Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/auxiliary_bus.h>
   9#include <linux/bitfield.h>
  10#include <linux/bits.h>
  11#include <linux/clk.h>
  12#include <linux/debugfs.h>
  13#include <linux/gpio/consumer.h>
  14#include <linux/gpio/driver.h>
  15#include <linux/i2c.h>
  16#include <linux/iopoll.h>
  17#include <linux/module.h>
  18#include <linux/of_graph.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/pwm.h>
  21#include <linux/regmap.h>
  22#include <linux/regulator/consumer.h>
  23
  24#include <asm/unaligned.h>
  25
  26#include <drm/display/drm_dp_aux_bus.h>
  27#include <drm/display/drm_dp_helper.h>
  28#include <drm/drm_atomic.h>
  29#include <drm/drm_atomic_helper.h>
  30#include <drm/drm_bridge.h>
  31#include <drm/drm_bridge_connector.h>
  32#include <drm/drm_edid.h>
  33#include <drm/drm_mipi_dsi.h>
  34#include <drm/drm_of.h>
  35#include <drm/drm_panel.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_probe_helper.h>
  38
  39#define SN_DEVICE_REV_REG			0x08
  40#define SN_DPPLL_SRC_REG			0x0A
  41#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
  42#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
  43#define  REFCLK_FREQ(x)				((x) << 1)
  44#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
  45#define SN_PLL_ENABLE_REG			0x0D
  46#define SN_DSI_LANES_REG			0x10
  47#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
  48#define  CHA_DSI_LANES(x)			((x) << 3)
  49#define SN_DSIA_CLK_FREQ_REG			0x12
  50#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
  51#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
  52#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
  53#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
  54#define  CHA_HSYNC_POLARITY			BIT(7)
  55#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
  56#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
  57#define  CHA_VSYNC_POLARITY			BIT(7)
  58#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
  59#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
  60#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
  61#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
  62#define SN_LN_ASSIGN_REG			0x59
  63#define  LN_ASSIGN_WIDTH			2
  64#define SN_ENH_FRAME_REG			0x5A
  65#define  VSTREAM_ENABLE				BIT(3)
  66#define  LN_POLRS_OFFSET			4
  67#define  LN_POLRS_MASK				0xf0
  68#define SN_DATA_FORMAT_REG			0x5B
  69#define  BPP_18_RGB				BIT(0)
  70#define SN_HPD_DISABLE_REG			0x5C
  71#define  HPD_DISABLE				BIT(0)
  72#define  HPD_DEBOUNCED_STATE			BIT(4)
  73#define SN_GPIO_IO_REG				0x5E
  74#define  SN_GPIO_INPUT_SHIFT			4
  75#define  SN_GPIO_OUTPUT_SHIFT			0
  76#define SN_GPIO_CTRL_REG			0x5F
  77#define  SN_GPIO_MUX_INPUT			0
  78#define  SN_GPIO_MUX_OUTPUT			1
  79#define  SN_GPIO_MUX_SPECIAL			2
  80#define  SN_GPIO_MUX_MASK			0x3
  81#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
  82#define SN_AUX_ADDR_19_16_REG			0x74
  83#define SN_AUX_ADDR_15_8_REG			0x75
  84#define SN_AUX_ADDR_7_0_REG			0x76
  85#define SN_AUX_ADDR_MASK			GENMASK(19, 0)
  86#define SN_AUX_LENGTH_REG			0x77
  87#define SN_AUX_CMD_REG				0x78
  88#define  AUX_CMD_SEND				BIT(0)
  89#define  AUX_CMD_REQ(x)				((x) << 4)
  90#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
  91#define SN_SSC_CONFIG_REG			0x93
  92#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
  93#define  DP_NUM_LANES(x)			((x) << 4)
  94#define SN_DATARATE_CONFIG_REG			0x94
  95#define  DP_DATARATE_MASK			GENMASK(7, 5)
  96#define  DP_DATARATE(x)				((x) << 5)
  97#define SN_TRAINING_SETTING_REG			0x95
  98#define  SCRAMBLE_DISABLE			BIT(4)
  99#define SN_ML_TX_MODE_REG			0x96
 100#define  ML_TX_MAIN_LINK_OFF			0
 101#define  ML_TX_NORMAL_MODE			BIT(0)
 102#define SN_PWM_PRE_DIV_REG			0xA0
 103#define SN_BACKLIGHT_SCALE_REG			0xA1
 104#define  BACKLIGHT_SCALE_MAX			0xFFFF
 105#define SN_BACKLIGHT_REG			0xA3
 106#define SN_PWM_EN_INV_REG			0xA5
 107#define  SN_PWM_INV_MASK			BIT(0)
 108#define  SN_PWM_EN_MASK				BIT(1)
 109#define SN_AUX_CMD_STATUS_REG			0xF4
 110#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
 111#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
 112#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
 113
 114#define MIN_DSI_CLK_FREQ_MHZ	40
 115
 116/* fudge factor required to account for 8b/10b encoding */
 117#define DP_CLK_FUDGE_NUM	10
 118#define DP_CLK_FUDGE_DEN	8
 119
 120/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
 121#define SN_AUX_MAX_PAYLOAD_BYTES	16
 122
 123#define SN_REGULATOR_SUPPLY_NUM		4
 124
 125#define SN_MAX_DP_LANES			4
 126#define SN_NUM_GPIOS			4
 127#define SN_GPIO_PHYSICAL_OFFSET		1
 128
 129#define SN_LINK_TRAINING_TRIES		10
 130
 131#define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
 132
 133/**
 134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
 135 * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
 136 * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
 137 * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
 138 * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
 139 *
 140 * @dev:          Pointer to the top level (i2c) device.
 141 * @regmap:       Regmap for accessing i2c.
 142 * @aux:          Our aux channel.
 143 * @bridge:       Our bridge.
 144 * @connector:    Our connector.
 
 145 * @host_node:    Remote DSI node.
 146 * @dsi:          Our MIPI DSI source.
 147 * @refclk:       Our reference clock.
 148 * @next_bridge:  The bridge on the eDP side.
 149 * @enable_gpio:  The GPIO we toggle to enable the bridge.
 150 * @supplies:     Data for bulk enabling/disabling our regulators.
 151 * @dp_lanes:     Count of dp_lanes we're using.
 152 * @ln_assign:    Value to program to the LN_ASSIGN register.
 153 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
 154 * @comms_enabled: If true then communication over the aux channel is enabled.
 155 * @comms_mutex:   Protects modification of comms_enabled.
 156 *
 157 * @gchip:        If we expose our GPIOs, this is used.
 158 * @gchip_output: A cache of whether we've set GPIOs to output.  This
 159 *                serves double-duty of keeping track of the direction and
 160 *                also keeping track of whether we've incremented the
 161 *                pm_runtime reference count for this pin, which we do
 162 *                whenever a pin is configured as an output.  This is a
 163 *                bitmap so we can do atomic ops on it without an extra
 164 *                lock so concurrent users of our 4 GPIOs don't stomp on
 165 *                each other's read-modify-write.
 166 *
 167 * @pchip:        pwm_chip if the PWM is exposed.
 168 * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
 169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
 170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
 171 */
 172struct ti_sn65dsi86 {
 173	struct auxiliary_device		bridge_aux;
 174	struct auxiliary_device		gpio_aux;
 175	struct auxiliary_device		aux_aux;
 176	struct auxiliary_device		pwm_aux;
 177
 178	struct device			*dev;
 179	struct regmap			*regmap;
 180	struct drm_dp_aux		aux;
 181	struct drm_bridge		bridge;
 182	struct drm_connector		*connector;
 
 183	struct device_node		*host_node;
 184	struct mipi_dsi_device		*dsi;
 185	struct clk			*refclk;
 186	struct drm_bridge		*next_bridge;
 187	struct gpio_desc		*enable_gpio;
 188	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 189	int				dp_lanes;
 190	u8				ln_assign;
 191	u8				ln_polrs;
 192	bool				comms_enabled;
 193	struct mutex			comms_mutex;
 194
 195#if defined(CONFIG_OF_GPIO)
 196	struct gpio_chip		gchip;
 197	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
 198#endif
 199#if defined(CONFIG_PWM)
 200	struct pwm_chip			pchip;
 201	bool				pwm_enabled;
 202	atomic_t			pwm_pin_busy;
 203#endif
 204	unsigned int			pwm_refclk_freq;
 205};
 206
 207static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
 208	{ .range_min = 0, .range_max = 0xFF },
 209};
 210
 211static const struct regmap_access_table ti_sn_bridge_volatile_table = {
 212	.yes_ranges = ti_sn65dsi86_volatile_ranges,
 213	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
 214};
 215
 216static const struct regmap_config ti_sn65dsi86_regmap_config = {
 217	.reg_bits = 8,
 218	.val_bits = 8,
 219	.volatile_table = &ti_sn_bridge_volatile_table,
 220	.cache_type = REGCACHE_NONE,
 221	.max_register = 0xFF,
 222};
 223
 224static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
 225						unsigned int reg, u16 *val)
 226{
 227	u8 buf[2];
 228	int ret;
 229
 230	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 231	if (ret)
 232		return ret;
 233
 234	*val = buf[0] | (buf[1] << 8);
 235
 236	return 0;
 237}
 238
 239static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
 240				   unsigned int reg, u16 val)
 241{
 242	u8 buf[2] = { val & 0xff, val >> 8 };
 243
 244	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 245}
 246
 247static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
 248{
 249	u32 bit_rate_khz, clk_freq_khz;
 250	struct drm_display_mode *mode =
 251		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 252
 253	bit_rate_khz = mode->clock *
 254			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 255	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
 256
 257	return clk_freq_khz;
 258}
 259
 260/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
 261static const u32 ti_sn_bridge_refclk_lut[] = {
 262	12000000,
 263	19200000,
 264	26000000,
 265	27000000,
 266	38400000,
 267};
 268
 269/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
 270static const u32 ti_sn_bridge_dsiclk_lut[] = {
 271	468000000,
 272	384000000,
 273	416000000,
 274	486000000,
 275	460800000,
 276};
 277
 278static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
 279{
 280	int i;
 281	u32 refclk_rate;
 282	const u32 *refclk_lut;
 283	size_t refclk_lut_size;
 284
 285	if (pdata->refclk) {
 286		refclk_rate = clk_get_rate(pdata->refclk);
 287		refclk_lut = ti_sn_bridge_refclk_lut;
 288		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
 289		clk_prepare_enable(pdata->refclk);
 290	} else {
 291		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
 292		refclk_lut = ti_sn_bridge_dsiclk_lut;
 293		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
 294	}
 295
 296	/* for i equals to refclk_lut_size means default frequency */
 297	for (i = 0; i < refclk_lut_size; i++)
 298		if (refclk_lut[i] == refclk_rate)
 299			break;
 300
 301	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
 302			   REFCLK_FREQ(i));
 303
 304	/*
 305	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
 306	 * regardless of its actual sourcing.
 307	 */
 308	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
 309}
 310
 311static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
 312{
 313	mutex_lock(&pdata->comms_mutex);
 314
 315	/* configure bridge ref_clk */
 316	ti_sn_bridge_set_refclk_freq(pdata);
 317
 318	/*
 319	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
 320	 * so the HPD is an internal signal that's only there to signal that
 321	 * the panel is done powering up.  ...but the bridge chip debounces
 322	 * this signal by between 100 ms and 400 ms (depending on process,
 323	 * voltage, and temperate--I measured it at about 200 ms).  One
 324	 * particular panel asserted HPD 84 ms after it was powered on meaning
 325	 * that we saw HPD 284 ms after power on.  ...but the same panel said
 326	 * that instead of looking at HPD you could just hardcode a delay of
 327	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
 328	 * delay in its prepare and always disable HPD.
 329	 *
 330	 * If HPD somehow makes sense on some future panel we'll have to
 331	 * change this to be conditional on someone specifying that HPD should
 332	 * be used.
 333	 */
 334	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
 335			   HPD_DISABLE);
 336
 337	pdata->comms_enabled = true;
 338
 339	mutex_unlock(&pdata->comms_mutex);
 340}
 341
 342static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
 343{
 344	mutex_lock(&pdata->comms_mutex);
 345
 346	pdata->comms_enabled = false;
 347	clk_disable_unprepare(pdata->refclk);
 348
 349	mutex_unlock(&pdata->comms_mutex);
 350}
 351
 352static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
 353{
 354	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 355	int ret;
 356
 357	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 358	if (ret) {
 359		DRM_ERROR("failed to enable supplies %d\n", ret);
 360		return ret;
 361	}
 362
 363	/* td2: min 100 us after regulators before enabling the GPIO */
 364	usleep_range(100, 110);
 365
 366	gpiod_set_value(pdata->enable_gpio, 1);
 367
 368	/*
 369	 * If we have a reference clock we can enable communication w/ the
 370	 * panel (including the aux channel) w/out any need for an input clock
 371	 * so we can do it in resume which lets us read the EDID before
 372	 * pre_enable(). Without a reference clock we need the MIPI reference
 373	 * clock so reading early doesn't work.
 374	 */
 375	if (pdata->refclk)
 376		ti_sn65dsi86_enable_comms(pdata);
 377
 378	return ret;
 379}
 380
 381static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
 382{
 383	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 384	int ret;
 385
 386	if (pdata->refclk)
 387		ti_sn65dsi86_disable_comms(pdata);
 388
 389	gpiod_set_value(pdata->enable_gpio, 0);
 390
 391	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 392	if (ret)
 393		DRM_ERROR("failed to disable supplies %d\n", ret);
 394
 395	return ret;
 396}
 397
 398static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
 399	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
 400	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 401				pm_runtime_force_resume)
 402};
 403
 404static int status_show(struct seq_file *s, void *data)
 405{
 406	struct ti_sn65dsi86 *pdata = s->private;
 407	unsigned int reg, val;
 408
 409	seq_puts(s, "STATUS REGISTERS:\n");
 410
 411	pm_runtime_get_sync(pdata->dev);
 412
 413	/* IRQ Status Registers, see Table 31 in datasheet */
 414	for (reg = 0xf0; reg <= 0xf8; reg++) {
 415		regmap_read(pdata->regmap, reg, &val);
 416		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
 417	}
 418
 419	pm_runtime_put_autosuspend(pdata->dev);
 420
 421	return 0;
 422}
 423
 424DEFINE_SHOW_ATTRIBUTE(status);
 425
 426static void ti_sn65dsi86_debugfs_remove(void *data)
 427{
 428	debugfs_remove_recursive(data);
 429}
 430
 431static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
 432{
 433	struct device *dev = pdata->dev;
 434	struct dentry *debugfs;
 435	int ret;
 436
 437	debugfs = debugfs_create_dir(dev_name(dev), NULL);
 438
 439	/*
 440	 * We might get an error back if debugfs wasn't enabled in the kernel
 441	 * so let's just silently return upon failure.
 442	 */
 443	if (IS_ERR_OR_NULL(debugfs))
 444		return;
 445
 446	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
 447	if (ret)
 448		return;
 449
 450	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
 451}
 452
 453/* -----------------------------------------------------------------------------
 454 * Auxiliary Devices (*not* AUX)
 455 */
 456
 457static void ti_sn65dsi86_uninit_aux(void *data)
 458{
 459	auxiliary_device_uninit(data);
 
 460}
 461
 462static void ti_sn65dsi86_delete_aux(void *data)
 
 
 463{
 464	auxiliary_device_delete(data);
 465}
 466
 467/*
 468 * AUX bus docs say that a non-NULL release is mandatory, but it makes no
 469 * sense for the model used here where all of the aux devices are allocated
 470 * in the single shared structure. We'll use this noop as a workaround.
 471 */
 472static void ti_sn65dsi86_noop(struct device *dev) {}
 473
 474static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
 475				       struct auxiliary_device *aux,
 476				       const char *name)
 477{
 478	struct device *dev = pdata->dev;
 479	int ret;
 480
 481	aux->name = name;
 482	aux->dev.parent = dev;
 483	aux->dev.release = ti_sn65dsi86_noop;
 484	device_set_of_node_from_dev(&aux->dev, dev);
 485	ret = auxiliary_device_init(aux);
 486	if (ret)
 487		return ret;
 488	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
 489	if (ret)
 490		return ret;
 491
 492	ret = auxiliary_device_add(aux);
 493	if (ret)
 494		return ret;
 495	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
 496
 497	return ret;
 498}
 499
 500/* -----------------------------------------------------------------------------
 501 * AUX Adapter
 502 */
 503
 504static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
 505{
 506	return container_of(aux, struct ti_sn65dsi86, aux);
 507}
 508
 509static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
 510				  struct drm_dp_aux_msg *msg)
 
 511{
 512	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
 513	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
 514	u32 request_val = AUX_CMD_REQ(msg->request);
 515	u8 *buf = msg->buffer;
 516	unsigned int len = msg->size;
 517	unsigned int val;
 518	int ret;
 519	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
 520
 521	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
 522		return -EINVAL;
 523
 524	pm_runtime_get_sync(pdata->dev);
 525	mutex_lock(&pdata->comms_mutex);
 526
 527	/*
 528	 * If someone tries to do a DDC over AUX transaction before pre_enable()
 529	 * on a device without a dedicated reference clock then we just can't
 530	 * do it. Fail right away. This prevents non-refclk users from reading
 531	 * the EDID before enabling the panel but such is life.
 532	 */
 533	if (!pdata->comms_enabled) {
 534		ret = -EIO;
 535		goto exit;
 536	}
 537
 538	switch (request) {
 539	case DP_AUX_NATIVE_WRITE:
 540	case DP_AUX_I2C_WRITE:
 541	case DP_AUX_NATIVE_READ:
 542	case DP_AUX_I2C_READ:
 543		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
 544		/* Assume it's good */
 545		msg->reply = 0;
 546		break;
 547	default:
 548		ret = -EINVAL;
 549		goto exit;
 550	}
 551
 552	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
 553	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
 554			   addr_len);
 555	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
 556			  ARRAY_SIZE(addr_len));
 557
 558	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
 559		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
 560
 561	/* Clear old status bits before start so we don't get confused */
 562	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
 563		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
 564		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
 565		     AUX_IRQ_STATUS_AUX_SHORT);
 566
 567	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
 568
 569	/* Zero delay loop because i2c transactions are slow already */
 570	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
 571				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
 572	if (ret)
 573		goto exit;
 574
 575	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
 576	if (ret)
 577		goto exit;
 578
 579	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
 580		/*
 581		 * The hardware tried the message seven times per the DP spec
 582		 * but it hit a timeout. We ignore defers here because they're
 583		 * handled in hardware.
 584		 */
 585		ret = -ETIMEDOUT;
 586		goto exit;
 587	}
 588
 589	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
 590		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
 591		if (ret)
 592			goto exit;
 593	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
 594		switch (request) {
 595		case DP_AUX_I2C_WRITE:
 596		case DP_AUX_I2C_READ:
 597			msg->reply |= DP_AUX_I2C_REPLY_NACK;
 598			break;
 599		case DP_AUX_NATIVE_READ:
 600		case DP_AUX_NATIVE_WRITE:
 601			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
 602			break;
 603		}
 604		len = 0;
 605		goto exit;
 606	}
 607
 608	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
 609		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
 610
 611exit:
 612	mutex_unlock(&pdata->comms_mutex);
 613	pm_runtime_mark_last_busy(pdata->dev);
 614	pm_runtime_put_autosuspend(pdata->dev);
 615
 616	if (ret)
 617		return ret;
 618	return len;
 619}
 620
 621static int ti_sn_aux_probe(struct auxiliary_device *adev,
 622			   const struct auxiliary_device_id *id)
 623{
 624	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
 625	int ret;
 626
 627	pdata->aux.name = "ti-sn65dsi86-aux";
 628	pdata->aux.dev = &adev->dev;
 629	pdata->aux.transfer = ti_sn_aux_transfer;
 630	drm_dp_aux_init(&pdata->aux);
 631
 632	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
 633	if (ret)
 634		return ret;
 635
 636	/*
 637	 * The eDP to MIPI bridge parts don't work until the AUX channel is
 638	 * setup so we don't add it in the main driver probe, we add it now.
 
 
 
 
 639	 */
 640	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
 641}
 642
 643static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
 644	{ .name = "ti_sn65dsi86.aux", },
 645	{},
 646};
 647
 648static struct auxiliary_driver ti_sn_aux_driver = {
 649	.name = "aux",
 650	.probe = ti_sn_aux_probe,
 651	.id_table = ti_sn_aux_id_table,
 652};
 653
 654/*------------------------------------------------------------------------------
 655 * DRM Bridge
 656 */
 
 657
 658static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
 659{
 660	return container_of(bridge, struct ti_sn65dsi86, bridge);
 
 
 
 
 
 
 
 
 
 661}
 662
 663static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
 
 664{
 665	int val;
 
 666	struct mipi_dsi_host *host;
 667	struct mipi_dsi_device *dsi;
 668	struct device *dev = pdata->dev;
 669	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
 670						   .channel = 0,
 671						   .node = NULL,
 672	};
 
 
 
 
 
 673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
 675	if (!host)
 676		return -EPROBE_DEFER;
 
 
 
 677
 678	dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
 679	if (IS_ERR(dsi))
 680		return PTR_ERR(dsi);
 
 
 
 681
 682	/* TODO: setting to 4 MIPI lanes always for now */
 683	dsi->lanes = 4;
 684	dsi->format = MIPI_DSI_FMT_RGB888;
 685	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
 686
 687	/* check if continuous dsi clock is required or not */
 688	pm_runtime_get_sync(dev);
 689	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
 690	pm_runtime_put_autosuspend(dev);
 691	if (!(val & DPPLL_CLK_SRC_DSICLK))
 692		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
 693
 694	pdata->dsi = dsi;
 695
 696	return devm_mipi_dsi_attach(dev, dsi);
 697}
 698
 699static int ti_sn_bridge_attach(struct drm_bridge *bridge,
 700			       enum drm_bridge_attach_flags flags)
 701{
 702	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 703	int ret;
 704
 705	pdata->aux.drm_dev = bridge->dev;
 706	ret = drm_dp_aux_register(&pdata->aux);
 707	if (ret < 0) {
 708		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
 709		return ret;
 710	}
 711
 712	/*
 713	 * Attach the next bridge.
 714	 * We never want the next bridge to *also* create a connector.
 715	 */
 716	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
 717				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
 718	if (ret < 0)
 719		goto err_initted_aux;
 720
 721	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
 722		return 0;
 723
 724	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
 725						     pdata->bridge.encoder);
 726	if (IS_ERR(pdata->connector)) {
 727		ret = PTR_ERR(pdata->connector);
 728		goto err_initted_aux;
 729	}
 
 730
 731	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
 
 732
 733	return 0;
 734
 735err_initted_aux:
 736	drm_dp_aux_unregister(&pdata->aux);
 
 
 737	return ret;
 738}
 739
 740static void ti_sn_bridge_detach(struct drm_bridge *bridge)
 741{
 742	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
 743}
 744
 745static enum drm_mode_status
 746ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
 747			const struct drm_display_info *info,
 748			const struct drm_display_mode *mode)
 749{
 750	/* maximum supported resolution is 4K at 60 fps */
 751	if (mode->clock > 594000)
 752		return MODE_CLOCK_HIGH;
 753
 754	/*
 755	 * The front and back porch registers are 8 bits, and pulse width
 756	 * registers are 15 bits, so reject any modes with larger periods.
 757	 */
 758
 759	if ((mode->hsync_start - mode->hdisplay) > 0xff)
 760		return MODE_HBLANK_WIDE;
 761
 762	if ((mode->vsync_start - mode->vdisplay) > 0xff)
 763		return MODE_VBLANK_WIDE;
 764
 765	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
 766		return MODE_HSYNC_WIDE;
 
 
 
 767
 768	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
 769		return MODE_VSYNC_WIDE;
 
 770
 771	if ((mode->htotal - mode->hsync_end) > 0xff)
 772		return MODE_HBLANK_WIDE;
 773
 774	if ((mode->vtotal - mode->vsync_end) > 0xff)
 775		return MODE_VBLANK_WIDE;
 
 
 
 
 
 
 776
 777	return MODE_OK;
 778}
 
 
 
 
 
 
 779
 780static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
 781					struct drm_bridge_state *old_bridge_state)
 782{
 783	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 
 
 
 784
 785	/* disable video stream */
 786	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
 790{
 791	unsigned int bit_rate_mhz, clk_freq_mhz;
 792	unsigned int val;
 793	struct drm_display_mode *mode =
 794		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 795
 796	/* set DSIA clk frequency */
 797	bit_rate_mhz = (mode->clock / 1000) *
 798			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 799	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
 800
 801	/* for each increment in val, frequency increases by 5MHz */
 802	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
 803		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
 804	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
 805}
 806
 807static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
 808{
 809	if (connector->display_info.bpc <= 6)
 810		return 18;
 811	else
 812		return 24;
 813}
 814
 815/*
 816 * LUT index corresponds to register value and
 817 * LUT values corresponds to dp data rate supported
 818 * by the bridge in Mbps unit.
 819 */
 820static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
 821	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
 822};
 823
 824static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
 825{
 826	unsigned int bit_rate_khz, dp_rate_mhz;
 827	unsigned int i;
 828	struct drm_display_mode *mode =
 829		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 830
 831	/* Calculate minimum bit rate based on our pixel clock. */
 832	bit_rate_khz = mode->clock * bpp;
 833
 834	/* Calculate minimum DP data rate, taking 80% as per DP spec */
 835	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
 836				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
 837
 838	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
 839		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
 840			break;
 841
 842	return i;
 843}
 844
 845static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
 
 846{
 847	unsigned int valid_rates = 0;
 848	unsigned int rate_per_200khz;
 849	unsigned int rate_mhz;
 850	u8 dpcd_val;
 851	int ret;
 852	int i, j;
 853
 854	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
 855	if (ret != 1) {
 856		DRM_DEV_ERROR(pdata->dev,
 857			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
 858		dpcd_val = DP_EDP_11;
 859	}
 860
 861	if (dpcd_val >= DP_EDP_14) {
 862		/* eDP 1.4 devices must provide a custom table */
 863		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
 864
 865		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
 866				       sink_rates, sizeof(sink_rates));
 867
 868		if (ret != sizeof(sink_rates)) {
 869			DRM_DEV_ERROR(pdata->dev,
 870				"Can't read supported rate table (%d)\n", ret);
 871
 872			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
 873			memset(sink_rates, 0, sizeof(sink_rates));
 874		}
 875
 876		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
 877			rate_per_200khz = le16_to_cpu(sink_rates[i]);
 878
 879			if (!rate_per_200khz)
 880				break;
 881
 882			rate_mhz = rate_per_200khz * 200 / 1000;
 883			for (j = 0;
 884			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 885			     j++) {
 886				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
 887					valid_rates |= BIT(j);
 888			}
 889		}
 890
 891		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
 892			if (valid_rates & BIT(i))
 893				return valid_rates;
 894		}
 895		DRM_DEV_ERROR(pdata->dev,
 896			      "No matching eDP rates in table; falling back\n");
 897	}
 898
 899	/* On older versions best we can do is use DP_MAX_LINK_RATE */
 900	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
 901	if (ret != 1) {
 902		DRM_DEV_ERROR(pdata->dev,
 903			      "Can't read max rate (%d); assuming 5.4 GHz\n",
 904			      ret);
 905		dpcd_val = DP_LINK_BW_5_4;
 906	}
 907
 908	switch (dpcd_val) {
 909	default:
 910		DRM_DEV_ERROR(pdata->dev,
 911			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
 912			      (int)dpcd_val);
 913		fallthrough;
 914	case DP_LINK_BW_5_4:
 915		valid_rates |= BIT(7);
 916		fallthrough;
 917	case DP_LINK_BW_2_7:
 918		valid_rates |= BIT(4);
 919		fallthrough;
 920	case DP_LINK_BW_1_62:
 921		valid_rates |= BIT(1);
 922		break;
 923	}
 924
 925	return valid_rates;
 926}
 927
 928static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
 929{
 930	struct drm_display_mode *mode =
 931		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 932	u8 hsync_polarity = 0, vsync_polarity = 0;
 933
 934	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
 935		hsync_polarity = CHA_HSYNC_POLARITY;
 936	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
 937		vsync_polarity = CHA_VSYNC_POLARITY;
 938
 939	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
 940			       mode->hdisplay);
 941	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
 942			       mode->vdisplay);
 943	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
 944		     (mode->hsync_end - mode->hsync_start) & 0xFF);
 945	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
 946		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
 947		     hsync_polarity);
 948	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
 949		     (mode->vsync_end - mode->vsync_start) & 0xFF);
 950	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
 951		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
 952		     vsync_polarity);
 953
 954	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
 955		     (mode->htotal - mode->hsync_end) & 0xFF);
 956	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
 957		     (mode->vtotal - mode->vsync_end) & 0xFF);
 958
 959	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
 960		     (mode->hsync_start - mode->hdisplay) & 0xFF);
 961	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
 962		     (mode->vsync_start - mode->vdisplay) & 0xFF);
 963
 964	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
 965}
 966
 967static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
 968{
 969	u8 data;
 970	int ret;
 971
 972	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
 973	if (ret != 1) {
 974		DRM_DEV_ERROR(pdata->dev,
 975			      "Can't read lane count (%d); assuming 4\n", ret);
 976		return 4;
 977	}
 978
 979	return data & DP_LANE_COUNT_MASK;
 980}
 981
 982static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
 983			       const char **last_err_str)
 984{
 985	unsigned int val;
 986	int ret;
 987	int i;
 988
 989	/* set dp clk frequency value */
 990	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
 991			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
 992
 993	/* enable DP PLL */
 994	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
 995
 996	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
 997				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
 998				       50 * 1000);
 999	if (ret) {
1000		*last_err_str = "DP_PLL_LOCK polling failed";
1001		goto exit;
1002	}
1003
1004	/*
1005	 * We'll try to link train several times.  As part of link training
1006	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1007	 * the panel isn't ready quite it might respond NAK here which means
1008	 * we need to try again.
1009	 */
1010	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1011		/* Semi auto link training mode */
1012		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1013		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1014					       val == ML_TX_MAIN_LINK_OFF ||
1015					       val == ML_TX_NORMAL_MODE, 1000,
1016					       500 * 1000);
1017		if (ret) {
1018			*last_err_str = "Training complete polling failed";
1019		} else if (val == ML_TX_MAIN_LINK_OFF) {
1020			*last_err_str = "Link training failed, link is off";
1021			ret = -EIO;
1022			continue;
1023		}
1024
1025		break;
1026	}
1027
1028	/* If we saw quite a few retries, add a note about it */
1029	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1030		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1031
1032exit:
1033	/* Disable the PLL if we failed */
1034	if (ret)
1035		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1036
1037	return ret;
1038}
1039
1040static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1041				       struct drm_bridge_state *old_bridge_state)
1042{
1043	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1044	struct drm_connector *connector;
1045	const char *last_err_str = "No supported DP rate";
1046	unsigned int valid_rates;
1047	int dp_rate_idx;
1048	unsigned int val;
1049	int ret = -EINVAL;
1050	int max_dp_lanes;
1051	unsigned int bpp;
1052
1053	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1054							     bridge->encoder);
1055	if (!connector) {
1056		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1057		return;
1058	}
1059
1060	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1061	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1062
1063	/* DSI_A lane config */
1064	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1065	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1066			   CHA_DSI_LANES_MASK, val);
1067
1068	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1069	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1070			   pdata->ln_polrs << LN_POLRS_OFFSET);
1071
1072	/* set dsi clk frequency value */
1073	ti_sn_bridge_set_dsi_rate(pdata);
1074
1075	/*
1076	 * The SN65DSI86 only supports ASSR Display Authentication method and
1077	 * this method is enabled for eDP panels. An eDP panel must support this
1078	 * authentication method. We need to enable this method in the eDP panel
1079	 * at DisplayPort address 0x0010A prior to link training.
1080	 *
1081	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1082	 * we need to disable the scrambler.
1083	 */
1084	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1085		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1086				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1087
1088		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1089				   SCRAMBLE_DISABLE, 0);
1090	} else {
1091		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1092				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1093	}
1094
1095	bpp = ti_sn_bridge_get_bpp(connector);
1096	/* Set the DP output format (18 bpp or 24 bpp) */
1097	val = bpp == 18 ? BPP_18_RGB : 0;
1098	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1099
1100	/* DP lane config */
1101	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1102	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1103			   val);
1104
1105	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1106
1107	/* Train until we run out of rates */
1108	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1109	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1110	     dp_rate_idx++) {
1111		if (!(valid_rates & BIT(dp_rate_idx)))
1112			continue;
1113
1114		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1115		if (!ret)
1116			break;
1117	}
1118	if (ret) {
1119		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1120		return;
1121	}
1122
1123	/* config video parameters */
1124	ti_sn_bridge_set_video_timings(pdata);
1125
1126	/* enable video stream */
1127	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1128			   VSTREAM_ENABLE);
1129}
1130
1131static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1132					   struct drm_bridge_state *old_bridge_state)
1133{
1134	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1135
1136	pm_runtime_get_sync(pdata->dev);
1137
1138	if (!pdata->refclk)
1139		ti_sn65dsi86_enable_comms(pdata);
1140
1141	/* td7: min 100 us after enable before DSI data */
1142	usleep_range(100, 110);
1143}
1144
1145static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1146					     struct drm_bridge_state *old_bridge_state)
1147{
1148	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1149
1150	/* semi auto link training mode OFF */
1151	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1152	/* Num lanes to 0 as per power sequencing in data sheet */
1153	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1154	/* disable DP PLL */
1155	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1156
1157	if (!pdata->refclk)
1158		ti_sn65dsi86_disable_comms(pdata);
1159
1160	pm_runtime_put_sync(pdata->dev);
1161}
1162
1163static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1164{
1165	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1166	int val = 0;
1167
1168	pm_runtime_get_sync(pdata->dev);
1169	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1170	pm_runtime_put_autosuspend(pdata->dev);
1171
1172	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1173					 : connector_status_disconnected;
1174}
1175
1176static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1177					  struct drm_connector *connector)
1178{
1179	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1180
1181	return drm_get_edid(connector, &pdata->aux.ddc);
1182}
1183
1184static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1185	.attach = ti_sn_bridge_attach,
1186	.detach = ti_sn_bridge_detach,
1187	.mode_valid = ti_sn_bridge_mode_valid,
1188	.get_edid = ti_sn_bridge_get_edid,
1189	.detect = ti_sn_bridge_detect,
1190	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1191	.atomic_enable = ti_sn_bridge_atomic_enable,
1192	.atomic_disable = ti_sn_bridge_atomic_disable,
1193	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1194	.atomic_reset = drm_atomic_helper_bridge_reset,
1195	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1196	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1197};
1198
1199static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1200				     struct device_node *np)
1201{
1202	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1203	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1204	struct device_node *endpoint;
1205	u8 ln_assign = 0;
1206	u8 ln_polrs = 0;
1207	int dp_lanes;
1208	int i;
1209
1210	/*
1211	 * Read config from the device tree about lane remapping and lane
1212	 * polarities.  These are optional and we assume identity map and
1213	 * normal polarity if nothing is specified.  It's OK to specify just
1214	 * data-lanes but not lane-polarities but not vice versa.
 
 
 
 
 
 
1215	 *
1216	 * Error checking is light (we just make sure we don't crash or
1217	 * buffer overrun) and we assume dts is well formed and specifying
1218	 * mappings that the hardware supports.
1219	 */
1220	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1221	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1222	if (dp_lanes > 0) {
1223		of_property_read_u32_array(endpoint, "data-lanes",
1224					   lane_assignments, dp_lanes);
1225		of_property_read_u32_array(endpoint, "lane-polarities",
1226					   lane_polarities, dp_lanes);
1227	} else {
1228		dp_lanes = SN_MAX_DP_LANES;
1229	}
1230	of_node_put(endpoint);
1231
1232	/*
1233	 * Convert into register format.  Loop over all lanes even if
1234	 * data-lanes had fewer elements so that we nicely initialize
1235	 * the LN_ASSIGN register.
1236	 */
1237	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1238		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1239		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1240	}
1241
1242	/* Stash in our struct for when we power on */
1243	pdata->dp_lanes = dp_lanes;
1244	pdata->ln_assign = ln_assign;
1245	pdata->ln_polrs = ln_polrs;
1246}
1247
1248static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1249{
1250	struct device_node *np = pdata->dev->of_node;
1251
1252	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1253
1254	if (!pdata->host_node) {
1255		DRM_ERROR("remote dsi host node not found\n");
1256		return -ENODEV;
1257	}
1258
1259	return 0;
1260}
1261
1262static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1263			      const struct auxiliary_device_id *id)
1264{
1265	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1266	struct device_node *np = pdata->dev->of_node;
1267	int ret;
1268
1269	pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1270	if (IS_ERR(pdata->next_bridge))
1271		return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1272				     "failed to create panel bridge\n");
1273
1274	ti_sn_bridge_parse_lanes(pdata, np);
1275
1276	ret = ti_sn_bridge_parse_dsi_host(pdata);
1277	if (ret)
1278		return ret;
1279
1280	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1281	pdata->bridge.of_node = np;
1282	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1283			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1284
1285	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1286		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1287
1288	drm_bridge_add(&pdata->bridge);
1289
1290	ret = ti_sn_attach_host(pdata);
1291	if (ret) {
1292		dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1293		goto err_remove_bridge;
1294	}
1295
1296	return 0;
1297
1298err_remove_bridge:
1299	drm_bridge_remove(&pdata->bridge);
1300	return ret;
1301}
1302
1303static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1304{
1305	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1306
1307	if (!pdata)
1308		return;
1309
1310	drm_bridge_remove(&pdata->bridge);
 
1311
1312	of_node_put(pdata->host_node);
1313}
1314
1315static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1316	{ .name = "ti_sn65dsi86.bridge", },
1317	{},
1318};
1319
1320static struct auxiliary_driver ti_sn_bridge_driver = {
1321	.name = "bridge",
1322	.probe = ti_sn_bridge_probe,
1323	.remove = ti_sn_bridge_remove,
1324	.id_table = ti_sn_bridge_id_table,
1325};
1326
1327/* -----------------------------------------------------------------------------
1328 * PWM Controller
1329 */
1330#if defined(CONFIG_PWM)
1331static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1332{
1333	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1334}
1335
1336static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1337{
1338	atomic_set(&pdata->pwm_pin_busy, 0);
1339}
1340
1341static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1342{
1343	return container_of(chip, struct ti_sn65dsi86, pchip);
1344}
1345
1346static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1347{
1348	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1349
1350	return ti_sn_pwm_pin_request(pdata);
1351}
1352
1353static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1354{
1355	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1356
1357	ti_sn_pwm_pin_release(pdata);
1358}
1359
1360/*
1361 * Limitations:
1362 * - The PWM signal is not driven when the chip is powered down, or in its
1363 *   reset state and the driver does not implement the "suspend state"
1364 *   described in the documentation. In order to save power, state->enabled is
1365 *   interpreted as denoting if the signal is expected to be valid, and is used
1366 *   to determine if the chip needs to be kept powered.
1367 * - Changing both period and duty_cycle is not done atomically, neither is the
1368 *   multi-byte register updates, so the output might briefly be undefined
1369 *   during update.
1370 */
1371static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1372			   const struct pwm_state *state)
1373{
1374	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1375	unsigned int pwm_en_inv;
1376	unsigned int backlight;
1377	unsigned int pre_div;
1378	unsigned int scale;
1379	u64 period_max;
1380	u64 period;
1381	int ret;
1382
1383	if (!pdata->pwm_enabled) {
1384		ret = pm_runtime_get_sync(pdata->dev);
1385		if (ret < 0) {
1386			pm_runtime_put_sync(pdata->dev);
1387			return ret;
1388		}
1389	}
1390
1391	if (state->enabled) {
1392		if (!pdata->pwm_enabled) {
1393			/*
1394			 * The chip might have been powered down while we
1395			 * didn't hold a PM runtime reference, so mux in the
1396			 * PWM function on the GPIO pin again.
1397			 */
1398			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1399						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1400						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1401			if (ret) {
1402				dev_err(pdata->dev, "failed to mux in PWM function\n");
1403				goto out;
1404			}
1405		}
1406
1407		/*
1408		 * Per the datasheet the PWM frequency is given by:
1409		 *
1410		 *                          REFCLK_FREQ
1411		 *   PWM_FREQ = -----------------------------------
1412		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1413		 *
1414		 * However, after careful review the author is convinced that
1415		 * the documentation has lost some parenthesis around
1416		 * "BACKLIGHT_SCALE + 1".
1417		 *
1418		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1419		 *
1420		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1421		 *
1422		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1423		 * PWM_PRE_DIV must be:
1424		 *
1425		 *                     T_pwm * REFCLK_FREQ
1426		 *   PWM_PRE_DIV >= -------------------------
1427		 *                   BACKLIGHT_SCALE_MAX + 1
1428		 *
1429		 * To simplify the search and to favour higher resolution of
1430		 * the duty cycle over accuracy of the period, the lowest
1431		 * possible PWM_PRE_DIV is used. Finally the scale is
1432		 * calculated as:
1433		 *
1434		 *                      T_pwm * REFCLK_FREQ
1435		 *   BACKLIGHT_SCALE = ---------------------- - 1
1436		 *                          PWM_PRE_DIV
1437		 *
1438		 * Here T_pwm is represented in seconds, so appropriate scaling
1439		 * to nanoseconds is necessary.
1440		 */
1441
1442		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1443		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1444			ret = -EINVAL;
1445			goto out;
1446		}
1447
1448		/*
1449		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1450		 * Limit period to this to avoid overflows
1451		 */
1452		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1453				     pdata->pwm_refclk_freq);
1454		period = min(state->period, period_max);
1455
1456		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1457					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1458		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1459
1460		/*
1461		 * The documentation has the duty ratio given as:
1462		 *
1463		 *     duty          BACKLIGHT
1464		 *   ------- = ---------------------
1465		 *    period    BACKLIGHT_SCALE + 1
1466		 *
1467		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1468		 * to definition above and adjusting for nanosecond
1469		 * representation of duty cycle gives us:
1470		 */
1471		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1472				      (u64)NSEC_PER_SEC * pre_div);
1473		if (backlight > scale)
1474			backlight = scale;
1475
1476		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1477		if (ret) {
1478			dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1479			goto out;
1480		}
1481
1482		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1483		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
 
 
 
 
 
 
 
1484	}
1485
1486	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1487		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1488	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1489	if (ret) {
1490		dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1491		goto out;
 
 
 
 
 
 
1492	}
1493
1494	pdata->pwm_enabled = state->enabled;
1495out:
1496
1497	if (!pdata->pwm_enabled)
1498		pm_runtime_put_sync(pdata->dev);
1499
1500	return ret;
1501}
1502
1503static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1504			       struct pwm_state *state)
1505{
1506	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1507	unsigned int pwm_en_inv;
1508	unsigned int pre_div;
1509	u16 backlight;
1510	u16 scale;
1511	int ret;
1512
1513	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1514	if (ret)
1515		return ret;
1516
1517	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1518	if (ret)
1519		return ret;
1520
1521	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
 
 
1522	if (ret)
1523		return ret;
1524
1525	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1526	if (ret)
1527		return ret;
 
 
 
 
1528
1529	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1530	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1531		state->polarity = PWM_POLARITY_INVERSED;
1532	else
1533		state->polarity = PWM_POLARITY_NORMAL;
1534
1535	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1536					 pdata->pwm_refclk_freq);
1537	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1538					     pdata->pwm_refclk_freq);
1539
1540	if (state->duty_cycle > state->period)
1541		state->duty_cycle = state->period;
1542
1543	return 0;
1544}
1545
1546static const struct pwm_ops ti_sn_pwm_ops = {
1547	.request = ti_sn_pwm_request,
1548	.free = ti_sn_pwm_free,
1549	.apply = ti_sn_pwm_apply,
1550	.get_state = ti_sn_pwm_get_state,
1551	.owner = THIS_MODULE,
1552};
1553
1554static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1555			   const struct auxiliary_device_id *id)
1556{
1557	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
 
 
1558
1559	pdata->pchip.dev = pdata->dev;
1560	pdata->pchip.ops = &ti_sn_pwm_ops;
1561	pdata->pchip.npwm = 1;
1562	pdata->pchip.of_xlate = of_pwm_single_xlate;
1563	pdata->pchip.of_pwm_n_cells = 1;
1564
1565	return pwmchip_add(&pdata->pchip);
1566}
1567
1568static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1569{
1570	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1571
1572	pwmchip_remove(&pdata->pchip);
1573
1574	if (pdata->pwm_enabled)
1575		pm_runtime_put_sync(pdata->dev);
1576}
1577
1578static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1579	{ .name = "ti_sn65dsi86.pwm", },
1580	{},
1581};
1582
1583static struct auxiliary_driver ti_sn_pwm_driver = {
1584	.name = "pwm",
1585	.probe = ti_sn_pwm_probe,
1586	.remove = ti_sn_pwm_remove,
1587	.id_table = ti_sn_pwm_id_table,
1588};
1589
1590static int __init ti_sn_pwm_register(void)
1591{
1592	return auxiliary_driver_register(&ti_sn_pwm_driver);
1593}
1594
1595static void ti_sn_pwm_unregister(void)
1596{
1597	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1598}
1599
1600#else
1601static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1602static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1603
1604static inline int ti_sn_pwm_register(void) { return 0; }
1605static inline void ti_sn_pwm_unregister(void) {}
1606#endif
1607
1608/* -----------------------------------------------------------------------------
1609 * GPIO Controller
1610 */
1611#if defined(CONFIG_OF_GPIO)
1612
1613static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1614				 const struct of_phandle_args *gpiospec,
1615				 u32 *flags)
1616{
1617	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1618		return -EINVAL;
1619
1620	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1621		return -EINVAL;
1622
1623	if (flags)
1624		*flags = gpiospec->args[1];
1625
1626	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1627}
1628
1629static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1630					   unsigned int offset)
1631{
1632	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1633
1634	/*
1635	 * We already have to keep track of the direction because we use
1636	 * that to figure out whether we've powered the device.  We can
1637	 * just return that rather than (maybe) powering up the device
1638	 * to ask its direction.
1639	 */
1640	return test_bit(offset, pdata->gchip_output) ?
1641		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1642}
1643
1644static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1645{
1646	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1647	unsigned int val;
1648	int ret;
1649
1650	/*
1651	 * When the pin is an input we don't forcibly keep the bridge
1652	 * powered--we just power it on to read the pin.  NOTE: part of
1653	 * the reason this works is that the bridge defaults (when
1654	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1655	 * Also note that if something else is keeping the chip powered the
1656	 * pm_runtime functions are lightweight increments of a refcount.
1657	 */
1658	pm_runtime_get_sync(pdata->dev);
1659	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1660	pm_runtime_put_autosuspend(pdata->dev);
1661
1662	if (ret)
1663		return ret;
1664
1665	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1666}
1667
1668static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1669				  int val)
1670{
1671	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1672	int ret;
1673
1674	if (!test_bit(offset, pdata->gchip_output)) {
1675		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1676		return;
1677	}
1678
1679	val &= 1;
1680	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1681				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1682				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1683	if (ret)
1684		dev_warn(pdata->dev,
1685			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1686}
1687
1688static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1689					     unsigned int offset)
1690{
1691	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1692	int shift = offset * 2;
1693	int ret;
1694
1695	if (!test_and_clear_bit(offset, pdata->gchip_output))
1696		return 0;
1697
1698	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1699				 SN_GPIO_MUX_MASK << shift,
1700				 SN_GPIO_MUX_INPUT << shift);
1701	if (ret) {
1702		set_bit(offset, pdata->gchip_output);
1703		return ret;
1704	}
1705
1706	/*
1707	 * NOTE: if nobody else is powering the device this may fully power
1708	 * it off and when it comes back it will have lost all state, but
1709	 * that's OK because the default is input and we're now an input.
1710	 */
1711	pm_runtime_put_autosuspend(pdata->dev);
1712
1713	return 0;
1714}
1715
1716static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1717					      unsigned int offset, int val)
1718{
1719	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1720	int shift = offset * 2;
1721	int ret;
1722
1723	if (test_and_set_bit(offset, pdata->gchip_output))
1724		return 0;
1725
1726	pm_runtime_get_sync(pdata->dev);
1727
1728	/* Set value first to avoid glitching */
1729	ti_sn_bridge_gpio_set(chip, offset, val);
1730
1731	/* Set direction */
1732	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1733				 SN_GPIO_MUX_MASK << shift,
1734				 SN_GPIO_MUX_OUTPUT << shift);
1735	if (ret) {
1736		clear_bit(offset, pdata->gchip_output);
1737		pm_runtime_put_autosuspend(pdata->dev);
1738	}
1739
1740	return ret;
1741}
1742
1743static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1744{
1745	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1746
1747	if (offset == SN_PWM_GPIO_IDX)
1748		return ti_sn_pwm_pin_request(pdata);
1749
1750	return 0;
1751}
1752
1753static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1754{
1755	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1756
1757	/* We won't keep pm_runtime if we're input, so switch there on free */
1758	ti_sn_bridge_gpio_direction_input(chip, offset);
1759
1760	if (offset == SN_PWM_GPIO_IDX)
1761		ti_sn_pwm_pin_release(pdata);
1762}
1763
1764static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1765	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1766};
1767
1768static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1769			    const struct auxiliary_device_id *id)
1770{
1771	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1772	int ret;
1773
1774	/* Only init if someone is going to use us as a GPIO controller */
1775	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1776		return 0;
1777
1778	pdata->gchip.label = dev_name(pdata->dev);
1779	pdata->gchip.parent = pdata->dev;
1780	pdata->gchip.owner = THIS_MODULE;
1781	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1782	pdata->gchip.of_gpio_n_cells = 2;
1783	pdata->gchip.request = ti_sn_bridge_gpio_request;
1784	pdata->gchip.free = ti_sn_bridge_gpio_free;
1785	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1786	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1787	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1788	pdata->gchip.get = ti_sn_bridge_gpio_get;
1789	pdata->gchip.set = ti_sn_bridge_gpio_set;
1790	pdata->gchip.can_sleep = true;
1791	pdata->gchip.names = ti_sn_bridge_gpio_names;
1792	pdata->gchip.ngpio = SN_NUM_GPIOS;
1793	pdata->gchip.base = -1;
1794	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1795	if (ret)
1796		dev_err(pdata->dev, "can't add gpio chip\n");
1797
1798	return ret;
1799}
1800
1801static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1802	{ .name = "ti_sn65dsi86.gpio", },
1803	{},
1804};
1805
1806MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1807
1808static struct auxiliary_driver ti_sn_gpio_driver = {
1809	.name = "gpio",
1810	.probe = ti_sn_gpio_probe,
1811	.id_table = ti_sn_gpio_id_table,
1812};
1813
1814static int __init ti_sn_gpio_register(void)
1815{
1816	return auxiliary_driver_register(&ti_sn_gpio_driver);
1817}
1818
1819static void ti_sn_gpio_unregister(void)
1820{
1821	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1822}
1823
1824#else
1825
1826static inline int ti_sn_gpio_register(void) { return 0; }
1827static inline void ti_sn_gpio_unregister(void) {}
1828
1829#endif
1830
1831/* -----------------------------------------------------------------------------
1832 * Probe & Remove
1833 */
1834
1835static void ti_sn65dsi86_runtime_disable(void *data)
1836{
1837	pm_runtime_dont_use_autosuspend(data);
1838	pm_runtime_disable(data);
1839}
 
 
 
 
1840
1841static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1842{
1843	unsigned int i;
1844	const char * const ti_sn_bridge_supply_names[] = {
1845		"vcca", "vcc", "vccio", "vpll",
1846	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847
1848	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1849		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
 
 
 
 
 
 
 
1850
1851	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1852				       pdata->supplies);
 
 
1853}
1854
1855static int ti_sn65dsi86_probe(struct i2c_client *client,
1856			      const struct i2c_device_id *id)
1857{
1858	struct device *dev = &client->dev;
1859	struct ti_sn65dsi86 *pdata;
1860	int ret;
1861
1862	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1863		DRM_ERROR("device doesn't support I2C\n");
1864		return -ENODEV;
1865	}
1866
1867	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
 
1868	if (!pdata)
1869		return -ENOMEM;
1870	dev_set_drvdata(dev, pdata);
1871	pdata->dev = dev;
1872
1873	mutex_init(&pdata->comms_mutex);
1874
1875	pdata->regmap = devm_regmap_init_i2c(client,
1876					     &ti_sn65dsi86_regmap_config);
1877	if (IS_ERR(pdata->regmap))
1878		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1879				     "regmap i2c init failed\n");
1880
1881	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1882						     GPIOD_OUT_LOW);
1883	if (IS_ERR(pdata->enable_gpio))
1884		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1885				     "failed to get enable gpio from DT\n");
1886
1887	ret = ti_sn65dsi86_parse_regulators(pdata);
1888	if (ret)
1889		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1890
1891	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1892	if (IS_ERR(pdata->refclk))
1893		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1894				     "failed to get reference clock\n");
1895
1896	pm_runtime_enable(dev);
1897	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1898	pm_runtime_use_autosuspend(pdata->dev);
1899	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1900	if (ret)
1901		return ret;
 
1902
1903	ti_sn65dsi86_debugfs_init(pdata);
1904
1905	/*
1906	 * Break ourselves up into a collection of aux devices. The only real
1907	 * motiviation here is to solve the chicken-and-egg problem of probe
1908	 * ordering. The bridge wants the panel to be there when it probes.
1909	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1910	 * when it probes. The panel and maybe backlight might want the DDC
1911	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1912	 * to finish probing even if others return -EPROBE_DEFER and gets us
1913	 * around the problems.
1914	 */
1915
1916	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1917		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1918		if (ret)
1919			return ret;
 
 
1920	}
1921
1922	if (IS_ENABLED(CONFIG_PWM)) {
1923		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1924		if (ret)
 
1925			return ret;
 
 
1926	}
1927
1928	/*
1929	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1930	 * for the bridge. This is because the bridge can't be used until the
1931	 * AUX channel is there and this is a very simple solution to the
1932	 * dependency problem.
1933	 */
1934	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1935}
1936
1937static struct i2c_device_id ti_sn65dsi86_id[] = {
1938	{ "ti,sn65dsi86", 0},
1939	{},
1940};
1941MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1942
1943static const struct of_device_id ti_sn65dsi86_match_table[] = {
1944	{.compatible = "ti,sn65dsi86"},
1945	{},
1946};
1947MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1948
1949static struct i2c_driver ti_sn65dsi86_driver = {
1950	.driver = {
1951		.name = "ti_sn65dsi86",
1952		.of_match_table = ti_sn65dsi86_match_table,
1953		.pm = &ti_sn65dsi86_pm_ops,
1954	},
1955	.probe = ti_sn65dsi86_probe,
1956	.id_table = ti_sn65dsi86_id,
1957};
 
 
1958
1959static int __init ti_sn65dsi86_init(void)
 
 
 
 
 
1960{
1961	int ret;
1962
1963	ret = i2c_add_driver(&ti_sn65dsi86_driver);
1964	if (ret)
1965		return ret;
1966
1967	ret = ti_sn_gpio_register();
1968	if (ret)
1969		goto err_main_was_registered;
1970
1971	ret = ti_sn_pwm_register();
1972	if (ret)
1973		goto err_gpio_was_registered;
1974
1975	ret = auxiliary_driver_register(&ti_sn_aux_driver);
1976	if (ret)
1977		goto err_pwm_was_registered;
1978
1979	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1980	if (ret)
1981		goto err_aux_was_registered;
 
 
 
1982
1983	return 0;
 
1984
1985err_aux_was_registered:
1986	auxiliary_driver_unregister(&ti_sn_aux_driver);
1987err_pwm_was_registered:
1988	ti_sn_pwm_unregister();
1989err_gpio_was_registered:
1990	ti_sn_gpio_unregister();
1991err_main_was_registered:
1992	i2c_del_driver(&ti_sn65dsi86_driver);
1993
1994	return ret;
1995}
1996module_init(ti_sn65dsi86_init);
 
 
1997
1998static void __exit ti_sn65dsi86_exit(void)
1999{
2000	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2001	auxiliary_driver_unregister(&ti_sn_aux_driver);
2002	ti_sn_pwm_unregister();
2003	ti_sn_gpio_unregister();
2004	i2c_del_driver(&ti_sn65dsi86_driver);
2005}
2006module_exit(ti_sn65dsi86_exit);
 
 
2007
2008MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2009MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2010MODULE_LICENSE("GPL v2");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
   5 */
   6
 
 
 
   7#include <linux/bits.h>
   8#include <linux/clk.h>
   9#include <linux/debugfs.h>
  10#include <linux/gpio/consumer.h>
  11#include <linux/gpio/driver.h>
  12#include <linux/i2c.h>
  13#include <linux/iopoll.h>
  14#include <linux/module.h>
  15#include <linux/of_graph.h>
  16#include <linux/pm_runtime.h>
 
  17#include <linux/regmap.h>
  18#include <linux/regulator/consumer.h>
  19
 
 
 
 
  20#include <drm/drm_atomic.h>
  21#include <drm/drm_atomic_helper.h>
  22#include <drm/drm_bridge.h>
  23#include <drm/drm_dp_helper.h>
 
  24#include <drm/drm_mipi_dsi.h>
  25#include <drm/drm_of.h>
  26#include <drm/drm_panel.h>
  27#include <drm/drm_print.h>
  28#include <drm/drm_probe_helper.h>
  29
  30#define SN_DEVICE_REV_REG			0x08
  31#define SN_DPPLL_SRC_REG			0x0A
  32#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
  33#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
  34#define  REFCLK_FREQ(x)				((x) << 1)
  35#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
  36#define SN_PLL_ENABLE_REG			0x0D
  37#define SN_DSI_LANES_REG			0x10
  38#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
  39#define  CHA_DSI_LANES(x)			((x) << 3)
  40#define SN_DSIA_CLK_FREQ_REG			0x12
  41#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
  42#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
  43#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
  44#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
  45#define  CHA_HSYNC_POLARITY			BIT(7)
  46#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
  47#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
  48#define  CHA_VSYNC_POLARITY			BIT(7)
  49#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
  50#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
  51#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
  52#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
  53#define SN_LN_ASSIGN_REG			0x59
  54#define  LN_ASSIGN_WIDTH			2
  55#define SN_ENH_FRAME_REG			0x5A
  56#define  VSTREAM_ENABLE				BIT(3)
  57#define  LN_POLRS_OFFSET			4
  58#define  LN_POLRS_MASK				0xf0
  59#define SN_DATA_FORMAT_REG			0x5B
  60#define  BPP_18_RGB				BIT(0)
  61#define SN_HPD_DISABLE_REG			0x5C
  62#define  HPD_DISABLE				BIT(0)
 
  63#define SN_GPIO_IO_REG				0x5E
  64#define  SN_GPIO_INPUT_SHIFT			4
  65#define  SN_GPIO_OUTPUT_SHIFT			0
  66#define SN_GPIO_CTRL_REG			0x5F
  67#define  SN_GPIO_MUX_INPUT			0
  68#define  SN_GPIO_MUX_OUTPUT			1
  69#define  SN_GPIO_MUX_SPECIAL			2
  70#define  SN_GPIO_MUX_MASK			0x3
  71#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
  72#define SN_AUX_ADDR_19_16_REG			0x74
  73#define SN_AUX_ADDR_15_8_REG			0x75
  74#define SN_AUX_ADDR_7_0_REG			0x76
 
  75#define SN_AUX_LENGTH_REG			0x77
  76#define SN_AUX_CMD_REG				0x78
  77#define  AUX_CMD_SEND				BIT(0)
  78#define  AUX_CMD_REQ(x)				((x) << 4)
  79#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
  80#define SN_SSC_CONFIG_REG			0x93
  81#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
  82#define  DP_NUM_LANES(x)			((x) << 4)
  83#define SN_DATARATE_CONFIG_REG			0x94
  84#define  DP_DATARATE_MASK			GENMASK(7, 5)
  85#define  DP_DATARATE(x)				((x) << 5)
 
 
  86#define SN_ML_TX_MODE_REG			0x96
  87#define  ML_TX_MAIN_LINK_OFF			0
  88#define  ML_TX_NORMAL_MODE			BIT(0)
 
 
 
 
 
 
 
  89#define SN_AUX_CMD_STATUS_REG			0xF4
  90#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
  91#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
  92#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
  93
  94#define MIN_DSI_CLK_FREQ_MHZ	40
  95
  96/* fudge factor required to account for 8b/10b encoding */
  97#define DP_CLK_FUDGE_NUM	10
  98#define DP_CLK_FUDGE_DEN	8
  99
 100/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
 101#define SN_AUX_MAX_PAYLOAD_BYTES	16
 102
 103#define SN_REGULATOR_SUPPLY_NUM		4
 104
 105#define SN_MAX_DP_LANES			4
 106#define SN_NUM_GPIOS			4
 107#define SN_GPIO_PHYSICAL_OFFSET		1
 108
 
 
 
 
 109/**
 110 * struct ti_sn_bridge - Platform data for ti-sn65dsi86 driver.
 111 * @dev:          Pointer to our device.
 
 
 
 
 
 112 * @regmap:       Regmap for accessing i2c.
 113 * @aux:          Our aux channel.
 114 * @bridge:       Our bridge.
 115 * @connector:    Our connector.
 116 * @debugfs:      Used for managing our debugfs.
 117 * @host_node:    Remote DSI node.
 118 * @dsi:          Our MIPI DSI source.
 119 * @refclk:       Our reference clock.
 120 * @panel:        Our panel.
 121 * @enable_gpio:  The GPIO we toggle to enable the bridge.
 122 * @supplies:     Data for bulk enabling/disabling our regulators.
 123 * @dp_lanes:     Count of dp_lanes we're using.
 124 * @ln_assign:    Value to program to the LN_ASSIGN register.
 125 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
 
 
 126 *
 127 * @gchip:        If we expose our GPIOs, this is used.
 128 * @gchip_output: A cache of whether we've set GPIOs to output.  This
 129 *                serves double-duty of keeping track of the direction and
 130 *                also keeping track of whether we've incremented the
 131 *                pm_runtime reference count for this pin, which we do
 132 *                whenever a pin is configured as an output.  This is a
 133 *                bitmap so we can do atomic ops on it without an extra
 134 *                lock so concurrent users of our 4 GPIOs don't stomp on
 135 *                each other's read-modify-write.
 
 
 
 
 
 136 */
 137struct ti_sn_bridge {
 
 
 
 
 
 138	struct device			*dev;
 139	struct regmap			*regmap;
 140	struct drm_dp_aux		aux;
 141	struct drm_bridge		bridge;
 142	struct drm_connector		connector;
 143	struct dentry			*debugfs;
 144	struct device_node		*host_node;
 145	struct mipi_dsi_device		*dsi;
 146	struct clk			*refclk;
 147	struct drm_panel		*panel;
 148	struct gpio_desc		*enable_gpio;
 149	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 150	int				dp_lanes;
 151	u8				ln_assign;
 152	u8				ln_polrs;
 
 
 153
 154#if defined(CONFIG_OF_GPIO)
 155	struct gpio_chip		gchip;
 156	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
 157#endif
 
 
 
 
 
 
 158};
 159
 160static const struct regmap_range ti_sn_bridge_volatile_ranges[] = {
 161	{ .range_min = 0, .range_max = 0xFF },
 162};
 163
 164static const struct regmap_access_table ti_sn_bridge_volatile_table = {
 165	.yes_ranges = ti_sn_bridge_volatile_ranges,
 166	.n_yes_ranges = ARRAY_SIZE(ti_sn_bridge_volatile_ranges),
 167};
 168
 169static const struct regmap_config ti_sn_bridge_regmap_config = {
 170	.reg_bits = 8,
 171	.val_bits = 8,
 172	.volatile_table = &ti_sn_bridge_volatile_table,
 173	.cache_type = REGCACHE_NONE,
 
 174};
 175
 176static void ti_sn_bridge_write_u16(struct ti_sn_bridge *pdata,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177				   unsigned int reg, u16 val)
 178{
 179	regmap_write(pdata->regmap, reg, val & 0xFF);
 180	regmap_write(pdata->regmap, reg + 1, val >> 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181}
 182
 183static int __maybe_unused ti_sn_bridge_resume(struct device *dev)
 184{
 185	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
 186	int ret;
 187
 188	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 189	if (ret) {
 190		DRM_ERROR("failed to enable supplies %d\n", ret);
 191		return ret;
 192	}
 193
 
 
 
 194	gpiod_set_value(pdata->enable_gpio, 1);
 195
 
 
 
 
 
 
 
 
 
 
 196	return ret;
 197}
 198
 199static int __maybe_unused ti_sn_bridge_suspend(struct device *dev)
 200{
 201	struct ti_sn_bridge *pdata = dev_get_drvdata(dev);
 202	int ret;
 203
 
 
 
 204	gpiod_set_value(pdata->enable_gpio, 0);
 205
 206	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 207	if (ret)
 208		DRM_ERROR("failed to disable supplies %d\n", ret);
 209
 210	return ret;
 211}
 212
 213static const struct dev_pm_ops ti_sn_bridge_pm_ops = {
 214	SET_RUNTIME_PM_OPS(ti_sn_bridge_suspend, ti_sn_bridge_resume, NULL)
 215	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 216				pm_runtime_force_resume)
 217};
 218
 219static int status_show(struct seq_file *s, void *data)
 220{
 221	struct ti_sn_bridge *pdata = s->private;
 222	unsigned int reg, val;
 223
 224	seq_puts(s, "STATUS REGISTERS:\n");
 225
 226	pm_runtime_get_sync(pdata->dev);
 227
 228	/* IRQ Status Registers, see Table 31 in datasheet */
 229	for (reg = 0xf0; reg <= 0xf8; reg++) {
 230		regmap_read(pdata->regmap, reg, &val);
 231		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
 232	}
 233
 234	pm_runtime_put(pdata->dev);
 235
 236	return 0;
 237}
 238
 239DEFINE_SHOW_ATTRIBUTE(status);
 240
 241static void ti_sn_debugfs_init(struct ti_sn_bridge *pdata)
 242{
 243	pdata->debugfs = debugfs_create_dir(dev_name(pdata->dev), NULL);
 
 244
 245	debugfs_create_file("status", 0600, pdata->debugfs, pdata,
 246			&status_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249static void ti_sn_debugfs_remove(struct ti_sn_bridge *pdata)
 
 
 
 
 250{
 251	debugfs_remove_recursive(pdata->debugfs);
 252	pdata->debugfs = NULL;
 253}
 254
 255/* Connector funcs */
 256static struct ti_sn_bridge *
 257connector_to_ti_sn_bridge(struct drm_connector *connector)
 258{
 259	return container_of(connector, struct ti_sn_bridge, connector);
 260}
 261
 262static int ti_sn_bridge_connector_get_modes(struct drm_connector *connector)
 
 
 
 
 
 
 
 
 
 263{
 264	struct ti_sn_bridge *pdata = connector_to_ti_sn_bridge(connector);
 
 265
 266	return drm_panel_get_modes(pdata->panel, connector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269static enum drm_mode_status
 270ti_sn_bridge_connector_mode_valid(struct drm_connector *connector,
 271				  struct drm_display_mode *mode)
 272{
 273	/* maximum supported resolution is 4K at 60 fps */
 274	if (mode->clock > 594000)
 275		return MODE_CLOCK_HIGH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276
 277	return MODE_OK;
 
 
 278}
 279
 280static struct drm_connector_helper_funcs ti_sn_bridge_connector_helper_funcs = {
 281	.get_modes = ti_sn_bridge_connector_get_modes,
 282	.mode_valid = ti_sn_bridge_connector_mode_valid,
 283};
 
 
 
 
 
 
 
 
 
 
 284
 285static enum drm_connector_status
 286ti_sn_bridge_connector_detect(struct drm_connector *connector, bool force)
 287{
 288	/**
 289	 * TODO: Currently if drm_panel is present, then always
 290	 * return the status as connected. Need to add support to detect
 291	 * device state for hot pluggable scenarios.
 292	 */
 293	return connector_status_connected;
 294}
 295
 296static const struct drm_connector_funcs ti_sn_bridge_connector_funcs = {
 297	.fill_modes = drm_helper_probe_single_connector_modes,
 298	.detect = ti_sn_bridge_connector_detect,
 299	.destroy = drm_connector_cleanup,
 300	.reset = drm_atomic_helper_connector_reset,
 301	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
 302	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
 
 
 303};
 304
 305static struct ti_sn_bridge *bridge_to_ti_sn_bridge(struct drm_bridge *bridge)
 306{
 307	return container_of(bridge, struct ti_sn_bridge, bridge);
 308}
 309
 310static int ti_sn_bridge_parse_regulators(struct ti_sn_bridge *pdata)
 311{
 312	unsigned int i;
 313	const char * const ti_sn_bridge_supply_names[] = {
 314		"vcca", "vcc", "vccio", "vpll",
 315	};
 316
 317	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
 318		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
 319
 320	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
 321				       pdata->supplies);
 322}
 323
 324static int ti_sn_bridge_attach(struct drm_bridge *bridge,
 325			       enum drm_bridge_attach_flags flags)
 326{
 327	int ret, val;
 328	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 329	struct mipi_dsi_host *host;
 330	struct mipi_dsi_device *dsi;
 
 331	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
 332						   .channel = 0,
 333						   .node = NULL,
 334						 };
 335
 336	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) {
 337		DRM_ERROR("Fix bridge driver to make connector optional!");
 338		return -EINVAL;
 339	}
 340
 341	ret = drm_connector_init(bridge->dev, &pdata->connector,
 342				 &ti_sn_bridge_connector_funcs,
 343				 DRM_MODE_CONNECTOR_eDP);
 344	if (ret) {
 345		DRM_ERROR("Failed to initialize connector with drm\n");
 346		return ret;
 347	}
 348
 349	drm_connector_helper_add(&pdata->connector,
 350				 &ti_sn_bridge_connector_helper_funcs);
 351	drm_connector_attach_encoder(&pdata->connector, bridge->encoder);
 352
 353	/*
 354	 * TODO: ideally finding host resource and dsi dev registration needs
 355	 * to be done in bridge probe. But some existing DSI host drivers will
 356	 * wait for any of the drm_bridge/drm_panel to get added to the global
 357	 * bridge/panel list, before completing their probe. So if we do the
 358	 * dsi dev registration part in bridge probe, before populating in
 359	 * the global bridge list, then it will cause deadlock as dsi host probe
 360	 * will never complete, neither our bridge probe. So keeping it here
 361	 * will satisfy most of the existing host drivers. Once the host driver
 362	 * is fixed we can move the below code to bridge probe safely.
 363	 */
 364	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
 365	if (!host) {
 366		DRM_ERROR("failed to find dsi host\n");
 367		ret = -ENODEV;
 368		goto err_dsi_host;
 369	}
 370
 371	dsi = mipi_dsi_device_register_full(host, &info);
 372	if (IS_ERR(dsi)) {
 373		DRM_ERROR("failed to create dsi device\n");
 374		ret = PTR_ERR(dsi);
 375		goto err_dsi_host;
 376	}
 377
 378	/* TODO: setting to 4 MIPI lanes always for now */
 379	dsi->lanes = 4;
 380	dsi->format = MIPI_DSI_FMT_RGB888;
 381	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
 382
 383	/* check if continuous dsi clock is required or not */
 384	pm_runtime_get_sync(pdata->dev);
 385	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
 386	pm_runtime_put(pdata->dev);
 387	if (!(val & DPPLL_CLK_SRC_DSICLK))
 388		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
 389
 390	ret = mipi_dsi_attach(dsi);
 
 
 
 
 
 
 
 
 
 
 
 
 391	if (ret < 0) {
 392		DRM_ERROR("failed to attach dsi to host\n");
 393		goto err_dsi_attach;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394	}
 395	pdata->dsi = dsi;
 396
 397	/* attach panel to bridge */
 398	drm_panel_attach(pdata->panel, &pdata->connector);
 399
 400	return 0;
 401
 402err_dsi_attach:
 403	mipi_dsi_device_unregister(dsi);
 404err_dsi_host:
 405	drm_connector_cleanup(&pdata->connector);
 406	return ret;
 407}
 408
 409static void ti_sn_bridge_disable(struct drm_bridge *bridge)
 410{
 411	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 
 412
 413	drm_panel_disable(pdata->panel);
 
 
 
 
 
 
 
 414
 415	/* disable video stream */
 416	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
 417	/* semi auto link training mode OFF */
 418	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
 419	/* disable DP PLL */
 420	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
 
 421
 422	drm_panel_unprepare(pdata->panel);
 423}
 424
 425static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn_bridge *pdata)
 426{
 427	u32 bit_rate_khz, clk_freq_khz;
 428	struct drm_display_mode *mode =
 429		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 430
 431	bit_rate_khz = mode->clock *
 432			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 433	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
 434
 435	return clk_freq_khz;
 436}
 437
 438/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
 439static const u32 ti_sn_bridge_refclk_lut[] = {
 440	12000000,
 441	19200000,
 442	26000000,
 443	27000000,
 444	38400000,
 445};
 446
 447/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
 448static const u32 ti_sn_bridge_dsiclk_lut[] = {
 449	468000000,
 450	384000000,
 451	416000000,
 452	486000000,
 453	460800000,
 454};
 455
 456static void ti_sn_bridge_set_refclk_freq(struct ti_sn_bridge *pdata)
 
 457{
 458	int i;
 459	u32 refclk_rate;
 460	const u32 *refclk_lut;
 461	size_t refclk_lut_size;
 462
 463	if (pdata->refclk) {
 464		refclk_rate = clk_get_rate(pdata->refclk);
 465		refclk_lut = ti_sn_bridge_refclk_lut;
 466		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
 467		clk_prepare_enable(pdata->refclk);
 468	} else {
 469		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
 470		refclk_lut = ti_sn_bridge_dsiclk_lut;
 471		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
 472	}
 473
 474	/* for i equals to refclk_lut_size means default frequency */
 475	for (i = 0; i < refclk_lut_size; i++)
 476		if (refclk_lut[i] == refclk_rate)
 477			break;
 478
 479	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
 480			   REFCLK_FREQ(i));
 481}
 482
 483static void ti_sn_bridge_set_dsi_rate(struct ti_sn_bridge *pdata)
 484{
 485	unsigned int bit_rate_mhz, clk_freq_mhz;
 486	unsigned int val;
 487	struct drm_display_mode *mode =
 488		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 489
 490	/* set DSIA clk frequency */
 491	bit_rate_mhz = (mode->clock / 1000) *
 492			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 493	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
 494
 495	/* for each increment in val, frequency increases by 5MHz */
 496	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
 497		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
 498	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
 499}
 500
 501static unsigned int ti_sn_bridge_get_bpp(struct ti_sn_bridge *pdata)
 502{
 503	if (pdata->connector.display_info.bpc <= 6)
 504		return 18;
 505	else
 506		return 24;
 507}
 508
 509/*
 510 * LUT index corresponds to register value and
 511 * LUT values corresponds to dp data rate supported
 512 * by the bridge in Mbps unit.
 513 */
 514static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
 515	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
 516};
 517
 518static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn_bridge *pdata)
 519{
 520	unsigned int bit_rate_khz, dp_rate_mhz;
 521	unsigned int i;
 522	struct drm_display_mode *mode =
 523		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 524
 525	/* Calculate minimum bit rate based on our pixel clock. */
 526	bit_rate_khz = mode->clock * ti_sn_bridge_get_bpp(pdata);
 527
 528	/* Calculate minimum DP data rate, taking 80% as per DP spec */
 529	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
 530				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
 531
 532	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
 533		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
 534			break;
 535
 536	return i;
 537}
 538
 539static void ti_sn_bridge_read_valid_rates(struct ti_sn_bridge *pdata,
 540					  bool rate_valid[])
 541{
 
 542	unsigned int rate_per_200khz;
 543	unsigned int rate_mhz;
 544	u8 dpcd_val;
 545	int ret;
 546	int i, j;
 547
 548	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
 549	if (ret != 1) {
 550		DRM_DEV_ERROR(pdata->dev,
 551			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
 552		dpcd_val = DP_EDP_11;
 553	}
 554
 555	if (dpcd_val >= DP_EDP_14) {
 556		/* eDP 1.4 devices must provide a custom table */
 557		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
 558
 559		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
 560				       sink_rates, sizeof(sink_rates));
 561
 562		if (ret != sizeof(sink_rates)) {
 563			DRM_DEV_ERROR(pdata->dev,
 564				"Can't read supported rate table (%d)\n", ret);
 565
 566			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
 567			memset(sink_rates, 0, sizeof(sink_rates));
 568		}
 569
 570		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
 571			rate_per_200khz = le16_to_cpu(sink_rates[i]);
 572
 573			if (!rate_per_200khz)
 574				break;
 575
 576			rate_mhz = rate_per_200khz * 200 / 1000;
 577			for (j = 0;
 578			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 579			     j++) {
 580				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
 581					rate_valid[j] = true;
 582			}
 583		}
 584
 585		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
 586			if (rate_valid[i])
 587				return;
 588		}
 589		DRM_DEV_ERROR(pdata->dev,
 590			      "No matching eDP rates in table; falling back\n");
 591	}
 592
 593	/* On older versions best we can do is use DP_MAX_LINK_RATE */
 594	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
 595	if (ret != 1) {
 596		DRM_DEV_ERROR(pdata->dev,
 597			      "Can't read max rate (%d); assuming 5.4 GHz\n",
 598			      ret);
 599		dpcd_val = DP_LINK_BW_5_4;
 600	}
 601
 602	switch (dpcd_val) {
 603	default:
 604		DRM_DEV_ERROR(pdata->dev,
 605			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
 606			      (int)dpcd_val);
 607		fallthrough;
 608	case DP_LINK_BW_5_4:
 609		rate_valid[7] = 1;
 610		fallthrough;
 611	case DP_LINK_BW_2_7:
 612		rate_valid[4] = 1;
 613		fallthrough;
 614	case DP_LINK_BW_1_62:
 615		rate_valid[1] = 1;
 616		break;
 617	}
 
 
 618}
 619
 620static void ti_sn_bridge_set_video_timings(struct ti_sn_bridge *pdata)
 621{
 622	struct drm_display_mode *mode =
 623		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 624	u8 hsync_polarity = 0, vsync_polarity = 0;
 625
 626	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
 627		hsync_polarity = CHA_HSYNC_POLARITY;
 628	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
 629		vsync_polarity = CHA_VSYNC_POLARITY;
 630
 631	ti_sn_bridge_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
 632			       mode->hdisplay);
 633	ti_sn_bridge_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
 634			       mode->vdisplay);
 635	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
 636		     (mode->hsync_end - mode->hsync_start) & 0xFF);
 637	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
 638		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
 639		     hsync_polarity);
 640	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
 641		     (mode->vsync_end - mode->vsync_start) & 0xFF);
 642	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
 643		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
 644		     vsync_polarity);
 645
 646	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
 647		     (mode->htotal - mode->hsync_end) & 0xFF);
 648	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
 649		     (mode->vtotal - mode->vsync_end) & 0xFF);
 650
 651	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
 652		     (mode->hsync_start - mode->hdisplay) & 0xFF);
 653	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
 654		     (mode->vsync_start - mode->vdisplay) & 0xFF);
 655
 656	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
 657}
 658
 659static unsigned int ti_sn_get_max_lanes(struct ti_sn_bridge *pdata)
 660{
 661	u8 data;
 662	int ret;
 663
 664	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
 665	if (ret != 1) {
 666		DRM_DEV_ERROR(pdata->dev,
 667			      "Can't read lane count (%d); assuming 4\n", ret);
 668		return 4;
 669	}
 670
 671	return data & DP_LANE_COUNT_MASK;
 672}
 673
 674static int ti_sn_link_training(struct ti_sn_bridge *pdata, int dp_rate_idx,
 675			       const char **last_err_str)
 676{
 677	unsigned int val;
 678	int ret;
 
 679
 680	/* set dp clk frequency value */
 681	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
 682			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
 683
 684	/* enable DP PLL */
 685	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
 686
 687	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
 688				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
 689				       50 * 1000);
 690	if (ret) {
 691		*last_err_str = "DP_PLL_LOCK polling failed";
 692		goto exit;
 693	}
 694
 695	/* Semi auto link training mode */
 696	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
 697	ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
 698				       val == ML_TX_MAIN_LINK_OFF ||
 699				       val == ML_TX_NORMAL_MODE, 1000,
 700				       500 * 1000);
 701	if (ret) {
 702		*last_err_str = "Training complete polling failed";
 703	} else if (val == ML_TX_MAIN_LINK_OFF) {
 704		*last_err_str = "Link training failed, link is off";
 705		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 706	}
 707
 
 
 
 
 708exit:
 709	/* Disable the PLL if we failed */
 710	if (ret)
 711		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
 712
 713	return ret;
 714}
 715
 716static void ti_sn_bridge_enable(struct drm_bridge *bridge)
 
 717{
 718	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 719	bool rate_valid[ARRAY_SIZE(ti_sn_bridge_dp_rate_lut)] = { };
 720	const char *last_err_str = "No supported DP rate";
 
 721	int dp_rate_idx;
 722	unsigned int val;
 723	int ret = -EINVAL;
 724	int max_dp_lanes;
 
 
 
 
 
 
 
 
 725
 726	max_dp_lanes = ti_sn_get_max_lanes(pdata);
 727	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
 728
 729	/* DSI_A lane config */
 730	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
 731	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
 732			   CHA_DSI_LANES_MASK, val);
 733
 734	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
 735	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
 736			   pdata->ln_polrs << LN_POLRS_OFFSET);
 737
 738	/* set dsi clk frequency value */
 739	ti_sn_bridge_set_dsi_rate(pdata);
 740
 741	/**
 742	 * The SN65DSI86 only supports ASSR Display Authentication method and
 743	 * this method is enabled by default. An eDP panel must support this
 744	 * authentication method. We need to enable this method in the eDP panel
 745	 * at DisplayPort address 0x0010A prior to link training.
 
 
 
 746	 */
 747	drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
 748			   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
 
 
 
 
 
 
 
 
 749
 
 750	/* Set the DP output format (18 bpp or 24 bpp) */
 751	val = (ti_sn_bridge_get_bpp(pdata) == 18) ? BPP_18_RGB : 0;
 752	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
 753
 754	/* DP lane config */
 755	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
 756	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
 757			   val);
 758
 759	ti_sn_bridge_read_valid_rates(pdata, rate_valid);
 760
 761	/* Train until we run out of rates */
 762	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata);
 763	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 764	     dp_rate_idx++) {
 765		if (!rate_valid[dp_rate_idx])
 766			continue;
 767
 768		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
 769		if (!ret)
 770			break;
 771	}
 772	if (ret) {
 773		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
 774		return;
 775	}
 776
 777	/* config video parameters */
 778	ti_sn_bridge_set_video_timings(pdata);
 779
 780	/* enable video stream */
 781	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
 782			   VSTREAM_ENABLE);
 
 783
 784	drm_panel_enable(pdata->panel);
 
 
 
 
 
 
 
 
 
 
 
 785}
 786
 787static void ti_sn_bridge_pre_enable(struct drm_bridge *bridge)
 
 788{
 789	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790
 791	pm_runtime_get_sync(pdata->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793	/* configure bridge ref_clk */
 794	ti_sn_bridge_set_refclk_freq(pdata);
 
 
 
 
 
 
 
 
 795
 796	/*
 797	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
 798	 * so the HPD is an internal signal that's only there to signal that
 799	 * the panel is done powering up.  ...but the bridge chip debounces
 800	 * this signal by between 100 ms and 400 ms (depending on process,
 801	 * voltage, and temperate--I measured it at about 200 ms).  One
 802	 * particular panel asserted HPD 84 ms after it was powered on meaning
 803	 * that we saw HPD 284 ms after power on.  ...but the same panel said
 804	 * that instead of looking at HPD you could just hardcode a delay of
 805	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
 806	 * delay in its prepare and always disable HPD.
 807	 *
 808	 * If HPD somehow makes sense on some future panel we'll have to
 809	 * change this to be conditional on someone specifying that HPD should
 810	 * be used.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811	 */
 812	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
 813			   HPD_DISABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814
 815	drm_panel_prepare(pdata->panel);
 
 
 816}
 817
 818static void ti_sn_bridge_post_disable(struct drm_bridge *bridge)
 819{
 820	struct ti_sn_bridge *pdata = bridge_to_ti_sn_bridge(bridge);
 
 
 
 821
 822	if (pdata->refclk)
 823		clk_disable_unprepare(pdata->refclk);
 824
 825	pm_runtime_put_sync(pdata->dev);
 826}
 827
 828static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
 829	.attach = ti_sn_bridge_attach,
 830	.pre_enable = ti_sn_bridge_pre_enable,
 831	.enable = ti_sn_bridge_enable,
 832	.disable = ti_sn_bridge_disable,
 833	.post_disable = ti_sn_bridge_post_disable,
 
 
 
 
 834};
 835
 836static struct ti_sn_bridge *aux_to_ti_sn_bridge(struct drm_dp_aux *aux)
 
 
 
 
 
 
 
 
 
 837{
 838	return container_of(aux, struct ti_sn_bridge, aux);
 839}
 840
 841static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
 842				  struct drm_dp_aux_msg *msg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843{
 844	struct ti_sn_bridge *pdata = aux_to_ti_sn_bridge(aux);
 845	u32 request = msg->request & ~DP_AUX_I2C_MOT;
 846	u32 request_val = AUX_CMD_REQ(msg->request);
 847	u8 *buf = (u8 *)msg->buffer;
 848	unsigned int val;
 849	int ret, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850
 851	if (msg->size > SN_AUX_MAX_PAYLOAD_BYTES)
 852		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853
 854	switch (request) {
 855	case DP_AUX_NATIVE_WRITE:
 856	case DP_AUX_I2C_WRITE:
 857	case DP_AUX_NATIVE_READ:
 858	case DP_AUX_I2C_READ:
 859		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
 860		break;
 861	default:
 862		return -EINVAL;
 863	}
 864
 865	regmap_write(pdata->regmap, SN_AUX_ADDR_19_16_REG,
 866		     (msg->address >> 16) & 0xF);
 867	regmap_write(pdata->regmap, SN_AUX_ADDR_15_8_REG,
 868		     (msg->address >> 8) & 0xFF);
 869	regmap_write(pdata->regmap, SN_AUX_ADDR_7_0_REG, msg->address & 0xFF);
 870
 871	regmap_write(pdata->regmap, SN_AUX_LENGTH_REG, msg->size);
 872
 873	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE) {
 874		for (i = 0; i < msg->size; i++)
 875			regmap_write(pdata->regmap, SN_AUX_WDATA_REG(i),
 876				     buf[i]);
 877	}
 878
 879	/* Clear old status bits before start so we don't get confused */
 880	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
 881		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
 882		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
 883		     AUX_IRQ_STATUS_AUX_SHORT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
 
 
 886
 887	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
 888				       !(val & AUX_CMD_SEND), 200,
 889				       50 * 1000);
 890	if (ret)
 891		return ret;
 892
 893	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
 894	if (ret)
 895		return ret;
 896	else if ((val & AUX_IRQ_STATUS_NAT_I2C_FAIL)
 897		 || (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT)
 898		 || (val & AUX_IRQ_STATUS_AUX_SHORT))
 899		return -ENXIO;
 900
 901	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
 902		return msg->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	for (i = 0; i < msg->size; i++) {
 905		unsigned int val;
 906		ret = regmap_read(pdata->regmap, SN_AUX_RDATA_REG(i),
 907				  &val);
 908		if (ret)
 909			return ret;
 910
 911		WARN_ON(val & ~0xFF);
 912		buf[i] = (u8)(val & 0xFF);
 913	}
 
 
 914
 915	return msg->size;
 916}
 917
 918static int ti_sn_bridge_parse_dsi_host(struct ti_sn_bridge *pdata)
 919{
 920	struct device_node *np = pdata->dev->of_node;
 
 
 
 
 
 
 
 
 
 
 
 921
 922	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
 
 
 
 
 
 923
 924	if (!pdata->host_node) {
 925		DRM_ERROR("remote dsi host node not found\n");
 926		return -ENODEV;
 927	}
 928
 929	return 0;
 
 
 930}
 931
 
 
 
 
 
 
 
 
 
 
 
 932#if defined(CONFIG_OF_GPIO)
 933
 934static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
 935				 const struct of_phandle_args *gpiospec,
 936				 u32 *flags)
 937{
 938	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
 939		return -EINVAL;
 940
 941	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
 942		return -EINVAL;
 943
 944	if (flags)
 945		*flags = gpiospec->args[1];
 946
 947	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
 948}
 949
 950static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
 951					   unsigned int offset)
 952{
 953	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 954
 955	/*
 956	 * We already have to keep track of the direction because we use
 957	 * that to figure out whether we've powered the device.  We can
 958	 * just return that rather than (maybe) powering up the device
 959	 * to ask its direction.
 960	 */
 961	return test_bit(offset, pdata->gchip_output) ?
 962		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
 963}
 964
 965static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
 966{
 967	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 968	unsigned int val;
 969	int ret;
 970
 971	/*
 972	 * When the pin is an input we don't forcibly keep the bridge
 973	 * powered--we just power it on to read the pin.  NOTE: part of
 974	 * the reason this works is that the bridge defaults (when
 975	 * powered back on) to all 4 GPIOs being configured as GPIO input.
 976	 * Also note that if something else is keeping the chip powered the
 977	 * pm_runtime functions are lightweight increments of a refcount.
 978	 */
 979	pm_runtime_get_sync(pdata->dev);
 980	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
 981	pm_runtime_put(pdata->dev);
 982
 983	if (ret)
 984		return ret;
 985
 986	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
 987}
 988
 989static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
 990				  int val)
 991{
 992	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
 993	int ret;
 994
 995	if (!test_bit(offset, pdata->gchip_output)) {
 996		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
 997		return;
 998	}
 999
1000	val &= 1;
1001	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1002				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1003				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1004	if (ret)
1005		dev_warn(pdata->dev,
1006			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1007}
1008
1009static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1010					     unsigned int offset)
1011{
1012	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1013	int shift = offset * 2;
1014	int ret;
1015
1016	if (!test_and_clear_bit(offset, pdata->gchip_output))
1017		return 0;
1018
1019	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1020				 SN_GPIO_MUX_MASK << shift,
1021				 SN_GPIO_MUX_INPUT << shift);
1022	if (ret) {
1023		set_bit(offset, pdata->gchip_output);
1024		return ret;
1025	}
1026
1027	/*
1028	 * NOTE: if nobody else is powering the device this may fully power
1029	 * it off and when it comes back it will have lost all state, but
1030	 * that's OK because the default is input and we're now an input.
1031	 */
1032	pm_runtime_put(pdata->dev);
1033
1034	return 0;
1035}
1036
1037static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1038					      unsigned int offset, int val)
1039{
1040	struct ti_sn_bridge *pdata = gpiochip_get_data(chip);
1041	int shift = offset * 2;
1042	int ret;
1043
1044	if (test_and_set_bit(offset, pdata->gchip_output))
1045		return 0;
1046
1047	pm_runtime_get_sync(pdata->dev);
1048
1049	/* Set value first to avoid glitching */
1050	ti_sn_bridge_gpio_set(chip, offset, val);
1051
1052	/* Set direction */
1053	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1054				 SN_GPIO_MUX_MASK << shift,
1055				 SN_GPIO_MUX_OUTPUT << shift);
1056	if (ret) {
1057		clear_bit(offset, pdata->gchip_output);
1058		pm_runtime_put(pdata->dev);
1059	}
1060
1061	return ret;
1062}
1063
 
 
 
 
 
 
 
 
 
 
1064static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1065{
 
 
1066	/* We won't keep pm_runtime if we're input, so switch there on free */
1067	ti_sn_bridge_gpio_direction_input(chip, offset);
 
 
 
1068}
1069
1070static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1071	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1072};
1073
1074static int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
 
1075{
 
1076	int ret;
1077
1078	/* Only init if someone is going to use us as a GPIO controller */
1079	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1080		return 0;
1081
1082	pdata->gchip.label = dev_name(pdata->dev);
1083	pdata->gchip.parent = pdata->dev;
1084	pdata->gchip.owner = THIS_MODULE;
1085	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1086	pdata->gchip.of_gpio_n_cells = 2;
 
1087	pdata->gchip.free = ti_sn_bridge_gpio_free;
1088	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1089	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1090	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1091	pdata->gchip.get = ti_sn_bridge_gpio_get;
1092	pdata->gchip.set = ti_sn_bridge_gpio_set;
1093	pdata->gchip.can_sleep = true;
1094	pdata->gchip.names = ti_sn_bridge_gpio_names;
1095	pdata->gchip.ngpio = SN_NUM_GPIOS;
1096	pdata->gchip.base = -1;
1097	ret = devm_gpiochip_add_data(pdata->dev, &pdata->gchip, pdata);
1098	if (ret)
1099		dev_err(pdata->dev, "can't add gpio chip\n");
1100
1101	return ret;
1102}
1103
1104#else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105
1106static inline int ti_sn_setup_gpio_controller(struct ti_sn_bridge *pdata)
1107{
1108	return 0;
1109}
1110
 
 
 
 
 
1111#endif
1112
1113static void ti_sn_bridge_parse_lanes(struct ti_sn_bridge *pdata,
1114				     struct device_node *np)
 
 
 
1115{
1116	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1117	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1118	struct device_node *endpoint;
1119	u8 ln_assign = 0;
1120	u8 ln_polrs = 0;
1121	int dp_lanes;
1122	int i;
1123
1124	/*
1125	 * Read config from the device tree about lane remapping and lane
1126	 * polarities.  These are optional and we assume identity map and
1127	 * normal polarity if nothing is specified.  It's OK to specify just
1128	 * data-lanes but not lane-polarities but not vice versa.
1129	 *
1130	 * Error checking is light (we just make sure we don't crash or
1131	 * buffer overrun) and we assume dts is well formed and specifying
1132	 * mappings that the hardware supports.
1133	 */
1134	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1135	dp_lanes = of_property_count_u32_elems(endpoint, "data-lanes");
1136	if (dp_lanes > 0 && dp_lanes <= SN_MAX_DP_LANES) {
1137		of_property_read_u32_array(endpoint, "data-lanes",
1138					   lane_assignments, dp_lanes);
1139		of_property_read_u32_array(endpoint, "lane-polarities",
1140					   lane_polarities, dp_lanes);
1141	} else {
1142		dp_lanes = SN_MAX_DP_LANES;
1143	}
1144	of_node_put(endpoint);
1145
1146	/*
1147	 * Convert into register format.  Loop over all lanes even if
1148	 * data-lanes had fewer elements so that we nicely initialize
1149	 * the LN_ASSIGN register.
1150	 */
1151	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1152		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1153		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1154	}
1155
1156	/* Stash in our struct for when we power on */
1157	pdata->dp_lanes = dp_lanes;
1158	pdata->ln_assign = ln_assign;
1159	pdata->ln_polrs = ln_polrs;
1160}
1161
1162static int ti_sn_bridge_probe(struct i2c_client *client,
1163			      const struct i2c_device_id *id)
1164{
1165	struct ti_sn_bridge *pdata;
 
1166	int ret;
1167
1168	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1169		DRM_ERROR("device doesn't support I2C\n");
1170		return -ENODEV;
1171	}
1172
1173	pdata = devm_kzalloc(&client->dev, sizeof(struct ti_sn_bridge),
1174			     GFP_KERNEL);
1175	if (!pdata)
1176		return -ENOMEM;
 
 
 
 
1177
1178	pdata->regmap = devm_regmap_init_i2c(client,
1179					     &ti_sn_bridge_regmap_config);
1180	if (IS_ERR(pdata->regmap)) {
1181		DRM_ERROR("regmap i2c init failed\n");
1182		return PTR_ERR(pdata->regmap);
1183	}
 
 
 
 
 
1184
1185	pdata->dev = &client->dev;
 
 
1186
1187	ret = drm_of_find_panel_or_bridge(pdata->dev->of_node, 1, 0,
1188					  &pdata->panel, NULL);
1189	if (ret) {
1190		DRM_ERROR("could not find any panel node\n");
 
 
 
 
 
 
1191		return ret;
1192	}
1193
1194	dev_set_drvdata(&client->dev, pdata);
1195
1196	pdata->enable_gpio = devm_gpiod_get(pdata->dev, "enable",
1197					    GPIOD_OUT_LOW);
1198	if (IS_ERR(pdata->enable_gpio)) {
1199		DRM_ERROR("failed to get enable gpio from DT\n");
1200		ret = PTR_ERR(pdata->enable_gpio);
1201		return ret;
1202	}
 
 
 
1203
1204	ti_sn_bridge_parse_lanes(pdata, client->dev.of_node);
1205
1206	ret = ti_sn_bridge_parse_regulators(pdata);
1207	if (ret) {
1208		DRM_ERROR("failed to parse regulators\n");
1209		return ret;
1210	}
1211
1212	pdata->refclk = devm_clk_get(pdata->dev, "refclk");
1213	if (IS_ERR(pdata->refclk)) {
1214		ret = PTR_ERR(pdata->refclk);
1215		if (ret == -EPROBE_DEFER)
1216			return ret;
1217		DRM_DEBUG_KMS("refclk not found\n");
1218		pdata->refclk = NULL;
1219	}
1220
1221	ret = ti_sn_bridge_parse_dsi_host(pdata);
1222	if (ret)
1223		return ret;
 
 
 
 
 
1224
1225	pm_runtime_enable(pdata->dev);
 
 
 
 
1226
1227	ret = ti_sn_setup_gpio_controller(pdata);
1228	if (ret) {
1229		pm_runtime_disable(pdata->dev);
1230		return ret;
1231	}
1232
1233	i2c_set_clientdata(client, pdata);
1234
1235	pdata->aux.name = "ti-sn65dsi86-aux";
1236	pdata->aux.dev = pdata->dev;
1237	pdata->aux.transfer = ti_sn_aux_transfer;
1238	drm_dp_aux_register(&pdata->aux);
1239
1240	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1241	pdata->bridge.of_node = client->dev.of_node;
1242
1243	drm_bridge_add(&pdata->bridge);
1244
1245	ti_sn_debugfs_init(pdata);
1246
1247	return 0;
1248}
1249
1250static int ti_sn_bridge_remove(struct i2c_client *client)
1251{
1252	struct ti_sn_bridge *pdata = i2c_get_clientdata(client);
1253
1254	if (!pdata)
1255		return -EINVAL;
 
1256
1257	ti_sn_debugfs_remove(pdata);
 
 
1258
1259	of_node_put(pdata->host_node);
 
 
1260
1261	pm_runtime_disable(pdata->dev);
 
 
1262
1263	if (pdata->dsi) {
1264		mipi_dsi_detach(pdata->dsi);
1265		mipi_dsi_device_unregister(pdata->dsi);
1266	}
1267
1268	drm_bridge_remove(&pdata->bridge);
1269
1270	return 0;
1271}
1272
1273static struct i2c_device_id ti_sn_bridge_id[] = {
1274	{ "ti,sn65dsi86", 0},
1275	{},
1276};
1277MODULE_DEVICE_TABLE(i2c, ti_sn_bridge_id);
 
 
 
1278
1279static const struct of_device_id ti_sn_bridge_match_table[] = {
1280	{.compatible = "ti,sn65dsi86"},
1281	{},
1282};
1283MODULE_DEVICE_TABLE(of, ti_sn_bridge_match_table);
1284
1285static struct i2c_driver ti_sn_bridge_driver = {
1286	.driver = {
1287		.name = "ti_sn65dsi86",
1288		.of_match_table = ti_sn_bridge_match_table,
1289		.pm = &ti_sn_bridge_pm_ops,
1290	},
1291	.probe = ti_sn_bridge_probe,
1292	.remove = ti_sn_bridge_remove,
1293	.id_table = ti_sn_bridge_id,
1294};
1295module_i2c_driver(ti_sn_bridge_driver);
1296
1297MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
1298MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
1299MODULE_LICENSE("GPL v2");