Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/of_device.h>
  10#include <linux/delay.h>
  11#include <linux/mmc/mmc.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/pm_opp.h>
  14#include <linux/slab.h>
  15#include <linux/iopoll.h>
  16#include <linux/qcom_scm.h>
  17#include <linux/regulator/consumer.h>
  18#include <linux/interconnect.h>
  19#include <linux/pinctrl/consumer.h>
  20#include <linux/reset.h>
  21
  22#include "sdhci-cqhci.h"
  23#include "sdhci-pltfm.h"
  24#include "cqhci.h"
  25
  26#define CORE_MCI_VERSION		0x50
  27#define CORE_VERSION_MAJOR_SHIFT	28
  28#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  29#define CORE_VERSION_MINOR_MASK		0xff
  30
  31#define CORE_MCI_GENERICS		0x70
  32#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  33
  34#define HC_MODE_EN		0x1
  35#define CORE_POWER		0x0
  36#define CORE_SW_RST		BIT(7)
  37#define FF_CLK_SW_RST_DIS	BIT(13)
  38
  39#define CORE_PWRCTL_BUS_OFF	BIT(0)
  40#define CORE_PWRCTL_BUS_ON	BIT(1)
  41#define CORE_PWRCTL_IO_LOW	BIT(2)
  42#define CORE_PWRCTL_IO_HIGH	BIT(3)
  43#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  44#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  45#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  46#define CORE_PWRCTL_IO_FAIL     BIT(3)
  47#define REQ_BUS_OFF		BIT(0)
  48#define REQ_BUS_ON		BIT(1)
  49#define REQ_IO_LOW		BIT(2)
  50#define REQ_IO_HIGH		BIT(3)
  51#define INT_MASK		0xf
  52#define MAX_PHASES		16
  53#define CORE_DLL_LOCK		BIT(7)
  54#define CORE_DDR_DLL_LOCK	BIT(11)
  55#define CORE_DLL_EN		BIT(16)
  56#define CORE_CDR_EN		BIT(17)
  57#define CORE_CK_OUT_EN		BIT(18)
  58#define CORE_CDR_EXT_EN		BIT(19)
  59#define CORE_DLL_PDN		BIT(29)
  60#define CORE_DLL_RST		BIT(30)
  61#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  62
  63#define CORE_DDR_CAL_EN		BIT(0)
  64#define CORE_FLL_CYCLE_CNT	BIT(18)
  65#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  66
  67#define DLL_USR_CTL_POR_VAL	0x10800
  68#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  69#define FINE_TUNE_MODE_EN	BIT(27)
  70#define BIAS_OK_SIGNAL		BIT(29)
  71
  72#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  73#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  74
  75#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  76#define CORE_CLK_PWRSAVE	BIT(1)
  77#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  78#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  79#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  80#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  81#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  82#define CORE_HC_SELECT_IN_EN	BIT(18)
  83#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  84#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  85
  86#define CORE_3_0V_SUPPORT	BIT(25)
  87#define CORE_1_8V_SUPPORT	BIT(26)
  88#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  89
  90#define CORE_CSR_CDC_CTLR_CFG0		0x130
  91#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  92#define CORE_HW_AUTOCAL_ENA		BIT(17)
  93
  94#define CORE_CSR_CDC_CTLR_CFG1		0x134
  95#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  96#define CORE_TIMER_ENA			BIT(16)
  97
  98#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
  99#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
 100#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
 101#define CORE_CDC_OFFSET_CFG		0x14C
 102#define CORE_CSR_CDC_DELAY_CFG		0x150
 103#define CORE_CDC_SLAVE_DDA_CFG		0x160
 104#define CORE_CSR_CDC_STATUS0		0x164
 105#define CORE_CALIBRATION_DONE		BIT(0)
 106
 107#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 108
 109#define CORE_CSR_CDC_GEN_CFG		0x178
 110#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 111#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 112
 113#define CORE_CDC_T4_DLY_SEL		BIT(0)
 114#define CORE_CMDIN_RCLK_EN		BIT(1)
 115#define CORE_START_CDC_TRAFFIC		BIT(6)
 116
 117#define CORE_PWRSAVE_DLL	BIT(3)
 118
 119#define DDR_CONFIG_POR_VAL	0x80040873
 120
 121
 122#define INVALID_TUNING_PHASE	-1
 123#define SDHCI_MSM_MIN_CLOCK	400000
 124#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 125
 126#define CDR_SELEXT_SHIFT	20
 127#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 128#define CMUX_SHIFT_PHASE_SHIFT	24
 129#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 130
 131#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 132
 133/* Timeout value to avoid infinite waiting for pwr_irq */
 134#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 135
 136/* Max load for eMMC Vdd-io supply */
 137#define MMC_VQMMC_MAX_LOAD_UA	325000
 138
 139#define msm_host_readl(msm_host, host, offset) \
 140	msm_host->var_ops->msm_readl_relaxed(host, offset)
 141
 142#define msm_host_writel(msm_host, val, host, offset) \
 143	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 144
 145/* CQHCI vendor specific registers */
 146#define CQHCI_VENDOR_CFG1	0xA00
 147#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 148
 149struct sdhci_msm_offset {
 150	u32 core_hc_mode;
 151	u32 core_mci_data_cnt;
 152	u32 core_mci_status;
 153	u32 core_mci_fifo_cnt;
 154	u32 core_mci_version;
 155	u32 core_generics;
 156	u32 core_testbus_config;
 157	u32 core_testbus_sel2_bit;
 158	u32 core_testbus_ena;
 159	u32 core_testbus_sel2;
 160	u32 core_pwrctl_status;
 161	u32 core_pwrctl_mask;
 162	u32 core_pwrctl_clear;
 163	u32 core_pwrctl_ctl;
 164	u32 core_sdcc_debug_reg;
 165	u32 core_dll_config;
 166	u32 core_dll_status;
 167	u32 core_vendor_spec;
 168	u32 core_vendor_spec_adma_err_addr0;
 169	u32 core_vendor_spec_adma_err_addr1;
 170	u32 core_vendor_spec_func2;
 171	u32 core_vendor_spec_capabilities0;
 172	u32 core_ddr_200_cfg;
 173	u32 core_vendor_spec3;
 174	u32 core_dll_config_2;
 175	u32 core_dll_config_3;
 176	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 177	u32 core_ddr_config;
 178	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 179};
 180
 181static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 182	.core_mci_data_cnt = 0x35c,
 183	.core_mci_status = 0x324,
 184	.core_mci_fifo_cnt = 0x308,
 185	.core_mci_version = 0x318,
 186	.core_generics = 0x320,
 187	.core_testbus_config = 0x32c,
 188	.core_testbus_sel2_bit = 3,
 189	.core_testbus_ena = (1 << 31),
 190	.core_testbus_sel2 = (1 << 3),
 191	.core_pwrctl_status = 0x240,
 192	.core_pwrctl_mask = 0x244,
 193	.core_pwrctl_clear = 0x248,
 194	.core_pwrctl_ctl = 0x24c,
 195	.core_sdcc_debug_reg = 0x358,
 196	.core_dll_config = 0x200,
 197	.core_dll_status = 0x208,
 198	.core_vendor_spec = 0x20c,
 199	.core_vendor_spec_adma_err_addr0 = 0x214,
 200	.core_vendor_spec_adma_err_addr1 = 0x218,
 201	.core_vendor_spec_func2 = 0x210,
 202	.core_vendor_spec_capabilities0 = 0x21c,
 203	.core_ddr_200_cfg = 0x224,
 204	.core_vendor_spec3 = 0x250,
 205	.core_dll_config_2 = 0x254,
 206	.core_dll_config_3 = 0x258,
 207	.core_ddr_config = 0x25c,
 208	.core_dll_usr_ctl = 0x388,
 209};
 210
 211static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 212	.core_hc_mode = 0x78,
 213	.core_mci_data_cnt = 0x30,
 214	.core_mci_status = 0x34,
 215	.core_mci_fifo_cnt = 0x44,
 216	.core_mci_version = 0x050,
 217	.core_generics = 0x70,
 218	.core_testbus_config = 0x0cc,
 219	.core_testbus_sel2_bit = 4,
 220	.core_testbus_ena = (1 << 3),
 221	.core_testbus_sel2 = (1 << 4),
 222	.core_pwrctl_status = 0xdc,
 223	.core_pwrctl_mask = 0xe0,
 224	.core_pwrctl_clear = 0xe4,
 225	.core_pwrctl_ctl = 0xe8,
 226	.core_sdcc_debug_reg = 0x124,
 227	.core_dll_config = 0x100,
 228	.core_dll_status = 0x108,
 229	.core_vendor_spec = 0x10c,
 230	.core_vendor_spec_adma_err_addr0 = 0x114,
 231	.core_vendor_spec_adma_err_addr1 = 0x118,
 232	.core_vendor_spec_func2 = 0x110,
 233	.core_vendor_spec_capabilities0 = 0x11c,
 234	.core_ddr_200_cfg = 0x184,
 235	.core_vendor_spec3 = 0x1b0,
 236	.core_dll_config_2 = 0x1b4,
 237	.core_ddr_config_old = 0x1b8,
 238	.core_ddr_config = 0x1bc,
 239};
 240
 241struct sdhci_msm_variant_ops {
 242	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 243	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 244			u32 offset);
 245};
 246
 247/*
 248 * From V5, register spaces have changed. Wrap this info in a structure
 249 * and choose the data_structure based on version info mentioned in DT.
 250 */
 251struct sdhci_msm_variant_info {
 252	bool mci_removed;
 253	bool restore_dll_config;
 
 254	const struct sdhci_msm_variant_ops *var_ops;
 255	const struct sdhci_msm_offset *offset;
 256};
 257
 258struct sdhci_msm_host {
 259	struct platform_device *pdev;
 260	void __iomem *core_mem;	/* MSM SDCC mapped address */
 261	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
 262	int pwr_irq;		/* power irq */
 263	struct clk *bus_clk;	/* SDHC bus voter clock */
 264	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 265	/* core, iface, cal, sleep, and ice clocks */
 266	struct clk_bulk_data bulk_clks[5];
 267	unsigned long clk_rate;
 268	struct mmc_host *mmc;
 
 
 269	bool use_14lpp_dll_reset;
 270	bool tuning_done;
 271	bool calibration_done;
 272	u8 saved_tuning_phase;
 273	bool use_cdclp533;
 274	u32 curr_pwr_state;
 275	u32 curr_io_level;
 276	wait_queue_head_t pwr_irq_wait;
 277	bool pwr_irq_flag;
 278	u32 caps_0;
 279	bool mci_removed;
 280	bool restore_dll_config;
 281	const struct sdhci_msm_variant_ops *var_ops;
 282	const struct sdhci_msm_offset *offset;
 283	bool use_cdr;
 284	u32 transfer_mode;
 285	bool updated_ddr_cfg;
 286	bool uses_tassadar_dll;
 287	u32 dll_config;
 288	u32 ddr_config;
 289	bool vqmmc_enabled;
 290};
 291
 292static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 293{
 294	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 295	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 296
 297	return msm_host->offset;
 298}
 299
 300/*
 301 * APIs to read/write to vendor specific registers which were there in the
 302 * core_mem region before MCI was removed.
 303 */
 304static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 305		u32 offset)
 306{
 307	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 308	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 309
 310	return readl_relaxed(msm_host->core_mem + offset);
 311}
 312
 313static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 314		u32 offset)
 315{
 316	return readl_relaxed(host->ioaddr + offset);
 317}
 318
 319static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 320		struct sdhci_host *host, u32 offset)
 321{
 322	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 323	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 324
 325	writel_relaxed(val, msm_host->core_mem + offset);
 326}
 327
 328static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 329		struct sdhci_host *host, u32 offset)
 330{
 331	writel_relaxed(val, host->ioaddr + offset);
 332}
 333
 334static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
 
 335{
 336	struct mmc_ios ios = host->mmc->ios;
 337	/*
 338	 * The SDHC requires internal clock frequency to be double the
 339	 * actual clock that will be set for DDR mode. The controller
 340	 * uses the faster clock(100/400MHz) for some of its parts and
 341	 * send the actual required clock (50/200MHz) to the card.
 342	 */
 343	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 344	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 345	    ios.timing == MMC_TIMING_MMC_HS400 ||
 346	    host->flags & SDHCI_HS400_TUNING)
 347		return 2;
 348	return 1;
 349}
 350
 351static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 352					    unsigned int clock)
 353{
 354	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 355	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 356	struct mmc_ios curr_ios = host->mmc->ios;
 357	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 358	unsigned long achieved_rate;
 359	unsigned int desired_rate;
 360	unsigned int mult;
 361	int rc;
 362
 363	mult = msm_get_clock_mult_for_bus_mode(host);
 364	desired_rate = clock * mult;
 365	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
 366	if (rc) {
 367		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 368		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
 
 369		return;
 370	}
 371
 372	/*
 373	 * Qualcomm clock drivers by default round clock _up_ if they can't
 374	 * make the requested rate.  This is not good for SD.  Yell if we
 375	 * encounter it.
 376	 */
 377	achieved_rate = clk_get_rate(core_clk);
 378	if (achieved_rate > desired_rate)
 379		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
 380			mmc_hostname(host->mmc), desired_rate, achieved_rate);
 381	host->mmc->actual_clock = achieved_rate / mult;
 382
 383	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
 384	msm_host->clk_rate = desired_rate;
 385
 386	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 387		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
 
 388}
 389
 390/* Platform specific tuning */
 391static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 392{
 393	u32 wait_cnt = 50;
 394	u8 ck_out_en;
 395	struct mmc_host *mmc = host->mmc;
 396	const struct sdhci_msm_offset *msm_offset =
 397					sdhci_priv_msm_offset(host);
 398
 399	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 400	ck_out_en = !!(readl_relaxed(host->ioaddr +
 401			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 402
 403	while (ck_out_en != poll) {
 404		if (--wait_cnt == 0) {
 405			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 406			       mmc_hostname(mmc), poll);
 407			return -ETIMEDOUT;
 408		}
 409		udelay(1);
 410
 411		ck_out_en = !!(readl_relaxed(host->ioaddr +
 412			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 413	}
 414
 415	return 0;
 416}
 417
 418static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 419{
 420	int rc;
 421	static const u8 grey_coded_phase_table[] = {
 422		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 423		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 424	};
 425	unsigned long flags;
 426	u32 config;
 427	struct mmc_host *mmc = host->mmc;
 428	const struct sdhci_msm_offset *msm_offset =
 429					sdhci_priv_msm_offset(host);
 430
 431	if (phase > 0xf)
 432		return -EINVAL;
 433
 434	spin_lock_irqsave(&host->lock, flags);
 435
 436	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 437	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 438	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 439	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 440
 441	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 442	rc = msm_dll_poll_ck_out_en(host, 0);
 443	if (rc)
 444		goto err_out;
 445
 446	/*
 447	 * Write the selected DLL clock output phase (0 ... 15)
 448	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 449	 */
 450	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 451	config &= ~CDR_SELEXT_MASK;
 452	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 453	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 454
 455	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 456	config |= CORE_CK_OUT_EN;
 457	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 458
 459	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 460	rc = msm_dll_poll_ck_out_en(host, 1);
 461	if (rc)
 462		goto err_out;
 463
 464	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 465	config |= CORE_CDR_EN;
 466	config &= ~CORE_CDR_EXT_EN;
 467	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 468	goto out;
 469
 470err_out:
 471	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 472	       mmc_hostname(mmc), phase);
 473out:
 474	spin_unlock_irqrestore(&host->lock, flags);
 475	return rc;
 476}
 477
 478/*
 479 * Find out the greatest range of consecuitive selected
 480 * DLL clock output phases that can be used as sampling
 481 * setting for SD3.0 UHS-I card read operation (in SDR104
 482 * timing mode) or for eMMC4.5 card read operation (in
 483 * HS400/HS200 timing mode).
 484 * Select the 3/4 of the range and configure the DLL with the
 485 * selected DLL clock output phase.
 486 */
 487
 488static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 489					   u8 *phase_table, u8 total_phases)
 490{
 491	int ret;
 492	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 493	u8 phases_per_row[MAX_PHASES] = { 0 };
 494	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 495	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 496	bool phase_0_found = false, phase_15_found = false;
 497	struct mmc_host *mmc = host->mmc;
 498
 499	if (!total_phases || (total_phases > MAX_PHASES)) {
 500		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 501		       mmc_hostname(mmc), total_phases);
 502		return -EINVAL;
 503	}
 504
 505	for (cnt = 0; cnt < total_phases; cnt++) {
 506		ranges[row_index][col_index] = phase_table[cnt];
 507		phases_per_row[row_index] += 1;
 508		col_index++;
 509
 510		if ((cnt + 1) == total_phases) {
 511			continue;
 512		/* check if next phase in phase_table is consecutive or not */
 513		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 514			row_index++;
 515			col_index = 0;
 516		}
 517	}
 518
 519	if (row_index >= MAX_PHASES)
 520		return -EINVAL;
 521
 522	/* Check if phase-0 is present in first valid window? */
 523	if (!ranges[0][0]) {
 524		phase_0_found = true;
 525		phase_0_raw_index = 0;
 526		/* Check if cycle exist between 2 valid windows */
 527		for (cnt = 1; cnt <= row_index; cnt++) {
 528			if (phases_per_row[cnt]) {
 529				for (i = 0; i < phases_per_row[cnt]; i++) {
 530					if (ranges[cnt][i] == 15) {
 531						phase_15_found = true;
 532						phase_15_raw_index = cnt;
 533						break;
 534					}
 535				}
 536			}
 537		}
 538	}
 539
 540	/* If 2 valid windows form cycle then merge them as single window */
 541	if (phase_0_found && phase_15_found) {
 542		/* number of phases in raw where phase 0 is present */
 543		u8 phases_0 = phases_per_row[phase_0_raw_index];
 544		/* number of phases in raw where phase 15 is present */
 545		u8 phases_15 = phases_per_row[phase_15_raw_index];
 546
 547		if (phases_0 + phases_15 >= MAX_PHASES)
 548			/*
 549			 * If there are more than 1 phase windows then total
 550			 * number of phases in both the windows should not be
 551			 * more than or equal to MAX_PHASES.
 552			 */
 553			return -EINVAL;
 554
 555		/* Merge 2 cyclic windows */
 556		i = phases_15;
 557		for (cnt = 0; cnt < phases_0; cnt++) {
 558			ranges[phase_15_raw_index][i] =
 559			    ranges[phase_0_raw_index][cnt];
 560			if (++i >= MAX_PHASES)
 561				break;
 562		}
 563
 564		phases_per_row[phase_0_raw_index] = 0;
 565		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 566	}
 567
 568	for (cnt = 0; cnt <= row_index; cnt++) {
 569		if (phases_per_row[cnt] > curr_max) {
 570			curr_max = phases_per_row[cnt];
 571			selected_row_index = cnt;
 572		}
 573	}
 574
 575	i = (curr_max * 3) / 4;
 576	if (i)
 577		i--;
 578
 579	ret = ranges[selected_row_index][i];
 580
 581	if (ret >= MAX_PHASES) {
 582		ret = -EINVAL;
 583		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 584		       mmc_hostname(mmc), ret);
 585	}
 586
 587	return ret;
 588}
 589
 590static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 591{
 592	u32 mclk_freq = 0, config;
 593	const struct sdhci_msm_offset *msm_offset =
 594					sdhci_priv_msm_offset(host);
 595
 596	/* Program the MCLK value to MCLK_FREQ bit field */
 597	if (host->clock <= 112000000)
 598		mclk_freq = 0;
 599	else if (host->clock <= 125000000)
 600		mclk_freq = 1;
 601	else if (host->clock <= 137000000)
 602		mclk_freq = 2;
 603	else if (host->clock <= 150000000)
 604		mclk_freq = 3;
 605	else if (host->clock <= 162000000)
 606		mclk_freq = 4;
 607	else if (host->clock <= 175000000)
 608		mclk_freq = 5;
 609	else if (host->clock <= 187000000)
 610		mclk_freq = 6;
 611	else if (host->clock <= 200000000)
 612		mclk_freq = 7;
 613
 614	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 615	config &= ~CMUX_SHIFT_PHASE_MASK;
 616	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 617	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 618}
 619
 620/* Initialize the DLL (Programmable Delay Line) */
 621static int msm_init_cm_dll(struct sdhci_host *host)
 622{
 623	struct mmc_host *mmc = host->mmc;
 624	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 625	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 626	int wait_cnt = 50;
 627	unsigned long flags, xo_clk = 0;
 628	u32 config;
 629	const struct sdhci_msm_offset *msm_offset =
 630					msm_host->offset;
 631
 632	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 633		xo_clk = clk_get_rate(msm_host->xo_clk);
 634
 635	spin_lock_irqsave(&host->lock, flags);
 636
 637	/*
 638	 * Make sure that clock is always enabled when DLL
 639	 * tuning is in progress. Keeping PWRSAVE ON may
 640	 * turn off the clock.
 641	 */
 642	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 643	config &= ~CORE_CLK_PWRSAVE;
 644	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 645
 646	if (msm_host->dll_config)
 647		writel_relaxed(msm_host->dll_config,
 648				host->ioaddr + msm_offset->core_dll_config);
 649
 650	if (msm_host->use_14lpp_dll_reset) {
 651		config = readl_relaxed(host->ioaddr +
 652				msm_offset->core_dll_config);
 653		config &= ~CORE_CK_OUT_EN;
 654		writel_relaxed(config, host->ioaddr +
 655				msm_offset->core_dll_config);
 656
 657		config = readl_relaxed(host->ioaddr +
 658				msm_offset->core_dll_config_2);
 659		config |= CORE_DLL_CLOCK_DISABLE;
 660		writel_relaxed(config, host->ioaddr +
 661				msm_offset->core_dll_config_2);
 662	}
 663
 664	config = readl_relaxed(host->ioaddr +
 665			msm_offset->core_dll_config);
 666	config |= CORE_DLL_RST;
 667	writel_relaxed(config, host->ioaddr +
 668			msm_offset->core_dll_config);
 669
 670	config = readl_relaxed(host->ioaddr +
 671			msm_offset->core_dll_config);
 672	config |= CORE_DLL_PDN;
 673	writel_relaxed(config, host->ioaddr +
 674			msm_offset->core_dll_config);
 675
 676	if (!msm_host->dll_config)
 677		msm_cm_dll_set_freq(host);
 678
 679	if (msm_host->use_14lpp_dll_reset &&
 680	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 681		u32 mclk_freq = 0;
 682
 683		config = readl_relaxed(host->ioaddr +
 684				msm_offset->core_dll_config_2);
 685		config &= CORE_FLL_CYCLE_CNT;
 686		if (config)
 687			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 688					xo_clk);
 689		else
 690			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 691					xo_clk);
 692
 693		config = readl_relaxed(host->ioaddr +
 694				msm_offset->core_dll_config_2);
 695		config &= ~(0xFF << 10);
 696		config |= mclk_freq << 10;
 697
 698		writel_relaxed(config, host->ioaddr +
 699				msm_offset->core_dll_config_2);
 700		/* wait for 5us before enabling DLL clock */
 701		udelay(5);
 702	}
 703
 704	config = readl_relaxed(host->ioaddr +
 705			msm_offset->core_dll_config);
 706	config &= ~CORE_DLL_RST;
 707	writel_relaxed(config, host->ioaddr +
 708			msm_offset->core_dll_config);
 709
 710	config = readl_relaxed(host->ioaddr +
 711			msm_offset->core_dll_config);
 712	config &= ~CORE_DLL_PDN;
 713	writel_relaxed(config, host->ioaddr +
 714			msm_offset->core_dll_config);
 715
 716	if (msm_host->use_14lpp_dll_reset) {
 717		if (!msm_host->dll_config)
 718			msm_cm_dll_set_freq(host);
 719		config = readl_relaxed(host->ioaddr +
 720				msm_offset->core_dll_config_2);
 721		config &= ~CORE_DLL_CLOCK_DISABLE;
 722		writel_relaxed(config, host->ioaddr +
 723				msm_offset->core_dll_config_2);
 724	}
 725
 726	/*
 727	 * Configure DLL user control register to enable DLL status.
 728	 * This setting is applicable to SDCC v5.1 onwards only.
 729	 */
 730	if (msm_host->uses_tassadar_dll) {
 731		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 732			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 733		writel_relaxed(config, host->ioaddr +
 734				msm_offset->core_dll_usr_ctl);
 735
 736		config = readl_relaxed(host->ioaddr +
 737				msm_offset->core_dll_config_3);
 738		config &= ~0xFF;
 739		if (msm_host->clk_rate < 150000000)
 740			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 741		else
 742			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 743		writel_relaxed(config, host->ioaddr +
 744			msm_offset->core_dll_config_3);
 745	}
 746
 747	config = readl_relaxed(host->ioaddr +
 748			msm_offset->core_dll_config);
 749	config |= CORE_DLL_EN;
 750	writel_relaxed(config, host->ioaddr +
 751			msm_offset->core_dll_config);
 752
 753	config = readl_relaxed(host->ioaddr +
 754			msm_offset->core_dll_config);
 755	config |= CORE_CK_OUT_EN;
 756	writel_relaxed(config, host->ioaddr +
 757			msm_offset->core_dll_config);
 758
 759	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 760	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 761		 CORE_DLL_LOCK)) {
 762		/* max. wait for 50us sec for LOCK bit to be set */
 763		if (--wait_cnt == 0) {
 764			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 765			       mmc_hostname(mmc));
 766			spin_unlock_irqrestore(&host->lock, flags);
 767			return -ETIMEDOUT;
 768		}
 769		udelay(1);
 770	}
 771
 772	spin_unlock_irqrestore(&host->lock, flags);
 773	return 0;
 774}
 775
 776static void msm_hc_select_default(struct sdhci_host *host)
 777{
 778	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 779	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 780	u32 config;
 781	const struct sdhci_msm_offset *msm_offset =
 782					msm_host->offset;
 783
 784	if (!msm_host->use_cdclp533) {
 785		config = readl_relaxed(host->ioaddr +
 786				msm_offset->core_vendor_spec3);
 787		config &= ~CORE_PWRSAVE_DLL;
 788		writel_relaxed(config, host->ioaddr +
 789				msm_offset->core_vendor_spec3);
 790	}
 791
 792	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 793	config &= ~CORE_HC_MCLK_SEL_MASK;
 794	config |= CORE_HC_MCLK_SEL_DFLT;
 795	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 796
 797	/*
 798	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 799	 * configuration from Host Control2 register for all other
 800	 * modes.
 801	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 802	 * in VENDOR_SPEC_FUNC
 803	 */
 804	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 805	config &= ~CORE_HC_SELECT_IN_EN;
 806	config &= ~CORE_HC_SELECT_IN_MASK;
 807	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 808
 809	/*
 810	 * Make sure above writes impacting free running MCLK are completed
 811	 * before changing the clk_rate at GCC.
 812	 */
 813	wmb();
 814}
 815
 816static void msm_hc_select_hs400(struct sdhci_host *host)
 817{
 818	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 819	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 820	struct mmc_ios ios = host->mmc->ios;
 821	u32 config, dll_lock;
 822	int rc;
 823	const struct sdhci_msm_offset *msm_offset =
 824					msm_host->offset;
 825
 826	/* Select the divided clock (free running MCLK/2) */
 827	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 828	config &= ~CORE_HC_MCLK_SEL_MASK;
 829	config |= CORE_HC_MCLK_SEL_HS400;
 830
 831	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 832	/*
 833	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 834	 * register
 835	 */
 836	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 837	    !msm_host->calibration_done) {
 838		config = readl_relaxed(host->ioaddr +
 839				msm_offset->core_vendor_spec);
 840		config |= CORE_HC_SELECT_IN_HS400;
 841		config |= CORE_HC_SELECT_IN_EN;
 842		writel_relaxed(config, host->ioaddr +
 843				msm_offset->core_vendor_spec);
 844	}
 845	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 846		/*
 847		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 848		 * core_dll_status to be set. This should get set
 849		 * within 15 us at 200 MHz.
 850		 */
 851		rc = readl_relaxed_poll_timeout(host->ioaddr +
 852						msm_offset->core_dll_status,
 853						dll_lock,
 854						(dll_lock &
 855						(CORE_DLL_LOCK |
 856						CORE_DDR_DLL_LOCK)), 10,
 857						1000);
 858		if (rc == -ETIMEDOUT)
 859			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 860			       mmc_hostname(host->mmc), dll_lock);
 861	}
 862	/*
 863	 * Make sure above writes impacting free running MCLK are completed
 864	 * before changing the clk_rate at GCC.
 865	 */
 866	wmb();
 867}
 868
 869/*
 870 * sdhci_msm_hc_select_mode :- In general all timing modes are
 871 * controlled via UHS mode select in Host Control2 register.
 872 * eMMC specific HS200/HS400 doesn't have their respective modes
 873 * defined here, hence we use these values.
 874 *
 875 * HS200 - SDR104 (Since they both are equivalent in functionality)
 876 * HS400 - This involves multiple configurations
 877 *		Initially SDR104 - when tuning is required as HS200
 878 *		Then when switching to DDR @ 400MHz (HS400) we use
 879 *		the vendor specific HC_SELECT_IN to control the mode.
 880 *
 881 * In addition to controlling the modes we also need to select the
 882 * correct input clock for DLL depending on the mode.
 883 *
 884 * HS400 - divided clock (free running MCLK/2)
 885 * All other modes - default (free running MCLK)
 886 */
 887static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 888{
 889	struct mmc_ios ios = host->mmc->ios;
 890
 891	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 892	    host->flags & SDHCI_HS400_TUNING)
 893		msm_hc_select_hs400(host);
 894	else
 895		msm_hc_select_default(host);
 896}
 897
 898static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 899{
 900	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 901	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 902	u32 config, calib_done;
 903	int ret;
 904	const struct sdhci_msm_offset *msm_offset =
 905					msm_host->offset;
 906
 907	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 908
 909	/*
 910	 * Retuning in HS400 (DDR mode) will fail, just reset the
 911	 * tuning block and restore the saved tuning phase.
 912	 */
 913	ret = msm_init_cm_dll(host);
 914	if (ret)
 915		goto out;
 916
 917	/* Set the selected phase in delay line hw block */
 918	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 919	if (ret)
 920		goto out;
 921
 922	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 923	config |= CORE_CMD_DAT_TRACK_SEL;
 924	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 925
 926	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 927	config &= ~CORE_CDC_T4_DLY_SEL;
 928	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 929
 930	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 931	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 932	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 933
 934	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 935	config |= CORE_CDC_SWITCH_RC_EN;
 936	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 937
 938	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 939	config &= ~CORE_START_CDC_TRAFFIC;
 940	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 941
 942	/* Perform CDC Register Initialization Sequence */
 943
 944	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 945	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 946	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 947	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 948	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 949	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 950	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 951	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 952	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 953
 954	/* CDC HW Calibration */
 955
 956	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 957	config |= CORE_SW_TRIG_FULL_CALIB;
 958	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 959
 960	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 961	config &= ~CORE_SW_TRIG_FULL_CALIB;
 962	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 963
 964	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 965	config |= CORE_HW_AUTOCAL_ENA;
 966	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 967
 968	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 969	config |= CORE_TIMER_ENA;
 970	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 971
 972	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 973					 calib_done,
 974					 (calib_done & CORE_CALIBRATION_DONE),
 975					 1, 50);
 976
 977	if (ret == -ETIMEDOUT) {
 978		pr_err("%s: %s: CDC calibration was not completed\n",
 979		       mmc_hostname(host->mmc), __func__);
 980		goto out;
 981	}
 982
 983	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 984			& CORE_CDC_ERROR_CODE_MASK;
 985	if (ret) {
 986		pr_err("%s: %s: CDC error code %d\n",
 987		       mmc_hostname(host->mmc), __func__, ret);
 988		ret = -EINVAL;
 989		goto out;
 990	}
 991
 992	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 993	config |= CORE_START_CDC_TRAFFIC;
 994	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 995out:
 996	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
 997		 __func__, ret);
 998	return ret;
 999}
1000
1001static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002{
1003	struct mmc_host *mmc = host->mmc;
1004	u32 dll_status, config, ddr_cfg_offset;
1005	int ret;
1006	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008	const struct sdhci_msm_offset *msm_offset =
1009					sdhci_priv_msm_offset(host);
1010
1011	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012
1013	/*
1014	 * Currently the core_ddr_config register defaults to desired
1015	 * configuration on reset. Currently reprogramming the power on
1016	 * reset (POR) value in case it might have been modified by
1017	 * bootloaders. In the future, if this changes, then the desired
1018	 * values will need to be programmed appropriately.
1019	 */
1020	if (msm_host->updated_ddr_cfg)
1021		ddr_cfg_offset = msm_offset->core_ddr_config;
1022	else
1023		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025
1026	if (mmc->ios.enhanced_strobe) {
1027		config = readl_relaxed(host->ioaddr +
1028				msm_offset->core_ddr_200_cfg);
1029		config |= CORE_CMDIN_RCLK_EN;
1030		writel_relaxed(config, host->ioaddr +
1031				msm_offset->core_ddr_200_cfg);
1032	}
1033
1034	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035	config |= CORE_DDR_CAL_EN;
1036	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037
1038	ret = readl_relaxed_poll_timeout(host->ioaddr +
1039					msm_offset->core_dll_status,
1040					dll_status,
1041					(dll_status & CORE_DDR_DLL_LOCK),
1042					10, 1000);
1043
1044	if (ret == -ETIMEDOUT) {
1045		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046		       mmc_hostname(host->mmc), __func__);
1047		goto out;
1048	}
1049
1050	/*
1051	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053	 * and MCLK must be switched on for at-least 1us before DATA
1054	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055	 * guarantee above requirement. So PWRSAVE_DLL should not be
1056	 * turned on for host controllers using this DLL.
1057	 */
1058	if (!msm_host->use_14lpp_dll_reset) {
1059		config = readl_relaxed(host->ioaddr +
1060				msm_offset->core_vendor_spec3);
1061		config |= CORE_PWRSAVE_DLL;
1062		writel_relaxed(config, host->ioaddr +
1063				msm_offset->core_vendor_spec3);
1064	}
1065
1066	/*
1067	 * Drain writebuffer to ensure above DLL calibration
1068	 * and PWRSAVE DLL is enabled.
1069	 */
1070	wmb();
1071out:
1072	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073		 __func__, ret);
1074	return ret;
1075}
1076
1077static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078{
1079	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081	struct mmc_host *mmc = host->mmc;
1082	int ret;
1083	u32 config;
1084	const struct sdhci_msm_offset *msm_offset =
1085					msm_host->offset;
1086
1087	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088
1089	/*
1090	 * Retuning in HS400 (DDR mode) will fail, just reset the
1091	 * tuning block and restore the saved tuning phase.
1092	 */
1093	ret = msm_init_cm_dll(host);
1094	if (ret)
1095		goto out;
1096
1097	if (!mmc->ios.enhanced_strobe) {
1098		/* Set the selected phase in delay line hw block */
1099		ret = msm_config_cm_dll_phase(host,
1100					      msm_host->saved_tuning_phase);
1101		if (ret)
1102			goto out;
1103		config = readl_relaxed(host->ioaddr +
1104				msm_offset->core_dll_config);
1105		config |= CORE_CMD_DAT_TRACK_SEL;
1106		writel_relaxed(config, host->ioaddr +
1107				msm_offset->core_dll_config);
1108	}
1109
1110	if (msm_host->use_cdclp533)
1111		ret = sdhci_msm_cdclp533_calibration(host);
1112	else
1113		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114out:
1115	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116		 __func__, ret);
1117	return ret;
1118}
1119
1120static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121{
1122	struct mmc_ios *ios = &host->mmc->ios;
1123
1124	/*
1125	 * Tuning is required for SDR104, HS200 and HS400 cards and
1126	 * if clock frequency is greater than 100MHz in these modes.
1127	 */
1128	if (host->clock <= CORE_FREQ_100MHZ ||
1129	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130	    ios->timing == MMC_TIMING_MMC_HS200 ||
1131	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1132	    ios->enhanced_strobe)
1133		return false;
1134
1135	return true;
1136}
1137
1138static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139{
1140	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142	int ret;
1143
1144	/*
1145	 * SDR DLL comes into picture only for timing modes which needs
1146	 * tuning.
1147	 */
1148	if (!sdhci_msm_is_tuning_needed(host))
1149		return 0;
1150
1151	/* Reset the tuning block */
1152	ret = msm_init_cm_dll(host);
1153	if (ret)
1154		return ret;
1155
1156	/* Restore the tuning block */
1157	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158
1159	return ret;
1160}
1161
1162static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163{
1164	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166					      msm_offset->core_dll_config);
1167
1168	config = oldconfig;
1169	if (enable) {
1170		config |= CORE_CDR_EN;
1171		config &= ~CORE_CDR_EXT_EN;
1172	} else {
1173		config &= ~CORE_CDR_EN;
1174		config |= CORE_CDR_EXT_EN;
1175	}
1176
1177	if (config != oldconfig) {
1178		writel_relaxed(config, host->ioaddr +
1179			       msm_offset->core_dll_config);
1180	}
1181}
1182
1183static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184{
1185	struct sdhci_host *host = mmc_priv(mmc);
1186	int tuning_seq_cnt = 10;
1187	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188	int rc;
1189	struct mmc_ios ios = host->mmc->ios;
1190	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192
1193	if (!sdhci_msm_is_tuning_needed(host)) {
1194		msm_host->use_cdr = false;
1195		sdhci_msm_set_cdr(host, false);
1196		return 0;
1197	}
1198
1199	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200	msm_host->use_cdr = true;
1201
1202	/*
1203	 * Clear tuning_done flag before tuning to ensure proper
1204	 * HS400 settings.
1205	 */
1206	msm_host->tuning_done = 0;
1207
1208	/*
1209	 * For HS400 tuning in HS200 timing requires:
1210	 * - select MCLK/2 in VENDOR_SPEC
1211	 * - program MCLK to 400MHz (or nearest supported) in GCC
1212	 */
1213	if (host->flags & SDHCI_HS400_TUNING) {
1214		sdhci_msm_hc_select_mode(host);
1215		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216		host->flags &= ~SDHCI_HS400_TUNING;
1217	}
1218
1219retry:
1220	/* First of all reset the tuning block */
1221	rc = msm_init_cm_dll(host);
1222	if (rc)
1223		return rc;
1224
1225	phase = 0;
1226	do {
1227		/* Set the phase in delay line hw block */
1228		rc = msm_config_cm_dll_phase(host, phase);
1229		if (rc)
1230			return rc;
1231
1232		rc = mmc_send_tuning(mmc, opcode, NULL);
1233		if (!rc) {
1234			/* Tuning is successful at this tuning point */
1235			tuned_phases[tuned_phase_cnt++] = phase;
1236			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237				 mmc_hostname(mmc), phase);
1238		}
1239	} while (++phase < ARRAY_SIZE(tuned_phases));
1240
1241	if (tuned_phase_cnt) {
1242		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243			/*
1244			 * All phases valid is _almost_ as bad as no phases
1245			 * valid.  Probably all phases are not really reliable
1246			 * but we didn't detect where the unreliable place is.
1247			 * That means we'll essentially be guessing and hoping
1248			 * we get a good phase.  Better to try a few times.
1249			 */
1250			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251				mmc_hostname(mmc));
1252			if (--tuning_seq_cnt) {
1253				tuned_phase_cnt = 0;
1254				goto retry;
1255			}
1256		}
1257
1258		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259						     tuned_phase_cnt);
1260		if (rc < 0)
1261			return rc;
1262		else
1263			phase = rc;
1264
1265		/*
1266		 * Finally set the selected phase in delay
1267		 * line hw block.
1268		 */
1269		rc = msm_config_cm_dll_phase(host, phase);
1270		if (rc)
1271			return rc;
1272		msm_host->saved_tuning_phase = phase;
1273		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274			 mmc_hostname(mmc), phase);
1275	} else {
1276		if (--tuning_seq_cnt)
1277			goto retry;
1278		/* Tuning failed */
1279		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280		       mmc_hostname(mmc));
1281		rc = -EIO;
1282	}
1283
1284	if (!rc)
1285		msm_host->tuning_done = true;
1286	return rc;
1287}
1288
1289/*
1290 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291 * This needs to be done for both tuning and enhanced_strobe mode.
1292 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293 * fixed feedback clock is used.
1294 */
1295static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296{
1297	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299	int ret;
1300
1301	if (host->clock > CORE_FREQ_100MHZ &&
1302	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1303	    !msm_host->calibration_done) {
1304		ret = sdhci_msm_hs400_dll_calibration(host);
1305		if (!ret)
1306			msm_host->calibration_done = true;
1307		else
1308			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309			       mmc_hostname(host->mmc), ret);
1310	}
1311}
1312
1313static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314					unsigned int uhs)
1315{
1316	struct mmc_host *mmc = host->mmc;
1317	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319	u16 ctrl_2;
1320	u32 config;
1321	const struct sdhci_msm_offset *msm_offset =
1322					msm_host->offset;
1323
1324	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325	/* Select Bus Speed Mode for host */
1326	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327	switch (uhs) {
1328	case MMC_TIMING_UHS_SDR12:
1329		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330		break;
1331	case MMC_TIMING_UHS_SDR25:
1332		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333		break;
1334	case MMC_TIMING_UHS_SDR50:
1335		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336		break;
1337	case MMC_TIMING_MMC_HS400:
1338	case MMC_TIMING_MMC_HS200:
1339	case MMC_TIMING_UHS_SDR104:
1340		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341		break;
1342	case MMC_TIMING_UHS_DDR50:
1343	case MMC_TIMING_MMC_DDR52:
1344		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345		break;
1346	}
1347
1348	/*
1349	 * When clock frequency is less than 100MHz, the feedback clock must be
1350	 * provided and DLL must not be used so that tuning can be skipped. To
1351	 * provide feedback clock, the mode selection can be any value less
1352	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353	 */
1354	if (host->clock <= CORE_FREQ_100MHZ) {
1355		if (uhs == MMC_TIMING_MMC_HS400 ||
1356		    uhs == MMC_TIMING_MMC_HS200 ||
1357		    uhs == MMC_TIMING_UHS_SDR104)
1358			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359		/*
1360		 * DLL is not required for clock <= 100MHz
1361		 * Thus, make sure DLL it is disabled when not required
1362		 */
1363		config = readl_relaxed(host->ioaddr +
1364				msm_offset->core_dll_config);
1365		config |= CORE_DLL_RST;
1366		writel_relaxed(config, host->ioaddr +
1367				msm_offset->core_dll_config);
1368
1369		config = readl_relaxed(host->ioaddr +
1370				msm_offset->core_dll_config);
1371		config |= CORE_DLL_PDN;
1372		writel_relaxed(config, host->ioaddr +
1373				msm_offset->core_dll_config);
1374
1375		/*
1376		 * The DLL needs to be restored and CDCLP533 recalibrated
1377		 * when the clock frequency is set back to 400MHz.
1378		 */
1379		msm_host->calibration_done = false;
1380	}
1381
1382	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385
1386	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387		sdhci_msm_hs400(host, &mmc->ios);
1388}
1389
1390static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391{
1392	struct platform_device *pdev = msm_host->pdev;
1393	int ret;
1394
1395	if (level)
1396		ret = pinctrl_pm_select_default_state(&pdev->dev);
1397	else
1398		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399
1400	return ret;
1401}
1402
1403static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1404{
1405	if (IS_ERR(mmc->supply.vmmc))
1406		return 0;
1407
1408	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409}
1410
1411static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412			      struct mmc_host *mmc, bool level)
1413{
1414	int ret;
1415	struct mmc_ios ios;
1416
1417	if (msm_host->vqmmc_enabled == level)
1418		return 0;
1419
1420	if (level) {
1421		/* Set the IO voltage regulator to default voltage level */
1422		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426
1427		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429			if (ret < 0) {
1430				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431					mmc_hostname(mmc), ret);
1432				goto out;
1433			}
1434		}
1435		ret = regulator_enable(mmc->supply.vqmmc);
1436	} else {
1437		ret = regulator_disable(mmc->supply.vqmmc);
1438	}
1439
1440	if (ret)
1441		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442			mmc_hostname(mmc), level ? "en":"dis", ret);
1443	else
1444		msm_host->vqmmc_enabled = level;
1445out:
1446	return ret;
1447}
1448
1449static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450			      struct mmc_host *mmc, bool hpm)
1451{
1452	int load, ret;
1453
1454	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455	ret = regulator_set_load(mmc->supply.vqmmc, load);
1456	if (ret)
1457		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458			mmc_hostname(mmc), ret);
1459	return ret;
1460}
1461
1462static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463			      struct mmc_host *mmc, bool level)
1464{
1465	int ret;
1466	bool always_on;
1467
1468	if (IS_ERR(mmc->supply.vqmmc) ||
1469			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470		return 0;
1471	/*
1472	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473	 * and HPM modes by setting the corresponding load.
1474	 *
1475	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478	 * Vqmmc should remain ON, So just set the load instead of turning it
1479	 * off/on.
1480	 */
1481	always_on = !mmc_card_is_removable(mmc) &&
1482			mmc->card && mmc_card_mmc(mmc->card);
1483
1484	if (always_on)
1485		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486	else
1487		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488
1489	return ret;
1490}
1491
1492static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493{
1494	init_waitqueue_head(&msm_host->pwr_irq_wait);
1495}
1496
1497static inline void sdhci_msm_complete_pwr_irq_wait(
1498		struct sdhci_msm_host *msm_host)
1499{
1500	wake_up(&msm_host->pwr_irq_wait);
1501}
1502
1503/*
1504 * sdhci_msm_check_power_status API should be called when registers writes
1505 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506 * To what state the register writes will change the IO lines should be passed
1507 * as the argument req_type. This API will check whether the IO line's state
1508 * is already the expected state and will wait for power irq only if
1509 * power irq is expected to be triggered based on the current IO line state
1510 * and expected IO line state.
1511 */
1512static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513{
1514	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516	bool done = false;
1517	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518	const struct sdhci_msm_offset *msm_offset =
1519					msm_host->offset;
1520
1521	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522			mmc_hostname(host->mmc), __func__, req_type,
1523			msm_host->curr_pwr_state, msm_host->curr_io_level);
1524
1525	/*
1526	 * The power interrupt will not be generated for signal voltage
1527	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529	 * it as always set.
1530	 */
1531	if (!msm_host->mci_removed)
1532		val = msm_host_readl(msm_host, host,
1533				msm_offset->core_generics);
1534	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536		return;
1537	}
1538
1539	/*
1540	 * The IRQ for request type IO High/LOW will be generated when -
1541	 * there is a state change in 1.8V enable bit (bit 3) of
1542	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544	 * to set it to 3.3V before card detection happens, the
1545	 * IRQ doesn't get triggered as there is no state change in this bit.
1546	 * The driver already handles this case by changing the IO voltage
1547	 * level to high as part of controller power up sequence. Hence, check
1548	 * for host->pwr to handle a case where IO voltage high request is
1549	 * issued even before controller power up.
1550	 */
1551	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553				mmc_hostname(host->mmc), req_type);
1554		return;
1555	}
1556	if ((req_type & msm_host->curr_pwr_state) ||
1557			(req_type & msm_host->curr_io_level))
1558		done = true;
1559	/*
1560	 * This is needed here to handle cases where register writes will
1561	 * not change the current bus state or io level of the controller.
1562	 * In this case, no power irq will be triggerred and we should
1563	 * not wait.
1564	 */
1565	if (!done) {
1566		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567				msm_host->pwr_irq_flag,
1568				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569			dev_warn(&msm_host->pdev->dev,
1570				 "%s: pwr_irq for req: (%d) timed out\n",
1571				 mmc_hostname(host->mmc), req_type);
1572	}
1573	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574			__func__, req_type);
1575}
1576
1577static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578{
1579	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581	const struct sdhci_msm_offset *msm_offset =
1582					msm_host->offset;
1583
1584	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585		mmc_hostname(host->mmc),
1586		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589}
1590
1591static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592{
1593	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595	struct mmc_host *mmc = host->mmc;
1596	u32 irq_status, irq_ack = 0;
1597	int retry = 10, ret;
1598	u32 pwr_state = 0, io_level = 0;
1599	u32 config;
1600	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601
1602	irq_status = msm_host_readl(msm_host, host,
1603			msm_offset->core_pwrctl_status);
1604	irq_status &= INT_MASK;
1605
1606	msm_host_writel(msm_host, irq_status, host,
1607			msm_offset->core_pwrctl_clear);
1608
1609	/*
1610	 * There is a rare HW scenario where the first clear pulse could be
1611	 * lost when actual reset and clear/read of status register is
1612	 * happening at a time. Hence, retry for at least 10 times to make
1613	 * sure status register is cleared. Otherwise, this will result in
1614	 * a spurious power IRQ resulting in system instability.
1615	 */
1616	while (irq_status & msm_host_readl(msm_host, host,
1617				msm_offset->core_pwrctl_status)) {
1618		if (retry == 0) {
1619			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620					mmc_hostname(host->mmc), irq_status);
1621			sdhci_msm_dump_pwr_ctrl_regs(host);
1622			WARN_ON(1);
1623			break;
1624		}
1625		msm_host_writel(msm_host, irq_status, host,
1626			msm_offset->core_pwrctl_clear);
1627		retry--;
1628		udelay(10);
1629	}
1630
1631	/* Handle BUS ON/OFF*/
1632	if (irq_status & CORE_PWRCTL_BUS_ON) {
1633		pwr_state = REQ_BUS_ON;
1634		io_level = REQ_IO_HIGH;
1635	}
1636	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637		pwr_state = REQ_BUS_OFF;
1638		io_level = REQ_IO_LOW;
1639	}
1640
1641	if (pwr_state) {
1642		ret = sdhci_msm_set_vmmc(mmc);
1643		if (!ret)
1644			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645					pwr_state & REQ_BUS_ON);
1646		if (!ret)
1647			ret = sdhci_msm_set_pincfg(msm_host,
1648					pwr_state & REQ_BUS_ON);
1649		if (!ret)
1650			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651		else
1652			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653	}
1654
1655	/* Handle IO LOW/HIGH */
1656	if (irq_status & CORE_PWRCTL_IO_LOW)
1657		io_level = REQ_IO_LOW;
1658
1659	if (irq_status & CORE_PWRCTL_IO_HIGH)
1660		io_level = REQ_IO_HIGH;
1661
1662	if (io_level)
1663		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664
1665	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667		if (ret < 0) {
1668			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669					mmc_hostname(mmc), ret,
1670					mmc->ios.signal_voltage, mmc->ios.vdd,
1671					irq_status);
1672			irq_ack |= CORE_PWRCTL_IO_FAIL;
1673		}
1674	}
1675
1676	/*
1677	 * The driver has to acknowledge the interrupt, switch voltages and
1678	 * report back if it succeded or not to this register. The voltage
1679	 * switches are handled by the sdhci core, so just report success.
1680	 */
1681	msm_host_writel(msm_host, irq_ack, host,
1682			msm_offset->core_pwrctl_ctl);
1683
1684	/*
1685	 * If we don't have info regarding the voltage levels supported by
1686	 * regulators, don't change the IO PAD PWR SWITCH.
1687	 */
1688	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689		u32 new_config;
1690		/*
1691		 * We should unset IO PAD PWR switch only if the register write
1692		 * can set IO lines high and the regulator also switches to 3 V.
1693		 * Else, we should keep the IO PAD PWR switch set.
1694		 * This is applicable to certain targets where eMMC vccq supply
1695		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696		 * IO PAD PWR switch must be kept set to reflect actual
1697		 * regulator voltage. This way, during initialization of
1698		 * controllers with only 1.8V, we will set the IO PAD bit
1699		 * without waiting for a REQ_IO_LOW.
1700		 */
1701		config = readl_relaxed(host->ioaddr +
1702				msm_offset->core_vendor_spec);
1703		new_config = config;
1704
1705		if ((io_level & REQ_IO_HIGH) &&
1706				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708		else if ((io_level & REQ_IO_LOW) ||
1709				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710			new_config |= CORE_IO_PAD_PWR_SWITCH;
1711
1712		if (config ^ new_config)
1713			writel_relaxed(new_config, host->ioaddr +
1714					msm_offset->core_vendor_spec);
1715	}
1716
1717	if (pwr_state)
1718		msm_host->curr_pwr_state = pwr_state;
1719	if (io_level)
1720		msm_host->curr_io_level = io_level;
1721
1722	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724		irq_ack);
1725}
1726
1727static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728{
1729	struct sdhci_host *host = (struct sdhci_host *)data;
1730	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732
1733	sdhci_msm_handle_pwr_irq(host, irq);
1734	msm_host->pwr_irq_flag = 1;
1735	sdhci_msm_complete_pwr_irq_wait(msm_host);
1736
1737
1738	return IRQ_HANDLED;
1739}
1740
1741static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742{
1743	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746
1747	return clk_round_rate(core_clk, ULONG_MAX);
1748}
1749
1750static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751{
1752	return SDHCI_MSM_MIN_CLOCK;
1753}
1754
1755/*
1756 * __sdhci_msm_set_clock - sdhci_msm clock control.
1757 *
1758 * Description:
1759 * MSM controller does not use internal divider and
1760 * instead directly control the GCC clock as per
1761 * HW recommendation.
1762 **/
1763static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764{
1765	u16 clk;
 
 
 
 
 
 
 
1766
1767	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768
1769	if (clock == 0)
1770		return;
1771
1772	/*
1773	 * MSM controller do not use clock divider.
1774	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775	 * clock with no divider value programmed.
1776	 */
1777	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778	sdhci_enable_clk(host, clk);
1779}
1780
1781/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783{
1784	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786
1787	if (!clock) {
1788		host->mmc->actual_clock = msm_host->clk_rate = 0;
1789		goto out;
1790	}
1791
1792	sdhci_msm_hc_select_mode(host);
1793
1794	msm_set_clock_rate_for_bus_mode(host, clock);
1795out:
1796	__sdhci_msm_set_clock(host, clock);
1797}
1798
1799/*****************************************************************************\
1800 *                                                                           *
1801 * Inline Crypto Engine (ICE) support                                        *
1802 *                                                                           *
1803\*****************************************************************************/
1804
1805#ifdef CONFIG_MMC_CRYPTO
1806
1807#define AES_256_XTS_KEY_SIZE			64
1808
1809/* QCOM ICE registers */
1810
1811#define QCOM_ICE_REG_VERSION			0x0008
1812
1813#define QCOM_ICE_REG_FUSE_SETTING		0x0010
1814#define QCOM_ICE_FUSE_SETTING_MASK		0x1
1815#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1816#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1817
1818#define QCOM_ICE_REG_BIST_STATUS		0x0070
1819#define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1820
1821#define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1822
1823#define sdhci_msm_ice_writel(host, val, reg)	\
1824	writel((val), (host)->ice_mem + (reg))
1825#define sdhci_msm_ice_readl(host, reg)	\
1826	readl((host)->ice_mem + (reg))
1827
1828static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829{
1830	struct device *dev = mmc_dev(msm_host->mmc);
1831	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832	int major = regval >> 24;
1833	int minor = (regval >> 16) & 0xFF;
1834	int step = regval & 0xFFFF;
1835
1836	/* For now this driver only supports ICE version 3. */
1837	if (major != 3) {
1838		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839			 major, minor, step);
1840		return false;
1841	}
1842
1843	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844		 major, minor, step);
1845
1846	/* If fuses are blown, ICE might not work in the standard way. */
1847	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852		return false;
1853	}
1854	return true;
1855}
1856
1857static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858{
1859	return devm_clk_get(dev, "ice");
1860}
1861
1862static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863			      struct cqhci_host *cq_host)
1864{
1865	struct mmc_host *mmc = msm_host->mmc;
1866	struct device *dev = mmc_dev(mmc);
1867	struct resource *res;
1868
1869	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870		return 0;
1871
1872	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873					   "ice");
1874	if (!res) {
1875		dev_warn(dev, "ICE registers not found\n");
1876		goto disable;
1877	}
1878
1879	if (!qcom_scm_ice_available()) {
1880		dev_warn(dev, "ICE SCM interface not found\n");
1881		goto disable;
1882	}
1883
1884	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885	if (IS_ERR(msm_host->ice_mem))
1886		return PTR_ERR(msm_host->ice_mem);
1887
1888	if (!sdhci_msm_ice_supported(msm_host))
1889		goto disable;
1890
1891	mmc->caps2 |= MMC_CAP2_CRYPTO;
1892	return 0;
1893
1894disable:
1895	dev_warn(dev, "Disabling inline encryption support\n");
1896	return 0;
1897}
1898
1899static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900{
1901	u32 regval;
1902
1903	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904	/*
1905	 * Enable low power mode sequence
1906	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907	 */
1908	regval |= 0x7000;
1909	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910}
1911
1912static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913{
1914	u32 regval;
1915
1916	/* ICE Optimizations Enable Sequence */
1917	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918	regval |= 0xD807100;
1919	/* ICE HPG requires delay before writing */
1920	udelay(5);
1921	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922	udelay(5);
1923}
1924
1925/*
1926 * Wait until the ICE BIST (built-in self-test) has completed.
1927 *
1928 * This may be necessary before ICE can be used.
1929 *
1930 * Note that we don't really care whether the BIST passed or failed; we really
1931 * just want to make sure that it isn't still running.  This is because (a) the
1932 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933 * documented to reject crypto requests if the BIST fails, so we needn't do it
1934 * in software too, and (c) properly testing storage encryption requires testing
1935 * the full storage stack anyway, and not relying on hardware-level self-tests.
1936 */
1937static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938{
1939	u32 regval;
1940	int err;
1941
1942	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944				 50, 5000);
1945	if (err)
1946		dev_err(mmc_dev(msm_host->mmc),
1947			"Timed out waiting for ICE self-test to complete\n");
1948	return err;
1949}
1950
1951static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952{
1953	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954		return;
1955	sdhci_msm_ice_low_power_mode_enable(msm_host);
1956	sdhci_msm_ice_optimization_enable(msm_host);
1957	sdhci_msm_ice_wait_bist_status(msm_host);
1958}
1959
1960static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961{
1962	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963		return 0;
1964	return sdhci_msm_ice_wait_bist_status(msm_host);
1965}
1966
1967/*
1968 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1969 * vendor-specific SCM calls for this; it doesn't support the standard way.
1970 */
1971static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972				 const union cqhci_crypto_cfg_entry *cfg,
1973				 int slot)
1974{
1975	struct device *dev = mmc_dev(cq_host->mmc);
1976	union cqhci_crypto_cap_entry cap;
1977	union {
1978		u8 bytes[AES_256_XTS_KEY_SIZE];
1979		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980	} key;
1981	int i;
1982	int err;
1983
1984	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985		return qcom_scm_ice_invalidate_key(slot);
1986
1987	/* Only AES-256-XTS has been tested so far. */
1988	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991		dev_err_ratelimited(dev,
1992				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993				    cap.algorithm_id, cap.key_size);
1994		return -EINVAL;
1995	}
1996
1997	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998
1999	/*
2000	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2001	 * do the same, in order for the final key be correct.
2002	 */
2003	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004		__cpu_to_be32s(&key.words[i]);
2005
2006	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008				   cfg->data_unit_size);
2009	memzero_explicit(&key, sizeof(key));
2010	return err;
2011}
2012#else /* CONFIG_MMC_CRYPTO */
2013static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014{
2015	return NULL;
2016}
2017
2018static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019				     struct cqhci_host *cq_host)
2020{
2021	return 0;
2022}
2023
2024static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025{
2026}
2027
2028static inline int __maybe_unused
2029sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030{
2031	return 0;
2032}
2033#endif /* !CONFIG_MMC_CRYPTO */
2034
2035/*****************************************************************************\
2036 *                                                                           *
2037 * MSM Command Queue Engine (CQE)                                            *
2038 *                                                                           *
2039\*****************************************************************************/
2040
2041static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042{
2043	int cmd_error = 0;
2044	int data_error = 0;
2045
2046	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047		return intmask;
2048
2049	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050	return 0;
2051}
2052
2053static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054{
2055	struct sdhci_host *host = mmc_priv(mmc);
2056	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058
2059	sdhci_cqe_enable(mmc);
2060	sdhci_msm_ice_enable(msm_host);
2061}
2062
2063static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064{
2065	struct sdhci_host *host = mmc_priv(mmc);
2066	unsigned long flags;
2067	u32 ctrl;
2068
2069	/*
2070	 * When CQE is halted, the legacy SDHCI path operates only
2071	 * on 16-byte descriptors in 64bit mode.
2072	 */
2073	if (host->flags & SDHCI_USE_64_BIT_DMA)
2074		host->desc_sz = 16;
2075
2076	spin_lock_irqsave(&host->lock, flags);
2077
2078	/*
2079	 * During CQE command transfers, command complete bit gets latched.
2080	 * So s/w should clear command complete interrupt status when CQE is
2081	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082	 * interrupt gets triggered when CQE is halted/disabled.
2083	 */
2084	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085	ctrl |= SDHCI_INT_RESPONSE;
2086	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2087	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088
2089	spin_unlock_irqrestore(&host->lock, flags);
2090
2091	sdhci_cqe_disable(mmc, recovery);
2092}
2093
2094static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095{
2096	u32 count, start = 15;
2097
2098	__sdhci_set_timeout(host, cmd);
2099	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100	/*
2101	 * Update software timeout value if its value is less than hardware data
2102	 * timeout value. Qcom SoC hardware data timeout value was calculated
2103	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104	 */
2105	if (cmd && cmd->data && host->clock > 400000 &&
2106	    host->clock <= 50000000 &&
2107	    ((1 << (count + start)) > (10 * host->clock)))
2108		host->data_timeout = 22LL * NSEC_PER_SEC;
2109}
2110
2111static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112	.enable		= sdhci_msm_cqe_enable,
2113	.disable	= sdhci_msm_cqe_disable,
2114#ifdef CONFIG_MMC_CRYPTO
2115	.program_key	= sdhci_msm_program_key,
2116#endif
2117};
2118
2119static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120				struct platform_device *pdev)
2121{
2122	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124	struct cqhci_host *cq_host;
2125	bool dma64;
2126	u32 cqcfg;
2127	int ret;
2128
2129	/*
2130	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131	 * So ensure ADMA table is allocated for 16byte descriptors.
2132	 */
2133	if (host->caps & SDHCI_CAN_64BIT)
2134		host->alloc_desc_sz = 16;
2135
2136	ret = sdhci_setup_host(host);
2137	if (ret)
2138		return ret;
2139
2140	cq_host = cqhci_pltfm_init(pdev);
2141	if (IS_ERR(cq_host)) {
2142		ret = PTR_ERR(cq_host);
2143		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144		goto cleanup;
2145	}
2146
2147	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148	cq_host->ops = &sdhci_msm_cqhci_ops;
2149
2150	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151
2152	ret = sdhci_msm_ice_init(msm_host, cq_host);
2153	if (ret)
2154		goto cleanup;
2155
2156	ret = cqhci_init(cq_host, host->mmc, dma64);
2157	if (ret) {
2158		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159				mmc_hostname(host->mmc), ret);
2160		goto cleanup;
2161	}
2162
2163	/* Disable cqe reset due to cqe enable signal */
2164	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167
2168	/*
2169	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170	 * So limit desc_sz to 12 so that the data commands that are sent
2171	 * during card initialization (before CQE gets enabled) would
2172	 * get executed without any issues.
2173	 */
2174	if (host->flags & SDHCI_USE_64_BIT_DMA)
2175		host->desc_sz = 12;
2176
2177	ret = __sdhci_add_host(host);
2178	if (ret)
2179		goto cleanup;
2180
2181	dev_info(&pdev->dev, "%s: CQE init: success\n",
2182			mmc_hostname(host->mmc));
2183	return ret;
2184
2185cleanup:
2186	sdhci_cleanup_host(host);
2187	return ret;
2188}
2189
2190/*
2191 * Platform specific register write functions. This is so that, if any
2192 * register write needs to be followed up by platform specific actions,
2193 * they can be added here. These functions can go to sleep when writes
2194 * to certain registers are done.
2195 * These functions are relying on sdhci_set_ios not using spinlock.
2196 */
2197static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198{
2199	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201	u32 req_type = 0;
2202
2203	switch (reg) {
2204	case SDHCI_HOST_CONTROL2:
2205		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206			REQ_IO_HIGH;
2207		break;
2208	case SDHCI_SOFTWARE_RESET:
2209		if (host->pwr && (val & SDHCI_RESET_ALL))
2210			req_type = REQ_BUS_OFF;
2211		break;
2212	case SDHCI_POWER_CONTROL:
2213		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214		break;
2215	case SDHCI_TRANSFER_MODE:
2216		msm_host->transfer_mode = val;
2217		break;
2218	case SDHCI_COMMAND:
2219		if (!msm_host->use_cdr)
2220			break;
2221		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
 
2223			sdhci_msm_set_cdr(host, true);
2224		else
2225			sdhci_msm_set_cdr(host, false);
2226		break;
2227	}
2228
2229	if (req_type) {
2230		msm_host->pwr_irq_flag = 0;
2231		/*
2232		 * Since this register write may trigger a power irq, ensure
2233		 * all previous register writes are complete by this point.
2234		 */
2235		mb();
2236	}
2237	return req_type;
2238}
2239
2240/* This function may sleep*/
2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242{
2243	u32 req_type = 0;
2244
2245	req_type = __sdhci_msm_check_write(host, val, reg);
2246	writew_relaxed(val, host->ioaddr + reg);
2247
2248	if (req_type)
2249		sdhci_msm_check_power_status(host, req_type);
2250}
2251
2252/* This function may sleep*/
2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254{
2255	u32 req_type = 0;
2256
2257	req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259	writeb_relaxed(val, host->ioaddr + reg);
2260
2261	if (req_type)
2262		sdhci_msm_check_power_status(host, req_type);
2263}
2264
2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266{
2267	struct mmc_host *mmc = msm_host->mmc;
2268	struct regulator *supply = mmc->supply.vqmmc;
2269	u32 caps = 0, config;
2270	struct sdhci_host *host = mmc_priv(mmc);
2271	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273	if (!IS_ERR(mmc->supply.vqmmc)) {
2274		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275			caps |= CORE_1_8V_SUPPORT;
2276		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277			caps |= CORE_3_0V_SUPPORT;
2278
2279		if (!caps)
2280			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281					mmc_hostname(mmc));
2282	}
2283
2284	if (caps) {
2285		/*
2286		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287		 * bit can be used as required later on.
2288		 */
2289		u32 io_level = msm_host->curr_io_level;
2290
2291		config = readl_relaxed(host->ioaddr +
2292				msm_offset->core_vendor_spec);
2293		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2296			config &= ~CORE_IO_PAD_PWR_SWITCH;
2297		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298			config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300		writel_relaxed(config,
2301				host->ioaddr + msm_offset->core_vendor_spec);
2302	}
2303	msm_host->caps_0 |= caps;
2304	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305}
2306
 
 
 
 
 
 
 
2307static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308{
2309	int ret;
2310
2311	ret = mmc_regulator_get_supply(msm_host->mmc);
2312	if (ret)
2313		return ret;
2314
2315	sdhci_msm_set_regulator_caps(msm_host);
2316
2317	return 0;
2318}
2319
2320static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321				      struct mmc_ios *ios)
2322{
2323	struct sdhci_host *host = mmc_priv(mmc);
2324	u16 ctrl, status;
2325
2326	/*
2327	 * Signal Voltage Switching is only applicable for Host Controllers
2328	 * v3.00 and above.
2329	 */
2330	if (host->version < SDHCI_SPEC_300)
2331		return 0;
2332
2333	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334
2335	switch (ios->signal_voltage) {
2336	case MMC_SIGNAL_VOLTAGE_330:
2337		if (!(host->flags & SDHCI_SIGNALING_330))
2338			return -EINVAL;
2339
2340		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341		ctrl &= ~SDHCI_CTRL_VDD_180;
2342		break;
2343	case MMC_SIGNAL_VOLTAGE_180:
2344		if (!(host->flags & SDHCI_SIGNALING_180))
2345			return -EINVAL;
2346
2347		/* Enable 1.8V Signal Enable in the Host Control2 register */
2348		ctrl |= SDHCI_CTRL_VDD_180;
2349		break;
2350
2351	default:
2352		return -EINVAL;
2353	}
2354
2355	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356
2357	/* Wait for 5ms */
2358	usleep_range(5000, 5500);
2359
2360	/* regulator output should be stable within 5 ms */
2361	status = ctrl & SDHCI_CTRL_VDD_180;
2362	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364		return 0;
2365
2366	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367		mmc_hostname(mmc));
2368
2369	return -EAGAIN;
2370}
2371
2372#define DRIVER_NAME "sdhci_msm"
2373#define SDHCI_MSM_DUMP(f, x...) \
2374	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375
2376static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377{
2378	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381
2382	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383
2384	SDHCI_MSM_DUMP(
2385			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2386		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389	SDHCI_MSM_DUMP(
2390			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2391		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394	SDHCI_MSM_DUMP(
2395			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397		readl_relaxed(host->ioaddr +
2398			msm_offset->core_vendor_spec_func2),
2399		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400}
2401
2402static const struct sdhci_msm_variant_ops mci_var_ops = {
2403	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405};
2406
2407static const struct sdhci_msm_variant_ops v5_var_ops = {
2408	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410};
2411
2412static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413	.var_ops = &mci_var_ops,
2414	.offset = &sdhci_msm_mci_offset,
2415};
2416
2417static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418	.mci_removed = true,
2419	.var_ops = &v5_var_ops,
2420	.offset = &sdhci_msm_v5_offset,
2421};
2422
2423static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424	.mci_removed = true,
2425	.restore_dll_config = true,
2426	.var_ops = &v5_var_ops,
2427	.offset = &sdhci_msm_v5_offset,
2428};
2429
 
 
 
 
 
 
 
2430static const struct of_device_id sdhci_msm_dt_match[] = {
2431	/*
2432	 * Do not add new variants to the driver which are compatible with
2433	 * generic ones, unless they need customization.
2434	 */
2435	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440	{},
2441};
2442
2443MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444
2445static const struct sdhci_ops sdhci_msm_ops = {
2446	.reset = sdhci_and_cqhci_reset,
2447	.set_clock = sdhci_msm_set_clock,
2448	.get_min_clock = sdhci_msm_get_min_clock,
2449	.get_max_clock = sdhci_msm_get_max_clock,
2450	.set_bus_width = sdhci_set_bus_width,
2451	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452	.write_w = sdhci_msm_writew,
2453	.write_b = sdhci_msm_writeb,
2454	.irq	= sdhci_msm_cqe_irq,
2455	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456	.set_power = sdhci_set_power_noreg,
2457	.set_timeout = sdhci_msm_set_timeout,
2458};
2459
2460static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465
2466	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467	.ops = &sdhci_msm_ops,
2468};
2469
2470static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471		struct sdhci_host *host)
2472{
2473	struct device_node *node = pdev->dev.of_node;
2474	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476
2477	if (of_property_read_u32(node, "qcom,ddr-config",
2478				&msm_host->ddr_config))
2479		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480
2481	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2482}
2483
2484static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2485{
2486	struct reset_control *reset;
2487	int ret = 0;
2488
2489	reset = reset_control_get_optional_exclusive(dev, NULL);
2490	if (IS_ERR(reset))
2491		return dev_err_probe(dev, PTR_ERR(reset),
2492				"unable to acquire core_reset\n");
2493
2494	if (!reset)
2495		return ret;
2496
2497	ret = reset_control_assert(reset);
2498	if (ret) {
2499		reset_control_put(reset);
2500		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2501	}
2502
2503	/*
2504	 * The hardware requirement for delay between assert/deassert
2505	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2506	 * ~125us (4/32768). To be on the safe side add 200us delay.
2507	 */
2508	usleep_range(200, 210);
2509
2510	ret = reset_control_deassert(reset);
2511	if (ret) {
2512		reset_control_put(reset);
2513		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2514	}
2515
2516	usleep_range(200, 210);
2517	reset_control_put(reset);
2518
2519	return ret;
2520}
2521
2522static int sdhci_msm_probe(struct platform_device *pdev)
2523{
2524	struct sdhci_host *host;
2525	struct sdhci_pltfm_host *pltfm_host;
2526	struct sdhci_msm_host *msm_host;
2527	struct clk *clk;
2528	int ret;
2529	u16 host_version, core_minor;
2530	u32 core_version, config;
2531	u8 core_major;
2532	const struct sdhci_msm_offset *msm_offset;
2533	const struct sdhci_msm_variant_info *var_info;
2534	struct device_node *node = pdev->dev.of_node;
2535
2536	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2537	if (IS_ERR(host))
2538		return PTR_ERR(host);
2539
2540	host->sdma_boundary = 0;
2541	pltfm_host = sdhci_priv(host);
2542	msm_host = sdhci_pltfm_priv(pltfm_host);
2543	msm_host->mmc = host->mmc;
2544	msm_host->pdev = pdev;
2545
2546	ret = mmc_of_parse(host->mmc);
2547	if (ret)
2548		goto pltfm_free;
2549
2550	/*
2551	 * Based on the compatible string, load the required msm host info from
2552	 * the data associated with the version info.
2553	 */
2554	var_info = of_device_get_match_data(&pdev->dev);
2555
2556	msm_host->mci_removed = var_info->mci_removed;
2557	msm_host->restore_dll_config = var_info->restore_dll_config;
2558	msm_host->var_ops = var_info->var_ops;
2559	msm_host->offset = var_info->offset;
 
2560
2561	msm_offset = msm_host->offset;
2562
2563	sdhci_get_of_property(pdev);
2564	sdhci_msm_get_of_property(pdev, host);
2565
2566	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2567
2568	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2569	if (ret)
2570		goto pltfm_free;
2571
2572	/* Setup SDCC bus voter clock. */
2573	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2574	if (!IS_ERR(msm_host->bus_clk)) {
2575		/* Vote for max. clk rate for max. performance */
2576		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2577		if (ret)
2578			goto pltfm_free;
2579		ret = clk_prepare_enable(msm_host->bus_clk);
2580		if (ret)
2581			goto pltfm_free;
2582	}
2583
2584	/* Setup main peripheral bus clock */
2585	clk = devm_clk_get(&pdev->dev, "iface");
2586	if (IS_ERR(clk)) {
2587		ret = PTR_ERR(clk);
2588		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2589		goto bus_clk_disable;
2590	}
2591	msm_host->bulk_clks[1].clk = clk;
2592
2593	/* Setup SDC MMC clock */
2594	clk = devm_clk_get(&pdev->dev, "core");
2595	if (IS_ERR(clk)) {
2596		ret = PTR_ERR(clk);
2597		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2598		goto bus_clk_disable;
2599	}
2600	msm_host->bulk_clks[0].clk = clk;
2601
2602	 /* Check for optional interconnect paths */
2603	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2604	if (ret)
2605		goto bus_clk_disable;
2606
2607	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2608	if (ret)
 
2609		goto bus_clk_disable;
 
2610
2611	/* OPP table is optional */
2612	ret = devm_pm_opp_of_add_table(&pdev->dev);
2613	if (ret && ret != -ENODEV) {
 
 
2614		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2615		goto bus_clk_disable;
2616	}
2617
2618	/* Vote for maximum clock rate for maximum performance */
2619	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2620	if (ret)
2621		dev_warn(&pdev->dev, "core clock boost failed\n");
2622
2623	clk = devm_clk_get(&pdev->dev, "cal");
2624	if (IS_ERR(clk))
2625		clk = NULL;
2626	msm_host->bulk_clks[2].clk = clk;
2627
2628	clk = devm_clk_get(&pdev->dev, "sleep");
2629	if (IS_ERR(clk))
2630		clk = NULL;
2631	msm_host->bulk_clks[3].clk = clk;
2632
2633	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2634	if (IS_ERR(clk))
2635		clk = NULL;
2636	msm_host->bulk_clks[4].clk = clk;
2637
2638	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2639				      msm_host->bulk_clks);
2640	if (ret)
2641		goto bus_clk_disable;
2642
2643	/*
2644	 * xo clock is needed for FLL feature of cm_dll.
2645	 * In case if xo clock is not mentioned in DT, warn and proceed.
2646	 */
2647	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2648	if (IS_ERR(msm_host->xo_clk)) {
2649		ret = PTR_ERR(msm_host->xo_clk);
2650		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2651	}
2652
2653	if (!msm_host->mci_removed) {
2654		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2655		if (IS_ERR(msm_host->core_mem)) {
2656			ret = PTR_ERR(msm_host->core_mem);
2657			goto clk_disable;
2658		}
2659	}
2660
2661	/* Reset the vendor spec register to power on reset state */
2662	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2663			host->ioaddr + msm_offset->core_vendor_spec);
2664
2665	if (!msm_host->mci_removed) {
2666		/* Set HC_MODE_EN bit in HC_MODE register */
2667		msm_host_writel(msm_host, HC_MODE_EN, host,
2668				msm_offset->core_hc_mode);
2669		config = msm_host_readl(msm_host, host,
2670				msm_offset->core_hc_mode);
2671		config |= FF_CLK_SW_RST_DIS;
2672		msm_host_writel(msm_host, config, host,
2673				msm_offset->core_hc_mode);
2674	}
2675
2676	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2677	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2678		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2679			       SDHCI_VENDOR_VER_SHIFT));
2680
2681	core_version = msm_host_readl(msm_host, host,
2682			msm_offset->core_mci_version);
2683	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2684		      CORE_VERSION_MAJOR_SHIFT;
2685	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2686	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2687		core_version, core_major, core_minor);
2688
2689	if (core_major == 1 && core_minor >= 0x42)
2690		msm_host->use_14lpp_dll_reset = true;
2691
2692	/*
2693	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2694	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2695	 */
2696	if (core_major == 1 && core_minor < 0x34)
2697		msm_host->use_cdclp533 = true;
2698
2699	/*
2700	 * Support for some capabilities is not advertised by newer
2701	 * controller versions and must be explicitly enabled.
2702	 */
2703	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2704		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2705		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2706		writel_relaxed(config, host->ioaddr +
2707				msm_offset->core_vendor_spec_capabilities0);
2708	}
2709
2710	if (core_major == 1 && core_minor >= 0x49)
2711		msm_host->updated_ddr_cfg = true;
2712
2713	if (core_major == 1 && core_minor >= 0x71)
2714		msm_host->uses_tassadar_dll = true;
2715
2716	ret = sdhci_msm_register_vreg(msm_host);
2717	if (ret)
2718		goto clk_disable;
2719
2720	/*
2721	 * Power on reset state may trigger power irq if previous status of
2722	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2723	 * interrupt in GIC, any pending power irq interrupt should be
2724	 * acknowledged. Otherwise power irq interrupt handler would be
2725	 * fired prematurely.
2726	 */
2727	sdhci_msm_handle_pwr_irq(host, 0);
2728
2729	/*
2730	 * Ensure that above writes are propogated before interrupt enablement
2731	 * in GIC.
2732	 */
2733	mb();
2734
2735	/* Setup IRQ for handling power/voltage tasks with PMIC */
2736	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2737	if (msm_host->pwr_irq < 0) {
2738		ret = msm_host->pwr_irq;
2739		goto clk_disable;
2740	}
2741
2742	sdhci_msm_init_pwr_irq_wait(msm_host);
2743	/* Enable pwr irq interrupts */
2744	msm_host_writel(msm_host, INT_MASK, host,
2745		msm_offset->core_pwrctl_mask);
2746
2747	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2748					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2749					dev_name(&pdev->dev), host);
2750	if (ret) {
2751		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2752		goto clk_disable;
2753	}
2754
2755	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2756
2757	/* Set the timeout value to max possible */
2758	host->max_timeout_count = 0xF;
2759
2760	pm_runtime_get_noresume(&pdev->dev);
2761	pm_runtime_set_active(&pdev->dev);
2762	pm_runtime_enable(&pdev->dev);
2763	pm_runtime_set_autosuspend_delay(&pdev->dev,
2764					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2765	pm_runtime_use_autosuspend(&pdev->dev);
2766
2767	host->mmc_host_ops.start_signal_voltage_switch =
2768		sdhci_msm_start_signal_voltage_switch;
2769	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2770	if (of_property_read_bool(node, "supports-cqe"))
2771		ret = sdhci_msm_cqe_add_host(host, pdev);
2772	else
2773		ret = sdhci_add_host(host);
2774	if (ret)
2775		goto pm_runtime_disable;
2776
2777	pm_runtime_mark_last_busy(&pdev->dev);
2778	pm_runtime_put_autosuspend(&pdev->dev);
2779
2780	return 0;
2781
2782pm_runtime_disable:
2783	pm_runtime_disable(&pdev->dev);
2784	pm_runtime_set_suspended(&pdev->dev);
2785	pm_runtime_put_noidle(&pdev->dev);
2786clk_disable:
2787	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788				   msm_host->bulk_clks);
 
 
 
 
2789bus_clk_disable:
2790	if (!IS_ERR(msm_host->bus_clk))
2791		clk_disable_unprepare(msm_host->bus_clk);
2792pltfm_free:
2793	sdhci_pltfm_free(pdev);
2794	return ret;
2795}
2796
2797static int sdhci_msm_remove(struct platform_device *pdev)
2798{
2799	struct sdhci_host *host = platform_get_drvdata(pdev);
2800	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2801	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2802	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2803		    0xffffffff);
2804
2805	sdhci_remove_host(host, dead);
2806
 
 
 
2807	pm_runtime_get_sync(&pdev->dev);
2808	pm_runtime_disable(&pdev->dev);
2809	pm_runtime_put_noidle(&pdev->dev);
2810
2811	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812				   msm_host->bulk_clks);
2813	if (!IS_ERR(msm_host->bus_clk))
2814		clk_disable_unprepare(msm_host->bus_clk);
2815	sdhci_pltfm_free(pdev);
2816	return 0;
2817}
2818
2819static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2820{
2821	struct sdhci_host *host = dev_get_drvdata(dev);
2822	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2824
2825	/* Drop the performance vote */
2826	dev_pm_opp_set_rate(dev, 0);
2827	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2828				   msm_host->bulk_clks);
2829
2830	return 0;
2831}
2832
2833static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2834{
2835	struct sdhci_host *host = dev_get_drvdata(dev);
2836	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2837	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2838	int ret;
2839
2840	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2841				       msm_host->bulk_clks);
2842	if (ret)
2843		return ret;
2844	/*
2845	 * Whenever core-clock is gated dynamically, it's needed to
2846	 * restore the SDR DLL settings when the clock is ungated.
2847	 */
2848	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2849		ret = sdhci_msm_restore_sdr_dll_config(host);
2850		if (ret)
2851			return ret;
2852	}
2853
2854	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2855
2856	return sdhci_msm_ice_resume(msm_host);
2857}
2858
2859static const struct dev_pm_ops sdhci_msm_pm_ops = {
2860	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2861				pm_runtime_force_resume)
2862	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2863			   sdhci_msm_runtime_resume,
2864			   NULL)
2865};
2866
2867static struct platform_driver sdhci_msm_driver = {
2868	.probe = sdhci_msm_probe,
2869	.remove = sdhci_msm_remove,
2870	.driver = {
2871		   .name = "sdhci_msm",
2872		   .of_match_table = sdhci_msm_dt_match,
2873		   .pm = &sdhci_msm_pm_ops,
2874		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2875	},
2876};
2877
2878module_platform_driver(sdhci_msm_driver);
2879
2880MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2881MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/of_device.h>
  10#include <linux/delay.h>
  11#include <linux/mmc/mmc.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/pm_opp.h>
  14#include <linux/slab.h>
  15#include <linux/iopoll.h>
 
  16#include <linux/regulator/consumer.h>
  17#include <linux/interconnect.h>
  18#include <linux/pinctrl/consumer.h>
 
  19
 
  20#include "sdhci-pltfm.h"
  21#include "cqhci.h"
  22
  23#define CORE_MCI_VERSION		0x50
  24#define CORE_VERSION_MAJOR_SHIFT	28
  25#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  26#define CORE_VERSION_MINOR_MASK		0xff
  27
  28#define CORE_MCI_GENERICS		0x70
  29#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  30
  31#define HC_MODE_EN		0x1
  32#define CORE_POWER		0x0
  33#define CORE_SW_RST		BIT(7)
  34#define FF_CLK_SW_RST_DIS	BIT(13)
  35
  36#define CORE_PWRCTL_BUS_OFF	BIT(0)
  37#define CORE_PWRCTL_BUS_ON	BIT(1)
  38#define CORE_PWRCTL_IO_LOW	BIT(2)
  39#define CORE_PWRCTL_IO_HIGH	BIT(3)
  40#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  41#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  42#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  43#define CORE_PWRCTL_IO_FAIL     BIT(3)
  44#define REQ_BUS_OFF		BIT(0)
  45#define REQ_BUS_ON		BIT(1)
  46#define REQ_IO_LOW		BIT(2)
  47#define REQ_IO_HIGH		BIT(3)
  48#define INT_MASK		0xf
  49#define MAX_PHASES		16
  50#define CORE_DLL_LOCK		BIT(7)
  51#define CORE_DDR_DLL_LOCK	BIT(11)
  52#define CORE_DLL_EN		BIT(16)
  53#define CORE_CDR_EN		BIT(17)
  54#define CORE_CK_OUT_EN		BIT(18)
  55#define CORE_CDR_EXT_EN		BIT(19)
  56#define CORE_DLL_PDN		BIT(29)
  57#define CORE_DLL_RST		BIT(30)
  58#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  59
  60#define CORE_DDR_CAL_EN		BIT(0)
  61#define CORE_FLL_CYCLE_CNT	BIT(18)
  62#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  63
  64#define DLL_USR_CTL_POR_VAL	0x10800
  65#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  66#define FINE_TUNE_MODE_EN	BIT(27)
  67#define BIAS_OK_SIGNAL		BIT(29)
  68
  69#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  70#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  71
  72#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  73#define CORE_CLK_PWRSAVE	BIT(1)
  74#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  75#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  76#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  77#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  78#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  79#define CORE_HC_SELECT_IN_EN	BIT(18)
  80#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  81#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  82
  83#define CORE_3_0V_SUPPORT	BIT(25)
  84#define CORE_1_8V_SUPPORT	BIT(26)
  85#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  86
  87#define CORE_CSR_CDC_CTLR_CFG0		0x130
  88#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  89#define CORE_HW_AUTOCAL_ENA		BIT(17)
  90
  91#define CORE_CSR_CDC_CTLR_CFG1		0x134
  92#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  93#define CORE_TIMER_ENA			BIT(16)
  94
  95#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
  96#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
  97#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
  98#define CORE_CDC_OFFSET_CFG		0x14C
  99#define CORE_CSR_CDC_DELAY_CFG		0x150
 100#define CORE_CDC_SLAVE_DDA_CFG		0x160
 101#define CORE_CSR_CDC_STATUS0		0x164
 102#define CORE_CALIBRATION_DONE		BIT(0)
 103
 104#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 105
 106#define CORE_CSR_CDC_GEN_CFG		0x178
 107#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 108#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 109
 110#define CORE_CDC_T4_DLY_SEL		BIT(0)
 111#define CORE_CMDIN_RCLK_EN		BIT(1)
 112#define CORE_START_CDC_TRAFFIC		BIT(6)
 113
 114#define CORE_PWRSAVE_DLL	BIT(3)
 115
 116#define DDR_CONFIG_POR_VAL	0x80040873
 117
 118
 119#define INVALID_TUNING_PHASE	-1
 120#define SDHCI_MSM_MIN_CLOCK	400000
 121#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 122
 123#define CDR_SELEXT_SHIFT	20
 124#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 125#define CMUX_SHIFT_PHASE_SHIFT	24
 126#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 127
 128#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 129
 130/* Timeout value to avoid infinite waiting for pwr_irq */
 131#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 132
 133/* Max load for eMMC Vdd-io supply */
 134#define MMC_VQMMC_MAX_LOAD_UA	325000
 135
 136#define msm_host_readl(msm_host, host, offset) \
 137	msm_host->var_ops->msm_readl_relaxed(host, offset)
 138
 139#define msm_host_writel(msm_host, val, host, offset) \
 140	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 141
 142/* CQHCI vendor specific registers */
 143#define CQHCI_VENDOR_CFG1	0xA00
 144#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 145
 146struct sdhci_msm_offset {
 147	u32 core_hc_mode;
 148	u32 core_mci_data_cnt;
 149	u32 core_mci_status;
 150	u32 core_mci_fifo_cnt;
 151	u32 core_mci_version;
 152	u32 core_generics;
 153	u32 core_testbus_config;
 154	u32 core_testbus_sel2_bit;
 155	u32 core_testbus_ena;
 156	u32 core_testbus_sel2;
 157	u32 core_pwrctl_status;
 158	u32 core_pwrctl_mask;
 159	u32 core_pwrctl_clear;
 160	u32 core_pwrctl_ctl;
 161	u32 core_sdcc_debug_reg;
 162	u32 core_dll_config;
 163	u32 core_dll_status;
 164	u32 core_vendor_spec;
 165	u32 core_vendor_spec_adma_err_addr0;
 166	u32 core_vendor_spec_adma_err_addr1;
 167	u32 core_vendor_spec_func2;
 168	u32 core_vendor_spec_capabilities0;
 169	u32 core_ddr_200_cfg;
 170	u32 core_vendor_spec3;
 171	u32 core_dll_config_2;
 172	u32 core_dll_config_3;
 173	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 174	u32 core_ddr_config;
 175	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 176};
 177
 178static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 179	.core_mci_data_cnt = 0x35c,
 180	.core_mci_status = 0x324,
 181	.core_mci_fifo_cnt = 0x308,
 182	.core_mci_version = 0x318,
 183	.core_generics = 0x320,
 184	.core_testbus_config = 0x32c,
 185	.core_testbus_sel2_bit = 3,
 186	.core_testbus_ena = (1 << 31),
 187	.core_testbus_sel2 = (1 << 3),
 188	.core_pwrctl_status = 0x240,
 189	.core_pwrctl_mask = 0x244,
 190	.core_pwrctl_clear = 0x248,
 191	.core_pwrctl_ctl = 0x24c,
 192	.core_sdcc_debug_reg = 0x358,
 193	.core_dll_config = 0x200,
 194	.core_dll_status = 0x208,
 195	.core_vendor_spec = 0x20c,
 196	.core_vendor_spec_adma_err_addr0 = 0x214,
 197	.core_vendor_spec_adma_err_addr1 = 0x218,
 198	.core_vendor_spec_func2 = 0x210,
 199	.core_vendor_spec_capabilities0 = 0x21c,
 200	.core_ddr_200_cfg = 0x224,
 201	.core_vendor_spec3 = 0x250,
 202	.core_dll_config_2 = 0x254,
 203	.core_dll_config_3 = 0x258,
 204	.core_ddr_config = 0x25c,
 205	.core_dll_usr_ctl = 0x388,
 206};
 207
 208static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 209	.core_hc_mode = 0x78,
 210	.core_mci_data_cnt = 0x30,
 211	.core_mci_status = 0x34,
 212	.core_mci_fifo_cnt = 0x44,
 213	.core_mci_version = 0x050,
 214	.core_generics = 0x70,
 215	.core_testbus_config = 0x0cc,
 216	.core_testbus_sel2_bit = 4,
 217	.core_testbus_ena = (1 << 3),
 218	.core_testbus_sel2 = (1 << 4),
 219	.core_pwrctl_status = 0xdc,
 220	.core_pwrctl_mask = 0xe0,
 221	.core_pwrctl_clear = 0xe4,
 222	.core_pwrctl_ctl = 0xe8,
 223	.core_sdcc_debug_reg = 0x124,
 224	.core_dll_config = 0x100,
 225	.core_dll_status = 0x108,
 226	.core_vendor_spec = 0x10c,
 227	.core_vendor_spec_adma_err_addr0 = 0x114,
 228	.core_vendor_spec_adma_err_addr1 = 0x118,
 229	.core_vendor_spec_func2 = 0x110,
 230	.core_vendor_spec_capabilities0 = 0x11c,
 231	.core_ddr_200_cfg = 0x184,
 232	.core_vendor_spec3 = 0x1b0,
 233	.core_dll_config_2 = 0x1b4,
 234	.core_ddr_config_old = 0x1b8,
 235	.core_ddr_config = 0x1bc,
 236};
 237
 238struct sdhci_msm_variant_ops {
 239	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 240	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 241			u32 offset);
 242};
 243
 244/*
 245 * From V5, register spaces have changed. Wrap this info in a structure
 246 * and choose the data_structure based on version info mentioned in DT.
 247 */
 248struct sdhci_msm_variant_info {
 249	bool mci_removed;
 250	bool restore_dll_config;
 251	bool uses_tassadar_dll;
 252	const struct sdhci_msm_variant_ops *var_ops;
 253	const struct sdhci_msm_offset *offset;
 254};
 255
 256struct sdhci_msm_host {
 257	struct platform_device *pdev;
 258	void __iomem *core_mem;	/* MSM SDCC mapped address */
 
 259	int pwr_irq;		/* power irq */
 260	struct clk *bus_clk;	/* SDHC bus voter clock */
 261	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 262	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
 
 263	unsigned long clk_rate;
 264	struct mmc_host *mmc;
 265	struct opp_table *opp_table;
 266	bool has_opp_table;
 267	bool use_14lpp_dll_reset;
 268	bool tuning_done;
 269	bool calibration_done;
 270	u8 saved_tuning_phase;
 271	bool use_cdclp533;
 272	u32 curr_pwr_state;
 273	u32 curr_io_level;
 274	wait_queue_head_t pwr_irq_wait;
 275	bool pwr_irq_flag;
 276	u32 caps_0;
 277	bool mci_removed;
 278	bool restore_dll_config;
 279	const struct sdhci_msm_variant_ops *var_ops;
 280	const struct sdhci_msm_offset *offset;
 281	bool use_cdr;
 282	u32 transfer_mode;
 283	bool updated_ddr_cfg;
 284	bool uses_tassadar_dll;
 285	u32 dll_config;
 286	u32 ddr_config;
 287	bool vqmmc_enabled;
 288};
 289
 290static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 291{
 292	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 293	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 294
 295	return msm_host->offset;
 296}
 297
 298/*
 299 * APIs to read/write to vendor specific registers which were there in the
 300 * core_mem region before MCI was removed.
 301 */
 302static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 303		u32 offset)
 304{
 305	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 306	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 307
 308	return readl_relaxed(msm_host->core_mem + offset);
 309}
 310
 311static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 312		u32 offset)
 313{
 314	return readl_relaxed(host->ioaddr + offset);
 315}
 316
 317static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 318		struct sdhci_host *host, u32 offset)
 319{
 320	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 321	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 322
 323	writel_relaxed(val, msm_host->core_mem + offset);
 324}
 325
 326static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 327		struct sdhci_host *host, u32 offset)
 328{
 329	writel_relaxed(val, host->ioaddr + offset);
 330}
 331
 332static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
 333						    unsigned int clock)
 334{
 335	struct mmc_ios ios = host->mmc->ios;
 336	/*
 337	 * The SDHC requires internal clock frequency to be double the
 338	 * actual clock that will be set for DDR mode. The controller
 339	 * uses the faster clock(100/400MHz) for some of its parts and
 340	 * send the actual required clock (50/200MHz) to the card.
 341	 */
 342	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 343	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 344	    ios.timing == MMC_TIMING_MMC_HS400 ||
 345	    host->flags & SDHCI_HS400_TUNING)
 346		clock *= 2;
 347	return clock;
 348}
 349
 350static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 351					    unsigned int clock)
 352{
 353	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 354	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 355	struct mmc_ios curr_ios = host->mmc->ios;
 356	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 
 
 
 357	int rc;
 358
 359	clock = msm_get_clock_rate_for_bus_mode(host, clock);
 360	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), clock);
 
 361	if (rc) {
 362		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 363		       mmc_hostname(host->mmc), clock,
 364		       curr_ios.timing);
 365		return;
 366	}
 367	msm_host->clk_rate = clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 369		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
 370		 curr_ios.timing);
 371}
 372
 373/* Platform specific tuning */
 374static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 375{
 376	u32 wait_cnt = 50;
 377	u8 ck_out_en;
 378	struct mmc_host *mmc = host->mmc;
 379	const struct sdhci_msm_offset *msm_offset =
 380					sdhci_priv_msm_offset(host);
 381
 382	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 383	ck_out_en = !!(readl_relaxed(host->ioaddr +
 384			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 385
 386	while (ck_out_en != poll) {
 387		if (--wait_cnt == 0) {
 388			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 389			       mmc_hostname(mmc), poll);
 390			return -ETIMEDOUT;
 391		}
 392		udelay(1);
 393
 394		ck_out_en = !!(readl_relaxed(host->ioaddr +
 395			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 396	}
 397
 398	return 0;
 399}
 400
 401static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 402{
 403	int rc;
 404	static const u8 grey_coded_phase_table[] = {
 405		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 406		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 407	};
 408	unsigned long flags;
 409	u32 config;
 410	struct mmc_host *mmc = host->mmc;
 411	const struct sdhci_msm_offset *msm_offset =
 412					sdhci_priv_msm_offset(host);
 413
 414	if (phase > 0xf)
 415		return -EINVAL;
 416
 417	spin_lock_irqsave(&host->lock, flags);
 418
 419	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 420	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 421	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 422	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 423
 424	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 425	rc = msm_dll_poll_ck_out_en(host, 0);
 426	if (rc)
 427		goto err_out;
 428
 429	/*
 430	 * Write the selected DLL clock output phase (0 ... 15)
 431	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 432	 */
 433	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 434	config &= ~CDR_SELEXT_MASK;
 435	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 436	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 437
 438	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 439	config |= CORE_CK_OUT_EN;
 440	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 441
 442	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 443	rc = msm_dll_poll_ck_out_en(host, 1);
 444	if (rc)
 445		goto err_out;
 446
 447	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 448	config |= CORE_CDR_EN;
 449	config &= ~CORE_CDR_EXT_EN;
 450	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 451	goto out;
 452
 453err_out:
 454	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 455	       mmc_hostname(mmc), phase);
 456out:
 457	spin_unlock_irqrestore(&host->lock, flags);
 458	return rc;
 459}
 460
 461/*
 462 * Find out the greatest range of consecuitive selected
 463 * DLL clock output phases that can be used as sampling
 464 * setting for SD3.0 UHS-I card read operation (in SDR104
 465 * timing mode) or for eMMC4.5 card read operation (in
 466 * HS400/HS200 timing mode).
 467 * Select the 3/4 of the range and configure the DLL with the
 468 * selected DLL clock output phase.
 469 */
 470
 471static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 472					   u8 *phase_table, u8 total_phases)
 473{
 474	int ret;
 475	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 476	u8 phases_per_row[MAX_PHASES] = { 0 };
 477	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 478	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 479	bool phase_0_found = false, phase_15_found = false;
 480	struct mmc_host *mmc = host->mmc;
 481
 482	if (!total_phases || (total_phases > MAX_PHASES)) {
 483		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 484		       mmc_hostname(mmc), total_phases);
 485		return -EINVAL;
 486	}
 487
 488	for (cnt = 0; cnt < total_phases; cnt++) {
 489		ranges[row_index][col_index] = phase_table[cnt];
 490		phases_per_row[row_index] += 1;
 491		col_index++;
 492
 493		if ((cnt + 1) == total_phases) {
 494			continue;
 495		/* check if next phase in phase_table is consecutive or not */
 496		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 497			row_index++;
 498			col_index = 0;
 499		}
 500	}
 501
 502	if (row_index >= MAX_PHASES)
 503		return -EINVAL;
 504
 505	/* Check if phase-0 is present in first valid window? */
 506	if (!ranges[0][0]) {
 507		phase_0_found = true;
 508		phase_0_raw_index = 0;
 509		/* Check if cycle exist between 2 valid windows */
 510		for (cnt = 1; cnt <= row_index; cnt++) {
 511			if (phases_per_row[cnt]) {
 512				for (i = 0; i < phases_per_row[cnt]; i++) {
 513					if (ranges[cnt][i] == 15) {
 514						phase_15_found = true;
 515						phase_15_raw_index = cnt;
 516						break;
 517					}
 518				}
 519			}
 520		}
 521	}
 522
 523	/* If 2 valid windows form cycle then merge them as single window */
 524	if (phase_0_found && phase_15_found) {
 525		/* number of phases in raw where phase 0 is present */
 526		u8 phases_0 = phases_per_row[phase_0_raw_index];
 527		/* number of phases in raw where phase 15 is present */
 528		u8 phases_15 = phases_per_row[phase_15_raw_index];
 529
 530		if (phases_0 + phases_15 >= MAX_PHASES)
 531			/*
 532			 * If there are more than 1 phase windows then total
 533			 * number of phases in both the windows should not be
 534			 * more than or equal to MAX_PHASES.
 535			 */
 536			return -EINVAL;
 537
 538		/* Merge 2 cyclic windows */
 539		i = phases_15;
 540		for (cnt = 0; cnt < phases_0; cnt++) {
 541			ranges[phase_15_raw_index][i] =
 542			    ranges[phase_0_raw_index][cnt];
 543			if (++i >= MAX_PHASES)
 544				break;
 545		}
 546
 547		phases_per_row[phase_0_raw_index] = 0;
 548		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 549	}
 550
 551	for (cnt = 0; cnt <= row_index; cnt++) {
 552		if (phases_per_row[cnt] > curr_max) {
 553			curr_max = phases_per_row[cnt];
 554			selected_row_index = cnt;
 555		}
 556	}
 557
 558	i = (curr_max * 3) / 4;
 559	if (i)
 560		i--;
 561
 562	ret = ranges[selected_row_index][i];
 563
 564	if (ret >= MAX_PHASES) {
 565		ret = -EINVAL;
 566		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 567		       mmc_hostname(mmc), ret);
 568	}
 569
 570	return ret;
 571}
 572
 573static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 574{
 575	u32 mclk_freq = 0, config;
 576	const struct sdhci_msm_offset *msm_offset =
 577					sdhci_priv_msm_offset(host);
 578
 579	/* Program the MCLK value to MCLK_FREQ bit field */
 580	if (host->clock <= 112000000)
 581		mclk_freq = 0;
 582	else if (host->clock <= 125000000)
 583		mclk_freq = 1;
 584	else if (host->clock <= 137000000)
 585		mclk_freq = 2;
 586	else if (host->clock <= 150000000)
 587		mclk_freq = 3;
 588	else if (host->clock <= 162000000)
 589		mclk_freq = 4;
 590	else if (host->clock <= 175000000)
 591		mclk_freq = 5;
 592	else if (host->clock <= 187000000)
 593		mclk_freq = 6;
 594	else if (host->clock <= 200000000)
 595		mclk_freq = 7;
 596
 597	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 598	config &= ~CMUX_SHIFT_PHASE_MASK;
 599	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 600	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 601}
 602
 603/* Initialize the DLL (Programmable Delay Line) */
 604static int msm_init_cm_dll(struct sdhci_host *host)
 605{
 606	struct mmc_host *mmc = host->mmc;
 607	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 608	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 609	int wait_cnt = 50;
 610	unsigned long flags, xo_clk = 0;
 611	u32 config;
 612	const struct sdhci_msm_offset *msm_offset =
 613					msm_host->offset;
 614
 615	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 616		xo_clk = clk_get_rate(msm_host->xo_clk);
 617
 618	spin_lock_irqsave(&host->lock, flags);
 619
 620	/*
 621	 * Make sure that clock is always enabled when DLL
 622	 * tuning is in progress. Keeping PWRSAVE ON may
 623	 * turn off the clock.
 624	 */
 625	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 626	config &= ~CORE_CLK_PWRSAVE;
 627	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 628
 629	if (msm_host->dll_config)
 630		writel_relaxed(msm_host->dll_config,
 631				host->ioaddr + msm_offset->core_dll_config);
 632
 633	if (msm_host->use_14lpp_dll_reset) {
 634		config = readl_relaxed(host->ioaddr +
 635				msm_offset->core_dll_config);
 636		config &= ~CORE_CK_OUT_EN;
 637		writel_relaxed(config, host->ioaddr +
 638				msm_offset->core_dll_config);
 639
 640		config = readl_relaxed(host->ioaddr +
 641				msm_offset->core_dll_config_2);
 642		config |= CORE_DLL_CLOCK_DISABLE;
 643		writel_relaxed(config, host->ioaddr +
 644				msm_offset->core_dll_config_2);
 645	}
 646
 647	config = readl_relaxed(host->ioaddr +
 648			msm_offset->core_dll_config);
 649	config |= CORE_DLL_RST;
 650	writel_relaxed(config, host->ioaddr +
 651			msm_offset->core_dll_config);
 652
 653	config = readl_relaxed(host->ioaddr +
 654			msm_offset->core_dll_config);
 655	config |= CORE_DLL_PDN;
 656	writel_relaxed(config, host->ioaddr +
 657			msm_offset->core_dll_config);
 658
 659	if (!msm_host->dll_config)
 660		msm_cm_dll_set_freq(host);
 661
 662	if (msm_host->use_14lpp_dll_reset &&
 663	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 664		u32 mclk_freq = 0;
 665
 666		config = readl_relaxed(host->ioaddr +
 667				msm_offset->core_dll_config_2);
 668		config &= CORE_FLL_CYCLE_CNT;
 669		if (config)
 670			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 671					xo_clk);
 672		else
 673			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 674					xo_clk);
 675
 676		config = readl_relaxed(host->ioaddr +
 677				msm_offset->core_dll_config_2);
 678		config &= ~(0xFF << 10);
 679		config |= mclk_freq << 10;
 680
 681		writel_relaxed(config, host->ioaddr +
 682				msm_offset->core_dll_config_2);
 683		/* wait for 5us before enabling DLL clock */
 684		udelay(5);
 685	}
 686
 687	config = readl_relaxed(host->ioaddr +
 688			msm_offset->core_dll_config);
 689	config &= ~CORE_DLL_RST;
 690	writel_relaxed(config, host->ioaddr +
 691			msm_offset->core_dll_config);
 692
 693	config = readl_relaxed(host->ioaddr +
 694			msm_offset->core_dll_config);
 695	config &= ~CORE_DLL_PDN;
 696	writel_relaxed(config, host->ioaddr +
 697			msm_offset->core_dll_config);
 698
 699	if (msm_host->use_14lpp_dll_reset) {
 700		if (!msm_host->dll_config)
 701			msm_cm_dll_set_freq(host);
 702		config = readl_relaxed(host->ioaddr +
 703				msm_offset->core_dll_config_2);
 704		config &= ~CORE_DLL_CLOCK_DISABLE;
 705		writel_relaxed(config, host->ioaddr +
 706				msm_offset->core_dll_config_2);
 707	}
 708
 709	/*
 710	 * Configure DLL user control register to enable DLL status.
 711	 * This setting is applicable to SDCC v5.1 onwards only.
 712	 */
 713	if (msm_host->uses_tassadar_dll) {
 714		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 715			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 716		writel_relaxed(config, host->ioaddr +
 717				msm_offset->core_dll_usr_ctl);
 718
 719		config = readl_relaxed(host->ioaddr +
 720				msm_offset->core_dll_config_3);
 721		config &= ~0xFF;
 722		if (msm_host->clk_rate < 150000000)
 723			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 724		else
 725			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 726		writel_relaxed(config, host->ioaddr +
 727			msm_offset->core_dll_config_3);
 728	}
 729
 730	config = readl_relaxed(host->ioaddr +
 731			msm_offset->core_dll_config);
 732	config |= CORE_DLL_EN;
 733	writel_relaxed(config, host->ioaddr +
 734			msm_offset->core_dll_config);
 735
 736	config = readl_relaxed(host->ioaddr +
 737			msm_offset->core_dll_config);
 738	config |= CORE_CK_OUT_EN;
 739	writel_relaxed(config, host->ioaddr +
 740			msm_offset->core_dll_config);
 741
 742	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 743	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 744		 CORE_DLL_LOCK)) {
 745		/* max. wait for 50us sec for LOCK bit to be set */
 746		if (--wait_cnt == 0) {
 747			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 748			       mmc_hostname(mmc));
 749			spin_unlock_irqrestore(&host->lock, flags);
 750			return -ETIMEDOUT;
 751		}
 752		udelay(1);
 753	}
 754
 755	spin_unlock_irqrestore(&host->lock, flags);
 756	return 0;
 757}
 758
 759static void msm_hc_select_default(struct sdhci_host *host)
 760{
 761	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 762	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 763	u32 config;
 764	const struct sdhci_msm_offset *msm_offset =
 765					msm_host->offset;
 766
 767	if (!msm_host->use_cdclp533) {
 768		config = readl_relaxed(host->ioaddr +
 769				msm_offset->core_vendor_spec3);
 770		config &= ~CORE_PWRSAVE_DLL;
 771		writel_relaxed(config, host->ioaddr +
 772				msm_offset->core_vendor_spec3);
 773	}
 774
 775	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 776	config &= ~CORE_HC_MCLK_SEL_MASK;
 777	config |= CORE_HC_MCLK_SEL_DFLT;
 778	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 779
 780	/*
 781	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 782	 * configuration from Host Control2 register for all other
 783	 * modes.
 784	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 785	 * in VENDOR_SPEC_FUNC
 786	 */
 787	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 788	config &= ~CORE_HC_SELECT_IN_EN;
 789	config &= ~CORE_HC_SELECT_IN_MASK;
 790	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 791
 792	/*
 793	 * Make sure above writes impacting free running MCLK are completed
 794	 * before changing the clk_rate at GCC.
 795	 */
 796	wmb();
 797}
 798
 799static void msm_hc_select_hs400(struct sdhci_host *host)
 800{
 801	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 802	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 803	struct mmc_ios ios = host->mmc->ios;
 804	u32 config, dll_lock;
 805	int rc;
 806	const struct sdhci_msm_offset *msm_offset =
 807					msm_host->offset;
 808
 809	/* Select the divided clock (free running MCLK/2) */
 810	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 811	config &= ~CORE_HC_MCLK_SEL_MASK;
 812	config |= CORE_HC_MCLK_SEL_HS400;
 813
 814	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 815	/*
 816	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 817	 * register
 818	 */
 819	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 820	    !msm_host->calibration_done) {
 821		config = readl_relaxed(host->ioaddr +
 822				msm_offset->core_vendor_spec);
 823		config |= CORE_HC_SELECT_IN_HS400;
 824		config |= CORE_HC_SELECT_IN_EN;
 825		writel_relaxed(config, host->ioaddr +
 826				msm_offset->core_vendor_spec);
 827	}
 828	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 829		/*
 830		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 831		 * core_dll_status to be set. This should get set
 832		 * within 15 us at 200 MHz.
 833		 */
 834		rc = readl_relaxed_poll_timeout(host->ioaddr +
 835						msm_offset->core_dll_status,
 836						dll_lock,
 837						(dll_lock &
 838						(CORE_DLL_LOCK |
 839						CORE_DDR_DLL_LOCK)), 10,
 840						1000);
 841		if (rc == -ETIMEDOUT)
 842			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 843			       mmc_hostname(host->mmc), dll_lock);
 844	}
 845	/*
 846	 * Make sure above writes impacting free running MCLK are completed
 847	 * before changing the clk_rate at GCC.
 848	 */
 849	wmb();
 850}
 851
 852/*
 853 * sdhci_msm_hc_select_mode :- In general all timing modes are
 854 * controlled via UHS mode select in Host Control2 register.
 855 * eMMC specific HS200/HS400 doesn't have their respective modes
 856 * defined here, hence we use these values.
 857 *
 858 * HS200 - SDR104 (Since they both are equivalent in functionality)
 859 * HS400 - This involves multiple configurations
 860 *		Initially SDR104 - when tuning is required as HS200
 861 *		Then when switching to DDR @ 400MHz (HS400) we use
 862 *		the vendor specific HC_SELECT_IN to control the mode.
 863 *
 864 * In addition to controlling the modes we also need to select the
 865 * correct input clock for DLL depending on the mode.
 866 *
 867 * HS400 - divided clock (free running MCLK/2)
 868 * All other modes - default (free running MCLK)
 869 */
 870static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 871{
 872	struct mmc_ios ios = host->mmc->ios;
 873
 874	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 875	    host->flags & SDHCI_HS400_TUNING)
 876		msm_hc_select_hs400(host);
 877	else
 878		msm_hc_select_default(host);
 879}
 880
 881static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 882{
 883	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 884	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 885	u32 config, calib_done;
 886	int ret;
 887	const struct sdhci_msm_offset *msm_offset =
 888					msm_host->offset;
 889
 890	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 891
 892	/*
 893	 * Retuning in HS400 (DDR mode) will fail, just reset the
 894	 * tuning block and restore the saved tuning phase.
 895	 */
 896	ret = msm_init_cm_dll(host);
 897	if (ret)
 898		goto out;
 899
 900	/* Set the selected phase in delay line hw block */
 901	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 902	if (ret)
 903		goto out;
 904
 905	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 906	config |= CORE_CMD_DAT_TRACK_SEL;
 907	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 908
 909	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 910	config &= ~CORE_CDC_T4_DLY_SEL;
 911	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 912
 913	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 914	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 915	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 916
 917	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 918	config |= CORE_CDC_SWITCH_RC_EN;
 919	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 920
 921	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 922	config &= ~CORE_START_CDC_TRAFFIC;
 923	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 924
 925	/* Perform CDC Register Initialization Sequence */
 926
 927	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 928	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 929	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 930	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 931	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 932	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 933	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 934	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 935	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 936
 937	/* CDC HW Calibration */
 938
 939	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 940	config |= CORE_SW_TRIG_FULL_CALIB;
 941	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 942
 943	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 944	config &= ~CORE_SW_TRIG_FULL_CALIB;
 945	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 946
 947	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 948	config |= CORE_HW_AUTOCAL_ENA;
 949	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 950
 951	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 952	config |= CORE_TIMER_ENA;
 953	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 954
 955	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 956					 calib_done,
 957					 (calib_done & CORE_CALIBRATION_DONE),
 958					 1, 50);
 959
 960	if (ret == -ETIMEDOUT) {
 961		pr_err("%s: %s: CDC calibration was not completed\n",
 962		       mmc_hostname(host->mmc), __func__);
 963		goto out;
 964	}
 965
 966	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 967			& CORE_CDC_ERROR_CODE_MASK;
 968	if (ret) {
 969		pr_err("%s: %s: CDC error code %d\n",
 970		       mmc_hostname(host->mmc), __func__, ret);
 971		ret = -EINVAL;
 972		goto out;
 973	}
 974
 975	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 976	config |= CORE_START_CDC_TRAFFIC;
 977	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 978out:
 979	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
 980		 __func__, ret);
 981	return ret;
 982}
 983
 984static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
 985{
 986	struct mmc_host *mmc = host->mmc;
 987	u32 dll_status, config, ddr_cfg_offset;
 988	int ret;
 989	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 990	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 991	const struct sdhci_msm_offset *msm_offset =
 992					sdhci_priv_msm_offset(host);
 993
 994	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 995
 996	/*
 997	 * Currently the core_ddr_config register defaults to desired
 998	 * configuration on reset. Currently reprogramming the power on
 999	 * reset (POR) value in case it might have been modified by
1000	 * bootloaders. In the future, if this changes, then the desired
1001	 * values will need to be programmed appropriately.
1002	 */
1003	if (msm_host->updated_ddr_cfg)
1004		ddr_cfg_offset = msm_offset->core_ddr_config;
1005	else
1006		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1007	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1008
1009	if (mmc->ios.enhanced_strobe) {
1010		config = readl_relaxed(host->ioaddr +
1011				msm_offset->core_ddr_200_cfg);
1012		config |= CORE_CMDIN_RCLK_EN;
1013		writel_relaxed(config, host->ioaddr +
1014				msm_offset->core_ddr_200_cfg);
1015	}
1016
1017	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1018	config |= CORE_DDR_CAL_EN;
1019	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1020
1021	ret = readl_relaxed_poll_timeout(host->ioaddr +
1022					msm_offset->core_dll_status,
1023					dll_status,
1024					(dll_status & CORE_DDR_DLL_LOCK),
1025					10, 1000);
1026
1027	if (ret == -ETIMEDOUT) {
1028		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1029		       mmc_hostname(host->mmc), __func__);
1030		goto out;
1031	}
1032
1033	/*
1034	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1035	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1036	 * and MCLK must be switched on for at-least 1us before DATA
1037	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1038	 * guarantee above requirement. So PWRSAVE_DLL should not be
1039	 * turned on for host controllers using this DLL.
1040	 */
1041	if (!msm_host->use_14lpp_dll_reset) {
1042		config = readl_relaxed(host->ioaddr +
1043				msm_offset->core_vendor_spec3);
1044		config |= CORE_PWRSAVE_DLL;
1045		writel_relaxed(config, host->ioaddr +
1046				msm_offset->core_vendor_spec3);
1047	}
1048
1049	/*
1050	 * Drain writebuffer to ensure above DLL calibration
1051	 * and PWRSAVE DLL is enabled.
1052	 */
1053	wmb();
1054out:
1055	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1056		 __func__, ret);
1057	return ret;
1058}
1059
1060static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1061{
1062	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1063	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1064	struct mmc_host *mmc = host->mmc;
1065	int ret;
1066	u32 config;
1067	const struct sdhci_msm_offset *msm_offset =
1068					msm_host->offset;
1069
1070	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1071
1072	/*
1073	 * Retuning in HS400 (DDR mode) will fail, just reset the
1074	 * tuning block and restore the saved tuning phase.
1075	 */
1076	ret = msm_init_cm_dll(host);
1077	if (ret)
1078		goto out;
1079
1080	if (!mmc->ios.enhanced_strobe) {
1081		/* Set the selected phase in delay line hw block */
1082		ret = msm_config_cm_dll_phase(host,
1083					      msm_host->saved_tuning_phase);
1084		if (ret)
1085			goto out;
1086		config = readl_relaxed(host->ioaddr +
1087				msm_offset->core_dll_config);
1088		config |= CORE_CMD_DAT_TRACK_SEL;
1089		writel_relaxed(config, host->ioaddr +
1090				msm_offset->core_dll_config);
1091	}
1092
1093	if (msm_host->use_cdclp533)
1094		ret = sdhci_msm_cdclp533_calibration(host);
1095	else
1096		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1097out:
1098	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1099		 __func__, ret);
1100	return ret;
1101}
1102
1103static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1104{
1105	struct mmc_ios *ios = &host->mmc->ios;
1106
1107	/*
1108	 * Tuning is required for SDR104, HS200 and HS400 cards and
1109	 * if clock frequency is greater than 100MHz in these modes.
1110	 */
1111	if (host->clock <= CORE_FREQ_100MHZ ||
1112	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1113	    ios->timing == MMC_TIMING_MMC_HS200 ||
1114	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1115	    ios->enhanced_strobe)
1116		return false;
1117
1118	return true;
1119}
1120
1121static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1122{
1123	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1124	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1125	int ret;
1126
1127	/*
1128	 * SDR DLL comes into picture only for timing modes which needs
1129	 * tuning.
1130	 */
1131	if (!sdhci_msm_is_tuning_needed(host))
1132		return 0;
1133
1134	/* Reset the tuning block */
1135	ret = msm_init_cm_dll(host);
1136	if (ret)
1137		return ret;
1138
1139	/* Restore the tuning block */
1140	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1141
1142	return ret;
1143}
1144
1145static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1146{
1147	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1148	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1149					      msm_offset->core_dll_config);
1150
1151	config = oldconfig;
1152	if (enable) {
1153		config |= CORE_CDR_EN;
1154		config &= ~CORE_CDR_EXT_EN;
1155	} else {
1156		config &= ~CORE_CDR_EN;
1157		config |= CORE_CDR_EXT_EN;
1158	}
1159
1160	if (config != oldconfig) {
1161		writel_relaxed(config, host->ioaddr +
1162			       msm_offset->core_dll_config);
1163	}
1164}
1165
1166static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1167{
1168	struct sdhci_host *host = mmc_priv(mmc);
1169	int tuning_seq_cnt = 10;
1170	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1171	int rc;
1172	struct mmc_ios ios = host->mmc->ios;
1173	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1174	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1175
1176	if (!sdhci_msm_is_tuning_needed(host)) {
1177		msm_host->use_cdr = false;
1178		sdhci_msm_set_cdr(host, false);
1179		return 0;
1180	}
1181
1182	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1183	msm_host->use_cdr = true;
1184
1185	/*
1186	 * Clear tuning_done flag before tuning to ensure proper
1187	 * HS400 settings.
1188	 */
1189	msm_host->tuning_done = 0;
1190
1191	/*
1192	 * For HS400 tuning in HS200 timing requires:
1193	 * - select MCLK/2 in VENDOR_SPEC
1194	 * - program MCLK to 400MHz (or nearest supported) in GCC
1195	 */
1196	if (host->flags & SDHCI_HS400_TUNING) {
1197		sdhci_msm_hc_select_mode(host);
1198		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1199		host->flags &= ~SDHCI_HS400_TUNING;
1200	}
1201
1202retry:
1203	/* First of all reset the tuning block */
1204	rc = msm_init_cm_dll(host);
1205	if (rc)
1206		return rc;
1207
1208	phase = 0;
1209	do {
1210		/* Set the phase in delay line hw block */
1211		rc = msm_config_cm_dll_phase(host, phase);
1212		if (rc)
1213			return rc;
1214
1215		rc = mmc_send_tuning(mmc, opcode, NULL);
1216		if (!rc) {
1217			/* Tuning is successful at this tuning point */
1218			tuned_phases[tuned_phase_cnt++] = phase;
1219			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1220				 mmc_hostname(mmc), phase);
1221		}
1222	} while (++phase < ARRAY_SIZE(tuned_phases));
1223
1224	if (tuned_phase_cnt) {
1225		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1226			/*
1227			 * All phases valid is _almost_ as bad as no phases
1228			 * valid.  Probably all phases are not really reliable
1229			 * but we didn't detect where the unreliable place is.
1230			 * That means we'll essentially be guessing and hoping
1231			 * we get a good phase.  Better to try a few times.
1232			 */
1233			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1234				mmc_hostname(mmc));
1235			if (--tuning_seq_cnt) {
1236				tuned_phase_cnt = 0;
1237				goto retry;
1238			}
1239		}
1240
1241		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1242						     tuned_phase_cnt);
1243		if (rc < 0)
1244			return rc;
1245		else
1246			phase = rc;
1247
1248		/*
1249		 * Finally set the selected phase in delay
1250		 * line hw block.
1251		 */
1252		rc = msm_config_cm_dll_phase(host, phase);
1253		if (rc)
1254			return rc;
1255		msm_host->saved_tuning_phase = phase;
1256		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1257			 mmc_hostname(mmc), phase);
1258	} else {
1259		if (--tuning_seq_cnt)
1260			goto retry;
1261		/* Tuning failed */
1262		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1263		       mmc_hostname(mmc));
1264		rc = -EIO;
1265	}
1266
1267	if (!rc)
1268		msm_host->tuning_done = true;
1269	return rc;
1270}
1271
1272/*
1273 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1274 * This needs to be done for both tuning and enhanced_strobe mode.
1275 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1276 * fixed feedback clock is used.
1277 */
1278static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1279{
1280	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1281	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1282	int ret;
1283
1284	if (host->clock > CORE_FREQ_100MHZ &&
1285	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1286	    !msm_host->calibration_done) {
1287		ret = sdhci_msm_hs400_dll_calibration(host);
1288		if (!ret)
1289			msm_host->calibration_done = true;
1290		else
1291			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1292			       mmc_hostname(host->mmc), ret);
1293	}
1294}
1295
1296static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1297					unsigned int uhs)
1298{
1299	struct mmc_host *mmc = host->mmc;
1300	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302	u16 ctrl_2;
1303	u32 config;
1304	const struct sdhci_msm_offset *msm_offset =
1305					msm_host->offset;
1306
1307	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1308	/* Select Bus Speed Mode for host */
1309	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1310	switch (uhs) {
1311	case MMC_TIMING_UHS_SDR12:
1312		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1313		break;
1314	case MMC_TIMING_UHS_SDR25:
1315		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1316		break;
1317	case MMC_TIMING_UHS_SDR50:
1318		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1319		break;
1320	case MMC_TIMING_MMC_HS400:
1321	case MMC_TIMING_MMC_HS200:
1322	case MMC_TIMING_UHS_SDR104:
1323		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1324		break;
1325	case MMC_TIMING_UHS_DDR50:
1326	case MMC_TIMING_MMC_DDR52:
1327		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1328		break;
1329	}
1330
1331	/*
1332	 * When clock frequency is less than 100MHz, the feedback clock must be
1333	 * provided and DLL must not be used so that tuning can be skipped. To
1334	 * provide feedback clock, the mode selection can be any value less
1335	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1336	 */
1337	if (host->clock <= CORE_FREQ_100MHZ) {
1338		if (uhs == MMC_TIMING_MMC_HS400 ||
1339		    uhs == MMC_TIMING_MMC_HS200 ||
1340		    uhs == MMC_TIMING_UHS_SDR104)
1341			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1342		/*
1343		 * DLL is not required for clock <= 100MHz
1344		 * Thus, make sure DLL it is disabled when not required
1345		 */
1346		config = readl_relaxed(host->ioaddr +
1347				msm_offset->core_dll_config);
1348		config |= CORE_DLL_RST;
1349		writel_relaxed(config, host->ioaddr +
1350				msm_offset->core_dll_config);
1351
1352		config = readl_relaxed(host->ioaddr +
1353				msm_offset->core_dll_config);
1354		config |= CORE_DLL_PDN;
1355		writel_relaxed(config, host->ioaddr +
1356				msm_offset->core_dll_config);
1357
1358		/*
1359		 * The DLL needs to be restored and CDCLP533 recalibrated
1360		 * when the clock frequency is set back to 400MHz.
1361		 */
1362		msm_host->calibration_done = false;
1363	}
1364
1365	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1366		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1367	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1368
1369	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1370		sdhci_msm_hs400(host, &mmc->ios);
1371}
1372
1373static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1374{
1375	struct platform_device *pdev = msm_host->pdev;
1376	int ret;
1377
1378	if (level)
1379		ret = pinctrl_pm_select_default_state(&pdev->dev);
1380	else
1381		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1382
1383	return ret;
1384}
1385
1386static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1387{
1388	if (IS_ERR(mmc->supply.vmmc))
1389		return 0;
1390
1391	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1392}
1393
1394static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1395			      struct mmc_host *mmc, bool level)
1396{
1397	int ret;
1398	struct mmc_ios ios;
1399
1400	if (msm_host->vqmmc_enabled == level)
1401		return 0;
1402
1403	if (level) {
1404		/* Set the IO voltage regulator to default voltage level */
1405		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1406			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1407		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1408			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1409
1410		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1411			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1412			if (ret < 0) {
1413				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1414					mmc_hostname(mmc), ret);
1415				goto out;
1416			}
1417		}
1418		ret = regulator_enable(mmc->supply.vqmmc);
1419	} else {
1420		ret = regulator_disable(mmc->supply.vqmmc);
1421	}
1422
1423	if (ret)
1424		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1425			mmc_hostname(mmc), level ? "en":"dis", ret);
1426	else
1427		msm_host->vqmmc_enabled = level;
1428out:
1429	return ret;
1430}
1431
1432static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1433			      struct mmc_host *mmc, bool hpm)
1434{
1435	int load, ret;
1436
1437	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1438	ret = regulator_set_load(mmc->supply.vqmmc, load);
1439	if (ret)
1440		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1441			mmc_hostname(mmc), ret);
1442	return ret;
1443}
1444
1445static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1446			      struct mmc_host *mmc, bool level)
1447{
1448	int ret;
1449	bool always_on;
1450
1451	if (IS_ERR(mmc->supply.vqmmc) ||
1452			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1453		return 0;
1454	/*
1455	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1456	 * and HPM modes by setting the corresponding load.
1457	 *
1458	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1459	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1460	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1461	 * Vqmmc should remain ON, So just set the load instead of turning it
1462	 * off/on.
1463	 */
1464	always_on = !mmc_card_is_removable(mmc) &&
1465			mmc->card && mmc_card_mmc(mmc->card);
1466
1467	if (always_on)
1468		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1469	else
1470		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1471
1472	return ret;
1473}
1474
1475static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1476{
1477	init_waitqueue_head(&msm_host->pwr_irq_wait);
1478}
1479
1480static inline void sdhci_msm_complete_pwr_irq_wait(
1481		struct sdhci_msm_host *msm_host)
1482{
1483	wake_up(&msm_host->pwr_irq_wait);
1484}
1485
1486/*
1487 * sdhci_msm_check_power_status API should be called when registers writes
1488 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1489 * To what state the register writes will change the IO lines should be passed
1490 * as the argument req_type. This API will check whether the IO line's state
1491 * is already the expected state and will wait for power irq only if
1492 * power irq is expected to be triggered based on the current IO line state
1493 * and expected IO line state.
1494 */
1495static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1496{
1497	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1498	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1499	bool done = false;
1500	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1501	const struct sdhci_msm_offset *msm_offset =
1502					msm_host->offset;
1503
1504	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1505			mmc_hostname(host->mmc), __func__, req_type,
1506			msm_host->curr_pwr_state, msm_host->curr_io_level);
1507
1508	/*
1509	 * The power interrupt will not be generated for signal voltage
1510	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1511	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1512	 * it as always set.
1513	 */
1514	if (!msm_host->mci_removed)
1515		val = msm_host_readl(msm_host, host,
1516				msm_offset->core_generics);
1517	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1518	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1519		return;
1520	}
1521
1522	/*
1523	 * The IRQ for request type IO High/LOW will be generated when -
1524	 * there is a state change in 1.8V enable bit (bit 3) of
1525	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1526	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1527	 * to set it to 3.3V before card detection happens, the
1528	 * IRQ doesn't get triggered as there is no state change in this bit.
1529	 * The driver already handles this case by changing the IO voltage
1530	 * level to high as part of controller power up sequence. Hence, check
1531	 * for host->pwr to handle a case where IO voltage high request is
1532	 * issued even before controller power up.
1533	 */
1534	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1535		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1536				mmc_hostname(host->mmc), req_type);
1537		return;
1538	}
1539	if ((req_type & msm_host->curr_pwr_state) ||
1540			(req_type & msm_host->curr_io_level))
1541		done = true;
1542	/*
1543	 * This is needed here to handle cases where register writes will
1544	 * not change the current bus state or io level of the controller.
1545	 * In this case, no power irq will be triggerred and we should
1546	 * not wait.
1547	 */
1548	if (!done) {
1549		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1550				msm_host->pwr_irq_flag,
1551				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1552			dev_warn(&msm_host->pdev->dev,
1553				 "%s: pwr_irq for req: (%d) timed out\n",
1554				 mmc_hostname(host->mmc), req_type);
1555	}
1556	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1557			__func__, req_type);
1558}
1559
1560static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1561{
1562	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1563	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1564	const struct sdhci_msm_offset *msm_offset =
1565					msm_host->offset;
1566
1567	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1568		mmc_hostname(host->mmc),
1569		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1570		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1571		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1572}
1573
1574static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1575{
1576	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1577	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1578	struct mmc_host *mmc = host->mmc;
1579	u32 irq_status, irq_ack = 0;
1580	int retry = 10, ret;
1581	u32 pwr_state = 0, io_level = 0;
1582	u32 config;
1583	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1584
1585	irq_status = msm_host_readl(msm_host, host,
1586			msm_offset->core_pwrctl_status);
1587	irq_status &= INT_MASK;
1588
1589	msm_host_writel(msm_host, irq_status, host,
1590			msm_offset->core_pwrctl_clear);
1591
1592	/*
1593	 * There is a rare HW scenario where the first clear pulse could be
1594	 * lost when actual reset and clear/read of status register is
1595	 * happening at a time. Hence, retry for at least 10 times to make
1596	 * sure status register is cleared. Otherwise, this will result in
1597	 * a spurious power IRQ resulting in system instability.
1598	 */
1599	while (irq_status & msm_host_readl(msm_host, host,
1600				msm_offset->core_pwrctl_status)) {
1601		if (retry == 0) {
1602			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1603					mmc_hostname(host->mmc), irq_status);
1604			sdhci_msm_dump_pwr_ctrl_regs(host);
1605			WARN_ON(1);
1606			break;
1607		}
1608		msm_host_writel(msm_host, irq_status, host,
1609			msm_offset->core_pwrctl_clear);
1610		retry--;
1611		udelay(10);
1612	}
1613
1614	/* Handle BUS ON/OFF*/
1615	if (irq_status & CORE_PWRCTL_BUS_ON) {
1616		pwr_state = REQ_BUS_ON;
1617		io_level = REQ_IO_HIGH;
1618	}
1619	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1620		pwr_state = REQ_BUS_OFF;
1621		io_level = REQ_IO_LOW;
1622	}
1623
1624	if (pwr_state) {
1625		ret = sdhci_msm_set_vmmc(mmc);
1626		if (!ret)
1627			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1628					pwr_state & REQ_BUS_ON);
1629		if (!ret)
1630			ret = sdhci_msm_set_pincfg(msm_host,
1631					pwr_state & REQ_BUS_ON);
1632		if (!ret)
1633			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1634		else
1635			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1636	}
1637
1638	/* Handle IO LOW/HIGH */
1639	if (irq_status & CORE_PWRCTL_IO_LOW)
1640		io_level = REQ_IO_LOW;
1641
1642	if (irq_status & CORE_PWRCTL_IO_HIGH)
1643		io_level = REQ_IO_HIGH;
1644
1645	if (io_level)
1646		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1647
1648	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1649		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1650		if (ret < 0) {
1651			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1652					mmc_hostname(mmc), ret,
1653					mmc->ios.signal_voltage, mmc->ios.vdd,
1654					irq_status);
1655			irq_ack |= CORE_PWRCTL_IO_FAIL;
1656		}
1657	}
1658
1659	/*
1660	 * The driver has to acknowledge the interrupt, switch voltages and
1661	 * report back if it succeded or not to this register. The voltage
1662	 * switches are handled by the sdhci core, so just report success.
1663	 */
1664	msm_host_writel(msm_host, irq_ack, host,
1665			msm_offset->core_pwrctl_ctl);
1666
1667	/*
1668	 * If we don't have info regarding the voltage levels supported by
1669	 * regulators, don't change the IO PAD PWR SWITCH.
1670	 */
1671	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1672		u32 new_config;
1673		/*
1674		 * We should unset IO PAD PWR switch only if the register write
1675		 * can set IO lines high and the regulator also switches to 3 V.
1676		 * Else, we should keep the IO PAD PWR switch set.
1677		 * This is applicable to certain targets where eMMC vccq supply
1678		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1679		 * IO PAD PWR switch must be kept set to reflect actual
1680		 * regulator voltage. This way, during initialization of
1681		 * controllers with only 1.8V, we will set the IO PAD bit
1682		 * without waiting for a REQ_IO_LOW.
1683		 */
1684		config = readl_relaxed(host->ioaddr +
1685				msm_offset->core_vendor_spec);
1686		new_config = config;
1687
1688		if ((io_level & REQ_IO_HIGH) &&
1689				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1690			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1691		else if ((io_level & REQ_IO_LOW) ||
1692				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1693			new_config |= CORE_IO_PAD_PWR_SWITCH;
1694
1695		if (config ^ new_config)
1696			writel_relaxed(new_config, host->ioaddr +
1697					msm_offset->core_vendor_spec);
1698	}
1699
1700	if (pwr_state)
1701		msm_host->curr_pwr_state = pwr_state;
1702	if (io_level)
1703		msm_host->curr_io_level = io_level;
1704
1705	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1706		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1707		irq_ack);
1708}
1709
1710static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1711{
1712	struct sdhci_host *host = (struct sdhci_host *)data;
1713	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1714	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1715
1716	sdhci_msm_handle_pwr_irq(host, irq);
1717	msm_host->pwr_irq_flag = 1;
1718	sdhci_msm_complete_pwr_irq_wait(msm_host);
1719
1720
1721	return IRQ_HANDLED;
1722}
1723
1724static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1725{
1726	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1727	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1728	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1729
1730	return clk_round_rate(core_clk, ULONG_MAX);
1731}
1732
1733static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1734{
1735	return SDHCI_MSM_MIN_CLOCK;
1736}
1737
1738/*
1739 * __sdhci_msm_set_clock - sdhci_msm clock control.
1740 *
1741 * Description:
1742 * MSM controller does not use internal divider and
1743 * instead directly control the GCC clock as per
1744 * HW recommendation.
1745 **/
1746static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1747{
1748	u16 clk;
1749	/*
1750	 * Keep actual_clock as zero -
1751	 * - since there is no divider used so no need of having actual_clock.
1752	 * - MSM controller uses SDCLK for data timeout calculation. If
1753	 *   actual_clock is zero, host->clock is taken for calculation.
1754	 */
1755	host->mmc->actual_clock = 0;
1756
1757	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1758
1759	if (clock == 0)
1760		return;
1761
1762	/*
1763	 * MSM controller do not use clock divider.
1764	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1765	 * clock with no divider value programmed.
1766	 */
1767	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1768	sdhci_enable_clk(host, clk);
1769}
1770
1771/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1772static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1773{
1774	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1775	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1776
1777	if (!clock) {
1778		msm_host->clk_rate = clock;
1779		goto out;
1780	}
1781
1782	sdhci_msm_hc_select_mode(host);
1783
1784	msm_set_clock_rate_for_bus_mode(host, clock);
1785out:
1786	__sdhci_msm_set_clock(host, clock);
1787}
1788
1789/*****************************************************************************\
1790 *                                                                           *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1791 * MSM Command Queue Engine (CQE)                                            *
1792 *                                                                           *
1793\*****************************************************************************/
1794
1795static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1796{
1797	int cmd_error = 0;
1798	int data_error = 0;
1799
1800	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1801		return intmask;
1802
1803	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1804	return 0;
1805}
1806
 
 
 
 
 
 
 
 
 
 
1807static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1808{
1809	struct sdhci_host *host = mmc_priv(mmc);
1810	unsigned long flags;
1811	u32 ctrl;
1812
1813	/*
1814	 * When CQE is halted, the legacy SDHCI path operates only
1815	 * on 16-byte descriptors in 64bit mode.
1816	 */
1817	if (host->flags & SDHCI_USE_64_BIT_DMA)
1818		host->desc_sz = 16;
1819
1820	spin_lock_irqsave(&host->lock, flags);
1821
1822	/*
1823	 * During CQE command transfers, command complete bit gets latched.
1824	 * So s/w should clear command complete interrupt status when CQE is
1825	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1826	 * interrupt gets triggered when CQE is halted/disabled.
1827	 */
1828	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1829	ctrl |= SDHCI_INT_RESPONSE;
1830	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1831	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1832
1833	spin_unlock_irqrestore(&host->lock, flags);
1834
1835	sdhci_cqe_disable(mmc, recovery);
1836}
1837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1838static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1839	.enable		= sdhci_cqe_enable,
1840	.disable	= sdhci_msm_cqe_disable,
 
 
 
1841};
1842
1843static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1844				struct platform_device *pdev)
1845{
1846	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1847	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1848	struct cqhci_host *cq_host;
1849	bool dma64;
1850	u32 cqcfg;
1851	int ret;
1852
1853	/*
1854	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
1855	 * So ensure ADMA table is allocated for 16byte descriptors.
1856	 */
1857	if (host->caps & SDHCI_CAN_64BIT)
1858		host->alloc_desc_sz = 16;
1859
1860	ret = sdhci_setup_host(host);
1861	if (ret)
1862		return ret;
1863
1864	cq_host = cqhci_pltfm_init(pdev);
1865	if (IS_ERR(cq_host)) {
1866		ret = PTR_ERR(cq_host);
1867		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
1868		goto cleanup;
1869	}
1870
1871	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
1872	cq_host->ops = &sdhci_msm_cqhci_ops;
1873
1874	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
1875
 
 
 
 
1876	ret = cqhci_init(cq_host, host->mmc, dma64);
1877	if (ret) {
1878		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
1879				mmc_hostname(host->mmc), ret);
1880		goto cleanup;
1881	}
1882
1883	/* Disable cqe reset due to cqe enable signal */
1884	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
1885	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
1886	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
1887
1888	/*
1889	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
1890	 * So limit desc_sz to 12 so that the data commands that are sent
1891	 * during card initialization (before CQE gets enabled) would
1892	 * get executed without any issues.
1893	 */
1894	if (host->flags & SDHCI_USE_64_BIT_DMA)
1895		host->desc_sz = 12;
1896
1897	ret = __sdhci_add_host(host);
1898	if (ret)
1899		goto cleanup;
1900
1901	dev_info(&pdev->dev, "%s: CQE init: success\n",
1902			mmc_hostname(host->mmc));
1903	return ret;
1904
1905cleanup:
1906	sdhci_cleanup_host(host);
1907	return ret;
1908}
1909
1910/*
1911 * Platform specific register write functions. This is so that, if any
1912 * register write needs to be followed up by platform specific actions,
1913 * they can be added here. These functions can go to sleep when writes
1914 * to certain registers are done.
1915 * These functions are relying on sdhci_set_ios not using spinlock.
1916 */
1917static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1918{
1919	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1920	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1921	u32 req_type = 0;
1922
1923	switch (reg) {
1924	case SDHCI_HOST_CONTROL2:
1925		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1926			REQ_IO_HIGH;
1927		break;
1928	case SDHCI_SOFTWARE_RESET:
1929		if (host->pwr && (val & SDHCI_RESET_ALL))
1930			req_type = REQ_BUS_OFF;
1931		break;
1932	case SDHCI_POWER_CONTROL:
1933		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1934		break;
1935	case SDHCI_TRANSFER_MODE:
1936		msm_host->transfer_mode = val;
1937		break;
1938	case SDHCI_COMMAND:
1939		if (!msm_host->use_cdr)
1940			break;
1941		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1942		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1943		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1944			sdhci_msm_set_cdr(host, true);
1945		else
1946			sdhci_msm_set_cdr(host, false);
1947		break;
1948	}
1949
1950	if (req_type) {
1951		msm_host->pwr_irq_flag = 0;
1952		/*
1953		 * Since this register write may trigger a power irq, ensure
1954		 * all previous register writes are complete by this point.
1955		 */
1956		mb();
1957	}
1958	return req_type;
1959}
1960
1961/* This function may sleep*/
1962static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1963{
1964	u32 req_type = 0;
1965
1966	req_type = __sdhci_msm_check_write(host, val, reg);
1967	writew_relaxed(val, host->ioaddr + reg);
1968
1969	if (req_type)
1970		sdhci_msm_check_power_status(host, req_type);
1971}
1972
1973/* This function may sleep*/
1974static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1975{
1976	u32 req_type = 0;
1977
1978	req_type = __sdhci_msm_check_write(host, val, reg);
1979
1980	writeb_relaxed(val, host->ioaddr + reg);
1981
1982	if (req_type)
1983		sdhci_msm_check_power_status(host, req_type);
1984}
1985
1986static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1987{
1988	struct mmc_host *mmc = msm_host->mmc;
1989	struct regulator *supply = mmc->supply.vqmmc;
1990	u32 caps = 0, config;
1991	struct sdhci_host *host = mmc_priv(mmc);
1992	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1993
1994	if (!IS_ERR(mmc->supply.vqmmc)) {
1995		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1996			caps |= CORE_1_8V_SUPPORT;
1997		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1998			caps |= CORE_3_0V_SUPPORT;
1999
2000		if (!caps)
2001			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2002					mmc_hostname(mmc));
2003	}
2004
2005	if (caps) {
2006		/*
2007		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2008		 * bit can be used as required later on.
2009		 */
2010		u32 io_level = msm_host->curr_io_level;
2011
2012		config = readl_relaxed(host->ioaddr +
2013				msm_offset->core_vendor_spec);
2014		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2015
2016		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2017			config &= ~CORE_IO_PAD_PWR_SWITCH;
2018		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2019			config |= CORE_IO_PAD_PWR_SWITCH;
2020
2021		writel_relaxed(config,
2022				host->ioaddr + msm_offset->core_vendor_spec);
2023	}
2024	msm_host->caps_0 |= caps;
2025	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2026}
2027
2028static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2029{
2030	if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2031		cqhci_deactivate(host->mmc);
2032	sdhci_reset(host, mask);
2033}
2034
2035static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2036{
2037	int ret;
2038
2039	ret = mmc_regulator_get_supply(msm_host->mmc);
2040	if (ret)
2041		return ret;
2042
2043	sdhci_msm_set_regulator_caps(msm_host);
2044
2045	return 0;
2046}
2047
2048static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2049				      struct mmc_ios *ios)
2050{
2051	struct sdhci_host *host = mmc_priv(mmc);
2052	u16 ctrl, status;
2053
2054	/*
2055	 * Signal Voltage Switching is only applicable for Host Controllers
2056	 * v3.00 and above.
2057	 */
2058	if (host->version < SDHCI_SPEC_300)
2059		return 0;
2060
2061	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2062
2063	switch (ios->signal_voltage) {
2064	case MMC_SIGNAL_VOLTAGE_330:
2065		if (!(host->flags & SDHCI_SIGNALING_330))
2066			return -EINVAL;
2067
2068		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2069		ctrl &= ~SDHCI_CTRL_VDD_180;
2070		break;
2071	case MMC_SIGNAL_VOLTAGE_180:
2072		if (!(host->flags & SDHCI_SIGNALING_180))
2073			return -EINVAL;
2074
2075		/* Enable 1.8V Signal Enable in the Host Control2 register */
2076		ctrl |= SDHCI_CTRL_VDD_180;
2077		break;
2078
2079	default:
2080		return -EINVAL;
2081	}
2082
2083	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2084
2085	/* Wait for 5ms */
2086	usleep_range(5000, 5500);
2087
2088	/* regulator output should be stable within 5 ms */
2089	status = ctrl & SDHCI_CTRL_VDD_180;
2090	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2091	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2092		return 0;
2093
2094	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2095		mmc_hostname(mmc));
2096
2097	return -EAGAIN;
2098}
2099
2100#define DRIVER_NAME "sdhci_msm"
2101#define SDHCI_MSM_DUMP(f, x...) \
2102	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2103
2104static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2105{
2106	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2107	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2108	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2109
2110	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2111
2112	SDHCI_MSM_DUMP(
2113			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2114		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2115		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2116		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2117	SDHCI_MSM_DUMP(
2118			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2119		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2120		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2121		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2122	SDHCI_MSM_DUMP(
2123			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2124		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2125		readl_relaxed(host->ioaddr +
2126			msm_offset->core_vendor_spec_func2),
2127		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2128}
2129
2130static const struct sdhci_msm_variant_ops mci_var_ops = {
2131	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2132	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2133};
2134
2135static const struct sdhci_msm_variant_ops v5_var_ops = {
2136	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2137	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2138};
2139
2140static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2141	.var_ops = &mci_var_ops,
2142	.offset = &sdhci_msm_mci_offset,
2143};
2144
2145static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2146	.mci_removed = true,
2147	.var_ops = &v5_var_ops,
2148	.offset = &sdhci_msm_v5_offset,
2149};
2150
2151static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2152	.mci_removed = true,
2153	.restore_dll_config = true,
2154	.var_ops = &v5_var_ops,
2155	.offset = &sdhci_msm_v5_offset,
2156};
2157
2158static const struct sdhci_msm_variant_info sm8250_sdhci_var = {
2159	.mci_removed = true,
2160	.uses_tassadar_dll = true,
2161	.var_ops = &v5_var_ops,
2162	.offset = &sdhci_msm_v5_offset,
2163};
2164
2165static const struct of_device_id sdhci_msm_dt_match[] = {
 
 
 
 
2166	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2167	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
 
2168	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2169	{.compatible = "qcom,sm8250-sdhci", .data = &sm8250_sdhci_var},
2170	{},
2171};
2172
2173MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2174
2175static const struct sdhci_ops sdhci_msm_ops = {
2176	.reset = sdhci_msm_reset,
2177	.set_clock = sdhci_msm_set_clock,
2178	.get_min_clock = sdhci_msm_get_min_clock,
2179	.get_max_clock = sdhci_msm_get_max_clock,
2180	.set_bus_width = sdhci_set_bus_width,
2181	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2182	.write_w = sdhci_msm_writew,
2183	.write_b = sdhci_msm_writeb,
2184	.irq	= sdhci_msm_cqe_irq,
2185	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2186	.set_power = sdhci_set_power_noreg,
 
2187};
2188
2189static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2190	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2191		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2192		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2193		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2194
2195	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2196	.ops = &sdhci_msm_ops,
2197};
2198
2199static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2200		struct sdhci_host *host)
2201{
2202	struct device_node *node = pdev->dev.of_node;
2203	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2204	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2205
2206	if (of_property_read_u32(node, "qcom,ddr-config",
2207				&msm_host->ddr_config))
2208		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2209
2210	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2211}
2212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213
2214static int sdhci_msm_probe(struct platform_device *pdev)
2215{
2216	struct sdhci_host *host;
2217	struct sdhci_pltfm_host *pltfm_host;
2218	struct sdhci_msm_host *msm_host;
2219	struct clk *clk;
2220	int ret;
2221	u16 host_version, core_minor;
2222	u32 core_version, config;
2223	u8 core_major;
2224	const struct sdhci_msm_offset *msm_offset;
2225	const struct sdhci_msm_variant_info *var_info;
2226	struct device_node *node = pdev->dev.of_node;
2227
2228	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2229	if (IS_ERR(host))
2230		return PTR_ERR(host);
2231
2232	host->sdma_boundary = 0;
2233	pltfm_host = sdhci_priv(host);
2234	msm_host = sdhci_pltfm_priv(pltfm_host);
2235	msm_host->mmc = host->mmc;
2236	msm_host->pdev = pdev;
2237
2238	ret = mmc_of_parse(host->mmc);
2239	if (ret)
2240		goto pltfm_free;
2241
2242	/*
2243	 * Based on the compatible string, load the required msm host info from
2244	 * the data associated with the version info.
2245	 */
2246	var_info = of_device_get_match_data(&pdev->dev);
2247
2248	msm_host->mci_removed = var_info->mci_removed;
2249	msm_host->restore_dll_config = var_info->restore_dll_config;
2250	msm_host->var_ops = var_info->var_ops;
2251	msm_host->offset = var_info->offset;
2252	msm_host->uses_tassadar_dll = var_info->uses_tassadar_dll;
2253
2254	msm_offset = msm_host->offset;
2255
2256	sdhci_get_of_property(pdev);
2257	sdhci_msm_get_of_property(pdev, host);
2258
2259	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2260
 
 
 
 
2261	/* Setup SDCC bus voter clock. */
2262	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2263	if (!IS_ERR(msm_host->bus_clk)) {
2264		/* Vote for max. clk rate for max. performance */
2265		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2266		if (ret)
2267			goto pltfm_free;
2268		ret = clk_prepare_enable(msm_host->bus_clk);
2269		if (ret)
2270			goto pltfm_free;
2271	}
2272
2273	/* Setup main peripheral bus clock */
2274	clk = devm_clk_get(&pdev->dev, "iface");
2275	if (IS_ERR(clk)) {
2276		ret = PTR_ERR(clk);
2277		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2278		goto bus_clk_disable;
2279	}
2280	msm_host->bulk_clks[1].clk = clk;
2281
2282	/* Setup SDC MMC clock */
2283	clk = devm_clk_get(&pdev->dev, "core");
2284	if (IS_ERR(clk)) {
2285		ret = PTR_ERR(clk);
2286		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2287		goto bus_clk_disable;
2288	}
2289	msm_host->bulk_clks[0].clk = clk;
2290
2291	 /* Check for optional interconnect paths */
2292	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2293	if (ret)
2294		goto bus_clk_disable;
2295
2296	msm_host->opp_table = dev_pm_opp_set_clkname(&pdev->dev, "core");
2297	if (IS_ERR(msm_host->opp_table)) {
2298		ret = PTR_ERR(msm_host->opp_table);
2299		goto bus_clk_disable;
2300	}
2301
2302	/* OPP table is optional */
2303	ret = dev_pm_opp_of_add_table(&pdev->dev);
2304	if (!ret) {
2305		msm_host->has_opp_table = true;
2306	} else if (ret != -ENODEV) {
2307		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2308		goto opp_cleanup;
2309	}
2310
2311	/* Vote for maximum clock rate for maximum performance */
2312	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2313	if (ret)
2314		dev_warn(&pdev->dev, "core clock boost failed\n");
2315
2316	clk = devm_clk_get(&pdev->dev, "cal");
2317	if (IS_ERR(clk))
2318		clk = NULL;
2319	msm_host->bulk_clks[2].clk = clk;
2320
2321	clk = devm_clk_get(&pdev->dev, "sleep");
2322	if (IS_ERR(clk))
2323		clk = NULL;
2324	msm_host->bulk_clks[3].clk = clk;
2325
 
 
 
 
 
2326	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2327				      msm_host->bulk_clks);
2328	if (ret)
2329		goto opp_cleanup;
2330
2331	/*
2332	 * xo clock is needed for FLL feature of cm_dll.
2333	 * In case if xo clock is not mentioned in DT, warn and proceed.
2334	 */
2335	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2336	if (IS_ERR(msm_host->xo_clk)) {
2337		ret = PTR_ERR(msm_host->xo_clk);
2338		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2339	}
2340
2341	if (!msm_host->mci_removed) {
2342		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2343		if (IS_ERR(msm_host->core_mem)) {
2344			ret = PTR_ERR(msm_host->core_mem);
2345			goto clk_disable;
2346		}
2347	}
2348
2349	/* Reset the vendor spec register to power on reset state */
2350	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2351			host->ioaddr + msm_offset->core_vendor_spec);
2352
2353	if (!msm_host->mci_removed) {
2354		/* Set HC_MODE_EN bit in HC_MODE register */
2355		msm_host_writel(msm_host, HC_MODE_EN, host,
2356				msm_offset->core_hc_mode);
2357		config = msm_host_readl(msm_host, host,
2358				msm_offset->core_hc_mode);
2359		config |= FF_CLK_SW_RST_DIS;
2360		msm_host_writel(msm_host, config, host,
2361				msm_offset->core_hc_mode);
2362	}
2363
2364	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2365	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2366		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2367			       SDHCI_VENDOR_VER_SHIFT));
2368
2369	core_version = msm_host_readl(msm_host, host,
2370			msm_offset->core_mci_version);
2371	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2372		      CORE_VERSION_MAJOR_SHIFT;
2373	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2374	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2375		core_version, core_major, core_minor);
2376
2377	if (core_major == 1 && core_minor >= 0x42)
2378		msm_host->use_14lpp_dll_reset = true;
2379
2380	/*
2381	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2382	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2383	 */
2384	if (core_major == 1 && core_minor < 0x34)
2385		msm_host->use_cdclp533 = true;
2386
2387	/*
2388	 * Support for some capabilities is not advertised by newer
2389	 * controller versions and must be explicitly enabled.
2390	 */
2391	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2392		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2393		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2394		writel_relaxed(config, host->ioaddr +
2395				msm_offset->core_vendor_spec_capabilities0);
2396	}
2397
2398	if (core_major == 1 && core_minor >= 0x49)
2399		msm_host->updated_ddr_cfg = true;
2400
 
 
 
2401	ret = sdhci_msm_register_vreg(msm_host);
2402	if (ret)
2403		goto clk_disable;
2404
2405	/*
2406	 * Power on reset state may trigger power irq if previous status of
2407	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2408	 * interrupt in GIC, any pending power irq interrupt should be
2409	 * acknowledged. Otherwise power irq interrupt handler would be
2410	 * fired prematurely.
2411	 */
2412	sdhci_msm_handle_pwr_irq(host, 0);
2413
2414	/*
2415	 * Ensure that above writes are propogated before interrupt enablement
2416	 * in GIC.
2417	 */
2418	mb();
2419
2420	/* Setup IRQ for handling power/voltage tasks with PMIC */
2421	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2422	if (msm_host->pwr_irq < 0) {
2423		ret = msm_host->pwr_irq;
2424		goto clk_disable;
2425	}
2426
2427	sdhci_msm_init_pwr_irq_wait(msm_host);
2428	/* Enable pwr irq interrupts */
2429	msm_host_writel(msm_host, INT_MASK, host,
2430		msm_offset->core_pwrctl_mask);
2431
2432	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2433					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2434					dev_name(&pdev->dev), host);
2435	if (ret) {
2436		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2437		goto clk_disable;
2438	}
2439
2440	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2441
 
 
 
2442	pm_runtime_get_noresume(&pdev->dev);
2443	pm_runtime_set_active(&pdev->dev);
2444	pm_runtime_enable(&pdev->dev);
2445	pm_runtime_set_autosuspend_delay(&pdev->dev,
2446					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2447	pm_runtime_use_autosuspend(&pdev->dev);
2448
2449	host->mmc_host_ops.start_signal_voltage_switch =
2450		sdhci_msm_start_signal_voltage_switch;
2451	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2452	if (of_property_read_bool(node, "supports-cqe"))
2453		ret = sdhci_msm_cqe_add_host(host, pdev);
2454	else
2455		ret = sdhci_add_host(host);
2456	if (ret)
2457		goto pm_runtime_disable;
2458
2459	pm_runtime_mark_last_busy(&pdev->dev);
2460	pm_runtime_put_autosuspend(&pdev->dev);
2461
2462	return 0;
2463
2464pm_runtime_disable:
2465	pm_runtime_disable(&pdev->dev);
2466	pm_runtime_set_suspended(&pdev->dev);
2467	pm_runtime_put_noidle(&pdev->dev);
2468clk_disable:
2469	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2470				   msm_host->bulk_clks);
2471opp_cleanup:
2472	if (msm_host->has_opp_table)
2473		dev_pm_opp_of_remove_table(&pdev->dev);
2474	dev_pm_opp_put_clkname(msm_host->opp_table);
2475bus_clk_disable:
2476	if (!IS_ERR(msm_host->bus_clk))
2477		clk_disable_unprepare(msm_host->bus_clk);
2478pltfm_free:
2479	sdhci_pltfm_free(pdev);
2480	return ret;
2481}
2482
2483static int sdhci_msm_remove(struct platform_device *pdev)
2484{
2485	struct sdhci_host *host = platform_get_drvdata(pdev);
2486	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2487	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2488	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2489		    0xffffffff);
2490
2491	sdhci_remove_host(host, dead);
2492
2493	if (msm_host->has_opp_table)
2494		dev_pm_opp_of_remove_table(&pdev->dev);
2495	dev_pm_opp_put_clkname(msm_host->opp_table);
2496	pm_runtime_get_sync(&pdev->dev);
2497	pm_runtime_disable(&pdev->dev);
2498	pm_runtime_put_noidle(&pdev->dev);
2499
2500	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2501				   msm_host->bulk_clks);
2502	if (!IS_ERR(msm_host->bus_clk))
2503		clk_disable_unprepare(msm_host->bus_clk);
2504	sdhci_pltfm_free(pdev);
2505	return 0;
2506}
2507
2508static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2509{
2510	struct sdhci_host *host = dev_get_drvdata(dev);
2511	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2512	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2513
2514	/* Drop the performance vote */
2515	dev_pm_opp_set_rate(dev, 0);
2516	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2517				   msm_host->bulk_clks);
2518
2519	return 0;
2520}
2521
2522static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2523{
2524	struct sdhci_host *host = dev_get_drvdata(dev);
2525	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2526	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2527	int ret;
2528
2529	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2530				       msm_host->bulk_clks);
2531	if (ret)
2532		return ret;
2533	/*
2534	 * Whenever core-clock is gated dynamically, it's needed to
2535	 * restore the SDR DLL settings when the clock is ungated.
2536	 */
2537	if (msm_host->restore_dll_config && msm_host->clk_rate)
2538		ret = sdhci_msm_restore_sdr_dll_config(host);
 
 
 
2539
2540	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2541
2542	return ret;
2543}
2544
2545static const struct dev_pm_ops sdhci_msm_pm_ops = {
2546	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2547				pm_runtime_force_resume)
2548	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2549			   sdhci_msm_runtime_resume,
2550			   NULL)
2551};
2552
2553static struct platform_driver sdhci_msm_driver = {
2554	.probe = sdhci_msm_probe,
2555	.remove = sdhci_msm_remove,
2556	.driver = {
2557		   .name = "sdhci_msm",
2558		   .of_match_table = sdhci_msm_dt_match,
2559		   .pm = &sdhci_msm_pm_ops,
 
2560	},
2561};
2562
2563module_platform_driver(sdhci_msm_driver);
2564
2565MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2566MODULE_LICENSE("GPL v2");