Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * Switch a MMU context.
  3 *
  4 * This file is subject to the terms and conditions of the GNU General Public
  5 * License.  See the file "COPYING" in the main directory of this archive
  6 * for more details.
  7 *
  8 * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
  9 * Copyright (C) 1999 Silicon Graphics, Inc.
 10 */
 11#ifndef _ASM_MMU_CONTEXT_H
 12#define _ASM_MMU_CONTEXT_H
 13
 14#include <linux/errno.h>
 15#include <linux/sched.h>
 16#include <linux/mm_types.h>
 17#include <linux/smp.h>
 18#include <linux/slab.h>
 19
 20#include <asm/barrier.h>
 21#include <asm/cacheflush.h>
 22#include <asm/dsemul.h>
 23#include <asm/ginvt.h>
 24#include <asm/hazards.h>
 25#include <asm/tlbflush.h>
 26#include <asm-generic/mm_hooks.h>
 27
 28#define htw_set_pwbase(pgd)						\
 29do {									\
 30	if (cpu_has_htw) {						\
 31		write_c0_pwbase(pgd);					\
 32		back_to_back_c0_hazard();				\
 33	}								\
 34} while (0)
 35
 36extern void tlbmiss_handler_setup_pgd(unsigned long);
 37extern char tlbmiss_handler_setup_pgd_end[];
 38
 39/* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
 40#define TLBMISS_HANDLER_SETUP_PGD(pgd)					\
 41do {									\
 42	tlbmiss_handler_setup_pgd((unsigned long)(pgd));		\
 43	htw_set_pwbase((unsigned long)pgd);				\
 44} while (0)
 45
 46#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
 47
 48#define TLBMISS_HANDLER_RESTORE()					\
 49	write_c0_xcontext((unsigned long) smp_processor_id() <<		\
 50			  SMP_CPUID_REGSHIFT)
 51
 52#define TLBMISS_HANDLER_SETUP()						\
 53	do {								\
 54		TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);		\
 55		TLBMISS_HANDLER_RESTORE();				\
 56	} while (0)
 57
 58#else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
 59
 60/*
 61 * For the fast tlb miss handlers, we keep a per cpu array of pointers
 62 * to the current pgd for each processor. Also, the proc. id is stuffed
 63 * into the context register.
 64 */
 65extern unsigned long pgd_current[];
 66
 67#define TLBMISS_HANDLER_RESTORE()					\
 68	write_c0_context((unsigned long) smp_processor_id() <<		\
 69			 SMP_CPUID_REGSHIFT)
 70
 71#define TLBMISS_HANDLER_SETUP()						\
 72	TLBMISS_HANDLER_RESTORE();					\
 73	back_to_back_c0_hazard();					\
 74	TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
 75#endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
 76
 77/*
 78 * The ginvt instruction will invalidate wired entries when its type field
 79 * targets anything other than the entire TLB. That means that if we were to
 80 * allow the kernel to create wired entries with the MMID of current->active_mm
 81 * then those wired entries could be invalidated when we later use ginvt to
 82 * invalidate TLB entries with that MMID.
 83 *
 84 * In order to prevent ginvt from trashing wired entries, we reserve one MMID
 85 * for use by the kernel when creating wired entries. This MMID will never be
 86 * assigned to a struct mm, and we'll never target it with a ginvt instruction.
 87 */
 88#define MMID_KERNEL_WIRED	0
 89
 90/*
 91 *  All unused by hardware upper bits will be considered
 92 *  as a software asid extension.
 93 */
 94static inline u64 asid_version_mask(unsigned int cpu)
 95{
 96	unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
 97
 98	return ~(u64)(asid_mask | (asid_mask - 1));
 99}
100
101static inline u64 asid_first_version(unsigned int cpu)
102{
103	return ~asid_version_mask(cpu) + 1;
104}
105
106static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
107{
108	if (cpu_has_mmid)
109		return atomic64_read(&mm->context.mmid);
110
111	return mm->context.asid[cpu];
112}
113
114static inline void set_cpu_context(unsigned int cpu,
115				   struct mm_struct *mm, u64 ctx)
116{
117	if (cpu_has_mmid)
118		atomic64_set(&mm->context.mmid, ctx);
119	else
120		mm->context.asid[cpu] = ctx;
121}
122
123#define asid_cache(cpu)		(cpu_data[cpu].asid_cache)
124#define cpu_asid(cpu, mm) \
125	(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
126
 
 
 
 
127extern void get_new_mmu_context(struct mm_struct *mm);
128extern void check_mmu_context(struct mm_struct *mm);
129extern void check_switch_mmu_context(struct mm_struct *mm);
130
131/*
132 * Initialize the context related info for a new mm_struct
133 * instance.
134 */
135#define init_new_context init_new_context
136static inline int
137init_new_context(struct task_struct *tsk, struct mm_struct *mm)
138{
139	int i;
140
141	if (cpu_has_mmid) {
142		set_cpu_context(0, mm, 0);
143	} else {
144		for_each_possible_cpu(i)
145			set_cpu_context(i, mm, 0);
146	}
147
148	mm->context.bd_emupage_allocmap = NULL;
149	spin_lock_init(&mm->context.bd_emupage_lock);
150	init_waitqueue_head(&mm->context.bd_emupage_queue);
151
152	return 0;
153}
154
155static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
156			     struct task_struct *tsk)
157{
158	unsigned int cpu = smp_processor_id();
159	unsigned long flags;
160	local_irq_save(flags);
161
162	htw_stop();
163	check_switch_mmu_context(next);
164
165	/*
166	 * Mark current->active_mm as not "active" anymore.
167	 * We don't want to mislead possible IPI tlb flush routines.
168	 */
169	cpumask_clear_cpu(cpu, mm_cpumask(prev));
170	cpumask_set_cpu(cpu, mm_cpumask(next));
171	htw_start();
172
173	local_irq_restore(flags);
174}
175
176/*
177 * Destroy context related info for an mm_struct that is about
178 * to be put to rest.
179 */
180#define destroy_context destroy_context
181static inline void destroy_context(struct mm_struct *mm)
182{
183	dsemul_mm_cleanup(mm);
184}
185
 
 
 
186static inline void
187drop_mmu_context(struct mm_struct *mm)
188{
189	unsigned long flags;
190	unsigned int cpu;
191	u32 old_mmid;
192	u64 ctx;
193
194	local_irq_save(flags);
195
196	cpu = smp_processor_id();
197	ctx = cpu_context(cpu, mm);
198
199	if (!ctx) {
200		/* no-op */
201	} else if (cpu_has_mmid) {
202		/*
203		 * Globally invalidating TLB entries associated with the MMID
204		 * is pretty cheap using the GINVT instruction, so we'll do
205		 * that rather than incur the overhead of allocating a new
206		 * MMID. The latter would be especially difficult since MMIDs
207		 * are global & other CPUs may be actively using ctx.
208		 */
209		htw_stop();
210		old_mmid = read_c0_memorymapid();
211		write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
212		mtc0_tlbw_hazard();
213		ginvt_mmid();
214		sync_ginv();
215		write_c0_memorymapid(old_mmid);
216		instruction_hazard();
217		htw_start();
218	} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
219		/*
220		 * mm is currently active, so we can't really drop it.
221		 * Instead we bump the ASID.
222		 */
223		htw_stop();
224		get_new_mmu_context(mm);
225		write_c0_entryhi(cpu_asid(cpu, mm));
226		htw_start();
227	} else {
228		/* will get a new context next time */
229		set_cpu_context(cpu, mm, 0);
230	}
231
232	local_irq_restore(flags);
233}
234
235#include <asm-generic/mmu_context.h>
236
237#endif /* _ASM_MMU_CONTEXT_H */
v5.9
  1/*
  2 * Switch a MMU context.
  3 *
  4 * This file is subject to the terms and conditions of the GNU General Public
  5 * License.  See the file "COPYING" in the main directory of this archive
  6 * for more details.
  7 *
  8 * Copyright (C) 1996, 1997, 1998, 1999 by Ralf Baechle
  9 * Copyright (C) 1999 Silicon Graphics, Inc.
 10 */
 11#ifndef _ASM_MMU_CONTEXT_H
 12#define _ASM_MMU_CONTEXT_H
 13
 14#include <linux/errno.h>
 15#include <linux/sched.h>
 16#include <linux/mm_types.h>
 17#include <linux/smp.h>
 18#include <linux/slab.h>
 19
 20#include <asm/barrier.h>
 21#include <asm/cacheflush.h>
 22#include <asm/dsemul.h>
 23#include <asm/ginvt.h>
 24#include <asm/hazards.h>
 25#include <asm/tlbflush.h>
 26#include <asm-generic/mm_hooks.h>
 27
 28#define htw_set_pwbase(pgd)						\
 29do {									\
 30	if (cpu_has_htw) {						\
 31		write_c0_pwbase(pgd);					\
 32		back_to_back_c0_hazard();				\
 33	}								\
 34} while (0)
 35
 36extern void tlbmiss_handler_setup_pgd(unsigned long);
 37extern char tlbmiss_handler_setup_pgd_end[];
 38
 39/* Note: This is also implemented with uasm in arch/mips/kvm/entry.c */
 40#define TLBMISS_HANDLER_SETUP_PGD(pgd)					\
 41do {									\
 42	tlbmiss_handler_setup_pgd((unsigned long)(pgd));		\
 43	htw_set_pwbase((unsigned long)pgd);				\
 44} while (0)
 45
 46#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
 47
 48#define TLBMISS_HANDLER_RESTORE()					\
 49	write_c0_xcontext((unsigned long) smp_processor_id() <<		\
 50			  SMP_CPUID_REGSHIFT)
 51
 52#define TLBMISS_HANDLER_SETUP()						\
 53	do {								\
 54		TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir);		\
 55		TLBMISS_HANDLER_RESTORE();				\
 56	} while (0)
 57
 58#else /* !CONFIG_MIPS_PGD_C0_CONTEXT: using  pgd_current*/
 59
 60/*
 61 * For the fast tlb miss handlers, we keep a per cpu array of pointers
 62 * to the current pgd for each processor. Also, the proc. id is stuffed
 63 * into the context register.
 64 */
 65extern unsigned long pgd_current[];
 66
 67#define TLBMISS_HANDLER_RESTORE()					\
 68	write_c0_context((unsigned long) smp_processor_id() <<		\
 69			 SMP_CPUID_REGSHIFT)
 70
 71#define TLBMISS_HANDLER_SETUP()						\
 72	TLBMISS_HANDLER_RESTORE();					\
 73	back_to_back_c0_hazard();					\
 74	TLBMISS_HANDLER_SETUP_PGD(swapper_pg_dir)
 75#endif /* CONFIG_MIPS_PGD_C0_CONTEXT*/
 76
 77/*
 78 * The ginvt instruction will invalidate wired entries when its type field
 79 * targets anything other than the entire TLB. That means that if we were to
 80 * allow the kernel to create wired entries with the MMID of current->active_mm
 81 * then those wired entries could be invalidated when we later use ginvt to
 82 * invalidate TLB entries with that MMID.
 83 *
 84 * In order to prevent ginvt from trashing wired entries, we reserve one MMID
 85 * for use by the kernel when creating wired entries. This MMID will never be
 86 * assigned to a struct mm, and we'll never target it with a ginvt instruction.
 87 */
 88#define MMID_KERNEL_WIRED	0
 89
 90/*
 91 *  All unused by hardware upper bits will be considered
 92 *  as a software asid extension.
 93 */
 94static inline u64 asid_version_mask(unsigned int cpu)
 95{
 96	unsigned long asid_mask = cpu_asid_mask(&cpu_data[cpu]);
 97
 98	return ~(u64)(asid_mask | (asid_mask - 1));
 99}
100
101static inline u64 asid_first_version(unsigned int cpu)
102{
103	return ~asid_version_mask(cpu) + 1;
104}
105
106static inline u64 cpu_context(unsigned int cpu, const struct mm_struct *mm)
107{
108	if (cpu_has_mmid)
109		return atomic64_read(&mm->context.mmid);
110
111	return mm->context.asid[cpu];
112}
113
114static inline void set_cpu_context(unsigned int cpu,
115				   struct mm_struct *mm, u64 ctx)
116{
117	if (cpu_has_mmid)
118		atomic64_set(&mm->context.mmid, ctx);
119	else
120		mm->context.asid[cpu] = ctx;
121}
122
123#define asid_cache(cpu)		(cpu_data[cpu].asid_cache)
124#define cpu_asid(cpu, mm) \
125	(cpu_context((cpu), (mm)) & cpu_asid_mask(&cpu_data[cpu]))
126
127static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
128{
129}
130
131extern void get_new_mmu_context(struct mm_struct *mm);
132extern void check_mmu_context(struct mm_struct *mm);
133extern void check_switch_mmu_context(struct mm_struct *mm);
134
135/*
136 * Initialize the context related info for a new mm_struct
137 * instance.
138 */
 
139static inline int
140init_new_context(struct task_struct *tsk, struct mm_struct *mm)
141{
142	int i;
143
144	if (cpu_has_mmid) {
145		set_cpu_context(0, mm, 0);
146	} else {
147		for_each_possible_cpu(i)
148			set_cpu_context(i, mm, 0);
149	}
150
151	mm->context.bd_emupage_allocmap = NULL;
152	spin_lock_init(&mm->context.bd_emupage_lock);
153	init_waitqueue_head(&mm->context.bd_emupage_queue);
154
155	return 0;
156}
157
158static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
159			     struct task_struct *tsk)
160{
161	unsigned int cpu = smp_processor_id();
162	unsigned long flags;
163	local_irq_save(flags);
164
165	htw_stop();
166	check_switch_mmu_context(next);
167
168	/*
169	 * Mark current->active_mm as not "active" anymore.
170	 * We don't want to mislead possible IPI tlb flush routines.
171	 */
172	cpumask_clear_cpu(cpu, mm_cpumask(prev));
173	cpumask_set_cpu(cpu, mm_cpumask(next));
174	htw_start();
175
176	local_irq_restore(flags);
177}
178
179/*
180 * Destroy context related info for an mm_struct that is about
181 * to be put to rest.
182 */
 
183static inline void destroy_context(struct mm_struct *mm)
184{
185	dsemul_mm_cleanup(mm);
186}
187
188#define activate_mm(prev, next)	switch_mm(prev, next, current)
189#define deactivate_mm(tsk, mm)	do { } while (0)
190
191static inline void
192drop_mmu_context(struct mm_struct *mm)
193{
194	unsigned long flags;
195	unsigned int cpu;
196	u32 old_mmid;
197	u64 ctx;
198
199	local_irq_save(flags);
200
201	cpu = smp_processor_id();
202	ctx = cpu_context(cpu, mm);
203
204	if (!ctx) {
205		/* no-op */
206	} else if (cpu_has_mmid) {
207		/*
208		 * Globally invalidating TLB entries associated with the MMID
209		 * is pretty cheap using the GINVT instruction, so we'll do
210		 * that rather than incur the overhead of allocating a new
211		 * MMID. The latter would be especially difficult since MMIDs
212		 * are global & other CPUs may be actively using ctx.
213		 */
214		htw_stop();
215		old_mmid = read_c0_memorymapid();
216		write_c0_memorymapid(ctx & cpu_asid_mask(&cpu_data[cpu]));
217		mtc0_tlbw_hazard();
218		ginvt_mmid();
219		sync_ginv();
220		write_c0_memorymapid(old_mmid);
221		instruction_hazard();
222		htw_start();
223	} else if (cpumask_test_cpu(cpu, mm_cpumask(mm))) {
224		/*
225		 * mm is currently active, so we can't really drop it.
226		 * Instead we bump the ASID.
227		 */
228		htw_stop();
229		get_new_mmu_context(mm);
230		write_c0_entryhi(cpu_asid(cpu, mm));
231		htw_start();
232	} else {
233		/* will get a new context next time */
234		set_cpu_context(cpu, mm, 0);
235	}
236
237	local_irq_restore(flags);
238}
 
 
239
240#endif /* _ASM_MMU_CONTEXT_H */