Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interconnect framework core driver
   4 *
   5 * Copyright (c) 2017-2019, Linaro Ltd.
   6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/device.h>
  11#include <linux/idr.h>
  12#include <linux/init.h>
  13#include <linux/interconnect.h>
  14#include <linux/interconnect-provider.h>
  15#include <linux/list.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/overflow.h>
  21
  22#include "internal.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27static DEFINE_IDR(icc_idr);
  28static LIST_HEAD(icc_providers);
  29static int providers_count;
  30static bool synced_state;
  31static DEFINE_MUTEX(icc_lock);
  32static struct dentry *icc_debugfs_dir;
  33
  34static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
  35{
  36	if (!n)
  37		return;
  38
  39	seq_printf(s, "%-42s %12u %12u\n",
  40		   n->name, n->avg_bw, n->peak_bw);
  41}
  42
  43static int icc_summary_show(struct seq_file *s, void *data)
  44{
  45	struct icc_provider *provider;
  46
  47	seq_puts(s, " node                                  tag          avg         peak\n");
  48	seq_puts(s, "--------------------------------------------------------------------\n");
  49
  50	mutex_lock(&icc_lock);
  51
  52	list_for_each_entry(provider, &icc_providers, provider_list) {
  53		struct icc_node *n;
  54
  55		list_for_each_entry(n, &provider->nodes, node_list) {
  56			struct icc_req *r;
  57
  58			icc_summary_show_one(s, n);
  59			hlist_for_each_entry(r, &n->req_list, req_node) {
  60				u32 avg_bw = 0, peak_bw = 0;
  61
  62				if (!r->dev)
  63					continue;
  64
  65				if (r->enabled) {
  66					avg_bw = r->avg_bw;
  67					peak_bw = r->peak_bw;
  68				}
  69
  70				seq_printf(s, "  %-27s %12u %12u %12u\n",
  71					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
  72			}
  73		}
  74	}
  75
  76	mutex_unlock(&icc_lock);
  77
  78	return 0;
  79}
  80DEFINE_SHOW_ATTRIBUTE(icc_summary);
  81
  82static void icc_graph_show_link(struct seq_file *s, int level,
  83				struct icc_node *n, struct icc_node *m)
  84{
  85	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
  86		   level == 2 ? "\t\t" : "\t",
  87		   n->id, n->name, m->id, m->name);
  88}
  89
  90static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
  91{
  92	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
  93		   n->id, n->name, n->id, n->name);
  94	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
  95	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
  96	seq_puts(s, "\"]\n");
  97}
  98
  99static int icc_graph_show(struct seq_file *s, void *data)
 100{
 101	struct icc_provider *provider;
 102	struct icc_node *n;
 103	int cluster_index = 0;
 104	int i;
 105
 106	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
 107	mutex_lock(&icc_lock);
 108
 109	/* draw providers as cluster subgraphs */
 110	cluster_index = 0;
 111	list_for_each_entry(provider, &icc_providers, provider_list) {
 112		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
 113		if (provider->dev)
 114			seq_printf(s, "\t\tlabel = \"%s\"\n",
 115				   dev_name(provider->dev));
 116
 117		/* draw nodes */
 118		list_for_each_entry(n, &provider->nodes, node_list)
 119			icc_graph_show_node(s, n);
 120
 121		/* draw internal links */
 122		list_for_each_entry(n, &provider->nodes, node_list)
 123			for (i = 0; i < n->num_links; ++i)
 124				if (n->provider == n->links[i]->provider)
 125					icc_graph_show_link(s, 2, n,
 126							    n->links[i]);
 127
 128		seq_puts(s, "\t}\n");
 129	}
 130
 131	/* draw external links */
 132	list_for_each_entry(provider, &icc_providers, provider_list)
 133		list_for_each_entry(n, &provider->nodes, node_list)
 134			for (i = 0; i < n->num_links; ++i)
 135				if (n->provider != n->links[i]->provider)
 136					icc_graph_show_link(s, 1, n,
 137							    n->links[i]);
 138
 139	mutex_unlock(&icc_lock);
 140	seq_puts(s, "}");
 141
 142	return 0;
 143}
 144DEFINE_SHOW_ATTRIBUTE(icc_graph);
 145
 146static struct icc_node *node_find(const int id)
 147{
 148	return idr_find(&icc_idr, id);
 149}
 150
 151static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
 152				  ssize_t num_nodes)
 153{
 154	struct icc_node *node = dst;
 155	struct icc_path *path;
 156	int i;
 157
 158	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
 159	if (!path)
 160		return ERR_PTR(-ENOMEM);
 161
 162	path->num_nodes = num_nodes;
 163
 164	for (i = num_nodes - 1; i >= 0; i--) {
 165		node->provider->users++;
 166		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
 167		path->reqs[i].node = node;
 168		path->reqs[i].dev = dev;
 169		path->reqs[i].enabled = true;
 170		/* reference to previous node was saved during path traversal */
 171		node = node->reverse;
 172	}
 173
 174	return path;
 175}
 176
 177static struct icc_path *path_find(struct device *dev, struct icc_node *src,
 178				  struct icc_node *dst)
 179{
 180	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 181	struct icc_node *n, *node = NULL;
 182	struct list_head traverse_list;
 183	struct list_head edge_list;
 184	struct list_head visited_list;
 185	size_t i, depth = 1;
 186	bool found = false;
 187
 188	INIT_LIST_HEAD(&traverse_list);
 189	INIT_LIST_HEAD(&edge_list);
 190	INIT_LIST_HEAD(&visited_list);
 191
 192	list_add(&src->search_list, &traverse_list);
 193	src->reverse = NULL;
 194
 195	do {
 196		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
 197			if (node == dst) {
 198				found = true;
 199				list_splice_init(&edge_list, &visited_list);
 200				list_splice_init(&traverse_list, &visited_list);
 201				break;
 202			}
 203			for (i = 0; i < node->num_links; i++) {
 204				struct icc_node *tmp = node->links[i];
 205
 206				if (!tmp) {
 207					path = ERR_PTR(-ENOENT);
 208					goto out;
 209				}
 210
 211				if (tmp->is_traversed)
 212					continue;
 213
 214				tmp->is_traversed = true;
 215				tmp->reverse = node;
 216				list_add_tail(&tmp->search_list, &edge_list);
 217			}
 218		}
 219
 220		if (found)
 221			break;
 222
 223		list_splice_init(&traverse_list, &visited_list);
 224		list_splice_init(&edge_list, &traverse_list);
 225
 226		/* count the hops including the source */
 227		depth++;
 228
 229	} while (!list_empty(&traverse_list));
 230
 231out:
 232
 233	/* reset the traversed state */
 234	list_for_each_entry_reverse(n, &visited_list, search_list)
 235		n->is_traversed = false;
 236
 237	if (found)
 238		path = path_init(dev, dst, depth);
 239
 240	return path;
 241}
 242
 243/*
 244 * We want the path to honor all bandwidth requests, so the average and peak
 245 * bandwidth requirements from each consumer are aggregated at each node.
 246 * The aggregation is platform specific, so each platform can customize it by
 247 * implementing its own aggregate() function.
 248 */
 249
 250static int aggregate_requests(struct icc_node *node)
 251{
 252	struct icc_provider *p = node->provider;
 253	struct icc_req *r;
 254	u32 avg_bw, peak_bw;
 255
 256	node->avg_bw = 0;
 257	node->peak_bw = 0;
 258
 259	if (p->pre_aggregate)
 260		p->pre_aggregate(node);
 261
 262	hlist_for_each_entry(r, &node->req_list, req_node) {
 263		if (r->enabled) {
 264			avg_bw = r->avg_bw;
 265			peak_bw = r->peak_bw;
 266		} else {
 267			avg_bw = 0;
 268			peak_bw = 0;
 269		}
 270		p->aggregate(node, r->tag, avg_bw, peak_bw,
 271			     &node->avg_bw, &node->peak_bw);
 272
 273		/* during boot use the initial bandwidth as a floor value */
 274		if (!synced_state) {
 275			node->avg_bw = max(node->avg_bw, node->init_avg);
 276			node->peak_bw = max(node->peak_bw, node->init_peak);
 277		}
 278	}
 279
 280	return 0;
 281}
 282
 283static int apply_constraints(struct icc_path *path)
 284{
 285	struct icc_node *next, *prev = NULL;
 286	struct icc_provider *p;
 287	int ret = -EINVAL;
 288	int i;
 289
 290	for (i = 0; i < path->num_nodes; i++) {
 291		next = path->reqs[i].node;
 292		p = next->provider;
 293
 294		/* both endpoints should be valid master-slave pairs */
 295		if (!prev || (p != prev->provider && !p->inter_set)) {
 296			prev = next;
 297			continue;
 298		}
 299
 300		/* set the constraints */
 301		ret = p->set(prev, next);
 302		if (ret)
 303			goto out;
 304
 305		prev = next;
 306	}
 307out:
 308	return ret;
 309}
 310
 311int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
 312		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
 313{
 314	*agg_avg += avg_bw;
 315	*agg_peak = max(*agg_peak, peak_bw);
 316
 317	return 0;
 318}
 319EXPORT_SYMBOL_GPL(icc_std_aggregate);
 320
 321/* of_icc_xlate_onecell() - Translate function using a single index.
 322 * @spec: OF phandle args to map into an interconnect node.
 323 * @data: private data (pointer to struct icc_onecell_data)
 324 *
 325 * This is a generic translate function that can be used to model simple
 326 * interconnect providers that have one device tree node and provide
 327 * multiple interconnect nodes. A single cell is used as an index into
 328 * an array of icc nodes specified in the icc_onecell_data struct when
 329 * registering the provider.
 330 */
 331struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
 332				      void *data)
 333{
 334	struct icc_onecell_data *icc_data = data;
 335	unsigned int idx = spec->args[0];
 336
 337	if (idx >= icc_data->num_nodes) {
 338		pr_err("%s: invalid index %u\n", __func__, idx);
 339		return ERR_PTR(-EINVAL);
 340	}
 341
 342	return icc_data->nodes[idx];
 343}
 344EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
 345
 346/**
 347 * of_icc_get_from_provider() - Look-up interconnect node
 348 * @spec: OF phandle args to use for look-up
 349 *
 350 * Looks for interconnect provider under the node specified by @spec and if
 351 * found, uses xlate function of the provider to map phandle args to node.
 352 *
 353 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
 354 * on failure.
 355 */
 356struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
 357{
 358	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
 359	struct icc_node_data *data = NULL;
 360	struct icc_provider *provider;
 361
 362	if (!spec)
 363		return ERR_PTR(-EINVAL);
 364
 365	mutex_lock(&icc_lock);
 366	list_for_each_entry(provider, &icc_providers, provider_list) {
 367		if (provider->dev->of_node == spec->np) {
 368			if (provider->xlate_extended) {
 369				data = provider->xlate_extended(spec, provider->data);
 370				if (!IS_ERR(data)) {
 371					node = data->node;
 372					break;
 373				}
 374			} else {
 375				node = provider->xlate(spec, provider->data);
 376				if (!IS_ERR(node))
 377					break;
 378			}
 379		}
 380	}
 381	mutex_unlock(&icc_lock);
 382
 383	if (IS_ERR(node))
 384		return ERR_CAST(node);
 385
 386	if (!data) {
 387		data = kzalloc(sizeof(*data), GFP_KERNEL);
 388		if (!data)
 389			return ERR_PTR(-ENOMEM);
 390		data->node = node;
 391	}
 392
 393	return data;
 394}
 395EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
 396
 397static void devm_icc_release(struct device *dev, void *res)
 398{
 399	icc_put(*(struct icc_path **)res);
 400}
 401
 402struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
 403{
 404	struct icc_path **ptr, *path;
 405
 406	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
 407	if (!ptr)
 408		return ERR_PTR(-ENOMEM);
 409
 410	path = of_icc_get(dev, name);
 411	if (!IS_ERR(path)) {
 412		*ptr = path;
 413		devres_add(dev, ptr);
 414	} else {
 415		devres_free(ptr);
 416	}
 417
 418	return path;
 419}
 420EXPORT_SYMBOL_GPL(devm_of_icc_get);
 421
 422/**
 423 * of_icc_get_by_index() - get a path handle from a DT node based on index
 424 * @dev: device pointer for the consumer device
 425 * @idx: interconnect path index
 426 *
 427 * This function will search for a path between two endpoints and return an
 428 * icc_path handle on success. Use icc_put() to release constraints when they
 429 * are not needed anymore.
 430 * If the interconnect API is disabled, NULL is returned and the consumer
 431 * drivers will still build. Drivers are free to handle this specifically,
 432 * but they don't have to.
 433 *
 434 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 435 * when the API is disabled or the "interconnects" DT property is missing.
 436 */
 437struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
 438{
 439	struct icc_path *path;
 440	struct icc_node_data *src_data, *dst_data;
 441	struct device_node *np;
 442	struct of_phandle_args src_args, dst_args;
 443	int ret;
 444
 445	if (!dev || !dev->of_node)
 446		return ERR_PTR(-ENODEV);
 447
 448	np = dev->of_node;
 449
 450	/*
 451	 * When the consumer DT node do not have "interconnects" property
 452	 * return a NULL path to skip setting constraints.
 453	 */
 454	if (!of_find_property(np, "interconnects", NULL))
 455		return NULL;
 456
 457	/*
 458	 * We use a combination of phandle and specifier for endpoint. For now
 459	 * lets support only global ids and extend this in the future if needed
 460	 * without breaking DT compatibility.
 461	 */
 462	ret = of_parse_phandle_with_args(np, "interconnects",
 463					 "#interconnect-cells", idx * 2,
 464					 &src_args);
 465	if (ret)
 466		return ERR_PTR(ret);
 467
 468	of_node_put(src_args.np);
 469
 470	ret = of_parse_phandle_with_args(np, "interconnects",
 471					 "#interconnect-cells", idx * 2 + 1,
 472					 &dst_args);
 473	if (ret)
 474		return ERR_PTR(ret);
 475
 476	of_node_put(dst_args.np);
 477
 478	src_data = of_icc_get_from_provider(&src_args);
 479
 480	if (IS_ERR(src_data)) {
 481		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
 482		return ERR_CAST(src_data);
 
 
 483	}
 484
 485	dst_data = of_icc_get_from_provider(&dst_args);
 486
 487	if (IS_ERR(dst_data)) {
 488		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
 489		kfree(src_data);
 490		return ERR_CAST(dst_data);
 
 491	}
 492
 493	mutex_lock(&icc_lock);
 494	path = path_find(dev, src_data->node, dst_data->node);
 495	mutex_unlock(&icc_lock);
 496	if (IS_ERR(path)) {
 497		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 498		goto free_icc_data;
 499	}
 500
 501	if (src_data->tag && src_data->tag == dst_data->tag)
 502		icc_set_tag(path, src_data->tag);
 503
 504	path->name = kasprintf(GFP_KERNEL, "%s-%s",
 505			       src_data->node->name, dst_data->node->name);
 506	if (!path->name) {
 507		kfree(path);
 508		path = ERR_PTR(-ENOMEM);
 509	}
 510
 511free_icc_data:
 512	kfree(src_data);
 513	kfree(dst_data);
 514	return path;
 515}
 516EXPORT_SYMBOL_GPL(of_icc_get_by_index);
 517
 518/**
 519 * of_icc_get() - get a path handle from a DT node based on name
 520 * @dev: device pointer for the consumer device
 521 * @name: interconnect path name
 522 *
 523 * This function will search for a path between two endpoints and return an
 524 * icc_path handle on success. Use icc_put() to release constraints when they
 525 * are not needed anymore.
 526 * If the interconnect API is disabled, NULL is returned and the consumer
 527 * drivers will still build. Drivers are free to handle this specifically,
 528 * but they don't have to.
 529 *
 530 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 531 * when the API is disabled or the "interconnects" DT property is missing.
 532 */
 533struct icc_path *of_icc_get(struct device *dev, const char *name)
 534{
 535	struct device_node *np;
 536	int idx = 0;
 537
 538	if (!dev || !dev->of_node)
 539		return ERR_PTR(-ENODEV);
 540
 541	np = dev->of_node;
 542
 543	/*
 544	 * When the consumer DT node do not have "interconnects" property
 545	 * return a NULL path to skip setting constraints.
 546	 */
 547	if (!of_find_property(np, "interconnects", NULL))
 548		return NULL;
 549
 550	/*
 551	 * We use a combination of phandle and specifier for endpoint. For now
 552	 * lets support only global ids and extend this in the future if needed
 553	 * without breaking DT compatibility.
 554	 */
 555	if (name) {
 556		idx = of_property_match_string(np, "interconnect-names", name);
 557		if (idx < 0)
 558			return ERR_PTR(idx);
 559	}
 560
 561	return of_icc_get_by_index(dev, idx);
 562}
 563EXPORT_SYMBOL_GPL(of_icc_get);
 564
 565/**
 566 * icc_set_tag() - set an optional tag on a path
 567 * @path: the path we want to tag
 568 * @tag: the tag value
 569 *
 570 * This function allows consumers to append a tag to the requests associated
 571 * with a path, so that a different aggregation could be done based on this tag.
 572 */
 573void icc_set_tag(struct icc_path *path, u32 tag)
 574{
 575	int i;
 576
 577	if (!path)
 578		return;
 579
 580	mutex_lock(&icc_lock);
 581
 582	for (i = 0; i < path->num_nodes; i++)
 583		path->reqs[i].tag = tag;
 584
 585	mutex_unlock(&icc_lock);
 586}
 587EXPORT_SYMBOL_GPL(icc_set_tag);
 588
 589/**
 590 * icc_get_name() - Get name of the icc path
 591 * @path: reference to the path returned by icc_get()
 592 *
 593 * This function is used by an interconnect consumer to get the name of the icc
 594 * path.
 595 *
 596 * Returns a valid pointer on success, or NULL otherwise.
 597 */
 598const char *icc_get_name(struct icc_path *path)
 599{
 600	if (!path)
 601		return NULL;
 602
 603	return path->name;
 604}
 605EXPORT_SYMBOL_GPL(icc_get_name);
 606
 607/**
 608 * icc_set_bw() - set bandwidth constraints on an interconnect path
 609 * @path: reference to the path returned by icc_get()
 610 * @avg_bw: average bandwidth in kilobytes per second
 611 * @peak_bw: peak bandwidth in kilobytes per second
 612 *
 613 * This function is used by an interconnect consumer to express its own needs
 614 * in terms of bandwidth for a previously requested path between two endpoints.
 615 * The requests are aggregated and each node is updated accordingly. The entire
 616 * path is locked by a mutex to ensure that the set() is completed.
 617 * The @path can be NULL when the "interconnects" DT properties is missing,
 618 * which will mean that no constraints will be set.
 619 *
 620 * Returns 0 on success, or an appropriate error code otherwise.
 621 */
 622int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
 623{
 624	struct icc_node *node;
 625	u32 old_avg, old_peak;
 626	size_t i;
 627	int ret;
 628
 629	if (!path)
 630		return 0;
 631
 632	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 633		return -EINVAL;
 634
 635	mutex_lock(&icc_lock);
 636
 637	old_avg = path->reqs[0].avg_bw;
 638	old_peak = path->reqs[0].peak_bw;
 639
 640	for (i = 0; i < path->num_nodes; i++) {
 641		node = path->reqs[i].node;
 642
 643		/* update the consumer request for this path */
 644		path->reqs[i].avg_bw = avg_bw;
 645		path->reqs[i].peak_bw = peak_bw;
 646
 647		/* aggregate requests for this node */
 648		aggregate_requests(node);
 649
 650		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
 651	}
 652
 653	ret = apply_constraints(path);
 654	if (ret) {
 655		pr_debug("interconnect: error applying constraints (%d)\n",
 656			 ret);
 657
 658		for (i = 0; i < path->num_nodes; i++) {
 659			node = path->reqs[i].node;
 660			path->reqs[i].avg_bw = old_avg;
 661			path->reqs[i].peak_bw = old_peak;
 662			aggregate_requests(node);
 663		}
 664		apply_constraints(path);
 665	}
 666
 667	mutex_unlock(&icc_lock);
 668
 669	trace_icc_set_bw_end(path, ret);
 670
 671	return ret;
 672}
 673EXPORT_SYMBOL_GPL(icc_set_bw);
 674
 675static int __icc_enable(struct icc_path *path, bool enable)
 676{
 677	int i;
 678
 679	if (!path)
 680		return 0;
 681
 682	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 683		return -EINVAL;
 684
 685	mutex_lock(&icc_lock);
 686
 687	for (i = 0; i < path->num_nodes; i++)
 688		path->reqs[i].enabled = enable;
 689
 690	mutex_unlock(&icc_lock);
 691
 692	return icc_set_bw(path, path->reqs[0].avg_bw,
 693			  path->reqs[0].peak_bw);
 694}
 695
 696int icc_enable(struct icc_path *path)
 697{
 698	return __icc_enable(path, true);
 699}
 700EXPORT_SYMBOL_GPL(icc_enable);
 701
 702int icc_disable(struct icc_path *path)
 703{
 704	return __icc_enable(path, false);
 705}
 706EXPORT_SYMBOL_GPL(icc_disable);
 707
 708/**
 709 * icc_get() - return a handle for path between two endpoints
 710 * @dev: the device requesting the path
 711 * @src_id: source device port id
 712 * @dst_id: destination device port id
 713 *
 714 * This function will search for a path between two endpoints and return an
 715 * icc_path handle on success. Use icc_put() to release
 716 * constraints when they are not needed anymore.
 717 * If the interconnect API is disabled, NULL is returned and the consumer
 718 * drivers will still build. Drivers are free to handle this specifically,
 719 * but they don't have to.
 720 *
 721 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
 722 * interconnect API is disabled.
 723 */
 724struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
 725{
 726	struct icc_node *src, *dst;
 727	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 728
 729	mutex_lock(&icc_lock);
 730
 731	src = node_find(src_id);
 732	if (!src)
 733		goto out;
 734
 735	dst = node_find(dst_id);
 736	if (!dst)
 737		goto out;
 738
 739	path = path_find(dev, src, dst);
 740	if (IS_ERR(path)) {
 741		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 742		goto out;
 743	}
 744
 745	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
 746	if (!path->name) {
 747		kfree(path);
 748		path = ERR_PTR(-ENOMEM);
 749	}
 750out:
 751	mutex_unlock(&icc_lock);
 752	return path;
 753}
 754EXPORT_SYMBOL_GPL(icc_get);
 755
 756/**
 757 * icc_put() - release the reference to the icc_path
 758 * @path: interconnect path
 759 *
 760 * Use this function to release the constraints on a path when the path is
 761 * no longer needed. The constraints will be re-aggregated.
 762 */
 763void icc_put(struct icc_path *path)
 764{
 765	struct icc_node *node;
 766	size_t i;
 767	int ret;
 768
 769	if (!path || WARN_ON(IS_ERR(path)))
 770		return;
 771
 772	ret = icc_set_bw(path, 0, 0);
 773	if (ret)
 774		pr_err("%s: error (%d)\n", __func__, ret);
 775
 776	mutex_lock(&icc_lock);
 777	for (i = 0; i < path->num_nodes; i++) {
 778		node = path->reqs[i].node;
 779		hlist_del(&path->reqs[i].req_node);
 780		if (!WARN_ON(!node->provider->users))
 781			node->provider->users--;
 782	}
 783	mutex_unlock(&icc_lock);
 784
 785	kfree_const(path->name);
 786	kfree(path);
 787}
 788EXPORT_SYMBOL_GPL(icc_put);
 789
 790static struct icc_node *icc_node_create_nolock(int id)
 791{
 792	struct icc_node *node;
 793
 794	/* check if node already exists */
 795	node = node_find(id);
 796	if (node)
 797		return node;
 798
 799	node = kzalloc(sizeof(*node), GFP_KERNEL);
 800	if (!node)
 801		return ERR_PTR(-ENOMEM);
 802
 803	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
 804	if (id < 0) {
 805		WARN(1, "%s: couldn't get idr\n", __func__);
 806		kfree(node);
 807		return ERR_PTR(id);
 808	}
 809
 810	node->id = id;
 811
 812	return node;
 813}
 814
 815/**
 816 * icc_node_create() - create a node
 817 * @id: node id
 818 *
 819 * Return: icc_node pointer on success, or ERR_PTR() on error
 820 */
 821struct icc_node *icc_node_create(int id)
 822{
 823	struct icc_node *node;
 824
 825	mutex_lock(&icc_lock);
 826
 827	node = icc_node_create_nolock(id);
 828
 829	mutex_unlock(&icc_lock);
 830
 831	return node;
 832}
 833EXPORT_SYMBOL_GPL(icc_node_create);
 834
 835/**
 836 * icc_node_destroy() - destroy a node
 837 * @id: node id
 838 */
 839void icc_node_destroy(int id)
 840{
 841	struct icc_node *node;
 842
 843	mutex_lock(&icc_lock);
 844
 845	node = node_find(id);
 846	if (node) {
 847		idr_remove(&icc_idr, node->id);
 848		WARN_ON(!hlist_empty(&node->req_list));
 849	}
 850
 851	mutex_unlock(&icc_lock);
 852
 853	kfree(node);
 854}
 855EXPORT_SYMBOL_GPL(icc_node_destroy);
 856
 857/**
 858 * icc_link_create() - create a link between two nodes
 859 * @node: source node id
 860 * @dst_id: destination node id
 861 *
 862 * Create a link between two nodes. The nodes might belong to different
 863 * interconnect providers and the @dst_id node might not exist (if the
 864 * provider driver has not probed yet). So just create the @dst_id node
 865 * and when the actual provider driver is probed, the rest of the node
 866 * data is filled.
 867 *
 868 * Return: 0 on success, or an error code otherwise
 869 */
 870int icc_link_create(struct icc_node *node, const int dst_id)
 871{
 872	struct icc_node *dst;
 873	struct icc_node **new;
 874	int ret = 0;
 875
 876	if (!node->provider)
 877		return -EINVAL;
 878
 879	mutex_lock(&icc_lock);
 880
 881	dst = node_find(dst_id);
 882	if (!dst) {
 883		dst = icc_node_create_nolock(dst_id);
 884
 885		if (IS_ERR(dst)) {
 886			ret = PTR_ERR(dst);
 887			goto out;
 888		}
 889	}
 890
 891	new = krealloc(node->links,
 892		       (node->num_links + 1) * sizeof(*node->links),
 893		       GFP_KERNEL);
 894	if (!new) {
 895		ret = -ENOMEM;
 896		goto out;
 897	}
 898
 899	node->links = new;
 900	node->links[node->num_links++] = dst;
 901
 902out:
 903	mutex_unlock(&icc_lock);
 904
 905	return ret;
 906}
 907EXPORT_SYMBOL_GPL(icc_link_create);
 908
 909/**
 910 * icc_link_destroy() - destroy a link between two nodes
 911 * @src: pointer to source node
 912 * @dst: pointer to destination node
 913 *
 914 * Return: 0 on success, or an error code otherwise
 915 */
 916int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
 917{
 918	struct icc_node **new;
 919	size_t slot;
 920	int ret = 0;
 921
 922	if (IS_ERR_OR_NULL(src))
 923		return -EINVAL;
 924
 925	if (IS_ERR_OR_NULL(dst))
 926		return -EINVAL;
 927
 928	mutex_lock(&icc_lock);
 929
 930	for (slot = 0; slot < src->num_links; slot++)
 931		if (src->links[slot] == dst)
 932			break;
 933
 934	if (WARN_ON(slot == src->num_links)) {
 935		ret = -ENXIO;
 936		goto out;
 937	}
 938
 939	src->links[slot] = src->links[--src->num_links];
 940
 941	new = krealloc(src->links, src->num_links * sizeof(*src->links),
 942		       GFP_KERNEL);
 943	if (new)
 944		src->links = new;
 945	else
 946		ret = -ENOMEM;
 947
 948out:
 949	mutex_unlock(&icc_lock);
 950
 951	return ret;
 952}
 953EXPORT_SYMBOL_GPL(icc_link_destroy);
 954
 955/**
 956 * icc_node_add() - add interconnect node to interconnect provider
 957 * @node: pointer to the interconnect node
 958 * @provider: pointer to the interconnect provider
 959 */
 960void icc_node_add(struct icc_node *node, struct icc_provider *provider)
 961{
 962	if (WARN_ON(node->provider))
 963		return;
 964
 965	mutex_lock(&icc_lock);
 966
 967	node->provider = provider;
 968	list_add_tail(&node->node_list, &provider->nodes);
 969
 970	/* get the initial bandwidth values and sync them with hardware */
 971	if (provider->get_bw) {
 972		provider->get_bw(node, &node->init_avg, &node->init_peak);
 973	} else {
 974		node->init_avg = INT_MAX;
 975		node->init_peak = INT_MAX;
 976	}
 977	node->avg_bw = node->init_avg;
 978	node->peak_bw = node->init_peak;
 979
 980	if (provider->pre_aggregate)
 981		provider->pre_aggregate(node);
 982
 983	if (provider->aggregate)
 984		provider->aggregate(node, 0, node->init_avg, node->init_peak,
 985				    &node->avg_bw, &node->peak_bw);
 986
 987	provider->set(node, node);
 988	node->avg_bw = 0;
 989	node->peak_bw = 0;
 990
 991	mutex_unlock(&icc_lock);
 992}
 993EXPORT_SYMBOL_GPL(icc_node_add);
 994
 995/**
 996 * icc_node_del() - delete interconnect node from interconnect provider
 997 * @node: pointer to the interconnect node
 998 */
 999void icc_node_del(struct icc_node *node)
1000{
1001	mutex_lock(&icc_lock);
1002
1003	list_del(&node->node_list);
1004
1005	mutex_unlock(&icc_lock);
1006}
1007EXPORT_SYMBOL_GPL(icc_node_del);
1008
1009/**
1010 * icc_nodes_remove() - remove all previously added nodes from provider
1011 * @provider: the interconnect provider we are removing nodes from
1012 *
1013 * Return: 0 on success, or an error code otherwise
1014 */
1015int icc_nodes_remove(struct icc_provider *provider)
1016{
1017	struct icc_node *n, *tmp;
1018
1019	if (WARN_ON(IS_ERR_OR_NULL(provider)))
1020		return -EINVAL;
1021
1022	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1023		icc_node_del(n);
1024		icc_node_destroy(n->id);
1025	}
1026
1027	return 0;
1028}
1029EXPORT_SYMBOL_GPL(icc_nodes_remove);
1030
1031/**
1032 * icc_provider_add() - add a new interconnect provider
1033 * @provider: the interconnect provider that will be added into topology
1034 *
1035 * Return: 0 on success, or an error code otherwise
1036 */
1037int icc_provider_add(struct icc_provider *provider)
1038{
1039	if (WARN_ON(!provider->set))
1040		return -EINVAL;
1041	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1042		return -EINVAL;
1043
1044	mutex_lock(&icc_lock);
1045
1046	INIT_LIST_HEAD(&provider->nodes);
1047	list_add_tail(&provider->provider_list, &icc_providers);
1048
1049	mutex_unlock(&icc_lock);
1050
1051	dev_dbg(provider->dev, "interconnect provider added to topology\n");
1052
1053	return 0;
1054}
1055EXPORT_SYMBOL_GPL(icc_provider_add);
1056
1057/**
1058 * icc_provider_del() - delete previously added interconnect provider
1059 * @provider: the interconnect provider that will be removed from topology
 
 
1060 */
1061void icc_provider_del(struct icc_provider *provider)
1062{
1063	mutex_lock(&icc_lock);
1064	if (provider->users) {
1065		pr_warn("interconnect provider still has %d users\n",
1066			provider->users);
1067		mutex_unlock(&icc_lock);
1068		return;
1069	}
1070
1071	if (!list_empty(&provider->nodes)) {
1072		pr_warn("interconnect provider still has nodes\n");
1073		mutex_unlock(&icc_lock);
1074		return;
1075	}
1076
1077	list_del(&provider->provider_list);
1078	mutex_unlock(&icc_lock);
1079}
1080EXPORT_SYMBOL_GPL(icc_provider_del);
1081
1082static int of_count_icc_providers(struct device_node *np)
1083{
1084	struct device_node *child;
1085	int count = 0;
1086	const struct of_device_id __maybe_unused ignore_list[] = {
1087		{ .compatible = "qcom,sc7180-ipa-virt" },
1088		{ .compatible = "qcom,sdx55-ipa-virt" },
1089		{}
1090	};
1091
1092	for_each_available_child_of_node(np, child) {
1093		if (of_property_read_bool(child, "#interconnect-cells") &&
1094		    likely(!of_match_node(ignore_list, child)))
1095			count++;
1096		count += of_count_icc_providers(child);
1097	}
1098
1099	return count;
1100}
1101
1102void icc_sync_state(struct device *dev)
1103{
1104	struct icc_provider *p;
1105	struct icc_node *n;
1106	static int count;
1107
1108	count++;
1109
1110	if (count < providers_count)
1111		return;
1112
1113	mutex_lock(&icc_lock);
1114	synced_state = true;
1115	list_for_each_entry(p, &icc_providers, provider_list) {
1116		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1117		list_for_each_entry(n, &p->nodes, node_list) {
1118			if (n->init_avg || n->init_peak) {
1119				n->init_avg = 0;
1120				n->init_peak = 0;
1121				aggregate_requests(n);
1122				p->set(n, n);
1123			}
1124		}
1125	}
1126	mutex_unlock(&icc_lock);
1127}
1128EXPORT_SYMBOL_GPL(icc_sync_state);
1129
1130static int __init icc_init(void)
1131{
1132	struct device_node *root = of_find_node_by_path("/");
1133
1134	providers_count = of_count_icc_providers(root);
1135	of_node_put(root);
1136
1137	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1138	debugfs_create_file("interconnect_summary", 0444,
1139			    icc_debugfs_dir, NULL, &icc_summary_fops);
1140	debugfs_create_file("interconnect_graph", 0444,
1141			    icc_debugfs_dir, NULL, &icc_graph_fops);
1142	return 0;
1143}
1144
1145device_initcall(icc_init);
1146
1147MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1148MODULE_DESCRIPTION("Interconnect Driver Core");
1149MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interconnect framework core driver
   4 *
   5 * Copyright (c) 2017-2019, Linaro Ltd.
   6 * Author: Georgi Djakov <georgi.djakov@linaro.org>
   7 */
   8
   9#include <linux/debugfs.h>
  10#include <linux/device.h>
  11#include <linux/idr.h>
  12#include <linux/init.h>
  13#include <linux/interconnect.h>
  14#include <linux/interconnect-provider.h>
  15#include <linux/list.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/overflow.h>
  21
  22#include "internal.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include "trace.h"
  26
  27static DEFINE_IDR(icc_idr);
  28static LIST_HEAD(icc_providers);
 
 
  29static DEFINE_MUTEX(icc_lock);
  30static struct dentry *icc_debugfs_dir;
  31
  32static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
  33{
  34	if (!n)
  35		return;
  36
  37	seq_printf(s, "%-42s %12u %12u\n",
  38		   n->name, n->avg_bw, n->peak_bw);
  39}
  40
  41static int icc_summary_show(struct seq_file *s, void *data)
  42{
  43	struct icc_provider *provider;
  44
  45	seq_puts(s, " node                                  tag          avg         peak\n");
  46	seq_puts(s, "--------------------------------------------------------------------\n");
  47
  48	mutex_lock(&icc_lock);
  49
  50	list_for_each_entry(provider, &icc_providers, provider_list) {
  51		struct icc_node *n;
  52
  53		list_for_each_entry(n, &provider->nodes, node_list) {
  54			struct icc_req *r;
  55
  56			icc_summary_show_one(s, n);
  57			hlist_for_each_entry(r, &n->req_list, req_node) {
  58				u32 avg_bw = 0, peak_bw = 0;
  59
  60				if (!r->dev)
  61					continue;
  62
  63				if (r->enabled) {
  64					avg_bw = r->avg_bw;
  65					peak_bw = r->peak_bw;
  66				}
  67
  68				seq_printf(s, "  %-27s %12u %12u %12u\n",
  69					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
  70			}
  71		}
  72	}
  73
  74	mutex_unlock(&icc_lock);
  75
  76	return 0;
  77}
  78DEFINE_SHOW_ATTRIBUTE(icc_summary);
  79
  80static void icc_graph_show_link(struct seq_file *s, int level,
  81				struct icc_node *n, struct icc_node *m)
  82{
  83	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
  84		   level == 2 ? "\t\t" : "\t",
  85		   n->id, n->name, m->id, m->name);
  86}
  87
  88static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
  89{
  90	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
  91		   n->id, n->name, n->id, n->name);
  92	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
  93	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
  94	seq_puts(s, "\"]\n");
  95}
  96
  97static int icc_graph_show(struct seq_file *s, void *data)
  98{
  99	struct icc_provider *provider;
 100	struct icc_node *n;
 101	int cluster_index = 0;
 102	int i;
 103
 104	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
 105	mutex_lock(&icc_lock);
 106
 107	/* draw providers as cluster subgraphs */
 108	cluster_index = 0;
 109	list_for_each_entry(provider, &icc_providers, provider_list) {
 110		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
 111		if (provider->dev)
 112			seq_printf(s, "\t\tlabel = \"%s\"\n",
 113				   dev_name(provider->dev));
 114
 115		/* draw nodes */
 116		list_for_each_entry(n, &provider->nodes, node_list)
 117			icc_graph_show_node(s, n);
 118
 119		/* draw internal links */
 120		list_for_each_entry(n, &provider->nodes, node_list)
 121			for (i = 0; i < n->num_links; ++i)
 122				if (n->provider == n->links[i]->provider)
 123					icc_graph_show_link(s, 2, n,
 124							    n->links[i]);
 125
 126		seq_puts(s, "\t}\n");
 127	}
 128
 129	/* draw external links */
 130	list_for_each_entry(provider, &icc_providers, provider_list)
 131		list_for_each_entry(n, &provider->nodes, node_list)
 132			for (i = 0; i < n->num_links; ++i)
 133				if (n->provider != n->links[i]->provider)
 134					icc_graph_show_link(s, 1, n,
 135							    n->links[i]);
 136
 137	mutex_unlock(&icc_lock);
 138	seq_puts(s, "}");
 139
 140	return 0;
 141}
 142DEFINE_SHOW_ATTRIBUTE(icc_graph);
 143
 144static struct icc_node *node_find(const int id)
 145{
 146	return idr_find(&icc_idr, id);
 147}
 148
 149static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
 150				  ssize_t num_nodes)
 151{
 152	struct icc_node *node = dst;
 153	struct icc_path *path;
 154	int i;
 155
 156	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
 157	if (!path)
 158		return ERR_PTR(-ENOMEM);
 159
 160	path->num_nodes = num_nodes;
 161
 162	for (i = num_nodes - 1; i >= 0; i--) {
 163		node->provider->users++;
 164		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
 165		path->reqs[i].node = node;
 166		path->reqs[i].dev = dev;
 167		path->reqs[i].enabled = true;
 168		/* reference to previous node was saved during path traversal */
 169		node = node->reverse;
 170	}
 171
 172	return path;
 173}
 174
 175static struct icc_path *path_find(struct device *dev, struct icc_node *src,
 176				  struct icc_node *dst)
 177{
 178	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 179	struct icc_node *n, *node = NULL;
 180	struct list_head traverse_list;
 181	struct list_head edge_list;
 182	struct list_head visited_list;
 183	size_t i, depth = 1;
 184	bool found = false;
 185
 186	INIT_LIST_HEAD(&traverse_list);
 187	INIT_LIST_HEAD(&edge_list);
 188	INIT_LIST_HEAD(&visited_list);
 189
 190	list_add(&src->search_list, &traverse_list);
 191	src->reverse = NULL;
 192
 193	do {
 194		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
 195			if (node == dst) {
 196				found = true;
 197				list_splice_init(&edge_list, &visited_list);
 198				list_splice_init(&traverse_list, &visited_list);
 199				break;
 200			}
 201			for (i = 0; i < node->num_links; i++) {
 202				struct icc_node *tmp = node->links[i];
 203
 204				if (!tmp) {
 205					path = ERR_PTR(-ENOENT);
 206					goto out;
 207				}
 208
 209				if (tmp->is_traversed)
 210					continue;
 211
 212				tmp->is_traversed = true;
 213				tmp->reverse = node;
 214				list_add_tail(&tmp->search_list, &edge_list);
 215			}
 216		}
 217
 218		if (found)
 219			break;
 220
 221		list_splice_init(&traverse_list, &visited_list);
 222		list_splice_init(&edge_list, &traverse_list);
 223
 224		/* count the hops including the source */
 225		depth++;
 226
 227	} while (!list_empty(&traverse_list));
 228
 229out:
 230
 231	/* reset the traversed state */
 232	list_for_each_entry_reverse(n, &visited_list, search_list)
 233		n->is_traversed = false;
 234
 235	if (found)
 236		path = path_init(dev, dst, depth);
 237
 238	return path;
 239}
 240
 241/*
 242 * We want the path to honor all bandwidth requests, so the average and peak
 243 * bandwidth requirements from each consumer are aggregated at each node.
 244 * The aggregation is platform specific, so each platform can customize it by
 245 * implementing its own aggregate() function.
 246 */
 247
 248static int aggregate_requests(struct icc_node *node)
 249{
 250	struct icc_provider *p = node->provider;
 251	struct icc_req *r;
 252	u32 avg_bw, peak_bw;
 253
 254	node->avg_bw = 0;
 255	node->peak_bw = 0;
 256
 257	if (p->pre_aggregate)
 258		p->pre_aggregate(node);
 259
 260	hlist_for_each_entry(r, &node->req_list, req_node) {
 261		if (r->enabled) {
 262			avg_bw = r->avg_bw;
 263			peak_bw = r->peak_bw;
 264		} else {
 265			avg_bw = 0;
 266			peak_bw = 0;
 267		}
 268		p->aggregate(node, r->tag, avg_bw, peak_bw,
 269			     &node->avg_bw, &node->peak_bw);
 
 
 
 
 
 
 270	}
 271
 272	return 0;
 273}
 274
 275static int apply_constraints(struct icc_path *path)
 276{
 277	struct icc_node *next, *prev = NULL;
 278	struct icc_provider *p;
 279	int ret = -EINVAL;
 280	int i;
 281
 282	for (i = 0; i < path->num_nodes; i++) {
 283		next = path->reqs[i].node;
 284		p = next->provider;
 285
 286		/* both endpoints should be valid master-slave pairs */
 287		if (!prev || (p != prev->provider && !p->inter_set)) {
 288			prev = next;
 289			continue;
 290		}
 291
 292		/* set the constraints */
 293		ret = p->set(prev, next);
 294		if (ret)
 295			goto out;
 296
 297		prev = next;
 298	}
 299out:
 300	return ret;
 301}
 302
 303int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
 304		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
 305{
 306	*agg_avg += avg_bw;
 307	*agg_peak = max(*agg_peak, peak_bw);
 308
 309	return 0;
 310}
 311EXPORT_SYMBOL_GPL(icc_std_aggregate);
 312
 313/* of_icc_xlate_onecell() - Translate function using a single index.
 314 * @spec: OF phandle args to map into an interconnect node.
 315 * @data: private data (pointer to struct icc_onecell_data)
 316 *
 317 * This is a generic translate function that can be used to model simple
 318 * interconnect providers that have one device tree node and provide
 319 * multiple interconnect nodes. A single cell is used as an index into
 320 * an array of icc nodes specified in the icc_onecell_data struct when
 321 * registering the provider.
 322 */
 323struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
 324				      void *data)
 325{
 326	struct icc_onecell_data *icc_data = data;
 327	unsigned int idx = spec->args[0];
 328
 329	if (idx >= icc_data->num_nodes) {
 330		pr_err("%s: invalid index %u\n", __func__, idx);
 331		return ERR_PTR(-EINVAL);
 332	}
 333
 334	return icc_data->nodes[idx];
 335}
 336EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
 337
 338/**
 339 * of_icc_get_from_provider() - Look-up interconnect node
 340 * @spec: OF phandle args to use for look-up
 341 *
 342 * Looks for interconnect provider under the node specified by @spec and if
 343 * found, uses xlate function of the provider to map phandle args to node.
 344 *
 345 * Returns a valid pointer to struct icc_node on success or ERR_PTR()
 346 * on failure.
 347 */
 348struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
 349{
 350	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
 
 351	struct icc_provider *provider;
 352
 353	if (!spec)
 354		return ERR_PTR(-EINVAL);
 355
 356	mutex_lock(&icc_lock);
 357	list_for_each_entry(provider, &icc_providers, provider_list) {
 358		if (provider->dev->of_node == spec->np)
 359			node = provider->xlate(spec, provider->data);
 360		if (!IS_ERR(node))
 361			break;
 
 
 
 
 
 
 
 
 
 362	}
 363	mutex_unlock(&icc_lock);
 364
 365	return node;
 
 
 
 
 
 
 
 
 
 
 366}
 367EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
 368
 369static void devm_icc_release(struct device *dev, void *res)
 370{
 371	icc_put(*(struct icc_path **)res);
 372}
 373
 374struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
 375{
 376	struct icc_path **ptr, *path;
 377
 378	ptr = devres_alloc(devm_icc_release, sizeof(**ptr), GFP_KERNEL);
 379	if (!ptr)
 380		return ERR_PTR(-ENOMEM);
 381
 382	path = of_icc_get(dev, name);
 383	if (!IS_ERR(path)) {
 384		*ptr = path;
 385		devres_add(dev, ptr);
 386	} else {
 387		devres_free(ptr);
 388	}
 389
 390	return path;
 391}
 392EXPORT_SYMBOL_GPL(devm_of_icc_get);
 393
 394/**
 395 * of_icc_get_by_index() - get a path handle from a DT node based on index
 396 * @dev: device pointer for the consumer device
 397 * @idx: interconnect path index
 398 *
 399 * This function will search for a path between two endpoints and return an
 400 * icc_path handle on success. Use icc_put() to release constraints when they
 401 * are not needed anymore.
 402 * If the interconnect API is disabled, NULL is returned and the consumer
 403 * drivers will still build. Drivers are free to handle this specifically,
 404 * but they don't have to.
 405 *
 406 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 407 * when the API is disabled or the "interconnects" DT property is missing.
 408 */
 409struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
 410{
 411	struct icc_path *path;
 412	struct icc_node *src_node, *dst_node;
 413	struct device_node *np;
 414	struct of_phandle_args src_args, dst_args;
 415	int ret;
 416
 417	if (!dev || !dev->of_node)
 418		return ERR_PTR(-ENODEV);
 419
 420	np = dev->of_node;
 421
 422	/*
 423	 * When the consumer DT node do not have "interconnects" property
 424	 * return a NULL path to skip setting constraints.
 425	 */
 426	if (!of_find_property(np, "interconnects", NULL))
 427		return NULL;
 428
 429	/*
 430	 * We use a combination of phandle and specifier for endpoint. For now
 431	 * lets support only global ids and extend this in the future if needed
 432	 * without breaking DT compatibility.
 433	 */
 434	ret = of_parse_phandle_with_args(np, "interconnects",
 435					 "#interconnect-cells", idx * 2,
 436					 &src_args);
 437	if (ret)
 438		return ERR_PTR(ret);
 439
 440	of_node_put(src_args.np);
 441
 442	ret = of_parse_phandle_with_args(np, "interconnects",
 443					 "#interconnect-cells", idx * 2 + 1,
 444					 &dst_args);
 445	if (ret)
 446		return ERR_PTR(ret);
 447
 448	of_node_put(dst_args.np);
 449
 450	src_node = of_icc_get_from_provider(&src_args);
 451
 452	if (IS_ERR(src_node)) {
 453		if (PTR_ERR(src_node) != -EPROBE_DEFER)
 454			dev_err(dev, "error finding src node: %ld\n",
 455				PTR_ERR(src_node));
 456		return ERR_CAST(src_node);
 457	}
 458
 459	dst_node = of_icc_get_from_provider(&dst_args);
 460
 461	if (IS_ERR(dst_node)) {
 462		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
 463			dev_err(dev, "error finding dst node: %ld\n",
 464				PTR_ERR(dst_node));
 465		return ERR_CAST(dst_node);
 466	}
 467
 468	mutex_lock(&icc_lock);
 469	path = path_find(dev, src_node, dst_node);
 470	mutex_unlock(&icc_lock);
 471	if (IS_ERR(path)) {
 472		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 473		return path;
 474	}
 475
 
 
 
 476	path->name = kasprintf(GFP_KERNEL, "%s-%s",
 477			       src_node->name, dst_node->name);
 478	if (!path->name) {
 479		kfree(path);
 480		return ERR_PTR(-ENOMEM);
 481	}
 482
 
 
 
 483	return path;
 484}
 485EXPORT_SYMBOL_GPL(of_icc_get_by_index);
 486
 487/**
 488 * of_icc_get() - get a path handle from a DT node based on name
 489 * @dev: device pointer for the consumer device
 490 * @name: interconnect path name
 491 *
 492 * This function will search for a path between two endpoints and return an
 493 * icc_path handle on success. Use icc_put() to release constraints when they
 494 * are not needed anymore.
 495 * If the interconnect API is disabled, NULL is returned and the consumer
 496 * drivers will still build. Drivers are free to handle this specifically,
 497 * but they don't have to.
 498 *
 499 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
 500 * when the API is disabled or the "interconnects" DT property is missing.
 501 */
 502struct icc_path *of_icc_get(struct device *dev, const char *name)
 503{
 504	struct device_node *np;
 505	int idx = 0;
 506
 507	if (!dev || !dev->of_node)
 508		return ERR_PTR(-ENODEV);
 509
 510	np = dev->of_node;
 511
 512	/*
 513	 * When the consumer DT node do not have "interconnects" property
 514	 * return a NULL path to skip setting constraints.
 515	 */
 516	if (!of_find_property(np, "interconnects", NULL))
 517		return NULL;
 518
 519	/*
 520	 * We use a combination of phandle and specifier for endpoint. For now
 521	 * lets support only global ids and extend this in the future if needed
 522	 * without breaking DT compatibility.
 523	 */
 524	if (name) {
 525		idx = of_property_match_string(np, "interconnect-names", name);
 526		if (idx < 0)
 527			return ERR_PTR(idx);
 528	}
 529
 530	return of_icc_get_by_index(dev, idx);
 531}
 532EXPORT_SYMBOL_GPL(of_icc_get);
 533
 534/**
 535 * icc_set_tag() - set an optional tag on a path
 536 * @path: the path we want to tag
 537 * @tag: the tag value
 538 *
 539 * This function allows consumers to append a tag to the requests associated
 540 * with a path, so that a different aggregation could be done based on this tag.
 541 */
 542void icc_set_tag(struct icc_path *path, u32 tag)
 543{
 544	int i;
 545
 546	if (!path)
 547		return;
 548
 549	mutex_lock(&icc_lock);
 550
 551	for (i = 0; i < path->num_nodes; i++)
 552		path->reqs[i].tag = tag;
 553
 554	mutex_unlock(&icc_lock);
 555}
 556EXPORT_SYMBOL_GPL(icc_set_tag);
 557
 558/**
 559 * icc_get_name() - Get name of the icc path
 560 * @path: reference to the path returned by icc_get()
 561 *
 562 * This function is used by an interconnect consumer to get the name of the icc
 563 * path.
 564 *
 565 * Returns a valid pointer on success, or NULL otherwise.
 566 */
 567const char *icc_get_name(struct icc_path *path)
 568{
 569	if (!path)
 570		return NULL;
 571
 572	return path->name;
 573}
 574EXPORT_SYMBOL_GPL(icc_get_name);
 575
 576/**
 577 * icc_set_bw() - set bandwidth constraints on an interconnect path
 578 * @path: reference to the path returned by icc_get()
 579 * @avg_bw: average bandwidth in kilobytes per second
 580 * @peak_bw: peak bandwidth in kilobytes per second
 581 *
 582 * This function is used by an interconnect consumer to express its own needs
 583 * in terms of bandwidth for a previously requested path between two endpoints.
 584 * The requests are aggregated and each node is updated accordingly. The entire
 585 * path is locked by a mutex to ensure that the set() is completed.
 586 * The @path can be NULL when the "interconnects" DT properties is missing,
 587 * which will mean that no constraints will be set.
 588 *
 589 * Returns 0 on success, or an appropriate error code otherwise.
 590 */
 591int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
 592{
 593	struct icc_node *node;
 594	u32 old_avg, old_peak;
 595	size_t i;
 596	int ret;
 597
 598	if (!path)
 599		return 0;
 600
 601	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 602		return -EINVAL;
 603
 604	mutex_lock(&icc_lock);
 605
 606	old_avg = path->reqs[0].avg_bw;
 607	old_peak = path->reqs[0].peak_bw;
 608
 609	for (i = 0; i < path->num_nodes; i++) {
 610		node = path->reqs[i].node;
 611
 612		/* update the consumer request for this path */
 613		path->reqs[i].avg_bw = avg_bw;
 614		path->reqs[i].peak_bw = peak_bw;
 615
 616		/* aggregate requests for this node */
 617		aggregate_requests(node);
 618
 619		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
 620	}
 621
 622	ret = apply_constraints(path);
 623	if (ret) {
 624		pr_debug("interconnect: error applying constraints (%d)\n",
 625			 ret);
 626
 627		for (i = 0; i < path->num_nodes; i++) {
 628			node = path->reqs[i].node;
 629			path->reqs[i].avg_bw = old_avg;
 630			path->reqs[i].peak_bw = old_peak;
 631			aggregate_requests(node);
 632		}
 633		apply_constraints(path);
 634	}
 635
 636	mutex_unlock(&icc_lock);
 637
 638	trace_icc_set_bw_end(path, ret);
 639
 640	return ret;
 641}
 642EXPORT_SYMBOL_GPL(icc_set_bw);
 643
 644static int __icc_enable(struct icc_path *path, bool enable)
 645{
 646	int i;
 647
 648	if (!path)
 649		return 0;
 650
 651	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
 652		return -EINVAL;
 653
 654	mutex_lock(&icc_lock);
 655
 656	for (i = 0; i < path->num_nodes; i++)
 657		path->reqs[i].enabled = enable;
 658
 659	mutex_unlock(&icc_lock);
 660
 661	return icc_set_bw(path, path->reqs[0].avg_bw,
 662			  path->reqs[0].peak_bw);
 663}
 664
 665int icc_enable(struct icc_path *path)
 666{
 667	return __icc_enable(path, true);
 668}
 669EXPORT_SYMBOL_GPL(icc_enable);
 670
 671int icc_disable(struct icc_path *path)
 672{
 673	return __icc_enable(path, false);
 674}
 675EXPORT_SYMBOL_GPL(icc_disable);
 676
 677/**
 678 * icc_get() - return a handle for path between two endpoints
 679 * @dev: the device requesting the path
 680 * @src_id: source device port id
 681 * @dst_id: destination device port id
 682 *
 683 * This function will search for a path between two endpoints and return an
 684 * icc_path handle on success. Use icc_put() to release
 685 * constraints when they are not needed anymore.
 686 * If the interconnect API is disabled, NULL is returned and the consumer
 687 * drivers will still build. Drivers are free to handle this specifically,
 688 * but they don't have to.
 689 *
 690 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
 691 * interconnect API is disabled.
 692 */
 693struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
 694{
 695	struct icc_node *src, *dst;
 696	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
 697
 698	mutex_lock(&icc_lock);
 699
 700	src = node_find(src_id);
 701	if (!src)
 702		goto out;
 703
 704	dst = node_find(dst_id);
 705	if (!dst)
 706		goto out;
 707
 708	path = path_find(dev, src, dst);
 709	if (IS_ERR(path)) {
 710		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
 711		goto out;
 712	}
 713
 714	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
 715	if (!path->name) {
 716		kfree(path);
 717		path = ERR_PTR(-ENOMEM);
 718	}
 719out:
 720	mutex_unlock(&icc_lock);
 721	return path;
 722}
 723EXPORT_SYMBOL_GPL(icc_get);
 724
 725/**
 726 * icc_put() - release the reference to the icc_path
 727 * @path: interconnect path
 728 *
 729 * Use this function to release the constraints on a path when the path is
 730 * no longer needed. The constraints will be re-aggregated.
 731 */
 732void icc_put(struct icc_path *path)
 733{
 734	struct icc_node *node;
 735	size_t i;
 736	int ret;
 737
 738	if (!path || WARN_ON(IS_ERR(path)))
 739		return;
 740
 741	ret = icc_set_bw(path, 0, 0);
 742	if (ret)
 743		pr_err("%s: error (%d)\n", __func__, ret);
 744
 745	mutex_lock(&icc_lock);
 746	for (i = 0; i < path->num_nodes; i++) {
 747		node = path->reqs[i].node;
 748		hlist_del(&path->reqs[i].req_node);
 749		if (!WARN_ON(!node->provider->users))
 750			node->provider->users--;
 751	}
 752	mutex_unlock(&icc_lock);
 753
 754	kfree_const(path->name);
 755	kfree(path);
 756}
 757EXPORT_SYMBOL_GPL(icc_put);
 758
 759static struct icc_node *icc_node_create_nolock(int id)
 760{
 761	struct icc_node *node;
 762
 763	/* check if node already exists */
 764	node = node_find(id);
 765	if (node)
 766		return node;
 767
 768	node = kzalloc(sizeof(*node), GFP_KERNEL);
 769	if (!node)
 770		return ERR_PTR(-ENOMEM);
 771
 772	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
 773	if (id < 0) {
 774		WARN(1, "%s: couldn't get idr\n", __func__);
 775		kfree(node);
 776		return ERR_PTR(id);
 777	}
 778
 779	node->id = id;
 780
 781	return node;
 782}
 783
 784/**
 785 * icc_node_create() - create a node
 786 * @id: node id
 787 *
 788 * Return: icc_node pointer on success, or ERR_PTR() on error
 789 */
 790struct icc_node *icc_node_create(int id)
 791{
 792	struct icc_node *node;
 793
 794	mutex_lock(&icc_lock);
 795
 796	node = icc_node_create_nolock(id);
 797
 798	mutex_unlock(&icc_lock);
 799
 800	return node;
 801}
 802EXPORT_SYMBOL_GPL(icc_node_create);
 803
 804/**
 805 * icc_node_destroy() - destroy a node
 806 * @id: node id
 807 */
 808void icc_node_destroy(int id)
 809{
 810	struct icc_node *node;
 811
 812	mutex_lock(&icc_lock);
 813
 814	node = node_find(id);
 815	if (node) {
 816		idr_remove(&icc_idr, node->id);
 817		WARN_ON(!hlist_empty(&node->req_list));
 818	}
 819
 820	mutex_unlock(&icc_lock);
 821
 822	kfree(node);
 823}
 824EXPORT_SYMBOL_GPL(icc_node_destroy);
 825
 826/**
 827 * icc_link_create() - create a link between two nodes
 828 * @node: source node id
 829 * @dst_id: destination node id
 830 *
 831 * Create a link between two nodes. The nodes might belong to different
 832 * interconnect providers and the @dst_id node might not exist (if the
 833 * provider driver has not probed yet). So just create the @dst_id node
 834 * and when the actual provider driver is probed, the rest of the node
 835 * data is filled.
 836 *
 837 * Return: 0 on success, or an error code otherwise
 838 */
 839int icc_link_create(struct icc_node *node, const int dst_id)
 840{
 841	struct icc_node *dst;
 842	struct icc_node **new;
 843	int ret = 0;
 844
 845	if (!node->provider)
 846		return -EINVAL;
 847
 848	mutex_lock(&icc_lock);
 849
 850	dst = node_find(dst_id);
 851	if (!dst) {
 852		dst = icc_node_create_nolock(dst_id);
 853
 854		if (IS_ERR(dst)) {
 855			ret = PTR_ERR(dst);
 856			goto out;
 857		}
 858	}
 859
 860	new = krealloc(node->links,
 861		       (node->num_links + 1) * sizeof(*node->links),
 862		       GFP_KERNEL);
 863	if (!new) {
 864		ret = -ENOMEM;
 865		goto out;
 866	}
 867
 868	node->links = new;
 869	node->links[node->num_links++] = dst;
 870
 871out:
 872	mutex_unlock(&icc_lock);
 873
 874	return ret;
 875}
 876EXPORT_SYMBOL_GPL(icc_link_create);
 877
 878/**
 879 * icc_link_destroy() - destroy a link between two nodes
 880 * @src: pointer to source node
 881 * @dst: pointer to destination node
 882 *
 883 * Return: 0 on success, or an error code otherwise
 884 */
 885int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
 886{
 887	struct icc_node **new;
 888	size_t slot;
 889	int ret = 0;
 890
 891	if (IS_ERR_OR_NULL(src))
 892		return -EINVAL;
 893
 894	if (IS_ERR_OR_NULL(dst))
 895		return -EINVAL;
 896
 897	mutex_lock(&icc_lock);
 898
 899	for (slot = 0; slot < src->num_links; slot++)
 900		if (src->links[slot] == dst)
 901			break;
 902
 903	if (WARN_ON(slot == src->num_links)) {
 904		ret = -ENXIO;
 905		goto out;
 906	}
 907
 908	src->links[slot] = src->links[--src->num_links];
 909
 910	new = krealloc(src->links, src->num_links * sizeof(*src->links),
 911		       GFP_KERNEL);
 912	if (new)
 913		src->links = new;
 
 
 914
 915out:
 916	mutex_unlock(&icc_lock);
 917
 918	return ret;
 919}
 920EXPORT_SYMBOL_GPL(icc_link_destroy);
 921
 922/**
 923 * icc_node_add() - add interconnect node to interconnect provider
 924 * @node: pointer to the interconnect node
 925 * @provider: pointer to the interconnect provider
 926 */
 927void icc_node_add(struct icc_node *node, struct icc_provider *provider)
 928{
 
 
 
 929	mutex_lock(&icc_lock);
 930
 931	node->provider = provider;
 932	list_add_tail(&node->node_list, &provider->nodes);
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	mutex_unlock(&icc_lock);
 935}
 936EXPORT_SYMBOL_GPL(icc_node_add);
 937
 938/**
 939 * icc_node_del() - delete interconnect node from interconnect provider
 940 * @node: pointer to the interconnect node
 941 */
 942void icc_node_del(struct icc_node *node)
 943{
 944	mutex_lock(&icc_lock);
 945
 946	list_del(&node->node_list);
 947
 948	mutex_unlock(&icc_lock);
 949}
 950EXPORT_SYMBOL_GPL(icc_node_del);
 951
 952/**
 953 * icc_nodes_remove() - remove all previously added nodes from provider
 954 * @provider: the interconnect provider we are removing nodes from
 955 *
 956 * Return: 0 on success, or an error code otherwise
 957 */
 958int icc_nodes_remove(struct icc_provider *provider)
 959{
 960	struct icc_node *n, *tmp;
 961
 962	if (WARN_ON(IS_ERR_OR_NULL(provider)))
 963		return -EINVAL;
 964
 965	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
 966		icc_node_del(n);
 967		icc_node_destroy(n->id);
 968	}
 969
 970	return 0;
 971}
 972EXPORT_SYMBOL_GPL(icc_nodes_remove);
 973
 974/**
 975 * icc_provider_add() - add a new interconnect provider
 976 * @provider: the interconnect provider that will be added into topology
 977 *
 978 * Return: 0 on success, or an error code otherwise
 979 */
 980int icc_provider_add(struct icc_provider *provider)
 981{
 982	if (WARN_ON(!provider->set))
 983		return -EINVAL;
 984	if (WARN_ON(!provider->xlate))
 985		return -EINVAL;
 986
 987	mutex_lock(&icc_lock);
 988
 989	INIT_LIST_HEAD(&provider->nodes);
 990	list_add_tail(&provider->provider_list, &icc_providers);
 991
 992	mutex_unlock(&icc_lock);
 993
 994	dev_dbg(provider->dev, "interconnect provider added to topology\n");
 995
 996	return 0;
 997}
 998EXPORT_SYMBOL_GPL(icc_provider_add);
 999
1000/**
1001 * icc_provider_del() - delete previously added interconnect provider
1002 * @provider: the interconnect provider that will be removed from topology
1003 *
1004 * Return: 0 on success, or an error code otherwise
1005 */
1006int icc_provider_del(struct icc_provider *provider)
1007{
1008	mutex_lock(&icc_lock);
1009	if (provider->users) {
1010		pr_warn("interconnect provider still has %d users\n",
1011			provider->users);
1012		mutex_unlock(&icc_lock);
1013		return -EBUSY;
1014	}
1015
1016	if (!list_empty(&provider->nodes)) {
1017		pr_warn("interconnect provider still has nodes\n");
1018		mutex_unlock(&icc_lock);
1019		return -EBUSY;
1020	}
1021
1022	list_del(&provider->provider_list);
1023	mutex_unlock(&icc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024
1025	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027EXPORT_SYMBOL_GPL(icc_provider_del);
1028
1029static int __init icc_init(void)
1030{
 
 
 
 
 
1031	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1032	debugfs_create_file("interconnect_summary", 0444,
1033			    icc_debugfs_dir, NULL, &icc_summary_fops);
1034	debugfs_create_file("interconnect_graph", 0444,
1035			    icc_debugfs_dir, NULL, &icc_graph_fops);
1036	return 0;
1037}
1038
1039device_initcall(icc_init);
1040
1041MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1042MODULE_DESCRIPTION("Interconnect Driver Core");
1043MODULE_LICENSE("GPL v2");