int cpu)
 588{
 589	struct kthread *kthread = to_kthread(k);
 590	if (!kthread)
 591		return;
 592
 593	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
 594
 595	if (cpu < 0) {
 596		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 597		return;
 598	}
 599
 600	kthread->cpu = cpu;
 601	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 602}
 603
 604bool kthread_is_per_cpu(struct task_struct *p)
 605{
 606	struct kthread *kthread = __to_kthread(p);
 607	if (!kthread)
 608		return false;
 609
 610	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
 611}
 612
 613/**
 614 * kthread_unpark - unpark a thread created by kthread_create().
 615 * @k:		thread created by kthread_create().
 616 *
 617 * Sets kthread_should_park() for @k to return false, wakes it, and
 618 * waits for it to return. If the thread is marked percpu then its
 619 * bound to the cpu again.
 620 */
 621void kthread_unpark(struct task_struct *k)
 622{
 623	struct kthread *kthread = to_kthread(k);
 624
 625	/*
 626	 * Newly created kthread was parked when the CPU was offline.
 627	 * The binding was lost and we need to set it again.
 628	 */
 629	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 630		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 631
 632	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 633	/*
 634	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 635	 */
 636	wake_up_state(k, TASK_PARKED);
 637}
 638EXPORT_SYMBOL_GPL(kthread_unpark);
 639
 640/**
 641 * kthread_park - park a thread created by kthread_create().
 642 * @k: thread created by kthread_create().
 643 *
 644 * Sets kthread_should_park() for @k to return true, wakes it, and
 645 * waits for it to return. This can also be called after kthread_create()
 646 * instead of calling wake_up_process(): the thread will park without
 647 * calling threadfn().
 648 *
 649 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 650 * If called by the kthread itself just the park bit is set.
 651 */
 652int kthread_park(struct task_struct *k)
 653{
 654	struct kthread *kthread = to_kthread(k);
 655
 656	if (WARN_ON(k->flags & PF_EXITING))
 657		return -ENOSYS;
 658
 659	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 660		return -EBUSY;
 661
 662	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 663	if (k != current) {
 664		wake_up_process(k);
 665		/*
 666		 * Wait for __kthread_parkme() to complete(), this means we
 667		 * _will_ have TASK_PARKED and are about to call schedule().
 668		 */
 669		wait_for_completion(&kthread->parked);
 670		/*
 671		 * Now wait for that schedule() to complete and the task to
 672		 * get scheduled out.
 673		 */
 674		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 675	}
 676
 677	return 0;
 678}
 679EXPORT_SYMBOL_GPL(kthread_park);
 680
 681/**
 682 * kthread_stop - stop a thread created by kthread_create().
 683 * @k: thread created by kthread_create().
 684 *
 685 * Sets kthread_should_stop() for @k to return true, wakes it, and
 686 * waits for it to exit. This can also be called after kthread_create()
 687 * instead of calling wake_up_process(): the thread will exit without
 688 * calling threadfn().
 689 *
 690 * If threadfn() may call kthread_exit() itself, the caller must ensure
 691 * task_struct can't go away.
 692 *
 693 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 694 * was never called.
 695 */
 696int kthread_stop(struct task_struct *k)
 697{
 698	struct kthread *kthread;
 699	int ret;
 700
 701	trace_sched_kthread_stop(k);
 702
 703	get_task_struct(k);
 704	kthread = to_kthread(k);
 705	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 706	kthread_unpark(k);
 707	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
 708	wake_up_process(k);
 709	wait_for_completion(&kthread->exited);
 710	ret = kthread->result;
 711	put_task_struct(k);
 712
 713	trace_sched_kthread_stop_ret(ret);
 714	return ret;
 715}
 716EXPORT_SYMBOL(kthread_stop);
 717
 718int kthreadd(void *unused)
 719{
 720	struct task_struct *tsk = current;
 721
 722	/* Setup a clean context for our children to inherit. */
 723	set_task_comm(tsk, "kthreadd");
 724	ignore_signals(tsk);
 725	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
 726	set_mems_allowed(node_states[N_MEMORY]);
 727
 728	current->flags |= PF_NOFREEZE;
 729	cgroup_init_kthreadd();
 730
 731	for (;;) {
 732		set_current_state(TASK_INTERRUPTIBLE);
 733		if (list_empty(&kthread_create_list))
 734			schedule();
 735		__set_current_state(TASK_RUNNING);
 736
 737		spin_lock(&kthread_create_lock);
 738		while (!list_empty(&kthread_create_list)) {
 739			struct kthread_create_info *create;
 740
 741			create = list_entry(kthread_create_list.next,
 742					    struct kthread_create_info, list);
 743			list_del_init(&create->list);
 744			spin_unlock(&kthread_create_lock);
 745
 746			create_kthread(create);
 747
 748			spin_lock(&kthread_create_lock);
 749		}
 750		spin_unlock(&kthread_create_lock);
 751	}
 752
 753	return 0;
 754}
 755
 756void __kthread_init_worker(struct kthread_worker *worker,
 757				const char *name,
 758				struct lock_class_key *key)
 759{
 760	memset(worker, 0, sizeof(struct kthread_worker));
 761	raw_spin_lock_init(&worker->lock);
 762	lockdep_set_class_and_name(&worker->lock, key, name);
 763	INIT_LIST_HEAD(&worker->work_list);
 764	INIT_LIST_HEAD(&worker->delayed_work_list);
 765}
 766EXPORT_SYMBOL_GPL(__kthread_init_worker);
 767
 768/**
 769 * kthread_worker_fn - kthread function to process kthread_worker
 770 * @worker_ptr: pointer to initialized kthread_worker
 771 *
 772 * This function implements the main cycle of kthread worker. It processes
 773 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 774 * is empty.
 775 *
 776 * The works are not allowed to keep any locks, disable preemption or interrupts
 777 * when they finish. There is defined a safe point for freezing when one work
 778 * finishes and before a new one is started.
 779 *
 780 * Also the works must not be handled by more than one worker at the same time,
 781 * see also kthread_queue_work().
 782 */
 783int kthread_worker_fn(void *worker_ptr)
 784{
 785	struct kthread_worker *worker = worker_ptr;
 786	struct kthread_work *work;
 787
 788	/*
 789	 * FIXME: Update the check and remove the assignment when all kthread
 790	 * worker users are created using kthread_create_worker*() functions.
 791	 */
 792	WARN_ON(worker->task && worker->task != current);
 793	worker->task = current;
 794
 795	if (worker->flags & KTW_FREEZABLE)
 796		set_freezable();
 797
 798repeat:
 799	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 800
 801	if (kthread_should_stop()) {
 802		__set_current_state(TASK_RUNNING);
 803		raw_spin_lock_irq(&worker->lock);
 804		worker->task = NULL;
 805		raw_spin_unlock_irq(&worker->lock);
 806		return 0;
 807	}
 808
 809	work = NULL;
 810	raw_spin_lock_irq(&worker->lock);
 811	if (!list_empty(&worker->work_list)) {
 812		work = list_first_entry(&worker->work_list,
 813					struct kthread_work, node);
 814		list_del_init(&work->node);
 815	}
 816	worker->current_work = work;
 817	raw_spin_unlock_irq(&worker->lock);
 818
 819	if (work) {
 820		kthread_work_func_t func = work->func;
 821		__set_current_state(TASK_RUNNING);
 822		trace_sched_kthread_work_execute_start(work);
 823		work->func(work);
 824		/*
 825		 * Avoid dereferencing work after this point.  The trace
 826		 * event only cares about the address.
 827		 */
 828		trace_sched_kthread_work_execute_end(work, func);
 829	} else if (!freezing(current))
 830		schedule();
 831
 832	try_to_freeze();
 833	cond_resched();
 834	goto repeat;
 835}
 836EXPORT_SYMBOL_GPL(kthread_worker_fn);
 837
 838static __printf(3, 0) struct kthread_worker *
 839__kthread_create_worker(int cpu, unsigned int flags,
 840			const char namefmt[], va_list args)
 841{
 842	struct kthread_worker *worker;
 843	struct task_struct *task;
 844	int node = NUMA_NO_NODE;
 845
 846	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 847	if (!worker)
 848		return ERR_PTR(-ENOMEM);
 849
 850	kthread_init_worker(worker);
 851
 852	if (cpu >= 0)
 853		node = cpu_to_node(cpu);
 854
 855	task = __kthread_create_on_node(kthread_worker_fn, worker,
 856						node, namefmt, args);
 857	if (IS_ERR(task))
 858		goto fail_task;
 859
 860	if (cpu >= 0)
 861		kthread_bind(task, cpu);
 862
 863	worker->flags = flags;
 864	worker->task = task;
 865	wake_up_process(task);
 866	return worker;
 867
 868fail_task:
 869	kfree(worker);
 870	return ERR_CAST(task);
 871}
 872
 873/**
 874 * kthread_create_worker - create a kthread worker
 875 * @flags: flags modifying the default behavior of the worker
 876 * @namefmt: printf-style name for the kthread worker (task).
 877 *
 878 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 879 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 880 * when the caller was killed by a fatal signal.
 881 */
 882struct kthread_worker *
 883kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 884{
 885	struct kthread_worker *worker;
 886	va_list args;
 887
 888	va_start(args, namefmt);
 889	worker = __kthread_create_worker(-1, flags, namefmt, args);
 890	va_end(args);
 891
 892	return worker;
 893}
 894EXPORT_SYMBOL(kthread_create_worker);
 895
 896/**
 897 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 898 *	to a given CPU and the associated NUMA node.
 899 * @cpu: CPU number
 900 * @flags: flags modifying the default behavior of the worker
 901 * @namefmt: printf-style name for the kthread worker (task).
 902 *
 903 * Use a valid CPU number if you want to bind the kthread worker
 904 * to the given CPU and the associated NUMA node.
 905 *
 906 * A good practice is to add the cpu number also into the worker name.
 907 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 908 *
 909 * CPU hotplug:
 910 * The kthread worker API is simple and generic. It just provides a way
 911 * to create, use, and destroy workers.
 912 *
 913 * It is up to the API user how to handle CPU hotplug. They have to decide
 914 * how to handle pending work items, prevent queuing new ones, and
 915 * restore the functionality when the CPU goes off and on. There are a
 916 * few catches:
 917 *
 918 *    - CPU affinity gets lost when it is scheduled on an offline CPU.
 919 *
 920 *    - The worker might not exist when the CPU was off when the user
 921 *      created the workers.
 922 *
 923 * Good practice is to implement two CPU hotplug callbacks and to
 924 * destroy/create the worker when the CPU goes down/up.
 925 *
 926 * Return:
 927 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 928 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 929 * when the caller was killed by a fatal signal.
 930 */
 931struct kthread_worker *
 932kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 933			     const char namefmt[], ...)
 934{
 935	struct kthread_worker *worker;
 936	va_list args;
 937
 938	va_start(args, namefmt);
 939	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 940	va_end(args);
 941
 942	return worker;
 943}
 944EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 945
 946/*
 947 * Returns true when the work could not be queued at the moment.
 948 * It happens when it is already pending in a worker list
 949 * or when it is being cancelled.
 950 */
 951static inline bool queuing_blocked(struct kthread_worker *worker,
 952				   struct kthread_work *work)
 953{
 954	lockdep_assert_held(&worker->lock);
 955
 956	return !list_empty(&work->node) || work->canceling;
 957}
 958
 959static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 960					     struct kthread_work *work)
 961{
 962	lockdep_assert_held(&worker->lock);
 963	WARN_ON_ONCE(!list_empty(&work->node));
 964	/* Do not use a work with >1 worker, see kthread_queue_work() */
 965	WARN_ON_ONCE(work->worker && work->worker != worker);
 966}
 967
 968/* insert @work before @pos in @worker */
 969static void kthread_insert_work(struct kthread_worker *worker,
 970				struct kthread_work *work,
 971				struct list_head *pos)
 972{
 973	kthread_insert_work_sanity_check(worker, work);
 974
 975	trace_sched_kthread_work_queue_work(worker, work);
 976
 977	list_add_tail(&work->node, pos);
 978	work->worker = worker;
 979	if (!worker->current_work && likely(worker->task))
 980		wake_up_process(worker->task);
 981}
 982
 983/**
 984 * kthread_queue_work - queue a kthread_work
 985 * @worker: target kthread_worker
 986 * @work: kthread_work to queue
 987 *
 988 * Queue @work to work processor @task for async execution.  @task
 989 * must have been created with kthread_worker_create().  Returns %true
 990 * if @work was successfully queued, %false if it was already pending.
 991 *
 992 * Reinitialize the work if it needs to be used by another worker.
 993 * For example, when the worker was stopped and started again.
 994 */
 995bool kthread_queue_work(struct kthread_worker *worker,
 996			struct kthread_work *work)
 997{
 998	bool ret = false;
 999	unsigned long flags;
1000
1001	raw_spin_lock_irqsave(&worker->lock, flags);
1002	if (!queuing_blocked(worker, work)) {
1003		kthread_insert_work(worker, work, &worker->work_list);
1004		ret = true;
1005	}
1006	raw_spin_unlock_irqrestore(&worker->lock, flags);
1007	return ret;
1008}
1009EXPORT_SYMBOL_GPL(kthread_queue_work);
1010
1011/**
1012 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1013 *	delayed work when the timer expires.
1014 * @t: pointer to the expired timer
1015 *
1016 * The format of the function is defined by struct timer_list.
1017 * It should have been called from irqsafe timer with irq already off.
1018 */
1019void kthread_delayed_work_timer_fn(struct timer_list *t)
1020{
1021	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1022	struct kthread_work *work = &dwork->work;
1023	struct kthread_worker *worker = work->worker;
1024	unsigned long flags;
1025
1026	/*
1027	 * This might happen when a pending work is reinitialized.
1028	 * It means that it is used a wrong way.
1029	 */
1030	if (WARN_ON_ONCE(!worker))
1031		return;
1032
1033	raw_spin_lock_irqsave(&worker->lock, flags);
1034	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1035	WARN_ON_ONCE(work->worker != worker);
1036
1037	/* Move the work from worker->delayed_work_list. */
1038	WARN_ON_ONCE(list_empty(&work->node));
1039	list_del_init(&work->node);
1040	if (!work->canceling)
1041		kthread_insert_work(worker, work, &worker->work_list);
1042
1043	raw_spin_unlock_irqrestore(&worker->lock, flags);
1044}
1045EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1046
1047static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1048					 struct kthread_delayed_work *dwork,
1049					 unsigned long delay)
1050{
1051	struct timer_list *timer = &dwork->timer;
1052	struct kthread_work *work = &dwork->work;
1053
1054	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1055
1056	/*
1057	 * If @delay is 0, queue @dwork->work immediately.  This is for
1058	 * both optimization and correctness.  The earliest @timer can
1059	 * expire is on the closest next tick and delayed_work users depend
1060	 * on that there's no such delay when @delay is 0.
1061	 */
1062	if (!delay) {
1063		kthread_insert_work(worker, work, &worker->work_list);
1064		return;
1065	}
1066
1067	/* Be paranoid and try to detect possible races already now. */
1068	kthread_insert_work_sanity_check(worker, work);
1069
1070	list_add(&work->node, &worker->delayed_work_list);
1071	work->worker = worker;
1072	timer->expires = jiffies + delay;
1073	add_timer(timer);
1074}
1075
1076/**
1077 * kthread_queue_delayed_work - queue the associated kthread work
1078 *	after a delay.
1079 * @worker: target kthread_worker
1080 * @dwork: kthread_delayed_work to queue
1081 * @delay: number of jiffies to wait before queuing
1082 *
1083 * If the work has not been pending it starts a timer that will queue
1084 * the work after the given @delay. If @delay is zero, it queues the
1085 * work immediately.
1086 *
1087 * Return: %false if the @work has already been pending. It means that
1088 * either the timer was running or the work was queued. It returns %true
1089 * otherwise.
1090 */
1091bool kthread_queue_delayed_work(struct kthread_worker *worker,
1092				struct kthread_delayed_work *dwork,
1093				unsigned long delay)
1094{
1095	struct kthread_work *work = &dwork->work;
1096	unsigned long flags;
1097	bool ret = false;
1098
1099	raw_spin_lock_irqsave(&worker->lock, flags);
1100
1101	if (!queuing_blocked(worker, work)) {
1102		__kthread_queue_delayed_work(worker, dwork, delay);
1103		ret = true;
1104	}
1105
1106	raw_spin_unlock_irqrestore(&worker->lock, flags);
1107	return ret;
1108}
1109EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1110
1111struct kthread_flush_work {
1112	struct kthread_work	work;
1113	struct completion	done;
1114};
1115
1116static void kthread_flush_work_fn(struct kthread_work *work)
1117{
1118	struct kthread_flush_work *fwork =
1119		container_of(work, struct kthread_flush_work, work);
1120	complete(&fwork->done);
1121}
1122
1123/**
1124 * kthread_flush_work - flush a kthread_work
1125 * @work: work to flush
1126 *
1127 * If @work is queued or executing, wait for it to finish execution.
1128 */
1129void kthread_flush_work(struct kthread_work *work)
1130{
1131	struct kthread_flush_work fwork = {
1132		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1133		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1134	};
1135	struct kthread_worker *worker;
1136	bool noop = false;
1137
1138	worker = work->worker;
1139	if (!worker)
1140		return;
1141
1142	raw_spin_lock_irq(&worker->lock);
1143	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1144	WARN_ON_ONCE(work->worker != worker);
1145
1146	if (!list_empty(&work->node))
1147		kthread_insert_work(worker, &fwork.work, work->node.next);
1148	else if (worker->current_work == work)
1149		kthread_insert_work(worker, &fwork.work,
1150				    worker->work_list.next);
1151	else
1152		noop = true;
1153
1154	raw_spin_unlock_irq(&worker->lock);
1155
1156	if (!noop)
1157		wait_for_completion(&fwork.done);
1158}
1159EXPORT_SYMBOL_GPL(kthread_flush_work);
1160
1161/*
1162 * Make sure that the timer is neither set nor running and could
1163 * not manipulate the work list_head any longer.
1164 *
1165 * The function is called under worker->lock. The lock is temporary
1166 * released but the timer can't be set again in the meantime.
1167 */
1168static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1169					      unsigned long *flags)
1170{
1171	struct kthread_delayed_work *dwork =
1172		container_of(work, struct kthread_delayed_work, work);
1173	struct kthread_worker *worker = work->worker;
1174
1175	/*
1176	 * del_timer_sync() must be called to make sure that the timer
1177	 * callback is not running. The lock must be temporary released
1178	 * to avoid a deadlock with the callback. In the meantime,
1179	 * any queuing is blocked by setting the canceling counter.
1180	 */
1181	work->canceling++;
1182	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1183	del_timer_sync(&dwork->timer);
1184	raw_spin_lock_irqsave(&worker->lock, *flags);
1185	work->canceling--;
1186}
1187
1188/*
1189 * This function removes the work from the worker queue.
1190 *
1191 * It is called under worker->lock. The caller must make sure that
1192 * the timer used by delayed work is not running, e.g. by calling
1193 * kthread_cancel_delayed_work_timer().
1194 *
1195 * The work might still be in use when this function finishes. See the
1196 * current_work proceed by the worker.
1197 *
1198 * Return: %true if @work was pending and successfully canceled,
1199 *	%false if @work was not pending
1200 */
1201static bool __kthread_cancel_work(struct kthread_work *work)
 
1202{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203	/*
1204	 * Try to remove the work from a worker list. It might either
1205	 * be from worker->work_list or from worker->delayed_work_list.
1206	 */
1207	if (!list_empty(&work->node)) {
1208		list_del_init(&work->node);
1209		return true;
1210	}
1211
1212	return false;
1213}
1214
1215/**
1216 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1217 * @worker: kthread worker to use
1218 * @dwork: kthread delayed work to queue
1219 * @delay: number of jiffies to wait before queuing
1220 *
1221 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1222 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1223 * @work is guaranteed to be queued immediately.
1224 *
1225 * Return: %false if @dwork was idle and queued, %true otherwise.
 
1226 *
1227 * A special case is when the work is being canceled in parallel.
1228 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1229 * or yet another kthread_mod_delayed_work() call. We let the other command
1230 * win and return %true here. The return value can be used for reference
1231 * counting and the number of queued works stays the same. Anyway, the caller
1232 * is supposed to synchronize these operations a reasonable way.
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1236 * for details.
1237 */
1238bool kthread_mod_delayed_work(struct kthread_worker *worker,
1239			      struct kthread_delayed_work *dwork,
1240			      unsigned long delay)
1241{
1242	struct kthread_work *work = &dwork->work;
1243	unsigned long flags;
1244	int ret;
1245
1246	raw_spin_lock_irqsave(&worker->lock, flags);
1247
1248	/* Do not bother with canceling when never queued. */
1249	if (!work->worker) {
1250		ret = false;
1251		goto fast_queue;
1252	}
1253
1254	/* Work must not be used with >1 worker, see kthread_queue_work() */
1255	WARN_ON_ONCE(work->worker != worker);
1256
1257	/*
1258	 * Temporary cancel the work but do not fight with another command
1259	 * that is canceling the work as well.
1260	 *
1261	 * It is a bit tricky because of possible races with another
1262	 * mod_delayed_work() and cancel_delayed_work() callers.
1263	 *
1264	 * The timer must be canceled first because worker->lock is released
1265	 * when doing so. But the work can be removed from the queue (list)
1266	 * only when it can be queued again so that the return value can
1267	 * be used for reference counting.
1268	 */
1269	kthread_cancel_delayed_work_timer(work, &flags);
1270	if (work->canceling) {
1271		/* The number of works in the queue does not change. */
1272		ret = true;
1273		goto out;
1274	}
1275	ret = __kthread_cancel_work(work);
1276
 
1277fast_queue:
1278	__kthread_queue_delayed_work(worker, dwork, delay);
1279out:
1280	raw_spin_unlock_irqrestore(&worker->lock, flags);
1281	return ret;
1282}
1283EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1284
1285static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1286{
1287	struct kthread_worker *worker = work->worker;
1288	unsigned long flags;
1289	int ret = false;
1290
1291	if (!worker)
1292		goto out;
1293
1294	raw_spin_lock_irqsave(&worker->lock, flags);
1295	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1296	WARN_ON_ONCE(work->worker != worker);
1297
1298	if (is_dwork)
1299		kthread_cancel_delayed_work_timer(work, &flags);
1300
1301	ret = __kthread_cancel_work(work);
1302
1303	if (worker->current_work != work)
1304		goto out_fast;
1305
1306	/*
1307	 * The work is in progress and we need to wait with the lock released.
1308	 * In the meantime, block any queuing by setting the canceling counter.
1309	 */
1310	work->canceling++;
1311	raw_spin_unlock_irqrestore(&worker->lock, flags);
1312	kthread_flush_work(work);
1313	raw_spin_lock_irqsave(&worker->lock, flags);
1314	work->canceling--;
1315
1316out_fast:
1317	raw_spin_unlock_irqrestore(&worker->lock, flags);
1318out:
1319	return ret;
1320}
1321
1322/**
1323 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1324 * @work: the kthread work to cancel
1325 *
1326 * Cancel @work and wait for its execution to finish.  This function
1327 * can be used even if the work re-queues itself. On return from this
1328 * function, @work is guaranteed to be not pending or executing on any CPU.
1329 *
1330 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1331 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1332 *
1333 * The caller must ensure that the worker on which @work was last
1334 * queued can't be destroyed before this function returns.
1335 *
1336 * Return: %true if @work was pending, %false otherwise.
1337 */
1338bool kthread_cancel_work_sync(struct kthread_work *work)
1339{
1340	return __kthread_cancel_work_sync(work, false);
1341}
1342EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1343
1344/**
1345 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1346 *	wait for it to finish.
1347 * @dwork: the kthread delayed work to cancel
1348 *
1349 * This is kthread_cancel_work_sync() for delayed works.
1350 *
1351 * Return: %true if @dwork was pending, %false otherwise.
1352 */
1353bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1354{
1355	return __kthread_cancel_work_sync(&dwork->work, true);
1356}
1357EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1358
1359/**
1360 * kthread_flush_worker - flush all current works on a kthread_worker
1361 * @worker: worker to flush
1362 *
1363 * Wait until all currently executing or pending works on @worker are
1364 * finished.
1365 */
1366void kthread_flush_worker(struct kthread_worker *worker)
1367{
1368	struct kthread_flush_work fwork = {
1369		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1370		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1371	};
1372
1373	kthread_queue_work(worker, &fwork.work);
1374	wait_for_completion(&fwork.done);
1375}
1376EXPORT_SYMBOL_GPL(kthread_flush_worker);
1377
1378/**
1379 * kthread_destroy_worker - destroy a kthread worker
1380 * @worker: worker to be destroyed
1381 *
1382 * Flush and destroy @worker.  The simple flush is enough because the kthread
1383 * worker API is used only in trivial scenarios.  There are no multi-step state
1384 * machines needed.
1385 */
1386void kthread_destroy_worker(struct kthread_worker *worker)
1387{
1388	struct task_struct *task;
1389
1390	task = worker->task;
1391	if (WARN_ON(!task))
1392		return;
1393
1394	kthread_flush_worker(worker);
1395	kthread_stop(task);
1396	WARN_ON(!list_empty(&worker->work_list));
1397	kfree(worker);
1398}
1399EXPORT_SYMBOL(kthread_destroy_worker);
1400
1401/**
1402 * kthread_use_mm - make the calling kthread operate on an address space
1403 * @mm: address space to operate on
1404 */
1405void kthread_use_mm(struct mm_struct *mm)
1406{
1407	struct mm_struct *active_mm;
1408	struct task_struct *tsk = current;
1409
1410	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1411	WARN_ON_ONCE(tsk->mm);
1412
1413	task_lock(tsk);
1414	/* Hold off tlb flush IPIs while switching mm's */
1415	local_irq_disable();
1416	active_mm = tsk->active_mm;
1417	if (active_mm != mm) {
1418		mmgrab(mm);
1419		tsk->active_mm = mm;
1420	}
1421	tsk->mm = mm;
1422	membarrier_update_current_mm(mm);
1423	switch_mm_irqs_off(active_mm, mm, tsk);
1424	local_irq_enable();
1425	task_unlock(tsk);
1426#ifdef finish_arch_post_lock_switch
1427	finish_arch_post_lock_switch();
1428#endif
1429
1430	/*
1431	 * When a kthread starts operating on an address space, the loop
1432	 * in membarrier_{private,global}_expedited() may not observe
1433	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1434	 * memory barrier after storing to tsk->mm, before accessing
1435	 * user-space memory. A full memory barrier for membarrier
1436	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1437	 * mmdrop(), or explicitly with smp_mb().
1438	 */
1439	if (active_mm != mm)
1440		mmdrop(active_mm);
1441	else
1442		smp_mb();
1443}
1444EXPORT_SYMBOL_GPL(kthread_use_mm);
1445
1446/**
1447 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1448 * @mm: address space to operate on
1449 */
1450void kthread_unuse_mm(struct mm_struct *mm)
1451{
1452	struct task_struct *tsk = current;
1453
1454	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1455	WARN_ON_ONCE(!tsk->mm);
1456
 
 
1457	task_lock(tsk);
1458	/*
1459	 * When a kthread stops operating on an address space, the loop
1460	 * in membarrier_{private,global}_expedited() may not observe
1461	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1462	 * memory barrier after accessing user-space memory, before
1463	 * clearing tsk->mm.
1464	 */
1465	smp_mb__after_spinlock();
1466	sync_mm_rss(mm);
1467	local_irq_disable();
1468	tsk->mm = NULL;
1469	membarrier_update_current_mm(NULL);
1470	/* active_mm is still 'mm' */
1471	enter_lazy_tlb(mm, tsk);
1472	local_irq_enable();
1473	task_unlock(tsk);
1474}
1475EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1476
1477#ifdef CONFIG_BLK_CGROUP
1478/**
1479 * kthread_associate_blkcg - associate blkcg to current kthread
1480 * @css: the cgroup info
1481 *
1482 * Current thread must be a kthread. The thread is running jobs on behalf of
1483 * other threads. In some cases, we expect the jobs attach cgroup info of
1484 * original threads instead of that of current thread. This function stores
1485 * original thread's cgroup info in current kthread context for later
1486 * retrieval.
1487 */
1488void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1489{
1490	struct kthread *kthread;
1491
1492	if (!(current->flags & PF_KTHREAD))
1493		return;
1494	kthread = to_kthread(current);
1495	if (!kthread)
1496		return;
1497
1498	if (kthread->blkcg_css) {
1499		css_put(kthread->blkcg_css);
1500		kthread->blkcg_css = NULL;
1501	}
1502	if (css) {
1503		css_get(css);
1504		kthread->blkcg_css = css;
1505	}
1506}
1507EXPORT_SYMBOL(kthread_associate_blkcg);
1508
1509/**
1510 * kthread_blkcg - get associated blkcg css of current kthread
1511 *
1512 * Current thread must be a kthread.
1513 */
1514struct cgroup_subsys_state *kthread_blkcg(void)
1515{
1516	struct kthread *kthread;
1517
1518	if (current->flags & PF_KTHREAD) {
1519		kthread = to_kthread(current);
1520		if (kthread)
1521			return kthread->blkcg_css;
1522	}
1523	return NULL;
1524}
 
1525#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Kernel thread helper functions.
   3 *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
   4 *   Copyright (C) 2009 Red Hat, Inc.
   5 *
   6 * Creation is done via kthreadd, so that we get a clean environment
   7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
   8 * etc.).
   9 */
  10#include <uapi/linux/sched/types.h>
  11#include <linux/mm.h>
  12#include <linux/mmu_context.h>
  13#include <linux/sched.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/task.h>
  16#include <linux/kthread.h>
  17#include <linux/completion.h>
  18#include <linux/err.h>
  19#include <linux/cgroup.h>
  20#include <linux/cpuset.h>
  21#include <linux/unistd.h>
  22#include <linux/file.h>
  23#include <linux/export.h>
  24#include <linux/mutex.h>
  25#include <linux/slab.h>
  26#include <linux/freezer.h>
  27#include <linux/ptrace.h>
  28#include <linux/uaccess.h>
  29#include <linux/numa.h>
  30#include <linux/sched/isolation.h>
  31#include <trace/events/sched.h>
  32
  33
  34static DEFINE_SPINLOCK(kthread_create_lock);
  35static LIST_HEAD(kthread_create_list);
  36struct task_struct *kthreadd_task;
  37
  38struct kthread_create_info
  39{
  40	/* Information passed to kthread() from kthreadd. */
  41	int (*threadfn)(void *data);
  42	void *data;
  43	int node;
  44
  45	/* Result passed back to kthread_create() from kthreadd. */
  46	struct task_struct *result;
  47	struct completion *done;
  48
  49	struct list_head list;
  50};
  51
  52struct kthread {
  53	unsigned long flags;
  54	unsigned int cpu;
 
  55	int (*threadfn)(void *);
  56	void *data;
  57	mm_segment_t oldfs;
  58	struct completion parked;
  59	struct completion exited;
  60#ifdef CONFIG_BLK_CGROUP
  61	struct cgroup_subsys_state *blkcg_css;
  62#endif
 
 
  63};
  64
  65enum KTHREAD_BITS {
  66	KTHREAD_IS_PER_CPU = 0,
  67	KTHREAD_SHOULD_STOP,
  68	KTHREAD_SHOULD_PARK,
  69};
  70
  71static inline void set_kthread_struct(void *kthread)
  72{
  73	/*
  74	 * We abuse ->set_child_tid to avoid the new member and because it
  75	 * can't be wrongly copied by copy_process(). We also rely on fact
  76	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
  77	 */
  78	current->set_child_tid = (__force void __user *)kthread;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static inline struct kthread *to_kthread(struct task_struct *k)
  82{
  83	WARN_ON(!(k->flags & PF_KTHREAD));
  84	return (__force void *)k->set_child_tid;
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87void free_kthread_struct(struct task_struct *k)
  88{
  89	struct kthread *kthread;
  90
  91	/*
  92	 * Can be NULL if this kthread was created by kernel_thread()
  93	 * or if kmalloc() in kthread() failed.
  94	 */
  95	kthread = to_kthread(k);
 
 
 
  96#ifdef CONFIG_BLK_CGROUP
  97	WARN_ON_ONCE(kthread && kthread->blkcg_css);
  98#endif
 
 
  99	kfree(kthread);
 100}
 101
 102/**
 103 * kthread_should_stop - should this kthread return now?
 104 *
 105 * When someone calls kthread_stop() on your kthread, it will be woken
 106 * and this will return true.  You should then return, and your return
 107 * value will be passed through to kthread_stop().
 108 */
 109bool kthread_should_stop(void)
 110{
 111	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
 112}
 113EXPORT_SYMBOL(kthread_should_stop);
 114
 115bool __kthread_should_park(struct task_struct *k)
 116{
 117	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
 118}
 119EXPORT_SYMBOL_GPL(__kthread_should_park);
 120
 121/**
 122 * kthread_should_park - should this kthread park now?
 123 *
 124 * When someone calls kthread_park() on your kthread, it will be woken
 125 * and this will return true.  You should then do the necessary
 126 * cleanup and call kthread_parkme()
 127 *
 128 * Similar to kthread_should_stop(), but this keeps the thread alive
 129 * and in a park position. kthread_unpark() "restarts" the thread and
 130 * calls the thread function again.
 131 */
 132bool kthread_should_park(void)
 133{
 134	return __kthread_should_park(current);
 135}
 136EXPORT_SYMBOL_GPL(kthread_should_park);
 137
 138/**
 139 * kthread_freezable_should_stop - should this freezable kthread return now?
 140 * @was_frozen: optional out parameter, indicates whether %current was frozen
 141 *
 142 * kthread_should_stop() for freezable kthreads, which will enter
 143 * refrigerator if necessary.  This function is safe from kthread_stop() /
 144 * freezer deadlock and freezable kthreads should use this function instead
 145 * of calling try_to_freeze() directly.
 146 */
 147bool kthread_freezable_should_stop(bool *was_frozen)
 148{
 149	bool frozen = false;
 150
 151	might_sleep();
 152
 153	if (unlikely(freezing(current)))
 154		frozen = __refrigerator(true);
 155
 156	if (was_frozen)
 157		*was_frozen = frozen;
 158
 159	return kthread_should_stop();
 160}
 161EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
 162
 163/**
 164 * kthread_func - return the function specified on kthread creation
 165 * @task: kthread task in question
 166 *
 167 * Returns NULL if the task is not a kthread.
 168 */
 169void *kthread_func(struct task_struct *task)
 170{
 171	if (task->flags & PF_KTHREAD)
 172		return to_kthread(task)->threadfn;
 
 173	return NULL;
 174}
 175EXPORT_SYMBOL_GPL(kthread_func);
 176
 177/**
 178 * kthread_data - return data value specified on kthread creation
 179 * @task: kthread task in question
 180 *
 181 * Return the data value specified when kthread @task was created.
 182 * The caller is responsible for ensuring the validity of @task when
 183 * calling this function.
 184 */
 185void *kthread_data(struct task_struct *task)
 186{
 187	return to_kthread(task)->data;
 188}
 189EXPORT_SYMBOL_GPL(kthread_data);
 190
 191/**
 192 * kthread_probe_data - speculative version of kthread_data()
 193 * @task: possible kthread task in question
 194 *
 195 * @task could be a kthread task.  Return the data value specified when it
 196 * was created if accessible.  If @task isn't a kthread task or its data is
 197 * inaccessible for any reason, %NULL is returned.  This function requires
 198 * that @task itself is safe to dereference.
 199 */
 200void *kthread_probe_data(struct task_struct *task)
 201{
 202	struct kthread *kthread = to_kthread(task);
 203	void *data = NULL;
 204
 205	copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
 
 206	return data;
 207}
 208
 209static void __kthread_parkme(struct kthread *self)
 210{
 211	for (;;) {
 212		/*
 213		 * TASK_PARKED is a special state; we must serialize against
 214		 * possible pending wakeups to avoid store-store collisions on
 215		 * task->state.
 216		 *
 217		 * Such a collision might possibly result in the task state
 218		 * changin from TASK_PARKED and us failing the
 219		 * wait_task_inactive() in kthread_park().
 220		 */
 221		set_special_state(TASK_PARKED);
 222		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
 223			break;
 224
 225		/*
 226		 * Thread is going to call schedule(), do not preempt it,
 227		 * or the caller of kthread_park() may spend more time in
 228		 * wait_task_inactive().
 229		 */
 230		preempt_disable();
 231		complete(&self->parked);
 232		schedule_preempt_disabled();
 233		preempt_enable();
 234	}
 235	__set_current_state(TASK_RUNNING);
 236}
 237
 238void kthread_parkme(void)
 239{
 240	__kthread_parkme(to_kthread(current));
 241}
 242EXPORT_SYMBOL_GPL(kthread_parkme);
 243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244static int kthread(void *_create)
 245{
 
 246	/* Copy data: it's on kthread's stack */
 247	struct kthread_create_info *create = _create;
 248	int (*threadfn)(void *data) = create->threadfn;
 249	void *data = create->data;
 250	struct completion *done;
 251	struct kthread *self;
 252	int ret;
 253
 254	self = kzalloc(sizeof(*self), GFP_KERNEL);
 255	set_kthread_struct(self);
 256
 257	/* If user was SIGKILLed, I release the structure. */
 258	done = xchg(&create->done, NULL);
 259	if (!done) {
 260		kfree(create);
 261		do_exit(-EINTR);
 262	}
 263
 264	if (!self) {
 265		create->result = ERR_PTR(-ENOMEM);
 266		complete(done);
 267		do_exit(-ENOMEM);
 268	}
 269
 270	self->threadfn = threadfn;
 271	self->data = data;
 272	init_completion(&self->exited);
 273	init_completion(&self->parked);
 274	current->vfork_done = &self->exited;
 
 
 
 
 275
 276	/* OK, tell user we're spawned, wait for stop or wakeup */
 277	__set_current_state(TASK_UNINTERRUPTIBLE);
 278	create->result = current;
 279	/*
 280	 * Thread is going to call schedule(), do not preempt it,
 281	 * or the creator may spend more time in wait_task_inactive().
 282	 */
 283	preempt_disable();
 284	complete(done);
 285	schedule_preempt_disabled();
 286	preempt_enable();
 287
 288	ret = -EINTR;
 289	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
 290		cgroup_kthread_ready();
 291		__kthread_parkme(self);
 292		ret = threadfn(data);
 293	}
 294	do_exit(ret);
 295}
 296
 297/* called from do_fork() to get node information for about to be created task */
 298int tsk_fork_get_node(struct task_struct *tsk)
 299{
 300#ifdef CONFIG_NUMA
 301	if (tsk == kthreadd_task)
 302		return tsk->pref_node_fork;
 303#endif
 304	return NUMA_NO_NODE;
 305}
 306
 307static void create_kthread(struct kthread_create_info *create)
 308{
 309	int pid;
 310
 311#ifdef CONFIG_NUMA
 312	current->pref_node_fork = create->node;
 313#endif
 314	/* We want our own signal handler (we take no signals by default). */
 315	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
 316	if (pid < 0) {
 317		/* If user was SIGKILLed, I release the structure. */
 318		struct completion *done = xchg(&create->done, NULL);
 319
 320		if (!done) {
 321			kfree(create);
 322			return;
 323		}
 324		create->result = ERR_PTR(pid);
 325		complete(done);
 326	}
 327}
 328
 329static __printf(4, 0)
 330struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
 331						    void *data, int node,
 332						    const char namefmt[],
 333						    va_list args)
 334{
 335	DECLARE_COMPLETION_ONSTACK(done);
 336	struct task_struct *task;
 337	struct kthread_create_info *create = kmalloc(sizeof(*create),
 338						     GFP_KERNEL);
 339
 340	if (!create)
 341		return ERR_PTR(-ENOMEM);
 342	create->threadfn = threadfn;
 343	create->data = data;
 344	create->node = node;
 345	create->done = &done;
 346
 347	spin_lock(&kthread_create_lock);
 348	list_add_tail(&create->list, &kthread_create_list);
 349	spin_unlock(&kthread_create_lock);
 350
 351	wake_up_process(kthreadd_task);
 352	/*
 353	 * Wait for completion in killable state, for I might be chosen by
 354	 * the OOM killer while kthreadd is trying to allocate memory for
 355	 * new kernel thread.
 356	 */
 357	if (unlikely(wait_for_completion_killable(&done))) {
 358		/*
 359		 * If I was SIGKILLed before kthreadd (or new kernel thread)
 360		 * calls complete(), leave the cleanup of this structure to
 361		 * that thread.
 362		 */
 363		if (xchg(&create->done, NULL))
 364			return ERR_PTR(-EINTR);
 365		/*
 366		 * kthreadd (or new kernel thread) will call complete()
 367		 * shortly.
 368		 */
 369		wait_for_completion(&done);
 370	}
 371	task = create->result;
 372	if (!IS_ERR(task)) {
 373		static const struct sched_param param = { .sched_priority = 0 };
 374		char name[TASK_COMM_LEN];
 
 
 375
 376		/*
 377		 * task is already visible to other tasks, so updating
 378		 * COMM must be protected.
 379		 */
 380		vsnprintf(name, sizeof(name), namefmt, args);
 
 
 
 
 
 
 
 
 381		set_task_comm(task, name);
 382		/*
 383		 * root may have changed our (kthreadd's) priority or CPU mask.
 384		 * The kernel thread should not inherit these properties.
 385		 */
 386		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
 387		set_cpus_allowed_ptr(task,
 388				     housekeeping_cpumask(HK_FLAG_KTHREAD));
 389	}
 390	kfree(create);
 391	return task;
 392}
 393
 394/**
 395 * kthread_create_on_node - create a kthread.
 396 * @threadfn: the function to run until signal_pending(current).
 397 * @data: data ptr for @threadfn.
 398 * @node: task and thread structures for the thread are allocated on this node
 399 * @namefmt: printf-style name for the thread.
 400 *
 401 * Description: This helper function creates and names a kernel
 402 * thread.  The thread will be stopped: use wake_up_process() to start
 403 * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
 404 * is affine to all CPUs.
 405 *
 406 * If thread is going to be bound on a particular cpu, give its node
 407 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
 408 * When woken, the thread will run @threadfn() with @data as its
 409 * argument. @threadfn() can either call do_exit() directly if it is a
 410 * standalone thread for which no one will call kthread_stop(), or
 411 * return when 'kthread_should_stop()' is true (which means
 412 * kthread_stop() has been called).  The return value should be zero
 413 * or a negative error number; it will be passed to kthread_stop().
 414 *
 415 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
 416 */
 417struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
 418					   void *data, int node,
 419					   const char namefmt[],
 420					   ...)
 421{
 422	struct task_struct *task;
 423	va_list args;
 424
 425	va_start(args, namefmt);
 426	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
 427	va_end(args);
 428
 429	return task;
 430}
 431EXPORT_SYMBOL(kthread_create_on_node);
 432
 433static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
 434{
 435	unsigned long flags;
 436
 437	if (!wait_task_inactive(p, state)) {
 438		WARN_ON(1);
 439		return;
 440	}
 441
 442	/* It's safe because the task is inactive. */
 443	raw_spin_lock_irqsave(&p->pi_lock, flags);
 444	do_set_cpus_allowed(p, mask);
 445	p->flags |= PF_NO_SETAFFINITY;
 446	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
 447}
 448
 449static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
 450{
 451	__kthread_bind_mask(p, cpumask_of(cpu), state);
 452}
 453
 454void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
 455{
 456	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
 457}
 458
 459/**
 460 * kthread_bind - bind a just-created kthread to a cpu.
 461 * @p: thread created by kthread_create().
 462 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 463 *
 464 * Description: This function is equivalent to set_cpus_allowed(),
 465 * except that @cpu doesn't need to be online, and the thread must be
 466 * stopped (i.e., just returned from kthread_create()).
 467 */
 468void kthread_bind(struct task_struct *p, unsigned int cpu)
 469{
 470	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
 471}
 472EXPORT_SYMBOL(kthread_bind);
 473
 474/**
 475 * kthread_create_on_cpu - Create a cpu bound kthread
 476 * @threadfn: the function to run until signal_pending(current).
 477 * @data: data ptr for @threadfn.
 478 * @cpu: The cpu on which the thread should be bound,
 479 * @namefmt: printf-style name for the thread. Format is restricted
 480 *	     to "name.*%u". Code fills in cpu number.
 481 *
 482 * Description: This helper function creates and names a kernel thread
 483 */
 484struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
 485					  void *data, unsigned int cpu,
 486					  const char *namefmt)
 487{
 488	struct task_struct *p;
 489
 490	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
 491				   cpu);
 492	if (IS_ERR(p))
 493		return p;
 494	kthread_bind(p, cpu);
 495	/* CPU hotplug need to bind once again when unparking the thread. */
 496	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
 497	to_kthread(p)->cpu = cpu;
 498	return p;
 499}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500
 501/**
 502 * kthread_unpark - unpark a thread created by kthread_create().
 503 * @k:		thread created by kthread_create().
 504 *
 505 * Sets kthread_should_park() for @k to return false, wakes it, and
 506 * waits for it to return. If the thread is marked percpu then its
 507 * bound to the cpu again.
 508 */
 509void kthread_unpark(struct task_struct *k)
 510{
 511	struct kthread *kthread = to_kthread(k);
 512
 513	/*
 514	 * Newly created kthread was parked when the CPU was offline.
 515	 * The binding was lost and we need to set it again.
 516	 */
 517	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
 518		__kthread_bind(k, kthread->cpu, TASK_PARKED);
 519
 520	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 521	/*
 522	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
 523	 */
 524	wake_up_state(k, TASK_PARKED);
 525}
 526EXPORT_SYMBOL_GPL(kthread_unpark);
 527
 528/**
 529 * kthread_park - park a thread created by kthread_create().
 530 * @k: thread created by kthread_create().
 531 *
 532 * Sets kthread_should_park() for @k to return true, wakes it, and
 533 * waits for it to return. This can also be called after kthread_create()
 534 * instead of calling wake_up_process(): the thread will park without
 535 * calling threadfn().
 536 *
 537 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
 538 * If called by the kthread itself just the park bit is set.
 539 */
 540int kthread_park(struct task_struct *k)
 541{
 542	struct kthread *kthread = to_kthread(k);
 543
 544	if (WARN_ON(k->flags & PF_EXITING))
 545		return -ENOSYS;
 546
 547	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
 548		return -EBUSY;
 549
 550	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
 551	if (k != current) {
 552		wake_up_process(k);
 553		/*
 554		 * Wait for __kthread_parkme() to complete(), this means we
 555		 * _will_ have TASK_PARKED and are about to call schedule().
 556		 */
 557		wait_for_completion(&kthread->parked);
 558		/*
 559		 * Now wait for that schedule() to complete and the task to
 560		 * get scheduled out.
 561		 */
 562		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
 563	}
 564
 565	return 0;
 566}
 567EXPORT_SYMBOL_GPL(kthread_park);
 568
 569/**
 570 * kthread_stop - stop a thread created by kthread_create().
 571 * @k: thread created by kthread_create().
 572 *
 573 * Sets kthread_should_stop() for @k to return true, wakes it, and
 574 * waits for it to exit. This can also be called after kthread_create()
 575 * instead of calling wake_up_process(): the thread will exit without
 576 * calling threadfn().
 577 *
 578 * If threadfn() may call do_exit() itself, the caller must ensure
 579 * task_struct can't go away.
 580 *
 581 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
 582 * was never called.
 583 */
 584int kthread_stop(struct task_struct *k)
 585{
 586	struct kthread *kthread;
 587	int ret;
 588
 589	trace_sched_kthread_stop(k);
 590
 591	get_task_struct(k);
 592	kthread = to_kthread(k);
 593	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
 594	kthread_unpark(k);
 
 595	wake_up_process(k);
 596	wait_for_completion(&kthread->exited);
 597	ret = k->exit_code;
 598	put_task_struct(k);
 599
 600	trace_sched_kthread_stop_ret(ret);
 601	return ret;
 602}
 603EXPORT_SYMBOL(kthread_stop);
 604
 605int kthreadd(void *unused)
 606{
 607	struct task_struct *tsk = current;
 608
 609	/* Setup a clean context for our children to inherit. */
 610	set_task_comm(tsk, "kthreadd");
 611	ignore_signals(tsk);
 612	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
 613	set_mems_allowed(node_states[N_MEMORY]);
 614
 615	current->flags |= PF_NOFREEZE;
 616	cgroup_init_kthreadd();
 617
 618	for (;;) {
 619		set_current_state(TASK_INTERRUPTIBLE);
 620		if (list_empty(&kthread_create_list))
 621			schedule();
 622		__set_current_state(TASK_RUNNING);
 623
 624		spin_lock(&kthread_create_lock);
 625		while (!list_empty(&kthread_create_list)) {
 626			struct kthread_create_info *create;
 627
 628			create = list_entry(kthread_create_list.next,
 629					    struct kthread_create_info, list);
 630			list_del_init(&create->list);
 631			spin_unlock(&kthread_create_lock);
 632
 633			create_kthread(create);
 634
 635			spin_lock(&kthread_create_lock);
 636		}
 637		spin_unlock(&kthread_create_lock);
 638	}
 639
 640	return 0;
 641}
 642
 643void __kthread_init_worker(struct kthread_worker *worker,
 644				const char *name,
 645				struct lock_class_key *key)
 646{
 647	memset(worker, 0, sizeof(struct kthread_worker));
 648	raw_spin_lock_init(&worker->lock);
 649	lockdep_set_class_and_name(&worker->lock, key, name);
 650	INIT_LIST_HEAD(&worker->work_list);
 651	INIT_LIST_HEAD(&worker->delayed_work_list);
 652}
 653EXPORT_SYMBOL_GPL(__kthread_init_worker);
 654
 655/**
 656 * kthread_worker_fn - kthread function to process kthread_worker
 657 * @worker_ptr: pointer to initialized kthread_worker
 658 *
 659 * This function implements the main cycle of kthread worker. It processes
 660 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
 661 * is empty.
 662 *
 663 * The works are not allowed to keep any locks, disable preemption or interrupts
 664 * when they finish. There is defined a safe point for freezing when one work
 665 * finishes and before a new one is started.
 666 *
 667 * Also the works must not be handled by more than one worker at the same time,
 668 * see also kthread_queue_work().
 669 */
 670int kthread_worker_fn(void *worker_ptr)
 671{
 672	struct kthread_worker *worker = worker_ptr;
 673	struct kthread_work *work;
 674
 675	/*
 676	 * FIXME: Update the check and remove the assignment when all kthread
 677	 * worker users are created using kthread_create_worker*() functions.
 678	 */
 679	WARN_ON(worker->task && worker->task != current);
 680	worker->task = current;
 681
 682	if (worker->flags & KTW_FREEZABLE)
 683		set_freezable();
 684
 685repeat:
 686	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
 687
 688	if (kthread_should_stop()) {
 689		__set_current_state(TASK_RUNNING);
 690		raw_spin_lock_irq(&worker->lock);
 691		worker->task = NULL;
 692		raw_spin_unlock_irq(&worker->lock);
 693		return 0;
 694	}
 695
 696	work = NULL;
 697	raw_spin_lock_irq(&worker->lock);
 698	if (!list_empty(&worker->work_list)) {
 699		work = list_first_entry(&worker->work_list,
 700					struct kthread_work, node);
 701		list_del_init(&work->node);
 702	}
 703	worker->current_work = work;
 704	raw_spin_unlock_irq(&worker->lock);
 705
 706	if (work) {
 
 707		__set_current_state(TASK_RUNNING);
 
 708		work->func(work);
 
 
 
 
 
 709	} else if (!freezing(current))
 710		schedule();
 711
 712	try_to_freeze();
 713	cond_resched();
 714	goto repeat;
 715}
 716EXPORT_SYMBOL_GPL(kthread_worker_fn);
 717
 718static __printf(3, 0) struct kthread_worker *
 719__kthread_create_worker(int cpu, unsigned int flags,
 720			const char namefmt[], va_list args)
 721{
 722	struct kthread_worker *worker;
 723	struct task_struct *task;
 724	int node = NUMA_NO_NODE;
 725
 726	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
 727	if (!worker)
 728		return ERR_PTR(-ENOMEM);
 729
 730	kthread_init_worker(worker);
 731
 732	if (cpu >= 0)
 733		node = cpu_to_node(cpu);
 734
 735	task = __kthread_create_on_node(kthread_worker_fn, worker,
 736						node, namefmt, args);
 737	if (IS_ERR(task))
 738		goto fail_task;
 739
 740	if (cpu >= 0)
 741		kthread_bind(task, cpu);
 742
 743	worker->flags = flags;
 744	worker->task = task;
 745	wake_up_process(task);
 746	return worker;
 747
 748fail_task:
 749	kfree(worker);
 750	return ERR_CAST(task);
 751}
 752
 753/**
 754 * kthread_create_worker - create a kthread worker
 755 * @flags: flags modifying the default behavior of the worker
 756 * @namefmt: printf-style name for the kthread worker (task).
 757 *
 758 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 759 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 760 * when the worker was SIGKILLed.
 761 */
 762struct kthread_worker *
 763kthread_create_worker(unsigned int flags, const char namefmt[], ...)
 764{
 765	struct kthread_worker *worker;
 766	va_list args;
 767
 768	va_start(args, namefmt);
 769	worker = __kthread_create_worker(-1, flags, namefmt, args);
 770	va_end(args);
 771
 772	return worker;
 773}
 774EXPORT_SYMBOL(kthread_create_worker);
 775
 776/**
 777 * kthread_create_worker_on_cpu - create a kthread worker and bind it
 778 *	it to a given CPU and the associated NUMA node.
 779 * @cpu: CPU number
 780 * @flags: flags modifying the default behavior of the worker
 781 * @namefmt: printf-style name for the kthread worker (task).
 782 *
 783 * Use a valid CPU number if you want to bind the kthread worker
 784 * to the given CPU and the associated NUMA node.
 785 *
 786 * A good practice is to add the cpu number also into the worker name.
 787 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
 788 *
 789 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
 791 * when the worker was SIGKILLed.
 792 */
 793struct kthread_worker *
 794kthread_create_worker_on_cpu(int cpu, unsigned int flags,
 795			     const char namefmt[], ...)
 796{
 797	struct kthread_worker *worker;
 798	va_list args;
 799
 800	va_start(args, namefmt);
 801	worker = __kthread_create_worker(cpu, flags, namefmt, args);
 802	va_end(args);
 803
 804	return worker;
 805}
 806EXPORT_SYMBOL(kthread_create_worker_on_cpu);
 807
 808/*
 809 * Returns true when the work could not be queued at the moment.
 810 * It happens when it is already pending in a worker list
 811 * or when it is being cancelled.
 812 */
 813static inline bool queuing_blocked(struct kthread_worker *worker,
 814				   struct kthread_work *work)
 815{
 816	lockdep_assert_held(&worker->lock);
 817
 818	return !list_empty(&work->node) || work->canceling;
 819}
 820
 821static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
 822					     struct kthread_work *work)
 823{
 824	lockdep_assert_held(&worker->lock);
 825	WARN_ON_ONCE(!list_empty(&work->node));
 826	/* Do not use a work with >1 worker, see kthread_queue_work() */
 827	WARN_ON_ONCE(work->worker && work->worker != worker);
 828}
 829
 830/* insert @work before @pos in @worker */
 831static void kthread_insert_work(struct kthread_worker *worker,
 832				struct kthread_work *work,
 833				struct list_head *pos)
 834{
 835	kthread_insert_work_sanity_check(worker, work);
 836
 
 
 837	list_add_tail(&work->node, pos);
 838	work->worker = worker;
 839	if (!worker->current_work && likely(worker->task))
 840		wake_up_process(worker->task);
 841}
 842
 843/**
 844 * kthread_queue_work - queue a kthread_work
 845 * @worker: target kthread_worker
 846 * @work: kthread_work to queue
 847 *
 848 * Queue @work to work processor @task for async execution.  @task
 849 * must have been created with kthread_worker_create().  Returns %true
 850 * if @work was successfully queued, %false if it was already pending.
 851 *
 852 * Reinitialize the work if it needs to be used by another worker.
 853 * For example, when the worker was stopped and started again.
 854 */
 855bool kthread_queue_work(struct kthread_worker *worker,
 856			struct kthread_work *work)
 857{
 858	bool ret = false;
 859	unsigned long flags;
 860
 861	raw_spin_lock_irqsave(&worker->lock, flags);
 862	if (!queuing_blocked(worker, work)) {
 863		kthread_insert_work(worker, work, &worker->work_list);
 864		ret = true;
 865	}
 866	raw_spin_unlock_irqrestore(&worker->lock, flags);
 867	return ret;
 868}
 869EXPORT_SYMBOL_GPL(kthread_queue_work);
 870
 871/**
 872 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
 873 *	delayed work when the timer expires.
 874 * @t: pointer to the expired timer
 875 *
 876 * The format of the function is defined by struct timer_list.
 877 * It should have been called from irqsafe timer with irq already off.
 878 */
 879void kthread_delayed_work_timer_fn(struct timer_list *t)
 880{
 881	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
 882	struct kthread_work *work = &dwork->work;
 883	struct kthread_worker *worker = work->worker;
 884	unsigned long flags;
 885
 886	/*
 887	 * This might happen when a pending work is reinitialized.
 888	 * It means that it is used a wrong way.
 889	 */
 890	if (WARN_ON_ONCE(!worker))
 891		return;
 892
 893	raw_spin_lock_irqsave(&worker->lock, flags);
 894	/* Work must not be used with >1 worker, see kthread_queue_work(). */
 895	WARN_ON_ONCE(work->worker != worker);
 896
 897	/* Move the work from worker->delayed_work_list. */
 898	WARN_ON_ONCE(list_empty(&work->node));
 899	list_del_init(&work->node);
 900	kthread_insert_work(worker, work, &worker->work_list);
 
 901
 902	raw_spin_unlock_irqrestore(&worker->lock, flags);
 903}
 904EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
 905
 906static void __kthread_queue_delayed_work(struct kthread_worker *worker,
 907					 struct kthread_delayed_work *dwork,
 908					 unsigned long delay)
 909{
 910	struct timer_list *timer = &dwork->timer;
 911	struct kthread_work *work = &dwork->work;
 912
 913	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
 914
 915	/*
 916	 * If @delay is 0, queue @dwork->work immediately.  This is for
 917	 * both optimization and correctness.  The earliest @timer can
 918	 * expire is on the closest next tick and delayed_work users depend
 919	 * on that there's no such delay when @delay is 0.
 920	 */
 921	if (!delay) {
 922		kthread_insert_work(worker, work, &worker->work_list);
 923		return;
 924	}
 925
 926	/* Be paranoid and try to detect possible races already now. */
 927	kthread_insert_work_sanity_check(worker, work);
 928
 929	list_add(&work->node, &worker->delayed_work_list);
 930	work->worker = worker;
 931	timer->expires = jiffies + delay;
 932	add_timer(timer);
 933}
 934
 935/**
 936 * kthread_queue_delayed_work - queue the associated kthread work
 937 *	after a delay.
 938 * @worker: target kthread_worker
 939 * @dwork: kthread_delayed_work to queue
 940 * @delay: number of jiffies to wait before queuing
 941 *
 942 * If the work has not been pending it starts a timer that will queue
 943 * the work after the given @delay. If @delay is zero, it queues the
 944 * work immediately.
 945 *
 946 * Return: %false if the @work has already been pending. It means that
 947 * either the timer was running or the work was queued. It returns %true
 948 * otherwise.
 949 */
 950bool kthread_queue_delayed_work(struct kthread_worker *worker,
 951				struct kthread_delayed_work *dwork,
 952				unsigned long delay)
 953{
 954	struct kthread_work *work = &dwork->work;
 955	unsigned long flags;
 956	bool ret = false;
 957
 958	raw_spin_lock_irqsave(&worker->lock, flags);
 959
 960	if (!queuing_blocked(worker, work)) {
 961		__kthread_queue_delayed_work(worker, dwork, delay);
 962		ret = true;
 963	}
 964
 965	raw_spin_unlock_irqrestore(&worker->lock, flags);
 966	return ret;
 967}
 968EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
 969
 970struct kthread_flush_work {
 971	struct kthread_work	work;
 972	struct completion	done;
 973};
 974
 975static void kthread_flush_work_fn(struct kthread_work *work)
 976{
 977	struct kthread_flush_work *fwork =
 978		container_of(work, struct kthread_flush_work, work);
 979	complete(&fwork->done);
 980}
 981
 982/**
 983 * kthread_flush_work - flush a kthread_work
 984 * @work: work to flush
 985 *
 986 * If @work is queued or executing, wait for it to finish execution.
 987 */
 988void kthread_flush_work(struct kthread_work *work)
 989{
 990	struct kthread_flush_work fwork = {
 991		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
 992		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
 993	};
 994	struct kthread_worker *worker;
 995	bool noop = false;
 996
 997	worker = work->worker;
 998	if (!worker)
 999		return;
1000
1001	raw_spin_lock_irq(&worker->lock);
1002	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1003	WARN_ON_ONCE(work->worker != worker);
1004
1005	if (!list_empty(&work->node))
1006		kthread_insert_work(worker, &fwork.work, work->node.next);
1007	else if (worker->current_work == work)
1008		kthread_insert_work(worker, &fwork.work,
1009				    worker->work_list.next);
1010	else
1011		noop = true;
1012
1013	raw_spin_unlock_irq(&worker->lock);
1014
1015	if (!noop)
1016		wait_for_completion(&fwork.done);
1017}
1018EXPORT_SYMBOL_GPL(kthread_flush_work);
1019
1020/*
1021 * This function removes the work from the worker queue. Also it makes sure
1022 * that it won't get queued later via the delayed work's timer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023 *
1024 * The work might still be in use when this function finishes. See the
1025 * current_work proceed by the worker.
1026 *
1027 * Return: %true if @work was pending and successfully canceled,
1028 *	%false if @work was not pending
1029 */
1030static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1031				  unsigned long *flags)
1032{
1033	/* Try to cancel the timer if exists. */
1034	if (is_dwork) {
1035		struct kthread_delayed_work *dwork =
1036			container_of(work, struct kthread_delayed_work, work);
1037		struct kthread_worker *worker = work->worker;
1038
1039		/*
1040		 * del_timer_sync() must be called to make sure that the timer
1041		 * callback is not running. The lock must be temporary released
1042		 * to avoid a deadlock with the callback. In the meantime,
1043		 * any queuing is blocked by setting the canceling counter.
1044		 */
1045		work->canceling++;
1046		raw_spin_unlock_irqrestore(&worker->lock, *flags);
1047		del_timer_sync(&dwork->timer);
1048		raw_spin_lock_irqsave(&worker->lock, *flags);
1049		work->canceling--;
1050	}
1051
1052	/*
1053	 * Try to remove the work from a worker list. It might either
1054	 * be from worker->work_list or from worker->delayed_work_list.
1055	 */
1056	if (!list_empty(&work->node)) {
1057		list_del_init(&work->node);
1058		return true;
1059	}
1060
1061	return false;
1062}
1063
1064/**
1065 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1066 * @worker: kthread worker to use
1067 * @dwork: kthread delayed work to queue
1068 * @delay: number of jiffies to wait before queuing
1069 *
1070 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1071 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1072 * @work is guaranteed to be queued immediately.
1073 *
1074 * Return: %true if @dwork was pending and its timer was modified,
1075 * %false otherwise.
1076 *
1077 * A special case is when the work is being canceled in parallel.
1078 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1079 * or yet another kthread_mod_delayed_work() call. We let the other command
1080 * win and return %false here. The caller is supposed to synchronize these
1081 * operations a reasonable way.
 
1082 *
1083 * This function is safe to call from any context including IRQ handler.
1084 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1085 * for details.
1086 */
1087bool kthread_mod_delayed_work(struct kthread_worker *worker,
1088			      struct kthread_delayed_work *dwork,
1089			      unsigned long delay)
1090{
1091	struct kthread_work *work = &dwork->work;
1092	unsigned long flags;
1093	int ret = false;
1094
1095	raw_spin_lock_irqsave(&worker->lock, flags);
1096
1097	/* Do not bother with canceling when never queued. */
1098	if (!work->worker)
 
1099		goto fast_queue;
 
1100
1101	/* Work must not be used with >1 worker, see kthread_queue_work() */
1102	WARN_ON_ONCE(work->worker != worker);
1103
1104	/* Do not fight with another command that is canceling this work. */
1105	if (work->canceling)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		goto out;
 
 
1107
1108	ret = __kthread_cancel_work(work, true, &flags);
1109fast_queue:
1110	__kthread_queue_delayed_work(worker, dwork, delay);
1111out:
1112	raw_spin_unlock_irqrestore(&worker->lock, flags);
1113	return ret;
1114}
1115EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1116
1117static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1118{
1119	struct kthread_worker *worker = work->worker;
1120	unsigned long flags;
1121	int ret = false;
1122
1123	if (!worker)
1124		goto out;
1125
1126	raw_spin_lock_irqsave(&worker->lock, flags);
1127	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1128	WARN_ON_ONCE(work->worker != worker);
1129
1130	ret = __kthread_cancel_work(work, is_dwork, &flags);
 
 
 
1131
1132	if (worker->current_work != work)
1133		goto out_fast;
1134
1135	/*
1136	 * The work is in progress and we need to wait with the lock released.
1137	 * In the meantime, block any queuing by setting the canceling counter.
1138	 */
1139	work->canceling++;
1140	raw_spin_unlock_irqrestore(&worker->lock, flags);
1141	kthread_flush_work(work);
1142	raw_spin_lock_irqsave(&worker->lock, flags);
1143	work->canceling--;
1144
1145out_fast:
1146	raw_spin_unlock_irqrestore(&worker->lock, flags);
1147out:
1148	return ret;
1149}
1150
1151/**
1152 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1153 * @work: the kthread work to cancel
1154 *
1155 * Cancel @work and wait for its execution to finish.  This function
1156 * can be used even if the work re-queues itself. On return from this
1157 * function, @work is guaranteed to be not pending or executing on any CPU.
1158 *
1159 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1160 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1161 *
1162 * The caller must ensure that the worker on which @work was last
1163 * queued can't be destroyed before this function returns.
1164 *
1165 * Return: %true if @work was pending, %false otherwise.
1166 */
1167bool kthread_cancel_work_sync(struct kthread_work *work)
1168{
1169	return __kthread_cancel_work_sync(work, false);
1170}
1171EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1172
1173/**
1174 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1175 *	wait for it to finish.
1176 * @dwork: the kthread delayed work to cancel
1177 *
1178 * This is kthread_cancel_work_sync() for delayed works.
1179 *
1180 * Return: %true if @dwork was pending, %false otherwise.
1181 */
1182bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1183{
1184	return __kthread_cancel_work_sync(&dwork->work, true);
1185}
1186EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1187
1188/**
1189 * kthread_flush_worker - flush all current works on a kthread_worker
1190 * @worker: worker to flush
1191 *
1192 * Wait until all currently executing or pending works on @worker are
1193 * finished.
1194 */
1195void kthread_flush_worker(struct kthread_worker *worker)
1196{
1197	struct kthread_flush_work fwork = {
1198		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1199		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1200	};
1201
1202	kthread_queue_work(worker, &fwork.work);
1203	wait_for_completion(&fwork.done);
1204}
1205EXPORT_SYMBOL_GPL(kthread_flush_worker);
1206
1207/**
1208 * kthread_destroy_worker - destroy a kthread worker
1209 * @worker: worker to be destroyed
1210 *
1211 * Flush and destroy @worker.  The simple flush is enough because the kthread
1212 * worker API is used only in trivial scenarios.  There are no multi-step state
1213 * machines needed.
1214 */
1215void kthread_destroy_worker(struct kthread_worker *worker)
1216{
1217	struct task_struct *task;
1218
1219	task = worker->task;
1220	if (WARN_ON(!task))
1221		return;
1222
1223	kthread_flush_worker(worker);
1224	kthread_stop(task);
1225	WARN_ON(!list_empty(&worker->work_list));
1226	kfree(worker);
1227}
1228EXPORT_SYMBOL(kthread_destroy_worker);
1229
1230/**
1231 * kthread_use_mm - make the calling kthread operate on an address space
1232 * @mm: address space to operate on
1233 */
1234void kthread_use_mm(struct mm_struct *mm)
1235{
1236	struct mm_struct *active_mm;
1237	struct task_struct *tsk = current;
1238
1239	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1240	WARN_ON_ONCE(tsk->mm);
1241
1242	task_lock(tsk);
1243	/* Hold off tlb flush IPIs while switching mm's */
1244	local_irq_disable();
1245	active_mm = tsk->active_mm;
1246	if (active_mm != mm) {
1247		mmgrab(mm);
1248		tsk->active_mm = mm;
1249	}
1250	tsk->mm = mm;
 
1251	switch_mm_irqs_off(active_mm, mm, tsk);
1252	local_irq_enable();
1253	task_unlock(tsk);
1254#ifdef finish_arch_post_lock_switch
1255	finish_arch_post_lock_switch();
1256#endif
1257
 
 
 
 
 
 
 
 
 
1258	if (active_mm != mm)
1259		mmdrop(active_mm);
1260
1261	to_kthread(tsk)->oldfs = force_uaccess_begin();
1262}
1263EXPORT_SYMBOL_GPL(kthread_use_mm);
1264
1265/**
1266 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1267 * @mm: address space to operate on
1268 */
1269void kthread_unuse_mm(struct mm_struct *mm)
1270{
1271	struct task_struct *tsk = current;
1272
1273	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1274	WARN_ON_ONCE(!tsk->mm);
1275
1276	force_uaccess_end(to_kthread(tsk)->oldfs);
1277
1278	task_lock(tsk);
 
 
 
 
 
 
 
 
1279	sync_mm_rss(mm);
1280	local_irq_disable();
1281	tsk->mm = NULL;
 
1282	/* active_mm is still 'mm' */
1283	enter_lazy_tlb(mm, tsk);
1284	local_irq_enable();
1285	task_unlock(tsk);
1286}
1287EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1288
1289#ifdef CONFIG_BLK_CGROUP
1290/**
1291 * kthread_associate_blkcg - associate blkcg to current kthread
1292 * @css: the cgroup info
1293 *
1294 * Current thread must be a kthread. The thread is running jobs on behalf of
1295 * other threads. In some cases, we expect the jobs attach cgroup info of
1296 * original threads instead of that of current thread. This function stores
1297 * original thread's cgroup info in current kthread context for later
1298 * retrieval.
1299 */
1300void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1301{
1302	struct kthread *kthread;
1303
1304	if (!(current->flags & PF_KTHREAD))
1305		return;
1306	kthread = to_kthread(current);
1307	if (!kthread)
1308		return;
1309
1310	if (kthread->blkcg_css) {
1311		css_put(kthread->blkcg_css);
1312		kthread->blkcg_css = NULL;
1313	}
1314	if (css) {
1315		css_get(css);
1316		kthread->blkcg_css = css;
1317	}
1318}
1319EXPORT_SYMBOL(kthread_associate_blkcg);
1320
1321/**
1322 * kthread_blkcg - get associated blkcg css of current kthread
1323 *
1324 * Current thread must be a kthread.
1325 */
1326struct cgroup_subsys_state *kthread_blkcg(void)
1327{
1328	struct kthread *kthread;
1329
1330	if (current->flags & PF_KTHREAD) {
1331		kthread = to_kthread(current);
1332		if (kthread)
1333			return kthread->blkcg_css;
1334	}
1335	return NULL;
1336}
1337EXPORT_SYMBOL(kthread_blkcg);
1338#endif