Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block rq-qos base io controller
   4 *
   5 * This works similar to wbt with a few exceptions
   6 *
   7 * - It's bio based, so the latency covers the whole block layer in addition to
   8 *   the actual io.
   9 * - We will throttle all IO that comes in here if we need to.
  10 * - We use the mean latency over the 100ms window.  This is because writes can
  11 *   be particularly fast, which could give us a false sense of the impact of
  12 *   other workloads on our protected workload.
  13 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
  14 *   that we can have as many outstanding bio's as we're allowed to.  Only at
  15 *   throttle time do we pay attention to the actual queue depth.
  16 *
  17 * The hierarchy works like the cpu controller does, we track the latency at
  18 * every configured node, and each configured node has it's own independent
  19 * queue depth.  This means that we only care about our latency targets at the
  20 * peer level.  Some group at the bottom of the hierarchy isn't going to affect
  21 * a group at the end of some other path if we're only configred at leaf level.
  22 *
  23 * Consider the following
  24 *
  25 *                   root blkg
  26 *             /                     \
  27 *        fast (target=5ms)     slow (target=10ms)
  28 *         /     \                  /        \
  29 *       a        b          normal(15ms)   unloved
  30 *
  31 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
  32 * an average latency of 5ms.  If it does then we will throttle the "slow"
  33 * group.  In the case of "normal", if it exceeds its 15ms target, we will
  34 * throttle "unloved", but nobody else.
  35 *
  36 * In this example "fast", "slow", and "normal" will be the only groups actually
  37 * accounting their io latencies.  We have to walk up the heirarchy to the root
  38 * on every submit and complete so we can do the appropriate stat recording and
  39 * adjust the queue depth of ourselves if needed.
  40 *
  41 * There are 2 ways we throttle IO.
  42 *
  43 * 1) Queue depth throttling.  As we throttle down we will adjust the maximum
  44 * number of IO's we're allowed to have in flight.  This starts at (u64)-1 down
  45 * to 1.  If the group is only ever submitting IO for itself then this is the
  46 * only way we throttle.
  47 *
  48 * 2) Induced delay throttling.  This is for the case that a group is generating
  49 * IO that has to be issued by the root cg to avoid priority inversion. So think
  50 * REQ_META or REQ_SWAP.  If we are already at qd == 1 and we're getting a lot
  51 * of work done for us on behalf of the root cg and are being asked to scale
  52 * down more then we induce a latency at userspace return.  We accumulate the
  53 * total amount of time we need to be punished by doing
  54 *
  55 * total_time += min_lat_nsec - actual_io_completion
  56 *
  57 * and then at throttle time will do
  58 *
  59 * throttle_time = min(total_time, NSEC_PER_SEC)
  60 *
  61 * This induced delay will throttle back the activity that is generating the
  62 * root cg issued io's, wethere that's some metadata intensive operation or the
  63 * group is using so much memory that it is pushing us into swap.
  64 *
  65 * Copyright (C) 2018 Josef Bacik
  66 */
  67#include <linux/kernel.h>
  68#include <linux/blk_types.h>
  69#include <linux/backing-dev.h>
  70#include <linux/module.h>
  71#include <linux/timer.h>
  72#include <linux/memcontrol.h>
  73#include <linux/sched/loadavg.h>
  74#include <linux/sched/signal.h>
  75#include <trace/events/block.h>
  76#include <linux/blk-mq.h>
  77#include "blk-rq-qos.h"
  78#include "blk-stat.h"
  79#include "blk-cgroup.h"
  80#include "blk.h"
  81
  82#define DEFAULT_SCALE_COOKIE 1000000U
  83
  84static struct blkcg_policy blkcg_policy_iolatency;
  85struct iolatency_grp;
  86
  87struct blk_iolatency {
  88	struct rq_qos rqos;
  89	struct timer_list timer;
  90
  91	/*
  92	 * ->enabled is the master enable switch gating the throttling logic and
  93	 * inflight tracking. The number of cgroups which have iolat enabled is
  94	 * tracked in ->enable_cnt, and ->enable is flipped on/off accordingly
  95	 * from ->enable_work with the request_queue frozen. For details, See
  96	 * blkiolatency_enable_work_fn().
  97	 */
  98	bool enabled;
  99	atomic_t enable_cnt;
 100	struct work_struct enable_work;
 101};
 102
 103static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
 104{
 105	return container_of(rqos, struct blk_iolatency, rqos);
 106}
 107
 
 
 
 
 
 108struct child_latency_info {
 109	spinlock_t lock;
 110
 111	/* Last time we adjusted the scale of everybody. */
 112	u64 last_scale_event;
 113
 114	/* The latency that we missed. */
 115	u64 scale_lat;
 116
 117	/* Total io's from all of our children for the last summation. */
 118	u64 nr_samples;
 119
 120	/* The guy who actually changed the latency numbers. */
 121	struct iolatency_grp *scale_grp;
 122
 123	/* Cookie to tell if we need to scale up or down. */
 124	atomic_t scale_cookie;
 125};
 126
 127struct percentile_stats {
 128	u64 total;
 129	u64 missed;
 130};
 131
 132struct latency_stat {
 133	union {
 134		struct percentile_stats ps;
 135		struct blk_rq_stat rqs;
 136	};
 137};
 138
 139struct iolatency_grp {
 140	struct blkg_policy_data pd;
 141	struct latency_stat __percpu *stats;
 142	struct latency_stat cur_stat;
 143	struct blk_iolatency *blkiolat;
 144	unsigned int max_depth;
 145	struct rq_wait rq_wait;
 146	atomic64_t window_start;
 147	atomic_t scale_cookie;
 148	u64 min_lat_nsec;
 149	u64 cur_win_nsec;
 150
 151	/* total running average of our io latency. */
 152	u64 lat_avg;
 153
 154	/* Our current number of IO's for the last summation. */
 155	u64 nr_samples;
 156
 157	bool ssd;
 158	struct child_latency_info child_lat;
 159};
 160
 161#define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
 162#define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
 163/*
 164 * These are the constants used to fake the fixed-point moving average
 165 * calculation just like load average.  The call to calc_load() folds
 166 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg.  The sampling
 167 * window size is bucketed to try to approximately calculate average
 168 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
 169 * elapse immediately.  Note, windows only elapse with IO activity.  Idle
 170 * periods extend the most recent window.
 171 */
 172#define BLKIOLATENCY_NR_EXP_FACTORS 5
 173#define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
 174				      (BLKIOLATENCY_NR_EXP_FACTORS - 1))
 175static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
 176	2045, // exp(1/600) - 600 samples
 177	2039, // exp(1/240) - 240 samples
 178	2031, // exp(1/120) - 120 samples
 179	2023, // exp(1/80)  - 80 samples
 180	2014, // exp(1/60)  - 60 samples
 181};
 182
 183static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
 184{
 185	return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
 186}
 187
 188static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
 189{
 190	return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
 191}
 192
 193static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
 194{
 195	return pd_to_blkg(&iolat->pd);
 196}
 197
 198static inline void latency_stat_init(struct iolatency_grp *iolat,
 199				     struct latency_stat *stat)
 200{
 201	if (iolat->ssd) {
 202		stat->ps.total = 0;
 203		stat->ps.missed = 0;
 204	} else
 205		blk_rq_stat_init(&stat->rqs);
 206}
 207
 208static inline void latency_stat_sum(struct iolatency_grp *iolat,
 209				    struct latency_stat *sum,
 210				    struct latency_stat *stat)
 211{
 212	if (iolat->ssd) {
 213		sum->ps.total += stat->ps.total;
 214		sum->ps.missed += stat->ps.missed;
 215	} else
 216		blk_rq_stat_sum(&sum->rqs, &stat->rqs);
 217}
 218
 219static inline void latency_stat_record_time(struct iolatency_grp *iolat,
 220					    u64 req_time)
 221{
 222	struct latency_stat *stat = get_cpu_ptr(iolat->stats);
 223	if (iolat->ssd) {
 224		if (req_time >= iolat->min_lat_nsec)
 225			stat->ps.missed++;
 226		stat->ps.total++;
 227	} else
 228		blk_rq_stat_add(&stat->rqs, req_time);
 229	put_cpu_ptr(stat);
 230}
 231
 232static inline bool latency_sum_ok(struct iolatency_grp *iolat,
 233				  struct latency_stat *stat)
 234{
 235	if (iolat->ssd) {
 236		u64 thresh = div64_u64(stat->ps.total, 10);
 237		thresh = max(thresh, 1ULL);
 238		return stat->ps.missed < thresh;
 239	}
 240	return stat->rqs.mean <= iolat->min_lat_nsec;
 241}
 242
 243static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
 244				       struct latency_stat *stat)
 245{
 246	if (iolat->ssd)
 247		return stat->ps.total;
 248	return stat->rqs.nr_samples;
 249}
 250
 251static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
 252					      struct latency_stat *stat)
 253{
 254	int exp_idx;
 255
 256	if (iolat->ssd)
 257		return;
 258
 259	/*
 260	 * calc_load() takes in a number stored in fixed point representation.
 261	 * Because we are using this for IO time in ns, the values stored
 262	 * are significantly larger than the FIXED_1 denominator (2048).
 263	 * Therefore, rounding errors in the calculation are negligible and
 264	 * can be ignored.
 265	 */
 266	exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
 267			div64_u64(iolat->cur_win_nsec,
 268				  BLKIOLATENCY_EXP_BUCKET_SIZE));
 269	iolat->lat_avg = calc_load(iolat->lat_avg,
 270				   iolatency_exp_factors[exp_idx],
 271				   stat->rqs.mean);
 272}
 273
 274static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
 275{
 276	atomic_dec(&rqw->inflight);
 277	wake_up(&rqw->wait);
 278}
 279
 280static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
 281{
 282	struct iolatency_grp *iolat = private_data;
 283	return rq_wait_inc_below(rqw, iolat->max_depth);
 284}
 285
 286static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
 287				       struct iolatency_grp *iolat,
 288				       bool issue_as_root,
 289				       bool use_memdelay)
 290{
 291	struct rq_wait *rqw = &iolat->rq_wait;
 292	unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
 293
 294	if (use_delay)
 295		blkcg_schedule_throttle(rqos->q->disk, use_memdelay);
 296
 297	/*
 298	 * To avoid priority inversions we want to just take a slot if we are
 299	 * issuing as root.  If we're being killed off there's no point in
 300	 * delaying things, we may have been killed by OOM so throttling may
 301	 * make recovery take even longer, so just let the IO's through so the
 302	 * task can go away.
 303	 */
 304	if (issue_as_root || fatal_signal_pending(current)) {
 305		atomic_inc(&rqw->inflight);
 306		return;
 307	}
 308
 309	rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
 310}
 311
 312#define SCALE_DOWN_FACTOR 2
 313#define SCALE_UP_FACTOR 4
 314
 315static inline unsigned long scale_amount(unsigned long qd, bool up)
 316{
 317	return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
 318}
 319
 320/*
 321 * We scale the qd down faster than we scale up, so we need to use this helper
 322 * to adjust the scale_cookie accordingly so we don't prematurely get
 323 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
 324 *
 325 * Each group has their own local copy of the last scale cookie they saw, so if
 326 * the global scale cookie goes up or down they know which way they need to go
 327 * based on their last knowledge of it.
 328 */
 329static void scale_cookie_change(struct blk_iolatency *blkiolat,
 330				struct child_latency_info *lat_info,
 331				bool up)
 332{
 333	unsigned long qd = blkiolat->rqos.q->nr_requests;
 334	unsigned long scale = scale_amount(qd, up);
 335	unsigned long old = atomic_read(&lat_info->scale_cookie);
 336	unsigned long max_scale = qd << 1;
 337	unsigned long diff = 0;
 338
 339	if (old < DEFAULT_SCALE_COOKIE)
 340		diff = DEFAULT_SCALE_COOKIE - old;
 341
 342	if (up) {
 343		if (scale + old > DEFAULT_SCALE_COOKIE)
 344			atomic_set(&lat_info->scale_cookie,
 345				   DEFAULT_SCALE_COOKIE);
 346		else if (diff > qd)
 347			atomic_inc(&lat_info->scale_cookie);
 348		else
 349			atomic_add(scale, &lat_info->scale_cookie);
 350	} else {
 351		/*
 352		 * We don't want to dig a hole so deep that it takes us hours to
 353		 * dig out of it.  Just enough that we don't throttle/unthrottle
 354		 * with jagged workloads but can still unthrottle once pressure
 355		 * has sufficiently dissipated.
 356		 */
 357		if (diff > qd) {
 358			if (diff < max_scale)
 359				atomic_dec(&lat_info->scale_cookie);
 360		} else {
 361			atomic_sub(scale, &lat_info->scale_cookie);
 362		}
 363	}
 364}
 365
 366/*
 367 * Change the queue depth of the iolatency_grp.  We add 1/16th of the
 368 * queue depth at a time so we don't get wild swings and hopefully dial in to
 369 * fairer distribution of the overall queue depth.  We halve the queue depth
 370 * at a time so we can scale down queue depth quickly from default unlimited
 371 * to target.
 372 */
 373static void scale_change(struct iolatency_grp *iolat, bool up)
 374{
 375	unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
 376	unsigned long scale = scale_amount(qd, up);
 377	unsigned long old = iolat->max_depth;
 378
 379	if (old > qd)
 380		old = qd;
 381
 382	if (up) {
 383		if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
 384			return;
 385
 386		if (old < qd) {
 387			old += scale;
 388			old = min(old, qd);
 389			iolat->max_depth = old;
 390			wake_up_all(&iolat->rq_wait.wait);
 391		}
 392	} else {
 393		old >>= 1;
 394		iolat->max_depth = max(old, 1UL);
 395	}
 396}
 397
 398/* Check our parent and see if the scale cookie has changed. */
 399static void check_scale_change(struct iolatency_grp *iolat)
 400{
 401	struct iolatency_grp *parent;
 402	struct child_latency_info *lat_info;
 403	unsigned int cur_cookie;
 404	unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
 405	u64 scale_lat;
 
 406	int direction = 0;
 407
 
 
 
 408	parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
 409	if (!parent)
 410		return;
 411
 412	lat_info = &parent->child_lat;
 413	cur_cookie = atomic_read(&lat_info->scale_cookie);
 414	scale_lat = READ_ONCE(lat_info->scale_lat);
 415
 416	if (cur_cookie < our_cookie)
 417		direction = -1;
 418	else if (cur_cookie > our_cookie)
 419		direction = 1;
 420	else
 421		return;
 422
 423	if (!atomic_try_cmpxchg(&iolat->scale_cookie, &our_cookie, cur_cookie)) {
 424		/* Somebody beat us to the punch, just bail. */
 
 
 425		return;
 426	}
 427
 428	if (direction < 0 && iolat->min_lat_nsec) {
 429		u64 samples_thresh;
 430
 431		if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
 432			return;
 433
 434		/*
 435		 * Sometimes high priority groups are their own worst enemy, so
 436		 * instead of taking it out on some poor other group that did 5%
 437		 * or less of the IO's for the last summation just skip this
 438		 * scale down event.
 439		 */
 440		samples_thresh = lat_info->nr_samples * 5;
 441		samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
 442		if (iolat->nr_samples <= samples_thresh)
 443			return;
 444	}
 445
 446	/* We're as low as we can go. */
 447	if (iolat->max_depth == 1 && direction < 0) {
 448		blkcg_use_delay(lat_to_blkg(iolat));
 449		return;
 450	}
 451
 452	/* We're back to the default cookie, unthrottle all the things. */
 453	if (cur_cookie == DEFAULT_SCALE_COOKIE) {
 454		blkcg_clear_delay(lat_to_blkg(iolat));
 455		iolat->max_depth = UINT_MAX;
 456		wake_up_all(&iolat->rq_wait.wait);
 457		return;
 458	}
 459
 460	scale_change(iolat, direction > 0);
 461}
 462
 463static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
 464{
 465	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 466	struct blkcg_gq *blkg = bio->bi_blkg;
 467	bool issue_as_root = bio_issue_as_root_blkg(bio);
 468
 469	if (!blkiolat->enabled)
 470		return;
 471
 472	while (blkg && blkg->parent) {
 473		struct iolatency_grp *iolat = blkg_to_lat(blkg);
 474		if (!iolat) {
 475			blkg = blkg->parent;
 476			continue;
 477		}
 478
 479		check_scale_change(iolat);
 480		__blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
 481				     (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
 482		blkg = blkg->parent;
 483	}
 484	if (!timer_pending(&blkiolat->timer))
 485		mod_timer(&blkiolat->timer, jiffies + HZ);
 486}
 487
 488static void iolatency_record_time(struct iolatency_grp *iolat,
 489				  struct bio_issue *issue, u64 now,
 490				  bool issue_as_root)
 491{
 492	u64 start = bio_issue_time(issue);
 493	u64 req_time;
 494
 495	/*
 496	 * Have to do this so we are truncated to the correct time that our
 497	 * issue is truncated to.
 498	 */
 499	now = __bio_issue_time(now);
 500
 501	if (now <= start)
 502		return;
 503
 504	req_time = now - start;
 505
 506	/*
 507	 * We don't want to count issue_as_root bio's in the cgroups latency
 508	 * statistics as it could skew the numbers downwards.
 509	 */
 510	if (unlikely(issue_as_root && iolat->max_depth != UINT_MAX)) {
 511		u64 sub = iolat->min_lat_nsec;
 512		if (req_time < sub)
 513			blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
 514		return;
 515	}
 516
 517	latency_stat_record_time(iolat, req_time);
 518}
 519
 520#define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
 521#define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
 522
 523static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
 524{
 525	struct blkcg_gq *blkg = lat_to_blkg(iolat);
 526	struct iolatency_grp *parent;
 527	struct child_latency_info *lat_info;
 528	struct latency_stat stat;
 529	unsigned long flags;
 530	int cpu;
 531
 532	latency_stat_init(iolat, &stat);
 533	preempt_disable();
 534	for_each_online_cpu(cpu) {
 535		struct latency_stat *s;
 536		s = per_cpu_ptr(iolat->stats, cpu);
 537		latency_stat_sum(iolat, &stat, s);
 538		latency_stat_init(iolat, s);
 539	}
 540	preempt_enable();
 541
 542	parent = blkg_to_lat(blkg->parent);
 543	if (!parent)
 544		return;
 545
 546	lat_info = &parent->child_lat;
 547
 548	iolat_update_total_lat_avg(iolat, &stat);
 549
 550	/* Everything is ok and we don't need to adjust the scale. */
 551	if (latency_sum_ok(iolat, &stat) &&
 552	    atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
 553		return;
 554
 555	/* Somebody beat us to the punch, just bail. */
 556	spin_lock_irqsave(&lat_info->lock, flags);
 557
 558	latency_stat_sum(iolat, &iolat->cur_stat, &stat);
 559	lat_info->nr_samples -= iolat->nr_samples;
 560	lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
 561	iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
 562
 563	if ((lat_info->last_scale_event >= now ||
 564	    now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
 565		goto out;
 566
 567	if (latency_sum_ok(iolat, &iolat->cur_stat) &&
 568	    latency_sum_ok(iolat, &stat)) {
 569		if (latency_stat_samples(iolat, &iolat->cur_stat) <
 570		    BLKIOLATENCY_MIN_GOOD_SAMPLES)
 571			goto out;
 572		if (lat_info->scale_grp == iolat) {
 573			lat_info->last_scale_event = now;
 574			scale_cookie_change(iolat->blkiolat, lat_info, true);
 575		}
 576	} else if (lat_info->scale_lat == 0 ||
 577		   lat_info->scale_lat >= iolat->min_lat_nsec) {
 578		lat_info->last_scale_event = now;
 579		if (!lat_info->scale_grp ||
 580		    lat_info->scale_lat > iolat->min_lat_nsec) {
 581			WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
 582			lat_info->scale_grp = iolat;
 583		}
 584		scale_cookie_change(iolat->blkiolat, lat_info, false);
 585	}
 586	latency_stat_init(iolat, &iolat->cur_stat);
 587out:
 588	spin_unlock_irqrestore(&lat_info->lock, flags);
 589}
 590
 591static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
 592{
 593	struct blkcg_gq *blkg;
 594	struct rq_wait *rqw;
 595	struct iolatency_grp *iolat;
 596	u64 window_start;
 597	u64 now;
 598	bool issue_as_root = bio_issue_as_root_blkg(bio);
 
 599	int inflight = 0;
 600
 601	blkg = bio->bi_blkg;
 602	if (!blkg || !bio_flagged(bio, BIO_QOS_THROTTLED))
 603		return;
 604
 605	iolat = blkg_to_lat(bio->bi_blkg);
 606	if (!iolat)
 607		return;
 608
 609	if (!iolat->blkiolat->enabled)
 
 610		return;
 611
 612	now = ktime_to_ns(ktime_get());
 613	while (blkg && blkg->parent) {
 614		iolat = blkg_to_lat(blkg);
 615		if (!iolat) {
 616			blkg = blkg->parent;
 617			continue;
 618		}
 619		rqw = &iolat->rq_wait;
 620
 621		inflight = atomic_dec_return(&rqw->inflight);
 622		WARN_ON_ONCE(inflight < 0);
 623		/*
 624		 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
 625		 * submitted, so do not account for it.
 626		 */
 627		if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
 628			iolatency_record_time(iolat, &bio->bi_issue, now,
 629					      issue_as_root);
 630			window_start = atomic64_read(&iolat->window_start);
 631			if (now > window_start &&
 632			    (now - window_start) >= iolat->cur_win_nsec) {
 633				if (atomic64_try_cmpxchg(&iolat->window_start,
 634							 &window_start, now))
 635					iolatency_check_latencies(iolat, now);
 636			}
 637		}
 638		wake_up(&rqw->wait);
 639		blkg = blkg->parent;
 640	}
 641}
 642
 643static void blkcg_iolatency_exit(struct rq_qos *rqos)
 644{
 645	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 646
 647	timer_shutdown_sync(&blkiolat->timer);
 648	flush_work(&blkiolat->enable_work);
 649	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
 650	kfree(blkiolat);
 651}
 652
 653static struct rq_qos_ops blkcg_iolatency_ops = {
 654	.throttle = blkcg_iolatency_throttle,
 655	.done_bio = blkcg_iolatency_done_bio,
 656	.exit = blkcg_iolatency_exit,
 657};
 658
 659static void blkiolatency_timer_fn(struct timer_list *t)
 660{
 661	struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
 662	struct blkcg_gq *blkg;
 663	struct cgroup_subsys_state *pos_css;
 664	u64 now = ktime_to_ns(ktime_get());
 665
 666	rcu_read_lock();
 667	blkg_for_each_descendant_pre(blkg, pos_css,
 668				     blkiolat->rqos.q->root_blkg) {
 669		struct iolatency_grp *iolat;
 670		struct child_latency_info *lat_info;
 671		unsigned long flags;
 672		u64 cookie;
 673
 674		/*
 675		 * We could be exiting, don't access the pd unless we have a
 676		 * ref on the blkg.
 677		 */
 678		if (!blkg_tryget(blkg))
 679			continue;
 680
 681		iolat = blkg_to_lat(blkg);
 682		if (!iolat)
 683			goto next;
 684
 685		lat_info = &iolat->child_lat;
 686		cookie = atomic_read(&lat_info->scale_cookie);
 687
 688		if (cookie >= DEFAULT_SCALE_COOKIE)
 689			goto next;
 690
 691		spin_lock_irqsave(&lat_info->lock, flags);
 692		if (lat_info->last_scale_event >= now)
 693			goto next_lock;
 694
 695		/*
 696		 * We scaled down but don't have a scale_grp, scale up and carry
 697		 * on.
 698		 */
 699		if (lat_info->scale_grp == NULL) {
 700			scale_cookie_change(iolat->blkiolat, lat_info, true);
 701			goto next_lock;
 702		}
 703
 704		/*
 705		 * It's been 5 seconds since our last scale event, clear the
 706		 * scale grp in case the group that needed the scale down isn't
 707		 * doing any IO currently.
 708		 */
 709		if (now - lat_info->last_scale_event >=
 710		    ((u64)NSEC_PER_SEC * 5))
 711			lat_info->scale_grp = NULL;
 712next_lock:
 713		spin_unlock_irqrestore(&lat_info->lock, flags);
 714next:
 715		blkg_put(blkg);
 716	}
 717	rcu_read_unlock();
 718}
 719
 720/**
 721 * blkiolatency_enable_work_fn - Enable or disable iolatency on the device
 722 * @work: enable_work of the blk_iolatency of interest
 723 *
 724 * iolatency needs to keep track of the number of in-flight IOs per cgroup. This
 725 * is relatively expensive as it involves walking up the hierarchy twice for
 726 * every IO. Thus, if iolatency is not enabled in any cgroup for the device, we
 727 * want to disable the in-flight tracking.
 728 *
 729 * We have to make sure that the counting is balanced - we don't want to leak
 730 * the in-flight counts by disabling accounting in the completion path while IOs
 731 * are in flight. This is achieved by ensuring that no IO is in flight by
 732 * freezing the queue while flipping ->enabled. As this requires a sleepable
 733 * context, ->enabled flipping is punted to this work function.
 734 */
 735static void blkiolatency_enable_work_fn(struct work_struct *work)
 736{
 737	struct blk_iolatency *blkiolat = container_of(work, struct blk_iolatency,
 738						      enable_work);
 739	bool enabled;
 740
 741	/*
 742	 * There can only be one instance of this function running for @blkiolat
 743	 * and it's guaranteed to be executed at least once after the latest
 744	 * ->enabled_cnt modification. Acting on the latest ->enable_cnt is
 745	 * sufficient.
 746	 *
 747	 * Also, we know @blkiolat is safe to access as ->enable_work is flushed
 748	 * in blkcg_iolatency_exit().
 749	 */
 750	enabled = atomic_read(&blkiolat->enable_cnt);
 751	if (enabled != blkiolat->enabled) {
 752		blk_mq_freeze_queue(blkiolat->rqos.q);
 753		blkiolat->enabled = enabled;
 754		blk_mq_unfreeze_queue(blkiolat->rqos.q);
 755	}
 756}
 757
 758int blk_iolatency_init(struct gendisk *disk)
 759{
 760	struct request_queue *q = disk->queue;
 761	struct blk_iolatency *blkiolat;
 762	struct rq_qos *rqos;
 763	int ret;
 764
 765	blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
 766	if (!blkiolat)
 767		return -ENOMEM;
 768
 769	rqos = &blkiolat->rqos;
 770	rqos->id = RQ_QOS_LATENCY;
 771	rqos->ops = &blkcg_iolatency_ops;
 772	rqos->q = q;
 773
 774	ret = rq_qos_add(q, rqos);
 775	if (ret)
 776		goto err_free;
 777	ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
 778	if (ret)
 779		goto err_qos_del;
 
 
 
 780
 781	timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
 782	INIT_WORK(&blkiolat->enable_work, blkiolatency_enable_work_fn);
 783
 784	return 0;
 785
 786err_qos_del:
 787	rq_qos_del(q, rqos);
 788err_free:
 789	kfree(blkiolat);
 790	return ret;
 791}
 792
 793static void iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
 
 
 
 
 794{
 795	struct iolatency_grp *iolat = blkg_to_lat(blkg);
 796	struct blk_iolatency *blkiolat = iolat->blkiolat;
 797	u64 oldval = iolat->min_lat_nsec;
 798
 799	iolat->min_lat_nsec = val;
 800	iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
 801	iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
 802				    BLKIOLATENCY_MAX_WIN_SIZE);
 803
 804	if (!oldval && val) {
 805		if (atomic_inc_return(&blkiolat->enable_cnt) == 1)
 806			schedule_work(&blkiolat->enable_work);
 807	}
 808	if (oldval && !val) {
 809		blkcg_clear_delay(blkg);
 810		if (atomic_dec_return(&blkiolat->enable_cnt) == 0)
 811			schedule_work(&blkiolat->enable_work);
 812	}
 
 813}
 814
 815static void iolatency_clear_scaling(struct blkcg_gq *blkg)
 816{
 817	if (blkg->parent) {
 818		struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
 819		struct child_latency_info *lat_info;
 820		if (!iolat)
 821			return;
 822
 823		lat_info = &iolat->child_lat;
 824		spin_lock(&lat_info->lock);
 825		atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
 826		lat_info->last_scale_event = 0;
 827		lat_info->scale_grp = NULL;
 828		lat_info->scale_lat = 0;
 829		spin_unlock(&lat_info->lock);
 830	}
 831}
 832
 833static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
 834			     size_t nbytes, loff_t off)
 835{
 836	struct blkcg *blkcg = css_to_blkcg(of_css(of));
 837	struct blkcg_gq *blkg;
 838	struct blkg_conf_ctx ctx;
 839	struct iolatency_grp *iolat;
 840	char *p, *tok;
 841	u64 lat_val = 0;
 842	u64 oldval;
 843	int ret;
 
 844
 845	ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
 846	if (ret)
 847		return ret;
 848
 849	iolat = blkg_to_lat(ctx.blkg);
 850	p = ctx.body;
 851
 852	ret = -EINVAL;
 853	while ((tok = strsep(&p, " "))) {
 854		char key[16];
 855		char val[21];	/* 18446744073709551616 */
 856
 857		if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
 858			goto out;
 859
 860		if (!strcmp(key, "target")) {
 861			u64 v;
 862
 863			if (!strcmp(val, "max"))
 864				lat_val = 0;
 865			else if (sscanf(val, "%llu", &v) == 1)
 866				lat_val = v * NSEC_PER_USEC;
 867			else
 868				goto out;
 869		} else {
 870			goto out;
 871		}
 872	}
 873
 874	/* Walk up the tree to see if our new val is lower than it should be. */
 875	blkg = ctx.blkg;
 876	oldval = iolat->min_lat_nsec;
 877
 878	iolatency_set_min_lat_nsec(blkg, lat_val);
 879	if (oldval != iolat->min_lat_nsec)
 
 
 
 
 
 880		iolatency_clear_scaling(blkg);
 
 
 881	ret = 0;
 882out:
 883	blkg_conf_finish(&ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884	return ret ?: nbytes;
 885}
 886
 887static u64 iolatency_prfill_limit(struct seq_file *sf,
 888				  struct blkg_policy_data *pd, int off)
 889{
 890	struct iolatency_grp *iolat = pd_to_lat(pd);
 891	const char *dname = blkg_dev_name(pd->blkg);
 892
 893	if (!dname || !iolat->min_lat_nsec)
 894		return 0;
 895	seq_printf(sf, "%s target=%llu\n",
 896		   dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
 897	return 0;
 898}
 899
 900static int iolatency_print_limit(struct seq_file *sf, void *v)
 901{
 902	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
 903			  iolatency_prfill_limit,
 904			  &blkcg_policy_iolatency, seq_cft(sf)->private, false);
 905	return 0;
 906}
 907
 908static void iolatency_ssd_stat(struct iolatency_grp *iolat, struct seq_file *s)
 
 909{
 910	struct latency_stat stat;
 911	int cpu;
 912
 913	latency_stat_init(iolat, &stat);
 914	preempt_disable();
 915	for_each_online_cpu(cpu) {
 916		struct latency_stat *s;
 917		s = per_cpu_ptr(iolat->stats, cpu);
 918		latency_stat_sum(iolat, &stat, s);
 919	}
 920	preempt_enable();
 921
 922	if (iolat->max_depth == UINT_MAX)
 923		seq_printf(s, " missed=%llu total=%llu depth=max",
 924			(unsigned long long)stat.ps.missed,
 925			(unsigned long long)stat.ps.total);
 926	else
 927		seq_printf(s, " missed=%llu total=%llu depth=%u",
 928			(unsigned long long)stat.ps.missed,
 929			(unsigned long long)stat.ps.total,
 930			iolat->max_depth);
 931}
 932
 933static void iolatency_pd_stat(struct blkg_policy_data *pd, struct seq_file *s)
 
 934{
 935	struct iolatency_grp *iolat = pd_to_lat(pd);
 936	unsigned long long avg_lat;
 937	unsigned long long cur_win;
 938
 939	if (!blkcg_debug_stats)
 940		return;
 941
 942	if (iolat->ssd)
 943		return iolatency_ssd_stat(iolat, s);
 944
 945	avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
 946	cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
 947	if (iolat->max_depth == UINT_MAX)
 948		seq_printf(s, " depth=max avg_lat=%llu win=%llu",
 949			avg_lat, cur_win);
 950	else
 951		seq_printf(s, " depth=%u avg_lat=%llu win=%llu",
 952			iolat->max_depth, avg_lat, cur_win);
 953}
 954
 
 955static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
 956						   struct request_queue *q,
 957						   struct blkcg *blkcg)
 958{
 959	struct iolatency_grp *iolat;
 960
 961	iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
 962	if (!iolat)
 963		return NULL;
 964	iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
 965				       __alignof__(struct latency_stat), gfp);
 966	if (!iolat->stats) {
 967		kfree(iolat);
 968		return NULL;
 969	}
 970	return &iolat->pd;
 971}
 972
 973static void iolatency_pd_init(struct blkg_policy_data *pd)
 974{
 975	struct iolatency_grp *iolat = pd_to_lat(pd);
 976	struct blkcg_gq *blkg = lat_to_blkg(iolat);
 977	struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
 978	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 979	u64 now = ktime_to_ns(ktime_get());
 980	int cpu;
 981
 982	if (blk_queue_nonrot(blkg->q))
 983		iolat->ssd = true;
 984	else
 985		iolat->ssd = false;
 986
 987	for_each_possible_cpu(cpu) {
 988		struct latency_stat *stat;
 989		stat = per_cpu_ptr(iolat->stats, cpu);
 990		latency_stat_init(iolat, stat);
 991	}
 992
 993	latency_stat_init(iolat, &iolat->cur_stat);
 994	rq_wait_init(&iolat->rq_wait);
 995	spin_lock_init(&iolat->child_lat.lock);
 996	iolat->max_depth = UINT_MAX;
 
 
 997	iolat->blkiolat = blkiolat;
 998	iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
 999	atomic64_set(&iolat->window_start, now);
1000
1001	/*
1002	 * We init things in list order, so the pd for the parent may not be
1003	 * init'ed yet for whatever reason.
1004	 */
1005	if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
1006		struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
1007		atomic_set(&iolat->scale_cookie,
1008			   atomic_read(&parent->child_lat.scale_cookie));
1009	} else {
1010		atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
1011	}
1012
1013	atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
1014}
1015
1016static void iolatency_pd_offline(struct blkg_policy_data *pd)
1017{
1018	struct iolatency_grp *iolat = pd_to_lat(pd);
1019	struct blkcg_gq *blkg = lat_to_blkg(iolat);
 
 
1020
1021	iolatency_set_min_lat_nsec(blkg, 0);
 
 
 
 
1022	iolatency_clear_scaling(blkg);
1023}
1024
1025static void iolatency_pd_free(struct blkg_policy_data *pd)
1026{
1027	struct iolatency_grp *iolat = pd_to_lat(pd);
1028	free_percpu(iolat->stats);
1029	kfree(iolat);
1030}
1031
1032static struct cftype iolatency_files[] = {
1033	{
1034		.name = "latency",
1035		.flags = CFTYPE_NOT_ON_ROOT,
1036		.seq_show = iolatency_print_limit,
1037		.write = iolatency_set_limit,
1038	},
1039	{}
1040};
1041
1042static struct blkcg_policy blkcg_policy_iolatency = {
1043	.dfl_cftypes	= iolatency_files,
1044	.pd_alloc_fn	= iolatency_pd_alloc,
1045	.pd_init_fn	= iolatency_pd_init,
1046	.pd_offline_fn	= iolatency_pd_offline,
1047	.pd_free_fn	= iolatency_pd_free,
1048	.pd_stat_fn	= iolatency_pd_stat,
1049};
1050
1051static int __init iolatency_init(void)
1052{
1053	return blkcg_policy_register(&blkcg_policy_iolatency);
1054}
1055
1056static void __exit iolatency_exit(void)
1057{
1058	blkcg_policy_unregister(&blkcg_policy_iolatency);
1059}
1060
1061module_init(iolatency_init);
1062module_exit(iolatency_exit);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block rq-qos base io controller
   4 *
   5 * This works similar to wbt with a few exceptions
   6 *
   7 * - It's bio based, so the latency covers the whole block layer in addition to
   8 *   the actual io.
   9 * - We will throttle all IO that comes in here if we need to.
  10 * - We use the mean latency over the 100ms window.  This is because writes can
  11 *   be particularly fast, which could give us a false sense of the impact of
  12 *   other workloads on our protected workload.
  13 * - By default there's no throttling, we set the queue_depth to UINT_MAX so
  14 *   that we can have as many outstanding bio's as we're allowed to.  Only at
  15 *   throttle time do we pay attention to the actual queue depth.
  16 *
  17 * The hierarchy works like the cpu controller does, we track the latency at
  18 * every configured node, and each configured node has it's own independent
  19 * queue depth.  This means that we only care about our latency targets at the
  20 * peer level.  Some group at the bottom of the hierarchy isn't going to affect
  21 * a group at the end of some other path if we're only configred at leaf level.
  22 *
  23 * Consider the following
  24 *
  25 *                   root blkg
  26 *             /                     \
  27 *        fast (target=5ms)     slow (target=10ms)
  28 *         /     \                  /        \
  29 *       a        b          normal(15ms)   unloved
  30 *
  31 * "a" and "b" have no target, but their combined io under "fast" cannot exceed
  32 * an average latency of 5ms.  If it does then we will throttle the "slow"
  33 * group.  In the case of "normal", if it exceeds its 15ms target, we will
  34 * throttle "unloved", but nobody else.
  35 *
  36 * In this example "fast", "slow", and "normal" will be the only groups actually
  37 * accounting their io latencies.  We have to walk up the heirarchy to the root
  38 * on every submit and complete so we can do the appropriate stat recording and
  39 * adjust the queue depth of ourselves if needed.
  40 *
  41 * There are 2 ways we throttle IO.
  42 *
  43 * 1) Queue depth throttling.  As we throttle down we will adjust the maximum
  44 * number of IO's we're allowed to have in flight.  This starts at (u64)-1 down
  45 * to 1.  If the group is only ever submitting IO for itself then this is the
  46 * only way we throttle.
  47 *
  48 * 2) Induced delay throttling.  This is for the case that a group is generating
  49 * IO that has to be issued by the root cg to avoid priority inversion. So think
  50 * REQ_META or REQ_SWAP.  If we are already at qd == 1 and we're getting a lot
  51 * of work done for us on behalf of the root cg and are being asked to scale
  52 * down more then we induce a latency at userspace return.  We accumulate the
  53 * total amount of time we need to be punished by doing
  54 *
  55 * total_time += min_lat_nsec - actual_io_completion
  56 *
  57 * and then at throttle time will do
  58 *
  59 * throttle_time = min(total_time, NSEC_PER_SEC)
  60 *
  61 * This induced delay will throttle back the activity that is generating the
  62 * root cg issued io's, wethere that's some metadata intensive operation or the
  63 * group is using so much memory that it is pushing us into swap.
  64 *
  65 * Copyright (C) 2018 Josef Bacik
  66 */
  67#include <linux/kernel.h>
  68#include <linux/blk_types.h>
  69#include <linux/backing-dev.h>
  70#include <linux/module.h>
  71#include <linux/timer.h>
  72#include <linux/memcontrol.h>
  73#include <linux/sched/loadavg.h>
  74#include <linux/sched/signal.h>
  75#include <trace/events/block.h>
  76#include <linux/blk-mq.h>
  77#include "blk-rq-qos.h"
  78#include "blk-stat.h"
 
  79#include "blk.h"
  80
  81#define DEFAULT_SCALE_COOKIE 1000000U
  82
  83static struct blkcg_policy blkcg_policy_iolatency;
  84struct iolatency_grp;
  85
  86struct blk_iolatency {
  87	struct rq_qos rqos;
  88	struct timer_list timer;
  89	atomic_t enabled;
 
 
 
 
 
 
 
 
 
 
  90};
  91
  92static inline struct blk_iolatency *BLKIOLATENCY(struct rq_qos *rqos)
  93{
  94	return container_of(rqos, struct blk_iolatency, rqos);
  95}
  96
  97static inline bool blk_iolatency_enabled(struct blk_iolatency *blkiolat)
  98{
  99	return atomic_read(&blkiolat->enabled) > 0;
 100}
 101
 102struct child_latency_info {
 103	spinlock_t lock;
 104
 105	/* Last time we adjusted the scale of everybody. */
 106	u64 last_scale_event;
 107
 108	/* The latency that we missed. */
 109	u64 scale_lat;
 110
 111	/* Total io's from all of our children for the last summation. */
 112	u64 nr_samples;
 113
 114	/* The guy who actually changed the latency numbers. */
 115	struct iolatency_grp *scale_grp;
 116
 117	/* Cookie to tell if we need to scale up or down. */
 118	atomic_t scale_cookie;
 119};
 120
 121struct percentile_stats {
 122	u64 total;
 123	u64 missed;
 124};
 125
 126struct latency_stat {
 127	union {
 128		struct percentile_stats ps;
 129		struct blk_rq_stat rqs;
 130	};
 131};
 132
 133struct iolatency_grp {
 134	struct blkg_policy_data pd;
 135	struct latency_stat __percpu *stats;
 136	struct latency_stat cur_stat;
 137	struct blk_iolatency *blkiolat;
 138	struct rq_depth rq_depth;
 139	struct rq_wait rq_wait;
 140	atomic64_t window_start;
 141	atomic_t scale_cookie;
 142	u64 min_lat_nsec;
 143	u64 cur_win_nsec;
 144
 145	/* total running average of our io latency. */
 146	u64 lat_avg;
 147
 148	/* Our current number of IO's for the last summation. */
 149	u64 nr_samples;
 150
 151	bool ssd;
 152	struct child_latency_info child_lat;
 153};
 154
 155#define BLKIOLATENCY_MIN_WIN_SIZE (100 * NSEC_PER_MSEC)
 156#define BLKIOLATENCY_MAX_WIN_SIZE NSEC_PER_SEC
 157/*
 158 * These are the constants used to fake the fixed-point moving average
 159 * calculation just like load average.  The call to calc_load() folds
 160 * (FIXED_1 (2048) - exp_factor) * new_sample into lat_avg.  The sampling
 161 * window size is bucketed to try to approximately calculate average
 162 * latency such that 1/exp (decay rate) is [1 min, 2.5 min) when windows
 163 * elapse immediately.  Note, windows only elapse with IO activity.  Idle
 164 * periods extend the most recent window.
 165 */
 166#define BLKIOLATENCY_NR_EXP_FACTORS 5
 167#define BLKIOLATENCY_EXP_BUCKET_SIZE (BLKIOLATENCY_MAX_WIN_SIZE / \
 168				      (BLKIOLATENCY_NR_EXP_FACTORS - 1))
 169static const u64 iolatency_exp_factors[BLKIOLATENCY_NR_EXP_FACTORS] = {
 170	2045, // exp(1/600) - 600 samples
 171	2039, // exp(1/240) - 240 samples
 172	2031, // exp(1/120) - 120 samples
 173	2023, // exp(1/80)  - 80 samples
 174	2014, // exp(1/60)  - 60 samples
 175};
 176
 177static inline struct iolatency_grp *pd_to_lat(struct blkg_policy_data *pd)
 178{
 179	return pd ? container_of(pd, struct iolatency_grp, pd) : NULL;
 180}
 181
 182static inline struct iolatency_grp *blkg_to_lat(struct blkcg_gq *blkg)
 183{
 184	return pd_to_lat(blkg_to_pd(blkg, &blkcg_policy_iolatency));
 185}
 186
 187static inline struct blkcg_gq *lat_to_blkg(struct iolatency_grp *iolat)
 188{
 189	return pd_to_blkg(&iolat->pd);
 190}
 191
 192static inline void latency_stat_init(struct iolatency_grp *iolat,
 193				     struct latency_stat *stat)
 194{
 195	if (iolat->ssd) {
 196		stat->ps.total = 0;
 197		stat->ps.missed = 0;
 198	} else
 199		blk_rq_stat_init(&stat->rqs);
 200}
 201
 202static inline void latency_stat_sum(struct iolatency_grp *iolat,
 203				    struct latency_stat *sum,
 204				    struct latency_stat *stat)
 205{
 206	if (iolat->ssd) {
 207		sum->ps.total += stat->ps.total;
 208		sum->ps.missed += stat->ps.missed;
 209	} else
 210		blk_rq_stat_sum(&sum->rqs, &stat->rqs);
 211}
 212
 213static inline void latency_stat_record_time(struct iolatency_grp *iolat,
 214					    u64 req_time)
 215{
 216	struct latency_stat *stat = get_cpu_ptr(iolat->stats);
 217	if (iolat->ssd) {
 218		if (req_time >= iolat->min_lat_nsec)
 219			stat->ps.missed++;
 220		stat->ps.total++;
 221	} else
 222		blk_rq_stat_add(&stat->rqs, req_time);
 223	put_cpu_ptr(stat);
 224}
 225
 226static inline bool latency_sum_ok(struct iolatency_grp *iolat,
 227				  struct latency_stat *stat)
 228{
 229	if (iolat->ssd) {
 230		u64 thresh = div64_u64(stat->ps.total, 10);
 231		thresh = max(thresh, 1ULL);
 232		return stat->ps.missed < thresh;
 233	}
 234	return stat->rqs.mean <= iolat->min_lat_nsec;
 235}
 236
 237static inline u64 latency_stat_samples(struct iolatency_grp *iolat,
 238				       struct latency_stat *stat)
 239{
 240	if (iolat->ssd)
 241		return stat->ps.total;
 242	return stat->rqs.nr_samples;
 243}
 244
 245static inline void iolat_update_total_lat_avg(struct iolatency_grp *iolat,
 246					      struct latency_stat *stat)
 247{
 248	int exp_idx;
 249
 250	if (iolat->ssd)
 251		return;
 252
 253	/*
 254	 * calc_load() takes in a number stored in fixed point representation.
 255	 * Because we are using this for IO time in ns, the values stored
 256	 * are significantly larger than the FIXED_1 denominator (2048).
 257	 * Therefore, rounding errors in the calculation are negligible and
 258	 * can be ignored.
 259	 */
 260	exp_idx = min_t(int, BLKIOLATENCY_NR_EXP_FACTORS - 1,
 261			div64_u64(iolat->cur_win_nsec,
 262				  BLKIOLATENCY_EXP_BUCKET_SIZE));
 263	iolat->lat_avg = calc_load(iolat->lat_avg,
 264				   iolatency_exp_factors[exp_idx],
 265				   stat->rqs.mean);
 266}
 267
 268static void iolat_cleanup_cb(struct rq_wait *rqw, void *private_data)
 269{
 270	atomic_dec(&rqw->inflight);
 271	wake_up(&rqw->wait);
 272}
 273
 274static bool iolat_acquire_inflight(struct rq_wait *rqw, void *private_data)
 275{
 276	struct iolatency_grp *iolat = private_data;
 277	return rq_wait_inc_below(rqw, iolat->rq_depth.max_depth);
 278}
 279
 280static void __blkcg_iolatency_throttle(struct rq_qos *rqos,
 281				       struct iolatency_grp *iolat,
 282				       bool issue_as_root,
 283				       bool use_memdelay)
 284{
 285	struct rq_wait *rqw = &iolat->rq_wait;
 286	unsigned use_delay = atomic_read(&lat_to_blkg(iolat)->use_delay);
 287
 288	if (use_delay)
 289		blkcg_schedule_throttle(rqos->q, use_memdelay);
 290
 291	/*
 292	 * To avoid priority inversions we want to just take a slot if we are
 293	 * issuing as root.  If we're being killed off there's no point in
 294	 * delaying things, we may have been killed by OOM so throttling may
 295	 * make recovery take even longer, so just let the IO's through so the
 296	 * task can go away.
 297	 */
 298	if (issue_as_root || fatal_signal_pending(current)) {
 299		atomic_inc(&rqw->inflight);
 300		return;
 301	}
 302
 303	rq_qos_wait(rqw, iolat, iolat_acquire_inflight, iolat_cleanup_cb);
 304}
 305
 306#define SCALE_DOWN_FACTOR 2
 307#define SCALE_UP_FACTOR 4
 308
 309static inline unsigned long scale_amount(unsigned long qd, bool up)
 310{
 311	return max(up ? qd >> SCALE_UP_FACTOR : qd >> SCALE_DOWN_FACTOR, 1UL);
 312}
 313
 314/*
 315 * We scale the qd down faster than we scale up, so we need to use this helper
 316 * to adjust the scale_cookie accordingly so we don't prematurely get
 317 * scale_cookie at DEFAULT_SCALE_COOKIE and unthrottle too much.
 318 *
 319 * Each group has their own local copy of the last scale cookie they saw, so if
 320 * the global scale cookie goes up or down they know which way they need to go
 321 * based on their last knowledge of it.
 322 */
 323static void scale_cookie_change(struct blk_iolatency *blkiolat,
 324				struct child_latency_info *lat_info,
 325				bool up)
 326{
 327	unsigned long qd = blkiolat->rqos.q->nr_requests;
 328	unsigned long scale = scale_amount(qd, up);
 329	unsigned long old = atomic_read(&lat_info->scale_cookie);
 330	unsigned long max_scale = qd << 1;
 331	unsigned long diff = 0;
 332
 333	if (old < DEFAULT_SCALE_COOKIE)
 334		diff = DEFAULT_SCALE_COOKIE - old;
 335
 336	if (up) {
 337		if (scale + old > DEFAULT_SCALE_COOKIE)
 338			atomic_set(&lat_info->scale_cookie,
 339				   DEFAULT_SCALE_COOKIE);
 340		else if (diff > qd)
 341			atomic_inc(&lat_info->scale_cookie);
 342		else
 343			atomic_add(scale, &lat_info->scale_cookie);
 344	} else {
 345		/*
 346		 * We don't want to dig a hole so deep that it takes us hours to
 347		 * dig out of it.  Just enough that we don't throttle/unthrottle
 348		 * with jagged workloads but can still unthrottle once pressure
 349		 * has sufficiently dissipated.
 350		 */
 351		if (diff > qd) {
 352			if (diff < max_scale)
 353				atomic_dec(&lat_info->scale_cookie);
 354		} else {
 355			atomic_sub(scale, &lat_info->scale_cookie);
 356		}
 357	}
 358}
 359
 360/*
 361 * Change the queue depth of the iolatency_grp.  We add/subtract 1/16th of the
 362 * queue depth at a time so we don't get wild swings and hopefully dial in to
 363 * fairer distribution of the overall queue depth.
 
 
 364 */
 365static void scale_change(struct iolatency_grp *iolat, bool up)
 366{
 367	unsigned long qd = iolat->blkiolat->rqos.q->nr_requests;
 368	unsigned long scale = scale_amount(qd, up);
 369	unsigned long old = iolat->rq_depth.max_depth;
 370
 371	if (old > qd)
 372		old = qd;
 373
 374	if (up) {
 375		if (old == 1 && blkcg_unuse_delay(lat_to_blkg(iolat)))
 376			return;
 377
 378		if (old < qd) {
 379			old += scale;
 380			old = min(old, qd);
 381			iolat->rq_depth.max_depth = old;
 382			wake_up_all(&iolat->rq_wait.wait);
 383		}
 384	} else {
 385		old >>= 1;
 386		iolat->rq_depth.max_depth = max(old, 1UL);
 387	}
 388}
 389
 390/* Check our parent and see if the scale cookie has changed. */
 391static void check_scale_change(struct iolatency_grp *iolat)
 392{
 393	struct iolatency_grp *parent;
 394	struct child_latency_info *lat_info;
 395	unsigned int cur_cookie;
 396	unsigned int our_cookie = atomic_read(&iolat->scale_cookie);
 397	u64 scale_lat;
 398	unsigned int old;
 399	int direction = 0;
 400
 401	if (lat_to_blkg(iolat)->parent == NULL)
 402		return;
 403
 404	parent = blkg_to_lat(lat_to_blkg(iolat)->parent);
 405	if (!parent)
 406		return;
 407
 408	lat_info = &parent->child_lat;
 409	cur_cookie = atomic_read(&lat_info->scale_cookie);
 410	scale_lat = READ_ONCE(lat_info->scale_lat);
 411
 412	if (cur_cookie < our_cookie)
 413		direction = -1;
 414	else if (cur_cookie > our_cookie)
 415		direction = 1;
 416	else
 417		return;
 418
 419	old = atomic_cmpxchg(&iolat->scale_cookie, our_cookie, cur_cookie);
 420
 421	/* Somebody beat us to the punch, just bail. */
 422	if (old != our_cookie)
 423		return;
 
 424
 425	if (direction < 0 && iolat->min_lat_nsec) {
 426		u64 samples_thresh;
 427
 428		if (!scale_lat || iolat->min_lat_nsec <= scale_lat)
 429			return;
 430
 431		/*
 432		 * Sometimes high priority groups are their own worst enemy, so
 433		 * instead of taking it out on some poor other group that did 5%
 434		 * or less of the IO's for the last summation just skip this
 435		 * scale down event.
 436		 */
 437		samples_thresh = lat_info->nr_samples * 5;
 438		samples_thresh = max(1ULL, div64_u64(samples_thresh, 100));
 439		if (iolat->nr_samples <= samples_thresh)
 440			return;
 441	}
 442
 443	/* We're as low as we can go. */
 444	if (iolat->rq_depth.max_depth == 1 && direction < 0) {
 445		blkcg_use_delay(lat_to_blkg(iolat));
 446		return;
 447	}
 448
 449	/* We're back to the default cookie, unthrottle all the things. */
 450	if (cur_cookie == DEFAULT_SCALE_COOKIE) {
 451		blkcg_clear_delay(lat_to_blkg(iolat));
 452		iolat->rq_depth.max_depth = UINT_MAX;
 453		wake_up_all(&iolat->rq_wait.wait);
 454		return;
 455	}
 456
 457	scale_change(iolat, direction > 0);
 458}
 459
 460static void blkcg_iolatency_throttle(struct rq_qos *rqos, struct bio *bio)
 461{
 462	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 463	struct blkcg_gq *blkg = bio->bi_blkg;
 464	bool issue_as_root = bio_issue_as_root_blkg(bio);
 465
 466	if (!blk_iolatency_enabled(blkiolat))
 467		return;
 468
 469	while (blkg && blkg->parent) {
 470		struct iolatency_grp *iolat = blkg_to_lat(blkg);
 471		if (!iolat) {
 472			blkg = blkg->parent;
 473			continue;
 474		}
 475
 476		check_scale_change(iolat);
 477		__blkcg_iolatency_throttle(rqos, iolat, issue_as_root,
 478				     (bio->bi_opf & REQ_SWAP) == REQ_SWAP);
 479		blkg = blkg->parent;
 480	}
 481	if (!timer_pending(&blkiolat->timer))
 482		mod_timer(&blkiolat->timer, jiffies + HZ);
 483}
 484
 485static void iolatency_record_time(struct iolatency_grp *iolat,
 486				  struct bio_issue *issue, u64 now,
 487				  bool issue_as_root)
 488{
 489	u64 start = bio_issue_time(issue);
 490	u64 req_time;
 491
 492	/*
 493	 * Have to do this so we are truncated to the correct time that our
 494	 * issue is truncated to.
 495	 */
 496	now = __bio_issue_time(now);
 497
 498	if (now <= start)
 499		return;
 500
 501	req_time = now - start;
 502
 503	/*
 504	 * We don't want to count issue_as_root bio's in the cgroups latency
 505	 * statistics as it could skew the numbers downwards.
 506	 */
 507	if (unlikely(issue_as_root && iolat->rq_depth.max_depth != UINT_MAX)) {
 508		u64 sub = iolat->min_lat_nsec;
 509		if (req_time < sub)
 510			blkcg_add_delay(lat_to_blkg(iolat), now, sub - req_time);
 511		return;
 512	}
 513
 514	latency_stat_record_time(iolat, req_time);
 515}
 516
 517#define BLKIOLATENCY_MIN_ADJUST_TIME (500 * NSEC_PER_MSEC)
 518#define BLKIOLATENCY_MIN_GOOD_SAMPLES 5
 519
 520static void iolatency_check_latencies(struct iolatency_grp *iolat, u64 now)
 521{
 522	struct blkcg_gq *blkg = lat_to_blkg(iolat);
 523	struct iolatency_grp *parent;
 524	struct child_latency_info *lat_info;
 525	struct latency_stat stat;
 526	unsigned long flags;
 527	int cpu;
 528
 529	latency_stat_init(iolat, &stat);
 530	preempt_disable();
 531	for_each_online_cpu(cpu) {
 532		struct latency_stat *s;
 533		s = per_cpu_ptr(iolat->stats, cpu);
 534		latency_stat_sum(iolat, &stat, s);
 535		latency_stat_init(iolat, s);
 536	}
 537	preempt_enable();
 538
 539	parent = blkg_to_lat(blkg->parent);
 540	if (!parent)
 541		return;
 542
 543	lat_info = &parent->child_lat;
 544
 545	iolat_update_total_lat_avg(iolat, &stat);
 546
 547	/* Everything is ok and we don't need to adjust the scale. */
 548	if (latency_sum_ok(iolat, &stat) &&
 549	    atomic_read(&lat_info->scale_cookie) == DEFAULT_SCALE_COOKIE)
 550		return;
 551
 552	/* Somebody beat us to the punch, just bail. */
 553	spin_lock_irqsave(&lat_info->lock, flags);
 554
 555	latency_stat_sum(iolat, &iolat->cur_stat, &stat);
 556	lat_info->nr_samples -= iolat->nr_samples;
 557	lat_info->nr_samples += latency_stat_samples(iolat, &iolat->cur_stat);
 558	iolat->nr_samples = latency_stat_samples(iolat, &iolat->cur_stat);
 559
 560	if ((lat_info->last_scale_event >= now ||
 561	    now - lat_info->last_scale_event < BLKIOLATENCY_MIN_ADJUST_TIME))
 562		goto out;
 563
 564	if (latency_sum_ok(iolat, &iolat->cur_stat) &&
 565	    latency_sum_ok(iolat, &stat)) {
 566		if (latency_stat_samples(iolat, &iolat->cur_stat) <
 567		    BLKIOLATENCY_MIN_GOOD_SAMPLES)
 568			goto out;
 569		if (lat_info->scale_grp == iolat) {
 570			lat_info->last_scale_event = now;
 571			scale_cookie_change(iolat->blkiolat, lat_info, true);
 572		}
 573	} else if (lat_info->scale_lat == 0 ||
 574		   lat_info->scale_lat >= iolat->min_lat_nsec) {
 575		lat_info->last_scale_event = now;
 576		if (!lat_info->scale_grp ||
 577		    lat_info->scale_lat > iolat->min_lat_nsec) {
 578			WRITE_ONCE(lat_info->scale_lat, iolat->min_lat_nsec);
 579			lat_info->scale_grp = iolat;
 580		}
 581		scale_cookie_change(iolat->blkiolat, lat_info, false);
 582	}
 583	latency_stat_init(iolat, &iolat->cur_stat);
 584out:
 585	spin_unlock_irqrestore(&lat_info->lock, flags);
 586}
 587
 588static void blkcg_iolatency_done_bio(struct rq_qos *rqos, struct bio *bio)
 589{
 590	struct blkcg_gq *blkg;
 591	struct rq_wait *rqw;
 592	struct iolatency_grp *iolat;
 593	u64 window_start;
 594	u64 now;
 595	bool issue_as_root = bio_issue_as_root_blkg(bio);
 596	bool enabled = false;
 597	int inflight = 0;
 598
 599	blkg = bio->bi_blkg;
 600	if (!blkg || !bio_flagged(bio, BIO_TRACKED))
 601		return;
 602
 603	iolat = blkg_to_lat(bio->bi_blkg);
 604	if (!iolat)
 605		return;
 606
 607	enabled = blk_iolatency_enabled(iolat->blkiolat);
 608	if (!enabled)
 609		return;
 610
 611	now = ktime_to_ns(ktime_get());
 612	while (blkg && blkg->parent) {
 613		iolat = blkg_to_lat(blkg);
 614		if (!iolat) {
 615			blkg = blkg->parent;
 616			continue;
 617		}
 618		rqw = &iolat->rq_wait;
 619
 620		inflight = atomic_dec_return(&rqw->inflight);
 621		WARN_ON_ONCE(inflight < 0);
 622		/*
 623		 * If bi_status is BLK_STS_AGAIN, the bio wasn't actually
 624		 * submitted, so do not account for it.
 625		 */
 626		if (iolat->min_lat_nsec && bio->bi_status != BLK_STS_AGAIN) {
 627			iolatency_record_time(iolat, &bio->bi_issue, now,
 628					      issue_as_root);
 629			window_start = atomic64_read(&iolat->window_start);
 630			if (now > window_start &&
 631			    (now - window_start) >= iolat->cur_win_nsec) {
 632				if (atomic64_cmpxchg(&iolat->window_start,
 633					     window_start, now) == window_start)
 634					iolatency_check_latencies(iolat, now);
 635			}
 636		}
 637		wake_up(&rqw->wait);
 638		blkg = blkg->parent;
 639	}
 640}
 641
 642static void blkcg_iolatency_exit(struct rq_qos *rqos)
 643{
 644	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 645
 646	del_timer_sync(&blkiolat->timer);
 
 647	blkcg_deactivate_policy(rqos->q, &blkcg_policy_iolatency);
 648	kfree(blkiolat);
 649}
 650
 651static struct rq_qos_ops blkcg_iolatency_ops = {
 652	.throttle = blkcg_iolatency_throttle,
 653	.done_bio = blkcg_iolatency_done_bio,
 654	.exit = blkcg_iolatency_exit,
 655};
 656
 657static void blkiolatency_timer_fn(struct timer_list *t)
 658{
 659	struct blk_iolatency *blkiolat = from_timer(blkiolat, t, timer);
 660	struct blkcg_gq *blkg;
 661	struct cgroup_subsys_state *pos_css;
 662	u64 now = ktime_to_ns(ktime_get());
 663
 664	rcu_read_lock();
 665	blkg_for_each_descendant_pre(blkg, pos_css,
 666				     blkiolat->rqos.q->root_blkg) {
 667		struct iolatency_grp *iolat;
 668		struct child_latency_info *lat_info;
 669		unsigned long flags;
 670		u64 cookie;
 671
 672		/*
 673		 * We could be exiting, don't access the pd unless we have a
 674		 * ref on the blkg.
 675		 */
 676		if (!blkg_tryget(blkg))
 677			continue;
 678
 679		iolat = blkg_to_lat(blkg);
 680		if (!iolat)
 681			goto next;
 682
 683		lat_info = &iolat->child_lat;
 684		cookie = atomic_read(&lat_info->scale_cookie);
 685
 686		if (cookie >= DEFAULT_SCALE_COOKIE)
 687			goto next;
 688
 689		spin_lock_irqsave(&lat_info->lock, flags);
 690		if (lat_info->last_scale_event >= now)
 691			goto next_lock;
 692
 693		/*
 694		 * We scaled down but don't have a scale_grp, scale up and carry
 695		 * on.
 696		 */
 697		if (lat_info->scale_grp == NULL) {
 698			scale_cookie_change(iolat->blkiolat, lat_info, true);
 699			goto next_lock;
 700		}
 701
 702		/*
 703		 * It's been 5 seconds since our last scale event, clear the
 704		 * scale grp in case the group that needed the scale down isn't
 705		 * doing any IO currently.
 706		 */
 707		if (now - lat_info->last_scale_event >=
 708		    ((u64)NSEC_PER_SEC * 5))
 709			lat_info->scale_grp = NULL;
 710next_lock:
 711		spin_unlock_irqrestore(&lat_info->lock, flags);
 712next:
 713		blkg_put(blkg);
 714	}
 715	rcu_read_unlock();
 716}
 717
 718int blk_iolatency_init(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719{
 
 720	struct blk_iolatency *blkiolat;
 721	struct rq_qos *rqos;
 722	int ret;
 723
 724	blkiolat = kzalloc(sizeof(*blkiolat), GFP_KERNEL);
 725	if (!blkiolat)
 726		return -ENOMEM;
 727
 728	rqos = &blkiolat->rqos;
 729	rqos->id = RQ_QOS_LATENCY;
 730	rqos->ops = &blkcg_iolatency_ops;
 731	rqos->q = q;
 732
 733	rq_qos_add(q, rqos);
 734
 
 735	ret = blkcg_activate_policy(q, &blkcg_policy_iolatency);
 736	if (ret) {
 737		rq_qos_del(q, rqos);
 738		kfree(blkiolat);
 739		return ret;
 740	}
 741
 742	timer_setup(&blkiolat->timer, blkiolatency_timer_fn, 0);
 
 743
 744	return 0;
 
 
 
 
 
 
 745}
 746
 747/*
 748 * return 1 for enabling iolatency, return -1 for disabling iolatency, otherwise
 749 * return 0.
 750 */
 751static int iolatency_set_min_lat_nsec(struct blkcg_gq *blkg, u64 val)
 752{
 753	struct iolatency_grp *iolat = blkg_to_lat(blkg);
 
 754	u64 oldval = iolat->min_lat_nsec;
 755
 756	iolat->min_lat_nsec = val;
 757	iolat->cur_win_nsec = max_t(u64, val << 4, BLKIOLATENCY_MIN_WIN_SIZE);
 758	iolat->cur_win_nsec = min_t(u64, iolat->cur_win_nsec,
 759				    BLKIOLATENCY_MAX_WIN_SIZE);
 760
 761	if (!oldval && val)
 762		return 1;
 
 
 763	if (oldval && !val) {
 764		blkcg_clear_delay(blkg);
 765		return -1;
 
 766	}
 767	return 0;
 768}
 769
 770static void iolatency_clear_scaling(struct blkcg_gq *blkg)
 771{
 772	if (blkg->parent) {
 773		struct iolatency_grp *iolat = blkg_to_lat(blkg->parent);
 774		struct child_latency_info *lat_info;
 775		if (!iolat)
 776			return;
 777
 778		lat_info = &iolat->child_lat;
 779		spin_lock(&lat_info->lock);
 780		atomic_set(&lat_info->scale_cookie, DEFAULT_SCALE_COOKIE);
 781		lat_info->last_scale_event = 0;
 782		lat_info->scale_grp = NULL;
 783		lat_info->scale_lat = 0;
 784		spin_unlock(&lat_info->lock);
 785	}
 786}
 787
 788static ssize_t iolatency_set_limit(struct kernfs_open_file *of, char *buf,
 789			     size_t nbytes, loff_t off)
 790{
 791	struct blkcg *blkcg = css_to_blkcg(of_css(of));
 792	struct blkcg_gq *blkg;
 793	struct blkg_conf_ctx ctx;
 794	struct iolatency_grp *iolat;
 795	char *p, *tok;
 796	u64 lat_val = 0;
 797	u64 oldval;
 798	int ret;
 799	int enable = 0;
 800
 801	ret = blkg_conf_prep(blkcg, &blkcg_policy_iolatency, buf, &ctx);
 802	if (ret)
 803		return ret;
 804
 805	iolat = blkg_to_lat(ctx.blkg);
 806	p = ctx.body;
 807
 808	ret = -EINVAL;
 809	while ((tok = strsep(&p, " "))) {
 810		char key[16];
 811		char val[21];	/* 18446744073709551616 */
 812
 813		if (sscanf(tok, "%15[^=]=%20s", key, val) != 2)
 814			goto out;
 815
 816		if (!strcmp(key, "target")) {
 817			u64 v;
 818
 819			if (!strcmp(val, "max"))
 820				lat_val = 0;
 821			else if (sscanf(val, "%llu", &v) == 1)
 822				lat_val = v * NSEC_PER_USEC;
 823			else
 824				goto out;
 825		} else {
 826			goto out;
 827		}
 828	}
 829
 830	/* Walk up the tree to see if our new val is lower than it should be. */
 831	blkg = ctx.blkg;
 832	oldval = iolat->min_lat_nsec;
 833
 834	enable = iolatency_set_min_lat_nsec(blkg, lat_val);
 835	if (enable) {
 836		WARN_ON_ONCE(!blk_get_queue(blkg->q));
 837		blkg_get(blkg);
 838	}
 839
 840	if (oldval != iolat->min_lat_nsec) {
 841		iolatency_clear_scaling(blkg);
 842	}
 843
 844	ret = 0;
 845out:
 846	blkg_conf_finish(&ctx);
 847	if (ret == 0 && enable) {
 848		struct iolatency_grp *tmp = blkg_to_lat(blkg);
 849		struct blk_iolatency *blkiolat = tmp->blkiolat;
 850
 851		blk_mq_freeze_queue(blkg->q);
 852
 853		if (enable == 1)
 854			atomic_inc(&blkiolat->enabled);
 855		else if (enable == -1)
 856			atomic_dec(&blkiolat->enabled);
 857		else
 858			WARN_ON_ONCE(1);
 859
 860		blk_mq_unfreeze_queue(blkg->q);
 861
 862		blkg_put(blkg);
 863		blk_put_queue(blkg->q);
 864	}
 865	return ret ?: nbytes;
 866}
 867
 868static u64 iolatency_prfill_limit(struct seq_file *sf,
 869				  struct blkg_policy_data *pd, int off)
 870{
 871	struct iolatency_grp *iolat = pd_to_lat(pd);
 872	const char *dname = blkg_dev_name(pd->blkg);
 873
 874	if (!dname || !iolat->min_lat_nsec)
 875		return 0;
 876	seq_printf(sf, "%s target=%llu\n",
 877		   dname, div_u64(iolat->min_lat_nsec, NSEC_PER_USEC));
 878	return 0;
 879}
 880
 881static int iolatency_print_limit(struct seq_file *sf, void *v)
 882{
 883	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
 884			  iolatency_prfill_limit,
 885			  &blkcg_policy_iolatency, seq_cft(sf)->private, false);
 886	return 0;
 887}
 888
 889static size_t iolatency_ssd_stat(struct iolatency_grp *iolat, char *buf,
 890				 size_t size)
 891{
 892	struct latency_stat stat;
 893	int cpu;
 894
 895	latency_stat_init(iolat, &stat);
 896	preempt_disable();
 897	for_each_online_cpu(cpu) {
 898		struct latency_stat *s;
 899		s = per_cpu_ptr(iolat->stats, cpu);
 900		latency_stat_sum(iolat, &stat, s);
 901	}
 902	preempt_enable();
 903
 904	if (iolat->rq_depth.max_depth == UINT_MAX)
 905		return scnprintf(buf, size, " missed=%llu total=%llu depth=max",
 906				 (unsigned long long)stat.ps.missed,
 907				 (unsigned long long)stat.ps.total);
 908	return scnprintf(buf, size, " missed=%llu total=%llu depth=%u",
 909			 (unsigned long long)stat.ps.missed,
 910			 (unsigned long long)stat.ps.total,
 911			 iolat->rq_depth.max_depth);
 
 912}
 913
 914static size_t iolatency_pd_stat(struct blkg_policy_data *pd, char *buf,
 915				size_t size)
 916{
 917	struct iolatency_grp *iolat = pd_to_lat(pd);
 918	unsigned long long avg_lat;
 919	unsigned long long cur_win;
 920
 921	if (!blkcg_debug_stats)
 922		return 0;
 923
 924	if (iolat->ssd)
 925		return iolatency_ssd_stat(iolat, buf, size);
 926
 927	avg_lat = div64_u64(iolat->lat_avg, NSEC_PER_USEC);
 928	cur_win = div64_u64(iolat->cur_win_nsec, NSEC_PER_MSEC);
 929	if (iolat->rq_depth.max_depth == UINT_MAX)
 930		return scnprintf(buf, size, " depth=max avg_lat=%llu win=%llu",
 931				 avg_lat, cur_win);
 932
 933	return scnprintf(buf, size, " depth=%u avg_lat=%llu win=%llu",
 934			 iolat->rq_depth.max_depth, avg_lat, cur_win);
 935}
 936
 937
 938static struct blkg_policy_data *iolatency_pd_alloc(gfp_t gfp,
 939						   struct request_queue *q,
 940						   struct blkcg *blkcg)
 941{
 942	struct iolatency_grp *iolat;
 943
 944	iolat = kzalloc_node(sizeof(*iolat), gfp, q->node);
 945	if (!iolat)
 946		return NULL;
 947	iolat->stats = __alloc_percpu_gfp(sizeof(struct latency_stat),
 948				       __alignof__(struct latency_stat), gfp);
 949	if (!iolat->stats) {
 950		kfree(iolat);
 951		return NULL;
 952	}
 953	return &iolat->pd;
 954}
 955
 956static void iolatency_pd_init(struct blkg_policy_data *pd)
 957{
 958	struct iolatency_grp *iolat = pd_to_lat(pd);
 959	struct blkcg_gq *blkg = lat_to_blkg(iolat);
 960	struct rq_qos *rqos = blkcg_rq_qos(blkg->q);
 961	struct blk_iolatency *blkiolat = BLKIOLATENCY(rqos);
 962	u64 now = ktime_to_ns(ktime_get());
 963	int cpu;
 964
 965	if (blk_queue_nonrot(blkg->q))
 966		iolat->ssd = true;
 967	else
 968		iolat->ssd = false;
 969
 970	for_each_possible_cpu(cpu) {
 971		struct latency_stat *stat;
 972		stat = per_cpu_ptr(iolat->stats, cpu);
 973		latency_stat_init(iolat, stat);
 974	}
 975
 976	latency_stat_init(iolat, &iolat->cur_stat);
 977	rq_wait_init(&iolat->rq_wait);
 978	spin_lock_init(&iolat->child_lat.lock);
 979	iolat->rq_depth.queue_depth = blkg->q->nr_requests;
 980	iolat->rq_depth.max_depth = UINT_MAX;
 981	iolat->rq_depth.default_depth = iolat->rq_depth.queue_depth;
 982	iolat->blkiolat = blkiolat;
 983	iolat->cur_win_nsec = 100 * NSEC_PER_MSEC;
 984	atomic64_set(&iolat->window_start, now);
 985
 986	/*
 987	 * We init things in list order, so the pd for the parent may not be
 988	 * init'ed yet for whatever reason.
 989	 */
 990	if (blkg->parent && blkg_to_pd(blkg->parent, &blkcg_policy_iolatency)) {
 991		struct iolatency_grp *parent = blkg_to_lat(blkg->parent);
 992		atomic_set(&iolat->scale_cookie,
 993			   atomic_read(&parent->child_lat.scale_cookie));
 994	} else {
 995		atomic_set(&iolat->scale_cookie, DEFAULT_SCALE_COOKIE);
 996	}
 997
 998	atomic_set(&iolat->child_lat.scale_cookie, DEFAULT_SCALE_COOKIE);
 999}
1000
1001static void iolatency_pd_offline(struct blkg_policy_data *pd)
1002{
1003	struct iolatency_grp *iolat = pd_to_lat(pd);
1004	struct blkcg_gq *blkg = lat_to_blkg(iolat);
1005	struct blk_iolatency *blkiolat = iolat->blkiolat;
1006	int ret;
1007
1008	ret = iolatency_set_min_lat_nsec(blkg, 0);
1009	if (ret == 1)
1010		atomic_inc(&blkiolat->enabled);
1011	if (ret == -1)
1012		atomic_dec(&blkiolat->enabled);
1013	iolatency_clear_scaling(blkg);
1014}
1015
1016static void iolatency_pd_free(struct blkg_policy_data *pd)
1017{
1018	struct iolatency_grp *iolat = pd_to_lat(pd);
1019	free_percpu(iolat->stats);
1020	kfree(iolat);
1021}
1022
1023static struct cftype iolatency_files[] = {
1024	{
1025		.name = "latency",
1026		.flags = CFTYPE_NOT_ON_ROOT,
1027		.seq_show = iolatency_print_limit,
1028		.write = iolatency_set_limit,
1029	},
1030	{}
1031};
1032
1033static struct blkcg_policy blkcg_policy_iolatency = {
1034	.dfl_cftypes	= iolatency_files,
1035	.pd_alloc_fn	= iolatency_pd_alloc,
1036	.pd_init_fn	= iolatency_pd_init,
1037	.pd_offline_fn	= iolatency_pd_offline,
1038	.pd_free_fn	= iolatency_pd_free,
1039	.pd_stat_fn	= iolatency_pd_stat,
1040};
1041
1042static int __init iolatency_init(void)
1043{
1044	return blkcg_policy_register(&blkcg_policy_iolatency);
1045}
1046
1047static void __exit iolatency_exit(void)
1048{
1049	return blkcg_policy_unregister(&blkcg_policy_iolatency);
1050}
1051
1052module_init(iolatency_init);
1053module_exit(iolatency_exit);