Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
   4 *
   5 * Copyright (c) 2016 BayLibre, SAS.
   6 * Author: Kevin Hilman <khilman@baylibre.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/iopoll.h>
  14#include <linux/of_device.h>
  15#include <linux/platform_device.h>
  16#include <linux/ioport.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/mmc/host.h>
  19#include <linux/mmc/mmc.h>
  20#include <linux/mmc/sdio.h>
  21#include <linux/mmc/slot-gpio.h>
  22#include <linux/io.h>
  23#include <linux/clk.h>
  24#include <linux/clk-provider.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/reset.h>
  27#include <linux/interrupt.h>
  28#include <linux/bitfield.h>
  29#include <linux/pinctrl/consumer.h>
  30
  31#define DRIVER_NAME "meson-gx-mmc"
  32
  33#define SD_EMMC_CLOCK 0x0
  34#define   CLK_DIV_MASK GENMASK(5, 0)
  35#define   CLK_SRC_MASK GENMASK(7, 6)
  36#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
  37#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
  38#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
  39#define   CLK_PHASE_0 0
  40#define   CLK_PHASE_180 2
  41#define   CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
  42#define   CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
  43#define   CLK_V2_ALWAYS_ON BIT(24)
  44#define   CLK_V2_IRQ_SDIO_SLEEP BIT(25)
  45
  46#define   CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
  47#define   CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
  48#define   CLK_V3_ALWAYS_ON BIT(28)
  49#define   CLK_V3_IRQ_SDIO_SLEEP BIT(29)
  50
  51#define   CLK_TX_DELAY_MASK(h)		(h->data->tx_delay_mask)
  52#define   CLK_RX_DELAY_MASK(h)		(h->data->rx_delay_mask)
  53#define   CLK_ALWAYS_ON(h)		(h->data->always_on)
  54#define   CLK_IRQ_SDIO_SLEEP(h)		(h->data->irq_sdio_sleep)
  55
  56#define SD_EMMC_DELAY 0x4
  57#define SD_EMMC_ADJUST 0x8
  58#define   ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
  59#define   ADJUST_DS_EN BIT(15)
  60#define   ADJUST_ADJ_EN BIT(13)
  61
  62#define SD_EMMC_DELAY1 0x4
  63#define SD_EMMC_DELAY2 0x8
  64#define SD_EMMC_V3_ADJUST 0xc
  65
  66#define SD_EMMC_CALOUT 0x10
  67#define SD_EMMC_START 0x40
  68#define   START_DESC_INIT BIT(0)
  69#define   START_DESC_BUSY BIT(1)
  70#define   START_DESC_ADDR_MASK GENMASK(31, 2)
  71
  72#define SD_EMMC_CFG 0x44
  73#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
  74#define   CFG_BUS_WIDTH_1 0x0
  75#define   CFG_BUS_WIDTH_4 0x1
  76#define   CFG_BUS_WIDTH_8 0x2
  77#define   CFG_DDR BIT(2)
  78#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
  79#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
  80#define   CFG_RC_CC_MASK GENMASK(15, 12)
  81#define   CFG_STOP_CLOCK BIT(22)
  82#define   CFG_CLK_ALWAYS_ON BIT(18)
  83#define   CFG_CHK_DS BIT(20)
  84#define   CFG_AUTO_CLK BIT(23)
  85#define   CFG_ERR_ABORT BIT(27)
  86
  87#define SD_EMMC_STATUS 0x48
  88#define   STATUS_BUSY BIT(31)
  89#define   STATUS_DESC_BUSY BIT(30)
  90#define   STATUS_DATI GENMASK(23, 16)
  91
  92#define SD_EMMC_IRQ_EN 0x4c
  93#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
  94#define   IRQ_TXD_ERR BIT(8)
  95#define   IRQ_DESC_ERR BIT(9)
  96#define   IRQ_RESP_ERR BIT(10)
  97#define   IRQ_CRC_ERR \
  98	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
  99#define   IRQ_RESP_TIMEOUT BIT(11)
 100#define   IRQ_DESC_TIMEOUT BIT(12)
 101#define   IRQ_TIMEOUTS \
 102	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
 103#define   IRQ_END_OF_CHAIN BIT(13)
 104#define   IRQ_RESP_STATUS BIT(14)
 105#define   IRQ_SDIO BIT(15)
 106#define   IRQ_EN_MASK \
 107	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN)
 
 108
 109#define SD_EMMC_CMD_CFG 0x50
 110#define SD_EMMC_CMD_ARG 0x54
 111#define SD_EMMC_CMD_DAT 0x58
 112#define SD_EMMC_CMD_RSP 0x5c
 113#define SD_EMMC_CMD_RSP1 0x60
 114#define SD_EMMC_CMD_RSP2 0x64
 115#define SD_EMMC_CMD_RSP3 0x68
 116
 117#define SD_EMMC_RXD 0x94
 118#define SD_EMMC_TXD 0x94
 119#define SD_EMMC_LAST_REG SD_EMMC_TXD
 120
 121#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
 122#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
 123
 124#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
 125#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
 126#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
 127#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
 128#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
 129#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
 130
 131#define SD_EMMC_PRE_REQ_DONE BIT(0)
 132#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
 133
 134#define MUX_CLK_NUM_PARENTS 2
 135
 136struct meson_mmc_data {
 137	unsigned int tx_delay_mask;
 138	unsigned int rx_delay_mask;
 139	unsigned int always_on;
 140	unsigned int adjust;
 141	unsigned int irq_sdio_sleep;
 142};
 143
 144struct sd_emmc_desc {
 145	u32 cmd_cfg;
 146	u32 cmd_arg;
 147	u32 cmd_data;
 148	u32 cmd_resp;
 149};
 150
 151struct meson_host {
 152	struct	device		*dev;
 153	struct	meson_mmc_data *data;
 154	struct	mmc_host	*mmc;
 155	struct	mmc_command	*cmd;
 156
 157	void __iomem *regs;
 158	struct clk *core_clk;
 159	struct clk *mux_clk;
 160	struct clk *mmc_clk;
 161	unsigned long req_rate;
 162	bool ddr;
 163
 164	bool dram_access_quirk;
 165
 166	struct pinctrl *pinctrl;
 167	struct pinctrl_state *pins_clk_gate;
 168
 169	unsigned int bounce_buf_size;
 170	void *bounce_buf;
 171	void __iomem *bounce_iomem_buf;
 172	dma_addr_t bounce_dma_addr;
 173	struct sd_emmc_desc *descs;
 174	dma_addr_t descs_dma_addr;
 175
 176	int irq;
 177
 178	bool vqmmc_enabled;
 179	bool needs_pre_post_req;
 180
 181	spinlock_t lock;
 182};
 183
 184#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
 185#define CMD_CFG_BLOCK_MODE BIT(9)
 186#define CMD_CFG_R1B BIT(10)
 187#define CMD_CFG_END_OF_CHAIN BIT(11)
 188#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
 189#define CMD_CFG_NO_RESP BIT(16)
 190#define CMD_CFG_NO_CMD BIT(17)
 191#define CMD_CFG_DATA_IO BIT(18)
 192#define CMD_CFG_DATA_WR BIT(19)
 193#define CMD_CFG_RESP_NOCRC BIT(20)
 194#define CMD_CFG_RESP_128 BIT(21)
 195#define CMD_CFG_RESP_NUM BIT(22)
 196#define CMD_CFG_DATA_NUM BIT(23)
 197#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
 198#define CMD_CFG_ERROR BIT(30)
 199#define CMD_CFG_OWNER BIT(31)
 200
 201#define CMD_DATA_MASK GENMASK(31, 2)
 202#define CMD_DATA_BIG_ENDIAN BIT(1)
 203#define CMD_DATA_SRAM BIT(0)
 204#define CMD_RESP_MASK GENMASK(31, 1)
 205#define CMD_RESP_SRAM BIT(0)
 206
 207static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
 208{
 209	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
 210
 211	if (!timeout)
 212		return SD_EMMC_CMD_TIMEOUT_DATA;
 213
 214	timeout = roundup_pow_of_two(timeout);
 215
 216	return min(timeout, 32768U); /* max. 2^15 ms */
 217}
 218
 219static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
 220{
 221	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
 222		return cmd->mrq->cmd;
 223	else if (mmc_op_multi(cmd->opcode) &&
 224		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
 225		return cmd->mrq->stop;
 226	else
 227		return NULL;
 228}
 229
 230static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
 231					struct mmc_request *mrq)
 232{
 233	struct meson_host *host = mmc_priv(mmc);
 234	struct mmc_data *data = mrq->data;
 235	struct scatterlist *sg;
 236	int i;
 
 237
 238	/*
 239	 * When Controller DMA cannot directly access DDR memory, disable
 240	 * support for Chain Mode to directly use the internal SRAM using
 241	 * the bounce buffer mode.
 242	 */
 243	if (host->dram_access_quirk)
 244		return;
 245
 246	/* SD_IO_RW_EXTENDED (CMD53) can also use block mode under the hood */
 247	if (data->blocks > 1 || mrq->cmd->opcode == SD_IO_RW_EXTENDED) {
 248		/*
 249		 * In block mode DMA descriptor format, "length" field indicates
 250		 * number of blocks and there is no way to pass DMA size that
 251		 * is not multiple of SDIO block size, making it impossible to
 252		 * tie more than one memory buffer with single SDIO block.
 253		 * Block mode sg buffer size should be aligned with SDIO block
 254		 * size, otherwise chain mode could not be used.
 255		 */
 256		for_each_sg(data->sg, sg, data->sg_len, i) {
 257			if (sg->length % data->blksz) {
 258				dev_warn_once(mmc_dev(mmc),
 259					      "unaligned sg len %u blksize %u, disabling descriptor DMA for transfer\n",
 260					      sg->length, data->blksz);
 261				return;
 262			}
 263		}
 264	}
 265
 266	for_each_sg(data->sg, sg, data->sg_len, i) {
 267		/* check for 8 byte alignment */
 268		if (sg->offset % 8) {
 269			dev_warn_once(mmc_dev(mmc),
 270				      "unaligned sg offset %u, disabling descriptor DMA for transfer\n",
 271				      sg->offset);
 272			return;
 273		}
 274	}
 275
 276	data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
 
 277}
 278
 279static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
 280{
 281	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
 282}
 283
 284static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
 285{
 286	return data && data->flags & MMC_DATA_READ &&
 287	       !meson_mmc_desc_chain_mode(data);
 288}
 289
 290static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
 291{
 292	struct mmc_data *data = mrq->data;
 293
 294	if (!data)
 295		return;
 296
 297	meson_mmc_get_transfer_mode(mmc, mrq);
 298	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
 299
 300	if (!meson_mmc_desc_chain_mode(data))
 301		return;
 302
 303	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
 304                                   mmc_get_dma_dir(data));
 305	if (!data->sg_count)
 306		dev_err(mmc_dev(mmc), "dma_map_sg failed");
 307}
 308
 309static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
 310			       int err)
 311{
 312	struct mmc_data *data = mrq->data;
 313
 314	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
 315		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
 316			     mmc_get_dma_dir(data));
 317}
 318
 319/*
 320 * Gating the clock on this controller is tricky.  It seems the mmc clock
 321 * is also used by the controller.  It may crash during some operation if the
 322 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 323 * clock running at stop it at the pad using the pinmux.
 324 */
 325static void meson_mmc_clk_gate(struct meson_host *host)
 326{
 327	u32 cfg;
 328
 329	if (host->pins_clk_gate) {
 330		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
 331	} else {
 332		/*
 333		 * If the pinmux is not provided - default to the classic and
 334		 * unsafe method
 335		 */
 336		cfg = readl(host->regs + SD_EMMC_CFG);
 337		cfg |= CFG_STOP_CLOCK;
 338		writel(cfg, host->regs + SD_EMMC_CFG);
 339	}
 340}
 341
 342static void meson_mmc_clk_ungate(struct meson_host *host)
 343{
 344	u32 cfg;
 345
 346	if (host->pins_clk_gate)
 347		pinctrl_select_default_state(host->dev);
 348
 349	/* Make sure the clock is not stopped in the controller */
 350	cfg = readl(host->regs + SD_EMMC_CFG);
 351	cfg &= ~CFG_STOP_CLOCK;
 352	writel(cfg, host->regs + SD_EMMC_CFG);
 353}
 354
 355static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
 356			     bool ddr)
 357{
 358	struct mmc_host *mmc = host->mmc;
 359	int ret;
 360	u32 cfg;
 361
 362	/* Same request - bail-out */
 363	if (host->ddr == ddr && host->req_rate == rate)
 364		return 0;
 365
 366	/* stop clock */
 367	meson_mmc_clk_gate(host);
 368	host->req_rate = 0;
 369	mmc->actual_clock = 0;
 370
 371	/* return with clock being stopped */
 372	if (!rate)
 373		return 0;
 374
 375	/* Stop the clock during rate change to avoid glitches */
 376	cfg = readl(host->regs + SD_EMMC_CFG);
 377	cfg |= CFG_STOP_CLOCK;
 378	writel(cfg, host->regs + SD_EMMC_CFG);
 379
 380	if (ddr) {
 381		/* DDR modes require higher module clock */
 382		rate <<= 1;
 383		cfg |= CFG_DDR;
 384	} else {
 385		cfg &= ~CFG_DDR;
 386	}
 387	writel(cfg, host->regs + SD_EMMC_CFG);
 388	host->ddr = ddr;
 389
 390	ret = clk_set_rate(host->mmc_clk, rate);
 391	if (ret) {
 392		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
 393			rate, ret);
 394		return ret;
 395	}
 396
 397	host->req_rate = rate;
 398	mmc->actual_clock = clk_get_rate(host->mmc_clk);
 399
 400	/* We should report the real output frequency of the controller */
 401	if (ddr) {
 402		host->req_rate >>= 1;
 403		mmc->actual_clock >>= 1;
 404	}
 405
 406	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
 407	if (rate != mmc->actual_clock)
 408		dev_dbg(host->dev, "requested rate was %lu\n", rate);
 409
 410	/* (re)start clock */
 411	meson_mmc_clk_ungate(host);
 412
 413	return 0;
 414}
 415
 416/*
 417 * The SD/eMMC IP block has an internal mux and divider used for
 418 * generating the MMC clock.  Use the clock framework to create and
 419 * manage these clocks.
 420 */
 421static int meson_mmc_clk_init(struct meson_host *host)
 422{
 423	struct clk_init_data init;
 424	struct clk_mux *mux;
 425	struct clk_divider *div;
 426	char clk_name[32];
 427	int i, ret = 0;
 428	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
 429	const char *clk_parent[1];
 430	u32 clk_reg;
 431
 432	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 433	clk_reg = CLK_ALWAYS_ON(host);
 434	clk_reg |= CLK_DIV_MASK;
 435	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
 436	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
 437	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
 438	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 439		clk_reg |= CLK_IRQ_SDIO_SLEEP(host);
 440	writel(clk_reg, host->regs + SD_EMMC_CLOCK);
 441
 442	/* get the mux parents */
 443	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
 444		struct clk *clk;
 445		char name[16];
 446
 447		snprintf(name, sizeof(name), "clkin%d", i);
 448		clk = devm_clk_get(host->dev, name);
 449		if (IS_ERR(clk))
 450			return dev_err_probe(host->dev, PTR_ERR(clk),
 451					     "Missing clock %s\n", name);
 
 
 452
 453		mux_parent_names[i] = __clk_get_name(clk);
 454	}
 455
 456	/* create the mux */
 457	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
 458	if (!mux)
 459		return -ENOMEM;
 460
 461	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
 462	init.name = clk_name;
 463	init.ops = &clk_mux_ops;
 464	init.flags = 0;
 465	init.parent_names = mux_parent_names;
 466	init.num_parents = MUX_CLK_NUM_PARENTS;
 467
 468	mux->reg = host->regs + SD_EMMC_CLOCK;
 469	mux->shift = __ffs(CLK_SRC_MASK);
 470	mux->mask = CLK_SRC_MASK >> mux->shift;
 471	mux->hw.init = &init;
 472
 473	host->mux_clk = devm_clk_register(host->dev, &mux->hw);
 474	if (WARN_ON(IS_ERR(host->mux_clk)))
 475		return PTR_ERR(host->mux_clk);
 476
 477	/* create the divider */
 478	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
 479	if (!div)
 480		return -ENOMEM;
 481
 482	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
 483	init.name = clk_name;
 484	init.ops = &clk_divider_ops;
 485	init.flags = CLK_SET_RATE_PARENT;
 486	clk_parent[0] = __clk_get_name(host->mux_clk);
 487	init.parent_names = clk_parent;
 488	init.num_parents = 1;
 489
 490	div->reg = host->regs + SD_EMMC_CLOCK;
 491	div->shift = __ffs(CLK_DIV_MASK);
 492	div->width = __builtin_popcountl(CLK_DIV_MASK);
 493	div->hw.init = &init;
 494	div->flags = CLK_DIVIDER_ONE_BASED;
 495
 496	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
 497	if (WARN_ON(IS_ERR(host->mmc_clk)))
 498		return PTR_ERR(host->mmc_clk);
 499
 500	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 501	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
 502	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
 503	if (ret)
 504		return ret;
 505
 506	return clk_prepare_enable(host->mmc_clk);
 507}
 508
 509static void meson_mmc_disable_resampling(struct meson_host *host)
 510{
 511	unsigned int val = readl(host->regs + host->data->adjust);
 512
 513	val &= ~ADJUST_ADJ_EN;
 514	writel(val, host->regs + host->data->adjust);
 515}
 516
 517static void meson_mmc_reset_resampling(struct meson_host *host)
 518{
 519	unsigned int val;
 520
 521	meson_mmc_disable_resampling(host);
 522
 523	val = readl(host->regs + host->data->adjust);
 524	val &= ~ADJUST_ADJ_DELAY_MASK;
 525	writel(val, host->regs + host->data->adjust);
 526}
 527
 528static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
 529{
 530	struct meson_host *host = mmc_priv(mmc);
 531	unsigned int val, dly, max_dly, i;
 532	int ret;
 533
 534	/* Resampling is done using the source clock */
 535	max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
 536			       clk_get_rate(host->mmc_clk));
 537
 538	val = readl(host->regs + host->data->adjust);
 539	val |= ADJUST_ADJ_EN;
 540	writel(val, host->regs + host->data->adjust);
 541
 542	if (mmc_doing_retune(mmc))
 543		dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
 544	else
 545		dly = 0;
 546
 547	for (i = 0; i < max_dly; i++) {
 548		val &= ~ADJUST_ADJ_DELAY_MASK;
 549		val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
 550		writel(val, host->regs + host->data->adjust);
 551
 552		ret = mmc_send_tuning(mmc, opcode, NULL);
 553		if (!ret) {
 554			dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
 555				(dly + i) % max_dly);
 556			return 0;
 557		}
 558	}
 559
 560	meson_mmc_reset_resampling(host);
 561	return -EIO;
 562}
 563
 564static int meson_mmc_prepare_ios_clock(struct meson_host *host,
 565				       struct mmc_ios *ios)
 566{
 567	bool ddr;
 568
 569	switch (ios->timing) {
 570	case MMC_TIMING_MMC_DDR52:
 571	case MMC_TIMING_UHS_DDR50:
 572		ddr = true;
 573		break;
 574
 575	default:
 576		ddr = false;
 577		break;
 578	}
 579
 580	return meson_mmc_clk_set(host, ios->clock, ddr);
 581}
 582
 583static void meson_mmc_check_resampling(struct meson_host *host,
 584				       struct mmc_ios *ios)
 585{
 586	switch (ios->timing) {
 587	case MMC_TIMING_LEGACY:
 588	case MMC_TIMING_MMC_HS:
 589	case MMC_TIMING_SD_HS:
 590	case MMC_TIMING_MMC_DDR52:
 591		meson_mmc_disable_resampling(host);
 592		break;
 593	}
 594}
 595
 596static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 597{
 598	struct meson_host *host = mmc_priv(mmc);
 599	u32 bus_width, val;
 600	int err;
 601
 602	/*
 603	 * GPIO regulator, only controls switching between 1v8 and
 604	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
 605	 */
 606	switch (ios->power_mode) {
 607	case MMC_POWER_OFF:
 608		if (!IS_ERR(mmc->supply.vmmc))
 609			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 610
 611		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 612			regulator_disable(mmc->supply.vqmmc);
 613			host->vqmmc_enabled = false;
 614		}
 615
 616		break;
 617
 618	case MMC_POWER_UP:
 619		if (!IS_ERR(mmc->supply.vmmc))
 620			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 621
 622		break;
 623
 624	case MMC_POWER_ON:
 625		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 626			int ret = regulator_enable(mmc->supply.vqmmc);
 627
 628			if (ret < 0)
 629				dev_err(host->dev,
 630					"failed to enable vqmmc regulator\n");
 631			else
 632				host->vqmmc_enabled = true;
 633		}
 634
 635		break;
 636	}
 637
 638	/* Bus width */
 639	switch (ios->bus_width) {
 640	case MMC_BUS_WIDTH_1:
 641		bus_width = CFG_BUS_WIDTH_1;
 642		break;
 643	case MMC_BUS_WIDTH_4:
 644		bus_width = CFG_BUS_WIDTH_4;
 645		break;
 646	case MMC_BUS_WIDTH_8:
 647		bus_width = CFG_BUS_WIDTH_8;
 648		break;
 649	default:
 650		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
 651			ios->bus_width);
 652		bus_width = CFG_BUS_WIDTH_4;
 653	}
 654
 655	val = readl(host->regs + SD_EMMC_CFG);
 656	val &= ~CFG_BUS_WIDTH_MASK;
 657	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
 658	writel(val, host->regs + SD_EMMC_CFG);
 659
 660	meson_mmc_check_resampling(host, ios);
 661	err = meson_mmc_prepare_ios_clock(host, ios);
 662	if (err)
 663		dev_err(host->dev, "Failed to set clock: %d\n,", err);
 664
 665	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
 666}
 667
 668static void meson_mmc_request_done(struct mmc_host *mmc,
 669				   struct mmc_request *mrq)
 670{
 671	struct meson_host *host = mmc_priv(mmc);
 672
 673	host->cmd = NULL;
 674	if (host->needs_pre_post_req)
 675		meson_mmc_post_req(mmc, mrq, 0);
 676	mmc_request_done(host->mmc, mrq);
 677}
 678
 679static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
 680{
 681	struct meson_host *host = mmc_priv(mmc);
 682	u32 cfg, blksz_old;
 683
 684	cfg = readl(host->regs + SD_EMMC_CFG);
 685	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
 686
 687	if (!is_power_of_2(blksz))
 688		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
 689
 690	blksz = ilog2(blksz);
 691
 692	/* check if block-size matches, if not update */
 693	if (blksz == blksz_old)
 694		return;
 695
 696	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
 697		blksz_old, blksz);
 698
 699	cfg &= ~CFG_BLK_LEN_MASK;
 700	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
 701	writel(cfg, host->regs + SD_EMMC_CFG);
 702}
 703
 704static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
 705{
 706	if (cmd->flags & MMC_RSP_PRESENT) {
 707		if (cmd->flags & MMC_RSP_136)
 708			*cmd_cfg |= CMD_CFG_RESP_128;
 709		*cmd_cfg |= CMD_CFG_RESP_NUM;
 710
 711		if (!(cmd->flags & MMC_RSP_CRC))
 712			*cmd_cfg |= CMD_CFG_RESP_NOCRC;
 713
 714		if (cmd->flags & MMC_RSP_BUSY)
 715			*cmd_cfg |= CMD_CFG_R1B;
 716	} else {
 717		*cmd_cfg |= CMD_CFG_NO_RESP;
 718	}
 719}
 720
 721static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
 722{
 723	struct meson_host *host = mmc_priv(mmc);
 724	struct sd_emmc_desc *desc = host->descs;
 725	struct mmc_data *data = host->cmd->data;
 726	struct scatterlist *sg;
 727	u32 start;
 728	int i;
 729
 730	if (data->flags & MMC_DATA_WRITE)
 731		cmd_cfg |= CMD_CFG_DATA_WR;
 732
 733	if (data->blocks > 1) {
 734		cmd_cfg |= CMD_CFG_BLOCK_MODE;
 735		meson_mmc_set_blksz(mmc, data->blksz);
 736	}
 737
 738	for_each_sg(data->sg, sg, data->sg_count, i) {
 739		unsigned int len = sg_dma_len(sg);
 740
 741		if (data->blocks > 1)
 742			len /= data->blksz;
 743
 744		desc[i].cmd_cfg = cmd_cfg;
 745		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
 746		if (i > 0)
 747			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
 748		desc[i].cmd_arg = host->cmd->arg;
 749		desc[i].cmd_resp = 0;
 750		desc[i].cmd_data = sg_dma_address(sg);
 751	}
 752	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 753
 754	dma_wmb(); /* ensure descriptor is written before kicked */
 755	start = host->descs_dma_addr | START_DESC_BUSY;
 756	writel(start, host->regs + SD_EMMC_START);
 757}
 758
 759/* local sg copy for dram_access_quirk */
 760static void meson_mmc_copy_buffer(struct meson_host *host, struct mmc_data *data,
 761				  size_t buflen, bool to_buffer)
 762{
 763	unsigned int sg_flags = SG_MITER_ATOMIC;
 764	struct scatterlist *sgl = data->sg;
 765	unsigned int nents = data->sg_len;
 766	struct sg_mapping_iter miter;
 767	unsigned int offset = 0;
 768
 769	if (to_buffer)
 770		sg_flags |= SG_MITER_FROM_SG;
 771	else
 772		sg_flags |= SG_MITER_TO_SG;
 773
 774	sg_miter_start(&miter, sgl, nents, sg_flags);
 775
 776	while ((offset < buflen) && sg_miter_next(&miter)) {
 777		unsigned int buf_offset = 0;
 778		unsigned int len, left;
 779		u32 *buf = miter.addr;
 780
 781		len = min(miter.length, buflen - offset);
 782		left = len;
 783
 784		if (to_buffer) {
 785			do {
 786				writel(*buf++, host->bounce_iomem_buf + offset + buf_offset);
 787
 788				buf_offset += 4;
 789				left -= 4;
 790			} while (left);
 791		} else {
 792			do {
 793				*buf++ = readl(host->bounce_iomem_buf + offset + buf_offset);
 794
 795				buf_offset += 4;
 796				left -= 4;
 797			} while (left);
 798		}
 799
 800		offset += len;
 801	}
 802
 803	sg_miter_stop(&miter);
 804}
 805
 806static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
 807{
 808	struct meson_host *host = mmc_priv(mmc);
 809	struct mmc_data *data = cmd->data;
 810	u32 cmd_cfg = 0, cmd_data = 0;
 811	unsigned int xfer_bytes = 0;
 812
 813	/* Setup descriptors */
 814	dma_rmb();
 815
 816	host->cmd = cmd;
 817
 818	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
 819	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
 820	cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
 821
 822	meson_mmc_set_response_bits(cmd, &cmd_cfg);
 823
 824	/* data? */
 825	if (data) {
 826		data->bytes_xfered = 0;
 827		cmd_cfg |= CMD_CFG_DATA_IO;
 828		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 829				      ilog2(meson_mmc_get_timeout_msecs(data)));
 830
 831		if (meson_mmc_desc_chain_mode(data)) {
 832			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
 833			return;
 834		}
 835
 836		if (data->blocks > 1) {
 837			cmd_cfg |= CMD_CFG_BLOCK_MODE;
 838			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
 839					      data->blocks);
 840			meson_mmc_set_blksz(mmc, data->blksz);
 841		} else {
 842			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
 843		}
 844
 845		xfer_bytes = data->blksz * data->blocks;
 846		if (data->flags & MMC_DATA_WRITE) {
 847			cmd_cfg |= CMD_CFG_DATA_WR;
 848			WARN_ON(xfer_bytes > host->bounce_buf_size);
 849			if (host->dram_access_quirk)
 850				meson_mmc_copy_buffer(host, data, xfer_bytes, true);
 851			else
 852				sg_copy_to_buffer(data->sg, data->sg_len,
 853						  host->bounce_buf, xfer_bytes);
 854			dma_wmb();
 855		}
 856
 857		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
 858	} else {
 859		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 860				      ilog2(SD_EMMC_CMD_TIMEOUT));
 861	}
 862
 863	/* Last descriptor */
 864	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 865	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
 866	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
 867	writel(0, host->regs + SD_EMMC_CMD_RSP);
 868	wmb(); /* ensure descriptor is written before kicked */
 869	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
 870}
 871
 872static int meson_mmc_validate_dram_access(struct mmc_host *mmc, struct mmc_data *data)
 873{
 874	struct scatterlist *sg;
 875	int i;
 876
 877	/* Reject request if any element offset or size is not 32bit aligned */
 878	for_each_sg(data->sg, sg, data->sg_len, i) {
 879		if (!IS_ALIGNED(sg->offset, sizeof(u32)) ||
 880		    !IS_ALIGNED(sg->length, sizeof(u32))) {
 881			dev_err(mmc_dev(mmc), "unaligned sg offset %u len %u\n",
 882				data->sg->offset, data->sg->length);
 883			return -EINVAL;
 884		}
 885	}
 886
 887	return 0;
 888}
 889
 890static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
 891{
 892	struct meson_host *host = mmc_priv(mmc);
 893	host->needs_pre_post_req = mrq->data &&
 894			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
 895
 896	/*
 897	 * The memory at the end of the controller used as bounce buffer for
 898	 * the dram_access_quirk only accepts 32bit read/write access,
 899	 * check the aligment and length of the data before starting the request.
 900	 */
 901	if (host->dram_access_quirk && mrq->data) {
 902		mrq->cmd->error = meson_mmc_validate_dram_access(mmc, mrq->data);
 903		if (mrq->cmd->error) {
 904			mmc_request_done(mmc, mrq);
 905			return;
 906		}
 907	}
 908
 909	if (host->needs_pre_post_req) {
 910		meson_mmc_get_transfer_mode(mmc, mrq);
 911		if (!meson_mmc_desc_chain_mode(mrq->data))
 912			host->needs_pre_post_req = false;
 913	}
 914
 915	if (host->needs_pre_post_req)
 916		meson_mmc_pre_req(mmc, mrq);
 917
 918	/* Stop execution */
 919	writel(0, host->regs + SD_EMMC_START);
 920
 921	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
 
 
 
 922}
 923
 924static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
 925{
 926	struct meson_host *host = mmc_priv(mmc);
 927
 928	if (cmd->flags & MMC_RSP_136) {
 929		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
 930		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
 931		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
 932		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
 933	} else if (cmd->flags & MMC_RSP_PRESENT) {
 934		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
 935	}
 936}
 937
 938static void __meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
 939{
 940	struct meson_host *host = mmc_priv(mmc);
 941	u32 reg_irqen = IRQ_EN_MASK;
 942
 943	if (enable)
 944		reg_irqen |= IRQ_SDIO;
 945	writel(reg_irqen, host->regs + SD_EMMC_IRQ_EN);
 946}
 947
 948static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
 949{
 950	struct meson_host *host = dev_id;
 951	struct mmc_command *cmd;
 952	u32 status, raw_status, irq_mask = IRQ_EN_MASK;
 
 953	irqreturn_t ret = IRQ_NONE;
 954
 955	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
 956		irq_mask |= IRQ_SDIO;
 957	raw_status = readl(host->regs + SD_EMMC_STATUS);
 958	status = raw_status & irq_mask;
 959
 960	if (!status) {
 961		dev_dbg(host->dev,
 962			"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
 963			 irq_mask, raw_status);
 964		return IRQ_NONE;
 965	}
 966
 967	if (WARN_ON(!host))
 968		return IRQ_NONE;
 969
 970	/* ack all raised interrupts */
 971	writel(status, host->regs + SD_EMMC_STATUS);
 972
 973	cmd = host->cmd;
 974
 975	if (status & IRQ_SDIO) {
 976		spin_lock(&host->lock);
 977		__meson_mmc_enable_sdio_irq(host->mmc, 0);
 978		sdio_signal_irq(host->mmc);
 979		spin_unlock(&host->lock);
 980		status &= ~IRQ_SDIO;
 981		if (!status)
 982			return IRQ_HANDLED;
 983	}
 984
 985	if (WARN_ON(!cmd))
 986		return IRQ_NONE;
 987
 988	cmd->error = 0;
 989	if (status & IRQ_CRC_ERR) {
 990		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
 991		cmd->error = -EILSEQ;
 992		ret = IRQ_WAKE_THREAD;
 993		goto out;
 994	}
 995
 996	if (status & IRQ_TIMEOUTS) {
 997		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
 998		cmd->error = -ETIMEDOUT;
 999		ret = IRQ_WAKE_THREAD;
1000		goto out;
1001	}
1002
1003	meson_mmc_read_resp(host->mmc, cmd);
1004
1005	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
1006		struct mmc_data *data = cmd->data;
 
 
1007
 
1008		if (data && !cmd->error)
1009			data->bytes_xfered = data->blksz * data->blocks;
1010		if (meson_mmc_bounce_buf_read(data) ||
1011		    meson_mmc_get_next_command(cmd))
1012			ret = IRQ_WAKE_THREAD;
1013		else
1014			ret = IRQ_HANDLED;
1015	}
1016
1017out:
1018	if (cmd->error) {
1019		/* Stop desc in case of errors */
1020		u32 start = readl(host->regs + SD_EMMC_START);
1021
1022		start &= ~START_DESC_BUSY;
1023		writel(start, host->regs + SD_EMMC_START);
1024	}
1025
1026	if (ret == IRQ_HANDLED)
1027		meson_mmc_request_done(host->mmc, cmd->mrq);
1028
1029	return ret;
1030}
1031
1032static int meson_mmc_wait_desc_stop(struct meson_host *host)
1033{
1034	u32 status;
1035
1036	/*
1037	 * It may sometimes take a while for it to actually halt. Here, we
1038	 * are giving it 5ms to comply
1039	 *
1040	 * If we don't confirm the descriptor is stopped, it might raise new
1041	 * IRQs after we have called mmc_request_done() which is bad.
1042	 */
1043
1044	return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
1045				  !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
1046				  100, 5000);
1047}
1048
1049static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
1050{
1051	struct meson_host *host = dev_id;
1052	struct mmc_command *next_cmd, *cmd = host->cmd;
1053	struct mmc_data *data;
1054	unsigned int xfer_bytes;
1055
1056	if (WARN_ON(!cmd))
1057		return IRQ_NONE;
1058
1059	if (cmd->error) {
1060		meson_mmc_wait_desc_stop(host);
1061		meson_mmc_request_done(host->mmc, cmd->mrq);
1062
1063		return IRQ_HANDLED;
1064	}
1065
1066	data = cmd->data;
1067	if (meson_mmc_bounce_buf_read(data)) {
1068		xfer_bytes = data->blksz * data->blocks;
1069		WARN_ON(xfer_bytes > host->bounce_buf_size);
1070		if (host->dram_access_quirk)
1071			meson_mmc_copy_buffer(host, data, xfer_bytes, false);
1072		else
1073			sg_copy_from_buffer(data->sg, data->sg_len,
1074					    host->bounce_buf, xfer_bytes);
1075	}
1076
1077	next_cmd = meson_mmc_get_next_command(cmd);
1078	if (next_cmd)
1079		meson_mmc_start_cmd(host->mmc, next_cmd);
1080	else
1081		meson_mmc_request_done(host->mmc, cmd->mrq);
1082
1083	return IRQ_HANDLED;
1084}
1085
1086/*
1087 * NOTE: we only need this until the GPIO/pinctrl driver can handle
1088 * interrupts.  For now, the MMC core will use this for polling.
1089 */
1090static int meson_mmc_get_cd(struct mmc_host *mmc)
1091{
1092	int status = mmc_gpio_get_cd(mmc);
1093
1094	if (status == -ENOSYS)
1095		return 1; /* assume present */
1096
1097	return status;
1098}
1099
1100static void meson_mmc_cfg_init(struct meson_host *host)
1101{
1102	u32 cfg = 0;
1103
1104	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
1105			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
1106	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
1107	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
1108
1109	/* abort chain on R/W errors */
1110	cfg |= CFG_ERR_ABORT;
1111
1112	writel(cfg, host->regs + SD_EMMC_CFG);
1113}
1114
1115static int meson_mmc_card_busy(struct mmc_host *mmc)
1116{
1117	struct meson_host *host = mmc_priv(mmc);
1118	u32 regval;
1119
1120	regval = readl(host->regs + SD_EMMC_STATUS);
1121
1122	/* We are only interrested in lines 0 to 3, so mask the other ones */
1123	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1124}
1125
1126static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1127{
1128	int ret;
1129
1130	/* vqmmc regulator is available */
1131	if (!IS_ERR(mmc->supply.vqmmc)) {
1132		/*
1133		 * The usual amlogic setup uses a GPIO to switch from one
1134		 * regulator to the other. While the voltage ramp up is
1135		 * pretty fast, care must be taken when switching from 3.3v
1136		 * to 1.8v. Please make sure the regulator framework is aware
1137		 * of your own regulator constraints
1138		 */
1139		ret = mmc_regulator_set_vqmmc(mmc, ios);
1140		return ret < 0 ? ret : 0;
1141	}
1142
1143	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1144	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1145		return 0;
1146
1147	return -EINVAL;
1148}
1149
1150static void meson_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1151{
1152	struct meson_host *host = mmc_priv(mmc);
1153	unsigned long flags;
1154
1155	spin_lock_irqsave(&host->lock, flags);
1156	__meson_mmc_enable_sdio_irq(mmc, enable);
1157	spin_unlock_irqrestore(&host->lock, flags);
1158}
1159
1160static void meson_mmc_ack_sdio_irq(struct mmc_host *mmc)
1161{
1162	meson_mmc_enable_sdio_irq(mmc, 1);
1163}
1164
1165static const struct mmc_host_ops meson_mmc_ops = {
1166	.request	= meson_mmc_request,
1167	.set_ios	= meson_mmc_set_ios,
1168	.get_cd         = meson_mmc_get_cd,
1169	.pre_req	= meson_mmc_pre_req,
1170	.post_req	= meson_mmc_post_req,
1171	.execute_tuning = meson_mmc_resampling_tuning,
1172	.card_busy	= meson_mmc_card_busy,
1173	.start_signal_voltage_switch = meson_mmc_voltage_switch,
1174	.enable_sdio_irq = meson_mmc_enable_sdio_irq,
1175	.ack_sdio_irq	= meson_mmc_ack_sdio_irq,
1176};
1177
1178static int meson_mmc_probe(struct platform_device *pdev)
1179{
1180	struct resource *res;
1181	struct meson_host *host;
1182	struct mmc_host *mmc;
1183	int ret;
1184
1185	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1186	if (!mmc)
1187		return -ENOMEM;
1188	host = mmc_priv(mmc);
1189	host->mmc = mmc;
1190	host->dev = &pdev->dev;
1191	dev_set_drvdata(&pdev->dev, host);
1192
1193	/* The G12A SDIO Controller needs an SRAM bounce buffer */
1194	host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1195					"amlogic,dram-access-quirk");
1196
1197	/* Get regulators and the supported OCR mask */
1198	host->vqmmc_enabled = false;
1199	ret = mmc_regulator_get_supply(mmc);
1200	if (ret)
1201		goto free_host;
1202
1203	ret = mmc_of_parse(mmc);
1204	if (ret) {
1205		if (ret != -EPROBE_DEFER)
1206			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1207		goto free_host;
1208	}
1209
1210	mmc->caps |= MMC_CAP_CMD23;
1211
1212	if (mmc->caps & MMC_CAP_SDIO_IRQ)
1213		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
1214
1215	host->data = (struct meson_mmc_data *)
1216		of_device_get_match_data(&pdev->dev);
1217	if (!host->data) {
1218		ret = -EINVAL;
1219		goto free_host;
1220	}
1221
1222	ret = device_reset_optional(&pdev->dev);
1223	if (ret) {
1224		dev_err_probe(&pdev->dev, ret, "device reset failed\n");
1225		goto free_host;
 
 
1226	}
1227
1228	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1229	host->regs = devm_ioremap_resource(&pdev->dev, res);
1230	if (IS_ERR(host->regs)) {
1231		ret = PTR_ERR(host->regs);
1232		goto free_host;
1233	}
1234
1235	host->irq = platform_get_irq(pdev, 0);
1236	if (host->irq <= 0) {
1237		ret = -EINVAL;
1238		goto free_host;
1239	}
1240
1241	host->pinctrl = devm_pinctrl_get(&pdev->dev);
1242	if (IS_ERR(host->pinctrl)) {
1243		ret = PTR_ERR(host->pinctrl);
1244		goto free_host;
1245	}
1246
1247	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1248						   "clk-gate");
1249	if (IS_ERR(host->pins_clk_gate)) {
1250		dev_warn(&pdev->dev,
1251			 "can't get clk-gate pinctrl, using clk_stop bit\n");
1252		host->pins_clk_gate = NULL;
1253	}
1254
1255	host->core_clk = devm_clk_get(&pdev->dev, "core");
1256	if (IS_ERR(host->core_clk)) {
1257		ret = PTR_ERR(host->core_clk);
1258		goto free_host;
1259	}
1260
1261	ret = clk_prepare_enable(host->core_clk);
1262	if (ret)
1263		goto free_host;
1264
1265	ret = meson_mmc_clk_init(host);
1266	if (ret)
1267		goto err_core_clk;
1268
1269	/* set config to sane default */
1270	meson_mmc_cfg_init(host);
1271
1272	/* Stop execution */
1273	writel(0, host->regs + SD_EMMC_START);
1274
1275	/* clear, ack and enable interrupts */
1276	writel(0, host->regs + SD_EMMC_IRQ_EN);
1277	writel(IRQ_EN_MASK, host->regs + SD_EMMC_STATUS);
1278	writel(IRQ_EN_MASK, host->regs + SD_EMMC_IRQ_EN);
 
 
1279
1280	ret = request_threaded_irq(host->irq, meson_mmc_irq,
1281				   meson_mmc_irq_thread, IRQF_ONESHOT,
1282				   dev_name(&pdev->dev), host);
1283	if (ret)
1284		goto err_init_clk;
1285
1286	spin_lock_init(&host->lock);
1287
1288	if (host->dram_access_quirk) {
1289		/* Limit segments to 1 due to low available sram memory */
1290		mmc->max_segs = 1;
1291		/* Limit to the available sram memory */
1292		mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1293				     mmc->max_blk_size;
1294	} else {
1295		mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1296		mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1297				sizeof(struct sd_emmc_desc);
1298	}
1299	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1300	mmc->max_seg_size = mmc->max_req_size;
1301
1302	/*
1303	 * At the moment, we don't know how to reliably enable HS400.
1304	 * From the different datasheets, it is not even clear if this mode
1305	 * is officially supported by any of the SoCs
1306	 */
1307	mmc->caps2 &= ~MMC_CAP2_HS400;
1308
1309	if (host->dram_access_quirk) {
1310		/*
1311		 * The MMC Controller embeds 1,5KiB of internal SRAM
1312		 * that can be used to be used as bounce buffer.
1313		 * In the case of the G12A SDIO controller, use these
1314		 * instead of the DDR memory
1315		 */
1316		host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1317		host->bounce_iomem_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1318		host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1319	} else {
1320		/* data bounce buffer */
1321		host->bounce_buf_size = mmc->max_req_size;
1322		host->bounce_buf =
1323			dmam_alloc_coherent(host->dev, host->bounce_buf_size,
1324					    &host->bounce_dma_addr, GFP_KERNEL);
1325		if (host->bounce_buf == NULL) {
1326			dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1327			ret = -ENOMEM;
1328			goto err_free_irq;
1329		}
1330	}
1331
1332	host->descs = dmam_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1333					  &host->descs_dma_addr, GFP_KERNEL);
1334	if (!host->descs) {
1335		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1336		ret = -ENOMEM;
1337		goto err_free_irq;
1338	}
1339
1340	mmc->ops = &meson_mmc_ops;
1341	ret = mmc_add_host(mmc);
1342	if (ret)
1343		goto err_free_irq;
1344
1345	return 0;
1346
 
 
 
 
1347err_free_irq:
1348	free_irq(host->irq, host);
1349err_init_clk:
1350	clk_disable_unprepare(host->mmc_clk);
1351err_core_clk:
1352	clk_disable_unprepare(host->core_clk);
1353free_host:
1354	mmc_free_host(mmc);
1355	return ret;
1356}
1357
1358static int meson_mmc_remove(struct platform_device *pdev)
1359{
1360	struct meson_host *host = dev_get_drvdata(&pdev->dev);
1361
1362	mmc_remove_host(host->mmc);
1363
1364	/* disable interrupts */
1365	writel(0, host->regs + SD_EMMC_IRQ_EN);
1366	free_irq(host->irq, host);
1367
 
 
 
 
 
 
 
1368	clk_disable_unprepare(host->mmc_clk);
1369	clk_disable_unprepare(host->core_clk);
1370
1371	mmc_free_host(host->mmc);
1372	return 0;
1373}
1374
1375static const struct meson_mmc_data meson_gx_data = {
1376	.tx_delay_mask	= CLK_V2_TX_DELAY_MASK,
1377	.rx_delay_mask	= CLK_V2_RX_DELAY_MASK,
1378	.always_on	= CLK_V2_ALWAYS_ON,
1379	.adjust		= SD_EMMC_ADJUST,
1380	.irq_sdio_sleep	= CLK_V2_IRQ_SDIO_SLEEP,
1381};
1382
1383static const struct meson_mmc_data meson_axg_data = {
1384	.tx_delay_mask	= CLK_V3_TX_DELAY_MASK,
1385	.rx_delay_mask	= CLK_V3_RX_DELAY_MASK,
1386	.always_on	= CLK_V3_ALWAYS_ON,
1387	.adjust		= SD_EMMC_V3_ADJUST,
1388	.irq_sdio_sleep	= CLK_V3_IRQ_SDIO_SLEEP,
1389};
1390
1391static const struct of_device_id meson_mmc_of_match[] = {
1392	{ .compatible = "amlogic,meson-gx-mmc",		.data = &meson_gx_data },
1393	{ .compatible = "amlogic,meson-gxbb-mmc", 	.data = &meson_gx_data },
1394	{ .compatible = "amlogic,meson-gxl-mmc",	.data = &meson_gx_data },
1395	{ .compatible = "amlogic,meson-gxm-mmc",	.data = &meson_gx_data },
1396	{ .compatible = "amlogic,meson-axg-mmc",	.data = &meson_axg_data },
1397	{}
1398};
1399MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1400
1401static struct platform_driver meson_mmc_driver = {
1402	.probe		= meson_mmc_probe,
1403	.remove		= meson_mmc_remove,
1404	.driver		= {
1405		.name = DRIVER_NAME,
1406		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1407		.of_match_table = meson_mmc_of_match,
1408	},
1409};
1410
1411module_platform_driver(meson_mmc_driver);
1412
1413MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1414MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1415MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Amlogic SD/eMMC driver for the GX/S905 family SoCs
   4 *
   5 * Copyright (c) 2016 BayLibre, SAS.
   6 * Author: Kevin Hilman <khilman@baylibre.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/iopoll.h>
  14#include <linux/of_device.h>
  15#include <linux/platform_device.h>
  16#include <linux/ioport.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/mmc/host.h>
  19#include <linux/mmc/mmc.h>
  20#include <linux/mmc/sdio.h>
  21#include <linux/mmc/slot-gpio.h>
  22#include <linux/io.h>
  23#include <linux/clk.h>
  24#include <linux/clk-provider.h>
  25#include <linux/regulator/consumer.h>
  26#include <linux/reset.h>
  27#include <linux/interrupt.h>
  28#include <linux/bitfield.h>
  29#include <linux/pinctrl/consumer.h>
  30
  31#define DRIVER_NAME "meson-gx-mmc"
  32
  33#define SD_EMMC_CLOCK 0x0
  34#define   CLK_DIV_MASK GENMASK(5, 0)
  35#define   CLK_SRC_MASK GENMASK(7, 6)
  36#define   CLK_CORE_PHASE_MASK GENMASK(9, 8)
  37#define   CLK_TX_PHASE_MASK GENMASK(11, 10)
  38#define   CLK_RX_PHASE_MASK GENMASK(13, 12)
  39#define   CLK_PHASE_0 0
  40#define   CLK_PHASE_180 2
  41#define   CLK_V2_TX_DELAY_MASK GENMASK(19, 16)
  42#define   CLK_V2_RX_DELAY_MASK GENMASK(23, 20)
  43#define   CLK_V2_ALWAYS_ON BIT(24)
 
  44
  45#define   CLK_V3_TX_DELAY_MASK GENMASK(21, 16)
  46#define   CLK_V3_RX_DELAY_MASK GENMASK(27, 22)
  47#define   CLK_V3_ALWAYS_ON BIT(28)
 
  48
  49#define   CLK_TX_DELAY_MASK(h)		(h->data->tx_delay_mask)
  50#define   CLK_RX_DELAY_MASK(h)		(h->data->rx_delay_mask)
  51#define   CLK_ALWAYS_ON(h)		(h->data->always_on)
 
  52
  53#define SD_EMMC_DELAY 0x4
  54#define SD_EMMC_ADJUST 0x8
  55#define   ADJUST_ADJ_DELAY_MASK GENMASK(21, 16)
  56#define   ADJUST_DS_EN BIT(15)
  57#define   ADJUST_ADJ_EN BIT(13)
  58
  59#define SD_EMMC_DELAY1 0x4
  60#define SD_EMMC_DELAY2 0x8
  61#define SD_EMMC_V3_ADJUST 0xc
  62
  63#define SD_EMMC_CALOUT 0x10
  64#define SD_EMMC_START 0x40
  65#define   START_DESC_INIT BIT(0)
  66#define   START_DESC_BUSY BIT(1)
  67#define   START_DESC_ADDR_MASK GENMASK(31, 2)
  68
  69#define SD_EMMC_CFG 0x44
  70#define   CFG_BUS_WIDTH_MASK GENMASK(1, 0)
  71#define   CFG_BUS_WIDTH_1 0x0
  72#define   CFG_BUS_WIDTH_4 0x1
  73#define   CFG_BUS_WIDTH_8 0x2
  74#define   CFG_DDR BIT(2)
  75#define   CFG_BLK_LEN_MASK GENMASK(7, 4)
  76#define   CFG_RESP_TIMEOUT_MASK GENMASK(11, 8)
  77#define   CFG_RC_CC_MASK GENMASK(15, 12)
  78#define   CFG_STOP_CLOCK BIT(22)
  79#define   CFG_CLK_ALWAYS_ON BIT(18)
  80#define   CFG_CHK_DS BIT(20)
  81#define   CFG_AUTO_CLK BIT(23)
  82#define   CFG_ERR_ABORT BIT(27)
  83
  84#define SD_EMMC_STATUS 0x48
  85#define   STATUS_BUSY BIT(31)
  86#define   STATUS_DESC_BUSY BIT(30)
  87#define   STATUS_DATI GENMASK(23, 16)
  88
  89#define SD_EMMC_IRQ_EN 0x4c
  90#define   IRQ_RXD_ERR_MASK GENMASK(7, 0)
  91#define   IRQ_TXD_ERR BIT(8)
  92#define   IRQ_DESC_ERR BIT(9)
  93#define   IRQ_RESP_ERR BIT(10)
  94#define   IRQ_CRC_ERR \
  95	(IRQ_RXD_ERR_MASK | IRQ_TXD_ERR | IRQ_DESC_ERR | IRQ_RESP_ERR)
  96#define   IRQ_RESP_TIMEOUT BIT(11)
  97#define   IRQ_DESC_TIMEOUT BIT(12)
  98#define   IRQ_TIMEOUTS \
  99	(IRQ_RESP_TIMEOUT | IRQ_DESC_TIMEOUT)
 100#define   IRQ_END_OF_CHAIN BIT(13)
 101#define   IRQ_RESP_STATUS BIT(14)
 102#define   IRQ_SDIO BIT(15)
 103#define   IRQ_EN_MASK \
 104	(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN | IRQ_RESP_STATUS |\
 105	 IRQ_SDIO)
 106
 107#define SD_EMMC_CMD_CFG 0x50
 108#define SD_EMMC_CMD_ARG 0x54
 109#define SD_EMMC_CMD_DAT 0x58
 110#define SD_EMMC_CMD_RSP 0x5c
 111#define SD_EMMC_CMD_RSP1 0x60
 112#define SD_EMMC_CMD_RSP2 0x64
 113#define SD_EMMC_CMD_RSP3 0x68
 114
 115#define SD_EMMC_RXD 0x94
 116#define SD_EMMC_TXD 0x94
 117#define SD_EMMC_LAST_REG SD_EMMC_TXD
 118
 119#define SD_EMMC_SRAM_DATA_BUF_LEN 1536
 120#define SD_EMMC_SRAM_DATA_BUF_OFF 0x200
 121
 122#define SD_EMMC_CFG_BLK_SIZE 512 /* internal buffer max: 512 bytes */
 123#define SD_EMMC_CFG_RESP_TIMEOUT 256 /* in clock cycles */
 124#define SD_EMMC_CMD_TIMEOUT 1024 /* in ms */
 125#define SD_EMMC_CMD_TIMEOUT_DATA 4096 /* in ms */
 126#define SD_EMMC_CFG_CMD_GAP 16 /* in clock cycles */
 127#define SD_EMMC_DESC_BUF_LEN PAGE_SIZE
 128
 129#define SD_EMMC_PRE_REQ_DONE BIT(0)
 130#define SD_EMMC_DESC_CHAIN_MODE BIT(1)
 131
 132#define MUX_CLK_NUM_PARENTS 2
 133
 134struct meson_mmc_data {
 135	unsigned int tx_delay_mask;
 136	unsigned int rx_delay_mask;
 137	unsigned int always_on;
 138	unsigned int adjust;
 
 139};
 140
 141struct sd_emmc_desc {
 142	u32 cmd_cfg;
 143	u32 cmd_arg;
 144	u32 cmd_data;
 145	u32 cmd_resp;
 146};
 147
 148struct meson_host {
 149	struct	device		*dev;
 150	struct	meson_mmc_data *data;
 151	struct	mmc_host	*mmc;
 152	struct	mmc_command	*cmd;
 153
 154	void __iomem *regs;
 155	struct clk *core_clk;
 156	struct clk *mux_clk;
 157	struct clk *mmc_clk;
 158	unsigned long req_rate;
 159	bool ddr;
 160
 161	bool dram_access_quirk;
 162
 163	struct pinctrl *pinctrl;
 164	struct pinctrl_state *pins_clk_gate;
 165
 166	unsigned int bounce_buf_size;
 167	void *bounce_buf;
 
 168	dma_addr_t bounce_dma_addr;
 169	struct sd_emmc_desc *descs;
 170	dma_addr_t descs_dma_addr;
 171
 172	int irq;
 173
 174	bool vqmmc_enabled;
 
 
 
 175};
 176
 177#define CMD_CFG_LENGTH_MASK GENMASK(8, 0)
 178#define CMD_CFG_BLOCK_MODE BIT(9)
 179#define CMD_CFG_R1B BIT(10)
 180#define CMD_CFG_END_OF_CHAIN BIT(11)
 181#define CMD_CFG_TIMEOUT_MASK GENMASK(15, 12)
 182#define CMD_CFG_NO_RESP BIT(16)
 183#define CMD_CFG_NO_CMD BIT(17)
 184#define CMD_CFG_DATA_IO BIT(18)
 185#define CMD_CFG_DATA_WR BIT(19)
 186#define CMD_CFG_RESP_NOCRC BIT(20)
 187#define CMD_CFG_RESP_128 BIT(21)
 188#define CMD_CFG_RESP_NUM BIT(22)
 189#define CMD_CFG_DATA_NUM BIT(23)
 190#define CMD_CFG_CMD_INDEX_MASK GENMASK(29, 24)
 191#define CMD_CFG_ERROR BIT(30)
 192#define CMD_CFG_OWNER BIT(31)
 193
 194#define CMD_DATA_MASK GENMASK(31, 2)
 195#define CMD_DATA_BIG_ENDIAN BIT(1)
 196#define CMD_DATA_SRAM BIT(0)
 197#define CMD_RESP_MASK GENMASK(31, 1)
 198#define CMD_RESP_SRAM BIT(0)
 199
 200static unsigned int meson_mmc_get_timeout_msecs(struct mmc_data *data)
 201{
 202	unsigned int timeout = data->timeout_ns / NSEC_PER_MSEC;
 203
 204	if (!timeout)
 205		return SD_EMMC_CMD_TIMEOUT_DATA;
 206
 207	timeout = roundup_pow_of_two(timeout);
 208
 209	return min(timeout, 32768U); /* max. 2^15 ms */
 210}
 211
 212static struct mmc_command *meson_mmc_get_next_command(struct mmc_command *cmd)
 213{
 214	if (cmd->opcode == MMC_SET_BLOCK_COUNT && !cmd->error)
 215		return cmd->mrq->cmd;
 216	else if (mmc_op_multi(cmd->opcode) &&
 217		 (!cmd->mrq->sbc || cmd->error || cmd->data->error))
 218		return cmd->mrq->stop;
 219	else
 220		return NULL;
 221}
 222
 223static void meson_mmc_get_transfer_mode(struct mmc_host *mmc,
 224					struct mmc_request *mrq)
 225{
 226	struct meson_host *host = mmc_priv(mmc);
 227	struct mmc_data *data = mrq->data;
 228	struct scatterlist *sg;
 229	int i;
 230	bool use_desc_chain_mode = true;
 231
 232	/*
 233	 * When Controller DMA cannot directly access DDR memory, disable
 234	 * support for Chain Mode to directly use the internal SRAM using
 235	 * the bounce buffer mode.
 236	 */
 237	if (host->dram_access_quirk)
 238		return;
 239
 240	/*
 241	 * Broken SDIO with AP6255-based WiFi on Khadas VIM Pro has been
 242	 * reported. For some strange reason this occurs in descriptor
 243	 * chain mode only. So let's fall back to bounce buffer mode
 244	 * for command SD_IO_RW_EXTENDED.
 245	 */
 246	if (mrq->cmd->opcode == SD_IO_RW_EXTENDED)
 247		return;
 
 
 
 
 
 
 
 
 
 
 
 248
 249	for_each_sg(data->sg, sg, data->sg_len, i)
 250		/* check for 8 byte alignment */
 251		if (sg->offset & 7) {
 252			WARN_ONCE(1, "unaligned scatterlist buffer\n");
 253			use_desc_chain_mode = false;
 254			break;
 
 255		}
 
 256
 257	if (use_desc_chain_mode)
 258		data->host_cookie |= SD_EMMC_DESC_CHAIN_MODE;
 259}
 260
 261static inline bool meson_mmc_desc_chain_mode(const struct mmc_data *data)
 262{
 263	return data->host_cookie & SD_EMMC_DESC_CHAIN_MODE;
 264}
 265
 266static inline bool meson_mmc_bounce_buf_read(const struct mmc_data *data)
 267{
 268	return data && data->flags & MMC_DATA_READ &&
 269	       !meson_mmc_desc_chain_mode(data);
 270}
 271
 272static void meson_mmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
 273{
 274	struct mmc_data *data = mrq->data;
 275
 276	if (!data)
 277		return;
 278
 279	meson_mmc_get_transfer_mode(mmc, mrq);
 280	data->host_cookie |= SD_EMMC_PRE_REQ_DONE;
 281
 282	if (!meson_mmc_desc_chain_mode(data))
 283		return;
 284
 285	data->sg_count = dma_map_sg(mmc_dev(mmc), data->sg, data->sg_len,
 286                                   mmc_get_dma_dir(data));
 287	if (!data->sg_count)
 288		dev_err(mmc_dev(mmc), "dma_map_sg failed");
 289}
 290
 291static void meson_mmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
 292			       int err)
 293{
 294	struct mmc_data *data = mrq->data;
 295
 296	if (data && meson_mmc_desc_chain_mode(data) && data->sg_count)
 297		dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
 298			     mmc_get_dma_dir(data));
 299}
 300
 301/*
 302 * Gating the clock on this controller is tricky.  It seems the mmc clock
 303 * is also used by the controller.  It may crash during some operation if the
 304 * clock is stopped.  The safest thing to do, whenever possible, is to keep
 305 * clock running at stop it at the pad using the pinmux.
 306 */
 307static void meson_mmc_clk_gate(struct meson_host *host)
 308{
 309	u32 cfg;
 310
 311	if (host->pins_clk_gate) {
 312		pinctrl_select_state(host->pinctrl, host->pins_clk_gate);
 313	} else {
 314		/*
 315		 * If the pinmux is not provided - default to the classic and
 316		 * unsafe method
 317		 */
 318		cfg = readl(host->regs + SD_EMMC_CFG);
 319		cfg |= CFG_STOP_CLOCK;
 320		writel(cfg, host->regs + SD_EMMC_CFG);
 321	}
 322}
 323
 324static void meson_mmc_clk_ungate(struct meson_host *host)
 325{
 326	u32 cfg;
 327
 328	if (host->pins_clk_gate)
 329		pinctrl_select_default_state(host->dev);
 330
 331	/* Make sure the clock is not stopped in the controller */
 332	cfg = readl(host->regs + SD_EMMC_CFG);
 333	cfg &= ~CFG_STOP_CLOCK;
 334	writel(cfg, host->regs + SD_EMMC_CFG);
 335}
 336
 337static int meson_mmc_clk_set(struct meson_host *host, unsigned long rate,
 338			     bool ddr)
 339{
 340	struct mmc_host *mmc = host->mmc;
 341	int ret;
 342	u32 cfg;
 343
 344	/* Same request - bail-out */
 345	if (host->ddr == ddr && host->req_rate == rate)
 346		return 0;
 347
 348	/* stop clock */
 349	meson_mmc_clk_gate(host);
 350	host->req_rate = 0;
 351	mmc->actual_clock = 0;
 352
 353	/* return with clock being stopped */
 354	if (!rate)
 355		return 0;
 356
 357	/* Stop the clock during rate change to avoid glitches */
 358	cfg = readl(host->regs + SD_EMMC_CFG);
 359	cfg |= CFG_STOP_CLOCK;
 360	writel(cfg, host->regs + SD_EMMC_CFG);
 361
 362	if (ddr) {
 363		/* DDR modes require higher module clock */
 364		rate <<= 1;
 365		cfg |= CFG_DDR;
 366	} else {
 367		cfg &= ~CFG_DDR;
 368	}
 369	writel(cfg, host->regs + SD_EMMC_CFG);
 370	host->ddr = ddr;
 371
 372	ret = clk_set_rate(host->mmc_clk, rate);
 373	if (ret) {
 374		dev_err(host->dev, "Unable to set cfg_div_clk to %lu. ret=%d\n",
 375			rate, ret);
 376		return ret;
 377	}
 378
 379	host->req_rate = rate;
 380	mmc->actual_clock = clk_get_rate(host->mmc_clk);
 381
 382	/* We should report the real output frequency of the controller */
 383	if (ddr) {
 384		host->req_rate >>= 1;
 385		mmc->actual_clock >>= 1;
 386	}
 387
 388	dev_dbg(host->dev, "clk rate: %u Hz\n", mmc->actual_clock);
 389	if (rate != mmc->actual_clock)
 390		dev_dbg(host->dev, "requested rate was %lu\n", rate);
 391
 392	/* (re)start clock */
 393	meson_mmc_clk_ungate(host);
 394
 395	return 0;
 396}
 397
 398/*
 399 * The SD/eMMC IP block has an internal mux and divider used for
 400 * generating the MMC clock.  Use the clock framework to create and
 401 * manage these clocks.
 402 */
 403static int meson_mmc_clk_init(struct meson_host *host)
 404{
 405	struct clk_init_data init;
 406	struct clk_mux *mux;
 407	struct clk_divider *div;
 408	char clk_name[32];
 409	int i, ret = 0;
 410	const char *mux_parent_names[MUX_CLK_NUM_PARENTS];
 411	const char *clk_parent[1];
 412	u32 clk_reg;
 413
 414	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 415	clk_reg = CLK_ALWAYS_ON(host);
 416	clk_reg |= CLK_DIV_MASK;
 417	clk_reg |= FIELD_PREP(CLK_CORE_PHASE_MASK, CLK_PHASE_180);
 418	clk_reg |= FIELD_PREP(CLK_TX_PHASE_MASK, CLK_PHASE_0);
 419	clk_reg |= FIELD_PREP(CLK_RX_PHASE_MASK, CLK_PHASE_0);
 
 
 420	writel(clk_reg, host->regs + SD_EMMC_CLOCK);
 421
 422	/* get the mux parents */
 423	for (i = 0; i < MUX_CLK_NUM_PARENTS; i++) {
 424		struct clk *clk;
 425		char name[16];
 426
 427		snprintf(name, sizeof(name), "clkin%d", i);
 428		clk = devm_clk_get(host->dev, name);
 429		if (IS_ERR(clk)) {
 430			if (clk != ERR_PTR(-EPROBE_DEFER))
 431				dev_err(host->dev, "Missing clock %s\n", name);
 432			return PTR_ERR(clk);
 433		}
 434
 435		mux_parent_names[i] = __clk_get_name(clk);
 436	}
 437
 438	/* create the mux */
 439	mux = devm_kzalloc(host->dev, sizeof(*mux), GFP_KERNEL);
 440	if (!mux)
 441		return -ENOMEM;
 442
 443	snprintf(clk_name, sizeof(clk_name), "%s#mux", dev_name(host->dev));
 444	init.name = clk_name;
 445	init.ops = &clk_mux_ops;
 446	init.flags = 0;
 447	init.parent_names = mux_parent_names;
 448	init.num_parents = MUX_CLK_NUM_PARENTS;
 449
 450	mux->reg = host->regs + SD_EMMC_CLOCK;
 451	mux->shift = __ffs(CLK_SRC_MASK);
 452	mux->mask = CLK_SRC_MASK >> mux->shift;
 453	mux->hw.init = &init;
 454
 455	host->mux_clk = devm_clk_register(host->dev, &mux->hw);
 456	if (WARN_ON(IS_ERR(host->mux_clk)))
 457		return PTR_ERR(host->mux_clk);
 458
 459	/* create the divider */
 460	div = devm_kzalloc(host->dev, sizeof(*div), GFP_KERNEL);
 461	if (!div)
 462		return -ENOMEM;
 463
 464	snprintf(clk_name, sizeof(clk_name), "%s#div", dev_name(host->dev));
 465	init.name = clk_name;
 466	init.ops = &clk_divider_ops;
 467	init.flags = CLK_SET_RATE_PARENT;
 468	clk_parent[0] = __clk_get_name(host->mux_clk);
 469	init.parent_names = clk_parent;
 470	init.num_parents = 1;
 471
 472	div->reg = host->regs + SD_EMMC_CLOCK;
 473	div->shift = __ffs(CLK_DIV_MASK);
 474	div->width = __builtin_popcountl(CLK_DIV_MASK);
 475	div->hw.init = &init;
 476	div->flags = CLK_DIVIDER_ONE_BASED;
 477
 478	host->mmc_clk = devm_clk_register(host->dev, &div->hw);
 479	if (WARN_ON(IS_ERR(host->mmc_clk)))
 480		return PTR_ERR(host->mmc_clk);
 481
 482	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
 483	host->mmc->f_min = clk_round_rate(host->mmc_clk, 400000);
 484	ret = clk_set_rate(host->mmc_clk, host->mmc->f_min);
 485	if (ret)
 486		return ret;
 487
 488	return clk_prepare_enable(host->mmc_clk);
 489}
 490
 491static void meson_mmc_disable_resampling(struct meson_host *host)
 492{
 493	unsigned int val = readl(host->regs + host->data->adjust);
 494
 495	val &= ~ADJUST_ADJ_EN;
 496	writel(val, host->regs + host->data->adjust);
 497}
 498
 499static void meson_mmc_reset_resampling(struct meson_host *host)
 500{
 501	unsigned int val;
 502
 503	meson_mmc_disable_resampling(host);
 504
 505	val = readl(host->regs + host->data->adjust);
 506	val &= ~ADJUST_ADJ_DELAY_MASK;
 507	writel(val, host->regs + host->data->adjust);
 508}
 509
 510static int meson_mmc_resampling_tuning(struct mmc_host *mmc, u32 opcode)
 511{
 512	struct meson_host *host = mmc_priv(mmc);
 513	unsigned int val, dly, max_dly, i;
 514	int ret;
 515
 516	/* Resampling is done using the source clock */
 517	max_dly = DIV_ROUND_UP(clk_get_rate(host->mux_clk),
 518			       clk_get_rate(host->mmc_clk));
 519
 520	val = readl(host->regs + host->data->adjust);
 521	val |= ADJUST_ADJ_EN;
 522	writel(val, host->regs + host->data->adjust);
 523
 524	if (mmc->doing_retune)
 525		dly = FIELD_GET(ADJUST_ADJ_DELAY_MASK, val) + 1;
 526	else
 527		dly = 0;
 528
 529	for (i = 0; i < max_dly; i++) {
 530		val &= ~ADJUST_ADJ_DELAY_MASK;
 531		val |= FIELD_PREP(ADJUST_ADJ_DELAY_MASK, (dly + i) % max_dly);
 532		writel(val, host->regs + host->data->adjust);
 533
 534		ret = mmc_send_tuning(mmc, opcode, NULL);
 535		if (!ret) {
 536			dev_dbg(mmc_dev(mmc), "resampling delay: %u\n",
 537				(dly + i) % max_dly);
 538			return 0;
 539		}
 540	}
 541
 542	meson_mmc_reset_resampling(host);
 543	return -EIO;
 544}
 545
 546static int meson_mmc_prepare_ios_clock(struct meson_host *host,
 547				       struct mmc_ios *ios)
 548{
 549	bool ddr;
 550
 551	switch (ios->timing) {
 552	case MMC_TIMING_MMC_DDR52:
 553	case MMC_TIMING_UHS_DDR50:
 554		ddr = true;
 555		break;
 556
 557	default:
 558		ddr = false;
 559		break;
 560	}
 561
 562	return meson_mmc_clk_set(host, ios->clock, ddr);
 563}
 564
 565static void meson_mmc_check_resampling(struct meson_host *host,
 566				       struct mmc_ios *ios)
 567{
 568	switch (ios->timing) {
 569	case MMC_TIMING_LEGACY:
 570	case MMC_TIMING_MMC_HS:
 571	case MMC_TIMING_SD_HS:
 572	case MMC_TIMING_MMC_DDR52:
 573		meson_mmc_disable_resampling(host);
 574		break;
 575	}
 576}
 577
 578static void meson_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
 579{
 580	struct meson_host *host = mmc_priv(mmc);
 581	u32 bus_width, val;
 582	int err;
 583
 584	/*
 585	 * GPIO regulator, only controls switching between 1v8 and
 586	 * 3v3, doesn't support MMC_POWER_OFF, MMC_POWER_ON.
 587	 */
 588	switch (ios->power_mode) {
 589	case MMC_POWER_OFF:
 590		if (!IS_ERR(mmc->supply.vmmc))
 591			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
 592
 593		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
 594			regulator_disable(mmc->supply.vqmmc);
 595			host->vqmmc_enabled = false;
 596		}
 597
 598		break;
 599
 600	case MMC_POWER_UP:
 601		if (!IS_ERR(mmc->supply.vmmc))
 602			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
 603
 604		break;
 605
 606	case MMC_POWER_ON:
 607		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
 608			int ret = regulator_enable(mmc->supply.vqmmc);
 609
 610			if (ret < 0)
 611				dev_err(host->dev,
 612					"failed to enable vqmmc regulator\n");
 613			else
 614				host->vqmmc_enabled = true;
 615		}
 616
 617		break;
 618	}
 619
 620	/* Bus width */
 621	switch (ios->bus_width) {
 622	case MMC_BUS_WIDTH_1:
 623		bus_width = CFG_BUS_WIDTH_1;
 624		break;
 625	case MMC_BUS_WIDTH_4:
 626		bus_width = CFG_BUS_WIDTH_4;
 627		break;
 628	case MMC_BUS_WIDTH_8:
 629		bus_width = CFG_BUS_WIDTH_8;
 630		break;
 631	default:
 632		dev_err(host->dev, "Invalid ios->bus_width: %u.  Setting to 4.\n",
 633			ios->bus_width);
 634		bus_width = CFG_BUS_WIDTH_4;
 635	}
 636
 637	val = readl(host->regs + SD_EMMC_CFG);
 638	val &= ~CFG_BUS_WIDTH_MASK;
 639	val |= FIELD_PREP(CFG_BUS_WIDTH_MASK, bus_width);
 640	writel(val, host->regs + SD_EMMC_CFG);
 641
 642	meson_mmc_check_resampling(host, ios);
 643	err = meson_mmc_prepare_ios_clock(host, ios);
 644	if (err)
 645		dev_err(host->dev, "Failed to set clock: %d\n,", err);
 646
 647	dev_dbg(host->dev, "SD_EMMC_CFG:  0x%08x\n", val);
 648}
 649
 650static void meson_mmc_request_done(struct mmc_host *mmc,
 651				   struct mmc_request *mrq)
 652{
 653	struct meson_host *host = mmc_priv(mmc);
 654
 655	host->cmd = NULL;
 
 
 656	mmc_request_done(host->mmc, mrq);
 657}
 658
 659static void meson_mmc_set_blksz(struct mmc_host *mmc, unsigned int blksz)
 660{
 661	struct meson_host *host = mmc_priv(mmc);
 662	u32 cfg, blksz_old;
 663
 664	cfg = readl(host->regs + SD_EMMC_CFG);
 665	blksz_old = FIELD_GET(CFG_BLK_LEN_MASK, cfg);
 666
 667	if (!is_power_of_2(blksz))
 668		dev_err(host->dev, "blksz %u is not a power of 2\n", blksz);
 669
 670	blksz = ilog2(blksz);
 671
 672	/* check if block-size matches, if not update */
 673	if (blksz == blksz_old)
 674		return;
 675
 676	dev_dbg(host->dev, "%s: update blk_len %d -> %d\n", __func__,
 677		blksz_old, blksz);
 678
 679	cfg &= ~CFG_BLK_LEN_MASK;
 680	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, blksz);
 681	writel(cfg, host->regs + SD_EMMC_CFG);
 682}
 683
 684static void meson_mmc_set_response_bits(struct mmc_command *cmd, u32 *cmd_cfg)
 685{
 686	if (cmd->flags & MMC_RSP_PRESENT) {
 687		if (cmd->flags & MMC_RSP_136)
 688			*cmd_cfg |= CMD_CFG_RESP_128;
 689		*cmd_cfg |= CMD_CFG_RESP_NUM;
 690
 691		if (!(cmd->flags & MMC_RSP_CRC))
 692			*cmd_cfg |= CMD_CFG_RESP_NOCRC;
 693
 694		if (cmd->flags & MMC_RSP_BUSY)
 695			*cmd_cfg |= CMD_CFG_R1B;
 696	} else {
 697		*cmd_cfg |= CMD_CFG_NO_RESP;
 698	}
 699}
 700
 701static void meson_mmc_desc_chain_transfer(struct mmc_host *mmc, u32 cmd_cfg)
 702{
 703	struct meson_host *host = mmc_priv(mmc);
 704	struct sd_emmc_desc *desc = host->descs;
 705	struct mmc_data *data = host->cmd->data;
 706	struct scatterlist *sg;
 707	u32 start;
 708	int i;
 709
 710	if (data->flags & MMC_DATA_WRITE)
 711		cmd_cfg |= CMD_CFG_DATA_WR;
 712
 713	if (data->blocks > 1) {
 714		cmd_cfg |= CMD_CFG_BLOCK_MODE;
 715		meson_mmc_set_blksz(mmc, data->blksz);
 716	}
 717
 718	for_each_sg(data->sg, sg, data->sg_count, i) {
 719		unsigned int len = sg_dma_len(sg);
 720
 721		if (data->blocks > 1)
 722			len /= data->blksz;
 723
 724		desc[i].cmd_cfg = cmd_cfg;
 725		desc[i].cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, len);
 726		if (i > 0)
 727			desc[i].cmd_cfg |= CMD_CFG_NO_CMD;
 728		desc[i].cmd_arg = host->cmd->arg;
 729		desc[i].cmd_resp = 0;
 730		desc[i].cmd_data = sg_dma_address(sg);
 731	}
 732	desc[data->sg_count - 1].cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 733
 734	dma_wmb(); /* ensure descriptor is written before kicked */
 735	start = host->descs_dma_addr | START_DESC_BUSY;
 736	writel(start, host->regs + SD_EMMC_START);
 737}
 738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739static void meson_mmc_start_cmd(struct mmc_host *mmc, struct mmc_command *cmd)
 740{
 741	struct meson_host *host = mmc_priv(mmc);
 742	struct mmc_data *data = cmd->data;
 743	u32 cmd_cfg = 0, cmd_data = 0;
 744	unsigned int xfer_bytes = 0;
 745
 746	/* Setup descriptors */
 747	dma_rmb();
 748
 749	host->cmd = cmd;
 750
 751	cmd_cfg |= FIELD_PREP(CMD_CFG_CMD_INDEX_MASK, cmd->opcode);
 752	cmd_cfg |= CMD_CFG_OWNER;  /* owned by CPU */
 753	cmd_cfg |= CMD_CFG_ERROR; /* stop in case of error */
 754
 755	meson_mmc_set_response_bits(cmd, &cmd_cfg);
 756
 757	/* data? */
 758	if (data) {
 759		data->bytes_xfered = 0;
 760		cmd_cfg |= CMD_CFG_DATA_IO;
 761		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 762				      ilog2(meson_mmc_get_timeout_msecs(data)));
 763
 764		if (meson_mmc_desc_chain_mode(data)) {
 765			meson_mmc_desc_chain_transfer(mmc, cmd_cfg);
 766			return;
 767		}
 768
 769		if (data->blocks > 1) {
 770			cmd_cfg |= CMD_CFG_BLOCK_MODE;
 771			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK,
 772					      data->blocks);
 773			meson_mmc_set_blksz(mmc, data->blksz);
 774		} else {
 775			cmd_cfg |= FIELD_PREP(CMD_CFG_LENGTH_MASK, data->blksz);
 776		}
 777
 778		xfer_bytes = data->blksz * data->blocks;
 779		if (data->flags & MMC_DATA_WRITE) {
 780			cmd_cfg |= CMD_CFG_DATA_WR;
 781			WARN_ON(xfer_bytes > host->bounce_buf_size);
 782			sg_copy_to_buffer(data->sg, data->sg_len,
 783					  host->bounce_buf, xfer_bytes);
 
 
 
 784			dma_wmb();
 785		}
 786
 787		cmd_data = host->bounce_dma_addr & CMD_DATA_MASK;
 788	} else {
 789		cmd_cfg |= FIELD_PREP(CMD_CFG_TIMEOUT_MASK,
 790				      ilog2(SD_EMMC_CMD_TIMEOUT));
 791	}
 792
 793	/* Last descriptor */
 794	cmd_cfg |= CMD_CFG_END_OF_CHAIN;
 795	writel(cmd_cfg, host->regs + SD_EMMC_CMD_CFG);
 796	writel(cmd_data, host->regs + SD_EMMC_CMD_DAT);
 797	writel(0, host->regs + SD_EMMC_CMD_RSP);
 798	wmb(); /* ensure descriptor is written before kicked */
 799	writel(cmd->arg, host->regs + SD_EMMC_CMD_ARG);
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802static void meson_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
 803{
 804	struct meson_host *host = mmc_priv(mmc);
 805	bool needs_pre_post_req = mrq->data &&
 806			!(mrq->data->host_cookie & SD_EMMC_PRE_REQ_DONE);
 807
 808	if (needs_pre_post_req) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 809		meson_mmc_get_transfer_mode(mmc, mrq);
 810		if (!meson_mmc_desc_chain_mode(mrq->data))
 811			needs_pre_post_req = false;
 812	}
 813
 814	if (needs_pre_post_req)
 815		meson_mmc_pre_req(mmc, mrq);
 816
 817	/* Stop execution */
 818	writel(0, host->regs + SD_EMMC_START);
 819
 820	meson_mmc_start_cmd(mmc, mrq->sbc ?: mrq->cmd);
 821
 822	if (needs_pre_post_req)
 823		meson_mmc_post_req(mmc, mrq, 0);
 824}
 825
 826static void meson_mmc_read_resp(struct mmc_host *mmc, struct mmc_command *cmd)
 827{
 828	struct meson_host *host = mmc_priv(mmc);
 829
 830	if (cmd->flags & MMC_RSP_136) {
 831		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP3);
 832		cmd->resp[1] = readl(host->regs + SD_EMMC_CMD_RSP2);
 833		cmd->resp[2] = readl(host->regs + SD_EMMC_CMD_RSP1);
 834		cmd->resp[3] = readl(host->regs + SD_EMMC_CMD_RSP);
 835	} else if (cmd->flags & MMC_RSP_PRESENT) {
 836		cmd->resp[0] = readl(host->regs + SD_EMMC_CMD_RSP);
 837	}
 838}
 839
 
 
 
 
 
 
 
 
 
 
 840static irqreturn_t meson_mmc_irq(int irq, void *dev_id)
 841{
 842	struct meson_host *host = dev_id;
 843	struct mmc_command *cmd;
 844	struct mmc_data *data;
 845	u32 irq_en, status, raw_status;
 846	irqreturn_t ret = IRQ_NONE;
 847
 848	irq_en = readl(host->regs + SD_EMMC_IRQ_EN);
 
 849	raw_status = readl(host->regs + SD_EMMC_STATUS);
 850	status = raw_status & irq_en;
 851
 852	if (!status) {
 853		dev_dbg(host->dev,
 854			"Unexpected IRQ! irq_en 0x%08x - status 0x%08x\n",
 855			 irq_en, raw_status);
 856		return IRQ_NONE;
 857	}
 858
 859	if (WARN_ON(!host) || WARN_ON(!host->cmd))
 860		return IRQ_NONE;
 861
 862	/* ack all raised interrupts */
 863	writel(status, host->regs + SD_EMMC_STATUS);
 864
 865	cmd = host->cmd;
 866	data = cmd->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	cmd->error = 0;
 868	if (status & IRQ_CRC_ERR) {
 869		dev_dbg(host->dev, "CRC Error - status 0x%08x\n", status);
 870		cmd->error = -EILSEQ;
 871		ret = IRQ_WAKE_THREAD;
 872		goto out;
 873	}
 874
 875	if (status & IRQ_TIMEOUTS) {
 876		dev_dbg(host->dev, "Timeout - status 0x%08x\n", status);
 877		cmd->error = -ETIMEDOUT;
 878		ret = IRQ_WAKE_THREAD;
 879		goto out;
 880	}
 881
 882	meson_mmc_read_resp(host->mmc, cmd);
 883
 884	if (status & IRQ_SDIO) {
 885		dev_dbg(host->dev, "IRQ: SDIO TODO.\n");
 886		ret = IRQ_HANDLED;
 887	}
 888
 889	if (status & (IRQ_END_OF_CHAIN | IRQ_RESP_STATUS)) {
 890		if (data && !cmd->error)
 891			data->bytes_xfered = data->blksz * data->blocks;
 892		if (meson_mmc_bounce_buf_read(data) ||
 893		    meson_mmc_get_next_command(cmd))
 894			ret = IRQ_WAKE_THREAD;
 895		else
 896			ret = IRQ_HANDLED;
 897	}
 898
 899out:
 900	if (cmd->error) {
 901		/* Stop desc in case of errors */
 902		u32 start = readl(host->regs + SD_EMMC_START);
 903
 904		start &= ~START_DESC_BUSY;
 905		writel(start, host->regs + SD_EMMC_START);
 906	}
 907
 908	if (ret == IRQ_HANDLED)
 909		meson_mmc_request_done(host->mmc, cmd->mrq);
 910
 911	return ret;
 912}
 913
 914static int meson_mmc_wait_desc_stop(struct meson_host *host)
 915{
 916	u32 status;
 917
 918	/*
 919	 * It may sometimes take a while for it to actually halt. Here, we
 920	 * are giving it 5ms to comply
 921	 *
 922	 * If we don't confirm the descriptor is stopped, it might raise new
 923	 * IRQs after we have called mmc_request_done() which is bad.
 924	 */
 925
 926	return readl_poll_timeout(host->regs + SD_EMMC_STATUS, status,
 927				  !(status & (STATUS_BUSY | STATUS_DESC_BUSY)),
 928				  100, 5000);
 929}
 930
 931static irqreturn_t meson_mmc_irq_thread(int irq, void *dev_id)
 932{
 933	struct meson_host *host = dev_id;
 934	struct mmc_command *next_cmd, *cmd = host->cmd;
 935	struct mmc_data *data;
 936	unsigned int xfer_bytes;
 937
 938	if (WARN_ON(!cmd))
 939		return IRQ_NONE;
 940
 941	if (cmd->error) {
 942		meson_mmc_wait_desc_stop(host);
 943		meson_mmc_request_done(host->mmc, cmd->mrq);
 944
 945		return IRQ_HANDLED;
 946	}
 947
 948	data = cmd->data;
 949	if (meson_mmc_bounce_buf_read(data)) {
 950		xfer_bytes = data->blksz * data->blocks;
 951		WARN_ON(xfer_bytes > host->bounce_buf_size);
 952		sg_copy_from_buffer(data->sg, data->sg_len,
 953				    host->bounce_buf, xfer_bytes);
 
 
 
 954	}
 955
 956	next_cmd = meson_mmc_get_next_command(cmd);
 957	if (next_cmd)
 958		meson_mmc_start_cmd(host->mmc, next_cmd);
 959	else
 960		meson_mmc_request_done(host->mmc, cmd->mrq);
 961
 962	return IRQ_HANDLED;
 963}
 964
 965/*
 966 * NOTE: we only need this until the GPIO/pinctrl driver can handle
 967 * interrupts.  For now, the MMC core will use this for polling.
 968 */
 969static int meson_mmc_get_cd(struct mmc_host *mmc)
 970{
 971	int status = mmc_gpio_get_cd(mmc);
 972
 973	if (status == -ENOSYS)
 974		return 1; /* assume present */
 975
 976	return status;
 977}
 978
 979static void meson_mmc_cfg_init(struct meson_host *host)
 980{
 981	u32 cfg = 0;
 982
 983	cfg |= FIELD_PREP(CFG_RESP_TIMEOUT_MASK,
 984			  ilog2(SD_EMMC_CFG_RESP_TIMEOUT));
 985	cfg |= FIELD_PREP(CFG_RC_CC_MASK, ilog2(SD_EMMC_CFG_CMD_GAP));
 986	cfg |= FIELD_PREP(CFG_BLK_LEN_MASK, ilog2(SD_EMMC_CFG_BLK_SIZE));
 987
 988	/* abort chain on R/W errors */
 989	cfg |= CFG_ERR_ABORT;
 990
 991	writel(cfg, host->regs + SD_EMMC_CFG);
 992}
 993
 994static int meson_mmc_card_busy(struct mmc_host *mmc)
 995{
 996	struct meson_host *host = mmc_priv(mmc);
 997	u32 regval;
 998
 999	regval = readl(host->regs + SD_EMMC_STATUS);
1000
1001	/* We are only interrested in lines 0 to 3, so mask the other ones */
1002	return !(FIELD_GET(STATUS_DATI, regval) & 0xf);
1003}
1004
1005static int meson_mmc_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1006{
1007	int ret;
1008
1009	/* vqmmc regulator is available */
1010	if (!IS_ERR(mmc->supply.vqmmc)) {
1011		/*
1012		 * The usual amlogic setup uses a GPIO to switch from one
1013		 * regulator to the other. While the voltage ramp up is
1014		 * pretty fast, care must be taken when switching from 3.3v
1015		 * to 1.8v. Please make sure the regulator framework is aware
1016		 * of your own regulator constraints
1017		 */
1018		ret = mmc_regulator_set_vqmmc(mmc, ios);
1019		return ret < 0 ? ret : 0;
1020	}
1021
1022	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
1023	if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1024		return 0;
1025
1026	return -EINVAL;
1027}
1028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029static const struct mmc_host_ops meson_mmc_ops = {
1030	.request	= meson_mmc_request,
1031	.set_ios	= meson_mmc_set_ios,
1032	.get_cd         = meson_mmc_get_cd,
1033	.pre_req	= meson_mmc_pre_req,
1034	.post_req	= meson_mmc_post_req,
1035	.execute_tuning = meson_mmc_resampling_tuning,
1036	.card_busy	= meson_mmc_card_busy,
1037	.start_signal_voltage_switch = meson_mmc_voltage_switch,
 
 
1038};
1039
1040static int meson_mmc_probe(struct platform_device *pdev)
1041{
1042	struct resource *res;
1043	struct meson_host *host;
1044	struct mmc_host *mmc;
1045	int ret;
1046
1047	mmc = mmc_alloc_host(sizeof(struct meson_host), &pdev->dev);
1048	if (!mmc)
1049		return -ENOMEM;
1050	host = mmc_priv(mmc);
1051	host->mmc = mmc;
1052	host->dev = &pdev->dev;
1053	dev_set_drvdata(&pdev->dev, host);
1054
1055	/* The G12A SDIO Controller needs an SRAM bounce buffer */
1056	host->dram_access_quirk = device_property_read_bool(&pdev->dev,
1057					"amlogic,dram-access-quirk");
1058
1059	/* Get regulators and the supported OCR mask */
1060	host->vqmmc_enabled = false;
1061	ret = mmc_regulator_get_supply(mmc);
1062	if (ret)
1063		goto free_host;
1064
1065	ret = mmc_of_parse(mmc);
1066	if (ret) {
1067		if (ret != -EPROBE_DEFER)
1068			dev_warn(&pdev->dev, "error parsing DT: %d\n", ret);
1069		goto free_host;
1070	}
1071
 
 
 
 
 
1072	host->data = (struct meson_mmc_data *)
1073		of_device_get_match_data(&pdev->dev);
1074	if (!host->data) {
1075		ret = -EINVAL;
1076		goto free_host;
1077	}
1078
1079	ret = device_reset_optional(&pdev->dev);
1080	if (ret) {
1081		if (ret != -EPROBE_DEFER)
1082			dev_err(&pdev->dev, "device reset failed: %d\n", ret);
1083
1084		return ret;
1085	}
1086
1087	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088	host->regs = devm_ioremap_resource(&pdev->dev, res);
1089	if (IS_ERR(host->regs)) {
1090		ret = PTR_ERR(host->regs);
1091		goto free_host;
1092	}
1093
1094	host->irq = platform_get_irq(pdev, 0);
1095	if (host->irq <= 0) {
1096		ret = -EINVAL;
1097		goto free_host;
1098	}
1099
1100	host->pinctrl = devm_pinctrl_get(&pdev->dev);
1101	if (IS_ERR(host->pinctrl)) {
1102		ret = PTR_ERR(host->pinctrl);
1103		goto free_host;
1104	}
1105
1106	host->pins_clk_gate = pinctrl_lookup_state(host->pinctrl,
1107						   "clk-gate");
1108	if (IS_ERR(host->pins_clk_gate)) {
1109		dev_warn(&pdev->dev,
1110			 "can't get clk-gate pinctrl, using clk_stop bit\n");
1111		host->pins_clk_gate = NULL;
1112	}
1113
1114	host->core_clk = devm_clk_get(&pdev->dev, "core");
1115	if (IS_ERR(host->core_clk)) {
1116		ret = PTR_ERR(host->core_clk);
1117		goto free_host;
1118	}
1119
1120	ret = clk_prepare_enable(host->core_clk);
1121	if (ret)
1122		goto free_host;
1123
1124	ret = meson_mmc_clk_init(host);
1125	if (ret)
1126		goto err_core_clk;
1127
1128	/* set config to sane default */
1129	meson_mmc_cfg_init(host);
1130
1131	/* Stop execution */
1132	writel(0, host->regs + SD_EMMC_START);
1133
1134	/* clear, ack and enable interrupts */
1135	writel(0, host->regs + SD_EMMC_IRQ_EN);
1136	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1137	       host->regs + SD_EMMC_STATUS);
1138	writel(IRQ_CRC_ERR | IRQ_TIMEOUTS | IRQ_END_OF_CHAIN,
1139	       host->regs + SD_EMMC_IRQ_EN);
1140
1141	ret = request_threaded_irq(host->irq, meson_mmc_irq,
1142				   meson_mmc_irq_thread, IRQF_ONESHOT,
1143				   dev_name(&pdev->dev), host);
1144	if (ret)
1145		goto err_init_clk;
1146
1147	mmc->caps |= MMC_CAP_CMD23;
 
1148	if (host->dram_access_quirk) {
1149		/* Limit segments to 1 due to low available sram memory */
1150		mmc->max_segs = 1;
1151		/* Limit to the available sram memory */
1152		mmc->max_blk_count = SD_EMMC_SRAM_DATA_BUF_LEN /
1153				     mmc->max_blk_size;
1154	} else {
1155		mmc->max_blk_count = CMD_CFG_LENGTH_MASK;
1156		mmc->max_segs = SD_EMMC_DESC_BUF_LEN /
1157				sizeof(struct sd_emmc_desc);
1158	}
1159	mmc->max_req_size = mmc->max_blk_count * mmc->max_blk_size;
1160	mmc->max_seg_size = mmc->max_req_size;
1161
1162	/*
1163	 * At the moment, we don't know how to reliably enable HS400.
1164	 * From the different datasheets, it is not even clear if this mode
1165	 * is officially supported by any of the SoCs
1166	 */
1167	mmc->caps2 &= ~MMC_CAP2_HS400;
1168
1169	if (host->dram_access_quirk) {
1170		/*
1171		 * The MMC Controller embeds 1,5KiB of internal SRAM
1172		 * that can be used to be used as bounce buffer.
1173		 * In the case of the G12A SDIO controller, use these
1174		 * instead of the DDR memory
1175		 */
1176		host->bounce_buf_size = SD_EMMC_SRAM_DATA_BUF_LEN;
1177		host->bounce_buf = host->regs + SD_EMMC_SRAM_DATA_BUF_OFF;
1178		host->bounce_dma_addr = res->start + SD_EMMC_SRAM_DATA_BUF_OFF;
1179	} else {
1180		/* data bounce buffer */
1181		host->bounce_buf_size = mmc->max_req_size;
1182		host->bounce_buf =
1183			dma_alloc_coherent(host->dev, host->bounce_buf_size,
1184					   &host->bounce_dma_addr, GFP_KERNEL);
1185		if (host->bounce_buf == NULL) {
1186			dev_err(host->dev, "Unable to map allocate DMA bounce buffer.\n");
1187			ret = -ENOMEM;
1188			goto err_free_irq;
1189		}
1190	}
1191
1192	host->descs = dma_alloc_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1193		      &host->descs_dma_addr, GFP_KERNEL);
1194	if (!host->descs) {
1195		dev_err(host->dev, "Allocating descriptor DMA buffer failed\n");
1196		ret = -ENOMEM;
1197		goto err_bounce_buf;
1198	}
1199
1200	mmc->ops = &meson_mmc_ops;
1201	mmc_add_host(mmc);
 
 
1202
1203	return 0;
1204
1205err_bounce_buf:
1206	if (!host->dram_access_quirk)
1207		dma_free_coherent(host->dev, host->bounce_buf_size,
1208				  host->bounce_buf, host->bounce_dma_addr);
1209err_free_irq:
1210	free_irq(host->irq, host);
1211err_init_clk:
1212	clk_disable_unprepare(host->mmc_clk);
1213err_core_clk:
1214	clk_disable_unprepare(host->core_clk);
1215free_host:
1216	mmc_free_host(mmc);
1217	return ret;
1218}
1219
1220static int meson_mmc_remove(struct platform_device *pdev)
1221{
1222	struct meson_host *host = dev_get_drvdata(&pdev->dev);
1223
1224	mmc_remove_host(host->mmc);
1225
1226	/* disable interrupts */
1227	writel(0, host->regs + SD_EMMC_IRQ_EN);
1228	free_irq(host->irq, host);
1229
1230	dma_free_coherent(host->dev, SD_EMMC_DESC_BUF_LEN,
1231			  host->descs, host->descs_dma_addr);
1232
1233	if (!host->dram_access_quirk)
1234		dma_free_coherent(host->dev, host->bounce_buf_size,
1235				  host->bounce_buf, host->bounce_dma_addr);
1236
1237	clk_disable_unprepare(host->mmc_clk);
1238	clk_disable_unprepare(host->core_clk);
1239
1240	mmc_free_host(host->mmc);
1241	return 0;
1242}
1243
1244static const struct meson_mmc_data meson_gx_data = {
1245	.tx_delay_mask	= CLK_V2_TX_DELAY_MASK,
1246	.rx_delay_mask	= CLK_V2_RX_DELAY_MASK,
1247	.always_on	= CLK_V2_ALWAYS_ON,
1248	.adjust		= SD_EMMC_ADJUST,
 
1249};
1250
1251static const struct meson_mmc_data meson_axg_data = {
1252	.tx_delay_mask	= CLK_V3_TX_DELAY_MASK,
1253	.rx_delay_mask	= CLK_V3_RX_DELAY_MASK,
1254	.always_on	= CLK_V3_ALWAYS_ON,
1255	.adjust		= SD_EMMC_V3_ADJUST,
 
1256};
1257
1258static const struct of_device_id meson_mmc_of_match[] = {
1259	{ .compatible = "amlogic,meson-gx-mmc",		.data = &meson_gx_data },
1260	{ .compatible = "amlogic,meson-gxbb-mmc", 	.data = &meson_gx_data },
1261	{ .compatible = "amlogic,meson-gxl-mmc",	.data = &meson_gx_data },
1262	{ .compatible = "amlogic,meson-gxm-mmc",	.data = &meson_gx_data },
1263	{ .compatible = "amlogic,meson-axg-mmc",	.data = &meson_axg_data },
1264	{}
1265};
1266MODULE_DEVICE_TABLE(of, meson_mmc_of_match);
1267
1268static struct platform_driver meson_mmc_driver = {
1269	.probe		= meson_mmc_probe,
1270	.remove		= meson_mmc_remove,
1271	.driver		= {
1272		.name = DRIVER_NAME,
1273		.of_match_table = of_match_ptr(meson_mmc_of_match),
 
1274	},
1275};
1276
1277module_platform_driver(meson_mmc_driver);
1278
1279MODULE_DESCRIPTION("Amlogic S905*/GX*/AXG SD/eMMC driver");
1280MODULE_AUTHOR("Kevin Hilman <khilman@baylibre.com>");
1281MODULE_LICENSE("GPL v2");