Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef ARCH_X86_KVM_REVERSE_CPUID_H
  3#define ARCH_X86_KVM_REVERSE_CPUID_H
  4
  5#include <uapi/asm/kvm.h>
  6#include <asm/cpufeature.h>
  7#include <asm/cpufeatures.h>
  8
  9/*
 10 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
 11 * unknown to the kernel, but need to be directly used by KVM.  Note, these
 12 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
 13 */
 14enum kvm_only_cpuid_leafs {
 15	CPUID_12_EAX	 = NCAPINTS,
 16	CPUID_7_1_EDX,
 17	NR_KVM_CPU_CAPS,
 18
 19	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
 20};
 21
 22/*
 23 * Define a KVM-only feature flag.
 24 *
 25 * For features that are scattered by cpufeatures.h, __feature_translate() also
 26 * needs to be updated to translate the kernel-defined feature into the
 27 * KVM-defined feature.
 28 *
 29 * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
 30 * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
 31 * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
 32 * needed in this case.
 33 */
 34#define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
 35
 36/* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
 37#define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
 38#define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
 39#define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
 40
 41/* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
 42#define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
 43#define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
 44#define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
 45
 46struct cpuid_reg {
 47	u32 function;
 48	u32 index;
 49	int reg;
 50};
 51
 52static const struct cpuid_reg reverse_cpuid[] = {
 53	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
 54	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
 55	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
 56	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
 57	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
 58	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
 59	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
 60	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
 61	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
 62	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
 63	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
 64	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
 65	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
 66	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
 67	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
 68	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
 69	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
 70	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
 71};
 72
 73/*
 74 * Reverse CPUID and its derivatives can only be used for hardware-defined
 75 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
 76 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
 77 * is nonsensical as the bit number/mask is an arbitrary software-defined value
 78 * and can't be used by KVM to query/control guest capabilities.  And obviously
 79 * the leaf being queried must have an entry in the lookup table.
 80 */
 81static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
 82{
 83	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
 84	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
 85	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
 86	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
 87	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
 88	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
 89}
 90
 91/*
 92 * Translate feature bits that are scattered in the kernel's cpufeatures word
 93 * into KVM feature words that align with hardware's definitions.
 94 */
 95static __always_inline u32 __feature_translate(int x86_feature)
 96{
 97	if (x86_feature == X86_FEATURE_SGX1)
 98		return KVM_X86_FEATURE_SGX1;
 99	else if (x86_feature == X86_FEATURE_SGX2)
100		return KVM_X86_FEATURE_SGX2;
101	else if (x86_feature == X86_FEATURE_SGX_EDECCSSA)
102		return KVM_X86_FEATURE_SGX_EDECCSSA;
103
104	return x86_feature;
105}
106
107static __always_inline u32 __feature_leaf(int x86_feature)
108{
109	return __feature_translate(x86_feature) / 32;
110}
111
112/*
113 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
114 * the hardware defined bit number (stored in bits 4:0) and a software defined
115 * "word" (stored in bits 31:5).  The word is used to index into arrays of
116 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
117 */
118static __always_inline u32 __feature_bit(int x86_feature)
119{
120	x86_feature = __feature_translate(x86_feature);
121
122	reverse_cpuid_check(x86_feature / 32);
123	return 1 << (x86_feature & 31);
124}
125
126#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
127
128static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
129{
130	unsigned int x86_leaf = __feature_leaf(x86_feature);
131
132	reverse_cpuid_check(x86_leaf);
133	return reverse_cpuid[x86_leaf];
134}
135
136static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
137						  u32 reg)
138{
139	switch (reg) {
140	case CPUID_EAX:
141		return &entry->eax;
142	case CPUID_EBX:
143		return &entry->ebx;
144	case CPUID_ECX:
145		return &entry->ecx;
146	case CPUID_EDX:
147		return &entry->edx;
148	default:
149		BUILD_BUG();
150		return NULL;
151	}
152}
153
154static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
155						unsigned int x86_feature)
156{
157	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
158
159	return __cpuid_entry_get_reg(entry, cpuid.reg);
160}
161
162static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
163					   unsigned int x86_feature)
164{
165	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
166
167	return *reg & __feature_bit(x86_feature);
168}
169
170static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
171					    unsigned int x86_feature)
172{
173	return cpuid_entry_get(entry, x86_feature);
174}
175
176static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
177					      unsigned int x86_feature)
178{
179	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
180
181	*reg &= ~__feature_bit(x86_feature);
182}
183
184static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
185					    unsigned int x86_feature)
186{
187	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
188
189	*reg |= __feature_bit(x86_feature);
190}
191
192static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
193					       unsigned int x86_feature,
194					       bool set)
195{
196	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
197
198	/*
199	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
200	 * compiler into using CMOV instead of Jcc when possible.
201	 */
202	if (set)
203		*reg |= __feature_bit(x86_feature);
204	else
205		*reg &= ~__feature_bit(x86_feature);
206}
207
208#endif /* ARCH_X86_KVM_REVERSE_CPUID_H */