Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
 
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
 
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
 
 
 
 
 
 
 
 
 
 
 
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
 
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
 
 
 
 
 
 
 
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	if (msecs) {
 126		blk_mq_requeue_request(rq, false);
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128	} else
 129		blk_mq_requeue_request(rq, true);
 130}
 131
 132/**
 133 * __scsi_queue_insert - private queue insertion
 134 * @cmd: The SCSI command being requeued
 135 * @reason:  The reason for the requeue
 136 * @unbusy: Whether the queue should be unbusied
 137 *
 138 * This is a private queue insertion.  The public interface
 139 * scsi_queue_insert() always assumes the queue should be unbusied
 140 * because it's always called before the completion.  This function is
 141 * for a requeue after completion, which should only occur in this
 142 * file.
 143 */
 144static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 145{
 146	struct scsi_device *device = cmd->device;
 147
 148	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 149		"Inserting command %p into mlqueue\n", cmd));
 150
 151	scsi_set_blocked(cmd, reason);
 152
 153	/*
 154	 * Decrement the counters, since these commands are no longer
 155	 * active on the host/device.
 156	 */
 157	if (unbusy)
 158		scsi_device_unbusy(device, cmd);
 159
 160	/*
 161	 * Requeue this command.  It will go before all other commands
 162	 * that are already in the queue. Schedule requeue work under
 163	 * lock such that the kblockd_schedule_work() call happens
 164	 * before blk_mq_destroy_queue() finishes.
 165	 */
 166	cmd->result = 0;
 167
 168	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
 169}
 170
 171/**
 172 * scsi_queue_insert - Reinsert a command in the queue.
 173 * @cmd:    command that we are adding to queue.
 174 * @reason: why we are inserting command to queue.
 175 *
 176 * We do this for one of two cases. Either the host is busy and it cannot accept
 177 * any more commands for the time being, or the device returned QUEUE_FULL and
 178 * can accept no more commands.
 179 *
 180 * Context: This could be called either from an interrupt context or a normal
 181 * process context.
 182 */
 183void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 184{
 185	__scsi_queue_insert(cmd, reason, true);
 186}
 187
 188
 189/**
 190 * __scsi_execute - insert request and wait for the result
 191 * @sdev:	scsi device
 192 * @cmd:	scsi command
 193 * @data_direction: data direction
 194 * @buffer:	data buffer
 195 * @bufflen:	len of buffer
 196 * @sense:	optional sense buffer
 197 * @sshdr:	optional decoded sense header
 198 * @timeout:	request timeout in HZ
 199 * @retries:	number of times to retry request
 200 * @flags:	flags for ->cmd_flags
 201 * @rq_flags:	flags for ->rq_flags
 202 * @resid:	optional residual length
 203 *
 204 * Returns the scsi_cmnd result field if a command was executed, or a negative
 205 * Linux error code if we didn't get that far.
 206 */
 207int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 208		 int data_direction, void *buffer, unsigned bufflen,
 209		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 210		 int timeout, int retries, blk_opf_t flags,
 211		 req_flags_t rq_flags, int *resid)
 212{
 213	struct request *req;
 214	struct scsi_cmnd *scmd;
 215	int ret;
 216
 217	req = scsi_alloc_request(sdev->request_queue,
 218			data_direction == DMA_TO_DEVICE ?
 219			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
 220			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
 221	if (IS_ERR(req))
 222		return PTR_ERR(req);
 
 223
 224	if (bufflen) {
 225		ret = blk_rq_map_kern(sdev->request_queue, req,
 226				      buffer, bufflen, GFP_NOIO);
 227		if (ret)
 228			goto out;
 229	}
 230	scmd = blk_mq_rq_to_pdu(req);
 231	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 232	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 233	scmd->allowed = retries;
 234	req->timeout = timeout;
 235	req->cmd_flags |= flags;
 236	req->rq_flags |= rq_flags | RQF_QUIET;
 237
 238	/*
 239	 * head injection *required* here otherwise quiesce won't work
 240	 */
 241	blk_execute_rq(req, true);
 242
 243	/*
 244	 * Some devices (USB mass-storage in particular) may transfer
 245	 * garbage data together with a residue indicating that the data
 246	 * is invalid.  Prevent the garbage from being misinterpreted
 247	 * and prevent security leaks by zeroing out the excess data.
 248	 */
 249	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 250		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 251
 252	if (resid)
 253		*resid = scmd->resid_len;
 254	if (sense && scmd->sense_len)
 255		memcpy(sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 256	if (sshdr)
 257		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 258				     sshdr);
 259	ret = scmd->result;
 260 out:
 261	blk_mq_free_request(req);
 262
 263	return ret;
 264}
 265EXPORT_SYMBOL(__scsi_execute);
 266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267/*
 268 * Wake up the error handler if necessary. Avoid as follows that the error
 269 * handler is not woken up if host in-flight requests number ==
 270 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 271 * with an RCU read lock in this function to ensure that this function in
 272 * its entirety either finishes before scsi_eh_scmd_add() increases the
 273 * host_failed counter or that it notices the shost state change made by
 274 * scsi_eh_scmd_add().
 275 */
 276static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 277{
 278	unsigned long flags;
 279
 280	rcu_read_lock();
 281	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 282	if (unlikely(scsi_host_in_recovery(shost))) {
 283		spin_lock_irqsave(shost->host_lock, flags);
 284		if (shost->host_failed || shost->host_eh_scheduled)
 285			scsi_eh_wakeup(shost);
 286		spin_unlock_irqrestore(shost->host_lock, flags);
 287	}
 288	rcu_read_unlock();
 289}
 290
 291void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 292{
 293	struct Scsi_Host *shost = sdev->host;
 294	struct scsi_target *starget = scsi_target(sdev);
 295
 296	scsi_dec_host_busy(shost, cmd);
 297
 298	if (starget->can_queue > 0)
 299		atomic_dec(&starget->target_busy);
 300
 301	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 302	cmd->budget_token = -1;
 303}
 304
 305static void scsi_kick_queue(struct request_queue *q)
 306{
 307	blk_mq_run_hw_queues(q, false);
 308}
 309
 310/*
 311 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 312 * interrupts disabled.
 313 */
 314static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 315{
 316	struct scsi_device *current_sdev = data;
 317
 318	if (sdev != current_sdev)
 319		blk_mq_run_hw_queues(sdev->request_queue, true);
 320}
 321
 322/*
 323 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 324 * and call blk_run_queue for all the scsi_devices on the target -
 325 * including current_sdev first.
 326 *
 327 * Called with *no* scsi locks held.
 328 */
 329static void scsi_single_lun_run(struct scsi_device *current_sdev)
 330{
 331	struct Scsi_Host *shost = current_sdev->host;
 
 332	struct scsi_target *starget = scsi_target(current_sdev);
 333	unsigned long flags;
 334
 335	spin_lock_irqsave(shost->host_lock, flags);
 336	starget->starget_sdev_user = NULL;
 337	spin_unlock_irqrestore(shost->host_lock, flags);
 338
 339	/*
 340	 * Call blk_run_queue for all LUNs on the target, starting with
 341	 * current_sdev. We race with others (to set starget_sdev_user),
 342	 * but in most cases, we will be first. Ideally, each LU on the
 343	 * target would get some limited time or requests on the target.
 344	 */
 345	scsi_kick_queue(current_sdev->request_queue);
 346
 347	spin_lock_irqsave(shost->host_lock, flags);
 348	if (!starget->starget_sdev_user)
 349		__starget_for_each_device(starget, current_sdev,
 350					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 351	spin_unlock_irqrestore(shost->host_lock, flags);
 352}
 353
 354static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 355{
 356	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 357		return true;
 358	if (atomic_read(&sdev->device_blocked) > 0)
 359		return true;
 360	return false;
 361}
 362
 363static inline bool scsi_target_is_busy(struct scsi_target *starget)
 364{
 365	if (starget->can_queue > 0) {
 366		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 367			return true;
 368		if (atomic_read(&starget->target_blocked) > 0)
 369			return true;
 370	}
 371	return false;
 372}
 373
 374static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 375{
 376	if (atomic_read(&shost->host_blocked) > 0)
 377		return true;
 378	if (shost->host_self_blocked)
 379		return true;
 380	return false;
 381}
 382
 383static void scsi_starved_list_run(struct Scsi_Host *shost)
 384{
 385	LIST_HEAD(starved_list);
 386	struct scsi_device *sdev;
 387	unsigned long flags;
 388
 389	spin_lock_irqsave(shost->host_lock, flags);
 390	list_splice_init(&shost->starved_list, &starved_list);
 391
 392	while (!list_empty(&starved_list)) {
 393		struct request_queue *slq;
 394
 395		/*
 396		 * As long as shost is accepting commands and we have
 397		 * starved queues, call blk_run_queue. scsi_request_fn
 398		 * drops the queue_lock and can add us back to the
 399		 * starved_list.
 400		 *
 401		 * host_lock protects the starved_list and starved_entry.
 402		 * scsi_request_fn must get the host_lock before checking
 403		 * or modifying starved_list or starved_entry.
 404		 */
 405		if (scsi_host_is_busy(shost))
 406			break;
 407
 408		sdev = list_entry(starved_list.next,
 409				  struct scsi_device, starved_entry);
 410		list_del_init(&sdev->starved_entry);
 411		if (scsi_target_is_busy(scsi_target(sdev))) {
 412			list_move_tail(&sdev->starved_entry,
 413				       &shost->starved_list);
 414			continue;
 415		}
 416
 417		/*
 418		 * Once we drop the host lock, a racing scsi_remove_device()
 419		 * call may remove the sdev from the starved list and destroy
 420		 * it and the queue.  Mitigate by taking a reference to the
 421		 * queue and never touching the sdev again after we drop the
 422		 * host lock.  Note: if __scsi_remove_device() invokes
 423		 * blk_mq_destroy_queue() before the queue is run from this
 424		 * function then blk_run_queue() will return immediately since
 425		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 426		 */
 427		slq = sdev->request_queue;
 428		if (!blk_get_queue(slq))
 429			continue;
 430		spin_unlock_irqrestore(shost->host_lock, flags);
 431
 432		scsi_kick_queue(slq);
 433		blk_put_queue(slq);
 434
 435		spin_lock_irqsave(shost->host_lock, flags);
 436	}
 437	/* put any unprocessed entries back */
 438	list_splice(&starved_list, &shost->starved_list);
 439	spin_unlock_irqrestore(shost->host_lock, flags);
 440}
 441
 442/**
 443 * scsi_run_queue - Select a proper request queue to serve next.
 444 * @q:  last request's queue
 445 *
 446 * The previous command was completely finished, start a new one if possible.
 447 */
 448static void scsi_run_queue(struct request_queue *q)
 449{
 450	struct scsi_device *sdev = q->queuedata;
 451
 452	if (scsi_target(sdev)->single_lun)
 453		scsi_single_lun_run(sdev);
 454	if (!list_empty(&sdev->host->starved_list))
 455		scsi_starved_list_run(sdev->host);
 456
 457	blk_mq_run_hw_queues(q, false);
 458}
 459
 460void scsi_requeue_run_queue(struct work_struct *work)
 461{
 462	struct scsi_device *sdev;
 463	struct request_queue *q;
 464
 465	sdev = container_of(work, struct scsi_device, requeue_work);
 466	q = sdev->request_queue;
 467	scsi_run_queue(q);
 468}
 469
 470void scsi_run_host_queues(struct Scsi_Host *shost)
 471{
 472	struct scsi_device *sdev;
 473
 474	shost_for_each_device(sdev, shost)
 475		scsi_run_queue(sdev->request_queue);
 476}
 477
 478static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 479{
 480	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 481		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 482
 483		if (drv->uninit_command)
 484			drv->uninit_command(cmd);
 485	}
 486}
 487
 488void scsi_free_sgtables(struct scsi_cmnd *cmd)
 489{
 490	if (cmd->sdb.table.nents)
 491		sg_free_table_chained(&cmd->sdb.table,
 492				SCSI_INLINE_SG_CNT);
 493	if (scsi_prot_sg_count(cmd))
 494		sg_free_table_chained(&cmd->prot_sdb->table,
 495				SCSI_INLINE_PROT_SG_CNT);
 496}
 497EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 498
 499static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 500{
 501	scsi_free_sgtables(cmd);
 502	scsi_uninit_cmd(cmd);
 503}
 504
 505static void scsi_run_queue_async(struct scsi_device *sdev)
 506{
 507	if (scsi_target(sdev)->single_lun ||
 508	    !list_empty(&sdev->host->starved_list)) {
 509		kblockd_schedule_work(&sdev->requeue_work);
 510	} else {
 511		/*
 512		 * smp_mb() present in sbitmap_queue_clear() or implied in
 513		 * .end_io is for ordering writing .device_busy in
 514		 * scsi_device_unbusy() and reading sdev->restarts.
 515		 */
 516		int old = atomic_read(&sdev->restarts);
 517
 518		/*
 519		 * ->restarts has to be kept as non-zero if new budget
 520		 *  contention occurs.
 521		 *
 522		 *  No need to run queue when either another re-run
 523		 *  queue wins in updating ->restarts or a new budget
 524		 *  contention occurs.
 525		 */
 526		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 527			blk_mq_run_hw_queues(sdev->request_queue, true);
 528	}
 529}
 530
 531/* Returns false when no more bytes to process, true if there are more */
 532static bool scsi_end_request(struct request *req, blk_status_t error,
 533		unsigned int bytes)
 534{
 535	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 536	struct scsi_device *sdev = cmd->device;
 537	struct request_queue *q = sdev->request_queue;
 538
 539	if (blk_update_request(req, error, bytes))
 540		return true;
 541
 542	// XXX:
 543	if (blk_queue_add_random(q))
 544		add_disk_randomness(req->q->disk);
 545
 546	if (!blk_rq_is_passthrough(req)) {
 547		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 548		cmd->flags &= ~SCMD_INITIALIZED;
 549	}
 550
 551	/*
 552	 * Calling rcu_barrier() is not necessary here because the
 553	 * SCSI error handler guarantees that the function called by
 554	 * call_rcu() has been called before scsi_end_request() is
 555	 * called.
 556	 */
 557	destroy_rcu_head(&cmd->rcu);
 558
 559	/*
 560	 * In the MQ case the command gets freed by __blk_mq_end_request,
 561	 * so we have to do all cleanup that depends on it earlier.
 562	 *
 563	 * We also can't kick the queues from irq context, so we
 564	 * will have to defer it to a workqueue.
 565	 */
 566	scsi_mq_uninit_cmd(cmd);
 567
 568	/*
 569	 * queue is still alive, so grab the ref for preventing it
 570	 * from being cleaned up during running queue.
 571	 */
 572	percpu_ref_get(&q->q_usage_counter);
 573
 574	__blk_mq_end_request(req, error);
 575
 576	scsi_run_queue_async(sdev);
 577
 578	percpu_ref_put(&q->q_usage_counter);
 579	return false;
 580}
 581
 582static inline u8 get_scsi_ml_byte(int result)
 583{
 584	return (result >> 8) & 0xff;
 585}
 586
 587/**
 588 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 589 * @result:	scsi error code
 590 *
 591 * Translate a SCSI result code into a blk_status_t value.
 
 592 */
 593static blk_status_t scsi_result_to_blk_status(int result)
 594{
 595	/*
 596	 * Check the scsi-ml byte first in case we converted a host or status
 597	 * byte.
 598	 */
 599	switch (get_scsi_ml_byte(result)) {
 600	case SCSIML_STAT_OK:
 601		break;
 602	case SCSIML_STAT_RESV_CONFLICT:
 603		return BLK_STS_NEXUS;
 604	case SCSIML_STAT_NOSPC:
 605		return BLK_STS_NOSPC;
 606	case SCSIML_STAT_MED_ERROR:
 607		return BLK_STS_MEDIUM;
 608	case SCSIML_STAT_TGT_FAILURE:
 609		return BLK_STS_TARGET;
 610	}
 611
 612	switch (host_byte(result)) {
 613	case DID_OK:
 614		if (scsi_status_is_good(result))
 
 
 
 
 
 615			return BLK_STS_OK;
 616		return BLK_STS_IOERR;
 617	case DID_TRANSPORT_FAILFAST:
 618	case DID_TRANSPORT_MARGINAL:
 619		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 620	default:
 621		return BLK_STS_IOERR;
 622	}
 623}
 624
 625/**
 626 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 627 * @rq: request to examine
 628 *
 629 * Description:
 630 *     A request could be merge of IOs which require different failure
 631 *     handling.  This function determines the number of bytes which
 632 *     can be failed from the beginning of the request without
 633 *     crossing into area which need to be retried further.
 634 *
 635 * Return:
 636 *     The number of bytes to fail.
 637 */
 638static unsigned int scsi_rq_err_bytes(const struct request *rq)
 639{
 640	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 641	unsigned int bytes = 0;
 642	struct bio *bio;
 643
 644	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 645		return blk_rq_bytes(rq);
 646
 647	/*
 648	 * Currently the only 'mixing' which can happen is between
 649	 * different fastfail types.  We can safely fail portions
 650	 * which have all the failfast bits that the first one has -
 651	 * the ones which are at least as eager to fail as the first
 652	 * one.
 653	 */
 654	for (bio = rq->bio; bio; bio = bio->bi_next) {
 655		if ((bio->bi_opf & ff) != ff)
 656			break;
 657		bytes += bio->bi_iter.bi_size;
 658	}
 659
 660	/* this could lead to infinite loop */
 661	BUG_ON(blk_rq_bytes(rq) && !bytes);
 662	return bytes;
 663}
 664
 665static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 666{
 667	struct request *req = scsi_cmd_to_rq(cmd);
 668	unsigned long wait_for;
 669
 670	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 671		return false;
 672
 673	wait_for = (cmd->allowed + 1) * req->timeout;
 674	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 675		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 676			    wait_for/HZ);
 677		return true;
 678	}
 679	return false;
 680}
 681
 682/*
 683 * When ALUA transition state is returned, reprep the cmd to
 684 * use the ALUA handler's transition timeout. Delay the reprep
 685 * 1 sec to avoid aggressive retries of the target in that
 686 * state.
 687 */
 688#define ALUA_TRANSITION_REPREP_DELAY	1000
 689
 690/* Helper for scsi_io_completion() when special action required. */
 691static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 692{
 693	struct request *req = scsi_cmd_to_rq(cmd);
 
 694	int level = 0;
 695	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 696	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 
 697	struct scsi_sense_hdr sshdr;
 698	bool sense_valid;
 699	bool sense_current = true;      /* false implies "deferred sense" */
 700	blk_status_t blk_stat;
 701
 702	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 703	if (sense_valid)
 704		sense_current = !scsi_sense_is_deferred(&sshdr);
 705
 706	blk_stat = scsi_result_to_blk_status(result);
 707
 708	if (host_byte(result) == DID_RESET) {
 709		/* Third party bus reset or reset for error recovery
 710		 * reasons.  Just retry the command and see what
 711		 * happens.
 712		 */
 713		action = ACTION_RETRY;
 714	} else if (sense_valid && sense_current) {
 715		switch (sshdr.sense_key) {
 716		case UNIT_ATTENTION:
 717			if (cmd->device->removable) {
 718				/* Detected disc change.  Set a bit
 719				 * and quietly refuse further access.
 720				 */
 721				cmd->device->changed = 1;
 722				action = ACTION_FAIL;
 723			} else {
 724				/* Must have been a power glitch, or a
 725				 * bus reset.  Could not have been a
 726				 * media change, so we just retry the
 727				 * command and see what happens.
 728				 */
 729				action = ACTION_RETRY;
 730			}
 731			break;
 732		case ILLEGAL_REQUEST:
 733			/* If we had an ILLEGAL REQUEST returned, then
 734			 * we may have performed an unsupported
 735			 * command.  The only thing this should be
 736			 * would be a ten byte read where only a six
 737			 * byte read was supported.  Also, on a system
 738			 * where READ CAPACITY failed, we may have
 739			 * read past the end of the disk.
 740			 */
 741			if ((cmd->device->use_10_for_rw &&
 742			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 743			    (cmd->cmnd[0] == READ_10 ||
 744			     cmd->cmnd[0] == WRITE_10)) {
 745				/* This will issue a new 6-byte command. */
 746				cmd->device->use_10_for_rw = 0;
 747				action = ACTION_REPREP;
 748			} else if (sshdr.asc == 0x10) /* DIX */ {
 749				action = ACTION_FAIL;
 750				blk_stat = BLK_STS_PROTECTION;
 751			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 752			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 753				action = ACTION_FAIL;
 754				blk_stat = BLK_STS_TARGET;
 755			} else
 756				action = ACTION_FAIL;
 757			break;
 758		case ABORTED_COMMAND:
 759			action = ACTION_FAIL;
 760			if (sshdr.asc == 0x10) /* DIF */
 761				blk_stat = BLK_STS_PROTECTION;
 762			break;
 763		case NOT_READY:
 764			/* If the device is in the process of becoming
 765			 * ready, or has a temporary blockage, retry.
 766			 */
 767			if (sshdr.asc == 0x04) {
 768				switch (sshdr.ascq) {
 769				case 0x01: /* becoming ready */
 770				case 0x04: /* format in progress */
 771				case 0x05: /* rebuild in progress */
 772				case 0x06: /* recalculation in progress */
 773				case 0x07: /* operation in progress */
 774				case 0x08: /* Long write in progress */
 775				case 0x09: /* self test in progress */
 776				case 0x11: /* notify (enable spinup) required */
 777				case 0x14: /* space allocation in progress */
 778				case 0x1a: /* start stop unit in progress */
 779				case 0x1b: /* sanitize in progress */
 780				case 0x1d: /* configuration in progress */
 781				case 0x24: /* depopulation in progress */
 782					action = ACTION_DELAYED_RETRY;
 783					break;
 784				case 0x0a: /* ALUA state transition */
 785					action = ACTION_DELAYED_REPREP;
 786					break;
 787				default:
 788					action = ACTION_FAIL;
 789					break;
 790				}
 791			} else
 792				action = ACTION_FAIL;
 793			break;
 794		case VOLUME_OVERFLOW:
 795			/* See SSC3rXX or current. */
 796			action = ACTION_FAIL;
 797			break;
 798		case DATA_PROTECT:
 799			action = ACTION_FAIL;
 800			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 801			    (sshdr.asc == 0x55 &&
 802			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 803				/* Insufficient zone resources */
 804				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 805			}
 806			break;
 807		default:
 808			action = ACTION_FAIL;
 809			break;
 810		}
 811	} else
 812		action = ACTION_FAIL;
 813
 814	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 815		action = ACTION_FAIL;
 816
 817	switch (action) {
 818	case ACTION_FAIL:
 819		/* Give up and fail the remainder of the request */
 820		if (!(req->rq_flags & RQF_QUIET)) {
 821			static DEFINE_RATELIMIT_STATE(_rs,
 822					DEFAULT_RATELIMIT_INTERVAL,
 823					DEFAULT_RATELIMIT_BURST);
 824
 825			if (unlikely(scsi_logging_level))
 826				level =
 827				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 828						    SCSI_LOG_MLCOMPLETE_BITS);
 829
 830			/*
 831			 * if logging is enabled the failure will be printed
 832			 * in scsi_log_completion(), so avoid duplicate messages
 833			 */
 834			if (!level && __ratelimit(&_rs)) {
 835				scsi_print_result(cmd, NULL, FAILED);
 836				if (sense_valid)
 837					scsi_print_sense(cmd);
 838				scsi_print_command(cmd);
 839			}
 840		}
 841		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 842			return;
 843		fallthrough;
 844	case ACTION_REPREP:
 845		scsi_mq_requeue_cmd(cmd, 0);
 846		break;
 847	case ACTION_DELAYED_REPREP:
 848		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 849		break;
 850	case ACTION_RETRY:
 851		/* Retry the same command immediately */
 852		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 853		break;
 854	case ACTION_DELAYED_RETRY:
 855		/* Retry the same command after a delay */
 856		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 857		break;
 858	}
 859}
 860
 861/*
 862 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 863 * new result that may suppress further error checking. Also modifies
 864 * *blk_statp in some cases.
 865 */
 866static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 867					blk_status_t *blk_statp)
 868{
 869	bool sense_valid;
 870	bool sense_current = true;	/* false implies "deferred sense" */
 871	struct request *req = scsi_cmd_to_rq(cmd);
 872	struct scsi_sense_hdr sshdr;
 873
 874	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 875	if (sense_valid)
 876		sense_current = !scsi_sense_is_deferred(&sshdr);
 877
 878	if (blk_rq_is_passthrough(req)) {
 879		if (sense_valid) {
 880			/*
 881			 * SG_IO wants current and deferred errors
 882			 */
 883			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 884					     SCSI_SENSE_BUFFERSIZE);
 
 885		}
 886		if (sense_current)
 887			*blk_statp = scsi_result_to_blk_status(result);
 888	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 889		/*
 890		 * Flush commands do not transfers any data, and thus cannot use
 891		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 892		 * This sets *blk_statp explicitly for the problem case.
 893		 */
 894		*blk_statp = scsi_result_to_blk_status(result);
 895	}
 896	/*
 897	 * Recovered errors need reporting, but they're always treated as
 898	 * success, so fiddle the result code here.  For passthrough requests
 899	 * we already took a copy of the original into sreq->result which
 900	 * is what gets returned to the user
 901	 */
 902	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 903		bool do_print = true;
 904		/*
 905		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 906		 * skip print since caller wants ATA registers. Only occurs
 907		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 908		 */
 909		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 910			do_print = false;
 911		else if (req->rq_flags & RQF_QUIET)
 912			do_print = false;
 913		if (do_print)
 914			scsi_print_sense(cmd);
 915		result = 0;
 916		/* for passthrough, *blk_statp may be set */
 917		*blk_statp = BLK_STS_OK;
 918	}
 919	/*
 920	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 921	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 922	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 923	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 924	 * intermediate statuses (both obsolete in SAM-4) as good.
 925	 */
 926	if ((result & 0xff) && scsi_status_is_good(result)) {
 927		result = 0;
 928		*blk_statp = BLK_STS_OK;
 929	}
 930	return result;
 931}
 932
 933/**
 934 * scsi_io_completion - Completion processing for SCSI commands.
 935 * @cmd:	command that is finished.
 936 * @good_bytes:	number of processed bytes.
 937 *
 938 * We will finish off the specified number of sectors. If we are done, the
 939 * command block will be released and the queue function will be goosed. If we
 940 * are not done then we have to figure out what to do next:
 941 *
 942 *   a) We can call scsi_mq_requeue_cmd().  The request will be
 943 *	unprepared and put back on the queue.  Then a new command will
 944 *	be created for it.  This should be used if we made forward
 945 *	progress, or if we want to switch from READ(10) to READ(6) for
 946 *	example.
 947 *
 948 *   b) We can call scsi_io_completion_action().  The request will be
 949 *	put back on the queue and retried using the same command as
 950 *	before, possibly after a delay.
 951 *
 952 *   c) We can call scsi_end_request() with blk_stat other than
 953 *	BLK_STS_OK, to fail the remainder of the request.
 954 */
 955void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 956{
 957	int result = cmd->result;
 958	struct request *req = scsi_cmd_to_rq(cmd);
 
 959	blk_status_t blk_stat = BLK_STS_OK;
 960
 961	if (unlikely(result))	/* a nz result may or may not be an error */
 962		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 963
 
 
 
 
 
 
 
 964	/*
 965	 * Next deal with any sectors which we were able to correctly
 966	 * handle.
 967	 */
 968	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 969		"%u sectors total, %d bytes done.\n",
 970		blk_rq_sectors(req), good_bytes));
 971
 972	/*
 973	 * Failed, zero length commands always need to drop down
 974	 * to retry code. Fast path should return in this block.
 975	 */
 976	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 977		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 978			return; /* no bytes remaining */
 979	}
 980
 981	/* Kill remainder if no retries. */
 982	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 983		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 984			WARN_ONCE(true,
 985			    "Bytes remaining after failed, no-retry command");
 986		return;
 987	}
 988
 989	/*
 990	 * If there had been no error, but we have leftover bytes in the
 991	 * request just queue the command up again.
 992	 */
 993	if (likely(result == 0))
 994		scsi_mq_requeue_cmd(cmd, 0);
 995	else
 996		scsi_io_completion_action(cmd, result);
 997}
 998
 999static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1000		struct request *rq)
1001{
1002	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1003	       !op_is_write(req_op(rq)) &&
1004	       sdev->host->hostt->dma_need_drain(rq);
1005}
1006
1007/**
1008 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1009 * @cmd: SCSI command data structure to initialize.
1010 *
1011 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1012 * for @cmd.
1013 *
1014 * Returns:
1015 * * BLK_STS_OK       - on success
1016 * * BLK_STS_RESOURCE - if the failure is retryable
1017 * * BLK_STS_IOERR    - if the failure is fatal
1018 */
1019blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1020{
1021	struct scsi_device *sdev = cmd->device;
1022	struct request *rq = scsi_cmd_to_rq(cmd);
1023	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1024	struct scatterlist *last_sg = NULL;
1025	blk_status_t ret;
1026	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1027	int count;
1028
1029	if (WARN_ON_ONCE(!nr_segs))
1030		return BLK_STS_IOERR;
1031
1032	/*
1033	 * Make sure there is space for the drain.  The driver must adjust
1034	 * max_hw_segments to be prepared for this.
1035	 */
1036	if (need_drain)
1037		nr_segs++;
1038
1039	/*
1040	 * If sg table allocation fails, requeue request later.
1041	 */
1042	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1043			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1044		return BLK_STS_RESOURCE;
1045
1046	/*
1047	 * Next, walk the list, and fill in the addresses and sizes of
1048	 * each segment.
1049	 */
1050	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1051
1052	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1053		unsigned int pad_len =
1054			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1055
1056		last_sg->length += pad_len;
1057		cmd->extra_len += pad_len;
1058	}
1059
1060	if (need_drain) {
1061		sg_unmark_end(last_sg);
1062		last_sg = sg_next(last_sg);
1063		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1064		sg_mark_end(last_sg);
1065
1066		cmd->extra_len += sdev->dma_drain_len;
1067		count++;
1068	}
1069
1070	BUG_ON(count > cmd->sdb.table.nents);
1071	cmd->sdb.table.nents = count;
1072	cmd->sdb.length = blk_rq_payload_bytes(rq);
1073
1074	if (blk_integrity_rq(rq)) {
1075		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1076		int ivecs;
1077
1078		if (WARN_ON_ONCE(!prot_sdb)) {
1079			/*
1080			 * This can happen if someone (e.g. multipath)
1081			 * queues a command to a device on an adapter
1082			 * that does not support DIX.
1083			 */
1084			ret = BLK_STS_IOERR;
1085			goto out_free_sgtables;
1086		}
1087
1088		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1089
1090		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1091				prot_sdb->table.sgl,
1092				SCSI_INLINE_PROT_SG_CNT)) {
1093			ret = BLK_STS_RESOURCE;
1094			goto out_free_sgtables;
1095		}
1096
1097		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1098						prot_sdb->table.sgl);
1099		BUG_ON(count > ivecs);
1100		BUG_ON(count > queue_max_integrity_segments(rq->q));
1101
1102		cmd->prot_sdb = prot_sdb;
1103		cmd->prot_sdb->table.nents = count;
1104	}
1105
1106	return BLK_STS_OK;
1107out_free_sgtables:
1108	scsi_free_sgtables(cmd);
1109	return ret;
1110}
1111EXPORT_SYMBOL(scsi_alloc_sgtables);
1112
1113/**
1114 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1115 * @rq: Request associated with the SCSI command to be initialized.
1116 *
1117 * This function initializes the members of struct scsi_cmnd that must be
1118 * initialized before request processing starts and that won't be
1119 * reinitialized if a SCSI command is requeued.
 
 
 
1120 */
1121static void scsi_initialize_rq(struct request *rq)
1122{
1123	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1124
1125	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1126	cmd->cmd_len = MAX_COMMAND_SIZE;
1127	cmd->sense_len = 0;
1128	init_rcu_head(&cmd->rcu);
1129	cmd->jiffies_at_alloc = jiffies;
1130	cmd->retries = 0;
1131}
1132
1133struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1134				   blk_mq_req_flags_t flags)
1135{
1136	struct request *rq;
1137
1138	rq = blk_mq_alloc_request(q, opf, flags);
1139	if (!IS_ERR(rq))
1140		scsi_initialize_rq(rq);
1141	return rq;
1142}
1143EXPORT_SYMBOL_GPL(scsi_alloc_request);
1144
1145/*
1146 * Only called when the request isn't completed by SCSI, and not freed by
1147 * SCSI
1148 */
1149static void scsi_cleanup_rq(struct request *rq)
1150{
1151	if (rq->rq_flags & RQF_DONTPREP) {
1152		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1153		rq->rq_flags &= ~RQF_DONTPREP;
1154	}
1155}
1156
1157/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1158void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1159{
1160	struct request *rq = scsi_cmd_to_rq(cmd);
 
 
 
 
 
 
1161
1162	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1163		cmd->flags |= SCMD_INITIALIZED;
1164		scsi_initialize_rq(rq);
1165	}
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	cmd->device = dev;
1168	INIT_LIST_HEAD(&cmd->eh_entry);
 
 
1169	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
 
 
 
 
 
1170}
1171
1172static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173		struct request *req)
1174{
1175	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177	/*
1178	 * Passthrough requests may transfer data, in which case they must
1179	 * a bio attached to them.  Or they might contain a SCSI command
1180	 * that does not transfer data, in which case they may optionally
1181	 * submit a request without an attached bio.
1182	 */
1183	if (req->bio) {
1184		blk_status_t ret = scsi_alloc_sgtables(cmd);
1185		if (unlikely(ret != BLK_STS_OK))
1186			return ret;
1187	} else {
1188		BUG_ON(blk_rq_bytes(req));
1189
1190		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191	}
1192
 
 
1193	cmd->transfersize = blk_rq_bytes(req);
 
1194	return BLK_STS_OK;
1195}
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197static blk_status_t
1198scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1199{
1200	switch (sdev->sdev_state) {
1201	case SDEV_CREATED:
1202		return BLK_STS_OK;
1203	case SDEV_OFFLINE:
1204	case SDEV_TRANSPORT_OFFLINE:
1205		/*
1206		 * If the device is offline we refuse to process any
1207		 * commands.  The device must be brought online
1208		 * before trying any recovery commands.
1209		 */
1210		if (!sdev->offline_already) {
1211			sdev->offline_already = true;
1212			sdev_printk(KERN_ERR, sdev,
1213				    "rejecting I/O to offline device\n");
1214		}
1215		return BLK_STS_IOERR;
1216	case SDEV_DEL:
1217		/*
1218		 * If the device is fully deleted, we refuse to
1219		 * process any commands as well.
1220		 */
1221		sdev_printk(KERN_ERR, sdev,
1222			    "rejecting I/O to dead device\n");
1223		return BLK_STS_IOERR;
1224	case SDEV_BLOCK:
1225	case SDEV_CREATED_BLOCK:
1226		return BLK_STS_RESOURCE;
1227	case SDEV_QUIESCE:
1228		/*
1229		 * If the device is blocked we only accept power management
1230		 * commands.
1231		 */
1232		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1233			return BLK_STS_RESOURCE;
1234		return BLK_STS_OK;
1235	default:
1236		/*
1237		 * For any other not fully online state we only allow
1238		 * power management commands.
 
1239		 */
1240		if (req && !(req->rq_flags & RQF_PM))
1241			return BLK_STS_OFFLINE;
1242		return BLK_STS_OK;
1243	}
1244}
1245
1246/*
1247 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1248 * and return the token else return -1.
 
 
1249 */
1250static inline int scsi_dev_queue_ready(struct request_queue *q,
1251				  struct scsi_device *sdev)
1252{
1253	int token;
1254
1255	token = sbitmap_get(&sdev->budget_map);
1256	if (atomic_read(&sdev->device_blocked)) {
1257		if (token < 0)
1258			goto out;
1259
1260		if (scsi_device_busy(sdev) > 1)
1261			goto out_dec;
1262
1263		/*
1264		 * unblock after device_blocked iterates to zero
1265		 */
1266		if (atomic_dec_return(&sdev->device_blocked) > 0)
1267			goto out_dec;
1268		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1269				   "unblocking device at zero depth\n"));
1270	}
1271
1272	return token;
 
 
 
1273out_dec:
1274	if (token >= 0)
1275		sbitmap_put(&sdev->budget_map, token);
1276out:
1277	return -1;
1278}
1279
1280/*
1281 * scsi_target_queue_ready: checks if there we can send commands to target
1282 * @sdev: scsi device on starget to check.
1283 */
1284static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1285					   struct scsi_device *sdev)
1286{
1287	struct scsi_target *starget = scsi_target(sdev);
1288	unsigned int busy;
1289
1290	if (starget->single_lun) {
1291		spin_lock_irq(shost->host_lock);
1292		if (starget->starget_sdev_user &&
1293		    starget->starget_sdev_user != sdev) {
1294			spin_unlock_irq(shost->host_lock);
1295			return 0;
1296		}
1297		starget->starget_sdev_user = sdev;
1298		spin_unlock_irq(shost->host_lock);
1299	}
1300
1301	if (starget->can_queue <= 0)
1302		return 1;
1303
1304	busy = atomic_inc_return(&starget->target_busy) - 1;
1305	if (atomic_read(&starget->target_blocked) > 0) {
1306		if (busy)
1307			goto starved;
1308
1309		/*
1310		 * unblock after target_blocked iterates to zero
1311		 */
1312		if (atomic_dec_return(&starget->target_blocked) > 0)
1313			goto out_dec;
1314
1315		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1316				 "unblocking target at zero depth\n"));
1317	}
1318
1319	if (busy >= starget->can_queue)
1320		goto starved;
1321
1322	return 1;
1323
1324starved:
1325	spin_lock_irq(shost->host_lock);
1326	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1327	spin_unlock_irq(shost->host_lock);
1328out_dec:
1329	if (starget->can_queue > 0)
1330		atomic_dec(&starget->target_busy);
1331	return 0;
1332}
1333
1334/*
1335 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1336 * return 0. We must end up running the queue again whenever 0 is
1337 * returned, else IO can hang.
1338 */
1339static inline int scsi_host_queue_ready(struct request_queue *q,
1340				   struct Scsi_Host *shost,
1341				   struct scsi_device *sdev,
1342				   struct scsi_cmnd *cmd)
1343{
 
 
 
1344	if (atomic_read(&shost->host_blocked) > 0) {
1345		if (scsi_host_busy(shost) > 0)
1346			goto starved;
1347
1348		/*
1349		 * unblock after host_blocked iterates to zero
1350		 */
1351		if (atomic_dec_return(&shost->host_blocked) > 0)
1352			goto out_dec;
1353
1354		SCSI_LOG_MLQUEUE(3,
1355			shost_printk(KERN_INFO, shost,
1356				     "unblocking host at zero depth\n"));
1357	}
1358
1359	if (shost->host_self_blocked)
1360		goto starved;
1361
1362	/* We're OK to process the command, so we can't be starved */
1363	if (!list_empty(&sdev->starved_entry)) {
1364		spin_lock_irq(shost->host_lock);
1365		if (!list_empty(&sdev->starved_entry))
1366			list_del_init(&sdev->starved_entry);
1367		spin_unlock_irq(shost->host_lock);
1368	}
1369
1370	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1371
1372	return 1;
1373
1374starved:
1375	spin_lock_irq(shost->host_lock);
1376	if (list_empty(&sdev->starved_entry))
1377		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1378	spin_unlock_irq(shost->host_lock);
1379out_dec:
1380	scsi_dec_host_busy(shost, cmd);
1381	return 0;
1382}
1383
1384/*
1385 * Busy state exporting function for request stacking drivers.
1386 *
1387 * For efficiency, no lock is taken to check the busy state of
1388 * shost/starget/sdev, since the returned value is not guaranteed and
1389 * may be changed after request stacking drivers call the function,
1390 * regardless of taking lock or not.
1391 *
1392 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1393 * needs to return 'not busy'. Otherwise, request stacking drivers
1394 * may hold requests forever.
1395 */
1396static bool scsi_mq_lld_busy(struct request_queue *q)
1397{
1398	struct scsi_device *sdev = q->queuedata;
1399	struct Scsi_Host *shost;
1400
1401	if (blk_queue_dying(q))
1402		return false;
1403
1404	shost = sdev->host;
1405
1406	/*
1407	 * Ignore host/starget busy state.
1408	 * Since block layer does not have a concept of fairness across
1409	 * multiple queues, congestion of host/starget needs to be handled
1410	 * in SCSI layer.
1411	 */
1412	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1413		return true;
1414
1415	return false;
1416}
1417
1418/*
1419 * Block layer request completion callback. May be called from interrupt
1420 * context.
1421 */
1422static void scsi_complete(struct request *rq)
1423{
1424	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1425	enum scsi_disposition disposition;
 
1426
1427	INIT_LIST_HEAD(&cmd->eh_entry);
1428
1429	atomic_inc(&cmd->device->iodone_cnt);
1430	if (cmd->result)
1431		atomic_inc(&cmd->device->ioerr_cnt);
1432
1433	disposition = scsi_decide_disposition(cmd);
1434	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1435		disposition = SUCCESS;
 
1436
1437	scsi_log_completion(cmd, disposition);
1438
1439	switch (disposition) {
1440	case SUCCESS:
1441		scsi_finish_command(cmd);
1442		break;
1443	case NEEDS_RETRY:
1444		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1445		break;
1446	case ADD_TO_MLQUEUE:
1447		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1448		break;
1449	default:
1450		scsi_eh_scmd_add(cmd);
1451		break;
1452	}
1453}
1454
1455/**
1456 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1457 * @cmd: command block we are dispatching.
1458 *
1459 * Return: nonzero return request was rejected and device's queue needs to be
1460 * plugged.
1461 */
1462static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1463{
1464	struct Scsi_Host *host = cmd->device->host;
1465	int rtn = 0;
1466
 
 
1467	/* check if the device is still usable */
1468	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1469		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1470		 * returns an immediate error upwards, and signals
1471		 * that the device is no longer present */
1472		cmd->result = DID_NO_CONNECT << 16;
1473		goto done;
1474	}
1475
1476	/* Check to see if the scsi lld made this device blocked. */
1477	if (unlikely(scsi_device_blocked(cmd->device))) {
1478		/*
1479		 * in blocked state, the command is just put back on
1480		 * the device queue.  The suspend state has already
1481		 * blocked the queue so future requests should not
1482		 * occur until the device transitions out of the
1483		 * suspend state.
1484		 */
1485		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1486			"queuecommand : device blocked\n"));
1487		return SCSI_MLQUEUE_DEVICE_BUSY;
1488	}
1489
1490	/* Store the LUN value in cmnd, if needed. */
1491	if (cmd->device->lun_in_cdb)
1492		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493			       (cmd->device->lun << 5 & 0xe0);
1494
1495	scsi_log_send(cmd);
1496
1497	/*
1498	 * Before we queue this command, check if the command
1499	 * length exceeds what the host adapter can handle.
1500	 */
1501	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503			       "queuecommand : command too long. "
1504			       "cdb_size=%d host->max_cmd_len=%d\n",
1505			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1506		cmd->result = (DID_ABORT << 16);
1507		goto done;
1508	}
1509
1510	if (unlikely(host->shost_state == SHOST_DEL)) {
1511		cmd->result = (DID_NO_CONNECT << 16);
1512		goto done;
1513
1514	}
1515
1516	trace_scsi_dispatch_cmd_start(cmd);
1517	rtn = host->hostt->queuecommand(host, cmd);
1518	if (rtn) {
1519		trace_scsi_dispatch_cmd_error(cmd, rtn);
1520		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1521		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1522			rtn = SCSI_MLQUEUE_HOST_BUSY;
1523
1524		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1525			"queuecommand : request rejected\n"));
1526	}
1527
1528	return rtn;
1529 done:
1530	scsi_done(cmd);
1531	return 0;
1532}
1533
1534/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1535static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1536{
1537	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1538		sizeof(struct scatterlist);
1539}
1540
1541static blk_status_t scsi_prepare_cmd(struct request *req)
1542{
1543	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1544	struct scsi_device *sdev = req->q->queuedata;
1545	struct Scsi_Host *shost = sdev->host;
1546	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1547	struct scatterlist *sg;
1548
1549	scsi_init_command(sdev, cmd);
1550
1551	cmd->eh_eflags = 0;
1552	cmd->prot_type = 0;
1553	cmd->prot_flags = 0;
1554	cmd->submitter = 0;
1555	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1556	cmd->underflow = 0;
1557	cmd->transfersize = 0;
1558	cmd->host_scribble = NULL;
1559	cmd->result = 0;
1560	cmd->extra_len = 0;
1561	cmd->state = 0;
1562	if (in_flight)
1563		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1564
1565	/*
1566	 * Only clear the driver-private command data if the LLD does not supply
1567	 * a function to initialize that data.
1568	 */
1569	if (!shost->hostt->init_cmd_priv)
1570		memset(cmd + 1, 0, shost->hostt->cmd_size);
1571
1572	cmd->prot_op = SCSI_PROT_NORMAL;
1573	if (blk_rq_bytes(req))
1574		cmd->sc_data_direction = rq_dma_dir(req);
1575	else
1576		cmd->sc_data_direction = DMA_NONE;
1577
1578	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1579	cmd->sdb.table.sgl = sg;
1580
1581	if (scsi_host_get_prot(shost)) {
1582		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1583
1584		cmd->prot_sdb->table.sgl =
1585			(struct scatterlist *)(cmd->prot_sdb + 1);
1586	}
1587
1588	/*
1589	 * Special handling for passthrough commands, which don't go to the ULP
1590	 * at all:
1591	 */
1592	if (blk_rq_is_passthrough(req))
1593		return scsi_setup_scsi_cmnd(sdev, req);
1594
1595	if (sdev->handler && sdev->handler->prep_fn) {
1596		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1597
1598		if (ret != BLK_STS_OK)
1599			return ret;
1600	}
1601
1602	/* Usually overridden by the ULP */
1603	cmd->allowed = 0;
1604	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1605	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1606}
1607
1608static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1609{
1610	struct request *req = scsi_cmd_to_rq(cmd);
1611
1612	switch (cmd->submitter) {
1613	case SUBMITTED_BY_BLOCK_LAYER:
1614		break;
1615	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1616		return scsi_eh_done(cmd);
1617	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1618		return;
1619	}
1620
1621	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1622		return;
1623	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1624		return;
1625	trace_scsi_dispatch_cmd_done(cmd);
1626
1627	if (complete_directly)
1628		blk_mq_complete_request_direct(req, scsi_complete);
1629	else
1630		blk_mq_complete_request(req);
1631}
1632
1633void scsi_done(struct scsi_cmnd *cmd)
1634{
1635	scsi_done_internal(cmd, false);
1636}
1637EXPORT_SYMBOL(scsi_done);
1638
1639void scsi_done_direct(struct scsi_cmnd *cmd)
1640{
1641	scsi_done_internal(cmd, true);
1642}
1643EXPORT_SYMBOL(scsi_done_direct);
1644
1645static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1646{
1647	struct scsi_device *sdev = q->queuedata;
1648
1649	sbitmap_put(&sdev->budget_map, budget_token);
1650}
1651
1652/*
1653 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1654 * not change behaviour from the previous unplug mechanism, experimentation
1655 * may prove this needs changing.
1656 */
1657#define SCSI_QUEUE_DELAY 3
1658
1659static int scsi_mq_get_budget(struct request_queue *q)
1660{
1661	struct scsi_device *sdev = q->queuedata;
1662	int token = scsi_dev_queue_ready(q, sdev);
1663
1664	if (token >= 0)
1665		return token;
1666
1667	atomic_inc(&sdev->restarts);
1668
1669	/*
1670	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1671	 * .restarts must be incremented before .device_busy is read because the
1672	 * code in scsi_run_queue_async() depends on the order of these operations.
1673	 */
1674	smp_mb__after_atomic();
1675
1676	/*
1677	 * If all in-flight requests originated from this LUN are completed
1678	 * before reading .device_busy, sdev->device_busy will be observed as
1679	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1680	 * soon. Otherwise, completion of one of these requests will observe
1681	 * the .restarts flag, and the request queue will be run for handling
1682	 * this request, see scsi_end_request().
1683	 */
1684	if (unlikely(scsi_device_busy(sdev) == 0 &&
1685				!scsi_device_blocked(sdev)))
1686		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1687	return -1;
1688}
1689
1690static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1691{
1692	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693
1694	cmd->budget_token = token;
1695}
1696
1697static int scsi_mq_get_rq_budget_token(struct request *req)
1698{
1699	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1700
1701	return cmd->budget_token;
1702}
1703
1704static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1705			 const struct blk_mq_queue_data *bd)
1706{
1707	struct request *req = bd->rq;
1708	struct request_queue *q = req->q;
1709	struct scsi_device *sdev = q->queuedata;
1710	struct Scsi_Host *shost = sdev->host;
1711	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1712	blk_status_t ret;
1713	int reason;
1714
1715	WARN_ON_ONCE(cmd->budget_token < 0);
1716
1717	/*
1718	 * If the device is not in running state we will reject some or all
1719	 * commands.
1720	 */
1721	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1722		ret = scsi_device_state_check(sdev, req);
1723		if (ret != BLK_STS_OK)
1724			goto out_put_budget;
1725	}
1726
1727	ret = BLK_STS_RESOURCE;
1728	if (!scsi_target_queue_ready(shost, sdev))
1729		goto out_put_budget;
1730	if (unlikely(scsi_host_in_recovery(shost))) {
1731		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1732			ret = BLK_STS_OFFLINE;
1733		goto out_dec_target_busy;
1734	}
1735	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1736		goto out_dec_target_busy;
1737
1738	if (!(req->rq_flags & RQF_DONTPREP)) {
1739		ret = scsi_prepare_cmd(req);
1740		if (ret != BLK_STS_OK)
1741			goto out_dec_host_busy;
1742		req->rq_flags |= RQF_DONTPREP;
1743	} else {
1744		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
 
1745	}
1746
1747	cmd->flags &= SCMD_PRESERVED_FLAGS;
1748	if (sdev->simple_tags)
1749		cmd->flags |= SCMD_TAGGED;
1750	if (bd->last)
1751		cmd->flags |= SCMD_LAST;
1752
1753	scsi_set_resid(cmd, 0);
1754	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1755	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1756
1757	blk_mq_start_request(req);
1758	reason = scsi_dispatch_cmd(cmd);
1759	if (reason) {
1760		scsi_set_blocked(cmd, reason);
1761		ret = BLK_STS_RESOURCE;
1762		goto out_dec_host_busy;
1763	}
1764
1765	atomic_inc(&cmd->device->iorequest_cnt);
1766	return BLK_STS_OK;
1767
1768out_dec_host_busy:
1769	scsi_dec_host_busy(shost, cmd);
1770out_dec_target_busy:
1771	if (scsi_target(sdev)->can_queue > 0)
1772		atomic_dec(&scsi_target(sdev)->target_busy);
1773out_put_budget:
1774	scsi_mq_put_budget(q, cmd->budget_token);
1775	cmd->budget_token = -1;
1776	switch (ret) {
1777	case BLK_STS_OK:
1778		break;
1779	case BLK_STS_RESOURCE:
1780	case BLK_STS_ZONE_RESOURCE:
1781		if (scsi_device_blocked(sdev))
 
1782			ret = BLK_STS_DEV_RESOURCE;
1783		break;
1784	case BLK_STS_AGAIN:
1785		cmd->result = DID_BUS_BUSY << 16;
1786		if (req->rq_flags & RQF_DONTPREP)
1787			scsi_mq_uninit_cmd(cmd);
1788		break;
1789	default:
1790		if (unlikely(!scsi_device_online(sdev)))
1791			cmd->result = DID_NO_CONNECT << 16;
1792		else
1793			cmd->result = DID_ERROR << 16;
1794		/*
1795		 * Make sure to release all allocated resources when
1796		 * we hit an error, as we will never see this command
1797		 * again.
1798		 */
1799		if (req->rq_flags & RQF_DONTPREP)
1800			scsi_mq_uninit_cmd(cmd);
1801		scsi_run_queue_async(sdev);
1802		break;
1803	}
1804	return ret;
1805}
1806
 
 
 
 
 
 
 
 
1807static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808				unsigned int hctx_idx, unsigned int numa_node)
1809{
1810	struct Scsi_Host *shost = set->driver_data;
 
1811	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812	struct scatterlist *sg;
1813	int ret = 0;
1814
1815	cmd->sense_buffer =
1816		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
 
 
1817	if (!cmd->sense_buffer)
1818		return -ENOMEM;
 
1819
1820	if (scsi_host_get_prot(shost)) {
1821		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822			shost->hostt->cmd_size;
1823		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824	}
1825
1826	if (shost->hostt->init_cmd_priv) {
1827		ret = shost->hostt->init_cmd_priv(shost, cmd);
1828		if (ret < 0)
1829			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
 
1830	}
1831
1832	return ret;
1833}
1834
1835static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836				 unsigned int hctx_idx)
1837{
1838	struct Scsi_Host *shost = set->driver_data;
1839	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840
1841	if (shost->hostt->exit_cmd_priv)
1842		shost->hostt->exit_cmd_priv(shost, cmd);
1843	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
 
1844}
1845
1846
1847static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848{
1849	struct Scsi_Host *shost = hctx->driver_data;
1850
1851	if (shost->hostt->mq_poll)
1852		return shost->hostt->mq_poll(shost, hctx->queue_num);
1853
1854	return 0;
1855}
1856
1857static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858			  unsigned int hctx_idx)
1859{
1860	struct Scsi_Host *shost = data;
1861
1862	hctx->driver_data = shost;
1863	return 0;
1864}
1865
1866static void scsi_map_queues(struct blk_mq_tag_set *set)
1867{
1868	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869
1870	if (shost->hostt->map_queues)
1871		return shost->hostt->map_queues(shost);
1872	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873}
1874
1875void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876{
1877	struct device *dev = shost->dma_dev;
1878
1879	/*
1880	 * this limit is imposed by hardware restrictions
1881	 */
1882	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883					SG_MAX_SEGMENTS));
1884
1885	if (scsi_host_prot_dma(shost)) {
1886		shost->sg_prot_tablesize =
1887			min_not_zero(shost->sg_prot_tablesize,
1888				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891	}
1892
 
 
 
 
1893	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
 
1894	blk_queue_segment_boundary(q, shost->dma_boundary);
1895	dma_set_seg_boundary(dev, shost->dma_boundary);
1896
1897	blk_queue_max_segment_size(q, shost->max_segment_size);
1898	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1900
1901	/*
1902	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1903	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1904	 * which is set by the platform.
1905	 *
1906	 * Devices that require a bigger alignment can increase it later.
1907	 */
1908	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909}
1910EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911
1912static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913	.get_budget	= scsi_mq_get_budget,
1914	.put_budget	= scsi_mq_put_budget,
1915	.queue_rq	= scsi_queue_rq,
1916	.complete	= scsi_complete,
1917	.timeout	= scsi_timeout,
1918#ifdef CONFIG_BLK_DEBUG_FS
1919	.show_rq	= scsi_show_rq,
1920#endif
1921	.init_request	= scsi_mq_init_request,
1922	.exit_request	= scsi_mq_exit_request,
 
1923	.cleanup_rq	= scsi_cleanup_rq,
1924	.busy		= scsi_mq_lld_busy,
1925	.map_queues	= scsi_map_queues,
1926	.init_hctx	= scsi_init_hctx,
1927	.poll		= scsi_mq_poll,
1928	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930};
1931
1932
1933static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934{
1935	struct Scsi_Host *shost = hctx->driver_data;
 
 
1936
1937	shost->hostt->commit_rqs(shost, hctx->queue_num);
1938}
1939
1940static const struct blk_mq_ops scsi_mq_ops = {
1941	.get_budget	= scsi_mq_get_budget,
1942	.put_budget	= scsi_mq_put_budget,
1943	.queue_rq	= scsi_queue_rq,
1944	.commit_rqs	= scsi_commit_rqs,
1945	.complete	= scsi_complete,
1946	.timeout	= scsi_timeout,
1947#ifdef CONFIG_BLK_DEBUG_FS
1948	.show_rq	= scsi_show_rq,
1949#endif
1950	.init_request	= scsi_mq_init_request,
1951	.exit_request	= scsi_mq_exit_request,
 
1952	.cleanup_rq	= scsi_cleanup_rq,
1953	.busy		= scsi_mq_lld_busy,
1954	.map_queues	= scsi_map_queues,
1955	.init_hctx	= scsi_init_hctx,
1956	.poll		= scsi_mq_poll,
1957	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959};
1960
 
 
 
 
 
 
 
 
 
 
 
 
1961int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962{
1963	unsigned int cmd_size, sgl_size;
1964	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965
1966	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967				scsi_mq_inline_sgl_size(shost));
1968	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969	if (scsi_host_get_prot(shost))
1970		cmd_size += sizeof(struct scsi_data_buffer) +
1971			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972
1973	memset(tag_set, 0, sizeof(*tag_set));
1974	if (shost->hostt->commit_rqs)
1975		tag_set->ops = &scsi_mq_ops;
1976	else
1977		tag_set->ops = &scsi_mq_ops_no_commit;
1978	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979	tag_set->nr_maps = shost->nr_maps ? : 1;
1980	tag_set->queue_depth = shost->can_queue;
1981	tag_set->cmd_size = cmd_size;
1982	tag_set->numa_node = dev_to_node(shost->dma_dev);
1983	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984	tag_set->flags |=
1985		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1986	tag_set->driver_data = shost;
1987	if (shost->host_tagset)
1988		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1989
1990	return blk_mq_alloc_tag_set(tag_set);
1991}
1992
1993void scsi_mq_free_tags(struct kref *kref)
1994{
1995	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1996					       tagset_refcnt);
1997
1998	blk_mq_free_tag_set(&shost->tag_set);
1999	complete(&shost->tagset_freed);
2000}
2001
2002/**
2003 * scsi_device_from_queue - return sdev associated with a request_queue
2004 * @q: The request queue to return the sdev from
2005 *
2006 * Return the sdev associated with a request queue or NULL if the
2007 * request_queue does not reference a SCSI device.
2008 */
2009struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2010{
2011	struct scsi_device *sdev = NULL;
2012
2013	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2014	    q->mq_ops == &scsi_mq_ops)
2015		sdev = q->queuedata;
2016	if (!sdev || !get_device(&sdev->sdev_gendev))
2017		sdev = NULL;
2018
2019	return sdev;
2020}
2021/*
2022 * pktcdvd should have been integrated into the SCSI layers, but for historical
2023 * reasons like the old IDE driver it isn't.  This export allows it to safely
2024 * probe if a given device is a SCSI one and only attach to that.
2025 */
2026#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2027EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2028#endif
2029
2030/**
2031 * scsi_block_requests - Utility function used by low-level drivers to prevent
2032 * further commands from being queued to the device.
2033 * @shost:  host in question
2034 *
2035 * There is no timer nor any other means by which the requests get unblocked
2036 * other than the low-level driver calling scsi_unblock_requests().
2037 */
2038void scsi_block_requests(struct Scsi_Host *shost)
2039{
2040	shost->host_self_blocked = 1;
2041}
2042EXPORT_SYMBOL(scsi_block_requests);
2043
2044/**
2045 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2046 * further commands to be queued to the device.
2047 * @shost:  host in question
2048 *
2049 * There is no timer nor any other means by which the requests get unblocked
2050 * other than the low-level driver calling scsi_unblock_requests(). This is done
2051 * as an API function so that changes to the internals of the scsi mid-layer
2052 * won't require wholesale changes to drivers that use this feature.
2053 */
2054void scsi_unblock_requests(struct Scsi_Host *shost)
2055{
2056	shost->host_self_blocked = 0;
2057	scsi_run_host_queues(shost);
2058}
2059EXPORT_SYMBOL(scsi_unblock_requests);
2060
2061void scsi_exit_queue(void)
2062{
2063	kmem_cache_destroy(scsi_sense_cache);
 
2064}
2065
2066/**
2067 *	scsi_mode_select - issue a mode select
2068 *	@sdev:	SCSI device to be queried
2069 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2070 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2071 *	@buffer: request buffer (may not be smaller than eight bytes)
2072 *	@len:	length of request buffer.
2073 *	@timeout: command timeout
2074 *	@retries: number of retries before failing
2075 *	@data: returns a structure abstracting the mode header data
2076 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2077 *		must be SCSI_SENSE_BUFFERSIZE big.
2078 *
2079 *	Returns zero if successful; negative error number or scsi
2080 *	status on error
2081 *
2082 */
2083int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2084		     unsigned char *buffer, int len, int timeout, int retries,
2085		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2086{
2087	unsigned char cmd[10];
2088	unsigned char *real_buffer;
2089	int ret;
2090
2091	memset(cmd, 0, sizeof(cmd));
2092	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2093
2094	/*
2095	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2096	 * and the mode select header cannot fit within the maximumm 255 bytes
2097	 * of the MODE SELECT(6) command.
2098	 */
2099	if (sdev->use_10_for_ms ||
2100	    len + 4 > 255 ||
2101	    data->block_descriptor_length > 255) {
2102		if (len > 65535 - 8)
2103			return -EINVAL;
2104		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2105		if (!real_buffer)
2106			return -ENOMEM;
2107		memcpy(real_buffer + 8, buffer, len);
2108		len += 8;
2109		real_buffer[0] = 0;
2110		real_buffer[1] = 0;
2111		real_buffer[2] = data->medium_type;
2112		real_buffer[3] = data->device_specific;
2113		real_buffer[4] = data->longlba ? 0x01 : 0;
2114		real_buffer[5] = 0;
2115		put_unaligned_be16(data->block_descriptor_length,
2116				   &real_buffer[6]);
2117
2118		cmd[0] = MODE_SELECT_10;
2119		put_unaligned_be16(len, &cmd[7]);
 
2120	} else {
2121		if (data->longlba)
 
2122			return -EINVAL;
2123
2124		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2125		if (!real_buffer)
2126			return -ENOMEM;
2127		memcpy(real_buffer + 4, buffer, len);
2128		len += 4;
2129		real_buffer[0] = 0;
2130		real_buffer[1] = data->medium_type;
2131		real_buffer[2] = data->device_specific;
2132		real_buffer[3] = data->block_descriptor_length;
2133
2134		cmd[0] = MODE_SELECT;
2135		cmd[4] = len;
2136	}
2137
2138	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2139			       sshdr, timeout, retries, NULL);
2140	kfree(real_buffer);
2141	return ret;
2142}
2143EXPORT_SYMBOL_GPL(scsi_mode_select);
2144
2145/**
2146 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2147 *	@sdev:	SCSI device to be queried
2148 *	@dbd:	set to prevent mode sense from returning block descriptors
2149 *	@modepage: mode page being requested
2150 *	@buffer: request buffer (may not be smaller than eight bytes)
2151 *	@len:	length of request buffer.
2152 *	@timeout: command timeout
2153 *	@retries: number of retries before failing
2154 *	@data: returns a structure abstracting the mode header data
2155 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2156 *		must be SCSI_SENSE_BUFFERSIZE big.
2157 *
2158 *	Returns zero if successful, or a negative error number on failure
 
 
2159 */
2160int
2161scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2162		  unsigned char *buffer, int len, int timeout, int retries,
2163		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2164{
2165	unsigned char cmd[12];
2166	int use_10_for_ms;
2167	int header_length;
2168	int result, retry_count = retries;
2169	struct scsi_sense_hdr my_sshdr;
2170
2171	memset(data, 0, sizeof(*data));
2172	memset(&cmd[0], 0, 12);
2173
2174	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2175	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2176	cmd[2] = modepage;
2177
2178	/* caller might not be interested in sense, but we need it */
2179	if (!sshdr)
2180		sshdr = &my_sshdr;
2181
2182 retry:
2183	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2184
2185	if (use_10_for_ms) {
2186		if (len < 8 || len > 65535)
2187			return -EINVAL;
2188
2189		cmd[0] = MODE_SENSE_10;
2190		put_unaligned_be16(len, &cmd[7]);
2191		header_length = 8;
2192	} else {
2193		if (len < 4)
2194			return -EINVAL;
2195
2196		cmd[0] = MODE_SENSE;
2197		cmd[4] = len;
2198		header_length = 4;
2199	}
2200
2201	memset(buffer, 0, len);
2202
2203	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2204				  sshdr, timeout, retries, NULL);
2205	if (result < 0)
2206		return result;
2207
2208	/* This code looks awful: what it's doing is making sure an
2209	 * ILLEGAL REQUEST sense return identifies the actual command
2210	 * byte as the problem.  MODE_SENSE commands can return
2211	 * ILLEGAL REQUEST if the code page isn't supported */
2212
2213	if (!scsi_status_is_good(result)) {
 
2214		if (scsi_sense_valid(sshdr)) {
2215			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2216			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2217				/*
2218				 * Invalid command operation code: retry using
2219				 * MODE SENSE(6) if this was a MODE SENSE(10)
2220				 * request, except if the request mode page is
2221				 * too large for MODE SENSE single byte
2222				 * allocation length field.
2223				 */
2224				if (use_10_for_ms) {
2225					if (len > 255)
2226						return -EIO;
2227					sdev->use_10_for_ms = 0;
2228					goto retry;
2229				}
2230			}
2231			if (scsi_status_is_check_condition(result) &&
2232			    sshdr->sense_key == UNIT_ATTENTION &&
2233			    retry_count) {
2234				retry_count--;
2235				goto retry;
2236			}
2237		}
2238		return -EIO;
2239	}
2240	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2241		     (modepage == 6 || modepage == 8))) {
2242		/* Initio breakage? */
2243		header_length = 0;
2244		data->length = 13;
2245		data->medium_type = 0;
2246		data->device_specific = 0;
2247		data->longlba = 0;
2248		data->block_descriptor_length = 0;
2249	} else if (use_10_for_ms) {
2250		data->length = get_unaligned_be16(&buffer[0]) + 2;
2251		data->medium_type = buffer[2];
2252		data->device_specific = buffer[3];
2253		data->longlba = buffer[4] & 0x01;
2254		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2255	} else {
2256		data->length = buffer[0] + 1;
2257		data->medium_type = buffer[1];
2258		data->device_specific = buffer[2];
2259		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
 
2260	}
2261	data->header_length = header_length;
2262
2263	return 0;
2264}
2265EXPORT_SYMBOL(scsi_mode_sense);
2266
2267/**
2268 *	scsi_test_unit_ready - test if unit is ready
2269 *	@sdev:	scsi device to change the state of.
2270 *	@timeout: command timeout
2271 *	@retries: number of retries before failing
2272 *	@sshdr: outpout pointer for decoded sense information.
2273 *
2274 *	Returns zero if unsuccessful or an error if TUR failed.  For
2275 *	removable media, UNIT_ATTENTION sets ->changed flag.
2276 **/
2277int
2278scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2279		     struct scsi_sense_hdr *sshdr)
2280{
2281	char cmd[] = {
2282		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2283	};
2284	int result;
2285
2286	/* try to eat the UNIT_ATTENTION if there are enough retries */
2287	do {
2288		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2289					  timeout, 1, NULL);
2290		if (sdev->removable && scsi_sense_valid(sshdr) &&
2291		    sshdr->sense_key == UNIT_ATTENTION)
2292			sdev->changed = 1;
2293	} while (scsi_sense_valid(sshdr) &&
2294		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2295
2296	return result;
2297}
2298EXPORT_SYMBOL(scsi_test_unit_ready);
2299
2300/**
2301 *	scsi_device_set_state - Take the given device through the device state model.
2302 *	@sdev:	scsi device to change the state of.
2303 *	@state:	state to change to.
2304 *
2305 *	Returns zero if successful or an error if the requested
2306 *	transition is illegal.
2307 */
2308int
2309scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2310{
2311	enum scsi_device_state oldstate = sdev->sdev_state;
2312
2313	if (state == oldstate)
2314		return 0;
2315
2316	switch (state) {
2317	case SDEV_CREATED:
2318		switch (oldstate) {
2319		case SDEV_CREATED_BLOCK:
2320			break;
2321		default:
2322			goto illegal;
2323		}
2324		break;
2325
2326	case SDEV_RUNNING:
2327		switch (oldstate) {
2328		case SDEV_CREATED:
2329		case SDEV_OFFLINE:
2330		case SDEV_TRANSPORT_OFFLINE:
2331		case SDEV_QUIESCE:
2332		case SDEV_BLOCK:
2333			break;
2334		default:
2335			goto illegal;
2336		}
2337		break;
2338
2339	case SDEV_QUIESCE:
2340		switch (oldstate) {
2341		case SDEV_RUNNING:
2342		case SDEV_OFFLINE:
2343		case SDEV_TRANSPORT_OFFLINE:
2344			break;
2345		default:
2346			goto illegal;
2347		}
2348		break;
2349
2350	case SDEV_OFFLINE:
2351	case SDEV_TRANSPORT_OFFLINE:
2352		switch (oldstate) {
2353		case SDEV_CREATED:
2354		case SDEV_RUNNING:
2355		case SDEV_QUIESCE:
2356		case SDEV_BLOCK:
2357			break;
2358		default:
2359			goto illegal;
2360		}
2361		break;
2362
2363	case SDEV_BLOCK:
2364		switch (oldstate) {
2365		case SDEV_RUNNING:
2366		case SDEV_CREATED_BLOCK:
2367		case SDEV_QUIESCE:
2368		case SDEV_OFFLINE:
2369			break;
2370		default:
2371			goto illegal;
2372		}
2373		break;
2374
2375	case SDEV_CREATED_BLOCK:
2376		switch (oldstate) {
2377		case SDEV_CREATED:
2378			break;
2379		default:
2380			goto illegal;
2381		}
2382		break;
2383
2384	case SDEV_CANCEL:
2385		switch (oldstate) {
2386		case SDEV_CREATED:
2387		case SDEV_RUNNING:
2388		case SDEV_QUIESCE:
2389		case SDEV_OFFLINE:
2390		case SDEV_TRANSPORT_OFFLINE:
2391			break;
2392		default:
2393			goto illegal;
2394		}
2395		break;
2396
2397	case SDEV_DEL:
2398		switch (oldstate) {
2399		case SDEV_CREATED:
2400		case SDEV_RUNNING:
2401		case SDEV_OFFLINE:
2402		case SDEV_TRANSPORT_OFFLINE:
2403		case SDEV_CANCEL:
2404		case SDEV_BLOCK:
2405		case SDEV_CREATED_BLOCK:
2406			break;
2407		default:
2408			goto illegal;
2409		}
2410		break;
2411
2412	}
2413	sdev->offline_already = false;
2414	sdev->sdev_state = state;
2415	return 0;
2416
2417 illegal:
2418	SCSI_LOG_ERROR_RECOVERY(1,
2419				sdev_printk(KERN_ERR, sdev,
2420					    "Illegal state transition %s->%s",
2421					    scsi_device_state_name(oldstate),
2422					    scsi_device_state_name(state))
2423				);
2424	return -EINVAL;
2425}
2426EXPORT_SYMBOL(scsi_device_set_state);
2427
2428/**
2429 *	scsi_evt_emit - emit a single SCSI device uevent
2430 *	@sdev: associated SCSI device
2431 *	@evt: event to emit
2432 *
2433 *	Send a single uevent (scsi_event) to the associated scsi_device.
2434 */
2435static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2436{
2437	int idx = 0;
2438	char *envp[3];
2439
2440	switch (evt->evt_type) {
2441	case SDEV_EVT_MEDIA_CHANGE:
2442		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2443		break;
2444	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2445		scsi_rescan_device(&sdev->sdev_gendev);
2446		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2447		break;
2448	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2449		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2450		break;
2451	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2452	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2453		break;
2454	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2456		break;
2457	case SDEV_EVT_LUN_CHANGE_REPORTED:
2458		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2459		break;
2460	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2461		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2462		break;
2463	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2464		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2465		break;
2466	default:
2467		/* do nothing */
2468		break;
2469	}
2470
2471	envp[idx++] = NULL;
2472
2473	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2474}
2475
2476/**
2477 *	scsi_evt_thread - send a uevent for each scsi event
2478 *	@work: work struct for scsi_device
2479 *
2480 *	Dispatch queued events to their associated scsi_device kobjects
2481 *	as uevents.
2482 */
2483void scsi_evt_thread(struct work_struct *work)
2484{
2485	struct scsi_device *sdev;
2486	enum scsi_device_event evt_type;
2487	LIST_HEAD(event_list);
2488
2489	sdev = container_of(work, struct scsi_device, event_work);
2490
2491	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2492		if (test_and_clear_bit(evt_type, sdev->pending_events))
2493			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2494
2495	while (1) {
2496		struct scsi_event *evt;
2497		struct list_head *this, *tmp;
2498		unsigned long flags;
2499
2500		spin_lock_irqsave(&sdev->list_lock, flags);
2501		list_splice_init(&sdev->event_list, &event_list);
2502		spin_unlock_irqrestore(&sdev->list_lock, flags);
2503
2504		if (list_empty(&event_list))
2505			break;
2506
2507		list_for_each_safe(this, tmp, &event_list) {
2508			evt = list_entry(this, struct scsi_event, node);
2509			list_del(&evt->node);
2510			scsi_evt_emit(sdev, evt);
2511			kfree(evt);
2512		}
2513	}
2514}
2515
2516/**
2517 * 	sdev_evt_send - send asserted event to uevent thread
2518 *	@sdev: scsi_device event occurred on
2519 *	@evt: event to send
2520 *
2521 *	Assert scsi device event asynchronously.
2522 */
2523void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2524{
2525	unsigned long flags;
2526
2527#if 0
2528	/* FIXME: currently this check eliminates all media change events
2529	 * for polled devices.  Need to update to discriminate between AN
2530	 * and polled events */
2531	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2532		kfree(evt);
2533		return;
2534	}
2535#endif
2536
2537	spin_lock_irqsave(&sdev->list_lock, flags);
2538	list_add_tail(&evt->node, &sdev->event_list);
2539	schedule_work(&sdev->event_work);
2540	spin_unlock_irqrestore(&sdev->list_lock, flags);
2541}
2542EXPORT_SYMBOL_GPL(sdev_evt_send);
2543
2544/**
2545 * 	sdev_evt_alloc - allocate a new scsi event
2546 *	@evt_type: type of event to allocate
2547 *	@gfpflags: GFP flags for allocation
2548 *
2549 *	Allocates and returns a new scsi_event.
2550 */
2551struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2552				  gfp_t gfpflags)
2553{
2554	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2555	if (!evt)
2556		return NULL;
2557
2558	evt->evt_type = evt_type;
2559	INIT_LIST_HEAD(&evt->node);
2560
2561	/* evt_type-specific initialization, if any */
2562	switch (evt_type) {
2563	case SDEV_EVT_MEDIA_CHANGE:
2564	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2565	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2566	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2567	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2568	case SDEV_EVT_LUN_CHANGE_REPORTED:
2569	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2570	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2571	default:
2572		/* do nothing */
2573		break;
2574	}
2575
2576	return evt;
2577}
2578EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2579
2580/**
2581 * 	sdev_evt_send_simple - send asserted event to uevent thread
2582 *	@sdev: scsi_device event occurred on
2583 *	@evt_type: type of event to send
2584 *	@gfpflags: GFP flags for allocation
2585 *
2586 *	Assert scsi device event asynchronously, given an event type.
2587 */
2588void sdev_evt_send_simple(struct scsi_device *sdev,
2589			  enum scsi_device_event evt_type, gfp_t gfpflags)
2590{
2591	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2592	if (!evt) {
2593		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2594			    evt_type);
2595		return;
2596	}
2597
2598	sdev_evt_send(sdev, evt);
2599}
2600EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2601
2602/**
2603 *	scsi_device_quiesce - Block all commands except power management.
2604 *	@sdev:	scsi device to quiesce.
2605 *
2606 *	This works by trying to transition to the SDEV_QUIESCE state
2607 *	(which must be a legal transition).  When the device is in this
2608 *	state, only power management requests will be accepted, all others will
2609 *	be deferred.
 
 
2610 *
2611 *	Must be called with user context, may sleep.
2612 *
2613 *	Returns zero if unsuccessful or an error if not.
2614 */
2615int
2616scsi_device_quiesce(struct scsi_device *sdev)
2617{
2618	struct request_queue *q = sdev->request_queue;
2619	int err;
2620
2621	/*
2622	 * It is allowed to call scsi_device_quiesce() multiple times from
2623	 * the same context but concurrent scsi_device_quiesce() calls are
2624	 * not allowed.
2625	 */
2626	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2627
2628	if (sdev->quiesced_by == current)
2629		return 0;
2630
2631	blk_set_pm_only(q);
2632
2633	blk_mq_freeze_queue(q);
2634	/*
2635	 * Ensure that the effect of blk_set_pm_only() will be visible
2636	 * for percpu_ref_tryget() callers that occur after the queue
2637	 * unfreeze even if the queue was already frozen before this function
2638	 * was called. See also https://lwn.net/Articles/573497/.
2639	 */
2640	synchronize_rcu();
2641	blk_mq_unfreeze_queue(q);
2642
2643	mutex_lock(&sdev->state_mutex);
2644	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2645	if (err == 0)
2646		sdev->quiesced_by = current;
2647	else
2648		blk_clear_pm_only(q);
2649	mutex_unlock(&sdev->state_mutex);
2650
2651	return err;
2652}
2653EXPORT_SYMBOL(scsi_device_quiesce);
2654
2655/**
2656 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2657 *	@sdev:	scsi device to resume.
2658 *
2659 *	Moves the device from quiesced back to running and restarts the
2660 *	queues.
2661 *
2662 *	Must be called with user context, may sleep.
2663 */
2664void scsi_device_resume(struct scsi_device *sdev)
2665{
2666	/* check if the device state was mutated prior to resume, and if
2667	 * so assume the state is being managed elsewhere (for example
2668	 * device deleted during suspend)
2669	 */
2670	mutex_lock(&sdev->state_mutex);
2671	if (sdev->sdev_state == SDEV_QUIESCE)
2672		scsi_device_set_state(sdev, SDEV_RUNNING);
2673	if (sdev->quiesced_by) {
2674		sdev->quiesced_by = NULL;
2675		blk_clear_pm_only(sdev->request_queue);
2676	}
 
 
2677	mutex_unlock(&sdev->state_mutex);
2678}
2679EXPORT_SYMBOL(scsi_device_resume);
2680
2681static void
2682device_quiesce_fn(struct scsi_device *sdev, void *data)
2683{
2684	scsi_device_quiesce(sdev);
2685}
2686
2687void
2688scsi_target_quiesce(struct scsi_target *starget)
2689{
2690	starget_for_each_device(starget, NULL, device_quiesce_fn);
2691}
2692EXPORT_SYMBOL(scsi_target_quiesce);
2693
2694static void
2695device_resume_fn(struct scsi_device *sdev, void *data)
2696{
2697	scsi_device_resume(sdev);
2698}
2699
2700void
2701scsi_target_resume(struct scsi_target *starget)
2702{
2703	starget_for_each_device(starget, NULL, device_resume_fn);
2704}
2705EXPORT_SYMBOL(scsi_target_resume);
2706
2707static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2708{
2709	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2710		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2711
2712	return 0;
2713}
2714
2715void scsi_start_queue(struct scsi_device *sdev)
2716{
2717	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2718		blk_mq_unquiesce_queue(sdev->request_queue);
2719}
2720
2721static void scsi_stop_queue(struct scsi_device *sdev, bool nowait)
2722{
2723	/*
2724	 * The atomic variable of ->queue_stopped covers that
2725	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2726	 *
2727	 * However, we still need to wait until quiesce is done
2728	 * in case that queue has been stopped.
2729	 */
2730	if (!cmpxchg(&sdev->queue_stopped, 0, 1)) {
2731		if (nowait)
2732			blk_mq_quiesce_queue_nowait(sdev->request_queue);
2733		else
2734			blk_mq_quiesce_queue(sdev->request_queue);
2735	} else {
2736		if (!nowait)
2737			blk_mq_wait_quiesce_done(sdev->request_queue->tag_set);
2738	}
2739}
2740
2741/**
2742 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2743 * @sdev: device to block
2744 *
2745 * Pause SCSI command processing on the specified device. Does not sleep.
2746 *
2747 * Returns zero if successful or a negative error code upon failure.
2748 *
2749 * Notes:
2750 * This routine transitions the device to the SDEV_BLOCK state (which must be
2751 * a legal transition). When the device is in this state, command processing
2752 * is paused until the device leaves the SDEV_BLOCK state. See also
2753 * scsi_internal_device_unblock_nowait().
2754 */
2755int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2756{
2757	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
 
 
 
 
 
 
 
2758
2759	/*
2760	 * The device has transitioned to SDEV_BLOCK.  Stop the
2761	 * block layer from calling the midlayer with this device's
2762	 * request queue.
2763	 */
2764	if (!ret)
2765		scsi_stop_queue(sdev, true);
2766	return ret;
2767}
2768EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2769
2770/**
2771 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2772 * @sdev: device to block
2773 *
2774 * Pause SCSI command processing on the specified device and wait until all
2775 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2776 *
2777 * Returns zero if successful or a negative error code upon failure.
2778 *
2779 * Note:
2780 * This routine transitions the device to the SDEV_BLOCK state (which must be
2781 * a legal transition). When the device is in this state, command processing
2782 * is paused until the device leaves the SDEV_BLOCK state. See also
2783 * scsi_internal_device_unblock().
2784 */
2785static int scsi_internal_device_block(struct scsi_device *sdev)
2786{
 
2787	int err;
2788
2789	mutex_lock(&sdev->state_mutex);
2790	err = __scsi_internal_device_block_nowait(sdev);
2791	if (err == 0)
2792		scsi_stop_queue(sdev, false);
2793	mutex_unlock(&sdev->state_mutex);
2794
2795	return err;
2796}
2797
 
 
 
 
 
 
 
2798/**
2799 * scsi_internal_device_unblock_nowait - resume a device after a block request
2800 * @sdev:	device to resume
2801 * @new_state:	state to set the device to after unblocking
2802 *
2803 * Restart the device queue for a previously suspended SCSI device. Does not
2804 * sleep.
2805 *
2806 * Returns zero if successful or a negative error code upon failure.
2807 *
2808 * Notes:
2809 * This routine transitions the device to the SDEV_RUNNING state or to one of
2810 * the offline states (which must be a legal transition) allowing the midlayer
2811 * to goose the queue for this device.
2812 */
2813int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2814					enum scsi_device_state new_state)
2815{
2816	switch (new_state) {
2817	case SDEV_RUNNING:
2818	case SDEV_TRANSPORT_OFFLINE:
2819		break;
2820	default:
2821		return -EINVAL;
2822	}
2823
2824	/*
2825	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2826	 * offlined states and goose the device queue if successful.
2827	 */
2828	switch (sdev->sdev_state) {
2829	case SDEV_BLOCK:
2830	case SDEV_TRANSPORT_OFFLINE:
2831		sdev->sdev_state = new_state;
2832		break;
2833	case SDEV_CREATED_BLOCK:
2834		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2835		    new_state == SDEV_OFFLINE)
2836			sdev->sdev_state = new_state;
2837		else
2838			sdev->sdev_state = SDEV_CREATED;
2839		break;
2840	case SDEV_CANCEL:
2841	case SDEV_OFFLINE:
2842		break;
2843	default:
2844		return -EINVAL;
2845	}
2846	scsi_start_queue(sdev);
2847
2848	return 0;
2849}
2850EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2851
2852/**
2853 * scsi_internal_device_unblock - resume a device after a block request
2854 * @sdev:	device to resume
2855 * @new_state:	state to set the device to after unblocking
2856 *
2857 * Restart the device queue for a previously suspended SCSI device. May sleep.
2858 *
2859 * Returns zero if successful or a negative error code upon failure.
2860 *
2861 * Notes:
2862 * This routine transitions the device to the SDEV_RUNNING state or to one of
2863 * the offline states (which must be a legal transition) allowing the midlayer
2864 * to goose the queue for this device.
2865 */
2866static int scsi_internal_device_unblock(struct scsi_device *sdev,
2867					enum scsi_device_state new_state)
2868{
2869	int ret;
2870
2871	mutex_lock(&sdev->state_mutex);
2872	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2873	mutex_unlock(&sdev->state_mutex);
2874
2875	return ret;
2876}
2877
2878static void
2879device_block(struct scsi_device *sdev, void *data)
2880{
2881	int ret;
2882
2883	ret = scsi_internal_device_block(sdev);
2884
2885	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2886		  dev_name(&sdev->sdev_gendev), ret);
2887}
2888
2889static int
2890target_block(struct device *dev, void *data)
2891{
2892	if (scsi_is_target_device(dev))
2893		starget_for_each_device(to_scsi_target(dev), NULL,
2894					device_block);
2895	return 0;
2896}
2897
2898void
2899scsi_target_block(struct device *dev)
2900{
2901	if (scsi_is_target_device(dev))
2902		starget_for_each_device(to_scsi_target(dev), NULL,
2903					device_block);
2904	else
2905		device_for_each_child(dev, NULL, target_block);
2906}
2907EXPORT_SYMBOL_GPL(scsi_target_block);
2908
2909static void
2910device_unblock(struct scsi_device *sdev, void *data)
2911{
2912	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2913}
2914
2915static int
2916target_unblock(struct device *dev, void *data)
2917{
2918	if (scsi_is_target_device(dev))
2919		starget_for_each_device(to_scsi_target(dev), data,
2920					device_unblock);
2921	return 0;
2922}
2923
2924void
2925scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2926{
2927	if (scsi_is_target_device(dev))
2928		starget_for_each_device(to_scsi_target(dev), &new_state,
2929					device_unblock);
2930	else
2931		device_for_each_child(dev, &new_state, target_unblock);
2932}
2933EXPORT_SYMBOL_GPL(scsi_target_unblock);
2934
2935int
2936scsi_host_block(struct Scsi_Host *shost)
2937{
2938	struct scsi_device *sdev;
2939	int ret = 0;
2940
2941	/*
2942	 * Call scsi_internal_device_block_nowait so we can avoid
2943	 * calling synchronize_rcu() for each LUN.
2944	 */
2945	shost_for_each_device(sdev, shost) {
2946		mutex_lock(&sdev->state_mutex);
2947		ret = scsi_internal_device_block_nowait(sdev);
2948		mutex_unlock(&sdev->state_mutex);
2949		if (ret) {
2950			scsi_device_put(sdev);
2951			break;
2952		}
2953	}
2954
2955	/*
2956	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2957	 * calling synchronize_rcu() once is enough.
2958	 */
2959	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2960
2961	if (!ret)
2962		synchronize_rcu();
2963
2964	return ret;
2965}
2966EXPORT_SYMBOL_GPL(scsi_host_block);
2967
2968int
2969scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2970{
2971	struct scsi_device *sdev;
2972	int ret = 0;
2973
2974	shost_for_each_device(sdev, shost) {
2975		ret = scsi_internal_device_unblock(sdev, new_state);
2976		if (ret) {
2977			scsi_device_put(sdev);
2978			break;
2979		}
2980	}
2981	return ret;
2982}
2983EXPORT_SYMBOL_GPL(scsi_host_unblock);
2984
2985/**
2986 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2987 * @sgl:	scatter-gather list
2988 * @sg_count:	number of segments in sg
2989 * @offset:	offset in bytes into sg, on return offset into the mapped area
2990 * @len:	bytes to map, on return number of bytes mapped
2991 *
2992 * Returns virtual address of the start of the mapped page
2993 */
2994void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2995			  size_t *offset, size_t *len)
2996{
2997	int i;
2998	size_t sg_len = 0, len_complete = 0;
2999	struct scatterlist *sg;
3000	struct page *page;
3001
3002	WARN_ON(!irqs_disabled());
3003
3004	for_each_sg(sgl, sg, sg_count, i) {
3005		len_complete = sg_len; /* Complete sg-entries */
3006		sg_len += sg->length;
3007		if (sg_len > *offset)
3008			break;
3009	}
3010
3011	if (unlikely(i == sg_count)) {
3012		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3013			"elements %d\n",
3014		       __func__, sg_len, *offset, sg_count);
3015		WARN_ON(1);
3016		return NULL;
3017	}
3018
3019	/* Offset starting from the beginning of first page in this sg-entry */
3020	*offset = *offset - len_complete + sg->offset;
3021
3022	/* Assumption: contiguous pages can be accessed as "page + i" */
3023	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3024	*offset &= ~PAGE_MASK;
3025
3026	/* Bytes in this sg-entry from *offset to the end of the page */
3027	sg_len = PAGE_SIZE - *offset;
3028	if (*len > sg_len)
3029		*len = sg_len;
3030
3031	return kmap_atomic(page);
3032}
3033EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3034
3035/**
3036 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3037 * @virt:	virtual address to be unmapped
3038 */
3039void scsi_kunmap_atomic_sg(void *virt)
3040{
3041	kunmap_atomic(virt);
3042}
3043EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3044
3045void sdev_disable_disk_events(struct scsi_device *sdev)
3046{
3047	atomic_inc(&sdev->disk_events_disable_depth);
3048}
3049EXPORT_SYMBOL(sdev_disable_disk_events);
3050
3051void sdev_enable_disk_events(struct scsi_device *sdev)
3052{
3053	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3054		return;
3055	atomic_dec(&sdev->disk_events_disable_depth);
3056}
3057EXPORT_SYMBOL(sdev_enable_disk_events);
3058
3059static unsigned char designator_prio(const unsigned char *d)
3060{
3061	if (d[1] & 0x30)
3062		/* not associated with LUN */
3063		return 0;
3064
3065	if (d[3] == 0)
3066		/* invalid length */
3067		return 0;
3068
3069	/*
3070	 * Order of preference for lun descriptor:
3071	 * - SCSI name string
3072	 * - NAA IEEE Registered Extended
3073	 * - EUI-64 based 16-byte
3074	 * - EUI-64 based 12-byte
3075	 * - NAA IEEE Registered
3076	 * - NAA IEEE Extended
3077	 * - EUI-64 based 8-byte
3078	 * - SCSI name string (truncated)
3079	 * - T10 Vendor ID
3080	 * as longer descriptors reduce the likelyhood
3081	 * of identification clashes.
3082	 */
3083
3084	switch (d[1] & 0xf) {
3085	case 8:
3086		/* SCSI name string, variable-length UTF-8 */
3087		return 9;
3088	case 3:
3089		switch (d[4] >> 4) {
3090		case 6:
3091			/* NAA registered extended */
3092			return 8;
3093		case 5:
3094			/* NAA registered */
3095			return 5;
3096		case 4:
3097			/* NAA extended */
3098			return 4;
3099		case 3:
3100			/* NAA locally assigned */
3101			return 1;
3102		default:
3103			break;
3104		}
3105		break;
3106	case 2:
3107		switch (d[3]) {
3108		case 16:
3109			/* EUI64-based, 16 byte */
3110			return 7;
3111		case 12:
3112			/* EUI64-based, 12 byte */
3113			return 6;
3114		case 8:
3115			/* EUI64-based, 8 byte */
3116			return 3;
3117		default:
3118			break;
3119		}
3120		break;
3121	case 1:
3122		/* T10 vendor ID */
3123		return 1;
3124	default:
3125		break;
3126	}
3127
3128	return 0;
3129}
3130
3131/**
3132 * scsi_vpd_lun_id - return a unique device identification
3133 * @sdev: SCSI device
3134 * @id:   buffer for the identification
3135 * @id_len:  length of the buffer
3136 *
3137 * Copies a unique device identification into @id based
3138 * on the information in the VPD page 0x83 of the device.
3139 * The string will be formatted as a SCSI name string.
3140 *
3141 * Returns the length of the identification or error on failure.
3142 * If the identifier is longer than the supplied buffer the actual
3143 * identifier length is returned and the buffer is not zero-padded.
3144 */
3145int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3146{
3147	u8 cur_id_prio = 0;
3148	u8 cur_id_size = 0;
3149	const unsigned char *d, *cur_id_str;
3150	const struct scsi_vpd *vpd_pg83;
3151	int id_size = -EINVAL;
3152
3153	rcu_read_lock();
3154	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3155	if (!vpd_pg83) {
3156		rcu_read_unlock();
3157		return -ENXIO;
3158	}
3159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3160	/* The id string must be at least 20 bytes + terminating NULL byte */
3161	if (id_len < 21) {
3162		rcu_read_unlock();
3163		return -EINVAL;
3164	}
3165
3166	memset(id, 0, id_len);
3167	for (d = vpd_pg83->data + 4;
3168	     d < vpd_pg83->data + vpd_pg83->len;
3169	     d += d[3] + 4) {
3170		u8 prio = designator_prio(d);
3171
3172		if (prio == 0 || cur_id_prio > prio)
3173			continue;
3174
3175		switch (d[1] & 0xf) {
3176		case 0x1:
3177			/* T10 Vendor ID */
3178			if (cur_id_size > d[3])
3179				break;
3180			cur_id_prio = prio;
 
 
3181			cur_id_size = d[3];
3182			if (cur_id_size + 4 > id_len)
3183				cur_id_size = id_len - 4;
3184			cur_id_str = d + 4;
 
3185			id_size = snprintf(id, id_len, "t10.%*pE",
3186					   cur_id_size, cur_id_str);
3187			break;
3188		case 0x2:
3189			/* EUI-64 */
3190			cur_id_prio = prio;
 
 
 
 
 
3191			cur_id_size = d[3];
3192			cur_id_str = d + 4;
 
3193			switch (cur_id_size) {
3194			case 8:
3195				id_size = snprintf(id, id_len,
3196						   "eui.%8phN",
3197						   cur_id_str);
3198				break;
3199			case 12:
3200				id_size = snprintf(id, id_len,
3201						   "eui.%12phN",
3202						   cur_id_str);
3203				break;
3204			case 16:
3205				id_size = snprintf(id, id_len,
3206						   "eui.%16phN",
3207						   cur_id_str);
3208				break;
3209			default:
 
3210				break;
3211			}
3212			break;
3213		case 0x3:
3214			/* NAA */
3215			cur_id_prio = prio;
 
3216			cur_id_size = d[3];
3217			cur_id_str = d + 4;
 
3218			switch (cur_id_size) {
3219			case 8:
3220				id_size = snprintf(id, id_len,
3221						   "naa.%8phN",
3222						   cur_id_str);
3223				break;
3224			case 16:
3225				id_size = snprintf(id, id_len,
3226						   "naa.%16phN",
3227						   cur_id_str);
3228				break;
3229			default:
 
3230				break;
3231			}
3232			break;
3233		case 0x8:
3234			/* SCSI name string */
3235			if (cur_id_size > d[3])
3236				break;
3237			/* Prefer others for truncated descriptor */
3238			if (d[3] > id_len) {
3239				prio = 2;
3240				if (cur_id_prio > prio)
3241					break;
3242			}
3243			cur_id_prio = prio;
3244			cur_id_size = id_size = d[3];
3245			cur_id_str = d + 4;
 
3246			if (cur_id_size >= id_len)
3247				cur_id_size = id_len - 1;
3248			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3249			break;
3250		default:
3251			break;
3252		}
 
 
3253	}
3254	rcu_read_unlock();
3255
3256	return id_size;
3257}
3258EXPORT_SYMBOL(scsi_vpd_lun_id);
3259
3260/*
3261 * scsi_vpd_tpg_id - return a target port group identifier
3262 * @sdev: SCSI device
3263 *
3264 * Returns the Target Port Group identifier from the information
3265 * froom VPD page 0x83 of the device.
3266 *
3267 * Returns the identifier or error on failure.
3268 */
3269int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3270{
3271	const unsigned char *d;
3272	const struct scsi_vpd *vpd_pg83;
3273	int group_id = -EAGAIN, rel_port = -1;
3274
3275	rcu_read_lock();
3276	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3277	if (!vpd_pg83) {
3278		rcu_read_unlock();
3279		return -ENXIO;
3280	}
3281
3282	d = vpd_pg83->data + 4;
3283	while (d < vpd_pg83->data + vpd_pg83->len) {
3284		switch (d[1] & 0xf) {
3285		case 0x4:
3286			/* Relative target port */
3287			rel_port = get_unaligned_be16(&d[6]);
3288			break;
3289		case 0x5:
3290			/* Target port group */
3291			group_id = get_unaligned_be16(&d[6]);
3292			break;
3293		default:
3294			break;
3295		}
3296		d += d[3] + 4;
3297	}
3298	rcu_read_unlock();
3299
3300	if (group_id >= 0 && rel_id && rel_port != -1)
3301		*rel_id = rel_port;
3302
3303	return group_id;
3304}
3305EXPORT_SYMBOL(scsi_vpd_tpg_id);
3306
3307/**
3308 * scsi_build_sense - build sense data for a command
3309 * @scmd:	scsi command for which the sense should be formatted
3310 * @desc:	Sense format (non-zero == descriptor format,
3311 *              0 == fixed format)
3312 * @key:	Sense key
3313 * @asc:	Additional sense code
3314 * @ascq:	Additional sense code qualifier
3315 *
3316 **/
3317void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3318{
3319	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3320	scmd->result = SAM_STAT_CHECK_CONDITION;
3321}
3322EXPORT_SYMBOL_GPL(scsi_build_sense);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
 
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sense_cache;
  56static struct kmem_cache *scsi_sense_isadma_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  60
  61static inline struct kmem_cache *
  62scsi_select_sense_cache(bool unchecked_isa_dma)
  63{
  64	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
  65}
  66
  67static void scsi_free_sense_buffer(bool unchecked_isa_dma,
  68				   unsigned char *sense_buffer)
  69{
  70	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
  71			sense_buffer);
  72}
  73
  74static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
  75	gfp_t gfp_mask, int numa_node)
  76{
  77	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
  78				     gfp_mask, numa_node);
  79}
  80
  81int scsi_init_sense_cache(struct Scsi_Host *shost)
  82{
  83	struct kmem_cache *cache;
  84	int ret = 0;
  85
  86	mutex_lock(&scsi_sense_cache_mutex);
  87	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
  88	if (cache)
  89		goto exit;
  90
  91	if (shost->unchecked_isa_dma) {
  92		scsi_sense_isadma_cache =
  93			kmem_cache_create("scsi_sense_cache(DMA)",
  94				SCSI_SENSE_BUFFERSIZE, 0,
  95				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
  96		if (!scsi_sense_isadma_cache)
  97			ret = -ENOMEM;
  98	} else {
  99		scsi_sense_cache =
 100			kmem_cache_create_usercopy("scsi_sense_cache",
 101				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
 102				0, SCSI_SENSE_BUFFERSIZE, NULL);
 103		if (!scsi_sense_cache)
 104			ret = -ENOMEM;
 105	}
 106 exit:
 107	mutex_unlock(&scsi_sense_cache_mutex);
 108	return ret;
 109}
 110
 111/*
 112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
 113 * not change behaviour from the previous unplug mechanism, experimentation
 114 * may prove this needs changing.
 115 */
 116#define SCSI_QUEUE_DELAY	3
 117
 118static void
 119scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 120{
 121	struct Scsi_Host *host = cmd->device->host;
 122	struct scsi_device *device = cmd->device;
 123	struct scsi_target *starget = scsi_target(device);
 124
 125	/*
 126	 * Set the appropriate busy bit for the device/host.
 127	 *
 128	 * If the host/device isn't busy, assume that something actually
 129	 * completed, and that we should be able to queue a command now.
 130	 *
 131	 * Note that the prior mid-layer assumption that any host could
 132	 * always queue at least one command is now broken.  The mid-layer
 133	 * will implement a user specifiable stall (see
 134	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 135	 * if a command is requeued with no other commands outstanding
 136	 * either for the device or for the host.
 137	 */
 138	switch (reason) {
 139	case SCSI_MLQUEUE_HOST_BUSY:
 140		atomic_set(&host->host_blocked, host->max_host_blocked);
 141		break;
 142	case SCSI_MLQUEUE_DEVICE_BUSY:
 143	case SCSI_MLQUEUE_EH_RETRY:
 144		atomic_set(&device->device_blocked,
 145			   device->max_device_blocked);
 146		break;
 147	case SCSI_MLQUEUE_TARGET_BUSY:
 148		atomic_set(&starget->target_blocked,
 149			   starget->max_target_blocked);
 150		break;
 151	}
 152}
 153
 154static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 155{
 156	if (cmd->request->rq_flags & RQF_DONTPREP) {
 157		cmd->request->rq_flags &= ~RQF_DONTPREP;
 
 
 158		scsi_mq_uninit_cmd(cmd);
 159	} else {
 160		WARN_ON_ONCE(true);
 161	}
 162	blk_mq_requeue_request(cmd->request, true);
 
 
 
 
 
 163}
 164
 165/**
 166 * __scsi_queue_insert - private queue insertion
 167 * @cmd: The SCSI command being requeued
 168 * @reason:  The reason for the requeue
 169 * @unbusy: Whether the queue should be unbusied
 170 *
 171 * This is a private queue insertion.  The public interface
 172 * scsi_queue_insert() always assumes the queue should be unbusied
 173 * because it's always called before the completion.  This function is
 174 * for a requeue after completion, which should only occur in this
 175 * file.
 176 */
 177static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 178{
 179	struct scsi_device *device = cmd->device;
 180
 181	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 182		"Inserting command %p into mlqueue\n", cmd));
 183
 184	scsi_set_blocked(cmd, reason);
 185
 186	/*
 187	 * Decrement the counters, since these commands are no longer
 188	 * active on the host/device.
 189	 */
 190	if (unbusy)
 191		scsi_device_unbusy(device, cmd);
 192
 193	/*
 194	 * Requeue this command.  It will go before all other commands
 195	 * that are already in the queue. Schedule requeue work under
 196	 * lock such that the kblockd_schedule_work() call happens
 197	 * before blk_cleanup_queue() finishes.
 198	 */
 199	cmd->result = 0;
 200
 201	blk_mq_requeue_request(cmd->request, true);
 202}
 203
 204/**
 205 * scsi_queue_insert - Reinsert a command in the queue.
 206 * @cmd:    command that we are adding to queue.
 207 * @reason: why we are inserting command to queue.
 208 *
 209 * We do this for one of two cases. Either the host is busy and it cannot accept
 210 * any more commands for the time being, or the device returned QUEUE_FULL and
 211 * can accept no more commands.
 212 *
 213 * Context: This could be called either from an interrupt context or a normal
 214 * process context.
 215 */
 216void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 217{
 218	__scsi_queue_insert(cmd, reason, true);
 219}
 220
 221
 222/**
 223 * __scsi_execute - insert request and wait for the result
 224 * @sdev:	scsi device
 225 * @cmd:	scsi command
 226 * @data_direction: data direction
 227 * @buffer:	data buffer
 228 * @bufflen:	len of buffer
 229 * @sense:	optional sense buffer
 230 * @sshdr:	optional decoded sense header
 231 * @timeout:	request timeout in seconds
 232 * @retries:	number of times to retry request
 233 * @flags:	flags for ->cmd_flags
 234 * @rq_flags:	flags for ->rq_flags
 235 * @resid:	optional residual length
 236 *
 237 * Returns the scsi_cmnd result field if a command was executed, or a negative
 238 * Linux error code if we didn't get that far.
 239 */
 240int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 241		 int data_direction, void *buffer, unsigned bufflen,
 242		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 243		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 244		 int *resid)
 245{
 246	struct request *req;
 247	struct scsi_request *rq;
 248	int ret = DRIVER_ERROR << 24;
 249
 250	req = blk_get_request(sdev->request_queue,
 251			data_direction == DMA_TO_DEVICE ?
 252			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
 
 253	if (IS_ERR(req))
 254		return ret;
 255	rq = scsi_req(req);
 256
 257	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 258					buffer, bufflen, GFP_NOIO))
 259		goto out;
 260
 261	rq->cmd_len = COMMAND_SIZE(cmd[0]);
 262	memcpy(rq->cmd, cmd, rq->cmd_len);
 263	rq->retries = retries;
 
 
 
 264	req->timeout = timeout;
 265	req->cmd_flags |= flags;
 266	req->rq_flags |= rq_flags | RQF_QUIET;
 267
 268	/*
 269	 * head injection *required* here otherwise quiesce won't work
 270	 */
 271	blk_execute_rq(req->q, NULL, req, 1);
 272
 273	/*
 274	 * Some devices (USB mass-storage in particular) may transfer
 275	 * garbage data together with a residue indicating that the data
 276	 * is invalid.  Prevent the garbage from being misinterpreted
 277	 * and prevent security leaks by zeroing out the excess data.
 278	 */
 279	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 280		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 281
 282	if (resid)
 283		*resid = rq->resid_len;
 284	if (sense && rq->sense_len)
 285		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 286	if (sshdr)
 287		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 288	ret = rq->result;
 
 289 out:
 290	blk_put_request(req);
 291
 292	return ret;
 293}
 294EXPORT_SYMBOL(__scsi_execute);
 295
 296/**
 297 * scsi_init_cmd_errh - Initialize cmd fields related to error handling.
 298 * @cmd:  command that is ready to be queued.
 299 *
 300 * This function has the job of initializing a number of fields related to error
 301 * handling. Typically this will be called once for each command, as required.
 302 */
 303static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 304{
 305	scsi_set_resid(cmd, 0);
 306	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 307	if (cmd->cmd_len == 0)
 308		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 309}
 310
 311/*
 312 * Wake up the error handler if necessary. Avoid as follows that the error
 313 * handler is not woken up if host in-flight requests number ==
 314 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 315 * with an RCU read lock in this function to ensure that this function in
 316 * its entirety either finishes before scsi_eh_scmd_add() increases the
 317 * host_failed counter or that it notices the shost state change made by
 318 * scsi_eh_scmd_add().
 319 */
 320static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 321{
 322	unsigned long flags;
 323
 324	rcu_read_lock();
 325	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 326	if (unlikely(scsi_host_in_recovery(shost))) {
 327		spin_lock_irqsave(shost->host_lock, flags);
 328		if (shost->host_failed || shost->host_eh_scheduled)
 329			scsi_eh_wakeup(shost);
 330		spin_unlock_irqrestore(shost->host_lock, flags);
 331	}
 332	rcu_read_unlock();
 333}
 334
 335void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 336{
 337	struct Scsi_Host *shost = sdev->host;
 338	struct scsi_target *starget = scsi_target(sdev);
 339
 340	scsi_dec_host_busy(shost, cmd);
 341
 342	if (starget->can_queue > 0)
 343		atomic_dec(&starget->target_busy);
 344
 345	atomic_dec(&sdev->device_busy);
 
 346}
 347
 348static void scsi_kick_queue(struct request_queue *q)
 349{
 350	blk_mq_run_hw_queues(q, false);
 351}
 352
 353/*
 
 
 
 
 
 
 
 
 
 
 
 
 354 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 355 * and call blk_run_queue for all the scsi_devices on the target -
 356 * including current_sdev first.
 357 *
 358 * Called with *no* scsi locks held.
 359 */
 360static void scsi_single_lun_run(struct scsi_device *current_sdev)
 361{
 362	struct Scsi_Host *shost = current_sdev->host;
 363	struct scsi_device *sdev, *tmp;
 364	struct scsi_target *starget = scsi_target(current_sdev);
 365	unsigned long flags;
 366
 367	spin_lock_irqsave(shost->host_lock, flags);
 368	starget->starget_sdev_user = NULL;
 369	spin_unlock_irqrestore(shost->host_lock, flags);
 370
 371	/*
 372	 * Call blk_run_queue for all LUNs on the target, starting with
 373	 * current_sdev. We race with others (to set starget_sdev_user),
 374	 * but in most cases, we will be first. Ideally, each LU on the
 375	 * target would get some limited time or requests on the target.
 376	 */
 377	scsi_kick_queue(current_sdev->request_queue);
 378
 379	spin_lock_irqsave(shost->host_lock, flags);
 380	if (starget->starget_sdev_user)
 381		goto out;
 382	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 383			same_target_siblings) {
 384		if (sdev == current_sdev)
 385			continue;
 386		if (scsi_device_get(sdev))
 387			continue;
 388
 389		spin_unlock_irqrestore(shost->host_lock, flags);
 390		scsi_kick_queue(sdev->request_queue);
 391		spin_lock_irqsave(shost->host_lock, flags);
 392
 393		scsi_device_put(sdev);
 394	}
 395 out:
 396	spin_unlock_irqrestore(shost->host_lock, flags);
 397}
 398
 399static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 400{
 401	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 402		return true;
 403	if (atomic_read(&sdev->device_blocked) > 0)
 404		return true;
 405	return false;
 406}
 407
 408static inline bool scsi_target_is_busy(struct scsi_target *starget)
 409{
 410	if (starget->can_queue > 0) {
 411		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 412			return true;
 413		if (atomic_read(&starget->target_blocked) > 0)
 414			return true;
 415	}
 416	return false;
 417}
 418
 419static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 420{
 421	if (atomic_read(&shost->host_blocked) > 0)
 422		return true;
 423	if (shost->host_self_blocked)
 424		return true;
 425	return false;
 426}
 427
 428static void scsi_starved_list_run(struct Scsi_Host *shost)
 429{
 430	LIST_HEAD(starved_list);
 431	struct scsi_device *sdev;
 432	unsigned long flags;
 433
 434	spin_lock_irqsave(shost->host_lock, flags);
 435	list_splice_init(&shost->starved_list, &starved_list);
 436
 437	while (!list_empty(&starved_list)) {
 438		struct request_queue *slq;
 439
 440		/*
 441		 * As long as shost is accepting commands and we have
 442		 * starved queues, call blk_run_queue. scsi_request_fn
 443		 * drops the queue_lock and can add us back to the
 444		 * starved_list.
 445		 *
 446		 * host_lock protects the starved_list and starved_entry.
 447		 * scsi_request_fn must get the host_lock before checking
 448		 * or modifying starved_list or starved_entry.
 449		 */
 450		if (scsi_host_is_busy(shost))
 451			break;
 452
 453		sdev = list_entry(starved_list.next,
 454				  struct scsi_device, starved_entry);
 455		list_del_init(&sdev->starved_entry);
 456		if (scsi_target_is_busy(scsi_target(sdev))) {
 457			list_move_tail(&sdev->starved_entry,
 458				       &shost->starved_list);
 459			continue;
 460		}
 461
 462		/*
 463		 * Once we drop the host lock, a racing scsi_remove_device()
 464		 * call may remove the sdev from the starved list and destroy
 465		 * it and the queue.  Mitigate by taking a reference to the
 466		 * queue and never touching the sdev again after we drop the
 467		 * host lock.  Note: if __scsi_remove_device() invokes
 468		 * blk_cleanup_queue() before the queue is run from this
 469		 * function then blk_run_queue() will return immediately since
 470		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 471		 */
 472		slq = sdev->request_queue;
 473		if (!blk_get_queue(slq))
 474			continue;
 475		spin_unlock_irqrestore(shost->host_lock, flags);
 476
 477		scsi_kick_queue(slq);
 478		blk_put_queue(slq);
 479
 480		spin_lock_irqsave(shost->host_lock, flags);
 481	}
 482	/* put any unprocessed entries back */
 483	list_splice(&starved_list, &shost->starved_list);
 484	spin_unlock_irqrestore(shost->host_lock, flags);
 485}
 486
 487/**
 488 * scsi_run_queue - Select a proper request queue to serve next.
 489 * @q:  last request's queue
 490 *
 491 * The previous command was completely finished, start a new one if possible.
 492 */
 493static void scsi_run_queue(struct request_queue *q)
 494{
 495	struct scsi_device *sdev = q->queuedata;
 496
 497	if (scsi_target(sdev)->single_lun)
 498		scsi_single_lun_run(sdev);
 499	if (!list_empty(&sdev->host->starved_list))
 500		scsi_starved_list_run(sdev->host);
 501
 502	blk_mq_run_hw_queues(q, false);
 503}
 504
 505void scsi_requeue_run_queue(struct work_struct *work)
 506{
 507	struct scsi_device *sdev;
 508	struct request_queue *q;
 509
 510	sdev = container_of(work, struct scsi_device, requeue_work);
 511	q = sdev->request_queue;
 512	scsi_run_queue(q);
 513}
 514
 515void scsi_run_host_queues(struct Scsi_Host *shost)
 516{
 517	struct scsi_device *sdev;
 518
 519	shost_for_each_device(sdev, shost)
 520		scsi_run_queue(sdev->request_queue);
 521}
 522
 523static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 524{
 525	if (!blk_rq_is_passthrough(cmd->request)) {
 526		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 527
 528		if (drv->uninit_command)
 529			drv->uninit_command(cmd);
 530	}
 531}
 532
 533static void scsi_free_sgtables(struct scsi_cmnd *cmd)
 534{
 535	if (cmd->sdb.table.nents)
 536		sg_free_table_chained(&cmd->sdb.table,
 537				SCSI_INLINE_SG_CNT);
 538	if (scsi_prot_sg_count(cmd))
 539		sg_free_table_chained(&cmd->prot_sdb->table,
 540				SCSI_INLINE_PROT_SG_CNT);
 541}
 
 542
 543static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 544{
 545	scsi_free_sgtables(cmd);
 546	scsi_uninit_cmd(cmd);
 547}
 548
 549static void scsi_run_queue_async(struct scsi_device *sdev)
 550{
 551	if (scsi_target(sdev)->single_lun ||
 552	    !list_empty(&sdev->host->starved_list))
 553		kblockd_schedule_work(&sdev->requeue_work);
 554	else
 555		blk_mq_run_hw_queues(sdev->request_queue, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558/* Returns false when no more bytes to process, true if there are more */
 559static bool scsi_end_request(struct request *req, blk_status_t error,
 560		unsigned int bytes)
 561{
 562	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 563	struct scsi_device *sdev = cmd->device;
 564	struct request_queue *q = sdev->request_queue;
 565
 566	if (blk_update_request(req, error, bytes))
 567		return true;
 568
 
 569	if (blk_queue_add_random(q))
 570		add_disk_randomness(req->rq_disk);
 571
 572	if (!blk_rq_is_scsi(req)) {
 573		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 574		cmd->flags &= ~SCMD_INITIALIZED;
 575	}
 576
 577	/*
 578	 * Calling rcu_barrier() is not necessary here because the
 579	 * SCSI error handler guarantees that the function called by
 580	 * call_rcu() has been called before scsi_end_request() is
 581	 * called.
 582	 */
 583	destroy_rcu_head(&cmd->rcu);
 584
 585	/*
 586	 * In the MQ case the command gets freed by __blk_mq_end_request,
 587	 * so we have to do all cleanup that depends on it earlier.
 588	 *
 589	 * We also can't kick the queues from irq context, so we
 590	 * will have to defer it to a workqueue.
 591	 */
 592	scsi_mq_uninit_cmd(cmd);
 593
 594	/*
 595	 * queue is still alive, so grab the ref for preventing it
 596	 * from being cleaned up during running queue.
 597	 */
 598	percpu_ref_get(&q->q_usage_counter);
 599
 600	__blk_mq_end_request(req, error);
 601
 602	scsi_run_queue_async(sdev);
 603
 604	percpu_ref_put(&q->q_usage_counter);
 605	return false;
 606}
 607
 
 
 
 
 
 608/**
 609 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 610 * @cmd:	SCSI command
 611 * @result:	scsi error code
 612 *
 613 * Translate a SCSI result code into a blk_status_t value. May reset the host
 614 * byte of @cmd->result.
 615 */
 616static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 617{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618	switch (host_byte(result)) {
 619	case DID_OK:
 620		/*
 621		 * Also check the other bytes than the status byte in result
 622		 * to handle the case when a SCSI LLD sets result to
 623		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 624		 */
 625		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 626			return BLK_STS_OK;
 627		return BLK_STS_IOERR;
 628	case DID_TRANSPORT_FAILFAST:
 
 629		return BLK_STS_TRANSPORT;
 630	case DID_TARGET_FAILURE:
 631		set_host_byte(cmd, DID_OK);
 632		return BLK_STS_TARGET;
 633	case DID_NEXUS_FAILURE:
 634		set_host_byte(cmd, DID_OK);
 635		return BLK_STS_NEXUS;
 636	case DID_ALLOC_FAILURE:
 637		set_host_byte(cmd, DID_OK);
 638		return BLK_STS_NOSPC;
 639	case DID_MEDIUM_ERROR:
 640		set_host_byte(cmd, DID_OK);
 641		return BLK_STS_MEDIUM;
 642	default:
 643		return BLK_STS_IOERR;
 644	}
 645}
 646
 647/* Helper for scsi_io_completion() when "reprep" action required. */
 648static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 649				      struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 650{
 651	/* A new command will be prepared and issued. */
 652	scsi_mq_requeue_cmd(cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653}
 654
 
 
 
 
 
 
 
 
 655/* Helper for scsi_io_completion() when special action required. */
 656static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 657{
 658	struct request_queue *q = cmd->device->request_queue;
 659	struct request *req = cmd->request;
 660	int level = 0;
 661	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 662	      ACTION_DELAYED_RETRY} action;
 663	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 664	struct scsi_sense_hdr sshdr;
 665	bool sense_valid;
 666	bool sense_current = true;      /* false implies "deferred sense" */
 667	blk_status_t blk_stat;
 668
 669	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 670	if (sense_valid)
 671		sense_current = !scsi_sense_is_deferred(&sshdr);
 672
 673	blk_stat = scsi_result_to_blk_status(cmd, result);
 674
 675	if (host_byte(result) == DID_RESET) {
 676		/* Third party bus reset or reset for error recovery
 677		 * reasons.  Just retry the command and see what
 678		 * happens.
 679		 */
 680		action = ACTION_RETRY;
 681	} else if (sense_valid && sense_current) {
 682		switch (sshdr.sense_key) {
 683		case UNIT_ATTENTION:
 684			if (cmd->device->removable) {
 685				/* Detected disc change.  Set a bit
 686				 * and quietly refuse further access.
 687				 */
 688				cmd->device->changed = 1;
 689				action = ACTION_FAIL;
 690			} else {
 691				/* Must have been a power glitch, or a
 692				 * bus reset.  Could not have been a
 693				 * media change, so we just retry the
 694				 * command and see what happens.
 695				 */
 696				action = ACTION_RETRY;
 697			}
 698			break;
 699		case ILLEGAL_REQUEST:
 700			/* If we had an ILLEGAL REQUEST returned, then
 701			 * we may have performed an unsupported
 702			 * command.  The only thing this should be
 703			 * would be a ten byte read where only a six
 704			 * byte read was supported.  Also, on a system
 705			 * where READ CAPACITY failed, we may have
 706			 * read past the end of the disk.
 707			 */
 708			if ((cmd->device->use_10_for_rw &&
 709			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 710			    (cmd->cmnd[0] == READ_10 ||
 711			     cmd->cmnd[0] == WRITE_10)) {
 712				/* This will issue a new 6-byte command. */
 713				cmd->device->use_10_for_rw = 0;
 714				action = ACTION_REPREP;
 715			} else if (sshdr.asc == 0x10) /* DIX */ {
 716				action = ACTION_FAIL;
 717				blk_stat = BLK_STS_PROTECTION;
 718			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 719			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 720				action = ACTION_FAIL;
 721				blk_stat = BLK_STS_TARGET;
 722			} else
 723				action = ACTION_FAIL;
 724			break;
 725		case ABORTED_COMMAND:
 726			action = ACTION_FAIL;
 727			if (sshdr.asc == 0x10) /* DIF */
 728				blk_stat = BLK_STS_PROTECTION;
 729			break;
 730		case NOT_READY:
 731			/* If the device is in the process of becoming
 732			 * ready, or has a temporary blockage, retry.
 733			 */
 734			if (sshdr.asc == 0x04) {
 735				switch (sshdr.ascq) {
 736				case 0x01: /* becoming ready */
 737				case 0x04: /* format in progress */
 738				case 0x05: /* rebuild in progress */
 739				case 0x06: /* recalculation in progress */
 740				case 0x07: /* operation in progress */
 741				case 0x08: /* Long write in progress */
 742				case 0x09: /* self test in progress */
 
 743				case 0x14: /* space allocation in progress */
 744				case 0x1a: /* start stop unit in progress */
 745				case 0x1b: /* sanitize in progress */
 746				case 0x1d: /* configuration in progress */
 747				case 0x24: /* depopulation in progress */
 748					action = ACTION_DELAYED_RETRY;
 749					break;
 
 
 
 750				default:
 751					action = ACTION_FAIL;
 752					break;
 753				}
 754			} else
 755				action = ACTION_FAIL;
 756			break;
 757		case VOLUME_OVERFLOW:
 758			/* See SSC3rXX or current. */
 759			action = ACTION_FAIL;
 760			break;
 
 
 
 
 
 
 
 
 
 761		default:
 762			action = ACTION_FAIL;
 763			break;
 764		}
 765	} else
 766		action = ACTION_FAIL;
 767
 768	if (action != ACTION_FAIL &&
 769	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
 770		action = ACTION_FAIL;
 771
 772	switch (action) {
 773	case ACTION_FAIL:
 774		/* Give up and fail the remainder of the request */
 775		if (!(req->rq_flags & RQF_QUIET)) {
 776			static DEFINE_RATELIMIT_STATE(_rs,
 777					DEFAULT_RATELIMIT_INTERVAL,
 778					DEFAULT_RATELIMIT_BURST);
 779
 780			if (unlikely(scsi_logging_level))
 781				level =
 782				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 783						    SCSI_LOG_MLCOMPLETE_BITS);
 784
 785			/*
 786			 * if logging is enabled the failure will be printed
 787			 * in scsi_log_completion(), so avoid duplicate messages
 788			 */
 789			if (!level && __ratelimit(&_rs)) {
 790				scsi_print_result(cmd, NULL, FAILED);
 791				if (driver_byte(result) == DRIVER_SENSE)
 792					scsi_print_sense(cmd);
 793				scsi_print_command(cmd);
 794			}
 795		}
 796		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 797			return;
 798		fallthrough;
 799	case ACTION_REPREP:
 800		scsi_io_completion_reprep(cmd, q);
 
 
 
 801		break;
 802	case ACTION_RETRY:
 803		/* Retry the same command immediately */
 804		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 805		break;
 806	case ACTION_DELAYED_RETRY:
 807		/* Retry the same command after a delay */
 808		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 809		break;
 810	}
 811}
 812
 813/*
 814 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 815 * new result that may suppress further error checking. Also modifies
 816 * *blk_statp in some cases.
 817 */
 818static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 819					blk_status_t *blk_statp)
 820{
 821	bool sense_valid;
 822	bool sense_current = true;	/* false implies "deferred sense" */
 823	struct request *req = cmd->request;
 824	struct scsi_sense_hdr sshdr;
 825
 826	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 827	if (sense_valid)
 828		sense_current = !scsi_sense_is_deferred(&sshdr);
 829
 830	if (blk_rq_is_passthrough(req)) {
 831		if (sense_valid) {
 832			/*
 833			 * SG_IO wants current and deferred errors
 834			 */
 835			scsi_req(req)->sense_len =
 836				min(8 + cmd->sense_buffer[7],
 837				    SCSI_SENSE_BUFFERSIZE);
 838		}
 839		if (sense_current)
 840			*blk_statp = scsi_result_to_blk_status(cmd, result);
 841	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 842		/*
 843		 * Flush commands do not transfers any data, and thus cannot use
 844		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 845		 * This sets *blk_statp explicitly for the problem case.
 846		 */
 847		*blk_statp = scsi_result_to_blk_status(cmd, result);
 848	}
 849	/*
 850	 * Recovered errors need reporting, but they're always treated as
 851	 * success, so fiddle the result code here.  For passthrough requests
 852	 * we already took a copy of the original into sreq->result which
 853	 * is what gets returned to the user
 854	 */
 855	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 856		bool do_print = true;
 857		/*
 858		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 859		 * skip print since caller wants ATA registers. Only occurs
 860		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 861		 */
 862		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 863			do_print = false;
 864		else if (req->rq_flags & RQF_QUIET)
 865			do_print = false;
 866		if (do_print)
 867			scsi_print_sense(cmd);
 868		result = 0;
 869		/* for passthrough, *blk_statp may be set */
 870		*blk_statp = BLK_STS_OK;
 871	}
 872	/*
 873	 * Another corner case: the SCSI status byte is non-zero but 'good'.
 874	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 875	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 876	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 877	 * intermediate statuses (both obsolete in SAM-4) as good.
 878	 */
 879	if (status_byte(result) && scsi_status_is_good(result)) {
 880		result = 0;
 881		*blk_statp = BLK_STS_OK;
 882	}
 883	return result;
 884}
 885
 886/**
 887 * scsi_io_completion - Completion processing for SCSI commands.
 888 * @cmd:	command that is finished.
 889 * @good_bytes:	number of processed bytes.
 890 *
 891 * We will finish off the specified number of sectors. If we are done, the
 892 * command block will be released and the queue function will be goosed. If we
 893 * are not done then we have to figure out what to do next:
 894 *
 895 *   a) We can call scsi_io_completion_reprep().  The request will be
 896 *	unprepared and put back on the queue.  Then a new command will
 897 *	be created for it.  This should be used if we made forward
 898 *	progress, or if we want to switch from READ(10) to READ(6) for
 899 *	example.
 900 *
 901 *   b) We can call scsi_io_completion_action().  The request will be
 902 *	put back on the queue and retried using the same command as
 903 *	before, possibly after a delay.
 904 *
 905 *   c) We can call scsi_end_request() with blk_stat other than
 906 *	BLK_STS_OK, to fail the remainder of the request.
 907 */
 908void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 909{
 910	int result = cmd->result;
 911	struct request_queue *q = cmd->device->request_queue;
 912	struct request *req = cmd->request;
 913	blk_status_t blk_stat = BLK_STS_OK;
 914
 915	if (unlikely(result))	/* a nz result may or may not be an error */
 916		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 917
 918	if (unlikely(blk_rq_is_passthrough(req))) {
 919		/*
 920		 * scsi_result_to_blk_status may have reset the host_byte
 921		 */
 922		scsi_req(req)->result = cmd->result;
 923	}
 924
 925	/*
 926	 * Next deal with any sectors which we were able to correctly
 927	 * handle.
 928	 */
 929	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 930		"%u sectors total, %d bytes done.\n",
 931		blk_rq_sectors(req), good_bytes));
 932
 933	/*
 934	 * Failed, zero length commands always need to drop down
 935	 * to retry code. Fast path should return in this block.
 936	 */
 937	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 938		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 939			return; /* no bytes remaining */
 940	}
 941
 942	/* Kill remainder if no retries. */
 943	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 944		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 945			WARN_ONCE(true,
 946			    "Bytes remaining after failed, no-retry command");
 947		return;
 948	}
 949
 950	/*
 951	 * If there had been no error, but we have leftover bytes in the
 952	 * requeues just queue the command up again.
 953	 */
 954	if (likely(result == 0))
 955		scsi_io_completion_reprep(cmd, q);
 956	else
 957		scsi_io_completion_action(cmd, result);
 958}
 959
 960static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
 961		struct request *rq)
 962{
 963	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
 964	       !op_is_write(req_op(rq)) &&
 965	       sdev->host->hostt->dma_need_drain(rq);
 966}
 967
 968/**
 969 * scsi_init_io - SCSI I/O initialization function.
 970 * @cmd:  command descriptor we wish to initialize
 
 
 
 971 *
 972 * Returns:
 973 * * BLK_STS_OK       - on success
 974 * * BLK_STS_RESOURCE - if the failure is retryable
 975 * * BLK_STS_IOERR    - if the failure is fatal
 976 */
 977blk_status_t scsi_init_io(struct scsi_cmnd *cmd)
 978{
 979	struct scsi_device *sdev = cmd->device;
 980	struct request *rq = cmd->request;
 981	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
 982	struct scatterlist *last_sg = NULL;
 983	blk_status_t ret;
 984	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
 985	int count;
 986
 987	if (WARN_ON_ONCE(!nr_segs))
 988		return BLK_STS_IOERR;
 989
 990	/*
 991	 * Make sure there is space for the drain.  The driver must adjust
 992	 * max_hw_segments to be prepared for this.
 993	 */
 994	if (need_drain)
 995		nr_segs++;
 996
 997	/*
 998	 * If sg table allocation fails, requeue request later.
 999	 */
1000	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1001			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1002		return BLK_STS_RESOURCE;
1003
1004	/*
1005	 * Next, walk the list, and fill in the addresses and sizes of
1006	 * each segment.
1007	 */
1008	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1009
1010	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1011		unsigned int pad_len =
1012			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1013
1014		last_sg->length += pad_len;
1015		cmd->extra_len += pad_len;
1016	}
1017
1018	if (need_drain) {
1019		sg_unmark_end(last_sg);
1020		last_sg = sg_next(last_sg);
1021		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1022		sg_mark_end(last_sg);
1023
1024		cmd->extra_len += sdev->dma_drain_len;
1025		count++;
1026	}
1027
1028	BUG_ON(count > cmd->sdb.table.nents);
1029	cmd->sdb.table.nents = count;
1030	cmd->sdb.length = blk_rq_payload_bytes(rq);
1031
1032	if (blk_integrity_rq(rq)) {
1033		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1034		int ivecs;
1035
1036		if (WARN_ON_ONCE(!prot_sdb)) {
1037			/*
1038			 * This can happen if someone (e.g. multipath)
1039			 * queues a command to a device on an adapter
1040			 * that does not support DIX.
1041			 */
1042			ret = BLK_STS_IOERR;
1043			goto out_free_sgtables;
1044		}
1045
1046		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1047
1048		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1049				prot_sdb->table.sgl,
1050				SCSI_INLINE_PROT_SG_CNT)) {
1051			ret = BLK_STS_RESOURCE;
1052			goto out_free_sgtables;
1053		}
1054
1055		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1056						prot_sdb->table.sgl);
1057		BUG_ON(count > ivecs);
1058		BUG_ON(count > queue_max_integrity_segments(rq->q));
1059
1060		cmd->prot_sdb = prot_sdb;
1061		cmd->prot_sdb->table.nents = count;
1062	}
1063
1064	return BLK_STS_OK;
1065out_free_sgtables:
1066	scsi_free_sgtables(cmd);
1067	return ret;
1068}
1069EXPORT_SYMBOL(scsi_init_io);
1070
1071/**
1072 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1073 * @rq: Request associated with the SCSI command to be initialized.
1074 *
1075 * This function initializes the members of struct scsi_cmnd that must be
1076 * initialized before request processing starts and that won't be
1077 * reinitialized if a SCSI command is requeued.
1078 *
1079 * Called from inside blk_get_request() for pass-through requests and from
1080 * inside scsi_init_command() for filesystem requests.
1081 */
1082static void scsi_initialize_rq(struct request *rq)
1083{
1084	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1085
1086	scsi_req_init(&cmd->req);
 
 
1087	init_rcu_head(&cmd->rcu);
1088	cmd->jiffies_at_alloc = jiffies;
1089	cmd->retries = 0;
1090}
1091
 
 
 
 
 
 
 
 
 
 
 
 
1092/*
1093 * Only called when the request isn't completed by SCSI, and not freed by
1094 * SCSI
1095 */
1096static void scsi_cleanup_rq(struct request *rq)
1097{
1098	if (rq->rq_flags & RQF_DONTPREP) {
1099		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1100		rq->rq_flags &= ~RQF_DONTPREP;
1101	}
1102}
1103
1104/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1105void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1106{
1107	void *buf = cmd->sense_buffer;
1108	void *prot = cmd->prot_sdb;
1109	struct request *rq = blk_mq_rq_from_pdu(cmd);
1110	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1111	unsigned long jiffies_at_alloc;
1112	int retries, to_clear;
1113	bool in_flight;
1114
1115	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1116		flags |= SCMD_INITIALIZED;
1117		scsi_initialize_rq(rq);
1118	}
1119
1120	jiffies_at_alloc = cmd->jiffies_at_alloc;
1121	retries = cmd->retries;
1122	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1123	/*
1124	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1125	 * the driver-private command data if the LLD does not supply a
1126	 * function to initialize that data.
1127	 */
1128	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1129	if (!dev->host->hostt->init_cmd_priv)
1130		to_clear += dev->host->hostt->cmd_size;
1131	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1132
1133	cmd->device = dev;
1134	cmd->sense_buffer = buf;
1135	cmd->prot_sdb = prot;
1136	cmd->flags = flags;
1137	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1138	cmd->jiffies_at_alloc = jiffies_at_alloc;
1139	cmd->retries = retries;
1140	if (in_flight)
1141		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1142
1143}
1144
1145static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1146		struct request *req)
1147{
1148	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1149
1150	/*
1151	 * Passthrough requests may transfer data, in which case they must
1152	 * a bio attached to them.  Or they might contain a SCSI command
1153	 * that does not transfer data, in which case they may optionally
1154	 * submit a request without an attached bio.
1155	 */
1156	if (req->bio) {
1157		blk_status_t ret = scsi_init_io(cmd);
1158		if (unlikely(ret != BLK_STS_OK))
1159			return ret;
1160	} else {
1161		BUG_ON(blk_rq_bytes(req));
1162
1163		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1164	}
1165
1166	cmd->cmd_len = scsi_req(req)->cmd_len;
1167	cmd->cmnd = scsi_req(req)->cmd;
1168	cmd->transfersize = blk_rq_bytes(req);
1169	cmd->allowed = scsi_req(req)->retries;
1170	return BLK_STS_OK;
1171}
1172
1173/*
1174 * Setup a normal block command.  These are simple request from filesystems
1175 * that still need to be translated to SCSI CDBs from the ULD.
1176 */
1177static blk_status_t scsi_setup_fs_cmnd(struct scsi_device *sdev,
1178		struct request *req)
1179{
1180	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1181
1182	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1183		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1184		if (ret != BLK_STS_OK)
1185			return ret;
1186	}
1187
1188	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1189	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1190	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1191}
1192
1193static blk_status_t scsi_setup_cmnd(struct scsi_device *sdev,
1194		struct request *req)
1195{
1196	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1197	blk_status_t ret;
1198
1199	if (!blk_rq_bytes(req))
1200		cmd->sc_data_direction = DMA_NONE;
1201	else if (rq_data_dir(req) == WRITE)
1202		cmd->sc_data_direction = DMA_TO_DEVICE;
1203	else
1204		cmd->sc_data_direction = DMA_FROM_DEVICE;
1205
1206	if (blk_rq_is_scsi(req))
1207		ret = scsi_setup_scsi_cmnd(sdev, req);
1208	else
1209		ret = scsi_setup_fs_cmnd(sdev, req);
1210
1211	if (ret != BLK_STS_OK)
1212		scsi_free_sgtables(cmd);
1213
1214	return ret;
1215}
1216
1217static blk_status_t
1218scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1219{
1220	switch (sdev->sdev_state) {
 
 
1221	case SDEV_OFFLINE:
1222	case SDEV_TRANSPORT_OFFLINE:
1223		/*
1224		 * If the device is offline we refuse to process any
1225		 * commands.  The device must be brought online
1226		 * before trying any recovery commands.
1227		 */
1228		if (!sdev->offline_already) {
1229			sdev->offline_already = true;
1230			sdev_printk(KERN_ERR, sdev,
1231				    "rejecting I/O to offline device\n");
1232		}
1233		return BLK_STS_IOERR;
1234	case SDEV_DEL:
1235		/*
1236		 * If the device is fully deleted, we refuse to
1237		 * process any commands as well.
1238		 */
1239		sdev_printk(KERN_ERR, sdev,
1240			    "rejecting I/O to dead device\n");
1241		return BLK_STS_IOERR;
1242	case SDEV_BLOCK:
1243	case SDEV_CREATED_BLOCK:
1244		return BLK_STS_RESOURCE;
1245	case SDEV_QUIESCE:
1246		/*
1247		 * If the devices is blocked we defer normal commands.
 
1248		 */
1249		if (req && !(req->rq_flags & RQF_PREEMPT))
1250			return BLK_STS_RESOURCE;
1251		return BLK_STS_OK;
1252	default:
1253		/*
1254		 * For any other not fully online state we only allow
1255		 * special commands.  In particular any user initiated
1256		 * command is not allowed.
1257		 */
1258		if (req && !(req->rq_flags & RQF_PREEMPT))
1259			return BLK_STS_IOERR;
1260		return BLK_STS_OK;
1261	}
1262}
1263
1264/*
1265 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1266 * return 0.
1267 *
1268 * Called with the queue_lock held.
1269 */
1270static inline int scsi_dev_queue_ready(struct request_queue *q,
1271				  struct scsi_device *sdev)
1272{
1273	unsigned int busy;
1274
1275	busy = atomic_inc_return(&sdev->device_busy) - 1;
1276	if (atomic_read(&sdev->device_blocked)) {
1277		if (busy)
 
 
 
1278			goto out_dec;
1279
1280		/*
1281		 * unblock after device_blocked iterates to zero
1282		 */
1283		if (atomic_dec_return(&sdev->device_blocked) > 0)
1284			goto out_dec;
1285		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1286				   "unblocking device at zero depth\n"));
1287	}
1288
1289	if (busy >= sdev->queue_depth)
1290		goto out_dec;
1291
1292	return 1;
1293out_dec:
1294	atomic_dec(&sdev->device_busy);
1295	return 0;
 
 
1296}
1297
1298/*
1299 * scsi_target_queue_ready: checks if there we can send commands to target
1300 * @sdev: scsi device on starget to check.
1301 */
1302static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303					   struct scsi_device *sdev)
1304{
1305	struct scsi_target *starget = scsi_target(sdev);
1306	unsigned int busy;
1307
1308	if (starget->single_lun) {
1309		spin_lock_irq(shost->host_lock);
1310		if (starget->starget_sdev_user &&
1311		    starget->starget_sdev_user != sdev) {
1312			spin_unlock_irq(shost->host_lock);
1313			return 0;
1314		}
1315		starget->starget_sdev_user = sdev;
1316		spin_unlock_irq(shost->host_lock);
1317	}
1318
1319	if (starget->can_queue <= 0)
1320		return 1;
1321
1322	busy = atomic_inc_return(&starget->target_busy) - 1;
1323	if (atomic_read(&starget->target_blocked) > 0) {
1324		if (busy)
1325			goto starved;
1326
1327		/*
1328		 * unblock after target_blocked iterates to zero
1329		 */
1330		if (atomic_dec_return(&starget->target_blocked) > 0)
1331			goto out_dec;
1332
1333		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1334				 "unblocking target at zero depth\n"));
1335	}
1336
1337	if (busy >= starget->can_queue)
1338		goto starved;
1339
1340	return 1;
1341
1342starved:
1343	spin_lock_irq(shost->host_lock);
1344	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345	spin_unlock_irq(shost->host_lock);
1346out_dec:
1347	if (starget->can_queue > 0)
1348		atomic_dec(&starget->target_busy);
1349	return 0;
1350}
1351
1352/*
1353 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1354 * return 0. We must end up running the queue again whenever 0 is
1355 * returned, else IO can hang.
1356 */
1357static inline int scsi_host_queue_ready(struct request_queue *q,
1358				   struct Scsi_Host *shost,
1359				   struct scsi_device *sdev,
1360				   struct scsi_cmnd *cmd)
1361{
1362	if (scsi_host_in_recovery(shost))
1363		return 0;
1364
1365	if (atomic_read(&shost->host_blocked) > 0) {
1366		if (scsi_host_busy(shost) > 0)
1367			goto starved;
1368
1369		/*
1370		 * unblock after host_blocked iterates to zero
1371		 */
1372		if (atomic_dec_return(&shost->host_blocked) > 0)
1373			goto out_dec;
1374
1375		SCSI_LOG_MLQUEUE(3,
1376			shost_printk(KERN_INFO, shost,
1377				     "unblocking host at zero depth\n"));
1378	}
1379
1380	if (shost->host_self_blocked)
1381		goto starved;
1382
1383	/* We're OK to process the command, so we can't be starved */
1384	if (!list_empty(&sdev->starved_entry)) {
1385		spin_lock_irq(shost->host_lock);
1386		if (!list_empty(&sdev->starved_entry))
1387			list_del_init(&sdev->starved_entry);
1388		spin_unlock_irq(shost->host_lock);
1389	}
1390
1391	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1392
1393	return 1;
1394
1395starved:
1396	spin_lock_irq(shost->host_lock);
1397	if (list_empty(&sdev->starved_entry))
1398		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399	spin_unlock_irq(shost->host_lock);
1400out_dec:
1401	scsi_dec_host_busy(shost, cmd);
1402	return 0;
1403}
1404
1405/*
1406 * Busy state exporting function for request stacking drivers.
1407 *
1408 * For efficiency, no lock is taken to check the busy state of
1409 * shost/starget/sdev, since the returned value is not guaranteed and
1410 * may be changed after request stacking drivers call the function,
1411 * regardless of taking lock or not.
1412 *
1413 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1414 * needs to return 'not busy'. Otherwise, request stacking drivers
1415 * may hold requests forever.
1416 */
1417static bool scsi_mq_lld_busy(struct request_queue *q)
1418{
1419	struct scsi_device *sdev = q->queuedata;
1420	struct Scsi_Host *shost;
1421
1422	if (blk_queue_dying(q))
1423		return false;
1424
1425	shost = sdev->host;
1426
1427	/*
1428	 * Ignore host/starget busy state.
1429	 * Since block layer does not have a concept of fairness across
1430	 * multiple queues, congestion of host/starget needs to be handled
1431	 * in SCSI layer.
1432	 */
1433	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1434		return true;
1435
1436	return false;
1437}
1438
1439static void scsi_softirq_done(struct request *rq)
 
 
 
 
1440{
1441	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1442	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1443	int disposition;
1444
1445	INIT_LIST_HEAD(&cmd->eh_entry);
1446
1447	atomic_inc(&cmd->device->iodone_cnt);
1448	if (cmd->result)
1449		atomic_inc(&cmd->device->ioerr_cnt);
1450
1451	disposition = scsi_decide_disposition(cmd);
1452	if (disposition != SUCCESS &&
1453	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1454		scmd_printk(KERN_ERR, cmd,
1455			    "timing out command, waited %lus\n",
1456			    wait_for/HZ);
1457		disposition = SUCCESS;
1458	}
1459
1460	scsi_log_completion(cmd, disposition);
1461
1462	switch (disposition) {
1463	case SUCCESS:
1464		scsi_finish_command(cmd);
1465		break;
1466	case NEEDS_RETRY:
1467		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1468		break;
1469	case ADD_TO_MLQUEUE:
1470		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1471		break;
1472	default:
1473		scsi_eh_scmd_add(cmd);
1474		break;
1475	}
1476}
1477
1478/**
1479 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1480 * @cmd: command block we are dispatching.
1481 *
1482 * Return: nonzero return request was rejected and device's queue needs to be
1483 * plugged.
1484 */
1485static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1486{
1487	struct Scsi_Host *host = cmd->device->host;
1488	int rtn = 0;
1489
1490	atomic_inc(&cmd->device->iorequest_cnt);
1491
1492	/* check if the device is still usable */
1493	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1494		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1495		 * returns an immediate error upwards, and signals
1496		 * that the device is no longer present */
1497		cmd->result = DID_NO_CONNECT << 16;
1498		goto done;
1499	}
1500
1501	/* Check to see if the scsi lld made this device blocked. */
1502	if (unlikely(scsi_device_blocked(cmd->device))) {
1503		/*
1504		 * in blocked state, the command is just put back on
1505		 * the device queue.  The suspend state has already
1506		 * blocked the queue so future requests should not
1507		 * occur until the device transitions out of the
1508		 * suspend state.
1509		 */
1510		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1511			"queuecommand : device blocked\n"));
1512		return SCSI_MLQUEUE_DEVICE_BUSY;
1513	}
1514
1515	/* Store the LUN value in cmnd, if needed. */
1516	if (cmd->device->lun_in_cdb)
1517		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1518			       (cmd->device->lun << 5 & 0xe0);
1519
1520	scsi_log_send(cmd);
1521
1522	/*
1523	 * Before we queue this command, check if the command
1524	 * length exceeds what the host adapter can handle.
1525	 */
1526	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1527		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1528			       "queuecommand : command too long. "
1529			       "cdb_size=%d host->max_cmd_len=%d\n",
1530			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1531		cmd->result = (DID_ABORT << 16);
1532		goto done;
1533	}
1534
1535	if (unlikely(host->shost_state == SHOST_DEL)) {
1536		cmd->result = (DID_NO_CONNECT << 16);
1537		goto done;
1538
1539	}
1540
1541	trace_scsi_dispatch_cmd_start(cmd);
1542	rtn = host->hostt->queuecommand(host, cmd);
1543	if (rtn) {
1544		trace_scsi_dispatch_cmd_error(cmd, rtn);
1545		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1546		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1547			rtn = SCSI_MLQUEUE_HOST_BUSY;
1548
1549		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1550			"queuecommand : request rejected\n"));
1551	}
1552
1553	return rtn;
1554 done:
1555	cmd->scsi_done(cmd);
1556	return 0;
1557}
1558
1559/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1560static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1561{
1562	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1563		sizeof(struct scatterlist);
1564}
1565
1566static blk_status_t scsi_mq_prep_fn(struct request *req)
1567{
1568	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1569	struct scsi_device *sdev = req->q->queuedata;
1570	struct Scsi_Host *shost = sdev->host;
 
1571	struct scatterlist *sg;
1572
1573	scsi_init_command(sdev, cmd);
1574
1575	cmd->request = req;
1576	cmd->tag = req->tag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
 
 
1578
1579	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580	cmd->sdb.table.sgl = sg;
1581
1582	if (scsi_host_get_prot(shost)) {
1583		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585		cmd->prot_sdb->table.sgl =
1586			(struct scatterlist *)(cmd->prot_sdb + 1);
1587	}
1588
1589	blk_mq_start_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591	return scsi_setup_cmnd(sdev, req);
 
 
 
1592}
1593
1594static void scsi_mq_done(struct scsi_cmnd *cmd)
1595{
1596	if (unlikely(blk_should_fake_timeout(cmd->request->q)))
 
 
 
 
 
 
 
 
 
 
 
1597		return;
1598	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1599		return;
1600	trace_scsi_dispatch_cmd_done(cmd);
1601	blk_mq_complete_request(cmd->request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602}
 
1603
1604static void scsi_mq_put_budget(struct request_queue *q)
1605{
1606	struct scsi_device *sdev = q->queuedata;
1607
1608	atomic_dec(&sdev->device_busy);
1609}
1610
1611static bool scsi_mq_get_budget(struct request_queue *q)
 
 
 
 
 
 
 
1612{
1613	struct scsi_device *sdev = q->queuedata;
 
 
 
 
 
 
1614
1615	return scsi_dev_queue_ready(q, sdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616}
1617
1618static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1619			 const struct blk_mq_queue_data *bd)
1620{
1621	struct request *req = bd->rq;
1622	struct request_queue *q = req->q;
1623	struct scsi_device *sdev = q->queuedata;
1624	struct Scsi_Host *shost = sdev->host;
1625	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1626	blk_status_t ret;
1627	int reason;
1628
 
 
1629	/*
1630	 * If the device is not in running state we will reject some or all
1631	 * commands.
1632	 */
1633	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1634		ret = scsi_prep_state_check(sdev, req);
1635		if (ret != BLK_STS_OK)
1636			goto out_put_budget;
1637	}
1638
1639	ret = BLK_STS_RESOURCE;
1640	if (!scsi_target_queue_ready(shost, sdev))
1641		goto out_put_budget;
 
 
 
 
 
1642	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1643		goto out_dec_target_busy;
1644
1645	if (!(req->rq_flags & RQF_DONTPREP)) {
1646		ret = scsi_mq_prep_fn(req);
1647		if (ret != BLK_STS_OK)
1648			goto out_dec_host_busy;
1649		req->rq_flags |= RQF_DONTPREP;
1650	} else {
1651		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1652		blk_mq_start_request(req);
1653	}
1654
1655	cmd->flags &= SCMD_PRESERVED_FLAGS;
1656	if (sdev->simple_tags)
1657		cmd->flags |= SCMD_TAGGED;
1658	if (bd->last)
1659		cmd->flags |= SCMD_LAST;
1660
1661	scsi_init_cmd_errh(cmd);
1662	cmd->scsi_done = scsi_mq_done;
 
1663
 
1664	reason = scsi_dispatch_cmd(cmd);
1665	if (reason) {
1666		scsi_set_blocked(cmd, reason);
1667		ret = BLK_STS_RESOURCE;
1668		goto out_dec_host_busy;
1669	}
1670
 
1671	return BLK_STS_OK;
1672
1673out_dec_host_busy:
1674	scsi_dec_host_busy(shost, cmd);
1675out_dec_target_busy:
1676	if (scsi_target(sdev)->can_queue > 0)
1677		atomic_dec(&scsi_target(sdev)->target_busy);
1678out_put_budget:
1679	scsi_mq_put_budget(q);
 
1680	switch (ret) {
1681	case BLK_STS_OK:
1682		break;
1683	case BLK_STS_RESOURCE:
1684	case BLK_STS_ZONE_RESOURCE:
1685		if (atomic_read(&sdev->device_busy) ||
1686		    scsi_device_blocked(sdev))
1687			ret = BLK_STS_DEV_RESOURCE;
1688		break;
 
 
 
 
 
1689	default:
1690		if (unlikely(!scsi_device_online(sdev)))
1691			scsi_req(req)->result = DID_NO_CONNECT << 16;
1692		else
1693			scsi_req(req)->result = DID_ERROR << 16;
1694		/*
1695		 * Make sure to release all allocated resources when
1696		 * we hit an error, as we will never see this command
1697		 * again.
1698		 */
1699		if (req->rq_flags & RQF_DONTPREP)
1700			scsi_mq_uninit_cmd(cmd);
1701		scsi_run_queue_async(sdev);
1702		break;
1703	}
1704	return ret;
1705}
1706
1707static enum blk_eh_timer_return scsi_timeout(struct request *req,
1708		bool reserved)
1709{
1710	if (reserved)
1711		return BLK_EH_RESET_TIMER;
1712	return scsi_times_out(req);
1713}
1714
1715static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1716				unsigned int hctx_idx, unsigned int numa_node)
1717{
1718	struct Scsi_Host *shost = set->driver_data;
1719	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1720	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1721	struct scatterlist *sg;
1722	int ret = 0;
1723
1724	if (unchecked_isa_dma)
1725		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1726	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1727						    GFP_KERNEL, numa_node);
1728	if (!cmd->sense_buffer)
1729		return -ENOMEM;
1730	cmd->req.sense = cmd->sense_buffer;
1731
1732	if (scsi_host_get_prot(shost)) {
1733		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1734			shost->hostt->cmd_size;
1735		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1736	}
1737
1738	if (shost->hostt->init_cmd_priv) {
1739		ret = shost->hostt->init_cmd_priv(shost, cmd);
1740		if (ret < 0)
1741			scsi_free_sense_buffer(unchecked_isa_dma,
1742					       cmd->sense_buffer);
1743	}
1744
1745	return ret;
1746}
1747
1748static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1749				 unsigned int hctx_idx)
1750{
1751	struct Scsi_Host *shost = set->driver_data;
1752	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753
1754	if (shost->hostt->exit_cmd_priv)
1755		shost->hostt->exit_cmd_priv(shost, cmd);
1756	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1757			       cmd->sense_buffer);
1758}
1759
1760static int scsi_map_queues(struct blk_mq_tag_set *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761{
1762	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1763
1764	if (shost->hostt->map_queues)
1765		return shost->hostt->map_queues(shost);
1766	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1767}
1768
1769void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1770{
1771	struct device *dev = shost->dma_dev;
1772
1773	/*
1774	 * this limit is imposed by hardware restrictions
1775	 */
1776	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1777					SG_MAX_SEGMENTS));
1778
1779	if (scsi_host_prot_dma(shost)) {
1780		shost->sg_prot_tablesize =
1781			min_not_zero(shost->sg_prot_tablesize,
1782				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1783		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1784		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1785	}
1786
1787	if (dev->dma_mask) {
1788		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1789				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1790	}
1791	blk_queue_max_hw_sectors(q, shost->max_sectors);
1792	if (shost->unchecked_isa_dma)
1793		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1794	blk_queue_segment_boundary(q, shost->dma_boundary);
1795	dma_set_seg_boundary(dev, shost->dma_boundary);
1796
1797	blk_queue_max_segment_size(q, shost->max_segment_size);
1798	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1799	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1800
1801	/*
1802	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1803	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1804	 * which is set by the platform.
1805	 *
1806	 * Devices that require a bigger alignment can increase it later.
1807	 */
1808	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1809}
1810EXPORT_SYMBOL_GPL(__scsi_init_queue);
1811
1812static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1813	.get_budget	= scsi_mq_get_budget,
1814	.put_budget	= scsi_mq_put_budget,
1815	.queue_rq	= scsi_queue_rq,
1816	.complete	= scsi_softirq_done,
1817	.timeout	= scsi_timeout,
1818#ifdef CONFIG_BLK_DEBUG_FS
1819	.show_rq	= scsi_show_rq,
1820#endif
1821	.init_request	= scsi_mq_init_request,
1822	.exit_request	= scsi_mq_exit_request,
1823	.initialize_rq_fn = scsi_initialize_rq,
1824	.cleanup_rq	= scsi_cleanup_rq,
1825	.busy		= scsi_mq_lld_busy,
1826	.map_queues	= scsi_map_queues,
 
 
 
 
1827};
1828
1829
1830static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1831{
1832	struct request_queue *q = hctx->queue;
1833	struct scsi_device *sdev = q->queuedata;
1834	struct Scsi_Host *shost = sdev->host;
1835
1836	shost->hostt->commit_rqs(shost, hctx->queue_num);
1837}
1838
1839static const struct blk_mq_ops scsi_mq_ops = {
1840	.get_budget	= scsi_mq_get_budget,
1841	.put_budget	= scsi_mq_put_budget,
1842	.queue_rq	= scsi_queue_rq,
1843	.commit_rqs	= scsi_commit_rqs,
1844	.complete	= scsi_softirq_done,
1845	.timeout	= scsi_timeout,
1846#ifdef CONFIG_BLK_DEBUG_FS
1847	.show_rq	= scsi_show_rq,
1848#endif
1849	.init_request	= scsi_mq_init_request,
1850	.exit_request	= scsi_mq_exit_request,
1851	.initialize_rq_fn = scsi_initialize_rq,
1852	.cleanup_rq	= scsi_cleanup_rq,
1853	.busy		= scsi_mq_lld_busy,
1854	.map_queues	= scsi_map_queues,
 
 
 
 
1855};
1856
1857struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1858{
1859	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1860	if (IS_ERR(sdev->request_queue))
1861		return NULL;
1862
1863	sdev->request_queue->queuedata = sdev;
1864	__scsi_init_queue(sdev->host, sdev->request_queue);
1865	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1866	return sdev->request_queue;
1867}
1868
1869int scsi_mq_setup_tags(struct Scsi_Host *shost)
1870{
1871	unsigned int cmd_size, sgl_size;
1872	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1873
1874	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1875				scsi_mq_inline_sgl_size(shost));
1876	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1877	if (scsi_host_get_prot(shost))
1878		cmd_size += sizeof(struct scsi_data_buffer) +
1879			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1880
1881	memset(tag_set, 0, sizeof(*tag_set));
1882	if (shost->hostt->commit_rqs)
1883		tag_set->ops = &scsi_mq_ops;
1884	else
1885		tag_set->ops = &scsi_mq_ops_no_commit;
1886	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
 
1887	tag_set->queue_depth = shost->can_queue;
1888	tag_set->cmd_size = cmd_size;
1889	tag_set->numa_node = NUMA_NO_NODE;
1890	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1891	tag_set->flags |=
1892		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1893	tag_set->driver_data = shost;
 
 
1894
1895	return blk_mq_alloc_tag_set(tag_set);
1896}
1897
1898void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1899{
 
 
 
1900	blk_mq_free_tag_set(&shost->tag_set);
 
1901}
1902
1903/**
1904 * scsi_device_from_queue - return sdev associated with a request_queue
1905 * @q: The request queue to return the sdev from
1906 *
1907 * Return the sdev associated with a request queue or NULL if the
1908 * request_queue does not reference a SCSI device.
1909 */
1910struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1911{
1912	struct scsi_device *sdev = NULL;
1913
1914	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1915	    q->mq_ops == &scsi_mq_ops)
1916		sdev = q->queuedata;
1917	if (!sdev || !get_device(&sdev->sdev_gendev))
1918		sdev = NULL;
1919
1920	return sdev;
1921}
 
 
 
 
 
 
1922EXPORT_SYMBOL_GPL(scsi_device_from_queue);
 
1923
1924/**
1925 * scsi_block_requests - Utility function used by low-level drivers to prevent
1926 * further commands from being queued to the device.
1927 * @shost:  host in question
1928 *
1929 * There is no timer nor any other means by which the requests get unblocked
1930 * other than the low-level driver calling scsi_unblock_requests().
1931 */
1932void scsi_block_requests(struct Scsi_Host *shost)
1933{
1934	shost->host_self_blocked = 1;
1935}
1936EXPORT_SYMBOL(scsi_block_requests);
1937
1938/**
1939 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1940 * further commands to be queued to the device.
1941 * @shost:  host in question
1942 *
1943 * There is no timer nor any other means by which the requests get unblocked
1944 * other than the low-level driver calling scsi_unblock_requests(). This is done
1945 * as an API function so that changes to the internals of the scsi mid-layer
1946 * won't require wholesale changes to drivers that use this feature.
1947 */
1948void scsi_unblock_requests(struct Scsi_Host *shost)
1949{
1950	shost->host_self_blocked = 0;
1951	scsi_run_host_queues(shost);
1952}
1953EXPORT_SYMBOL(scsi_unblock_requests);
1954
1955void scsi_exit_queue(void)
1956{
1957	kmem_cache_destroy(scsi_sense_cache);
1958	kmem_cache_destroy(scsi_sense_isadma_cache);
1959}
1960
1961/**
1962 *	scsi_mode_select - issue a mode select
1963 *	@sdev:	SCSI device to be queried
1964 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1965 *	@sp:	Save page bit (0 == don't save, 1 == save)
1966 *	@modepage: mode page being requested
1967 *	@buffer: request buffer (may not be smaller than eight bytes)
1968 *	@len:	length of request buffer.
1969 *	@timeout: command timeout
1970 *	@retries: number of retries before failing
1971 *	@data: returns a structure abstracting the mode header data
1972 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1973 *		must be SCSI_SENSE_BUFFERSIZE big.
1974 *
1975 *	Returns zero if successful; negative error number or scsi
1976 *	status on error
1977 *
1978 */
1979int
1980scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1981		 unsigned char *buffer, int len, int timeout, int retries,
1982		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1983{
1984	unsigned char cmd[10];
1985	unsigned char *real_buffer;
1986	int ret;
1987
1988	memset(cmd, 0, sizeof(cmd));
1989	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1990
1991	if (sdev->use_10_for_ms) {
1992		if (len > 65535)
 
 
 
 
 
 
 
1993			return -EINVAL;
1994		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1995		if (!real_buffer)
1996			return -ENOMEM;
1997		memcpy(real_buffer + 8, buffer, len);
1998		len += 8;
1999		real_buffer[0] = 0;
2000		real_buffer[1] = 0;
2001		real_buffer[2] = data->medium_type;
2002		real_buffer[3] = data->device_specific;
2003		real_buffer[4] = data->longlba ? 0x01 : 0;
2004		real_buffer[5] = 0;
2005		real_buffer[6] = data->block_descriptor_length >> 8;
2006		real_buffer[7] = data->block_descriptor_length;
2007
2008		cmd[0] = MODE_SELECT_10;
2009		cmd[7] = len >> 8;
2010		cmd[8] = len;
2011	} else {
2012		if (len > 255 || data->block_descriptor_length > 255 ||
2013		    data->longlba)
2014			return -EINVAL;
2015
2016		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2017		if (!real_buffer)
2018			return -ENOMEM;
2019		memcpy(real_buffer + 4, buffer, len);
2020		len += 4;
2021		real_buffer[0] = 0;
2022		real_buffer[1] = data->medium_type;
2023		real_buffer[2] = data->device_specific;
2024		real_buffer[3] = data->block_descriptor_length;
2025
2026		cmd[0] = MODE_SELECT;
2027		cmd[4] = len;
2028	}
2029
2030	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2031			       sshdr, timeout, retries, NULL);
2032	kfree(real_buffer);
2033	return ret;
2034}
2035EXPORT_SYMBOL_GPL(scsi_mode_select);
2036
2037/**
2038 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2039 *	@sdev:	SCSI device to be queried
2040 *	@dbd:	set if mode sense will allow block descriptors to be returned
2041 *	@modepage: mode page being requested
2042 *	@buffer: request buffer (may not be smaller than eight bytes)
2043 *	@len:	length of request buffer.
2044 *	@timeout: command timeout
2045 *	@retries: number of retries before failing
2046 *	@data: returns a structure abstracting the mode header data
2047 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2048 *		must be SCSI_SENSE_BUFFERSIZE big.
2049 *
2050 *	Returns zero if unsuccessful, or the header offset (either 4
2051 *	or 8 depending on whether a six or ten byte command was
2052 *	issued) if successful.
2053 */
2054int
2055scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2056		  unsigned char *buffer, int len, int timeout, int retries,
2057		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2058{
2059	unsigned char cmd[12];
2060	int use_10_for_ms;
2061	int header_length;
2062	int result, retry_count = retries;
2063	struct scsi_sense_hdr my_sshdr;
2064
2065	memset(data, 0, sizeof(*data));
2066	memset(&cmd[0], 0, 12);
2067
2068	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2069	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2070	cmd[2] = modepage;
2071
2072	/* caller might not be interested in sense, but we need it */
2073	if (!sshdr)
2074		sshdr = &my_sshdr;
2075
2076 retry:
2077	use_10_for_ms = sdev->use_10_for_ms;
2078
2079	if (use_10_for_ms) {
2080		if (len < 8)
2081			len = 8;
2082
2083		cmd[0] = MODE_SENSE_10;
2084		cmd[8] = len;
2085		header_length = 8;
2086	} else {
2087		if (len < 4)
2088			len = 4;
2089
2090		cmd[0] = MODE_SENSE;
2091		cmd[4] = len;
2092		header_length = 4;
2093	}
2094
2095	memset(buffer, 0, len);
2096
2097	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2098				  sshdr, timeout, retries, NULL);
 
 
2099
2100	/* This code looks awful: what it's doing is making sure an
2101	 * ILLEGAL REQUEST sense return identifies the actual command
2102	 * byte as the problem.  MODE_SENSE commands can return
2103	 * ILLEGAL REQUEST if the code page isn't supported */
2104
2105	if (use_10_for_ms && !scsi_status_is_good(result) &&
2106	    driver_byte(result) == DRIVER_SENSE) {
2107		if (scsi_sense_valid(sshdr)) {
2108			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2109			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2110				/*
2111				 * Invalid command operation code
 
 
 
 
2112				 */
2113				sdev->use_10_for_ms = 0;
 
 
 
 
 
 
 
 
 
 
2114				goto retry;
2115			}
2116		}
 
2117	}
2118
2119	if (scsi_status_is_good(result)) {
2120		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2121			     (modepage == 6 || modepage == 8))) {
2122			/* Initio breakage? */
2123			header_length = 0;
2124			data->length = 13;
2125			data->medium_type = 0;
2126			data->device_specific = 0;
2127			data->longlba = 0;
2128			data->block_descriptor_length = 0;
2129		} else if (use_10_for_ms) {
2130			data->length = buffer[0]*256 + buffer[1] + 2;
2131			data->medium_type = buffer[2];
2132			data->device_specific = buffer[3];
2133			data->longlba = buffer[4] & 0x01;
2134			data->block_descriptor_length = buffer[6]*256
2135				+ buffer[7];
2136		} else {
2137			data->length = buffer[0] + 1;
2138			data->medium_type = buffer[1];
2139			data->device_specific = buffer[2];
2140			data->block_descriptor_length = buffer[3];
2141		}
2142		data->header_length = header_length;
2143	} else if ((status_byte(result) == CHECK_CONDITION) &&
2144		   scsi_sense_valid(sshdr) &&
2145		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2146		retry_count--;
2147		goto retry;
2148	}
 
2149
2150	return result;
2151}
2152EXPORT_SYMBOL(scsi_mode_sense);
2153
2154/**
2155 *	scsi_test_unit_ready - test if unit is ready
2156 *	@sdev:	scsi device to change the state of.
2157 *	@timeout: command timeout
2158 *	@retries: number of retries before failing
2159 *	@sshdr: outpout pointer for decoded sense information.
2160 *
2161 *	Returns zero if unsuccessful or an error if TUR failed.  For
2162 *	removable media, UNIT_ATTENTION sets ->changed flag.
2163 **/
2164int
2165scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2166		     struct scsi_sense_hdr *sshdr)
2167{
2168	char cmd[] = {
2169		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2170	};
2171	int result;
2172
2173	/* try to eat the UNIT_ATTENTION if there are enough retries */
2174	do {
2175		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2176					  timeout, 1, NULL);
2177		if (sdev->removable && scsi_sense_valid(sshdr) &&
2178		    sshdr->sense_key == UNIT_ATTENTION)
2179			sdev->changed = 1;
2180	} while (scsi_sense_valid(sshdr) &&
2181		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2182
2183	return result;
2184}
2185EXPORT_SYMBOL(scsi_test_unit_ready);
2186
2187/**
2188 *	scsi_device_set_state - Take the given device through the device state model.
2189 *	@sdev:	scsi device to change the state of.
2190 *	@state:	state to change to.
2191 *
2192 *	Returns zero if successful or an error if the requested
2193 *	transition is illegal.
2194 */
2195int
2196scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2197{
2198	enum scsi_device_state oldstate = sdev->sdev_state;
2199
2200	if (state == oldstate)
2201		return 0;
2202
2203	switch (state) {
2204	case SDEV_CREATED:
2205		switch (oldstate) {
2206		case SDEV_CREATED_BLOCK:
2207			break;
2208		default:
2209			goto illegal;
2210		}
2211		break;
2212
2213	case SDEV_RUNNING:
2214		switch (oldstate) {
2215		case SDEV_CREATED:
2216		case SDEV_OFFLINE:
2217		case SDEV_TRANSPORT_OFFLINE:
2218		case SDEV_QUIESCE:
2219		case SDEV_BLOCK:
2220			break;
2221		default:
2222			goto illegal;
2223		}
2224		break;
2225
2226	case SDEV_QUIESCE:
2227		switch (oldstate) {
2228		case SDEV_RUNNING:
2229		case SDEV_OFFLINE:
2230		case SDEV_TRANSPORT_OFFLINE:
2231			break;
2232		default:
2233			goto illegal;
2234		}
2235		break;
2236
2237	case SDEV_OFFLINE:
2238	case SDEV_TRANSPORT_OFFLINE:
2239		switch (oldstate) {
2240		case SDEV_CREATED:
2241		case SDEV_RUNNING:
2242		case SDEV_QUIESCE:
2243		case SDEV_BLOCK:
2244			break;
2245		default:
2246			goto illegal;
2247		}
2248		break;
2249
2250	case SDEV_BLOCK:
2251		switch (oldstate) {
2252		case SDEV_RUNNING:
2253		case SDEV_CREATED_BLOCK:
2254		case SDEV_QUIESCE:
2255		case SDEV_OFFLINE:
2256			break;
2257		default:
2258			goto illegal;
2259		}
2260		break;
2261
2262	case SDEV_CREATED_BLOCK:
2263		switch (oldstate) {
2264		case SDEV_CREATED:
2265			break;
2266		default:
2267			goto illegal;
2268		}
2269		break;
2270
2271	case SDEV_CANCEL:
2272		switch (oldstate) {
2273		case SDEV_CREATED:
2274		case SDEV_RUNNING:
2275		case SDEV_QUIESCE:
2276		case SDEV_OFFLINE:
2277		case SDEV_TRANSPORT_OFFLINE:
2278			break;
2279		default:
2280			goto illegal;
2281		}
2282		break;
2283
2284	case SDEV_DEL:
2285		switch (oldstate) {
2286		case SDEV_CREATED:
2287		case SDEV_RUNNING:
2288		case SDEV_OFFLINE:
2289		case SDEV_TRANSPORT_OFFLINE:
2290		case SDEV_CANCEL:
2291		case SDEV_BLOCK:
2292		case SDEV_CREATED_BLOCK:
2293			break;
2294		default:
2295			goto illegal;
2296		}
2297		break;
2298
2299	}
2300	sdev->offline_already = false;
2301	sdev->sdev_state = state;
2302	return 0;
2303
2304 illegal:
2305	SCSI_LOG_ERROR_RECOVERY(1,
2306				sdev_printk(KERN_ERR, sdev,
2307					    "Illegal state transition %s->%s",
2308					    scsi_device_state_name(oldstate),
2309					    scsi_device_state_name(state))
2310				);
2311	return -EINVAL;
2312}
2313EXPORT_SYMBOL(scsi_device_set_state);
2314
2315/**
2316 * 	sdev_evt_emit - emit a single SCSI device uevent
2317 *	@sdev: associated SCSI device
2318 *	@evt: event to emit
2319 *
2320 *	Send a single uevent (scsi_event) to the associated scsi_device.
2321 */
2322static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2323{
2324	int idx = 0;
2325	char *envp[3];
2326
2327	switch (evt->evt_type) {
2328	case SDEV_EVT_MEDIA_CHANGE:
2329		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2330		break;
2331	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2332		scsi_rescan_device(&sdev->sdev_gendev);
2333		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2334		break;
2335	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2336		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2337		break;
2338	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2339	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2340		break;
2341	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2342		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2343		break;
2344	case SDEV_EVT_LUN_CHANGE_REPORTED:
2345		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2346		break;
2347	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2348		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2349		break;
2350	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2351		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2352		break;
2353	default:
2354		/* do nothing */
2355		break;
2356	}
2357
2358	envp[idx++] = NULL;
2359
2360	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2361}
2362
2363/**
2364 * 	sdev_evt_thread - send a uevent for each scsi event
2365 *	@work: work struct for scsi_device
2366 *
2367 *	Dispatch queued events to their associated scsi_device kobjects
2368 *	as uevents.
2369 */
2370void scsi_evt_thread(struct work_struct *work)
2371{
2372	struct scsi_device *sdev;
2373	enum scsi_device_event evt_type;
2374	LIST_HEAD(event_list);
2375
2376	sdev = container_of(work, struct scsi_device, event_work);
2377
2378	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2379		if (test_and_clear_bit(evt_type, sdev->pending_events))
2380			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2381
2382	while (1) {
2383		struct scsi_event *evt;
2384		struct list_head *this, *tmp;
2385		unsigned long flags;
2386
2387		spin_lock_irqsave(&sdev->list_lock, flags);
2388		list_splice_init(&sdev->event_list, &event_list);
2389		spin_unlock_irqrestore(&sdev->list_lock, flags);
2390
2391		if (list_empty(&event_list))
2392			break;
2393
2394		list_for_each_safe(this, tmp, &event_list) {
2395			evt = list_entry(this, struct scsi_event, node);
2396			list_del(&evt->node);
2397			scsi_evt_emit(sdev, evt);
2398			kfree(evt);
2399		}
2400	}
2401}
2402
2403/**
2404 * 	sdev_evt_send - send asserted event to uevent thread
2405 *	@sdev: scsi_device event occurred on
2406 *	@evt: event to send
2407 *
2408 *	Assert scsi device event asynchronously.
2409 */
2410void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2411{
2412	unsigned long flags;
2413
2414#if 0
2415	/* FIXME: currently this check eliminates all media change events
2416	 * for polled devices.  Need to update to discriminate between AN
2417	 * and polled events */
2418	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2419		kfree(evt);
2420		return;
2421	}
2422#endif
2423
2424	spin_lock_irqsave(&sdev->list_lock, flags);
2425	list_add_tail(&evt->node, &sdev->event_list);
2426	schedule_work(&sdev->event_work);
2427	spin_unlock_irqrestore(&sdev->list_lock, flags);
2428}
2429EXPORT_SYMBOL_GPL(sdev_evt_send);
2430
2431/**
2432 * 	sdev_evt_alloc - allocate a new scsi event
2433 *	@evt_type: type of event to allocate
2434 *	@gfpflags: GFP flags for allocation
2435 *
2436 *	Allocates and returns a new scsi_event.
2437 */
2438struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2439				  gfp_t gfpflags)
2440{
2441	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2442	if (!evt)
2443		return NULL;
2444
2445	evt->evt_type = evt_type;
2446	INIT_LIST_HEAD(&evt->node);
2447
2448	/* evt_type-specific initialization, if any */
2449	switch (evt_type) {
2450	case SDEV_EVT_MEDIA_CHANGE:
2451	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2452	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2453	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2454	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2455	case SDEV_EVT_LUN_CHANGE_REPORTED:
2456	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2457	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2458	default:
2459		/* do nothing */
2460		break;
2461	}
2462
2463	return evt;
2464}
2465EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2466
2467/**
2468 * 	sdev_evt_send_simple - send asserted event to uevent thread
2469 *	@sdev: scsi_device event occurred on
2470 *	@evt_type: type of event to send
2471 *	@gfpflags: GFP flags for allocation
2472 *
2473 *	Assert scsi device event asynchronously, given an event type.
2474 */
2475void sdev_evt_send_simple(struct scsi_device *sdev,
2476			  enum scsi_device_event evt_type, gfp_t gfpflags)
2477{
2478	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2479	if (!evt) {
2480		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2481			    evt_type);
2482		return;
2483	}
2484
2485	sdev_evt_send(sdev, evt);
2486}
2487EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2488
2489/**
2490 *	scsi_device_quiesce - Block user issued commands.
2491 *	@sdev:	scsi device to quiesce.
2492 *
2493 *	This works by trying to transition to the SDEV_QUIESCE state
2494 *	(which must be a legal transition).  When the device is in this
2495 *	state, only special requests will be accepted, all others will
2496 *	be deferred.  Since special requests may also be requeued requests,
2497 *	a successful return doesn't guarantee the device will be
2498 *	totally quiescent.
2499 *
2500 *	Must be called with user context, may sleep.
2501 *
2502 *	Returns zero if unsuccessful or an error if not.
2503 */
2504int
2505scsi_device_quiesce(struct scsi_device *sdev)
2506{
2507	struct request_queue *q = sdev->request_queue;
2508	int err;
2509
2510	/*
2511	 * It is allowed to call scsi_device_quiesce() multiple times from
2512	 * the same context but concurrent scsi_device_quiesce() calls are
2513	 * not allowed.
2514	 */
2515	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2516
2517	if (sdev->quiesced_by == current)
2518		return 0;
2519
2520	blk_set_pm_only(q);
2521
2522	blk_mq_freeze_queue(q);
2523	/*
2524	 * Ensure that the effect of blk_set_pm_only() will be visible
2525	 * for percpu_ref_tryget() callers that occur after the queue
2526	 * unfreeze even if the queue was already frozen before this function
2527	 * was called. See also https://lwn.net/Articles/573497/.
2528	 */
2529	synchronize_rcu();
2530	blk_mq_unfreeze_queue(q);
2531
2532	mutex_lock(&sdev->state_mutex);
2533	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2534	if (err == 0)
2535		sdev->quiesced_by = current;
2536	else
2537		blk_clear_pm_only(q);
2538	mutex_unlock(&sdev->state_mutex);
2539
2540	return err;
2541}
2542EXPORT_SYMBOL(scsi_device_quiesce);
2543
2544/**
2545 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2546 *	@sdev:	scsi device to resume.
2547 *
2548 *	Moves the device from quiesced back to running and restarts the
2549 *	queues.
2550 *
2551 *	Must be called with user context, may sleep.
2552 */
2553void scsi_device_resume(struct scsi_device *sdev)
2554{
2555	/* check if the device state was mutated prior to resume, and if
2556	 * so assume the state is being managed elsewhere (for example
2557	 * device deleted during suspend)
2558	 */
2559	mutex_lock(&sdev->state_mutex);
 
 
2560	if (sdev->quiesced_by) {
2561		sdev->quiesced_by = NULL;
2562		blk_clear_pm_only(sdev->request_queue);
2563	}
2564	if (sdev->sdev_state == SDEV_QUIESCE)
2565		scsi_device_set_state(sdev, SDEV_RUNNING);
2566	mutex_unlock(&sdev->state_mutex);
2567}
2568EXPORT_SYMBOL(scsi_device_resume);
2569
2570static void
2571device_quiesce_fn(struct scsi_device *sdev, void *data)
2572{
2573	scsi_device_quiesce(sdev);
2574}
2575
2576void
2577scsi_target_quiesce(struct scsi_target *starget)
2578{
2579	starget_for_each_device(starget, NULL, device_quiesce_fn);
2580}
2581EXPORT_SYMBOL(scsi_target_quiesce);
2582
2583static void
2584device_resume_fn(struct scsi_device *sdev, void *data)
2585{
2586	scsi_device_resume(sdev);
2587}
2588
2589void
2590scsi_target_resume(struct scsi_target *starget)
2591{
2592	starget_for_each_device(starget, NULL, device_resume_fn);
2593}
2594EXPORT_SYMBOL(scsi_target_resume);
2595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596/**
2597 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2598 * @sdev: device to block
2599 *
2600 * Pause SCSI command processing on the specified device. Does not sleep.
2601 *
2602 * Returns zero if successful or a negative error code upon failure.
2603 *
2604 * Notes:
2605 * This routine transitions the device to the SDEV_BLOCK state (which must be
2606 * a legal transition). When the device is in this state, command processing
2607 * is paused until the device leaves the SDEV_BLOCK state. See also
2608 * scsi_internal_device_unblock_nowait().
2609 */
2610int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2611{
2612	struct request_queue *q = sdev->request_queue;
2613	int err = 0;
2614
2615	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2616	if (err) {
2617		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2618
2619		if (err)
2620			return err;
2621	}
2622
2623	/*
2624	 * The device has transitioned to SDEV_BLOCK.  Stop the
2625	 * block layer from calling the midlayer with this device's
2626	 * request queue.
2627	 */
2628	blk_mq_quiesce_queue_nowait(q);
2629	return 0;
 
2630}
2631EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2632
2633/**
2634 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2635 * @sdev: device to block
2636 *
2637 * Pause SCSI command processing on the specified device and wait until all
2638 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2639 *
2640 * Returns zero if successful or a negative error code upon failure.
2641 *
2642 * Note:
2643 * This routine transitions the device to the SDEV_BLOCK state (which must be
2644 * a legal transition). When the device is in this state, command processing
2645 * is paused until the device leaves the SDEV_BLOCK state. See also
2646 * scsi_internal_device_unblock().
2647 */
2648static int scsi_internal_device_block(struct scsi_device *sdev)
2649{
2650	struct request_queue *q = sdev->request_queue;
2651	int err;
2652
2653	mutex_lock(&sdev->state_mutex);
2654	err = scsi_internal_device_block_nowait(sdev);
2655	if (err == 0)
2656		blk_mq_quiesce_queue(q);
2657	mutex_unlock(&sdev->state_mutex);
2658
2659	return err;
2660}
2661
2662void scsi_start_queue(struct scsi_device *sdev)
2663{
2664	struct request_queue *q = sdev->request_queue;
2665
2666	blk_mq_unquiesce_queue(q);
2667}
2668
2669/**
2670 * scsi_internal_device_unblock_nowait - resume a device after a block request
2671 * @sdev:	device to resume
2672 * @new_state:	state to set the device to after unblocking
2673 *
2674 * Restart the device queue for a previously suspended SCSI device. Does not
2675 * sleep.
2676 *
2677 * Returns zero if successful or a negative error code upon failure.
2678 *
2679 * Notes:
2680 * This routine transitions the device to the SDEV_RUNNING state or to one of
2681 * the offline states (which must be a legal transition) allowing the midlayer
2682 * to goose the queue for this device.
2683 */
2684int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2685					enum scsi_device_state new_state)
2686{
2687	switch (new_state) {
2688	case SDEV_RUNNING:
2689	case SDEV_TRANSPORT_OFFLINE:
2690		break;
2691	default:
2692		return -EINVAL;
2693	}
2694
2695	/*
2696	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2697	 * offlined states and goose the device queue if successful.
2698	 */
2699	switch (sdev->sdev_state) {
2700	case SDEV_BLOCK:
2701	case SDEV_TRANSPORT_OFFLINE:
2702		sdev->sdev_state = new_state;
2703		break;
2704	case SDEV_CREATED_BLOCK:
2705		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2706		    new_state == SDEV_OFFLINE)
2707			sdev->sdev_state = new_state;
2708		else
2709			sdev->sdev_state = SDEV_CREATED;
2710		break;
2711	case SDEV_CANCEL:
2712	case SDEV_OFFLINE:
2713		break;
2714	default:
2715		return -EINVAL;
2716	}
2717	scsi_start_queue(sdev);
2718
2719	return 0;
2720}
2721EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2722
2723/**
2724 * scsi_internal_device_unblock - resume a device after a block request
2725 * @sdev:	device to resume
2726 * @new_state:	state to set the device to after unblocking
2727 *
2728 * Restart the device queue for a previously suspended SCSI device. May sleep.
2729 *
2730 * Returns zero if successful or a negative error code upon failure.
2731 *
2732 * Notes:
2733 * This routine transitions the device to the SDEV_RUNNING state or to one of
2734 * the offline states (which must be a legal transition) allowing the midlayer
2735 * to goose the queue for this device.
2736 */
2737static int scsi_internal_device_unblock(struct scsi_device *sdev,
2738					enum scsi_device_state new_state)
2739{
2740	int ret;
2741
2742	mutex_lock(&sdev->state_mutex);
2743	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2744	mutex_unlock(&sdev->state_mutex);
2745
2746	return ret;
2747}
2748
2749static void
2750device_block(struct scsi_device *sdev, void *data)
2751{
2752	int ret;
2753
2754	ret = scsi_internal_device_block(sdev);
2755
2756	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2757		  dev_name(&sdev->sdev_gendev), ret);
2758}
2759
2760static int
2761target_block(struct device *dev, void *data)
2762{
2763	if (scsi_is_target_device(dev))
2764		starget_for_each_device(to_scsi_target(dev), NULL,
2765					device_block);
2766	return 0;
2767}
2768
2769void
2770scsi_target_block(struct device *dev)
2771{
2772	if (scsi_is_target_device(dev))
2773		starget_for_each_device(to_scsi_target(dev), NULL,
2774					device_block);
2775	else
2776		device_for_each_child(dev, NULL, target_block);
2777}
2778EXPORT_SYMBOL_GPL(scsi_target_block);
2779
2780static void
2781device_unblock(struct scsi_device *sdev, void *data)
2782{
2783	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2784}
2785
2786static int
2787target_unblock(struct device *dev, void *data)
2788{
2789	if (scsi_is_target_device(dev))
2790		starget_for_each_device(to_scsi_target(dev), data,
2791					device_unblock);
2792	return 0;
2793}
2794
2795void
2796scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2797{
2798	if (scsi_is_target_device(dev))
2799		starget_for_each_device(to_scsi_target(dev), &new_state,
2800					device_unblock);
2801	else
2802		device_for_each_child(dev, &new_state, target_unblock);
2803}
2804EXPORT_SYMBOL_GPL(scsi_target_unblock);
2805
2806int
2807scsi_host_block(struct Scsi_Host *shost)
2808{
2809	struct scsi_device *sdev;
2810	int ret = 0;
2811
2812	/*
2813	 * Call scsi_internal_device_block_nowait so we can avoid
2814	 * calling synchronize_rcu() for each LUN.
2815	 */
2816	shost_for_each_device(sdev, shost) {
2817		mutex_lock(&sdev->state_mutex);
2818		ret = scsi_internal_device_block_nowait(sdev);
2819		mutex_unlock(&sdev->state_mutex);
2820		if (ret) {
2821			scsi_device_put(sdev);
2822			break;
2823		}
2824	}
2825
2826	/*
2827	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2828	 * calling synchronize_rcu() once is enough.
2829	 */
2830	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2831
2832	if (!ret)
2833		synchronize_rcu();
2834
2835	return ret;
2836}
2837EXPORT_SYMBOL_GPL(scsi_host_block);
2838
2839int
2840scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2841{
2842	struct scsi_device *sdev;
2843	int ret = 0;
2844
2845	shost_for_each_device(sdev, shost) {
2846		ret = scsi_internal_device_unblock(sdev, new_state);
2847		if (ret) {
2848			scsi_device_put(sdev);
2849			break;
2850		}
2851	}
2852	return ret;
2853}
2854EXPORT_SYMBOL_GPL(scsi_host_unblock);
2855
2856/**
2857 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2858 * @sgl:	scatter-gather list
2859 * @sg_count:	number of segments in sg
2860 * @offset:	offset in bytes into sg, on return offset into the mapped area
2861 * @len:	bytes to map, on return number of bytes mapped
2862 *
2863 * Returns virtual address of the start of the mapped page
2864 */
2865void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2866			  size_t *offset, size_t *len)
2867{
2868	int i;
2869	size_t sg_len = 0, len_complete = 0;
2870	struct scatterlist *sg;
2871	struct page *page;
2872
2873	WARN_ON(!irqs_disabled());
2874
2875	for_each_sg(sgl, sg, sg_count, i) {
2876		len_complete = sg_len; /* Complete sg-entries */
2877		sg_len += sg->length;
2878		if (sg_len > *offset)
2879			break;
2880	}
2881
2882	if (unlikely(i == sg_count)) {
2883		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2884			"elements %d\n",
2885		       __func__, sg_len, *offset, sg_count);
2886		WARN_ON(1);
2887		return NULL;
2888	}
2889
2890	/* Offset starting from the beginning of first page in this sg-entry */
2891	*offset = *offset - len_complete + sg->offset;
2892
2893	/* Assumption: contiguous pages can be accessed as "page + i" */
2894	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2895	*offset &= ~PAGE_MASK;
2896
2897	/* Bytes in this sg-entry from *offset to the end of the page */
2898	sg_len = PAGE_SIZE - *offset;
2899	if (*len > sg_len)
2900		*len = sg_len;
2901
2902	return kmap_atomic(page);
2903}
2904EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2905
2906/**
2907 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2908 * @virt:	virtual address to be unmapped
2909 */
2910void scsi_kunmap_atomic_sg(void *virt)
2911{
2912	kunmap_atomic(virt);
2913}
2914EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2915
2916void sdev_disable_disk_events(struct scsi_device *sdev)
2917{
2918	atomic_inc(&sdev->disk_events_disable_depth);
2919}
2920EXPORT_SYMBOL(sdev_disable_disk_events);
2921
2922void sdev_enable_disk_events(struct scsi_device *sdev)
2923{
2924	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2925		return;
2926	atomic_dec(&sdev->disk_events_disable_depth);
2927}
2928EXPORT_SYMBOL(sdev_enable_disk_events);
2929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930/**
2931 * scsi_vpd_lun_id - return a unique device identification
2932 * @sdev: SCSI device
2933 * @id:   buffer for the identification
2934 * @id_len:  length of the buffer
2935 *
2936 * Copies a unique device identification into @id based
2937 * on the information in the VPD page 0x83 of the device.
2938 * The string will be formatted as a SCSI name string.
2939 *
2940 * Returns the length of the identification or error on failure.
2941 * If the identifier is longer than the supplied buffer the actual
2942 * identifier length is returned and the buffer is not zero-padded.
2943 */
2944int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2945{
2946	u8 cur_id_type = 0xff;
2947	u8 cur_id_size = 0;
2948	const unsigned char *d, *cur_id_str;
2949	const struct scsi_vpd *vpd_pg83;
2950	int id_size = -EINVAL;
2951
2952	rcu_read_lock();
2953	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2954	if (!vpd_pg83) {
2955		rcu_read_unlock();
2956		return -ENXIO;
2957	}
2958
2959	/*
2960	 * Look for the correct descriptor.
2961	 * Order of preference for lun descriptor:
2962	 * - SCSI name string
2963	 * - NAA IEEE Registered Extended
2964	 * - EUI-64 based 16-byte
2965	 * - EUI-64 based 12-byte
2966	 * - NAA IEEE Registered
2967	 * - NAA IEEE Extended
2968	 * - T10 Vendor ID
2969	 * as longer descriptors reduce the likelyhood
2970	 * of identification clashes.
2971	 */
2972
2973	/* The id string must be at least 20 bytes + terminating NULL byte */
2974	if (id_len < 21) {
2975		rcu_read_unlock();
2976		return -EINVAL;
2977	}
2978
2979	memset(id, 0, id_len);
2980	d = vpd_pg83->data + 4;
2981	while (d < vpd_pg83->data + vpd_pg83->len) {
2982		/* Skip designators not referring to the LUN */
2983		if ((d[1] & 0x30) != 0x00)
2984			goto next_desig;
 
 
2985
2986		switch (d[1] & 0xf) {
2987		case 0x1:
2988			/* T10 Vendor ID */
2989			if (cur_id_size > d[3])
2990				break;
2991			/* Prefer anything */
2992			if (cur_id_type > 0x01 && cur_id_type != 0xff)
2993				break;
2994			cur_id_size = d[3];
2995			if (cur_id_size + 4 > id_len)
2996				cur_id_size = id_len - 4;
2997			cur_id_str = d + 4;
2998			cur_id_type = d[1] & 0xf;
2999			id_size = snprintf(id, id_len, "t10.%*pE",
3000					   cur_id_size, cur_id_str);
3001			break;
3002		case 0x2:
3003			/* EUI-64 */
3004			if (cur_id_size > d[3])
3005				break;
3006			/* Prefer NAA IEEE Registered Extended */
3007			if (cur_id_type == 0x3 &&
3008			    cur_id_size == d[3])
3009				break;
3010			cur_id_size = d[3];
3011			cur_id_str = d + 4;
3012			cur_id_type = d[1] & 0xf;
3013			switch (cur_id_size) {
3014			case 8:
3015				id_size = snprintf(id, id_len,
3016						   "eui.%8phN",
3017						   cur_id_str);
3018				break;
3019			case 12:
3020				id_size = snprintf(id, id_len,
3021						   "eui.%12phN",
3022						   cur_id_str);
3023				break;
3024			case 16:
3025				id_size = snprintf(id, id_len,
3026						   "eui.%16phN",
3027						   cur_id_str);
3028				break;
3029			default:
3030				cur_id_size = 0;
3031				break;
3032			}
3033			break;
3034		case 0x3:
3035			/* NAA */
3036			if (cur_id_size > d[3])
3037				break;
3038			cur_id_size = d[3];
3039			cur_id_str = d + 4;
3040			cur_id_type = d[1] & 0xf;
3041			switch (cur_id_size) {
3042			case 8:
3043				id_size = snprintf(id, id_len,
3044						   "naa.%8phN",
3045						   cur_id_str);
3046				break;
3047			case 16:
3048				id_size = snprintf(id, id_len,
3049						   "naa.%16phN",
3050						   cur_id_str);
3051				break;
3052			default:
3053				cur_id_size = 0;
3054				break;
3055			}
3056			break;
3057		case 0x8:
3058			/* SCSI name string */
3059			if (cur_id_size + 4 > d[3])
3060				break;
3061			/* Prefer others for truncated descriptor */
3062			if (cur_id_size && d[3] > id_len)
3063				break;
 
 
 
 
3064			cur_id_size = id_size = d[3];
3065			cur_id_str = d + 4;
3066			cur_id_type = d[1] & 0xf;
3067			if (cur_id_size >= id_len)
3068				cur_id_size = id_len - 1;
3069			memcpy(id, cur_id_str, cur_id_size);
3070			/* Decrease priority for truncated descriptor */
3071			if (cur_id_size != id_size)
3072				cur_id_size = 6;
3073			break;
3074		default:
3075			break;
3076		}
3077next_desig:
3078		d += d[3] + 4;
3079	}
3080	rcu_read_unlock();
3081
3082	return id_size;
3083}
3084EXPORT_SYMBOL(scsi_vpd_lun_id);
3085
3086/*
3087 * scsi_vpd_tpg_id - return a target port group identifier
3088 * @sdev: SCSI device
3089 *
3090 * Returns the Target Port Group identifier from the information
3091 * froom VPD page 0x83 of the device.
3092 *
3093 * Returns the identifier or error on failure.
3094 */
3095int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3096{
3097	const unsigned char *d;
3098	const struct scsi_vpd *vpd_pg83;
3099	int group_id = -EAGAIN, rel_port = -1;
3100
3101	rcu_read_lock();
3102	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3103	if (!vpd_pg83) {
3104		rcu_read_unlock();
3105		return -ENXIO;
3106	}
3107
3108	d = vpd_pg83->data + 4;
3109	while (d < vpd_pg83->data + vpd_pg83->len) {
3110		switch (d[1] & 0xf) {
3111		case 0x4:
3112			/* Relative target port */
3113			rel_port = get_unaligned_be16(&d[6]);
3114			break;
3115		case 0x5:
3116			/* Target port group */
3117			group_id = get_unaligned_be16(&d[6]);
3118			break;
3119		default:
3120			break;
3121		}
3122		d += d[3] + 4;
3123	}
3124	rcu_read_unlock();
3125
3126	if (group_id >= 0 && rel_id && rel_port != -1)
3127		*rel_id = rel_port;
3128
3129	return group_id;
3130}
3131EXPORT_SYMBOL(scsi_vpd_tpg_id);