Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * Copyright (C) 2014 Facebook. All rights reserved.
  3 *
  4 * This file is released under the GPL.
  5 */
  6
  7#include <linux/device-mapper.h>
  8
  9#include <linux/module.h>
 10#include <linux/init.h>
 11#include <linux/blkdev.h>
 12#include <linux/bio.h>
 13#include <linux/dax.h>
 14#include <linux/slab.h>
 15#include <linux/kthread.h>
 16#include <linux/freezer.h>
 17#include <linux/uio.h>
 18
 19#define DM_MSG_PREFIX "log-writes"
 20
 21/*
 22 * This target will sequentially log all writes to the target device onto the
 23 * log device.  This is helpful for replaying writes to check for fs consistency
 24 * at all times.  This target provides a mechanism to mark specific events to
 25 * check data at a later time.  So for example you would:
 26 *
 27 * write data
 28 * fsync
 29 * dmsetup message /dev/whatever mark mymark
 30 * unmount /mnt/test
 31 *
 32 * Then replay the log up to mymark and check the contents of the replay to
 33 * verify it matches what was written.
 34 *
 35 * We log writes only after they have been flushed, this makes the log describe
 36 * close to the order in which the data hits the actual disk, not its cache.  So
 37 * for example the following sequence (W means write, C means complete)
 38 *
 39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
 40 *
 41 * Would result in the log looking like this:
 42 *
 43 * c,a,b,flush,fuad,<other writes>,<next flush>
 44 *
 45 * This is meant to help expose problems where file systems do not properly wait
 46 * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
 47 * completes it is added to the log as it should be on disk.
 48 *
 49 * We treat DISCARDs as if they don't bypass cache so that they are logged in
 50 * order of completion along with the normal writes.  If we didn't do it this
 51 * way we would process all the discards first and then write all the data, when
 52 * in fact we want to do the data and the discard in the order that they
 53 * completed.
 54 */
 55#define LOG_FLUSH_FLAG		(1 << 0)
 56#define LOG_FUA_FLAG		(1 << 1)
 57#define LOG_DISCARD_FLAG	(1 << 2)
 58#define LOG_MARK_FLAG		(1 << 3)
 59#define LOG_METADATA_FLAG	(1 << 4)
 60
 61#define WRITE_LOG_VERSION 1ULL
 62#define WRITE_LOG_MAGIC 0x6a736677736872ULL
 63#define WRITE_LOG_SUPER_SECTOR 0
 64
 65/*
 66 * The disk format for this is braindead simple.
 67 *
 68 * At byte 0 we have our super, followed by the following sequence for
 69 * nr_entries:
 70 *
 71 * [   1 sector    ][  entry->nr_sectors ]
 72 * [log_write_entry][    data written    ]
 73 *
 74 * The log_write_entry takes up a full sector so we can have arbitrary length
 75 * marks and it leaves us room for extra content in the future.
 76 */
 77
 78/*
 79 * Basic info about the log for userspace.
 80 */
 81struct log_write_super {
 82	__le64 magic;
 83	__le64 version;
 84	__le64 nr_entries;
 85	__le32 sectorsize;
 86};
 87
 88/*
 89 * sector - the sector we wrote.
 90 * nr_sectors - the number of sectors we wrote.
 91 * flags - flags for this log entry.
 92 * data_len - the size of the data in this log entry, this is for private log
 93 * entry stuff, the MARK data provided by userspace for example.
 94 */
 95struct log_write_entry {
 96	__le64 sector;
 97	__le64 nr_sectors;
 98	__le64 flags;
 99	__le64 data_len;
100};
101
102struct log_writes_c {
103	struct dm_dev *dev;
104	struct dm_dev *logdev;
105	u64 logged_entries;
106	u32 sectorsize;
107	u32 sectorshift;
108	atomic_t io_blocks;
109	atomic_t pending_blocks;
110	sector_t next_sector;
111	sector_t end_sector;
112	bool logging_enabled;
113	bool device_supports_discard;
114	spinlock_t blocks_lock;
115	struct list_head unflushed_blocks;
116	struct list_head logging_blocks;
117	wait_queue_head_t wait;
118	struct task_struct *log_kthread;
119	struct completion super_done;
120};
121
122struct pending_block {
123	int vec_cnt;
124	u64 flags;
125	sector_t sector;
126	sector_t nr_sectors;
127	char *data;
128	u32 datalen;
129	struct list_head list;
130	struct bio_vec vecs[];
131};
132
133struct per_bio_data {
134	struct pending_block *block;
135};
136
137static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138					  sector_t sectors)
139{
140	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141}
142
143static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144					  sector_t sectors)
145{
146	return sectors << (lc->sectorshift - SECTOR_SHIFT);
147}
148
149static void put_pending_block(struct log_writes_c *lc)
150{
151	if (atomic_dec_and_test(&lc->pending_blocks)) {
152		smp_mb__after_atomic();
153		if (waitqueue_active(&lc->wait))
154			wake_up(&lc->wait);
155	}
156}
157
158static void put_io_block(struct log_writes_c *lc)
159{
160	if (atomic_dec_and_test(&lc->io_blocks)) {
161		smp_mb__after_atomic();
162		if (waitqueue_active(&lc->wait))
163			wake_up(&lc->wait);
164	}
165}
166
167static void log_end_io(struct bio *bio)
168{
169	struct log_writes_c *lc = bio->bi_private;
170
171	if (bio->bi_status) {
172		unsigned long flags;
173
174		DMERR("Error writing log block, error=%d", bio->bi_status);
175		spin_lock_irqsave(&lc->blocks_lock, flags);
176		lc->logging_enabled = false;
177		spin_unlock_irqrestore(&lc->blocks_lock, flags);
178	}
179
180	bio_free_pages(bio);
181	put_io_block(lc);
182	bio_put(bio);
183}
184
185static void log_end_super(struct bio *bio)
186{
187	struct log_writes_c *lc = bio->bi_private;
188
189	complete(&lc->super_done);
190	log_end_io(bio);
191}
192
193/*
194 * Meant to be called if there is an error, it will free all the pages
195 * associated with the block.
196 */
197static void free_pending_block(struct log_writes_c *lc,
198			       struct pending_block *block)
199{
200	int i;
201
202	for (i = 0; i < block->vec_cnt; i++) {
203		if (block->vecs[i].bv_page)
204			__free_page(block->vecs[i].bv_page);
205	}
206	kfree(block->data);
207	kfree(block);
208	put_pending_block(lc);
209}
210
211static int write_metadata(struct log_writes_c *lc, void *entry,
212			  size_t entrylen, void *data, size_t datalen,
213			  sector_t sector)
214{
215	struct bio *bio;
216	struct page *page;
217	void *ptr;
218	size_t ret;
219
220	bio = bio_alloc(lc->logdev->bdev, 1, REQ_OP_WRITE, GFP_KERNEL);
 
 
 
 
221	bio->bi_iter.bi_size = 0;
222	bio->bi_iter.bi_sector = sector;
 
223	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
224			  log_end_super : log_end_io;
225	bio->bi_private = lc;
 
226
227	page = alloc_page(GFP_KERNEL);
228	if (!page) {
229		DMERR("Couldn't alloc log page");
230		bio_put(bio);
231		goto error;
232	}
233
234	ptr = kmap_atomic(page);
235	memcpy(ptr, entry, entrylen);
236	if (datalen)
237		memcpy(ptr + entrylen, data, datalen);
238	memset(ptr + entrylen + datalen, 0,
239	       lc->sectorsize - entrylen - datalen);
240	kunmap_atomic(ptr);
241
242	ret = bio_add_page(bio, page, lc->sectorsize, 0);
243	if (ret != lc->sectorsize) {
244		DMERR("Couldn't add page to the log block");
245		goto error_bio;
246	}
247	submit_bio(bio);
248	return 0;
249error_bio:
250	bio_put(bio);
251	__free_page(page);
252error:
253	put_io_block(lc);
254	return -1;
255}
256
257static int write_inline_data(struct log_writes_c *lc, void *entry,
258			     size_t entrylen, void *data, size_t datalen,
259			     sector_t sector)
260{
261	int bio_pages, pg_datalen, pg_sectorlen, i;
262	struct page *page;
263	struct bio *bio;
264	size_t ret;
265	void *ptr;
266
267	while (datalen) {
268		bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
 
269
270		atomic_inc(&lc->io_blocks);
271
272		bio = bio_alloc(lc->logdev->bdev, bio_pages, REQ_OP_WRITE,
273				GFP_KERNEL);
 
 
 
 
274		bio->bi_iter.bi_size = 0;
275		bio->bi_iter.bi_sector = sector;
 
276		bio->bi_end_io = log_end_io;
277		bio->bi_private = lc;
 
278
279		for (i = 0; i < bio_pages; i++) {
280			pg_datalen = min_t(int, datalen, PAGE_SIZE);
281			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
282
283			page = alloc_page(GFP_KERNEL);
284			if (!page) {
285				DMERR("Couldn't alloc inline data page");
286				goto error_bio;
287			}
288
289			ptr = kmap_atomic(page);
290			memcpy(ptr, data, pg_datalen);
291			if (pg_sectorlen > pg_datalen)
292				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
293			kunmap_atomic(ptr);
294
295			ret = bio_add_page(bio, page, pg_sectorlen, 0);
296			if (ret != pg_sectorlen) {
297				DMERR("Couldn't add page of inline data");
298				__free_page(page);
299				goto error_bio;
300			}
301
302			datalen -= pg_datalen;
303			data	+= pg_datalen;
304		}
305		submit_bio(bio);
306
307		sector += bio_pages * PAGE_SECTORS;
308	}
309	return 0;
310error_bio:
311	bio_free_pages(bio);
312	bio_put(bio);
 
313	put_io_block(lc);
314	return -1;
315}
316
317static int log_one_block(struct log_writes_c *lc,
318			 struct pending_block *block, sector_t sector)
319{
320	struct bio *bio;
321	struct log_write_entry entry;
322	size_t metadatalen, ret;
323	int i;
324
325	entry.sector = cpu_to_le64(block->sector);
326	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
327	entry.flags = cpu_to_le64(block->flags);
328	entry.data_len = cpu_to_le64(block->datalen);
329
330	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
331	if (write_metadata(lc, &entry, sizeof(entry), block->data,
332			   metadatalen, sector)) {
333		free_pending_block(lc, block);
334		return -1;
335	}
336
337	sector += dev_to_bio_sectors(lc, 1);
338
339	if (block->datalen && metadatalen == 0) {
340		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
341				      block->datalen, sector)) {
342			free_pending_block(lc, block);
343			return -1;
344		}
345		/* we don't support both inline data & bio data */
346		goto out;
347	}
348
349	if (!block->vec_cnt)
350		goto out;
351
352	atomic_inc(&lc->io_blocks);
353	bio = bio_alloc(lc->logdev->bdev, bio_max_segs(block->vec_cnt),
354			REQ_OP_WRITE, GFP_KERNEL);
 
 
 
355	bio->bi_iter.bi_size = 0;
356	bio->bi_iter.bi_sector = sector;
 
357	bio->bi_end_io = log_end_io;
358	bio->bi_private = lc;
 
359
360	for (i = 0; i < block->vec_cnt; i++) {
361		/*
362		 * The page offset is always 0 because we allocate a new page
363		 * for every bvec in the original bio for simplicity sake.
364		 */
365		ret = bio_add_page(bio, block->vecs[i].bv_page,
366				   block->vecs[i].bv_len, 0);
367		if (ret != block->vecs[i].bv_len) {
368			atomic_inc(&lc->io_blocks);
369			submit_bio(bio);
370			bio = bio_alloc(lc->logdev->bdev,
371					bio_max_segs(block->vec_cnt - i),
372					REQ_OP_WRITE, GFP_KERNEL);
 
 
373			bio->bi_iter.bi_size = 0;
374			bio->bi_iter.bi_sector = sector;
 
375			bio->bi_end_io = log_end_io;
376			bio->bi_private = lc;
 
377
378			ret = bio_add_page(bio, block->vecs[i].bv_page,
379					   block->vecs[i].bv_len, 0);
380			if (ret != block->vecs[i].bv_len) {
381				DMERR("Couldn't add page on new bio?");
382				bio_put(bio);
383				goto error;
384			}
385		}
386		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
387	}
388	submit_bio(bio);
389out:
390	kfree(block->data);
391	kfree(block);
392	put_pending_block(lc);
393	return 0;
394error:
395	free_pending_block(lc, block);
396	put_io_block(lc);
397	return -1;
398}
399
400static int log_super(struct log_writes_c *lc)
401{
402	struct log_write_super super;
403
404	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
405	super.version = cpu_to_le64(WRITE_LOG_VERSION);
406	super.nr_entries = cpu_to_le64(lc->logged_entries);
407	super.sectorsize = cpu_to_le32(lc->sectorsize);
408
409	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
410			   WRITE_LOG_SUPER_SECTOR)) {
411		DMERR("Couldn't write super");
412		return -1;
413	}
414
415	/*
416	 * Super sector should be writen in-order, otherwise the
417	 * nr_entries could be rewritten incorrectly by an old bio.
418	 */
419	wait_for_completion_io(&lc->super_done);
420
421	return 0;
422}
423
424static inline sector_t logdev_last_sector(struct log_writes_c *lc)
425{
426	return bdev_nr_sectors(lc->logdev->bdev);
427}
428
429static int log_writes_kthread(void *arg)
430{
431	struct log_writes_c *lc = (struct log_writes_c *)arg;
432	sector_t sector = 0;
433
434	while (!kthread_should_stop()) {
435		bool super = false;
436		bool logging_enabled;
437		struct pending_block *block = NULL;
438		int ret;
439
440		spin_lock_irq(&lc->blocks_lock);
441		if (!list_empty(&lc->logging_blocks)) {
442			block = list_first_entry(&lc->logging_blocks,
443						 struct pending_block, list);
444			list_del_init(&block->list);
445			if (!lc->logging_enabled)
446				goto next;
447
448			sector = lc->next_sector;
449			if (!(block->flags & LOG_DISCARD_FLAG))
450				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
451			lc->next_sector += dev_to_bio_sectors(lc, 1);
452
453			/*
454			 * Apparently the size of the device may not be known
455			 * right away, so handle this properly.
456			 */
457			if (!lc->end_sector)
458				lc->end_sector = logdev_last_sector(lc);
459			if (lc->end_sector &&
460			    lc->next_sector >= lc->end_sector) {
461				DMERR("Ran out of space on the logdev");
462				lc->logging_enabled = false;
463				goto next;
464			}
465			lc->logged_entries++;
466			atomic_inc(&lc->io_blocks);
467
468			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
469			if (super)
470				atomic_inc(&lc->io_blocks);
471		}
472next:
473		logging_enabled = lc->logging_enabled;
474		spin_unlock_irq(&lc->blocks_lock);
475		if (block) {
476			if (logging_enabled) {
477				ret = log_one_block(lc, block, sector);
478				if (!ret && super)
479					ret = log_super(lc);
480				if (ret) {
481					spin_lock_irq(&lc->blocks_lock);
482					lc->logging_enabled = false;
483					spin_unlock_irq(&lc->blocks_lock);
484				}
485			} else
486				free_pending_block(lc, block);
487			continue;
488		}
489
490		if (!try_to_freeze()) {
491			set_current_state(TASK_INTERRUPTIBLE);
492			if (!kthread_should_stop() &&
493			    list_empty(&lc->logging_blocks))
494				schedule();
495			__set_current_state(TASK_RUNNING);
496		}
497	}
498	return 0;
499}
500
501/*
502 * Construct a log-writes mapping:
503 * log-writes <dev_path> <log_dev_path>
504 */
505static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
506{
507	struct log_writes_c *lc;
508	struct dm_arg_set as;
509	const char *devname, *logdevname;
510	int ret;
511
512	as.argc = argc;
513	as.argv = argv;
514
515	if (argc < 2) {
516		ti->error = "Invalid argument count";
517		return -EINVAL;
518	}
519
520	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
521	if (!lc) {
522		ti->error = "Cannot allocate context";
523		return -ENOMEM;
524	}
525	spin_lock_init(&lc->blocks_lock);
526	INIT_LIST_HEAD(&lc->unflushed_blocks);
527	INIT_LIST_HEAD(&lc->logging_blocks);
528	init_waitqueue_head(&lc->wait);
529	init_completion(&lc->super_done);
530	atomic_set(&lc->io_blocks, 0);
531	atomic_set(&lc->pending_blocks, 0);
532
533	devname = dm_shift_arg(&as);
534	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
535	if (ret) {
536		ti->error = "Device lookup failed";
537		goto bad;
538	}
539
540	logdevname = dm_shift_arg(&as);
541	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
542			    &lc->logdev);
543	if (ret) {
544		ti->error = "Log device lookup failed";
545		dm_put_device(ti, lc->dev);
546		goto bad;
547	}
548
549	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
550	lc->sectorshift = ilog2(lc->sectorsize);
551	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
552	if (IS_ERR(lc->log_kthread)) {
553		ret = PTR_ERR(lc->log_kthread);
554		ti->error = "Couldn't alloc kthread";
555		dm_put_device(ti, lc->dev);
556		dm_put_device(ti, lc->logdev);
557		goto bad;
558	}
559
560	/*
561	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
562	 * The super starts at sector 0, and the next_sector is the next logical
563	 * one based on the sectorsize of the device.
564	 */
565	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
566	lc->logging_enabled = true;
567	lc->end_sector = logdev_last_sector(lc);
568	lc->device_supports_discard = true;
569
570	ti->num_flush_bios = 1;
571	ti->flush_supported = true;
572	ti->num_discard_bios = 1;
573	ti->discards_supported = true;
574	ti->per_io_data_size = sizeof(struct per_bio_data);
575	ti->private = lc;
576	return 0;
577
578bad:
579	kfree(lc);
580	return ret;
581}
582
583static int log_mark(struct log_writes_c *lc, char *data)
584{
585	struct pending_block *block;
586	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
587
588	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
589	if (!block) {
590		DMERR("Error allocating pending block");
591		return -ENOMEM;
592	}
593
594	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
595	if (!block->data) {
596		DMERR("Error copying mark data");
597		kfree(block);
598		return -ENOMEM;
599	}
600	atomic_inc(&lc->pending_blocks);
601	block->datalen = strlen(block->data);
602	block->flags |= LOG_MARK_FLAG;
603	spin_lock_irq(&lc->blocks_lock);
604	list_add_tail(&block->list, &lc->logging_blocks);
605	spin_unlock_irq(&lc->blocks_lock);
606	wake_up_process(lc->log_kthread);
607	return 0;
608}
609
610static void log_writes_dtr(struct dm_target *ti)
611{
612	struct log_writes_c *lc = ti->private;
613
614	spin_lock_irq(&lc->blocks_lock);
615	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
616	spin_unlock_irq(&lc->blocks_lock);
617
618	/*
619	 * This is just nice to have since it'll update the super to include the
620	 * unflushed blocks, if it fails we don't really care.
621	 */
622	log_mark(lc, "dm-log-writes-end");
623	wake_up_process(lc->log_kthread);
624	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
625		   !atomic_read(&lc->pending_blocks));
626	kthread_stop(lc->log_kthread);
627
628	WARN_ON(!list_empty(&lc->logging_blocks));
629	WARN_ON(!list_empty(&lc->unflushed_blocks));
630	dm_put_device(ti, lc->dev);
631	dm_put_device(ti, lc->logdev);
632	kfree(lc);
633}
634
635static void normal_map_bio(struct dm_target *ti, struct bio *bio)
636{
637	struct log_writes_c *lc = ti->private;
638
639	bio_set_dev(bio, lc->dev->bdev);
640}
641
642static int log_writes_map(struct dm_target *ti, struct bio *bio)
643{
644	struct log_writes_c *lc = ti->private;
645	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
646	struct pending_block *block;
647	struct bvec_iter iter;
648	struct bio_vec bv;
649	size_t alloc_size;
650	int i = 0;
651	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
652	bool fua_bio = (bio->bi_opf & REQ_FUA);
653	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
654	bool meta_bio = (bio->bi_opf & REQ_META);
655
656	pb->block = NULL;
657
658	/* Don't bother doing anything if logging has been disabled */
659	if (!lc->logging_enabled)
660		goto map_bio;
661
662	/*
663	 * Map reads as normal.
664	 */
665	if (bio_data_dir(bio) == READ)
666		goto map_bio;
667
668	/* No sectors and not a flush?  Don't care */
669	if (!bio_sectors(bio) && !flush_bio)
670		goto map_bio;
671
672	/*
673	 * Discards will have bi_size set but there's no actual data, so just
674	 * allocate the size of the pending block.
675	 */
676	if (discard_bio)
677		alloc_size = sizeof(struct pending_block);
678	else
679		alloc_size = struct_size(block, vecs, bio_segments(bio));
680
681	block = kzalloc(alloc_size, GFP_NOIO);
682	if (!block) {
683		DMERR("Error allocating pending block");
684		spin_lock_irq(&lc->blocks_lock);
685		lc->logging_enabled = false;
686		spin_unlock_irq(&lc->blocks_lock);
687		return DM_MAPIO_KILL;
688	}
689	INIT_LIST_HEAD(&block->list);
690	pb->block = block;
691	atomic_inc(&lc->pending_blocks);
692
693	if (flush_bio)
694		block->flags |= LOG_FLUSH_FLAG;
695	if (fua_bio)
696		block->flags |= LOG_FUA_FLAG;
697	if (discard_bio)
698		block->flags |= LOG_DISCARD_FLAG;
699	if (meta_bio)
700		block->flags |= LOG_METADATA_FLAG;
701
702	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
703	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
704
705	/* We don't need the data, just submit */
706	if (discard_bio) {
707		WARN_ON(flush_bio || fua_bio);
708		if (lc->device_supports_discard)
709			goto map_bio;
710		bio_endio(bio);
711		return DM_MAPIO_SUBMITTED;
712	}
713
714	/* Flush bio, splice the unflushed blocks onto this list and submit */
715	if (flush_bio && !bio_sectors(bio)) {
716		spin_lock_irq(&lc->blocks_lock);
717		list_splice_init(&lc->unflushed_blocks, &block->list);
718		spin_unlock_irq(&lc->blocks_lock);
719		goto map_bio;
720	}
721
722	/*
723	 * We will write this bio somewhere else way later so we need to copy
724	 * the actual contents into new pages so we know the data will always be
725	 * there.
726	 *
727	 * We do this because this could be a bio from O_DIRECT in which case we
728	 * can't just hold onto the page until some later point, we have to
729	 * manually copy the contents.
730	 */
731	bio_for_each_segment(bv, bio, iter) {
732		struct page *page;
733		void *dst;
734
735		page = alloc_page(GFP_NOIO);
736		if (!page) {
737			DMERR("Error allocing page");
738			free_pending_block(lc, block);
739			spin_lock_irq(&lc->blocks_lock);
740			lc->logging_enabled = false;
741			spin_unlock_irq(&lc->blocks_lock);
742			return DM_MAPIO_KILL;
743		}
744
 
745		dst = kmap_atomic(page);
746		memcpy_from_bvec(dst, &bv);
747		kunmap_atomic(dst);
 
748		block->vecs[i].bv_page = page;
749		block->vecs[i].bv_len = bv.bv_len;
750		block->vec_cnt++;
751		i++;
752	}
753
754	/* Had a flush with data in it, weird */
755	if (flush_bio) {
756		spin_lock_irq(&lc->blocks_lock);
757		list_splice_init(&lc->unflushed_blocks, &block->list);
758		spin_unlock_irq(&lc->blocks_lock);
759	}
760map_bio:
761	normal_map_bio(ti, bio);
762	return DM_MAPIO_REMAPPED;
763}
764
765static int normal_end_io(struct dm_target *ti, struct bio *bio,
766		blk_status_t *error)
767{
768	struct log_writes_c *lc = ti->private;
769	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
770
771	if (bio_data_dir(bio) == WRITE && pb->block) {
772		struct pending_block *block = pb->block;
773		unsigned long flags;
774
775		spin_lock_irqsave(&lc->blocks_lock, flags);
776		if (block->flags & LOG_FLUSH_FLAG) {
777			list_splice_tail_init(&block->list, &lc->logging_blocks);
778			list_add_tail(&block->list, &lc->logging_blocks);
779			wake_up_process(lc->log_kthread);
780		} else if (block->flags & LOG_FUA_FLAG) {
781			list_add_tail(&block->list, &lc->logging_blocks);
782			wake_up_process(lc->log_kthread);
783		} else
784			list_add_tail(&block->list, &lc->unflushed_blocks);
785		spin_unlock_irqrestore(&lc->blocks_lock, flags);
786	}
787
788	return DM_ENDIO_DONE;
789}
790
791/*
792 * INFO format: <logged entries> <highest allocated sector>
793 */
794static void log_writes_status(struct dm_target *ti, status_type_t type,
795			      unsigned status_flags, char *result,
796			      unsigned maxlen)
797{
798	unsigned sz = 0;
799	struct log_writes_c *lc = ti->private;
800
801	switch (type) {
802	case STATUSTYPE_INFO:
803		DMEMIT("%llu %llu", lc->logged_entries,
804		       (unsigned long long)lc->next_sector - 1);
805		if (!lc->logging_enabled)
806			DMEMIT(" logging_disabled");
807		break;
808
809	case STATUSTYPE_TABLE:
810		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
811		break;
812
813	case STATUSTYPE_IMA:
814		*result = '\0';
815		break;
816	}
817}
818
819static int log_writes_prepare_ioctl(struct dm_target *ti,
820				    struct block_device **bdev)
821{
822	struct log_writes_c *lc = ti->private;
823	struct dm_dev *dev = lc->dev;
824
825	*bdev = dev->bdev;
826	/*
827	 * Only pass ioctls through if the device sizes match exactly.
828	 */
829	if (ti->len != bdev_nr_sectors(dev->bdev))
830		return 1;
831	return 0;
832}
833
834static int log_writes_iterate_devices(struct dm_target *ti,
835				      iterate_devices_callout_fn fn,
836				      void *data)
837{
838	struct log_writes_c *lc = ti->private;
839
840	return fn(ti, lc->dev, 0, ti->len, data);
841}
842
843/*
844 * Messages supported:
845 *   mark <mark data> - specify the marked data.
846 */
847static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
848			      char *result, unsigned maxlen)
849{
850	int r = -EINVAL;
851	struct log_writes_c *lc = ti->private;
852
853	if (argc != 2) {
854		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
855		return r;
856	}
857
858	if (!strcasecmp(argv[0], "mark"))
859		r = log_mark(lc, argv[1]);
860	else
861		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
862
863	return r;
864}
865
866static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
867{
868	struct log_writes_c *lc = ti->private;
 
869
870	if (!bdev_max_discard_sectors(lc->dev->bdev)) {
871		lc->device_supports_discard = false;
872		limits->discard_granularity = lc->sectorsize;
873		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
874	}
875	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
876	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
877	limits->io_min = limits->physical_block_size;
878	limits->dma_alignment = limits->logical_block_size - 1;
879}
880
881#if IS_ENABLED(CONFIG_FS_DAX)
882static struct dax_device *log_writes_dax_pgoff(struct dm_target *ti,
883		pgoff_t *pgoff)
884{
885	struct log_writes_c *lc = ti->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
886
887	*pgoff += (get_start_sect(lc->dev->bdev) >> PAGE_SECTORS_SHIFT);
888	return lc->dev->dax_dev;
 
 
 
 
 
 
 
 
 
 
 
 
889}
890
891static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
892		long nr_pages, enum dax_access_mode mode, void **kaddr,
893		pfn_t *pfn)
894{
895	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
 
 
896
897	return dax_direct_access(dax_dev, pgoff, nr_pages, mode, kaddr, pfn);
 
 
 
898}
899
900static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
901					  size_t nr_pages)
 
902{
903	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
 
 
 
 
 
904
905	return dax_zero_page_range(dax_dev, pgoff, nr_pages << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
906}
907
908static size_t log_writes_dax_recovery_write(struct dm_target *ti,
909		pgoff_t pgoff, void *addr, size_t bytes, struct iov_iter *i)
 
910{
911	struct dax_device *dax_dev = log_writes_dax_pgoff(ti, &pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
912
913	return dax_recovery_write(dax_dev, pgoff, addr, bytes, i);
 
 
 
 
 
914}
915
916#else
917#define log_writes_dax_direct_access NULL
 
 
918#define log_writes_dax_zero_page_range NULL
919#define log_writes_dax_recovery_write NULL
920#endif
921
922static struct target_type log_writes_target = {
923	.name   = "log-writes",
924	.version = {1, 1, 0},
925	.module = THIS_MODULE,
926	.ctr    = log_writes_ctr,
927	.dtr    = log_writes_dtr,
928	.map    = log_writes_map,
929	.end_io = normal_end_io,
930	.status = log_writes_status,
931	.prepare_ioctl = log_writes_prepare_ioctl,
932	.message = log_writes_message,
933	.iterate_devices = log_writes_iterate_devices,
934	.io_hints = log_writes_io_hints,
935	.direct_access = log_writes_dax_direct_access,
 
 
936	.dax_zero_page_range = log_writes_dax_zero_page_range,
937	.dax_recovery_write = log_writes_dax_recovery_write,
938};
939
940static int __init dm_log_writes_init(void)
941{
942	int r = dm_register_target(&log_writes_target);
943
944	if (r < 0)
945		DMERR("register failed %d", r);
946
947	return r;
948}
949
950static void __exit dm_log_writes_exit(void)
951{
952	dm_unregister_target(&log_writes_target);
953}
954
955module_init(dm_log_writes_init);
956module_exit(dm_log_writes_exit);
957
958MODULE_DESCRIPTION(DM_NAME " log writes target");
959MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
960MODULE_LICENSE("GPL");
v5.9
   1/*
   2 * Copyright (C) 2014 Facebook. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include <linux/device-mapper.h>
   8
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/blkdev.h>
  12#include <linux/bio.h>
  13#include <linux/dax.h>
  14#include <linux/slab.h>
  15#include <linux/kthread.h>
  16#include <linux/freezer.h>
  17#include <linux/uio.h>
  18
  19#define DM_MSG_PREFIX "log-writes"
  20
  21/*
  22 * This target will sequentially log all writes to the target device onto the
  23 * log device.  This is helpful for replaying writes to check for fs consistency
  24 * at all times.  This target provides a mechanism to mark specific events to
  25 * check data at a later time.  So for example you would:
  26 *
  27 * write data
  28 * fsync
  29 * dmsetup message /dev/whatever mark mymark
  30 * unmount /mnt/test
  31 *
  32 * Then replay the log up to mymark and check the contents of the replay to
  33 * verify it matches what was written.
  34 *
  35 * We log writes only after they have been flushed, this makes the log describe
  36 * close to the order in which the data hits the actual disk, not its cache.  So
  37 * for example the following sequence (W means write, C means complete)
  38 *
  39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
  40 *
  41 * Would result in the log looking like this:
  42 *
  43 * c,a,b,flush,fuad,<other writes>,<next flush>
  44 *
  45 * This is meant to help expose problems where file systems do not properly wait
  46 * on data being written before invoking a FLUSH.  FUA bypasses cache so once it
  47 * completes it is added to the log as it should be on disk.
  48 *
  49 * We treat DISCARDs as if they don't bypass cache so that they are logged in
  50 * order of completion along with the normal writes.  If we didn't do it this
  51 * way we would process all the discards first and then write all the data, when
  52 * in fact we want to do the data and the discard in the order that they
  53 * completed.
  54 */
  55#define LOG_FLUSH_FLAG		(1 << 0)
  56#define LOG_FUA_FLAG		(1 << 1)
  57#define LOG_DISCARD_FLAG	(1 << 2)
  58#define LOG_MARK_FLAG		(1 << 3)
  59#define LOG_METADATA_FLAG	(1 << 4)
  60
  61#define WRITE_LOG_VERSION 1ULL
  62#define WRITE_LOG_MAGIC 0x6a736677736872ULL
  63#define WRITE_LOG_SUPER_SECTOR 0
  64
  65/*
  66 * The disk format for this is braindead simple.
  67 *
  68 * At byte 0 we have our super, followed by the following sequence for
  69 * nr_entries:
  70 *
  71 * [   1 sector    ][  entry->nr_sectors ]
  72 * [log_write_entry][    data written    ]
  73 *
  74 * The log_write_entry takes up a full sector so we can have arbitrary length
  75 * marks and it leaves us room for extra content in the future.
  76 */
  77
  78/*
  79 * Basic info about the log for userspace.
  80 */
  81struct log_write_super {
  82	__le64 magic;
  83	__le64 version;
  84	__le64 nr_entries;
  85	__le32 sectorsize;
  86};
  87
  88/*
  89 * sector - the sector we wrote.
  90 * nr_sectors - the number of sectors we wrote.
  91 * flags - flags for this log entry.
  92 * data_len - the size of the data in this log entry, this is for private log
  93 * entry stuff, the MARK data provided by userspace for example.
  94 */
  95struct log_write_entry {
  96	__le64 sector;
  97	__le64 nr_sectors;
  98	__le64 flags;
  99	__le64 data_len;
 100};
 101
 102struct log_writes_c {
 103	struct dm_dev *dev;
 104	struct dm_dev *logdev;
 105	u64 logged_entries;
 106	u32 sectorsize;
 107	u32 sectorshift;
 108	atomic_t io_blocks;
 109	atomic_t pending_blocks;
 110	sector_t next_sector;
 111	sector_t end_sector;
 112	bool logging_enabled;
 113	bool device_supports_discard;
 114	spinlock_t blocks_lock;
 115	struct list_head unflushed_blocks;
 116	struct list_head logging_blocks;
 117	wait_queue_head_t wait;
 118	struct task_struct *log_kthread;
 119	struct completion super_done;
 120};
 121
 122struct pending_block {
 123	int vec_cnt;
 124	u64 flags;
 125	sector_t sector;
 126	sector_t nr_sectors;
 127	char *data;
 128	u32 datalen;
 129	struct list_head list;
 130	struct bio_vec vecs[];
 131};
 132
 133struct per_bio_data {
 134	struct pending_block *block;
 135};
 136
 137static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
 138					  sector_t sectors)
 139{
 140	return sectors >> (lc->sectorshift - SECTOR_SHIFT);
 141}
 142
 143static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
 144					  sector_t sectors)
 145{
 146	return sectors << (lc->sectorshift - SECTOR_SHIFT);
 147}
 148
 149static void put_pending_block(struct log_writes_c *lc)
 150{
 151	if (atomic_dec_and_test(&lc->pending_blocks)) {
 152		smp_mb__after_atomic();
 153		if (waitqueue_active(&lc->wait))
 154			wake_up(&lc->wait);
 155	}
 156}
 157
 158static void put_io_block(struct log_writes_c *lc)
 159{
 160	if (atomic_dec_and_test(&lc->io_blocks)) {
 161		smp_mb__after_atomic();
 162		if (waitqueue_active(&lc->wait))
 163			wake_up(&lc->wait);
 164	}
 165}
 166
 167static void log_end_io(struct bio *bio)
 168{
 169	struct log_writes_c *lc = bio->bi_private;
 170
 171	if (bio->bi_status) {
 172		unsigned long flags;
 173
 174		DMERR("Error writing log block, error=%d", bio->bi_status);
 175		spin_lock_irqsave(&lc->blocks_lock, flags);
 176		lc->logging_enabled = false;
 177		spin_unlock_irqrestore(&lc->blocks_lock, flags);
 178	}
 179
 180	bio_free_pages(bio);
 181	put_io_block(lc);
 182	bio_put(bio);
 183}
 184
 185static void log_end_super(struct bio *bio)
 186{
 187	struct log_writes_c *lc = bio->bi_private;
 188
 189	complete(&lc->super_done);
 190	log_end_io(bio);
 191}
 192
 193/*
 194 * Meant to be called if there is an error, it will free all the pages
 195 * associated with the block.
 196 */
 197static void free_pending_block(struct log_writes_c *lc,
 198			       struct pending_block *block)
 199{
 200	int i;
 201
 202	for (i = 0; i < block->vec_cnt; i++) {
 203		if (block->vecs[i].bv_page)
 204			__free_page(block->vecs[i].bv_page);
 205	}
 206	kfree(block->data);
 207	kfree(block);
 208	put_pending_block(lc);
 209}
 210
 211static int write_metadata(struct log_writes_c *lc, void *entry,
 212			  size_t entrylen, void *data, size_t datalen,
 213			  sector_t sector)
 214{
 215	struct bio *bio;
 216	struct page *page;
 217	void *ptr;
 218	size_t ret;
 219
 220	bio = bio_alloc(GFP_KERNEL, 1);
 221	if (!bio) {
 222		DMERR("Couldn't alloc log bio");
 223		goto error;
 224	}
 225	bio->bi_iter.bi_size = 0;
 226	bio->bi_iter.bi_sector = sector;
 227	bio_set_dev(bio, lc->logdev->bdev);
 228	bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
 229			  log_end_super : log_end_io;
 230	bio->bi_private = lc;
 231	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 232
 233	page = alloc_page(GFP_KERNEL);
 234	if (!page) {
 235		DMERR("Couldn't alloc log page");
 236		bio_put(bio);
 237		goto error;
 238	}
 239
 240	ptr = kmap_atomic(page);
 241	memcpy(ptr, entry, entrylen);
 242	if (datalen)
 243		memcpy(ptr + entrylen, data, datalen);
 244	memset(ptr + entrylen + datalen, 0,
 245	       lc->sectorsize - entrylen - datalen);
 246	kunmap_atomic(ptr);
 247
 248	ret = bio_add_page(bio, page, lc->sectorsize, 0);
 249	if (ret != lc->sectorsize) {
 250		DMERR("Couldn't add page to the log block");
 251		goto error_bio;
 252	}
 253	submit_bio(bio);
 254	return 0;
 255error_bio:
 256	bio_put(bio);
 257	__free_page(page);
 258error:
 259	put_io_block(lc);
 260	return -1;
 261}
 262
 263static int write_inline_data(struct log_writes_c *lc, void *entry,
 264			     size_t entrylen, void *data, size_t datalen,
 265			     sector_t sector)
 266{
 267	int num_pages, bio_pages, pg_datalen, pg_sectorlen, i;
 268	struct page *page;
 269	struct bio *bio;
 270	size_t ret;
 271	void *ptr;
 272
 273	while (datalen) {
 274		num_pages = ALIGN(datalen, PAGE_SIZE) >> PAGE_SHIFT;
 275		bio_pages = min(num_pages, BIO_MAX_PAGES);
 276
 277		atomic_inc(&lc->io_blocks);
 278
 279		bio = bio_alloc(GFP_KERNEL, bio_pages);
 280		if (!bio) {
 281			DMERR("Couldn't alloc inline data bio");
 282			goto error;
 283		}
 284
 285		bio->bi_iter.bi_size = 0;
 286		bio->bi_iter.bi_sector = sector;
 287		bio_set_dev(bio, lc->logdev->bdev);
 288		bio->bi_end_io = log_end_io;
 289		bio->bi_private = lc;
 290		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 291
 292		for (i = 0; i < bio_pages; i++) {
 293			pg_datalen = min_t(int, datalen, PAGE_SIZE);
 294			pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
 295
 296			page = alloc_page(GFP_KERNEL);
 297			if (!page) {
 298				DMERR("Couldn't alloc inline data page");
 299				goto error_bio;
 300			}
 301
 302			ptr = kmap_atomic(page);
 303			memcpy(ptr, data, pg_datalen);
 304			if (pg_sectorlen > pg_datalen)
 305				memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
 306			kunmap_atomic(ptr);
 307
 308			ret = bio_add_page(bio, page, pg_sectorlen, 0);
 309			if (ret != pg_sectorlen) {
 310				DMERR("Couldn't add page of inline data");
 311				__free_page(page);
 312				goto error_bio;
 313			}
 314
 315			datalen -= pg_datalen;
 316			data	+= pg_datalen;
 317		}
 318		submit_bio(bio);
 319
 320		sector += bio_pages * PAGE_SECTORS;
 321	}
 322	return 0;
 323error_bio:
 324	bio_free_pages(bio);
 325	bio_put(bio);
 326error:
 327	put_io_block(lc);
 328	return -1;
 329}
 330
 331static int log_one_block(struct log_writes_c *lc,
 332			 struct pending_block *block, sector_t sector)
 333{
 334	struct bio *bio;
 335	struct log_write_entry entry;
 336	size_t metadatalen, ret;
 337	int i;
 338
 339	entry.sector = cpu_to_le64(block->sector);
 340	entry.nr_sectors = cpu_to_le64(block->nr_sectors);
 341	entry.flags = cpu_to_le64(block->flags);
 342	entry.data_len = cpu_to_le64(block->datalen);
 343
 344	metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
 345	if (write_metadata(lc, &entry, sizeof(entry), block->data,
 346			   metadatalen, sector)) {
 347		free_pending_block(lc, block);
 348		return -1;
 349	}
 350
 351	sector += dev_to_bio_sectors(lc, 1);
 352
 353	if (block->datalen && metadatalen == 0) {
 354		if (write_inline_data(lc, &entry, sizeof(entry), block->data,
 355				      block->datalen, sector)) {
 356			free_pending_block(lc, block);
 357			return -1;
 358		}
 359		/* we don't support both inline data & bio data */
 360		goto out;
 361	}
 362
 363	if (!block->vec_cnt)
 364		goto out;
 365
 366	atomic_inc(&lc->io_blocks);
 367	bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt, BIO_MAX_PAGES));
 368	if (!bio) {
 369		DMERR("Couldn't alloc log bio");
 370		goto error;
 371	}
 372	bio->bi_iter.bi_size = 0;
 373	bio->bi_iter.bi_sector = sector;
 374	bio_set_dev(bio, lc->logdev->bdev);
 375	bio->bi_end_io = log_end_io;
 376	bio->bi_private = lc;
 377	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 378
 379	for (i = 0; i < block->vec_cnt; i++) {
 380		/*
 381		 * The page offset is always 0 because we allocate a new page
 382		 * for every bvec in the original bio for simplicity sake.
 383		 */
 384		ret = bio_add_page(bio, block->vecs[i].bv_page,
 385				   block->vecs[i].bv_len, 0);
 386		if (ret != block->vecs[i].bv_len) {
 387			atomic_inc(&lc->io_blocks);
 388			submit_bio(bio);
 389			bio = bio_alloc(GFP_KERNEL, min(block->vec_cnt - i, BIO_MAX_PAGES));
 390			if (!bio) {
 391				DMERR("Couldn't alloc log bio");
 392				goto error;
 393			}
 394			bio->bi_iter.bi_size = 0;
 395			bio->bi_iter.bi_sector = sector;
 396			bio_set_dev(bio, lc->logdev->bdev);
 397			bio->bi_end_io = log_end_io;
 398			bio->bi_private = lc;
 399			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
 400
 401			ret = bio_add_page(bio, block->vecs[i].bv_page,
 402					   block->vecs[i].bv_len, 0);
 403			if (ret != block->vecs[i].bv_len) {
 404				DMERR("Couldn't add page on new bio?");
 405				bio_put(bio);
 406				goto error;
 407			}
 408		}
 409		sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
 410	}
 411	submit_bio(bio);
 412out:
 413	kfree(block->data);
 414	kfree(block);
 415	put_pending_block(lc);
 416	return 0;
 417error:
 418	free_pending_block(lc, block);
 419	put_io_block(lc);
 420	return -1;
 421}
 422
 423static int log_super(struct log_writes_c *lc)
 424{
 425	struct log_write_super super;
 426
 427	super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
 428	super.version = cpu_to_le64(WRITE_LOG_VERSION);
 429	super.nr_entries = cpu_to_le64(lc->logged_entries);
 430	super.sectorsize = cpu_to_le32(lc->sectorsize);
 431
 432	if (write_metadata(lc, &super, sizeof(super), NULL, 0,
 433			   WRITE_LOG_SUPER_SECTOR)) {
 434		DMERR("Couldn't write super");
 435		return -1;
 436	}
 437
 438	/*
 439	 * Super sector should be writen in-order, otherwise the
 440	 * nr_entries could be rewritten incorrectly by an old bio.
 441	 */
 442	wait_for_completion_io(&lc->super_done);
 443
 444	return 0;
 445}
 446
 447static inline sector_t logdev_last_sector(struct log_writes_c *lc)
 448{
 449	return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
 450}
 451
 452static int log_writes_kthread(void *arg)
 453{
 454	struct log_writes_c *lc = (struct log_writes_c *)arg;
 455	sector_t sector = 0;
 456
 457	while (!kthread_should_stop()) {
 458		bool super = false;
 459		bool logging_enabled;
 460		struct pending_block *block = NULL;
 461		int ret;
 462
 463		spin_lock_irq(&lc->blocks_lock);
 464		if (!list_empty(&lc->logging_blocks)) {
 465			block = list_first_entry(&lc->logging_blocks,
 466						 struct pending_block, list);
 467			list_del_init(&block->list);
 468			if (!lc->logging_enabled)
 469				goto next;
 470
 471			sector = lc->next_sector;
 472			if (!(block->flags & LOG_DISCARD_FLAG))
 473				lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
 474			lc->next_sector += dev_to_bio_sectors(lc, 1);
 475
 476			/*
 477			 * Apparently the size of the device may not be known
 478			 * right away, so handle this properly.
 479			 */
 480			if (!lc->end_sector)
 481				lc->end_sector = logdev_last_sector(lc);
 482			if (lc->end_sector &&
 483			    lc->next_sector >= lc->end_sector) {
 484				DMERR("Ran out of space on the logdev");
 485				lc->logging_enabled = false;
 486				goto next;
 487			}
 488			lc->logged_entries++;
 489			atomic_inc(&lc->io_blocks);
 490
 491			super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
 492			if (super)
 493				atomic_inc(&lc->io_blocks);
 494		}
 495next:
 496		logging_enabled = lc->logging_enabled;
 497		spin_unlock_irq(&lc->blocks_lock);
 498		if (block) {
 499			if (logging_enabled) {
 500				ret = log_one_block(lc, block, sector);
 501				if (!ret && super)
 502					ret = log_super(lc);
 503				if (ret) {
 504					spin_lock_irq(&lc->blocks_lock);
 505					lc->logging_enabled = false;
 506					spin_unlock_irq(&lc->blocks_lock);
 507				}
 508			} else
 509				free_pending_block(lc, block);
 510			continue;
 511		}
 512
 513		if (!try_to_freeze()) {
 514			set_current_state(TASK_INTERRUPTIBLE);
 515			if (!kthread_should_stop() &&
 516			    list_empty(&lc->logging_blocks))
 517				schedule();
 518			__set_current_state(TASK_RUNNING);
 519		}
 520	}
 521	return 0;
 522}
 523
 524/*
 525 * Construct a log-writes mapping:
 526 * log-writes <dev_path> <log_dev_path>
 527 */
 528static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
 529{
 530	struct log_writes_c *lc;
 531	struct dm_arg_set as;
 532	const char *devname, *logdevname;
 533	int ret;
 534
 535	as.argc = argc;
 536	as.argv = argv;
 537
 538	if (argc < 2) {
 539		ti->error = "Invalid argument count";
 540		return -EINVAL;
 541	}
 542
 543	lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
 544	if (!lc) {
 545		ti->error = "Cannot allocate context";
 546		return -ENOMEM;
 547	}
 548	spin_lock_init(&lc->blocks_lock);
 549	INIT_LIST_HEAD(&lc->unflushed_blocks);
 550	INIT_LIST_HEAD(&lc->logging_blocks);
 551	init_waitqueue_head(&lc->wait);
 552	init_completion(&lc->super_done);
 553	atomic_set(&lc->io_blocks, 0);
 554	atomic_set(&lc->pending_blocks, 0);
 555
 556	devname = dm_shift_arg(&as);
 557	ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
 558	if (ret) {
 559		ti->error = "Device lookup failed";
 560		goto bad;
 561	}
 562
 563	logdevname = dm_shift_arg(&as);
 564	ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
 565			    &lc->logdev);
 566	if (ret) {
 567		ti->error = "Log device lookup failed";
 568		dm_put_device(ti, lc->dev);
 569		goto bad;
 570	}
 571
 572	lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
 573	lc->sectorshift = ilog2(lc->sectorsize);
 574	lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
 575	if (IS_ERR(lc->log_kthread)) {
 576		ret = PTR_ERR(lc->log_kthread);
 577		ti->error = "Couldn't alloc kthread";
 578		dm_put_device(ti, lc->dev);
 579		dm_put_device(ti, lc->logdev);
 580		goto bad;
 581	}
 582
 583	/*
 584	 * next_sector is in 512b sectors to correspond to what bi_sector expects.
 585	 * The super starts at sector 0, and the next_sector is the next logical
 586	 * one based on the sectorsize of the device.
 587	 */
 588	lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
 589	lc->logging_enabled = true;
 590	lc->end_sector = logdev_last_sector(lc);
 591	lc->device_supports_discard = true;
 592
 593	ti->num_flush_bios = 1;
 594	ti->flush_supported = true;
 595	ti->num_discard_bios = 1;
 596	ti->discards_supported = true;
 597	ti->per_io_data_size = sizeof(struct per_bio_data);
 598	ti->private = lc;
 599	return 0;
 600
 601bad:
 602	kfree(lc);
 603	return ret;
 604}
 605
 606static int log_mark(struct log_writes_c *lc, char *data)
 607{
 608	struct pending_block *block;
 609	size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
 610
 611	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
 612	if (!block) {
 613		DMERR("Error allocating pending block");
 614		return -ENOMEM;
 615	}
 616
 617	block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
 618	if (!block->data) {
 619		DMERR("Error copying mark data");
 620		kfree(block);
 621		return -ENOMEM;
 622	}
 623	atomic_inc(&lc->pending_blocks);
 624	block->datalen = strlen(block->data);
 625	block->flags |= LOG_MARK_FLAG;
 626	spin_lock_irq(&lc->blocks_lock);
 627	list_add_tail(&block->list, &lc->logging_blocks);
 628	spin_unlock_irq(&lc->blocks_lock);
 629	wake_up_process(lc->log_kthread);
 630	return 0;
 631}
 632
 633static void log_writes_dtr(struct dm_target *ti)
 634{
 635	struct log_writes_c *lc = ti->private;
 636
 637	spin_lock_irq(&lc->blocks_lock);
 638	list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
 639	spin_unlock_irq(&lc->blocks_lock);
 640
 641	/*
 642	 * This is just nice to have since it'll update the super to include the
 643	 * unflushed blocks, if it fails we don't really care.
 644	 */
 645	log_mark(lc, "dm-log-writes-end");
 646	wake_up_process(lc->log_kthread);
 647	wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
 648		   !atomic_read(&lc->pending_blocks));
 649	kthread_stop(lc->log_kthread);
 650
 651	WARN_ON(!list_empty(&lc->logging_blocks));
 652	WARN_ON(!list_empty(&lc->unflushed_blocks));
 653	dm_put_device(ti, lc->dev);
 654	dm_put_device(ti, lc->logdev);
 655	kfree(lc);
 656}
 657
 658static void normal_map_bio(struct dm_target *ti, struct bio *bio)
 659{
 660	struct log_writes_c *lc = ti->private;
 661
 662	bio_set_dev(bio, lc->dev->bdev);
 663}
 664
 665static int log_writes_map(struct dm_target *ti, struct bio *bio)
 666{
 667	struct log_writes_c *lc = ti->private;
 668	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 669	struct pending_block *block;
 670	struct bvec_iter iter;
 671	struct bio_vec bv;
 672	size_t alloc_size;
 673	int i = 0;
 674	bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
 675	bool fua_bio = (bio->bi_opf & REQ_FUA);
 676	bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
 677	bool meta_bio = (bio->bi_opf & REQ_META);
 678
 679	pb->block = NULL;
 680
 681	/* Don't bother doing anything if logging has been disabled */
 682	if (!lc->logging_enabled)
 683		goto map_bio;
 684
 685	/*
 686	 * Map reads as normal.
 687	 */
 688	if (bio_data_dir(bio) == READ)
 689		goto map_bio;
 690
 691	/* No sectors and not a flush?  Don't care */
 692	if (!bio_sectors(bio) && !flush_bio)
 693		goto map_bio;
 694
 695	/*
 696	 * Discards will have bi_size set but there's no actual data, so just
 697	 * allocate the size of the pending block.
 698	 */
 699	if (discard_bio)
 700		alloc_size = sizeof(struct pending_block);
 701	else
 702		alloc_size = struct_size(block, vecs, bio_segments(bio));
 703
 704	block = kzalloc(alloc_size, GFP_NOIO);
 705	if (!block) {
 706		DMERR("Error allocating pending block");
 707		spin_lock_irq(&lc->blocks_lock);
 708		lc->logging_enabled = false;
 709		spin_unlock_irq(&lc->blocks_lock);
 710		return DM_MAPIO_KILL;
 711	}
 712	INIT_LIST_HEAD(&block->list);
 713	pb->block = block;
 714	atomic_inc(&lc->pending_blocks);
 715
 716	if (flush_bio)
 717		block->flags |= LOG_FLUSH_FLAG;
 718	if (fua_bio)
 719		block->flags |= LOG_FUA_FLAG;
 720	if (discard_bio)
 721		block->flags |= LOG_DISCARD_FLAG;
 722	if (meta_bio)
 723		block->flags |= LOG_METADATA_FLAG;
 724
 725	block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
 726	block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
 727
 728	/* We don't need the data, just submit */
 729	if (discard_bio) {
 730		WARN_ON(flush_bio || fua_bio);
 731		if (lc->device_supports_discard)
 732			goto map_bio;
 733		bio_endio(bio);
 734		return DM_MAPIO_SUBMITTED;
 735	}
 736
 737	/* Flush bio, splice the unflushed blocks onto this list and submit */
 738	if (flush_bio && !bio_sectors(bio)) {
 739		spin_lock_irq(&lc->blocks_lock);
 740		list_splice_init(&lc->unflushed_blocks, &block->list);
 741		spin_unlock_irq(&lc->blocks_lock);
 742		goto map_bio;
 743	}
 744
 745	/*
 746	 * We will write this bio somewhere else way later so we need to copy
 747	 * the actual contents into new pages so we know the data will always be
 748	 * there.
 749	 *
 750	 * We do this because this could be a bio from O_DIRECT in which case we
 751	 * can't just hold onto the page until some later point, we have to
 752	 * manually copy the contents.
 753	 */
 754	bio_for_each_segment(bv, bio, iter) {
 755		struct page *page;
 756		void *src, *dst;
 757
 758		page = alloc_page(GFP_NOIO);
 759		if (!page) {
 760			DMERR("Error allocing page");
 761			free_pending_block(lc, block);
 762			spin_lock_irq(&lc->blocks_lock);
 763			lc->logging_enabled = false;
 764			spin_unlock_irq(&lc->blocks_lock);
 765			return DM_MAPIO_KILL;
 766		}
 767
 768		src = kmap_atomic(bv.bv_page);
 769		dst = kmap_atomic(page);
 770		memcpy(dst, src + bv.bv_offset, bv.bv_len);
 771		kunmap_atomic(dst);
 772		kunmap_atomic(src);
 773		block->vecs[i].bv_page = page;
 774		block->vecs[i].bv_len = bv.bv_len;
 775		block->vec_cnt++;
 776		i++;
 777	}
 778
 779	/* Had a flush with data in it, weird */
 780	if (flush_bio) {
 781		spin_lock_irq(&lc->blocks_lock);
 782		list_splice_init(&lc->unflushed_blocks, &block->list);
 783		spin_unlock_irq(&lc->blocks_lock);
 784	}
 785map_bio:
 786	normal_map_bio(ti, bio);
 787	return DM_MAPIO_REMAPPED;
 788}
 789
 790static int normal_end_io(struct dm_target *ti, struct bio *bio,
 791		blk_status_t *error)
 792{
 793	struct log_writes_c *lc = ti->private;
 794	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 795
 796	if (bio_data_dir(bio) == WRITE && pb->block) {
 797		struct pending_block *block = pb->block;
 798		unsigned long flags;
 799
 800		spin_lock_irqsave(&lc->blocks_lock, flags);
 801		if (block->flags & LOG_FLUSH_FLAG) {
 802			list_splice_tail_init(&block->list, &lc->logging_blocks);
 803			list_add_tail(&block->list, &lc->logging_blocks);
 804			wake_up_process(lc->log_kthread);
 805		} else if (block->flags & LOG_FUA_FLAG) {
 806			list_add_tail(&block->list, &lc->logging_blocks);
 807			wake_up_process(lc->log_kthread);
 808		} else
 809			list_add_tail(&block->list, &lc->unflushed_blocks);
 810		spin_unlock_irqrestore(&lc->blocks_lock, flags);
 811	}
 812
 813	return DM_ENDIO_DONE;
 814}
 815
 816/*
 817 * INFO format: <logged entries> <highest allocated sector>
 818 */
 819static void log_writes_status(struct dm_target *ti, status_type_t type,
 820			      unsigned status_flags, char *result,
 821			      unsigned maxlen)
 822{
 823	unsigned sz = 0;
 824	struct log_writes_c *lc = ti->private;
 825
 826	switch (type) {
 827	case STATUSTYPE_INFO:
 828		DMEMIT("%llu %llu", lc->logged_entries,
 829		       (unsigned long long)lc->next_sector - 1);
 830		if (!lc->logging_enabled)
 831			DMEMIT(" logging_disabled");
 832		break;
 833
 834	case STATUSTYPE_TABLE:
 835		DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
 836		break;
 
 
 
 
 837	}
 838}
 839
 840static int log_writes_prepare_ioctl(struct dm_target *ti,
 841				    struct block_device **bdev)
 842{
 843	struct log_writes_c *lc = ti->private;
 844	struct dm_dev *dev = lc->dev;
 845
 846	*bdev = dev->bdev;
 847	/*
 848	 * Only pass ioctls through if the device sizes match exactly.
 849	 */
 850	if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
 851		return 1;
 852	return 0;
 853}
 854
 855static int log_writes_iterate_devices(struct dm_target *ti,
 856				      iterate_devices_callout_fn fn,
 857				      void *data)
 858{
 859	struct log_writes_c *lc = ti->private;
 860
 861	return fn(ti, lc->dev, 0, ti->len, data);
 862}
 863
 864/*
 865 * Messages supported:
 866 *   mark <mark data> - specify the marked data.
 867 */
 868static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
 869			      char *result, unsigned maxlen)
 870{
 871	int r = -EINVAL;
 872	struct log_writes_c *lc = ti->private;
 873
 874	if (argc != 2) {
 875		DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
 876		return r;
 877	}
 878
 879	if (!strcasecmp(argv[0], "mark"))
 880		r = log_mark(lc, argv[1]);
 881	else
 882		DMWARN("Unrecognised log writes target message received: %s", argv[0]);
 883
 884	return r;
 885}
 886
 887static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
 888{
 889	struct log_writes_c *lc = ti->private;
 890	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
 891
 892	if (!q || !blk_queue_discard(q)) {
 893		lc->device_supports_discard = false;
 894		limits->discard_granularity = lc->sectorsize;
 895		limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
 896	}
 897	limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
 898	limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
 899	limits->io_min = limits->physical_block_size;
 
 900}
 901
 902#if IS_ENABLED(CONFIG_DAX_DRIVER)
 903static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
 904		   struct iov_iter *i)
 905{
 906	struct pending_block *block;
 907
 908	if (!bytes)
 909		return 0;
 910
 911	block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
 912	if (!block) {
 913		DMERR("Error allocating dax pending block");
 914		return -ENOMEM;
 915	}
 916
 917	block->data = kzalloc(bytes, GFP_KERNEL);
 918	if (!block->data) {
 919		DMERR("Error allocating dax data space");
 920		kfree(block);
 921		return -ENOMEM;
 922	}
 923
 924	/* write data provided via the iterator */
 925	if (!copy_from_iter(block->data, bytes, i)) {
 926		DMERR("Error copying dax data");
 927		kfree(block->data);
 928		kfree(block);
 929		return -EIO;
 930	}
 931
 932	/* rewind the iterator so that the block driver can use it */
 933	iov_iter_revert(i, bytes);
 934
 935	block->datalen = bytes;
 936	block->sector = bio_to_dev_sectors(lc, sector);
 937	block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
 938
 939	atomic_inc(&lc->pending_blocks);
 940	spin_lock_irq(&lc->blocks_lock);
 941	list_add_tail(&block->list, &lc->unflushed_blocks);
 942	spin_unlock_irq(&lc->blocks_lock);
 943	wake_up_process(lc->log_kthread);
 944
 945	return 0;
 946}
 947
 948static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
 949					 long nr_pages, void **kaddr, pfn_t *pfn)
 
 950{
 951	struct log_writes_c *lc = ti->private;
 952	sector_t sector = pgoff * PAGE_SECTORS;
 953	int ret;
 954
 955	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
 956	if (ret)
 957		return ret;
 958	return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
 959}
 960
 961static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
 962					    pgoff_t pgoff, void *addr, size_t bytes,
 963					    struct iov_iter *i)
 964{
 965	struct log_writes_c *lc = ti->private;
 966	sector_t sector = pgoff * PAGE_SECTORS;
 967	int err;
 968
 969	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
 970		return 0;
 971
 972	/* Don't bother doing anything if logging has been disabled */
 973	if (!lc->logging_enabled)
 974		goto dax_copy;
 975
 976	err = log_dax(lc, sector, bytes, i);
 977	if (err) {
 978		DMWARN("Error %d logging DAX write", err);
 979		return 0;
 980	}
 981dax_copy:
 982	return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
 983}
 984
 985static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
 986					  pgoff_t pgoff, void *addr, size_t bytes,
 987					  struct iov_iter *i)
 988{
 989	struct log_writes_c *lc = ti->private;
 990	sector_t sector = pgoff * PAGE_SECTORS;
 991
 992	if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
 993		return 0;
 994	return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
 995}
 996
 997static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
 998					  size_t nr_pages)
 999{
1000	int ret;
1001	struct log_writes_c *lc = ti->private;
1002	sector_t sector = pgoff * PAGE_SECTORS;
1003
1004	ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages << PAGE_SHIFT,
1005			     &pgoff);
1006	if (ret)
1007		return ret;
1008	return dax_zero_page_range(lc->dev->dax_dev, pgoff,
1009				   nr_pages << PAGE_SHIFT);
1010}
1011
1012#else
1013#define log_writes_dax_direct_access NULL
1014#define log_writes_dax_copy_from_iter NULL
1015#define log_writes_dax_copy_to_iter NULL
1016#define log_writes_dax_zero_page_range NULL
 
1017#endif
1018
1019static struct target_type log_writes_target = {
1020	.name   = "log-writes",
1021	.version = {1, 1, 0},
1022	.module = THIS_MODULE,
1023	.ctr    = log_writes_ctr,
1024	.dtr    = log_writes_dtr,
1025	.map    = log_writes_map,
1026	.end_io = normal_end_io,
1027	.status = log_writes_status,
1028	.prepare_ioctl = log_writes_prepare_ioctl,
1029	.message = log_writes_message,
1030	.iterate_devices = log_writes_iterate_devices,
1031	.io_hints = log_writes_io_hints,
1032	.direct_access = log_writes_dax_direct_access,
1033	.dax_copy_from_iter = log_writes_dax_copy_from_iter,
1034	.dax_copy_to_iter = log_writes_dax_copy_to_iter,
1035	.dax_zero_page_range = log_writes_dax_zero_page_range,
 
1036};
1037
1038static int __init dm_log_writes_init(void)
1039{
1040	int r = dm_register_target(&log_writes_target);
1041
1042	if (r < 0)
1043		DMERR("register failed %d", r);
1044
1045	return r;
1046}
1047
1048static void __exit dm_log_writes_exit(void)
1049{
1050	dm_unregister_target(&log_writes_target);
1051}
1052
1053module_init(dm_log_writes_init);
1054module_exit(dm_log_writes_exit);
1055
1056MODULE_DESCRIPTION(DM_NAME " log writes target");
1057MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1058MODULE_LICENSE("GPL");