Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22#include <linux/kernel.h>
23#include <linux/blk_types.h>
24#include <linux/slab.h>
25#include <linux/backing-dev.h>
26#include <linux/swap.h>
27
28#include "blk-wbt.h"
29#include "blk-rq-qos.h"
30#include "elevator.h"
31
32#define CREATE_TRACE_POINTS
33#include <trace/events/wbt.h>
34
35static inline void wbt_clear_state(struct request *rq)
36{
37 rq->wbt_flags = 0;
38}
39
40static inline enum wbt_flags wbt_flags(struct request *rq)
41{
42 return rq->wbt_flags;
43}
44
45static inline bool wbt_is_tracked(struct request *rq)
46{
47 return rq->wbt_flags & WBT_TRACKED;
48}
49
50static inline bool wbt_is_read(struct request *rq)
51{
52 return rq->wbt_flags & WBT_READ;
53}
54
55enum {
56 /*
57 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
58 * from here depending on device stats
59 */
60 RWB_DEF_DEPTH = 16,
61
62 /*
63 * 100msec window
64 */
65 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
66
67 /*
68 * Disregard stats, if we don't meet this minimum
69 */
70 RWB_MIN_WRITE_SAMPLES = 3,
71
72 /*
73 * If we have this number of consecutive windows with not enough
74 * information to scale up or down, scale up.
75 */
76 RWB_UNKNOWN_BUMP = 5,
77};
78
79static inline bool rwb_enabled(struct rq_wb *rwb)
80{
81 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
82 rwb->wb_normal != 0;
83}
84
85static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
86{
87 if (rwb_enabled(rwb)) {
88 const unsigned long cur = jiffies;
89
90 if (cur != *var)
91 *var = cur;
92 }
93}
94
95/*
96 * If a task was rate throttled in balance_dirty_pages() within the last
97 * second or so, use that to indicate a higher cleaning rate.
98 */
99static bool wb_recent_wait(struct rq_wb *rwb)
100{
101 struct bdi_writeback *wb = &rwb->rqos.q->disk->bdi->wb;
102
103 return time_before(jiffies, wb->dirty_sleep + HZ);
104}
105
106static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
107 enum wbt_flags wb_acct)
108{
109 if (wb_acct & WBT_KSWAPD)
110 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
111 else if (wb_acct & WBT_DISCARD)
112 return &rwb->rq_wait[WBT_RWQ_DISCARD];
113
114 return &rwb->rq_wait[WBT_RWQ_BG];
115}
116
117static void rwb_wake_all(struct rq_wb *rwb)
118{
119 int i;
120
121 for (i = 0; i < WBT_NUM_RWQ; i++) {
122 struct rq_wait *rqw = &rwb->rq_wait[i];
123
124 if (wq_has_sleeper(&rqw->wait))
125 wake_up_all(&rqw->wait);
126 }
127}
128
129static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
130 enum wbt_flags wb_acct)
131{
132 int inflight, limit;
133
134 inflight = atomic_dec_return(&rqw->inflight);
135
136 /*
137 * wbt got disabled with IO in flight. Wake up any potential
138 * waiters, we don't have to do more than that.
139 */
140 if (unlikely(!rwb_enabled(rwb))) {
141 rwb_wake_all(rwb);
142 return;
143 }
144
145 /*
146 * For discards, our limit is always the background. For writes, if
147 * the device does write back caching, drop further down before we
148 * wake people up.
149 */
150 if (wb_acct & WBT_DISCARD)
151 limit = rwb->wb_background;
152 else if (rwb->wc && !wb_recent_wait(rwb))
153 limit = 0;
154 else
155 limit = rwb->wb_normal;
156
157 /*
158 * Don't wake anyone up if we are above the normal limit.
159 */
160 if (inflight && inflight >= limit)
161 return;
162
163 if (wq_has_sleeper(&rqw->wait)) {
164 int diff = limit - inflight;
165
166 if (!inflight || diff >= rwb->wb_background / 2)
167 wake_up_all(&rqw->wait);
168 }
169}
170
171static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
172{
173 struct rq_wb *rwb = RQWB(rqos);
174 struct rq_wait *rqw;
175
176 if (!(wb_acct & WBT_TRACKED))
177 return;
178
179 rqw = get_rq_wait(rwb, wb_acct);
180 wbt_rqw_done(rwb, rqw, wb_acct);
181}
182
183/*
184 * Called on completion of a request. Note that it's also called when
185 * a request is merged, when the request gets freed.
186 */
187static void wbt_done(struct rq_qos *rqos, struct request *rq)
188{
189 struct rq_wb *rwb = RQWB(rqos);
190
191 if (!wbt_is_tracked(rq)) {
192 if (rwb->sync_cookie == rq) {
193 rwb->sync_issue = 0;
194 rwb->sync_cookie = NULL;
195 }
196
197 if (wbt_is_read(rq))
198 wb_timestamp(rwb, &rwb->last_comp);
199 } else {
200 WARN_ON_ONCE(rq == rwb->sync_cookie);
201 __wbt_done(rqos, wbt_flags(rq));
202 }
203 wbt_clear_state(rq);
204}
205
206static inline bool stat_sample_valid(struct blk_rq_stat *stat)
207{
208 /*
209 * We need at least one read sample, and a minimum of
210 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
211 * that it's writes impacting us, and not just some sole read on
212 * a device that is in a lower power state.
213 */
214 return (stat[READ].nr_samples >= 1 &&
215 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
216}
217
218static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
219{
220 u64 now, issue = READ_ONCE(rwb->sync_issue);
221
222 if (!issue || !rwb->sync_cookie)
223 return 0;
224
225 now = ktime_to_ns(ktime_get());
226 return now - issue;
227}
228
229enum {
230 LAT_OK = 1,
231 LAT_UNKNOWN,
232 LAT_UNKNOWN_WRITES,
233 LAT_EXCEEDED,
234};
235
236static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
237{
238 struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
239 struct rq_depth *rqd = &rwb->rq_depth;
240 u64 thislat;
241
242 /*
243 * If our stored sync issue exceeds the window size, or it
244 * exceeds our min target AND we haven't logged any entries,
245 * flag the latency as exceeded. wbt works off completion latencies,
246 * but for a flooded device, a single sync IO can take a long time
247 * to complete after being issued. If this time exceeds our
248 * monitoring window AND we didn't see any other completions in that
249 * window, then count that sync IO as a violation of the latency.
250 */
251 thislat = rwb_sync_issue_lat(rwb);
252 if (thislat > rwb->cur_win_nsec ||
253 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
254 trace_wbt_lat(bdi, thislat);
255 return LAT_EXCEEDED;
256 }
257
258 /*
259 * No read/write mix, if stat isn't valid
260 */
261 if (!stat_sample_valid(stat)) {
262 /*
263 * If we had writes in this stat window and the window is
264 * current, we're only doing writes. If a task recently
265 * waited or still has writes in flights, consider us doing
266 * just writes as well.
267 */
268 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
269 wbt_inflight(rwb))
270 return LAT_UNKNOWN_WRITES;
271 return LAT_UNKNOWN;
272 }
273
274 /*
275 * If the 'min' latency exceeds our target, step down.
276 */
277 if (stat[READ].min > rwb->min_lat_nsec) {
278 trace_wbt_lat(bdi, stat[READ].min);
279 trace_wbt_stat(bdi, stat);
280 return LAT_EXCEEDED;
281 }
282
283 if (rqd->scale_step)
284 trace_wbt_stat(bdi, stat);
285
286 return LAT_OK;
287}
288
289static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
290{
291 struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
292 struct rq_depth *rqd = &rwb->rq_depth;
293
294 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
295 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
296}
297
298static void calc_wb_limits(struct rq_wb *rwb)
299{
300 if (rwb->min_lat_nsec == 0) {
301 rwb->wb_normal = rwb->wb_background = 0;
302 } else if (rwb->rq_depth.max_depth <= 2) {
303 rwb->wb_normal = rwb->rq_depth.max_depth;
304 rwb->wb_background = 1;
305 } else {
306 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
307 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
308 }
309}
310
311static void scale_up(struct rq_wb *rwb)
312{
313 if (!rq_depth_scale_up(&rwb->rq_depth))
314 return;
315 calc_wb_limits(rwb);
316 rwb->unknown_cnt = 0;
317 rwb_wake_all(rwb);
318 rwb_trace_step(rwb, tracepoint_string("scale up"));
319}
320
321static void scale_down(struct rq_wb *rwb, bool hard_throttle)
322{
323 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
324 return;
325 calc_wb_limits(rwb);
326 rwb->unknown_cnt = 0;
327 rwb_trace_step(rwb, tracepoint_string("scale down"));
328}
329
330static void rwb_arm_timer(struct rq_wb *rwb)
331{
332 struct rq_depth *rqd = &rwb->rq_depth;
333
334 if (rqd->scale_step > 0) {
335 /*
336 * We should speed this up, using some variant of a fast
337 * integer inverse square root calculation. Since we only do
338 * this for every window expiration, it's not a huge deal,
339 * though.
340 */
341 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
342 int_sqrt((rqd->scale_step + 1) << 8));
343 } else {
344 /*
345 * For step < 0, we don't want to increase/decrease the
346 * window size.
347 */
348 rwb->cur_win_nsec = rwb->win_nsec;
349 }
350
351 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
352}
353
354static void wb_timer_fn(struct blk_stat_callback *cb)
355{
356 struct rq_wb *rwb = cb->data;
357 struct rq_depth *rqd = &rwb->rq_depth;
358 unsigned int inflight = wbt_inflight(rwb);
359 int status;
360
361 if (!rwb->rqos.q->disk)
362 return;
363
364 status = latency_exceeded(rwb, cb->stat);
365
366 trace_wbt_timer(rwb->rqos.q->disk->bdi, status, rqd->scale_step,
367 inflight);
368
369 /*
370 * If we exceeded the latency target, step down. If we did not,
371 * step one level up. If we don't know enough to say either exceeded
372 * or ok, then don't do anything.
373 */
374 switch (status) {
375 case LAT_EXCEEDED:
376 scale_down(rwb, true);
377 break;
378 case LAT_OK:
379 scale_up(rwb);
380 break;
381 case LAT_UNKNOWN_WRITES:
382 /*
383 * We started a the center step, but don't have a valid
384 * read/write sample, but we do have writes going on.
385 * Allow step to go negative, to increase write perf.
386 */
387 scale_up(rwb);
388 break;
389 case LAT_UNKNOWN:
390 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
391 break;
392 /*
393 * We get here when previously scaled reduced depth, and we
394 * currently don't have a valid read/write sample. For that
395 * case, slowly return to center state (step == 0).
396 */
397 if (rqd->scale_step > 0)
398 scale_up(rwb);
399 else if (rqd->scale_step < 0)
400 scale_down(rwb, false);
401 break;
402 default:
403 break;
404 }
405
406 /*
407 * Re-arm timer, if we have IO in flight
408 */
409 if (rqd->scale_step || inflight)
410 rwb_arm_timer(rwb);
411}
412
413static void wbt_update_limits(struct rq_wb *rwb)
414{
415 struct rq_depth *rqd = &rwb->rq_depth;
416
417 rqd->scale_step = 0;
418 rqd->scaled_max = false;
419
420 rq_depth_calc_max_depth(rqd);
421 calc_wb_limits(rwb);
422
423 rwb_wake_all(rwb);
424}
425
426bool wbt_disabled(struct request_queue *q)
427{
428 struct rq_qos *rqos = wbt_rq_qos(q);
429
430 return !rqos || RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT ||
431 RQWB(rqos)->enable_state == WBT_STATE_OFF_MANUAL;
432}
433
434u64 wbt_get_min_lat(struct request_queue *q)
435{
436 struct rq_qos *rqos = wbt_rq_qos(q);
437 if (!rqos)
438 return 0;
439 return RQWB(rqos)->min_lat_nsec;
440}
441
442void wbt_set_min_lat(struct request_queue *q, u64 val)
443{
444 struct rq_qos *rqos = wbt_rq_qos(q);
445 if (!rqos)
446 return;
447
448 RQWB(rqos)->min_lat_nsec = val;
449 if (val)
450 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
451 else
452 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
453
454 wbt_update_limits(RQWB(rqos));
455}
456
457
458static bool close_io(struct rq_wb *rwb)
459{
460 const unsigned long now = jiffies;
461
462 return time_before(now, rwb->last_issue + HZ / 10) ||
463 time_before(now, rwb->last_comp + HZ / 10);
464}
465
466#define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
467
468static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
469{
470 unsigned int limit;
471
472 /*
473 * If we got disabled, just return UINT_MAX. This ensures that
474 * we'll properly inc a new IO, and dec+wakeup at the end.
475 */
476 if (!rwb_enabled(rwb))
477 return UINT_MAX;
478
479 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
480 return rwb->wb_background;
481
482 /*
483 * At this point we know it's a buffered write. If this is
484 * kswapd trying to free memory, or REQ_SYNC is set, then
485 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
486 * that. If the write is marked as a background write, then use
487 * the idle limit, or go to normal if we haven't had competing
488 * IO for a bit.
489 */
490 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
491 limit = rwb->rq_depth.max_depth;
492 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
493 /*
494 * If less than 100ms since we completed unrelated IO,
495 * limit us to half the depth for background writeback.
496 */
497 limit = rwb->wb_background;
498 } else
499 limit = rwb->wb_normal;
500
501 return limit;
502}
503
504struct wbt_wait_data {
505 struct rq_wb *rwb;
506 enum wbt_flags wb_acct;
507 blk_opf_t opf;
508};
509
510static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
511{
512 struct wbt_wait_data *data = private_data;
513 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
514}
515
516static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
517{
518 struct wbt_wait_data *data = private_data;
519 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
520}
521
522/*
523 * Block if we will exceed our limit, or if we are currently waiting for
524 * the timer to kick off queuing again.
525 */
526static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
527 blk_opf_t opf)
528{
529 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
530 struct wbt_wait_data data = {
531 .rwb = rwb,
532 .wb_acct = wb_acct,
533 .opf = opf,
534 };
535
536 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
537}
538
539static inline bool wbt_should_throttle(struct bio *bio)
540{
541 switch (bio_op(bio)) {
542 case REQ_OP_WRITE:
543 /*
544 * Don't throttle WRITE_ODIRECT
545 */
546 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
547 (REQ_SYNC | REQ_IDLE))
548 return false;
549 fallthrough;
550 case REQ_OP_DISCARD:
551 return true;
552 default:
553 return false;
554 }
555}
556
557static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
558{
559 enum wbt_flags flags = 0;
560
561 if (!rwb_enabled(rwb))
562 return 0;
563
564 if (bio_op(bio) == REQ_OP_READ) {
565 flags = WBT_READ;
566 } else if (wbt_should_throttle(bio)) {
567 if (current_is_kswapd())
568 flags |= WBT_KSWAPD;
569 if (bio_op(bio) == REQ_OP_DISCARD)
570 flags |= WBT_DISCARD;
571 flags |= WBT_TRACKED;
572 }
573 return flags;
574}
575
576static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
577{
578 struct rq_wb *rwb = RQWB(rqos);
579 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
580 __wbt_done(rqos, flags);
581}
582
583/*
584 * May sleep, if we have exceeded the writeback limits. Caller can pass
585 * in an irq held spinlock, if it holds one when calling this function.
586 * If we do sleep, we'll release and re-grab it.
587 */
588static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
589{
590 struct rq_wb *rwb = RQWB(rqos);
591 enum wbt_flags flags;
592
593 flags = bio_to_wbt_flags(rwb, bio);
594 if (!(flags & WBT_TRACKED)) {
595 if (flags & WBT_READ)
596 wb_timestamp(rwb, &rwb->last_issue);
597 return;
598 }
599
600 __wbt_wait(rwb, flags, bio->bi_opf);
601
602 if (!blk_stat_is_active(rwb->cb))
603 rwb_arm_timer(rwb);
604}
605
606static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
607{
608 struct rq_wb *rwb = RQWB(rqos);
609 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
610}
611
612static void wbt_issue(struct rq_qos *rqos, struct request *rq)
613{
614 struct rq_wb *rwb = RQWB(rqos);
615
616 if (!rwb_enabled(rwb))
617 return;
618
619 /*
620 * Track sync issue, in case it takes a long time to complete. Allows us
621 * to react quicker, if a sync IO takes a long time to complete. Note
622 * that this is just a hint. The request can go away when it completes,
623 * so it's important we never dereference it. We only use the address to
624 * compare with, which is why we store the sync_issue time locally.
625 */
626 if (wbt_is_read(rq) && !rwb->sync_issue) {
627 rwb->sync_cookie = rq;
628 rwb->sync_issue = rq->io_start_time_ns;
629 }
630}
631
632static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
633{
634 struct rq_wb *rwb = RQWB(rqos);
635 if (!rwb_enabled(rwb))
636 return;
637 if (rq == rwb->sync_cookie) {
638 rwb->sync_issue = 0;
639 rwb->sync_cookie = NULL;
640 }
641}
642
643void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
644{
645 struct rq_qos *rqos = wbt_rq_qos(q);
646 if (rqos)
647 RQWB(rqos)->wc = write_cache_on;
648}
649
650/*
651 * Enable wbt if defaults are configured that way
652 */
653void wbt_enable_default(struct request_queue *q)
654{
655 struct rq_qos *rqos;
656 bool disable_flag = q->elevator &&
657 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags);
658
659 /* Throttling already enabled? */
660 rqos = wbt_rq_qos(q);
661 if (rqos) {
662 if (!disable_flag &&
663 RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
664 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
665 return;
666 }
667
668 /* Queue not registered? Maybe shutting down... */
669 if (!blk_queue_registered(q))
670 return;
671
672 if (queue_is_mq(q) && !disable_flag)
673 wbt_init(q);
674}
675EXPORT_SYMBOL_GPL(wbt_enable_default);
676
677u64 wbt_default_latency_nsec(struct request_queue *q)
678{
679 /*
680 * We default to 2msec for non-rotational storage, and 75msec
681 * for rotational storage.
682 */
683 if (blk_queue_nonrot(q))
684 return 2000000ULL;
685 else
686 return 75000000ULL;
687}
688
689static int wbt_data_dir(const struct request *rq)
690{
691 const enum req_op op = req_op(rq);
692
693 if (op == REQ_OP_READ)
694 return READ;
695 else if (op_is_write(op))
696 return WRITE;
697
698 /* don't account */
699 return -1;
700}
701
702static void wbt_queue_depth_changed(struct rq_qos *rqos)
703{
704 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
705 wbt_update_limits(RQWB(rqos));
706}
707
708static void wbt_exit(struct rq_qos *rqos)
709{
710 struct rq_wb *rwb = RQWB(rqos);
711 struct request_queue *q = rqos->q;
712
713 blk_stat_remove_callback(q, rwb->cb);
714 blk_stat_free_callback(rwb->cb);
715 kfree(rwb);
716}
717
718/*
719 * Disable wbt, if enabled by default.
720 */
721void wbt_disable_default(struct request_queue *q)
722{
723 struct rq_qos *rqos = wbt_rq_qos(q);
724 struct rq_wb *rwb;
725 if (!rqos)
726 return;
727 rwb = RQWB(rqos);
728 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
729 blk_stat_deactivate(rwb->cb);
730 rwb->enable_state = WBT_STATE_OFF_DEFAULT;
731 }
732}
733EXPORT_SYMBOL_GPL(wbt_disable_default);
734
735#ifdef CONFIG_BLK_DEBUG_FS
736static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
737{
738 struct rq_qos *rqos = data;
739 struct rq_wb *rwb = RQWB(rqos);
740
741 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
742 return 0;
743}
744
745static int wbt_enabled_show(void *data, struct seq_file *m)
746{
747 struct rq_qos *rqos = data;
748 struct rq_wb *rwb = RQWB(rqos);
749
750 seq_printf(m, "%d\n", rwb->enable_state);
751 return 0;
752}
753
754static int wbt_id_show(void *data, struct seq_file *m)
755{
756 struct rq_qos *rqos = data;
757
758 seq_printf(m, "%u\n", rqos->id);
759 return 0;
760}
761
762static int wbt_inflight_show(void *data, struct seq_file *m)
763{
764 struct rq_qos *rqos = data;
765 struct rq_wb *rwb = RQWB(rqos);
766 int i;
767
768 for (i = 0; i < WBT_NUM_RWQ; i++)
769 seq_printf(m, "%d: inflight %d\n", i,
770 atomic_read(&rwb->rq_wait[i].inflight));
771 return 0;
772}
773
774static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
775{
776 struct rq_qos *rqos = data;
777 struct rq_wb *rwb = RQWB(rqos);
778
779 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
780 return 0;
781}
782
783static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
784{
785 struct rq_qos *rqos = data;
786 struct rq_wb *rwb = RQWB(rqos);
787
788 seq_printf(m, "%u\n", rwb->unknown_cnt);
789 return 0;
790}
791
792static int wbt_normal_show(void *data, struct seq_file *m)
793{
794 struct rq_qos *rqos = data;
795 struct rq_wb *rwb = RQWB(rqos);
796
797 seq_printf(m, "%u\n", rwb->wb_normal);
798 return 0;
799}
800
801static int wbt_background_show(void *data, struct seq_file *m)
802{
803 struct rq_qos *rqos = data;
804 struct rq_wb *rwb = RQWB(rqos);
805
806 seq_printf(m, "%u\n", rwb->wb_background);
807 return 0;
808}
809
810static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
811 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
812 {"enabled", 0400, wbt_enabled_show},
813 {"id", 0400, wbt_id_show},
814 {"inflight", 0400, wbt_inflight_show},
815 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
816 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
817 {"wb_normal", 0400, wbt_normal_show},
818 {"wb_background", 0400, wbt_background_show},
819 {},
820};
821#endif
822
823static struct rq_qos_ops wbt_rqos_ops = {
824 .throttle = wbt_wait,
825 .issue = wbt_issue,
826 .track = wbt_track,
827 .requeue = wbt_requeue,
828 .done = wbt_done,
829 .cleanup = wbt_cleanup,
830 .queue_depth_changed = wbt_queue_depth_changed,
831 .exit = wbt_exit,
832#ifdef CONFIG_BLK_DEBUG_FS
833 .debugfs_attrs = wbt_debugfs_attrs,
834#endif
835};
836
837int wbt_init(struct request_queue *q)
838{
839 struct rq_wb *rwb;
840 int i;
841 int ret;
842
843 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
844 if (!rwb)
845 return -ENOMEM;
846
847 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
848 if (!rwb->cb) {
849 kfree(rwb);
850 return -ENOMEM;
851 }
852
853 for (i = 0; i < WBT_NUM_RWQ; i++)
854 rq_wait_init(&rwb->rq_wait[i]);
855
856 rwb->rqos.id = RQ_QOS_WBT;
857 rwb->rqos.ops = &wbt_rqos_ops;
858 rwb->rqos.q = q;
859 rwb->last_comp = rwb->last_issue = jiffies;
860 rwb->win_nsec = RWB_WINDOW_NSEC;
861 rwb->enable_state = WBT_STATE_ON_DEFAULT;
862 rwb->wc = test_bit(QUEUE_FLAG_WC, &q->queue_flags);
863 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
864 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
865
866 wbt_queue_depth_changed(&rwb->rqos);
867
868 /*
869 * Assign rwb and add the stats callback.
870 */
871 ret = rq_qos_add(q, &rwb->rqos);
872 if (ret)
873 goto err_free;
874
875 blk_stat_add_callback(q, rwb->cb);
876
877 return 0;
878
879err_free:
880 blk_stat_free_callback(rwb->cb);
881 kfree(rwb);
882 return ret;
883
884}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22#include <linux/kernel.h>
23#include <linux/blk_types.h>
24#include <linux/slab.h>
25#include <linux/backing-dev.h>
26#include <linux/swap.h>
27
28#include "blk-wbt.h"
29#include "blk-rq-qos.h"
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/wbt.h>
33
34static inline void wbt_clear_state(struct request *rq)
35{
36 rq->wbt_flags = 0;
37}
38
39static inline enum wbt_flags wbt_flags(struct request *rq)
40{
41 return rq->wbt_flags;
42}
43
44static inline bool wbt_is_tracked(struct request *rq)
45{
46 return rq->wbt_flags & WBT_TRACKED;
47}
48
49static inline bool wbt_is_read(struct request *rq)
50{
51 return rq->wbt_flags & WBT_READ;
52}
53
54enum {
55 /*
56 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
57 * from here depending on device stats
58 */
59 RWB_DEF_DEPTH = 16,
60
61 /*
62 * 100msec window
63 */
64 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
65
66 /*
67 * Disregard stats, if we don't meet this minimum
68 */
69 RWB_MIN_WRITE_SAMPLES = 3,
70
71 /*
72 * If we have this number of consecutive windows with not enough
73 * information to scale up or down, scale up.
74 */
75 RWB_UNKNOWN_BUMP = 5,
76};
77
78static inline bool rwb_enabled(struct rq_wb *rwb)
79{
80 return rwb && rwb->wb_normal != 0;
81}
82
83static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
84{
85 if (rwb_enabled(rwb)) {
86 const unsigned long cur = jiffies;
87
88 if (cur != *var)
89 *var = cur;
90 }
91}
92
93/*
94 * If a task was rate throttled in balance_dirty_pages() within the last
95 * second or so, use that to indicate a higher cleaning rate.
96 */
97static bool wb_recent_wait(struct rq_wb *rwb)
98{
99 struct bdi_writeback *wb = &rwb->rqos.q->backing_dev_info->wb;
100
101 return time_before(jiffies, wb->dirty_sleep + HZ);
102}
103
104static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
105 enum wbt_flags wb_acct)
106{
107 if (wb_acct & WBT_KSWAPD)
108 return &rwb->rq_wait[WBT_RWQ_KSWAPD];
109 else if (wb_acct & WBT_DISCARD)
110 return &rwb->rq_wait[WBT_RWQ_DISCARD];
111
112 return &rwb->rq_wait[WBT_RWQ_BG];
113}
114
115static void rwb_wake_all(struct rq_wb *rwb)
116{
117 int i;
118
119 for (i = 0; i < WBT_NUM_RWQ; i++) {
120 struct rq_wait *rqw = &rwb->rq_wait[i];
121
122 if (wq_has_sleeper(&rqw->wait))
123 wake_up_all(&rqw->wait);
124 }
125}
126
127static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
128 enum wbt_flags wb_acct)
129{
130 int inflight, limit;
131
132 inflight = atomic_dec_return(&rqw->inflight);
133
134 /*
135 * wbt got disabled with IO in flight. Wake up any potential
136 * waiters, we don't have to do more than that.
137 */
138 if (unlikely(!rwb_enabled(rwb))) {
139 rwb_wake_all(rwb);
140 return;
141 }
142
143 /*
144 * For discards, our limit is always the background. For writes, if
145 * the device does write back caching, drop further down before we
146 * wake people up.
147 */
148 if (wb_acct & WBT_DISCARD)
149 limit = rwb->wb_background;
150 else if (rwb->wc && !wb_recent_wait(rwb))
151 limit = 0;
152 else
153 limit = rwb->wb_normal;
154
155 /*
156 * Don't wake anyone up if we are above the normal limit.
157 */
158 if (inflight && inflight >= limit)
159 return;
160
161 if (wq_has_sleeper(&rqw->wait)) {
162 int diff = limit - inflight;
163
164 if (!inflight || diff >= rwb->wb_background / 2)
165 wake_up_all(&rqw->wait);
166 }
167}
168
169static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
170{
171 struct rq_wb *rwb = RQWB(rqos);
172 struct rq_wait *rqw;
173
174 if (!(wb_acct & WBT_TRACKED))
175 return;
176
177 rqw = get_rq_wait(rwb, wb_acct);
178 wbt_rqw_done(rwb, rqw, wb_acct);
179}
180
181/*
182 * Called on completion of a request. Note that it's also called when
183 * a request is merged, when the request gets freed.
184 */
185static void wbt_done(struct rq_qos *rqos, struct request *rq)
186{
187 struct rq_wb *rwb = RQWB(rqos);
188
189 if (!wbt_is_tracked(rq)) {
190 if (rwb->sync_cookie == rq) {
191 rwb->sync_issue = 0;
192 rwb->sync_cookie = NULL;
193 }
194
195 if (wbt_is_read(rq))
196 wb_timestamp(rwb, &rwb->last_comp);
197 } else {
198 WARN_ON_ONCE(rq == rwb->sync_cookie);
199 __wbt_done(rqos, wbt_flags(rq));
200 }
201 wbt_clear_state(rq);
202}
203
204static inline bool stat_sample_valid(struct blk_rq_stat *stat)
205{
206 /*
207 * We need at least one read sample, and a minimum of
208 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
209 * that it's writes impacting us, and not just some sole read on
210 * a device that is in a lower power state.
211 */
212 return (stat[READ].nr_samples >= 1 &&
213 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
214}
215
216static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
217{
218 u64 now, issue = READ_ONCE(rwb->sync_issue);
219
220 if (!issue || !rwb->sync_cookie)
221 return 0;
222
223 now = ktime_to_ns(ktime_get());
224 return now - issue;
225}
226
227enum {
228 LAT_OK = 1,
229 LAT_UNKNOWN,
230 LAT_UNKNOWN_WRITES,
231 LAT_EXCEEDED,
232};
233
234static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
235{
236 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
237 struct rq_depth *rqd = &rwb->rq_depth;
238 u64 thislat;
239
240 /*
241 * If our stored sync issue exceeds the window size, or it
242 * exceeds our min target AND we haven't logged any entries,
243 * flag the latency as exceeded. wbt works off completion latencies,
244 * but for a flooded device, a single sync IO can take a long time
245 * to complete after being issued. If this time exceeds our
246 * monitoring window AND we didn't see any other completions in that
247 * window, then count that sync IO as a violation of the latency.
248 */
249 thislat = rwb_sync_issue_lat(rwb);
250 if (thislat > rwb->cur_win_nsec ||
251 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
252 trace_wbt_lat(bdi, thislat);
253 return LAT_EXCEEDED;
254 }
255
256 /*
257 * No read/write mix, if stat isn't valid
258 */
259 if (!stat_sample_valid(stat)) {
260 /*
261 * If we had writes in this stat window and the window is
262 * current, we're only doing writes. If a task recently
263 * waited or still has writes in flights, consider us doing
264 * just writes as well.
265 */
266 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
267 wbt_inflight(rwb))
268 return LAT_UNKNOWN_WRITES;
269 return LAT_UNKNOWN;
270 }
271
272 /*
273 * If the 'min' latency exceeds our target, step down.
274 */
275 if (stat[READ].min > rwb->min_lat_nsec) {
276 trace_wbt_lat(bdi, stat[READ].min);
277 trace_wbt_stat(bdi, stat);
278 return LAT_EXCEEDED;
279 }
280
281 if (rqd->scale_step)
282 trace_wbt_stat(bdi, stat);
283
284 return LAT_OK;
285}
286
287static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
288{
289 struct backing_dev_info *bdi = rwb->rqos.q->backing_dev_info;
290 struct rq_depth *rqd = &rwb->rq_depth;
291
292 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
293 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
294}
295
296static void calc_wb_limits(struct rq_wb *rwb)
297{
298 if (rwb->min_lat_nsec == 0) {
299 rwb->wb_normal = rwb->wb_background = 0;
300 } else if (rwb->rq_depth.max_depth <= 2) {
301 rwb->wb_normal = rwb->rq_depth.max_depth;
302 rwb->wb_background = 1;
303 } else {
304 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
305 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
306 }
307}
308
309static void scale_up(struct rq_wb *rwb)
310{
311 if (!rq_depth_scale_up(&rwb->rq_depth))
312 return;
313 calc_wb_limits(rwb);
314 rwb->unknown_cnt = 0;
315 rwb_wake_all(rwb);
316 rwb_trace_step(rwb, tracepoint_string("scale up"));
317}
318
319static void scale_down(struct rq_wb *rwb, bool hard_throttle)
320{
321 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
322 return;
323 calc_wb_limits(rwb);
324 rwb->unknown_cnt = 0;
325 rwb_trace_step(rwb, tracepoint_string("scale down"));
326}
327
328static void rwb_arm_timer(struct rq_wb *rwb)
329{
330 struct rq_depth *rqd = &rwb->rq_depth;
331
332 if (rqd->scale_step > 0) {
333 /*
334 * We should speed this up, using some variant of a fast
335 * integer inverse square root calculation. Since we only do
336 * this for every window expiration, it's not a huge deal,
337 * though.
338 */
339 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
340 int_sqrt((rqd->scale_step + 1) << 8));
341 } else {
342 /*
343 * For step < 0, we don't want to increase/decrease the
344 * window size.
345 */
346 rwb->cur_win_nsec = rwb->win_nsec;
347 }
348
349 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
350}
351
352static void wb_timer_fn(struct blk_stat_callback *cb)
353{
354 struct rq_wb *rwb = cb->data;
355 struct rq_depth *rqd = &rwb->rq_depth;
356 unsigned int inflight = wbt_inflight(rwb);
357 int status;
358
359 status = latency_exceeded(rwb, cb->stat);
360
361 trace_wbt_timer(rwb->rqos.q->backing_dev_info, status, rqd->scale_step,
362 inflight);
363
364 /*
365 * If we exceeded the latency target, step down. If we did not,
366 * step one level up. If we don't know enough to say either exceeded
367 * or ok, then don't do anything.
368 */
369 switch (status) {
370 case LAT_EXCEEDED:
371 scale_down(rwb, true);
372 break;
373 case LAT_OK:
374 scale_up(rwb);
375 break;
376 case LAT_UNKNOWN_WRITES:
377 /*
378 * We started a the center step, but don't have a valid
379 * read/write sample, but we do have writes going on.
380 * Allow step to go negative, to increase write perf.
381 */
382 scale_up(rwb);
383 break;
384 case LAT_UNKNOWN:
385 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
386 break;
387 /*
388 * We get here when previously scaled reduced depth, and we
389 * currently don't have a valid read/write sample. For that
390 * case, slowly return to center state (step == 0).
391 */
392 if (rqd->scale_step > 0)
393 scale_up(rwb);
394 else if (rqd->scale_step < 0)
395 scale_down(rwb, false);
396 break;
397 default:
398 break;
399 }
400
401 /*
402 * Re-arm timer, if we have IO in flight
403 */
404 if (rqd->scale_step || inflight)
405 rwb_arm_timer(rwb);
406}
407
408static void wbt_update_limits(struct rq_wb *rwb)
409{
410 struct rq_depth *rqd = &rwb->rq_depth;
411
412 rqd->scale_step = 0;
413 rqd->scaled_max = false;
414
415 rq_depth_calc_max_depth(rqd);
416 calc_wb_limits(rwb);
417
418 rwb_wake_all(rwb);
419}
420
421u64 wbt_get_min_lat(struct request_queue *q)
422{
423 struct rq_qos *rqos = wbt_rq_qos(q);
424 if (!rqos)
425 return 0;
426 return RQWB(rqos)->min_lat_nsec;
427}
428
429void wbt_set_min_lat(struct request_queue *q, u64 val)
430{
431 struct rq_qos *rqos = wbt_rq_qos(q);
432 if (!rqos)
433 return;
434 RQWB(rqos)->min_lat_nsec = val;
435 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
436 wbt_update_limits(RQWB(rqos));
437}
438
439
440static bool close_io(struct rq_wb *rwb)
441{
442 const unsigned long now = jiffies;
443
444 return time_before(now, rwb->last_issue + HZ / 10) ||
445 time_before(now, rwb->last_comp + HZ / 10);
446}
447
448#define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
449
450static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
451{
452 unsigned int limit;
453
454 /*
455 * If we got disabled, just return UINT_MAX. This ensures that
456 * we'll properly inc a new IO, and dec+wakeup at the end.
457 */
458 if (!rwb_enabled(rwb))
459 return UINT_MAX;
460
461 if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
462 return rwb->wb_background;
463
464 /*
465 * At this point we know it's a buffered write. If this is
466 * kswapd trying to free memory, or REQ_SYNC is set, then
467 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
468 * that. If the write is marked as a background write, then use
469 * the idle limit, or go to normal if we haven't had competing
470 * IO for a bit.
471 */
472 if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
473 limit = rwb->rq_depth.max_depth;
474 else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
475 /*
476 * If less than 100ms since we completed unrelated IO,
477 * limit us to half the depth for background writeback.
478 */
479 limit = rwb->wb_background;
480 } else
481 limit = rwb->wb_normal;
482
483 return limit;
484}
485
486struct wbt_wait_data {
487 struct rq_wb *rwb;
488 enum wbt_flags wb_acct;
489 unsigned long rw;
490};
491
492static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
493{
494 struct wbt_wait_data *data = private_data;
495 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
496}
497
498static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
499{
500 struct wbt_wait_data *data = private_data;
501 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
502}
503
504/*
505 * Block if we will exceed our limit, or if we are currently waiting for
506 * the timer to kick off queuing again.
507 */
508static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
509 unsigned long rw)
510{
511 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
512 struct wbt_wait_data data = {
513 .rwb = rwb,
514 .wb_acct = wb_acct,
515 .rw = rw,
516 };
517
518 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
519}
520
521static inline bool wbt_should_throttle(struct rq_wb *rwb, struct bio *bio)
522{
523 switch (bio_op(bio)) {
524 case REQ_OP_WRITE:
525 /*
526 * Don't throttle WRITE_ODIRECT
527 */
528 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
529 (REQ_SYNC | REQ_IDLE))
530 return false;
531 fallthrough;
532 case REQ_OP_DISCARD:
533 return true;
534 default:
535 return false;
536 }
537}
538
539static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
540{
541 enum wbt_flags flags = 0;
542
543 if (!rwb_enabled(rwb))
544 return 0;
545
546 if (bio_op(bio) == REQ_OP_READ) {
547 flags = WBT_READ;
548 } else if (wbt_should_throttle(rwb, bio)) {
549 if (current_is_kswapd())
550 flags |= WBT_KSWAPD;
551 if (bio_op(bio) == REQ_OP_DISCARD)
552 flags |= WBT_DISCARD;
553 flags |= WBT_TRACKED;
554 }
555 return flags;
556}
557
558static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
559{
560 struct rq_wb *rwb = RQWB(rqos);
561 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
562 __wbt_done(rqos, flags);
563}
564
565/*
566 * Returns true if the IO request should be accounted, false if not.
567 * May sleep, if we have exceeded the writeback limits. Caller can pass
568 * in an irq held spinlock, if it holds one when calling this function.
569 * If we do sleep, we'll release and re-grab it.
570 */
571static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
572{
573 struct rq_wb *rwb = RQWB(rqos);
574 enum wbt_flags flags;
575
576 flags = bio_to_wbt_flags(rwb, bio);
577 if (!(flags & WBT_TRACKED)) {
578 if (flags & WBT_READ)
579 wb_timestamp(rwb, &rwb->last_issue);
580 return;
581 }
582
583 __wbt_wait(rwb, flags, bio->bi_opf);
584
585 if (!blk_stat_is_active(rwb->cb))
586 rwb_arm_timer(rwb);
587}
588
589static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
590{
591 struct rq_wb *rwb = RQWB(rqos);
592 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
593}
594
595static void wbt_issue(struct rq_qos *rqos, struct request *rq)
596{
597 struct rq_wb *rwb = RQWB(rqos);
598
599 if (!rwb_enabled(rwb))
600 return;
601
602 /*
603 * Track sync issue, in case it takes a long time to complete. Allows us
604 * to react quicker, if a sync IO takes a long time to complete. Note
605 * that this is just a hint. The request can go away when it completes,
606 * so it's important we never dereference it. We only use the address to
607 * compare with, which is why we store the sync_issue time locally.
608 */
609 if (wbt_is_read(rq) && !rwb->sync_issue) {
610 rwb->sync_cookie = rq;
611 rwb->sync_issue = rq->io_start_time_ns;
612 }
613}
614
615static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
616{
617 struct rq_wb *rwb = RQWB(rqos);
618 if (!rwb_enabled(rwb))
619 return;
620 if (rq == rwb->sync_cookie) {
621 rwb->sync_issue = 0;
622 rwb->sync_cookie = NULL;
623 }
624}
625
626void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
627{
628 struct rq_qos *rqos = wbt_rq_qos(q);
629 if (rqos)
630 RQWB(rqos)->wc = write_cache_on;
631}
632
633/*
634 * Enable wbt if defaults are configured that way
635 */
636void wbt_enable_default(struct request_queue *q)
637{
638 struct rq_qos *rqos = wbt_rq_qos(q);
639 /* Throttling already enabled? */
640 if (rqos)
641 return;
642
643 /* Queue not registered? Maybe shutting down... */
644 if (!blk_queue_registered(q))
645 return;
646
647 if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
648 wbt_init(q);
649}
650EXPORT_SYMBOL_GPL(wbt_enable_default);
651
652u64 wbt_default_latency_nsec(struct request_queue *q)
653{
654 /*
655 * We default to 2msec for non-rotational storage, and 75msec
656 * for rotational storage.
657 */
658 if (blk_queue_nonrot(q))
659 return 2000000ULL;
660 else
661 return 75000000ULL;
662}
663
664static int wbt_data_dir(const struct request *rq)
665{
666 const int op = req_op(rq);
667
668 if (op == REQ_OP_READ)
669 return READ;
670 else if (op_is_write(op))
671 return WRITE;
672
673 /* don't account */
674 return -1;
675}
676
677static void wbt_queue_depth_changed(struct rq_qos *rqos)
678{
679 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
680 wbt_update_limits(RQWB(rqos));
681}
682
683static void wbt_exit(struct rq_qos *rqos)
684{
685 struct rq_wb *rwb = RQWB(rqos);
686 struct request_queue *q = rqos->q;
687
688 blk_stat_remove_callback(q, rwb->cb);
689 blk_stat_free_callback(rwb->cb);
690 kfree(rwb);
691}
692
693/*
694 * Disable wbt, if enabled by default.
695 */
696void wbt_disable_default(struct request_queue *q)
697{
698 struct rq_qos *rqos = wbt_rq_qos(q);
699 struct rq_wb *rwb;
700 if (!rqos)
701 return;
702 rwb = RQWB(rqos);
703 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
704 blk_stat_deactivate(rwb->cb);
705 rwb->wb_normal = 0;
706 }
707}
708EXPORT_SYMBOL_GPL(wbt_disable_default);
709
710#ifdef CONFIG_BLK_DEBUG_FS
711static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
712{
713 struct rq_qos *rqos = data;
714 struct rq_wb *rwb = RQWB(rqos);
715
716 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
717 return 0;
718}
719
720static int wbt_enabled_show(void *data, struct seq_file *m)
721{
722 struct rq_qos *rqos = data;
723 struct rq_wb *rwb = RQWB(rqos);
724
725 seq_printf(m, "%d\n", rwb->enable_state);
726 return 0;
727}
728
729static int wbt_id_show(void *data, struct seq_file *m)
730{
731 struct rq_qos *rqos = data;
732
733 seq_printf(m, "%u\n", rqos->id);
734 return 0;
735}
736
737static int wbt_inflight_show(void *data, struct seq_file *m)
738{
739 struct rq_qos *rqos = data;
740 struct rq_wb *rwb = RQWB(rqos);
741 int i;
742
743 for (i = 0; i < WBT_NUM_RWQ; i++)
744 seq_printf(m, "%d: inflight %d\n", i,
745 atomic_read(&rwb->rq_wait[i].inflight));
746 return 0;
747}
748
749static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
750{
751 struct rq_qos *rqos = data;
752 struct rq_wb *rwb = RQWB(rqos);
753
754 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
755 return 0;
756}
757
758static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
759{
760 struct rq_qos *rqos = data;
761 struct rq_wb *rwb = RQWB(rqos);
762
763 seq_printf(m, "%u\n", rwb->unknown_cnt);
764 return 0;
765}
766
767static int wbt_normal_show(void *data, struct seq_file *m)
768{
769 struct rq_qos *rqos = data;
770 struct rq_wb *rwb = RQWB(rqos);
771
772 seq_printf(m, "%u\n", rwb->wb_normal);
773 return 0;
774}
775
776static int wbt_background_show(void *data, struct seq_file *m)
777{
778 struct rq_qos *rqos = data;
779 struct rq_wb *rwb = RQWB(rqos);
780
781 seq_printf(m, "%u\n", rwb->wb_background);
782 return 0;
783}
784
785static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
786 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
787 {"enabled", 0400, wbt_enabled_show},
788 {"id", 0400, wbt_id_show},
789 {"inflight", 0400, wbt_inflight_show},
790 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
791 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
792 {"wb_normal", 0400, wbt_normal_show},
793 {"wb_background", 0400, wbt_background_show},
794 {},
795};
796#endif
797
798static struct rq_qos_ops wbt_rqos_ops = {
799 .throttle = wbt_wait,
800 .issue = wbt_issue,
801 .track = wbt_track,
802 .requeue = wbt_requeue,
803 .done = wbt_done,
804 .cleanup = wbt_cleanup,
805 .queue_depth_changed = wbt_queue_depth_changed,
806 .exit = wbt_exit,
807#ifdef CONFIG_BLK_DEBUG_FS
808 .debugfs_attrs = wbt_debugfs_attrs,
809#endif
810};
811
812int wbt_init(struct request_queue *q)
813{
814 struct rq_wb *rwb;
815 int i;
816
817 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
818 if (!rwb)
819 return -ENOMEM;
820
821 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
822 if (!rwb->cb) {
823 kfree(rwb);
824 return -ENOMEM;
825 }
826
827 for (i = 0; i < WBT_NUM_RWQ; i++)
828 rq_wait_init(&rwb->rq_wait[i]);
829
830 rwb->rqos.id = RQ_QOS_WBT;
831 rwb->rqos.ops = &wbt_rqos_ops;
832 rwb->rqos.q = q;
833 rwb->last_comp = rwb->last_issue = jiffies;
834 rwb->win_nsec = RWB_WINDOW_NSEC;
835 rwb->enable_state = WBT_STATE_ON_DEFAULT;
836 rwb->wc = 1;
837 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
838 wbt_update_limits(rwb);
839
840 /*
841 * Assign rwb and add the stats callback.
842 */
843 rq_qos_add(q, &rwb->rqos);
844 blk_stat_add_callback(q, rwb->cb);
845
846 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
847
848 wbt_queue_depth_changed(&rwb->rqos);
849 wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
850
851 return 0;
852}