Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef INT_BLK_MQ_H
  3#define INT_BLK_MQ_H
  4
  5#include "blk-stat.h"
  6#include "blk-mq-tag.h"
  7
  8struct blk_mq_tag_set;
  9
 10struct blk_mq_ctxs {
 11	struct kobject kobj;
 12	struct blk_mq_ctx __percpu	*queue_ctx;
 13};
 14
 15/**
 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
 17 */
 18struct blk_mq_ctx {
 19	struct {
 20		spinlock_t		lock;
 21		struct list_head	rq_lists[HCTX_MAX_TYPES];
 22	} ____cacheline_aligned_in_smp;
 23
 24	unsigned int		cpu;
 25	unsigned short		index_hw[HCTX_MAX_TYPES];
 26	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
 27
 
 
 
 
 
 
 
 28	struct request_queue	*queue;
 29	struct blk_mq_ctxs      *ctxs;
 30	struct kobject		kobj;
 31} ____cacheline_aligned_in_smp;
 32
 33void blk_mq_submit_bio(struct bio *bio);
 34int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
 35		unsigned int flags);
 36void blk_mq_exit_queue(struct request_queue *q);
 37int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
 38void blk_mq_wake_waiters(struct request_queue *q);
 39bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
 40			     unsigned int);
 41void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 42				bool kick_requeue_list);
 43void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
 44struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
 45					struct blk_mq_ctx *start);
 46void blk_mq_put_rq_ref(struct request *rq);
 47
 48/*
 49 * Internal helpers for allocating/freeing the request map
 50 */
 51void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
 52		     unsigned int hctx_idx);
 53void blk_mq_free_rq_map(struct blk_mq_tags *tags);
 54struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
 55				unsigned int hctx_idx, unsigned int depth);
 56void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
 57			     struct blk_mq_tags *tags,
 58			     unsigned int hctx_idx);
 
 
 59/*
 60 * Internal helpers for request insertion into sw queues
 61 */
 62void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
 63				bool at_head);
 64void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
 65				  bool run_queue);
 66void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
 67				struct list_head *list);
 
 
 
 68void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
 69				    struct list_head *list);
 70
 71/*
 72 * CPU -> queue mappings
 73 */
 74extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
 75
 76/*
 77 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
 78 * @q: request queue
 79 * @type: the hctx type index
 80 * @cpu: CPU
 81 */
 82static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
 83							  enum hctx_type type,
 84							  unsigned int cpu)
 85{
 86	return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
 87}
 88
 89static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
 90{
 91	enum hctx_type type = HCTX_TYPE_DEFAULT;
 92
 93	/*
 94	 * The caller ensure that if REQ_POLLED, poll must be enabled.
 95	 */
 96	if (opf & REQ_POLLED)
 97		type = HCTX_TYPE_POLL;
 98	else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
 99		type = HCTX_TYPE_READ;
100	return type;
101}
102
103/*
104 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
105 * @q: request queue
106 * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
107 * @ctx: software queue cpu ctx
108 */
109static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
110						     blk_opf_t opf,
111						     struct blk_mq_ctx *ctx)
112{
113	return ctx->hctxs[blk_mq_get_hctx_type(opf)];
 
 
 
 
 
 
 
 
 
 
114}
115
116/*
117 * sysfs helpers
118 */
119extern void blk_mq_sysfs_init(struct request_queue *q);
120extern void blk_mq_sysfs_deinit(struct request_queue *q);
121int blk_mq_sysfs_register(struct gendisk *disk);
122void blk_mq_sysfs_unregister(struct gendisk *disk);
123int blk_mq_sysfs_register_hctxs(struct request_queue *q);
124void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
125extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
126void blk_mq_free_plug_rqs(struct blk_plug *plug);
127void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
128
129void blk_mq_cancel_work_sync(struct request_queue *q);
130
131void blk_mq_release(struct request_queue *q);
132
133static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
134					   unsigned int cpu)
135{
136	return per_cpu_ptr(q->queue_ctx, cpu);
137}
138
139/*
140 * This assumes per-cpu software queueing queues. They could be per-node
141 * as well, for instance. For now this is hardcoded as-is. Note that we don't
142 * care about preemption, since we know the ctx's are persistent. This does
143 * mean that we can't rely on ctx always matching the currently running CPU.
144 */
145static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
146{
147	return __blk_mq_get_ctx(q, raw_smp_processor_id());
148}
149
150struct blk_mq_alloc_data {
151	/* input parameter */
152	struct request_queue *q;
153	blk_mq_req_flags_t flags;
154	unsigned int shallow_depth;
155	blk_opf_t cmd_flags;
156	req_flags_t rq_flags;
157
158	/* allocate multiple requests/tags in one go */
159	unsigned int nr_tags;
160	struct request **cached_rq;
161
162	/* input & output parameter */
163	struct blk_mq_ctx *ctx;
164	struct blk_mq_hw_ctx *hctx;
165};
166
167static inline bool blk_mq_is_shared_tags(unsigned int flags)
168{
169	return flags & BLK_MQ_F_TAG_HCTX_SHARED;
170}
171
172static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
173{
174	if (!(data->rq_flags & RQF_ELV))
175		return data->hctx->tags;
176	return data->hctx->sched_tags;
 
177}
178
179static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
180{
181	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
182}
183
184static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
185{
186	return hctx->nr_ctx && hctx->tags;
187}
188
189unsigned int blk_mq_in_flight(struct request_queue *q,
190		struct block_device *part);
191void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
192		unsigned int inflight[2]);
193
194static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
195					      int budget_token)
196{
197	if (q->mq_ops->put_budget)
198		q->mq_ops->put_budget(q, budget_token);
199}
200
201static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
202{
203	if (q->mq_ops->get_budget)
204		return q->mq_ops->get_budget(q);
205	return 0;
206}
207
208static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
209{
210	if (token < 0)
211		return;
212
213	if (rq->q->mq_ops->set_rq_budget_token)
214		rq->q->mq_ops->set_rq_budget_token(rq, token);
215}
216
217static inline int blk_mq_get_rq_budget_token(struct request *rq)
218{
219	if (rq->q->mq_ops->get_rq_budget_token)
220		return rq->q->mq_ops->get_rq_budget_token(rq);
221	return -1;
222}
223
224static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
225{
226	if (blk_mq_is_shared_tags(hctx->flags))
227		atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
228	else
229		atomic_inc(&hctx->nr_active);
230}
231
232static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
233		int val)
234{
235	if (blk_mq_is_shared_tags(hctx->flags))
236		atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
237	else
238		atomic_sub(val, &hctx->nr_active);
239}
240
241static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
242{
243	__blk_mq_sub_active_requests(hctx, 1);
244}
245
246static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
247{
248	if (blk_mq_is_shared_tags(hctx->flags))
249		return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
250	return atomic_read(&hctx->nr_active);
251}
252static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
253					   struct request *rq)
254{
255	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
256	rq->tag = BLK_MQ_NO_TAG;
257
258	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
259		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
260		__blk_mq_dec_active_requests(hctx);
261	}
262}
263
264static inline void blk_mq_put_driver_tag(struct request *rq)
265{
266	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
267		return;
268
269	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
270}
271
272bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
273
274static inline bool blk_mq_get_driver_tag(struct request *rq)
275{
276	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
277
278	if (rq->tag != BLK_MQ_NO_TAG &&
279	    !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
280		hctx->tags->rqs[rq->tag] = rq;
281		return true;
282	}
283
284	return __blk_mq_get_driver_tag(hctx, rq);
285}
286
287static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
288{
289	int cpu;
290
291	for_each_possible_cpu(cpu)
292		qmap->mq_map[cpu] = 0;
293}
294
295/*
296 * blk_mq_plug() - Get caller context plug
 
297 * @bio : the bio being submitted by the caller context
298 *
299 * Plugging, by design, may delay the insertion of BIOs into the elevator in
300 * order to increase BIO merging opportunities. This however can cause BIO
301 * insertion order to change from the order in which submit_bio() is being
302 * executed in the case of multiple contexts concurrently issuing BIOs to a
303 * device, even if these context are synchronized to tightly control BIO issuing
304 * order. While this is not a problem with regular block devices, this ordering
305 * change can cause write BIO failures with zoned block devices as these
306 * require sequential write patterns to zones. Prevent this from happening by
307 * ignoring the plug state of a BIO issuing context if it is for a zoned block
308 * device and the BIO to plug is a write operation.
309 *
310 * Return current->plug if the bio can be plugged and NULL otherwise
311 */
312static inline struct blk_plug *blk_mq_plug( struct bio *bio)
 
313{
314	/* Zoned block device write operation case: do not plug the BIO */
315	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
316	    bdev_op_is_zoned_write(bio->bi_bdev, bio_op(bio)))
317		return NULL;
318
319	/*
320	 * For regular block devices or read operations, use the context plug
321	 * which may be NULL if blk_start_plug() was not executed.
322	 */
323	return current->plug;
324}
325
326/* Free all requests on the list */
327static inline void blk_mq_free_requests(struct list_head *list)
328{
329	while (!list_empty(list)) {
330		struct request *rq = list_entry_rq(list->next);
331
332		list_del_init(&rq->queuelist);
333		blk_mq_free_request(rq);
334	}
335}
336
337/*
338 * For shared tag users, we track the number of currently active users
339 * and attempt to provide a fair share of the tag depth for each of them.
340 */
341static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
342				  struct sbitmap_queue *bt)
343{
344	unsigned int depth, users;
345
346	if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
347		return true;
348
349	/*
350	 * Don't try dividing an ant
351	 */
352	if (bt->sb.depth == 1)
353		return true;
354
355	if (blk_mq_is_shared_tags(hctx->flags)) {
356		struct request_queue *q = hctx->queue;
357
358		if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
359			return true;
360	} else {
361		if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
362			return true;
363	}
364
365	users = atomic_read(&hctx->tags->active_queues);
366
367	if (!users)
368		return true;
369
370	/*
371	 * Allow at least some tags
372	 */
373	depth = max((bt->sb.depth + users - 1) / users, 4U);
374	return __blk_mq_active_requests(hctx) < depth;
375}
376
377/* run the code block in @dispatch_ops with rcu/srcu read lock held */
378#define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops)	\
379do {								\
380	if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) {		\
381		int srcu_idx;					\
382								\
383		might_sleep_if(check_sleep);			\
384		srcu_idx = srcu_read_lock((q)->tag_set->srcu);	\
385		(dispatch_ops);					\
386		srcu_read_unlock((q)->tag_set->srcu, srcu_idx);	\
387	} else {						\
388		rcu_read_lock();				\
389		(dispatch_ops);					\
390		rcu_read_unlock();				\
391	}							\
392} while (0)
393
394#define blk_mq_run_dispatch_ops(q, dispatch_ops)		\
395	__blk_mq_run_dispatch_ops(q, true, dispatch_ops)	\
396
397#endif
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef INT_BLK_MQ_H
  3#define INT_BLK_MQ_H
  4
  5#include "blk-stat.h"
  6#include "blk-mq-tag.h"
  7
  8struct blk_mq_tag_set;
  9
 10struct blk_mq_ctxs {
 11	struct kobject kobj;
 12	struct blk_mq_ctx __percpu	*queue_ctx;
 13};
 14
 15/**
 16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
 17 */
 18struct blk_mq_ctx {
 19	struct {
 20		spinlock_t		lock;
 21		struct list_head	rq_lists[HCTX_MAX_TYPES];
 22	} ____cacheline_aligned_in_smp;
 23
 24	unsigned int		cpu;
 25	unsigned short		index_hw[HCTX_MAX_TYPES];
 26	struct blk_mq_hw_ctx 	*hctxs[HCTX_MAX_TYPES];
 27
 28	/* incremented at dispatch time */
 29	unsigned long		rq_dispatched[2];
 30	unsigned long		rq_merged;
 31
 32	/* incremented at completion time */
 33	unsigned long		____cacheline_aligned_in_smp rq_completed[2];
 34
 35	struct request_queue	*queue;
 36	struct blk_mq_ctxs      *ctxs;
 37	struct kobject		kobj;
 38} ____cacheline_aligned_in_smp;
 39
 
 
 
 40void blk_mq_exit_queue(struct request_queue *q);
 41int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
 42void blk_mq_wake_waiters(struct request_queue *q);
 43bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
 44			     unsigned int);
 45void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 46				bool kick_requeue_list);
 47void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
 48struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
 49					struct blk_mq_ctx *start);
 
 50
 51/*
 52 * Internal helpers for allocating/freeing the request map
 53 */
 54void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
 55		     unsigned int hctx_idx);
 56void blk_mq_free_rq_map(struct blk_mq_tags *tags);
 57struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
 58					unsigned int hctx_idx,
 59					unsigned int nr_tags,
 60					unsigned int reserved_tags);
 61int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
 62		     unsigned int hctx_idx, unsigned int depth);
 63
 64/*
 65 * Internal helpers for request insertion into sw queues
 66 */
 67void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
 68				bool at_head);
 69void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
 70				  bool run_queue);
 71void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
 72				struct list_head *list);
 73
 74/* Used by blk_insert_cloned_request() to issue request directly */
 75blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
 76void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
 77				    struct list_head *list);
 78
 79/*
 80 * CPU -> queue mappings
 81 */
 82extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
 83
 84/*
 85 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
 86 * @q: request queue
 87 * @type: the hctx type index
 88 * @cpu: CPU
 89 */
 90static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
 91							  enum hctx_type type,
 92							  unsigned int cpu)
 93{
 94	return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95}
 96
 97/*
 98 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
 99 * @q: request queue
100 * @flags: request command flags
101 * @cpu: cpu ctx
102 */
103static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
104						     unsigned int flags,
105						     struct blk_mq_ctx *ctx)
106{
107	enum hctx_type type = HCTX_TYPE_DEFAULT;
108
109	/*
110	 * The caller ensure that if REQ_HIPRI, poll must be enabled.
111	 */
112	if (flags & REQ_HIPRI)
113		type = HCTX_TYPE_POLL;
114	else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
115		type = HCTX_TYPE_READ;
116	
117	return ctx->hctxs[type];
118}
119
120/*
121 * sysfs helpers
122 */
123extern void blk_mq_sysfs_init(struct request_queue *q);
124extern void blk_mq_sysfs_deinit(struct request_queue *q);
125extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
126extern int blk_mq_sysfs_register(struct request_queue *q);
127extern void blk_mq_sysfs_unregister(struct request_queue *q);
 
128extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
 
 
 
 
129
130void blk_mq_release(struct request_queue *q);
131
132static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
133					   unsigned int cpu)
134{
135	return per_cpu_ptr(q->queue_ctx, cpu);
136}
137
138/*
139 * This assumes per-cpu software queueing queues. They could be per-node
140 * as well, for instance. For now this is hardcoded as-is. Note that we don't
141 * care about preemption, since we know the ctx's are persistent. This does
142 * mean that we can't rely on ctx always matching the currently running CPU.
143 */
144static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
145{
146	return __blk_mq_get_ctx(q, raw_smp_processor_id());
147}
148
149struct blk_mq_alloc_data {
150	/* input parameter */
151	struct request_queue *q;
152	blk_mq_req_flags_t flags;
153	unsigned int shallow_depth;
154	unsigned int cmd_flags;
 
 
 
 
 
155
156	/* input & output parameter */
157	struct blk_mq_ctx *ctx;
158	struct blk_mq_hw_ctx *hctx;
159};
160
 
 
 
 
 
161static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
162{
163	if (data->q->elevator)
164		return data->hctx->sched_tags;
165
166	return data->hctx->tags;
167}
168
169static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
170{
171	return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
172}
173
174static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
175{
176	return hctx->nr_ctx && hctx->tags;
177}
178
179unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
180void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
181			 unsigned int inflight[2]);
 
182
183static inline void blk_mq_put_dispatch_budget(struct request_queue *q)
 
184{
185	if (q->mq_ops->put_budget)
186		q->mq_ops->put_budget(q);
187}
188
189static inline bool blk_mq_get_dispatch_budget(struct request_queue *q)
190{
191	if (q->mq_ops->get_budget)
192		return q->mq_ops->get_budget(q);
193	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194}
195
 
 
 
 
 
 
 
 
 
 
 
196static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
197					   struct request *rq)
198{
199	blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
200	rq->tag = BLK_MQ_NO_TAG;
201
202	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
203		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
204		atomic_dec(&hctx->nr_active);
205	}
206}
207
208static inline void blk_mq_put_driver_tag(struct request *rq)
209{
210	if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
211		return;
212
213	__blk_mq_put_driver_tag(rq->mq_hctx, rq);
214}
215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
217{
218	int cpu;
219
220	for_each_possible_cpu(cpu)
221		qmap->mq_map[cpu] = 0;
222}
223
224/*
225 * blk_mq_plug() - Get caller context plug
226 * @q: request queue
227 * @bio : the bio being submitted by the caller context
228 *
229 * Plugging, by design, may delay the insertion of BIOs into the elevator in
230 * order to increase BIO merging opportunities. This however can cause BIO
231 * insertion order to change from the order in which submit_bio() is being
232 * executed in the case of multiple contexts concurrently issuing BIOs to a
233 * device, even if these context are synchronized to tightly control BIO issuing
234 * order. While this is not a problem with regular block devices, this ordering
235 * change can cause write BIO failures with zoned block devices as these
236 * require sequential write patterns to zones. Prevent this from happening by
237 * ignoring the plug state of a BIO issuing context if the target request queue
238 * is for a zoned block device and the BIO to plug is a write operation.
239 *
240 * Return current->plug if the bio can be plugged and NULL otherwise
241 */
242static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
243					   struct bio *bio)
244{
 
 
 
 
 
245	/*
246	 * For regular block devices or read operations, use the context plug
247	 * which may be NULL if blk_start_plug() was not executed.
248	 */
249	if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
250		return current->plug;
 
 
 
 
 
 
251
252	/* Zoned block device write operation case: do not plug the BIO */
253	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
256#endif