Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-map-ops.h>
19#include <linux/highmem.h>
20#include <linux/memblock.h>
21#include <linux/slab.h>
22#include <linux/iommu.h>
23#include <linux/io.h>
24#include <linux/vmalloc.h>
25#include <linux/sizes.h>
26#include <linux/cma.h>
27
28#include <asm/memory.h>
29#include <asm/highmem.h>
30#include <asm/cacheflush.h>
31#include <asm/tlbflush.h>
32#include <asm/mach/arch.h>
33#include <asm/dma-iommu.h>
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
36#include <asm/xen/xen-ops.h>
37
38#include "dma.h"
39#include "mm.h"
40
41struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49};
50
51struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57};
58
59#define NORMAL 0
60#define COHERENT 1
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108{
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135}
136
137/*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161}
162
163/*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166static void __dma_free_buffer(struct page *page, size_t size)
167{
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174}
175
176static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186static struct gen_pool *atomic_pool __ro_after_init;
187
188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190static int __init early_coherent_pool(char *p)
191{
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194}
195early_param("coherent_pool", early_coherent_pool);
196
197/*
198 * Initialise the coherent pool for atomic allocations.
199 */
200static int __init atomic_pool_init(void)
201{
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245}
246/*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249postcore_initcall(atomic_pool_init);
250
251#ifdef CONFIG_CMA_AREAS
252struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255};
256
257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259static int dma_mmu_remap_num __initdata;
260
261void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
262{
263 dma_mmu_remap[dma_mmu_remap_num].base = base;
264 dma_mmu_remap[dma_mmu_remap_num].size = size;
265 dma_mmu_remap_num++;
266}
267
268void __init dma_contiguous_remap(void)
269{
270 int i;
271 for (i = 0; i < dma_mmu_remap_num; i++) {
272 phys_addr_t start = dma_mmu_remap[i].base;
273 phys_addr_t end = start + dma_mmu_remap[i].size;
274 struct map_desc map;
275 unsigned long addr;
276
277 if (end > arm_lowmem_limit)
278 end = arm_lowmem_limit;
279 if (start >= end)
280 continue;
281
282 map.pfn = __phys_to_pfn(start);
283 map.virtual = __phys_to_virt(start);
284 map.length = end - start;
285 map.type = MT_MEMORY_DMA_READY;
286
287 /*
288 * Clear previous low-memory mapping to ensure that the
289 * TLB does not see any conflicting entries, then flush
290 * the TLB of the old entries before creating new mappings.
291 *
292 * This ensures that any speculatively loaded TLB entries
293 * (even though they may be rare) can not cause any problems,
294 * and ensures that this code is architecturally compliant.
295 */
296 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
297 addr += PMD_SIZE)
298 pmd_clear(pmd_off_k(addr));
299
300 flush_tlb_kernel_range(__phys_to_virt(start),
301 __phys_to_virt(end));
302
303 iotable_init(&map, 1);
304 }
305}
306#endif
307
308static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
309{
310 struct page *page = virt_to_page((void *)addr);
311 pgprot_t prot = *(pgprot_t *)data;
312
313 set_pte_ext(pte, mk_pte(page, prot), 0);
314 return 0;
315}
316
317static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
318{
319 unsigned long start = (unsigned long) page_address(page);
320 unsigned end = start + size;
321
322 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
323 flush_tlb_kernel_range(start, end);
324}
325
326static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
327 pgprot_t prot, struct page **ret_page,
328 const void *caller, bool want_vaddr)
329{
330 struct page *page;
331 void *ptr = NULL;
332 /*
333 * __alloc_remap_buffer is only called when the device is
334 * non-coherent
335 */
336 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
337 if (!page)
338 return NULL;
339 if (!want_vaddr)
340 goto out;
341
342 ptr = dma_common_contiguous_remap(page, size, prot, caller);
343 if (!ptr) {
344 __dma_free_buffer(page, size);
345 return NULL;
346 }
347
348 out:
349 *ret_page = page;
350 return ptr;
351}
352
353static void *__alloc_from_pool(size_t size, struct page **ret_page)
354{
355 unsigned long val;
356 void *ptr = NULL;
357
358 if (!atomic_pool) {
359 WARN(1, "coherent pool not initialised!\n");
360 return NULL;
361 }
362
363 val = gen_pool_alloc(atomic_pool, size);
364 if (val) {
365 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
366
367 *ret_page = phys_to_page(phys);
368 ptr = (void *)val;
369 }
370
371 return ptr;
372}
373
374static bool __in_atomic_pool(void *start, size_t size)
375{
376 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
377}
378
379static int __free_from_pool(void *start, size_t size)
380{
381 if (!__in_atomic_pool(start, size))
382 return 0;
383
384 gen_pool_free(atomic_pool, (unsigned long)start, size);
385
386 return 1;
387}
388
389static void *__alloc_from_contiguous(struct device *dev, size_t size,
390 pgprot_t prot, struct page **ret_page,
391 const void *caller, bool want_vaddr,
392 int coherent_flag, gfp_t gfp)
393{
394 unsigned long order = get_order(size);
395 size_t count = size >> PAGE_SHIFT;
396 struct page *page;
397 void *ptr = NULL;
398
399 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
400 if (!page)
401 return NULL;
402
403 __dma_clear_buffer(page, size, coherent_flag);
404
405 if (!want_vaddr)
406 goto out;
407
408 if (PageHighMem(page)) {
409 ptr = dma_common_contiguous_remap(page, size, prot, caller);
410 if (!ptr) {
411 dma_release_from_contiguous(dev, page, count);
412 return NULL;
413 }
414 } else {
415 __dma_remap(page, size, prot);
416 ptr = page_address(page);
417 }
418
419 out:
420 *ret_page = page;
421 return ptr;
422}
423
424static void __free_from_contiguous(struct device *dev, struct page *page,
425 void *cpu_addr, size_t size, bool want_vaddr)
426{
427 if (want_vaddr) {
428 if (PageHighMem(page))
429 dma_common_free_remap(cpu_addr, size);
430 else
431 __dma_remap(page, size, PAGE_KERNEL);
432 }
433 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
434}
435
436static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
437{
438 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
439 pgprot_writecombine(prot) :
440 pgprot_dmacoherent(prot);
441 return prot;
442}
443
444static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
445 struct page **ret_page)
446{
447 struct page *page;
448 /* __alloc_simple_buffer is only called when the device is coherent */
449 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
450 if (!page)
451 return NULL;
452
453 *ret_page = page;
454 return page_address(page);
455}
456
457static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
458 struct page **ret_page)
459{
460 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
461 ret_page);
462}
463
464static void simple_allocator_free(struct arm_dma_free_args *args)
465{
466 __dma_free_buffer(args->page, args->size);
467}
468
469static struct arm_dma_allocator simple_allocator = {
470 .alloc = simple_allocator_alloc,
471 .free = simple_allocator_free,
472};
473
474static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
475 struct page **ret_page)
476{
477 return __alloc_from_contiguous(args->dev, args->size, args->prot,
478 ret_page, args->caller,
479 args->want_vaddr, args->coherent_flag,
480 args->gfp);
481}
482
483static void cma_allocator_free(struct arm_dma_free_args *args)
484{
485 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
486 args->size, args->want_vaddr);
487}
488
489static struct arm_dma_allocator cma_allocator = {
490 .alloc = cma_allocator_alloc,
491 .free = cma_allocator_free,
492};
493
494static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
495 struct page **ret_page)
496{
497 return __alloc_from_pool(args->size, ret_page);
498}
499
500static void pool_allocator_free(struct arm_dma_free_args *args)
501{
502 __free_from_pool(args->cpu_addr, args->size);
503}
504
505static struct arm_dma_allocator pool_allocator = {
506 .alloc = pool_allocator_alloc,
507 .free = pool_allocator_free,
508};
509
510static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
511 struct page **ret_page)
512{
513 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
514 args->prot, ret_page, args->caller,
515 args->want_vaddr);
516}
517
518static void remap_allocator_free(struct arm_dma_free_args *args)
519{
520 if (args->want_vaddr)
521 dma_common_free_remap(args->cpu_addr, args->size);
522
523 __dma_free_buffer(args->page, args->size);
524}
525
526static struct arm_dma_allocator remap_allocator = {
527 .alloc = remap_allocator_alloc,
528 .free = remap_allocator_free,
529};
530
531static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
532 gfp_t gfp, pgprot_t prot, bool is_coherent,
533 unsigned long attrs, const void *caller)
534{
535 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
536 struct page *page = NULL;
537 void *addr;
538 bool allowblock, cma;
539 struct arm_dma_buffer *buf;
540 struct arm_dma_alloc_args args = {
541 .dev = dev,
542 .size = PAGE_ALIGN(size),
543 .gfp = gfp,
544 .prot = prot,
545 .caller = caller,
546 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
547 .coherent_flag = is_coherent ? COHERENT : NORMAL,
548 };
549
550#ifdef CONFIG_DMA_API_DEBUG
551 u64 limit = (mask + 1) & ~mask;
552 if (limit && size >= limit) {
553 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
554 size, mask);
555 return NULL;
556 }
557#endif
558
559 buf = kzalloc(sizeof(*buf),
560 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
561 if (!buf)
562 return NULL;
563
564 if (mask < 0xffffffffULL)
565 gfp |= GFP_DMA;
566
567 args.gfp = gfp;
568
569 *handle = DMA_MAPPING_ERROR;
570 allowblock = gfpflags_allow_blocking(gfp);
571 cma = allowblock ? dev_get_cma_area(dev) : NULL;
572
573 if (cma)
574 buf->allocator = &cma_allocator;
575 else if (is_coherent)
576 buf->allocator = &simple_allocator;
577 else if (allowblock)
578 buf->allocator = &remap_allocator;
579 else
580 buf->allocator = &pool_allocator;
581
582 addr = buf->allocator->alloc(&args, &page);
583
584 if (page) {
585 unsigned long flags;
586
587 *handle = phys_to_dma(dev, page_to_phys(page));
588 buf->virt = args.want_vaddr ? addr : page;
589
590 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
591 list_add(&buf->list, &arm_dma_bufs);
592 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
593 } else {
594 kfree(buf);
595 }
596
597 return args.want_vaddr ? addr : page;
598}
599
600/*
601 * Free a buffer as defined by the above mapping.
602 */
603static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
604 dma_addr_t handle, unsigned long attrs,
605 bool is_coherent)
606{
607 struct page *page = phys_to_page(dma_to_phys(dev, handle));
608 struct arm_dma_buffer *buf;
609 struct arm_dma_free_args args = {
610 .dev = dev,
611 .size = PAGE_ALIGN(size),
612 .cpu_addr = cpu_addr,
613 .page = page,
614 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
615 };
616
617 buf = arm_dma_buffer_find(cpu_addr);
618 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
619 return;
620
621 buf->allocator->free(&args);
622 kfree(buf);
623}
624
625static void dma_cache_maint_page(struct page *page, unsigned long offset,
626 size_t size, enum dma_data_direction dir,
627 void (*op)(const void *, size_t, int))
628{
629 unsigned long pfn;
630 size_t left = size;
631
632 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
633 offset %= PAGE_SIZE;
634
635 /*
636 * A single sg entry may refer to multiple physically contiguous
637 * pages. But we still need to process highmem pages individually.
638 * If highmem is not configured then the bulk of this loop gets
639 * optimized out.
640 */
641 do {
642 size_t len = left;
643 void *vaddr;
644
645 page = pfn_to_page(pfn);
646
647 if (PageHighMem(page)) {
648 if (len + offset > PAGE_SIZE)
649 len = PAGE_SIZE - offset;
650
651 if (cache_is_vipt_nonaliasing()) {
652 vaddr = kmap_atomic(page);
653 op(vaddr + offset, len, dir);
654 kunmap_atomic(vaddr);
655 } else {
656 vaddr = kmap_high_get(page);
657 if (vaddr) {
658 op(vaddr + offset, len, dir);
659 kunmap_high(page);
660 }
661 }
662 } else {
663 vaddr = page_address(page) + offset;
664 op(vaddr, len, dir);
665 }
666 offset = 0;
667 pfn++;
668 left -= len;
669 } while (left);
670}
671
672/*
673 * Make an area consistent for devices.
674 * Note: Drivers should NOT use this function directly.
675 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
676 */
677static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
678 size_t size, enum dma_data_direction dir)
679{
680 phys_addr_t paddr;
681
682 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
683
684 paddr = page_to_phys(page) + off;
685 if (dir == DMA_FROM_DEVICE) {
686 outer_inv_range(paddr, paddr + size);
687 } else {
688 outer_clean_range(paddr, paddr + size);
689 }
690 /* FIXME: non-speculating: flush on bidirectional mappings? */
691}
692
693static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
694 size_t size, enum dma_data_direction dir)
695{
696 phys_addr_t paddr = page_to_phys(page) + off;
697
698 /* FIXME: non-speculating: not required */
699 /* in any case, don't bother invalidating if DMA to device */
700 if (dir != DMA_TO_DEVICE) {
701 outer_inv_range(paddr, paddr + size);
702
703 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
704 }
705
706 /*
707 * Mark the D-cache clean for these pages to avoid extra flushing.
708 */
709 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
710 unsigned long pfn;
711 size_t left = size;
712
713 pfn = page_to_pfn(page) + off / PAGE_SIZE;
714 off %= PAGE_SIZE;
715 if (off) {
716 pfn++;
717 left -= PAGE_SIZE - off;
718 }
719 while (left >= PAGE_SIZE) {
720 page = pfn_to_page(pfn++);
721 set_bit(PG_dcache_clean, &page->flags);
722 left -= PAGE_SIZE;
723 }
724 }
725}
726
727#ifdef CONFIG_ARM_DMA_USE_IOMMU
728
729static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
730{
731 int prot = 0;
732
733 if (attrs & DMA_ATTR_PRIVILEGED)
734 prot |= IOMMU_PRIV;
735
736 switch (dir) {
737 case DMA_BIDIRECTIONAL:
738 return prot | IOMMU_READ | IOMMU_WRITE;
739 case DMA_TO_DEVICE:
740 return prot | IOMMU_READ;
741 case DMA_FROM_DEVICE:
742 return prot | IOMMU_WRITE;
743 default:
744 return prot;
745 }
746}
747
748/* IOMMU */
749
750static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
751
752static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
753 size_t size)
754{
755 unsigned int order = get_order(size);
756 unsigned int align = 0;
757 unsigned int count, start;
758 size_t mapping_size = mapping->bits << PAGE_SHIFT;
759 unsigned long flags;
760 dma_addr_t iova;
761 int i;
762
763 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
764 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
765
766 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
767 align = (1 << order) - 1;
768
769 spin_lock_irqsave(&mapping->lock, flags);
770 for (i = 0; i < mapping->nr_bitmaps; i++) {
771 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
772 mapping->bits, 0, count, align);
773
774 if (start > mapping->bits)
775 continue;
776
777 bitmap_set(mapping->bitmaps[i], start, count);
778 break;
779 }
780
781 /*
782 * No unused range found. Try to extend the existing mapping
783 * and perform a second attempt to reserve an IO virtual
784 * address range of size bytes.
785 */
786 if (i == mapping->nr_bitmaps) {
787 if (extend_iommu_mapping(mapping)) {
788 spin_unlock_irqrestore(&mapping->lock, flags);
789 return DMA_MAPPING_ERROR;
790 }
791
792 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
793 mapping->bits, 0, count, align);
794
795 if (start > mapping->bits) {
796 spin_unlock_irqrestore(&mapping->lock, flags);
797 return DMA_MAPPING_ERROR;
798 }
799
800 bitmap_set(mapping->bitmaps[i], start, count);
801 }
802 spin_unlock_irqrestore(&mapping->lock, flags);
803
804 iova = mapping->base + (mapping_size * i);
805 iova += start << PAGE_SHIFT;
806
807 return iova;
808}
809
810static inline void __free_iova(struct dma_iommu_mapping *mapping,
811 dma_addr_t addr, size_t size)
812{
813 unsigned int start, count;
814 size_t mapping_size = mapping->bits << PAGE_SHIFT;
815 unsigned long flags;
816 dma_addr_t bitmap_base;
817 u32 bitmap_index;
818
819 if (!size)
820 return;
821
822 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
823 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
824
825 bitmap_base = mapping->base + mapping_size * bitmap_index;
826
827 start = (addr - bitmap_base) >> PAGE_SHIFT;
828
829 if (addr + size > bitmap_base + mapping_size) {
830 /*
831 * The address range to be freed reaches into the iova
832 * range of the next bitmap. This should not happen as
833 * we don't allow this in __alloc_iova (at the
834 * moment).
835 */
836 BUG();
837 } else
838 count = size >> PAGE_SHIFT;
839
840 spin_lock_irqsave(&mapping->lock, flags);
841 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
842 spin_unlock_irqrestore(&mapping->lock, flags);
843}
844
845/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
846static const int iommu_order_array[] = { 9, 8, 4, 0 };
847
848static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
849 gfp_t gfp, unsigned long attrs,
850 int coherent_flag)
851{
852 struct page **pages;
853 int count = size >> PAGE_SHIFT;
854 int array_size = count * sizeof(struct page *);
855 int i = 0;
856 int order_idx = 0;
857
858 if (array_size <= PAGE_SIZE)
859 pages = kzalloc(array_size, GFP_KERNEL);
860 else
861 pages = vzalloc(array_size);
862 if (!pages)
863 return NULL;
864
865 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
866 {
867 unsigned long order = get_order(size);
868 struct page *page;
869
870 page = dma_alloc_from_contiguous(dev, count, order,
871 gfp & __GFP_NOWARN);
872 if (!page)
873 goto error;
874
875 __dma_clear_buffer(page, size, coherent_flag);
876
877 for (i = 0; i < count; i++)
878 pages[i] = page + i;
879
880 return pages;
881 }
882
883 /* Go straight to 4K chunks if caller says it's OK. */
884 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
885 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
886
887 /*
888 * IOMMU can map any pages, so himem can also be used here
889 */
890 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
891
892 while (count) {
893 int j, order;
894
895 order = iommu_order_array[order_idx];
896
897 /* Drop down when we get small */
898 if (__fls(count) < order) {
899 order_idx++;
900 continue;
901 }
902
903 if (order) {
904 /* See if it's easy to allocate a high-order chunk */
905 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
906
907 /* Go down a notch at first sign of pressure */
908 if (!pages[i]) {
909 order_idx++;
910 continue;
911 }
912 } else {
913 pages[i] = alloc_pages(gfp, 0);
914 if (!pages[i])
915 goto error;
916 }
917
918 if (order) {
919 split_page(pages[i], order);
920 j = 1 << order;
921 while (--j)
922 pages[i + j] = pages[i] + j;
923 }
924
925 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
926 i += 1 << order;
927 count -= 1 << order;
928 }
929
930 return pages;
931error:
932 while (i--)
933 if (pages[i])
934 __free_pages(pages[i], 0);
935 kvfree(pages);
936 return NULL;
937}
938
939static int __iommu_free_buffer(struct device *dev, struct page **pages,
940 size_t size, unsigned long attrs)
941{
942 int count = size >> PAGE_SHIFT;
943 int i;
944
945 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
946 dma_release_from_contiguous(dev, pages[0], count);
947 } else {
948 for (i = 0; i < count; i++)
949 if (pages[i])
950 __free_pages(pages[i], 0);
951 }
952
953 kvfree(pages);
954 return 0;
955}
956
957/*
958 * Create a mapping in device IO address space for specified pages
959 */
960static dma_addr_t
961__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
962 unsigned long attrs)
963{
964 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
965 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
966 dma_addr_t dma_addr, iova;
967 int i;
968
969 dma_addr = __alloc_iova(mapping, size);
970 if (dma_addr == DMA_MAPPING_ERROR)
971 return dma_addr;
972
973 iova = dma_addr;
974 for (i = 0; i < count; ) {
975 int ret;
976
977 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
978 phys_addr_t phys = page_to_phys(pages[i]);
979 unsigned int len, j;
980
981 for (j = i + 1; j < count; j++, next_pfn++)
982 if (page_to_pfn(pages[j]) != next_pfn)
983 break;
984
985 len = (j - i) << PAGE_SHIFT;
986 ret = iommu_map(mapping->domain, iova, phys, len,
987 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
988 if (ret < 0)
989 goto fail;
990 iova += len;
991 i = j;
992 }
993 return dma_addr;
994fail:
995 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
996 __free_iova(mapping, dma_addr, size);
997 return DMA_MAPPING_ERROR;
998}
999
1000static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001{
1002 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003
1004 /*
1005 * add optional in-page offset from iova to size and align
1006 * result to page size
1007 */
1008 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009 iova &= PAGE_MASK;
1010
1011 iommu_unmap(mapping->domain, iova, size);
1012 __free_iova(mapping, iova, size);
1013 return 0;
1014}
1015
1016static struct page **__atomic_get_pages(void *addr)
1017{
1018 struct page *page;
1019 phys_addr_t phys;
1020
1021 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022 page = phys_to_page(phys);
1023
1024 return (struct page **)page;
1025}
1026
1027static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028{
1029 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030 return __atomic_get_pages(cpu_addr);
1031
1032 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033 return cpu_addr;
1034
1035 return dma_common_find_pages(cpu_addr);
1036}
1037
1038static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039 dma_addr_t *handle, int coherent_flag,
1040 unsigned long attrs)
1041{
1042 struct page *page;
1043 void *addr;
1044
1045 if (coherent_flag == COHERENT)
1046 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047 else
1048 addr = __alloc_from_pool(size, &page);
1049 if (!addr)
1050 return NULL;
1051
1052 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1053 if (*handle == DMA_MAPPING_ERROR)
1054 goto err_mapping;
1055
1056 return addr;
1057
1058err_mapping:
1059 __free_from_pool(addr, size);
1060 return NULL;
1061}
1062
1063static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064 dma_addr_t handle, size_t size, int coherent_flag)
1065{
1066 __iommu_remove_mapping(dev, handle, size);
1067 if (coherent_flag == COHERENT)
1068 __dma_free_buffer(virt_to_page(cpu_addr), size);
1069 else
1070 __free_from_pool(cpu_addr, size);
1071}
1072
1073static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075{
1076 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077 struct page **pages;
1078 void *addr = NULL;
1079 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080
1081 *handle = DMA_MAPPING_ERROR;
1082 size = PAGE_ALIGN(size);
1083
1084 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1085 return __iommu_alloc_simple(dev, size, gfp, handle,
1086 coherent_flag, attrs);
1087
1088 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089 if (!pages)
1090 return NULL;
1091
1092 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1093 if (*handle == DMA_MAPPING_ERROR)
1094 goto err_buffer;
1095
1096 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097 return pages;
1098
1099 addr = dma_common_pages_remap(pages, size, prot,
1100 __builtin_return_address(0));
1101 if (!addr)
1102 goto err_mapping;
1103
1104 return addr;
1105
1106err_mapping:
1107 __iommu_remove_mapping(dev, *handle, size);
1108err_buffer:
1109 __iommu_free_buffer(dev, pages, size, attrs);
1110 return NULL;
1111}
1112
1113static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115 unsigned long attrs)
1116{
1117 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119 int err;
1120
1121 if (!pages)
1122 return -ENXIO;
1123
1124 if (vma->vm_pgoff >= nr_pages)
1125 return -ENXIO;
1126
1127 if (!dev->dma_coherent)
1128 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1129
1130 err = vm_map_pages(vma, pages, nr_pages);
1131 if (err)
1132 pr_err("Remapping memory failed: %d\n", err);
1133
1134 return err;
1135}
1136
1137/*
1138 * free a page as defined by the above mapping.
1139 * Must not be called with IRQs disabled.
1140 */
1141static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142 dma_addr_t handle, unsigned long attrs)
1143{
1144 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145 struct page **pages;
1146 size = PAGE_ALIGN(size);
1147
1148 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150 return;
1151 }
1152
1153 pages = __iommu_get_pages(cpu_addr, attrs);
1154 if (!pages) {
1155 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156 return;
1157 }
1158
1159 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160 dma_common_free_remap(cpu_addr, size);
1161
1162 __iommu_remove_mapping(dev, handle, size);
1163 __iommu_free_buffer(dev, pages, size, attrs);
1164}
1165
1166static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167 void *cpu_addr, dma_addr_t dma_addr,
1168 size_t size, unsigned long attrs)
1169{
1170 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172
1173 if (!pages)
1174 return -ENXIO;
1175
1176 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177 GFP_KERNEL);
1178}
1179
1180/*
1181 * Map a part of the scatter-gather list into contiguous io address space
1182 */
1183static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184 size_t size, dma_addr_t *handle,
1185 enum dma_data_direction dir, unsigned long attrs)
1186{
1187 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188 dma_addr_t iova, iova_base;
1189 int ret = 0;
1190 unsigned int count;
1191 struct scatterlist *s;
1192 int prot;
1193
1194 size = PAGE_ALIGN(size);
1195 *handle = DMA_MAPPING_ERROR;
1196
1197 iova_base = iova = __alloc_iova(mapping, size);
1198 if (iova == DMA_MAPPING_ERROR)
1199 return -ENOMEM;
1200
1201 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202 phys_addr_t phys = page_to_phys(sg_page(s));
1203 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204
1205 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1207
1208 prot = __dma_info_to_prot(dir, attrs);
1209
1210 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1211 if (ret < 0)
1212 goto fail;
1213 count += len >> PAGE_SHIFT;
1214 iova += len;
1215 }
1216 *handle = iova_base;
1217
1218 return 0;
1219fail:
1220 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1221 __free_iova(mapping, iova_base, size);
1222 return ret;
1223}
1224
1225/**
1226 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1227 * @dev: valid struct device pointer
1228 * @sg: list of buffers
1229 * @nents: number of buffers to map
1230 * @dir: DMA transfer direction
1231 *
1232 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1233 * The scatter gather list elements are merged together (if possible) and
1234 * tagged with the appropriate dma address and length. They are obtained via
1235 * sg_dma_{address,length}.
1236 */
1237static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1238 int nents, enum dma_data_direction dir, unsigned long attrs)
1239{
1240 struct scatterlist *s = sg, *dma = sg, *start = sg;
1241 int i, count = 0, ret;
1242 unsigned int offset = s->offset;
1243 unsigned int size = s->offset + s->length;
1244 unsigned int max = dma_get_max_seg_size(dev);
1245
1246 for (i = 1; i < nents; i++) {
1247 s = sg_next(s);
1248
1249 s->dma_length = 0;
1250
1251 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1252 ret = __map_sg_chunk(dev, start, size,
1253 &dma->dma_address, dir, attrs);
1254 if (ret < 0)
1255 goto bad_mapping;
1256
1257 dma->dma_address += offset;
1258 dma->dma_length = size - offset;
1259
1260 size = offset = s->offset;
1261 start = s;
1262 dma = sg_next(dma);
1263 count += 1;
1264 }
1265 size += s->length;
1266 }
1267 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1268 if (ret < 0)
1269 goto bad_mapping;
1270
1271 dma->dma_address += offset;
1272 dma->dma_length = size - offset;
1273
1274 return count+1;
1275
1276bad_mapping:
1277 for_each_sg(sg, s, count, i)
1278 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1279 if (ret == -ENOMEM)
1280 return ret;
1281 return -EINVAL;
1282}
1283
1284/**
1285 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1286 * @dev: valid struct device pointer
1287 * @sg: list of buffers
1288 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1289 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1290 *
1291 * Unmap a set of streaming mode DMA translations. Again, CPU access
1292 * rules concerning calls here are the same as for dma_unmap_single().
1293 */
1294static void arm_iommu_unmap_sg(struct device *dev,
1295 struct scatterlist *sg, int nents,
1296 enum dma_data_direction dir,
1297 unsigned long attrs)
1298{
1299 struct scatterlist *s;
1300 int i;
1301
1302 for_each_sg(sg, s, nents, i) {
1303 if (sg_dma_len(s))
1304 __iommu_remove_mapping(dev, sg_dma_address(s),
1305 sg_dma_len(s));
1306 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1307 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1308 s->length, dir);
1309 }
1310}
1311
1312/**
1313 * arm_iommu_sync_sg_for_cpu
1314 * @dev: valid struct device pointer
1315 * @sg: list of buffers
1316 * @nents: number of buffers to map (returned from dma_map_sg)
1317 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318 */
1319static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320 struct scatterlist *sg,
1321 int nents, enum dma_data_direction dir)
1322{
1323 struct scatterlist *s;
1324 int i;
1325
1326 if (dev->dma_coherent)
1327 return;
1328
1329 for_each_sg(sg, s, nents, i)
1330 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1331
1332}
1333
1334/**
1335 * arm_iommu_sync_sg_for_device
1336 * @dev: valid struct device pointer
1337 * @sg: list of buffers
1338 * @nents: number of buffers to map (returned from dma_map_sg)
1339 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340 */
1341static void arm_iommu_sync_sg_for_device(struct device *dev,
1342 struct scatterlist *sg,
1343 int nents, enum dma_data_direction dir)
1344{
1345 struct scatterlist *s;
1346 int i;
1347
1348 if (dev->dma_coherent)
1349 return;
1350
1351 for_each_sg(sg, s, nents, i)
1352 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1353}
1354
1355/**
1356 * arm_iommu_map_page
1357 * @dev: valid struct device pointer
1358 * @page: page that buffer resides in
1359 * @offset: offset into page for start of buffer
1360 * @size: size of buffer to map
1361 * @dir: DMA transfer direction
1362 *
1363 * IOMMU aware version of arm_dma_map_page()
1364 */
1365static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1366 unsigned long offset, size_t size, enum dma_data_direction dir,
1367 unsigned long attrs)
1368{
1369 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1370 dma_addr_t dma_addr;
1371 int ret, prot, len = PAGE_ALIGN(size + offset);
1372
1373 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1374 __dma_page_cpu_to_dev(page, offset, size, dir);
1375
1376 dma_addr = __alloc_iova(mapping, len);
1377 if (dma_addr == DMA_MAPPING_ERROR)
1378 return dma_addr;
1379
1380 prot = __dma_info_to_prot(dir, attrs);
1381
1382 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1383 if (ret < 0)
1384 goto fail;
1385
1386 return dma_addr + offset;
1387fail:
1388 __free_iova(mapping, dma_addr, len);
1389 return DMA_MAPPING_ERROR;
1390}
1391
1392/**
1393 * arm_iommu_unmap_page
1394 * @dev: valid struct device pointer
1395 * @handle: DMA address of buffer
1396 * @size: size of buffer (same as passed to dma_map_page)
1397 * @dir: DMA transfer direction (same as passed to dma_map_page)
1398 *
1399 * IOMMU aware version of arm_dma_unmap_page()
1400 */
1401static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1402 size_t size, enum dma_data_direction dir, unsigned long attrs)
1403{
1404 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1405 dma_addr_t iova = handle & PAGE_MASK;
1406 struct page *page;
1407 int offset = handle & ~PAGE_MASK;
1408 int len = PAGE_ALIGN(size + offset);
1409
1410 if (!iova)
1411 return;
1412
1413 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1414 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1415 __dma_page_dev_to_cpu(page, offset, size, dir);
1416 }
1417
1418 iommu_unmap(mapping->domain, iova, len);
1419 __free_iova(mapping, iova, len);
1420}
1421
1422/**
1423 * arm_iommu_map_resource - map a device resource for DMA
1424 * @dev: valid struct device pointer
1425 * @phys_addr: physical address of resource
1426 * @size: size of resource to map
1427 * @dir: DMA transfer direction
1428 */
1429static dma_addr_t arm_iommu_map_resource(struct device *dev,
1430 phys_addr_t phys_addr, size_t size,
1431 enum dma_data_direction dir, unsigned long attrs)
1432{
1433 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1434 dma_addr_t dma_addr;
1435 int ret, prot;
1436 phys_addr_t addr = phys_addr & PAGE_MASK;
1437 unsigned int offset = phys_addr & ~PAGE_MASK;
1438 size_t len = PAGE_ALIGN(size + offset);
1439
1440 dma_addr = __alloc_iova(mapping, len);
1441 if (dma_addr == DMA_MAPPING_ERROR)
1442 return dma_addr;
1443
1444 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1445
1446 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1447 if (ret < 0)
1448 goto fail;
1449
1450 return dma_addr + offset;
1451fail:
1452 __free_iova(mapping, dma_addr, len);
1453 return DMA_MAPPING_ERROR;
1454}
1455
1456/**
1457 * arm_iommu_unmap_resource - unmap a device DMA resource
1458 * @dev: valid struct device pointer
1459 * @dma_handle: DMA address to resource
1460 * @size: size of resource to map
1461 * @dir: DMA transfer direction
1462 */
1463static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1464 size_t size, enum dma_data_direction dir,
1465 unsigned long attrs)
1466{
1467 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1468 dma_addr_t iova = dma_handle & PAGE_MASK;
1469 unsigned int offset = dma_handle & ~PAGE_MASK;
1470 size_t len = PAGE_ALIGN(size + offset);
1471
1472 if (!iova)
1473 return;
1474
1475 iommu_unmap(mapping->domain, iova, len);
1476 __free_iova(mapping, iova, len);
1477}
1478
1479static void arm_iommu_sync_single_for_cpu(struct device *dev,
1480 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1481{
1482 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1483 dma_addr_t iova = handle & PAGE_MASK;
1484 struct page *page;
1485 unsigned int offset = handle & ~PAGE_MASK;
1486
1487 if (dev->dma_coherent || !iova)
1488 return;
1489
1490 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1491 __dma_page_dev_to_cpu(page, offset, size, dir);
1492}
1493
1494static void arm_iommu_sync_single_for_device(struct device *dev,
1495 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1496{
1497 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1498 dma_addr_t iova = handle & PAGE_MASK;
1499 struct page *page;
1500 unsigned int offset = handle & ~PAGE_MASK;
1501
1502 if (dev->dma_coherent || !iova)
1503 return;
1504
1505 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1506 __dma_page_cpu_to_dev(page, offset, size, dir);
1507}
1508
1509static const struct dma_map_ops iommu_ops = {
1510 .alloc = arm_iommu_alloc_attrs,
1511 .free = arm_iommu_free_attrs,
1512 .mmap = arm_iommu_mmap_attrs,
1513 .get_sgtable = arm_iommu_get_sgtable,
1514
1515 .map_page = arm_iommu_map_page,
1516 .unmap_page = arm_iommu_unmap_page,
1517 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1518 .sync_single_for_device = arm_iommu_sync_single_for_device,
1519
1520 .map_sg = arm_iommu_map_sg,
1521 .unmap_sg = arm_iommu_unmap_sg,
1522 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1523 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1524
1525 .map_resource = arm_iommu_map_resource,
1526 .unmap_resource = arm_iommu_unmap_resource,
1527};
1528
1529/**
1530 * arm_iommu_create_mapping
1531 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1532 * @base: start address of the valid IO address space
1533 * @size: maximum size of the valid IO address space
1534 *
1535 * Creates a mapping structure which holds information about used/unused
1536 * IO address ranges, which is required to perform memory allocation and
1537 * mapping with IOMMU aware functions.
1538 *
1539 * The client device need to be attached to the mapping with
1540 * arm_iommu_attach_device function.
1541 */
1542struct dma_iommu_mapping *
1543arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1544{
1545 unsigned int bits = size >> PAGE_SHIFT;
1546 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1547 struct dma_iommu_mapping *mapping;
1548 int extensions = 1;
1549 int err = -ENOMEM;
1550
1551 /* currently only 32-bit DMA address space is supported */
1552 if (size > DMA_BIT_MASK(32) + 1)
1553 return ERR_PTR(-ERANGE);
1554
1555 if (!bitmap_size)
1556 return ERR_PTR(-EINVAL);
1557
1558 if (bitmap_size > PAGE_SIZE) {
1559 extensions = bitmap_size / PAGE_SIZE;
1560 bitmap_size = PAGE_SIZE;
1561 }
1562
1563 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1564 if (!mapping)
1565 goto err;
1566
1567 mapping->bitmap_size = bitmap_size;
1568 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1569 GFP_KERNEL);
1570 if (!mapping->bitmaps)
1571 goto err2;
1572
1573 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1574 if (!mapping->bitmaps[0])
1575 goto err3;
1576
1577 mapping->nr_bitmaps = 1;
1578 mapping->extensions = extensions;
1579 mapping->base = base;
1580 mapping->bits = BITS_PER_BYTE * bitmap_size;
1581
1582 spin_lock_init(&mapping->lock);
1583
1584 mapping->domain = iommu_domain_alloc(bus);
1585 if (!mapping->domain)
1586 goto err4;
1587
1588 kref_init(&mapping->kref);
1589 return mapping;
1590err4:
1591 kfree(mapping->bitmaps[0]);
1592err3:
1593 kfree(mapping->bitmaps);
1594err2:
1595 kfree(mapping);
1596err:
1597 return ERR_PTR(err);
1598}
1599EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1600
1601static void release_iommu_mapping(struct kref *kref)
1602{
1603 int i;
1604 struct dma_iommu_mapping *mapping =
1605 container_of(kref, struct dma_iommu_mapping, kref);
1606
1607 iommu_domain_free(mapping->domain);
1608 for (i = 0; i < mapping->nr_bitmaps; i++)
1609 kfree(mapping->bitmaps[i]);
1610 kfree(mapping->bitmaps);
1611 kfree(mapping);
1612}
1613
1614static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1615{
1616 int next_bitmap;
1617
1618 if (mapping->nr_bitmaps >= mapping->extensions)
1619 return -EINVAL;
1620
1621 next_bitmap = mapping->nr_bitmaps;
1622 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1623 GFP_ATOMIC);
1624 if (!mapping->bitmaps[next_bitmap])
1625 return -ENOMEM;
1626
1627 mapping->nr_bitmaps++;
1628
1629 return 0;
1630}
1631
1632void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1633{
1634 if (mapping)
1635 kref_put(&mapping->kref, release_iommu_mapping);
1636}
1637EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1638
1639static int __arm_iommu_attach_device(struct device *dev,
1640 struct dma_iommu_mapping *mapping)
1641{
1642 int err;
1643
1644 err = iommu_attach_device(mapping->domain, dev);
1645 if (err)
1646 return err;
1647
1648 kref_get(&mapping->kref);
1649 to_dma_iommu_mapping(dev) = mapping;
1650
1651 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1652 return 0;
1653}
1654
1655/**
1656 * arm_iommu_attach_device
1657 * @dev: valid struct device pointer
1658 * @mapping: io address space mapping structure (returned from
1659 * arm_iommu_create_mapping)
1660 *
1661 * Attaches specified io address space mapping to the provided device.
1662 * This replaces the dma operations (dma_map_ops pointer) with the
1663 * IOMMU aware version.
1664 *
1665 * More than one client might be attached to the same io address space
1666 * mapping.
1667 */
1668int arm_iommu_attach_device(struct device *dev,
1669 struct dma_iommu_mapping *mapping)
1670{
1671 int err;
1672
1673 err = __arm_iommu_attach_device(dev, mapping);
1674 if (err)
1675 return err;
1676
1677 set_dma_ops(dev, &iommu_ops);
1678 return 0;
1679}
1680EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1681
1682/**
1683 * arm_iommu_detach_device
1684 * @dev: valid struct device pointer
1685 *
1686 * Detaches the provided device from a previously attached map.
1687 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1688 */
1689void arm_iommu_detach_device(struct device *dev)
1690{
1691 struct dma_iommu_mapping *mapping;
1692
1693 mapping = to_dma_iommu_mapping(dev);
1694 if (!mapping) {
1695 dev_warn(dev, "Not attached\n");
1696 return;
1697 }
1698
1699 iommu_detach_device(mapping->domain, dev);
1700 kref_put(&mapping->kref, release_iommu_mapping);
1701 to_dma_iommu_mapping(dev) = NULL;
1702 set_dma_ops(dev, NULL);
1703
1704 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1705}
1706EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1707
1708static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1709 const struct iommu_ops *iommu, bool coherent)
1710{
1711 struct dma_iommu_mapping *mapping;
1712
1713 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1714 if (IS_ERR(mapping)) {
1715 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1716 size, dev_name(dev));
1717 return;
1718 }
1719
1720 if (__arm_iommu_attach_device(dev, mapping)) {
1721 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1722 dev_name(dev));
1723 arm_iommu_release_mapping(mapping);
1724 return;
1725 }
1726
1727 set_dma_ops(dev, &iommu_ops);
1728}
1729
1730static void arm_teardown_iommu_dma_ops(struct device *dev)
1731{
1732 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1733
1734 if (!mapping)
1735 return;
1736
1737 arm_iommu_detach_device(dev);
1738 arm_iommu_release_mapping(mapping);
1739}
1740
1741#else
1742
1743static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1744 const struct iommu_ops *iommu, bool coherent)
1745{
1746}
1747
1748static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1749
1750#endif /* CONFIG_ARM_DMA_USE_IOMMU */
1751
1752void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1753 const struct iommu_ops *iommu, bool coherent)
1754{
1755 /*
1756 * Due to legacy code that sets the ->dma_coherent flag from a bus
1757 * notifier we can't just assign coherent to the ->dma_coherent flag
1758 * here, but instead have to make sure we only set but never clear it
1759 * for now.
1760 */
1761 if (coherent)
1762 dev->dma_coherent = true;
1763
1764 /*
1765 * Don't override the dma_ops if they have already been set. Ideally
1766 * this should be the only location where dma_ops are set, remove this
1767 * check when all other callers of set_dma_ops will have disappeared.
1768 */
1769 if (dev->dma_ops)
1770 return;
1771
1772 if (iommu)
1773 arm_setup_iommu_dma_ops(dev, dma_base, size, iommu, coherent);
1774
1775 xen_setup_dma_ops(dev);
1776 dev->archdata.dma_ops_setup = true;
1777}
1778
1779void arch_teardown_dma_ops(struct device *dev)
1780{
1781 if (!dev->archdata.dma_ops_setup)
1782 return;
1783
1784 arm_teardown_iommu_dma_ops(dev);
1785 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1786 set_dma_ops(dev, NULL);
1787}
1788
1789void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1790 enum dma_data_direction dir)
1791{
1792 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1793 size, dir);
1794}
1795
1796void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1797 enum dma_data_direction dir)
1798{
1799 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1800 size, dir);
1801}
1802
1803void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1804 gfp_t gfp, unsigned long attrs)
1805{
1806 return __dma_alloc(dev, size, dma_handle, gfp,
1807 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1808 attrs, __builtin_return_address(0));
1809}
1810
1811void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1812 dma_addr_t dma_handle, unsigned long attrs)
1813{
1814 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1815}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-mapping.h>
19#include <linux/dma-noncoherent.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/io.h>
26#include <linux/vmalloc.h>
27#include <linux/sizes.h>
28#include <linux/cma.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39#include <xen/swiotlb-xen.h>
40
41#include "dma.h"
42#include "mm.h"
43
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62#define NORMAL 0
63#define COHERENT 1
64
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131{
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135}
136
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160{
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164}
165
166static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172}
173
174static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180}
181
182/*
183 * Return whether the given device DMA address mask can be supported
184 * properly. For example, if your device can only drive the low 24-bits
185 * during bus mastering, then you would pass 0x00ffffff as the mask
186 * to this function.
187 */
188static int arm_dma_supported(struct device *dev, u64 mask)
189{
190 unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
191
192 /*
193 * Translate the device's DMA mask to a PFN limit. This
194 * PFN number includes the page which we can DMA to.
195 */
196 return dma_to_pfn(dev, mask) >= max_dma_pfn;
197}
198
199const struct dma_map_ops arm_dma_ops = {
200 .alloc = arm_dma_alloc,
201 .free = arm_dma_free,
202 .mmap = arm_dma_mmap,
203 .get_sgtable = arm_dma_get_sgtable,
204 .map_page = arm_dma_map_page,
205 .unmap_page = arm_dma_unmap_page,
206 .map_sg = arm_dma_map_sg,
207 .unmap_sg = arm_dma_unmap_sg,
208 .map_resource = dma_direct_map_resource,
209 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
210 .sync_single_for_device = arm_dma_sync_single_for_device,
211 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
212 .sync_sg_for_device = arm_dma_sync_sg_for_device,
213 .dma_supported = arm_dma_supported,
214 .get_required_mask = dma_direct_get_required_mask,
215};
216EXPORT_SYMBOL(arm_dma_ops);
217
218static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
219 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
220static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
221 dma_addr_t handle, unsigned long attrs);
222static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
223 void *cpu_addr, dma_addr_t dma_addr, size_t size,
224 unsigned long attrs);
225
226const struct dma_map_ops arm_coherent_dma_ops = {
227 .alloc = arm_coherent_dma_alloc,
228 .free = arm_coherent_dma_free,
229 .mmap = arm_coherent_dma_mmap,
230 .get_sgtable = arm_dma_get_sgtable,
231 .map_page = arm_coherent_dma_map_page,
232 .map_sg = arm_dma_map_sg,
233 .map_resource = dma_direct_map_resource,
234 .dma_supported = arm_dma_supported,
235 .get_required_mask = dma_direct_get_required_mask,
236};
237EXPORT_SYMBOL(arm_coherent_dma_ops);
238
239static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
240{
241 /*
242 * Ensure that the allocated pages are zeroed, and that any data
243 * lurking in the kernel direct-mapped region is invalidated.
244 */
245 if (PageHighMem(page)) {
246 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
247 phys_addr_t end = base + size;
248 while (size > 0) {
249 void *ptr = kmap_atomic(page);
250 memset(ptr, 0, PAGE_SIZE);
251 if (coherent_flag != COHERENT)
252 dmac_flush_range(ptr, ptr + PAGE_SIZE);
253 kunmap_atomic(ptr);
254 page++;
255 size -= PAGE_SIZE;
256 }
257 if (coherent_flag != COHERENT)
258 outer_flush_range(base, end);
259 } else {
260 void *ptr = page_address(page);
261 memset(ptr, 0, size);
262 if (coherent_flag != COHERENT) {
263 dmac_flush_range(ptr, ptr + size);
264 outer_flush_range(__pa(ptr), __pa(ptr) + size);
265 }
266 }
267}
268
269/*
270 * Allocate a DMA buffer for 'dev' of size 'size' using the
271 * specified gfp mask. Note that 'size' must be page aligned.
272 */
273static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
274 gfp_t gfp, int coherent_flag)
275{
276 unsigned long order = get_order(size);
277 struct page *page, *p, *e;
278
279 page = alloc_pages(gfp, order);
280 if (!page)
281 return NULL;
282
283 /*
284 * Now split the huge page and free the excess pages
285 */
286 split_page(page, order);
287 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
288 __free_page(p);
289
290 __dma_clear_buffer(page, size, coherent_flag);
291
292 return page;
293}
294
295/*
296 * Free a DMA buffer. 'size' must be page aligned.
297 */
298static void __dma_free_buffer(struct page *page, size_t size)
299{
300 struct page *e = page + (size >> PAGE_SHIFT);
301
302 while (page < e) {
303 __free_page(page);
304 page++;
305 }
306}
307
308static void *__alloc_from_contiguous(struct device *dev, size_t size,
309 pgprot_t prot, struct page **ret_page,
310 const void *caller, bool want_vaddr,
311 int coherent_flag, gfp_t gfp);
312
313static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
314 pgprot_t prot, struct page **ret_page,
315 const void *caller, bool want_vaddr);
316
317#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
318static struct gen_pool *atomic_pool __ro_after_init;
319
320static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
321
322static int __init early_coherent_pool(char *p)
323{
324 atomic_pool_size = memparse(p, &p);
325 return 0;
326}
327early_param("coherent_pool", early_coherent_pool);
328
329/*
330 * Initialise the coherent pool for atomic allocations.
331 */
332static int __init atomic_pool_init(void)
333{
334 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
335 gfp_t gfp = GFP_KERNEL | GFP_DMA;
336 struct page *page;
337 void *ptr;
338
339 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
340 if (!atomic_pool)
341 goto out;
342 /*
343 * The atomic pool is only used for non-coherent allocations
344 * so we must pass NORMAL for coherent_flag.
345 */
346 if (dev_get_cma_area(NULL))
347 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
348 &page, atomic_pool_init, true, NORMAL,
349 GFP_KERNEL);
350 else
351 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
352 &page, atomic_pool_init, true);
353 if (ptr) {
354 int ret;
355
356 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
357 page_to_phys(page),
358 atomic_pool_size, -1);
359 if (ret)
360 goto destroy_genpool;
361
362 gen_pool_set_algo(atomic_pool,
363 gen_pool_first_fit_order_align,
364 NULL);
365 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
366 atomic_pool_size / 1024);
367 return 0;
368 }
369
370destroy_genpool:
371 gen_pool_destroy(atomic_pool);
372 atomic_pool = NULL;
373out:
374 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
375 atomic_pool_size / 1024);
376 return -ENOMEM;
377}
378/*
379 * CMA is activated by core_initcall, so we must be called after it.
380 */
381postcore_initcall(atomic_pool_init);
382
383struct dma_contig_early_reserve {
384 phys_addr_t base;
385 unsigned long size;
386};
387
388static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
389
390static int dma_mmu_remap_num __initdata;
391
392void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
393{
394 dma_mmu_remap[dma_mmu_remap_num].base = base;
395 dma_mmu_remap[dma_mmu_remap_num].size = size;
396 dma_mmu_remap_num++;
397}
398
399void __init dma_contiguous_remap(void)
400{
401 int i;
402 for (i = 0; i < dma_mmu_remap_num; i++) {
403 phys_addr_t start = dma_mmu_remap[i].base;
404 phys_addr_t end = start + dma_mmu_remap[i].size;
405 struct map_desc map;
406 unsigned long addr;
407
408 if (end > arm_lowmem_limit)
409 end = arm_lowmem_limit;
410 if (start >= end)
411 continue;
412
413 map.pfn = __phys_to_pfn(start);
414 map.virtual = __phys_to_virt(start);
415 map.length = end - start;
416 map.type = MT_MEMORY_DMA_READY;
417
418 /*
419 * Clear previous low-memory mapping to ensure that the
420 * TLB does not see any conflicting entries, then flush
421 * the TLB of the old entries before creating new mappings.
422 *
423 * This ensures that any speculatively loaded TLB entries
424 * (even though they may be rare) can not cause any problems,
425 * and ensures that this code is architecturally compliant.
426 */
427 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
428 addr += PMD_SIZE)
429 pmd_clear(pmd_off_k(addr));
430
431 flush_tlb_kernel_range(__phys_to_virt(start),
432 __phys_to_virt(end));
433
434 iotable_init(&map, 1);
435 }
436}
437
438static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
439{
440 struct page *page = virt_to_page(addr);
441 pgprot_t prot = *(pgprot_t *)data;
442
443 set_pte_ext(pte, mk_pte(page, prot), 0);
444 return 0;
445}
446
447static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
448{
449 unsigned long start = (unsigned long) page_address(page);
450 unsigned end = start + size;
451
452 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
453 flush_tlb_kernel_range(start, end);
454}
455
456static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
457 pgprot_t prot, struct page **ret_page,
458 const void *caller, bool want_vaddr)
459{
460 struct page *page;
461 void *ptr = NULL;
462 /*
463 * __alloc_remap_buffer is only called when the device is
464 * non-coherent
465 */
466 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
467 if (!page)
468 return NULL;
469 if (!want_vaddr)
470 goto out;
471
472 ptr = dma_common_contiguous_remap(page, size, prot, caller);
473 if (!ptr) {
474 __dma_free_buffer(page, size);
475 return NULL;
476 }
477
478 out:
479 *ret_page = page;
480 return ptr;
481}
482
483static void *__alloc_from_pool(size_t size, struct page **ret_page)
484{
485 unsigned long val;
486 void *ptr = NULL;
487
488 if (!atomic_pool) {
489 WARN(1, "coherent pool not initialised!\n");
490 return NULL;
491 }
492
493 val = gen_pool_alloc(atomic_pool, size);
494 if (val) {
495 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
496
497 *ret_page = phys_to_page(phys);
498 ptr = (void *)val;
499 }
500
501 return ptr;
502}
503
504static bool __in_atomic_pool(void *start, size_t size)
505{
506 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
507}
508
509static int __free_from_pool(void *start, size_t size)
510{
511 if (!__in_atomic_pool(start, size))
512 return 0;
513
514 gen_pool_free(atomic_pool, (unsigned long)start, size);
515
516 return 1;
517}
518
519static void *__alloc_from_contiguous(struct device *dev, size_t size,
520 pgprot_t prot, struct page **ret_page,
521 const void *caller, bool want_vaddr,
522 int coherent_flag, gfp_t gfp)
523{
524 unsigned long order = get_order(size);
525 size_t count = size >> PAGE_SHIFT;
526 struct page *page;
527 void *ptr = NULL;
528
529 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
530 if (!page)
531 return NULL;
532
533 __dma_clear_buffer(page, size, coherent_flag);
534
535 if (!want_vaddr)
536 goto out;
537
538 if (PageHighMem(page)) {
539 ptr = dma_common_contiguous_remap(page, size, prot, caller);
540 if (!ptr) {
541 dma_release_from_contiguous(dev, page, count);
542 return NULL;
543 }
544 } else {
545 __dma_remap(page, size, prot);
546 ptr = page_address(page);
547 }
548
549 out:
550 *ret_page = page;
551 return ptr;
552}
553
554static void __free_from_contiguous(struct device *dev, struct page *page,
555 void *cpu_addr, size_t size, bool want_vaddr)
556{
557 if (want_vaddr) {
558 if (PageHighMem(page))
559 dma_common_free_remap(cpu_addr, size);
560 else
561 __dma_remap(page, size, PAGE_KERNEL);
562 }
563 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
564}
565
566static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
567{
568 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
569 pgprot_writecombine(prot) :
570 pgprot_dmacoherent(prot);
571 return prot;
572}
573
574static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
575 struct page **ret_page)
576{
577 struct page *page;
578 /* __alloc_simple_buffer is only called when the device is coherent */
579 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
580 if (!page)
581 return NULL;
582
583 *ret_page = page;
584 return page_address(page);
585}
586
587static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
588 struct page **ret_page)
589{
590 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
591 ret_page);
592}
593
594static void simple_allocator_free(struct arm_dma_free_args *args)
595{
596 __dma_free_buffer(args->page, args->size);
597}
598
599static struct arm_dma_allocator simple_allocator = {
600 .alloc = simple_allocator_alloc,
601 .free = simple_allocator_free,
602};
603
604static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
605 struct page **ret_page)
606{
607 return __alloc_from_contiguous(args->dev, args->size, args->prot,
608 ret_page, args->caller,
609 args->want_vaddr, args->coherent_flag,
610 args->gfp);
611}
612
613static void cma_allocator_free(struct arm_dma_free_args *args)
614{
615 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
616 args->size, args->want_vaddr);
617}
618
619static struct arm_dma_allocator cma_allocator = {
620 .alloc = cma_allocator_alloc,
621 .free = cma_allocator_free,
622};
623
624static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
625 struct page **ret_page)
626{
627 return __alloc_from_pool(args->size, ret_page);
628}
629
630static void pool_allocator_free(struct arm_dma_free_args *args)
631{
632 __free_from_pool(args->cpu_addr, args->size);
633}
634
635static struct arm_dma_allocator pool_allocator = {
636 .alloc = pool_allocator_alloc,
637 .free = pool_allocator_free,
638};
639
640static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
641 struct page **ret_page)
642{
643 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
644 args->prot, ret_page, args->caller,
645 args->want_vaddr);
646}
647
648static void remap_allocator_free(struct arm_dma_free_args *args)
649{
650 if (args->want_vaddr)
651 dma_common_free_remap(args->cpu_addr, args->size);
652
653 __dma_free_buffer(args->page, args->size);
654}
655
656static struct arm_dma_allocator remap_allocator = {
657 .alloc = remap_allocator_alloc,
658 .free = remap_allocator_free,
659};
660
661static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
662 gfp_t gfp, pgprot_t prot, bool is_coherent,
663 unsigned long attrs, const void *caller)
664{
665 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
666 struct page *page = NULL;
667 void *addr;
668 bool allowblock, cma;
669 struct arm_dma_buffer *buf;
670 struct arm_dma_alloc_args args = {
671 .dev = dev,
672 .size = PAGE_ALIGN(size),
673 .gfp = gfp,
674 .prot = prot,
675 .caller = caller,
676 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
677 .coherent_flag = is_coherent ? COHERENT : NORMAL,
678 };
679
680#ifdef CONFIG_DMA_API_DEBUG
681 u64 limit = (mask + 1) & ~mask;
682 if (limit && size >= limit) {
683 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
684 size, mask);
685 return NULL;
686 }
687#endif
688
689 buf = kzalloc(sizeof(*buf),
690 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
691 if (!buf)
692 return NULL;
693
694 if (mask < 0xffffffffULL)
695 gfp |= GFP_DMA;
696
697 /*
698 * Following is a work-around (a.k.a. hack) to prevent pages
699 * with __GFP_COMP being passed to split_page() which cannot
700 * handle them. The real problem is that this flag probably
701 * should be 0 on ARM as it is not supported on this
702 * platform; see CONFIG_HUGETLBFS.
703 */
704 gfp &= ~(__GFP_COMP);
705 args.gfp = gfp;
706
707 *handle = DMA_MAPPING_ERROR;
708 allowblock = gfpflags_allow_blocking(gfp);
709 cma = allowblock ? dev_get_cma_area(dev) : false;
710
711 if (cma)
712 buf->allocator = &cma_allocator;
713 else if (is_coherent)
714 buf->allocator = &simple_allocator;
715 else if (allowblock)
716 buf->allocator = &remap_allocator;
717 else
718 buf->allocator = &pool_allocator;
719
720 addr = buf->allocator->alloc(&args, &page);
721
722 if (page) {
723 unsigned long flags;
724
725 *handle = pfn_to_dma(dev, page_to_pfn(page));
726 buf->virt = args.want_vaddr ? addr : page;
727
728 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
729 list_add(&buf->list, &arm_dma_bufs);
730 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
731 } else {
732 kfree(buf);
733 }
734
735 return args.want_vaddr ? addr : page;
736}
737
738/*
739 * Allocate DMA-coherent memory space and return both the kernel remapped
740 * virtual and bus address for that space.
741 */
742void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
743 gfp_t gfp, unsigned long attrs)
744{
745 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
746
747 return __dma_alloc(dev, size, handle, gfp, prot, false,
748 attrs, __builtin_return_address(0));
749}
750
751static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
752 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
753{
754 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
755 attrs, __builtin_return_address(0));
756}
757
758static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
759 void *cpu_addr, dma_addr_t dma_addr, size_t size,
760 unsigned long attrs)
761{
762 int ret = -ENXIO;
763 unsigned long nr_vma_pages = vma_pages(vma);
764 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
765 unsigned long pfn = dma_to_pfn(dev, dma_addr);
766 unsigned long off = vma->vm_pgoff;
767
768 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
769 return ret;
770
771 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
772 ret = remap_pfn_range(vma, vma->vm_start,
773 pfn + off,
774 vma->vm_end - vma->vm_start,
775 vma->vm_page_prot);
776 }
777
778 return ret;
779}
780
781/*
782 * Create userspace mapping for the DMA-coherent memory.
783 */
784static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
785 void *cpu_addr, dma_addr_t dma_addr, size_t size,
786 unsigned long attrs)
787{
788 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
789}
790
791int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
792 void *cpu_addr, dma_addr_t dma_addr, size_t size,
793 unsigned long attrs)
794{
795 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
796 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
797}
798
799/*
800 * Free a buffer as defined by the above mapping.
801 */
802static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
803 dma_addr_t handle, unsigned long attrs,
804 bool is_coherent)
805{
806 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
807 struct arm_dma_buffer *buf;
808 struct arm_dma_free_args args = {
809 .dev = dev,
810 .size = PAGE_ALIGN(size),
811 .cpu_addr = cpu_addr,
812 .page = page,
813 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
814 };
815
816 buf = arm_dma_buffer_find(cpu_addr);
817 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
818 return;
819
820 buf->allocator->free(&args);
821 kfree(buf);
822}
823
824void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
825 dma_addr_t handle, unsigned long attrs)
826{
827 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
828}
829
830static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
831 dma_addr_t handle, unsigned long attrs)
832{
833 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
834}
835
836int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
837 void *cpu_addr, dma_addr_t handle, size_t size,
838 unsigned long attrs)
839{
840 unsigned long pfn = dma_to_pfn(dev, handle);
841 struct page *page;
842 int ret;
843
844 /* If the PFN is not valid, we do not have a struct page */
845 if (!pfn_valid(pfn))
846 return -ENXIO;
847
848 page = pfn_to_page(pfn);
849
850 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
851 if (unlikely(ret))
852 return ret;
853
854 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
855 return 0;
856}
857
858static void dma_cache_maint_page(struct page *page, unsigned long offset,
859 size_t size, enum dma_data_direction dir,
860 void (*op)(const void *, size_t, int))
861{
862 unsigned long pfn;
863 size_t left = size;
864
865 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
866 offset %= PAGE_SIZE;
867
868 /*
869 * A single sg entry may refer to multiple physically contiguous
870 * pages. But we still need to process highmem pages individually.
871 * If highmem is not configured then the bulk of this loop gets
872 * optimized out.
873 */
874 do {
875 size_t len = left;
876 void *vaddr;
877
878 page = pfn_to_page(pfn);
879
880 if (PageHighMem(page)) {
881 if (len + offset > PAGE_SIZE)
882 len = PAGE_SIZE - offset;
883
884 if (cache_is_vipt_nonaliasing()) {
885 vaddr = kmap_atomic(page);
886 op(vaddr + offset, len, dir);
887 kunmap_atomic(vaddr);
888 } else {
889 vaddr = kmap_high_get(page);
890 if (vaddr) {
891 op(vaddr + offset, len, dir);
892 kunmap_high(page);
893 }
894 }
895 } else {
896 vaddr = page_address(page) + offset;
897 op(vaddr, len, dir);
898 }
899 offset = 0;
900 pfn++;
901 left -= len;
902 } while (left);
903}
904
905/*
906 * Make an area consistent for devices.
907 * Note: Drivers should NOT use this function directly, as it will break
908 * platforms with CONFIG_DMABOUNCE.
909 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
910 */
911static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
912 size_t size, enum dma_data_direction dir)
913{
914 phys_addr_t paddr;
915
916 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
917
918 paddr = page_to_phys(page) + off;
919 if (dir == DMA_FROM_DEVICE) {
920 outer_inv_range(paddr, paddr + size);
921 } else {
922 outer_clean_range(paddr, paddr + size);
923 }
924 /* FIXME: non-speculating: flush on bidirectional mappings? */
925}
926
927static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
928 size_t size, enum dma_data_direction dir)
929{
930 phys_addr_t paddr = page_to_phys(page) + off;
931
932 /* FIXME: non-speculating: not required */
933 /* in any case, don't bother invalidating if DMA to device */
934 if (dir != DMA_TO_DEVICE) {
935 outer_inv_range(paddr, paddr + size);
936
937 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
938 }
939
940 /*
941 * Mark the D-cache clean for these pages to avoid extra flushing.
942 */
943 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
944 unsigned long pfn;
945 size_t left = size;
946
947 pfn = page_to_pfn(page) + off / PAGE_SIZE;
948 off %= PAGE_SIZE;
949 if (off) {
950 pfn++;
951 left -= PAGE_SIZE - off;
952 }
953 while (left >= PAGE_SIZE) {
954 page = pfn_to_page(pfn++);
955 set_bit(PG_dcache_clean, &page->flags);
956 left -= PAGE_SIZE;
957 }
958 }
959}
960
961/**
962 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
963 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
964 * @sg: list of buffers
965 * @nents: number of buffers to map
966 * @dir: DMA transfer direction
967 *
968 * Map a set of buffers described by scatterlist in streaming mode for DMA.
969 * This is the scatter-gather version of the dma_map_single interface.
970 * Here the scatter gather list elements are each tagged with the
971 * appropriate dma address and length. They are obtained via
972 * sg_dma_{address,length}.
973 *
974 * Device ownership issues as mentioned for dma_map_single are the same
975 * here.
976 */
977int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
978 enum dma_data_direction dir, unsigned long attrs)
979{
980 const struct dma_map_ops *ops = get_dma_ops(dev);
981 struct scatterlist *s;
982 int i, j;
983
984 for_each_sg(sg, s, nents, i) {
985#ifdef CONFIG_NEED_SG_DMA_LENGTH
986 s->dma_length = s->length;
987#endif
988 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
989 s->length, dir, attrs);
990 if (dma_mapping_error(dev, s->dma_address))
991 goto bad_mapping;
992 }
993 return nents;
994
995 bad_mapping:
996 for_each_sg(sg, s, i, j)
997 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
998 return 0;
999}
1000
1001/**
1002 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1003 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1004 * @sg: list of buffers
1005 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1006 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1007 *
1008 * Unmap a set of streaming mode DMA translations. Again, CPU access
1009 * rules concerning calls here are the same as for dma_unmap_single().
1010 */
1011void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1012 enum dma_data_direction dir, unsigned long attrs)
1013{
1014 const struct dma_map_ops *ops = get_dma_ops(dev);
1015 struct scatterlist *s;
1016
1017 int i;
1018
1019 for_each_sg(sg, s, nents, i)
1020 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1021}
1022
1023/**
1024 * arm_dma_sync_sg_for_cpu
1025 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1026 * @sg: list of buffers
1027 * @nents: number of buffers to map (returned from dma_map_sg)
1028 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1029 */
1030void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1031 int nents, enum dma_data_direction dir)
1032{
1033 const struct dma_map_ops *ops = get_dma_ops(dev);
1034 struct scatterlist *s;
1035 int i;
1036
1037 for_each_sg(sg, s, nents, i)
1038 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1039 dir);
1040}
1041
1042/**
1043 * arm_dma_sync_sg_for_device
1044 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1045 * @sg: list of buffers
1046 * @nents: number of buffers to map (returned from dma_map_sg)
1047 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1048 */
1049void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1050 int nents, enum dma_data_direction dir)
1051{
1052 const struct dma_map_ops *ops = get_dma_ops(dev);
1053 struct scatterlist *s;
1054 int i;
1055
1056 for_each_sg(sg, s, nents, i)
1057 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1058 dir);
1059}
1060
1061static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1062{
1063 /*
1064 * When CONFIG_ARM_LPAE is set, physical address can extend above
1065 * 32-bits, which then can't be addressed by devices that only support
1066 * 32-bit DMA.
1067 * Use the generic dma-direct / swiotlb ops code in that case, as that
1068 * handles bounce buffering for us.
1069 */
1070 if (IS_ENABLED(CONFIG_ARM_LPAE))
1071 return NULL;
1072 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1073}
1074
1075#ifdef CONFIG_ARM_DMA_USE_IOMMU
1076
1077static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1078{
1079 int prot = 0;
1080
1081 if (attrs & DMA_ATTR_PRIVILEGED)
1082 prot |= IOMMU_PRIV;
1083
1084 switch (dir) {
1085 case DMA_BIDIRECTIONAL:
1086 return prot | IOMMU_READ | IOMMU_WRITE;
1087 case DMA_TO_DEVICE:
1088 return prot | IOMMU_READ;
1089 case DMA_FROM_DEVICE:
1090 return prot | IOMMU_WRITE;
1091 default:
1092 return prot;
1093 }
1094}
1095
1096/* IOMMU */
1097
1098static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1099
1100static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1101 size_t size)
1102{
1103 unsigned int order = get_order(size);
1104 unsigned int align = 0;
1105 unsigned int count, start;
1106 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1107 unsigned long flags;
1108 dma_addr_t iova;
1109 int i;
1110
1111 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1112 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1113
1114 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1115 align = (1 << order) - 1;
1116
1117 spin_lock_irqsave(&mapping->lock, flags);
1118 for (i = 0; i < mapping->nr_bitmaps; i++) {
1119 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1120 mapping->bits, 0, count, align);
1121
1122 if (start > mapping->bits)
1123 continue;
1124
1125 bitmap_set(mapping->bitmaps[i], start, count);
1126 break;
1127 }
1128
1129 /*
1130 * No unused range found. Try to extend the existing mapping
1131 * and perform a second attempt to reserve an IO virtual
1132 * address range of size bytes.
1133 */
1134 if (i == mapping->nr_bitmaps) {
1135 if (extend_iommu_mapping(mapping)) {
1136 spin_unlock_irqrestore(&mapping->lock, flags);
1137 return DMA_MAPPING_ERROR;
1138 }
1139
1140 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1141 mapping->bits, 0, count, align);
1142
1143 if (start > mapping->bits) {
1144 spin_unlock_irqrestore(&mapping->lock, flags);
1145 return DMA_MAPPING_ERROR;
1146 }
1147
1148 bitmap_set(mapping->bitmaps[i], start, count);
1149 }
1150 spin_unlock_irqrestore(&mapping->lock, flags);
1151
1152 iova = mapping->base + (mapping_size * i);
1153 iova += start << PAGE_SHIFT;
1154
1155 return iova;
1156}
1157
1158static inline void __free_iova(struct dma_iommu_mapping *mapping,
1159 dma_addr_t addr, size_t size)
1160{
1161 unsigned int start, count;
1162 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1163 unsigned long flags;
1164 dma_addr_t bitmap_base;
1165 u32 bitmap_index;
1166
1167 if (!size)
1168 return;
1169
1170 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1171 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1172
1173 bitmap_base = mapping->base + mapping_size * bitmap_index;
1174
1175 start = (addr - bitmap_base) >> PAGE_SHIFT;
1176
1177 if (addr + size > bitmap_base + mapping_size) {
1178 /*
1179 * The address range to be freed reaches into the iova
1180 * range of the next bitmap. This should not happen as
1181 * we don't allow this in __alloc_iova (at the
1182 * moment).
1183 */
1184 BUG();
1185 } else
1186 count = size >> PAGE_SHIFT;
1187
1188 spin_lock_irqsave(&mapping->lock, flags);
1189 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191}
1192
1193/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1194static const int iommu_order_array[] = { 9, 8, 4, 0 };
1195
1196static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1197 gfp_t gfp, unsigned long attrs,
1198 int coherent_flag)
1199{
1200 struct page **pages;
1201 int count = size >> PAGE_SHIFT;
1202 int array_size = count * sizeof(struct page *);
1203 int i = 0;
1204 int order_idx = 0;
1205
1206 if (array_size <= PAGE_SIZE)
1207 pages = kzalloc(array_size, GFP_KERNEL);
1208 else
1209 pages = vzalloc(array_size);
1210 if (!pages)
1211 return NULL;
1212
1213 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1214 {
1215 unsigned long order = get_order(size);
1216 struct page *page;
1217
1218 page = dma_alloc_from_contiguous(dev, count, order,
1219 gfp & __GFP_NOWARN);
1220 if (!page)
1221 goto error;
1222
1223 __dma_clear_buffer(page, size, coherent_flag);
1224
1225 for (i = 0; i < count; i++)
1226 pages[i] = page + i;
1227
1228 return pages;
1229 }
1230
1231 /* Go straight to 4K chunks if caller says it's OK. */
1232 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1233 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1234
1235 /*
1236 * IOMMU can map any pages, so himem can also be used here
1237 */
1238 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1239
1240 while (count) {
1241 int j, order;
1242
1243 order = iommu_order_array[order_idx];
1244
1245 /* Drop down when we get small */
1246 if (__fls(count) < order) {
1247 order_idx++;
1248 continue;
1249 }
1250
1251 if (order) {
1252 /* See if it's easy to allocate a high-order chunk */
1253 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1254
1255 /* Go down a notch at first sign of pressure */
1256 if (!pages[i]) {
1257 order_idx++;
1258 continue;
1259 }
1260 } else {
1261 pages[i] = alloc_pages(gfp, 0);
1262 if (!pages[i])
1263 goto error;
1264 }
1265
1266 if (order) {
1267 split_page(pages[i], order);
1268 j = 1 << order;
1269 while (--j)
1270 pages[i + j] = pages[i] + j;
1271 }
1272
1273 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1274 i += 1 << order;
1275 count -= 1 << order;
1276 }
1277
1278 return pages;
1279error:
1280 while (i--)
1281 if (pages[i])
1282 __free_pages(pages[i], 0);
1283 kvfree(pages);
1284 return NULL;
1285}
1286
1287static int __iommu_free_buffer(struct device *dev, struct page **pages,
1288 size_t size, unsigned long attrs)
1289{
1290 int count = size >> PAGE_SHIFT;
1291 int i;
1292
1293 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1294 dma_release_from_contiguous(dev, pages[0], count);
1295 } else {
1296 for (i = 0; i < count; i++)
1297 if (pages[i])
1298 __free_pages(pages[i], 0);
1299 }
1300
1301 kvfree(pages);
1302 return 0;
1303}
1304
1305/*
1306 * Create a mapping in device IO address space for specified pages
1307 */
1308static dma_addr_t
1309__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1310 unsigned long attrs)
1311{
1312 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1313 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1314 dma_addr_t dma_addr, iova;
1315 int i;
1316
1317 dma_addr = __alloc_iova(mapping, size);
1318 if (dma_addr == DMA_MAPPING_ERROR)
1319 return dma_addr;
1320
1321 iova = dma_addr;
1322 for (i = 0; i < count; ) {
1323 int ret;
1324
1325 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1326 phys_addr_t phys = page_to_phys(pages[i]);
1327 unsigned int len, j;
1328
1329 for (j = i + 1; j < count; j++, next_pfn++)
1330 if (page_to_pfn(pages[j]) != next_pfn)
1331 break;
1332
1333 len = (j - i) << PAGE_SHIFT;
1334 ret = iommu_map(mapping->domain, iova, phys, len,
1335 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1336 if (ret < 0)
1337 goto fail;
1338 iova += len;
1339 i = j;
1340 }
1341 return dma_addr;
1342fail:
1343 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1344 __free_iova(mapping, dma_addr, size);
1345 return DMA_MAPPING_ERROR;
1346}
1347
1348static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1349{
1350 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1351
1352 /*
1353 * add optional in-page offset from iova to size and align
1354 * result to page size
1355 */
1356 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1357 iova &= PAGE_MASK;
1358
1359 iommu_unmap(mapping->domain, iova, size);
1360 __free_iova(mapping, iova, size);
1361 return 0;
1362}
1363
1364static struct page **__atomic_get_pages(void *addr)
1365{
1366 struct page *page;
1367 phys_addr_t phys;
1368
1369 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1370 page = phys_to_page(phys);
1371
1372 return (struct page **)page;
1373}
1374
1375static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1376{
1377 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1378 return __atomic_get_pages(cpu_addr);
1379
1380 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1381 return cpu_addr;
1382
1383 return dma_common_find_pages(cpu_addr);
1384}
1385
1386static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1387 dma_addr_t *handle, int coherent_flag,
1388 unsigned long attrs)
1389{
1390 struct page *page;
1391 void *addr;
1392
1393 if (coherent_flag == COHERENT)
1394 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1395 else
1396 addr = __alloc_from_pool(size, &page);
1397 if (!addr)
1398 return NULL;
1399
1400 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1401 if (*handle == DMA_MAPPING_ERROR)
1402 goto err_mapping;
1403
1404 return addr;
1405
1406err_mapping:
1407 __free_from_pool(addr, size);
1408 return NULL;
1409}
1410
1411static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1412 dma_addr_t handle, size_t size, int coherent_flag)
1413{
1414 __iommu_remove_mapping(dev, handle, size);
1415 if (coherent_flag == COHERENT)
1416 __dma_free_buffer(virt_to_page(cpu_addr), size);
1417 else
1418 __free_from_pool(cpu_addr, size);
1419}
1420
1421static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1422 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1423 int coherent_flag)
1424{
1425 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1426 struct page **pages;
1427 void *addr = NULL;
1428
1429 *handle = DMA_MAPPING_ERROR;
1430 size = PAGE_ALIGN(size);
1431
1432 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1433 return __iommu_alloc_simple(dev, size, gfp, handle,
1434 coherent_flag, attrs);
1435
1436 /*
1437 * Following is a work-around (a.k.a. hack) to prevent pages
1438 * with __GFP_COMP being passed to split_page() which cannot
1439 * handle them. The real problem is that this flag probably
1440 * should be 0 on ARM as it is not supported on this
1441 * platform; see CONFIG_HUGETLBFS.
1442 */
1443 gfp &= ~(__GFP_COMP);
1444
1445 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1446 if (!pages)
1447 return NULL;
1448
1449 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1450 if (*handle == DMA_MAPPING_ERROR)
1451 goto err_buffer;
1452
1453 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1454 return pages;
1455
1456 addr = dma_common_pages_remap(pages, size, prot,
1457 __builtin_return_address(0));
1458 if (!addr)
1459 goto err_mapping;
1460
1461 return addr;
1462
1463err_mapping:
1464 __iommu_remove_mapping(dev, *handle, size);
1465err_buffer:
1466 __iommu_free_buffer(dev, pages, size, attrs);
1467 return NULL;
1468}
1469
1470static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1471 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1472{
1473 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1474}
1475
1476static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1477 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1478{
1479 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1480}
1481
1482static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1483 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1484 unsigned long attrs)
1485{
1486 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1487 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1488 int err;
1489
1490 if (!pages)
1491 return -ENXIO;
1492
1493 if (vma->vm_pgoff >= nr_pages)
1494 return -ENXIO;
1495
1496 err = vm_map_pages(vma, pages, nr_pages);
1497 if (err)
1498 pr_err("Remapping memory failed: %d\n", err);
1499
1500 return err;
1501}
1502static int arm_iommu_mmap_attrs(struct device *dev,
1503 struct vm_area_struct *vma, void *cpu_addr,
1504 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1505{
1506 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1507
1508 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1509}
1510
1511static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1512 struct vm_area_struct *vma, void *cpu_addr,
1513 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1514{
1515 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1516}
1517
1518/*
1519 * free a page as defined by the above mapping.
1520 * Must not be called with IRQs disabled.
1521 */
1522static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1523 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1524{
1525 struct page **pages;
1526 size = PAGE_ALIGN(size);
1527
1528 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1529 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1530 return;
1531 }
1532
1533 pages = __iommu_get_pages(cpu_addr, attrs);
1534 if (!pages) {
1535 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1536 return;
1537 }
1538
1539 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1540 dma_common_free_remap(cpu_addr, size);
1541
1542 __iommu_remove_mapping(dev, handle, size);
1543 __iommu_free_buffer(dev, pages, size, attrs);
1544}
1545
1546static void arm_iommu_free_attrs(struct device *dev, size_t size,
1547 void *cpu_addr, dma_addr_t handle,
1548 unsigned long attrs)
1549{
1550 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1551}
1552
1553static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1554 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1555{
1556 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1557}
1558
1559static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1560 void *cpu_addr, dma_addr_t dma_addr,
1561 size_t size, unsigned long attrs)
1562{
1563 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1564 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1565
1566 if (!pages)
1567 return -ENXIO;
1568
1569 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1570 GFP_KERNEL);
1571}
1572
1573/*
1574 * Map a part of the scatter-gather list into contiguous io address space
1575 */
1576static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1577 size_t size, dma_addr_t *handle,
1578 enum dma_data_direction dir, unsigned long attrs,
1579 bool is_coherent)
1580{
1581 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1582 dma_addr_t iova, iova_base;
1583 int ret = 0;
1584 unsigned int count;
1585 struct scatterlist *s;
1586 int prot;
1587
1588 size = PAGE_ALIGN(size);
1589 *handle = DMA_MAPPING_ERROR;
1590
1591 iova_base = iova = __alloc_iova(mapping, size);
1592 if (iova == DMA_MAPPING_ERROR)
1593 return -ENOMEM;
1594
1595 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1596 phys_addr_t phys = page_to_phys(sg_page(s));
1597 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1598
1599 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1600 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1601
1602 prot = __dma_info_to_prot(dir, attrs);
1603
1604 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1605 if (ret < 0)
1606 goto fail;
1607 count += len >> PAGE_SHIFT;
1608 iova += len;
1609 }
1610 *handle = iova_base;
1611
1612 return 0;
1613fail:
1614 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1615 __free_iova(mapping, iova_base, size);
1616 return ret;
1617}
1618
1619static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1620 enum dma_data_direction dir, unsigned long attrs,
1621 bool is_coherent)
1622{
1623 struct scatterlist *s = sg, *dma = sg, *start = sg;
1624 int i, count = 0;
1625 unsigned int offset = s->offset;
1626 unsigned int size = s->offset + s->length;
1627 unsigned int max = dma_get_max_seg_size(dev);
1628
1629 for (i = 1; i < nents; i++) {
1630 s = sg_next(s);
1631
1632 s->dma_address = DMA_MAPPING_ERROR;
1633 s->dma_length = 0;
1634
1635 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1636 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1637 dir, attrs, is_coherent) < 0)
1638 goto bad_mapping;
1639
1640 dma->dma_address += offset;
1641 dma->dma_length = size - offset;
1642
1643 size = offset = s->offset;
1644 start = s;
1645 dma = sg_next(dma);
1646 count += 1;
1647 }
1648 size += s->length;
1649 }
1650 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1651 is_coherent) < 0)
1652 goto bad_mapping;
1653
1654 dma->dma_address += offset;
1655 dma->dma_length = size - offset;
1656
1657 return count+1;
1658
1659bad_mapping:
1660 for_each_sg(sg, s, count, i)
1661 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1662 return 0;
1663}
1664
1665/**
1666 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1667 * @dev: valid struct device pointer
1668 * @sg: list of buffers
1669 * @nents: number of buffers to map
1670 * @dir: DMA transfer direction
1671 *
1672 * Map a set of i/o coherent buffers described by scatterlist in streaming
1673 * mode for DMA. The scatter gather list elements are merged together (if
1674 * possible) and tagged with the appropriate dma address and length. They are
1675 * obtained via sg_dma_{address,length}.
1676 */
1677static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1678 int nents, enum dma_data_direction dir, unsigned long attrs)
1679{
1680 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1681}
1682
1683/**
1684 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1685 * @dev: valid struct device pointer
1686 * @sg: list of buffers
1687 * @nents: number of buffers to map
1688 * @dir: DMA transfer direction
1689 *
1690 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1691 * The scatter gather list elements are merged together (if possible) and
1692 * tagged with the appropriate dma address and length. They are obtained via
1693 * sg_dma_{address,length}.
1694 */
1695static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1696 int nents, enum dma_data_direction dir, unsigned long attrs)
1697{
1698 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1699}
1700
1701static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1702 int nents, enum dma_data_direction dir,
1703 unsigned long attrs, bool is_coherent)
1704{
1705 struct scatterlist *s;
1706 int i;
1707
1708 for_each_sg(sg, s, nents, i) {
1709 if (sg_dma_len(s))
1710 __iommu_remove_mapping(dev, sg_dma_address(s),
1711 sg_dma_len(s));
1712 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1713 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1714 s->length, dir);
1715 }
1716}
1717
1718/**
1719 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1720 * @dev: valid struct device pointer
1721 * @sg: list of buffers
1722 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1723 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1724 *
1725 * Unmap a set of streaming mode DMA translations. Again, CPU access
1726 * rules concerning calls here are the same as for dma_unmap_single().
1727 */
1728static void arm_coherent_iommu_unmap_sg(struct device *dev,
1729 struct scatterlist *sg, int nents, enum dma_data_direction dir,
1730 unsigned long attrs)
1731{
1732 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1733}
1734
1735/**
1736 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
1739 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1740 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1741 *
1742 * Unmap a set of streaming mode DMA translations. Again, CPU access
1743 * rules concerning calls here are the same as for dma_unmap_single().
1744 */
1745static void arm_iommu_unmap_sg(struct device *dev,
1746 struct scatterlist *sg, int nents,
1747 enum dma_data_direction dir,
1748 unsigned long attrs)
1749{
1750 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1751}
1752
1753/**
1754 * arm_iommu_sync_sg_for_cpu
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map (returned from dma_map_sg)
1758 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1759 */
1760static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1761 struct scatterlist *sg,
1762 int nents, enum dma_data_direction dir)
1763{
1764 struct scatterlist *s;
1765 int i;
1766
1767 for_each_sg(sg, s, nents, i)
1768 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1769
1770}
1771
1772/**
1773 * arm_iommu_sync_sg_for_device
1774 * @dev: valid struct device pointer
1775 * @sg: list of buffers
1776 * @nents: number of buffers to map (returned from dma_map_sg)
1777 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1778 */
1779static void arm_iommu_sync_sg_for_device(struct device *dev,
1780 struct scatterlist *sg,
1781 int nents, enum dma_data_direction dir)
1782{
1783 struct scatterlist *s;
1784 int i;
1785
1786 for_each_sg(sg, s, nents, i)
1787 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1788}
1789
1790
1791/**
1792 * arm_coherent_iommu_map_page
1793 * @dev: valid struct device pointer
1794 * @page: page that buffer resides in
1795 * @offset: offset into page for start of buffer
1796 * @size: size of buffer to map
1797 * @dir: DMA transfer direction
1798 *
1799 * Coherent IOMMU aware version of arm_dma_map_page()
1800 */
1801static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1802 unsigned long offset, size_t size, enum dma_data_direction dir,
1803 unsigned long attrs)
1804{
1805 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1806 dma_addr_t dma_addr;
1807 int ret, prot, len = PAGE_ALIGN(size + offset);
1808
1809 dma_addr = __alloc_iova(mapping, len);
1810 if (dma_addr == DMA_MAPPING_ERROR)
1811 return dma_addr;
1812
1813 prot = __dma_info_to_prot(dir, attrs);
1814
1815 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1816 if (ret < 0)
1817 goto fail;
1818
1819 return dma_addr + offset;
1820fail:
1821 __free_iova(mapping, dma_addr, len);
1822 return DMA_MAPPING_ERROR;
1823}
1824
1825/**
1826 * arm_iommu_map_page
1827 * @dev: valid struct device pointer
1828 * @page: page that buffer resides in
1829 * @offset: offset into page for start of buffer
1830 * @size: size of buffer to map
1831 * @dir: DMA transfer direction
1832 *
1833 * IOMMU aware version of arm_dma_map_page()
1834 */
1835static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1836 unsigned long offset, size_t size, enum dma_data_direction dir,
1837 unsigned long attrs)
1838{
1839 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1840 __dma_page_cpu_to_dev(page, offset, size, dir);
1841
1842 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1843}
1844
1845/**
1846 * arm_coherent_iommu_unmap_page
1847 * @dev: valid struct device pointer
1848 * @handle: DMA address of buffer
1849 * @size: size of buffer (same as passed to dma_map_page)
1850 * @dir: DMA transfer direction (same as passed to dma_map_page)
1851 *
1852 * Coherent IOMMU aware version of arm_dma_unmap_page()
1853 */
1854static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1855 size_t size, enum dma_data_direction dir, unsigned long attrs)
1856{
1857 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1858 dma_addr_t iova = handle & PAGE_MASK;
1859 int offset = handle & ~PAGE_MASK;
1860 int len = PAGE_ALIGN(size + offset);
1861
1862 if (!iova)
1863 return;
1864
1865 iommu_unmap(mapping->domain, iova, len);
1866 __free_iova(mapping, iova, len);
1867}
1868
1869/**
1870 * arm_iommu_unmap_page
1871 * @dev: valid struct device pointer
1872 * @handle: DMA address of buffer
1873 * @size: size of buffer (same as passed to dma_map_page)
1874 * @dir: DMA transfer direction (same as passed to dma_map_page)
1875 *
1876 * IOMMU aware version of arm_dma_unmap_page()
1877 */
1878static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1879 size_t size, enum dma_data_direction dir, unsigned long attrs)
1880{
1881 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1882 dma_addr_t iova = handle & PAGE_MASK;
1883 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1884 int offset = handle & ~PAGE_MASK;
1885 int len = PAGE_ALIGN(size + offset);
1886
1887 if (!iova)
1888 return;
1889
1890 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1891 __dma_page_dev_to_cpu(page, offset, size, dir);
1892
1893 iommu_unmap(mapping->domain, iova, len);
1894 __free_iova(mapping, iova, len);
1895}
1896
1897/**
1898 * arm_iommu_map_resource - map a device resource for DMA
1899 * @dev: valid struct device pointer
1900 * @phys_addr: physical address of resource
1901 * @size: size of resource to map
1902 * @dir: DMA transfer direction
1903 */
1904static dma_addr_t arm_iommu_map_resource(struct device *dev,
1905 phys_addr_t phys_addr, size_t size,
1906 enum dma_data_direction dir, unsigned long attrs)
1907{
1908 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1909 dma_addr_t dma_addr;
1910 int ret, prot;
1911 phys_addr_t addr = phys_addr & PAGE_MASK;
1912 unsigned int offset = phys_addr & ~PAGE_MASK;
1913 size_t len = PAGE_ALIGN(size + offset);
1914
1915 dma_addr = __alloc_iova(mapping, len);
1916 if (dma_addr == DMA_MAPPING_ERROR)
1917 return dma_addr;
1918
1919 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1920
1921 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1922 if (ret < 0)
1923 goto fail;
1924
1925 return dma_addr + offset;
1926fail:
1927 __free_iova(mapping, dma_addr, len);
1928 return DMA_MAPPING_ERROR;
1929}
1930
1931/**
1932 * arm_iommu_unmap_resource - unmap a device DMA resource
1933 * @dev: valid struct device pointer
1934 * @dma_handle: DMA address to resource
1935 * @size: size of resource to map
1936 * @dir: DMA transfer direction
1937 */
1938static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1939 size_t size, enum dma_data_direction dir,
1940 unsigned long attrs)
1941{
1942 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1943 dma_addr_t iova = dma_handle & PAGE_MASK;
1944 unsigned int offset = dma_handle & ~PAGE_MASK;
1945 size_t len = PAGE_ALIGN(size + offset);
1946
1947 if (!iova)
1948 return;
1949
1950 iommu_unmap(mapping->domain, iova, len);
1951 __free_iova(mapping, iova, len);
1952}
1953
1954static void arm_iommu_sync_single_for_cpu(struct device *dev,
1955 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1956{
1957 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1958 dma_addr_t iova = handle & PAGE_MASK;
1959 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1960 unsigned int offset = handle & ~PAGE_MASK;
1961
1962 if (!iova)
1963 return;
1964
1965 __dma_page_dev_to_cpu(page, offset, size, dir);
1966}
1967
1968static void arm_iommu_sync_single_for_device(struct device *dev,
1969 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1970{
1971 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1972 dma_addr_t iova = handle & PAGE_MASK;
1973 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1974 unsigned int offset = handle & ~PAGE_MASK;
1975
1976 if (!iova)
1977 return;
1978
1979 __dma_page_cpu_to_dev(page, offset, size, dir);
1980}
1981
1982static const struct dma_map_ops iommu_ops = {
1983 .alloc = arm_iommu_alloc_attrs,
1984 .free = arm_iommu_free_attrs,
1985 .mmap = arm_iommu_mmap_attrs,
1986 .get_sgtable = arm_iommu_get_sgtable,
1987
1988 .map_page = arm_iommu_map_page,
1989 .unmap_page = arm_iommu_unmap_page,
1990 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1991 .sync_single_for_device = arm_iommu_sync_single_for_device,
1992
1993 .map_sg = arm_iommu_map_sg,
1994 .unmap_sg = arm_iommu_unmap_sg,
1995 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1996 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1997
1998 .map_resource = arm_iommu_map_resource,
1999 .unmap_resource = arm_iommu_unmap_resource,
2000
2001 .dma_supported = arm_dma_supported,
2002};
2003
2004static const struct dma_map_ops iommu_coherent_ops = {
2005 .alloc = arm_coherent_iommu_alloc_attrs,
2006 .free = arm_coherent_iommu_free_attrs,
2007 .mmap = arm_coherent_iommu_mmap_attrs,
2008 .get_sgtable = arm_iommu_get_sgtable,
2009
2010 .map_page = arm_coherent_iommu_map_page,
2011 .unmap_page = arm_coherent_iommu_unmap_page,
2012
2013 .map_sg = arm_coherent_iommu_map_sg,
2014 .unmap_sg = arm_coherent_iommu_unmap_sg,
2015
2016 .map_resource = arm_iommu_map_resource,
2017 .unmap_resource = arm_iommu_unmap_resource,
2018
2019 .dma_supported = arm_dma_supported,
2020};
2021
2022/**
2023 * arm_iommu_create_mapping
2024 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2025 * @base: start address of the valid IO address space
2026 * @size: maximum size of the valid IO address space
2027 *
2028 * Creates a mapping structure which holds information about used/unused
2029 * IO address ranges, which is required to perform memory allocation and
2030 * mapping with IOMMU aware functions.
2031 *
2032 * The client device need to be attached to the mapping with
2033 * arm_iommu_attach_device function.
2034 */
2035struct dma_iommu_mapping *
2036arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2037{
2038 unsigned int bits = size >> PAGE_SHIFT;
2039 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2040 struct dma_iommu_mapping *mapping;
2041 int extensions = 1;
2042 int err = -ENOMEM;
2043
2044 /* currently only 32-bit DMA address space is supported */
2045 if (size > DMA_BIT_MASK(32) + 1)
2046 return ERR_PTR(-ERANGE);
2047
2048 if (!bitmap_size)
2049 return ERR_PTR(-EINVAL);
2050
2051 if (bitmap_size > PAGE_SIZE) {
2052 extensions = bitmap_size / PAGE_SIZE;
2053 bitmap_size = PAGE_SIZE;
2054 }
2055
2056 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2057 if (!mapping)
2058 goto err;
2059
2060 mapping->bitmap_size = bitmap_size;
2061 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2062 GFP_KERNEL);
2063 if (!mapping->bitmaps)
2064 goto err2;
2065
2066 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2067 if (!mapping->bitmaps[0])
2068 goto err3;
2069
2070 mapping->nr_bitmaps = 1;
2071 mapping->extensions = extensions;
2072 mapping->base = base;
2073 mapping->bits = BITS_PER_BYTE * bitmap_size;
2074
2075 spin_lock_init(&mapping->lock);
2076
2077 mapping->domain = iommu_domain_alloc(bus);
2078 if (!mapping->domain)
2079 goto err4;
2080
2081 kref_init(&mapping->kref);
2082 return mapping;
2083err4:
2084 kfree(mapping->bitmaps[0]);
2085err3:
2086 kfree(mapping->bitmaps);
2087err2:
2088 kfree(mapping);
2089err:
2090 return ERR_PTR(err);
2091}
2092EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2093
2094static void release_iommu_mapping(struct kref *kref)
2095{
2096 int i;
2097 struct dma_iommu_mapping *mapping =
2098 container_of(kref, struct dma_iommu_mapping, kref);
2099
2100 iommu_domain_free(mapping->domain);
2101 for (i = 0; i < mapping->nr_bitmaps; i++)
2102 kfree(mapping->bitmaps[i]);
2103 kfree(mapping->bitmaps);
2104 kfree(mapping);
2105}
2106
2107static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2108{
2109 int next_bitmap;
2110
2111 if (mapping->nr_bitmaps >= mapping->extensions)
2112 return -EINVAL;
2113
2114 next_bitmap = mapping->nr_bitmaps;
2115 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2116 GFP_ATOMIC);
2117 if (!mapping->bitmaps[next_bitmap])
2118 return -ENOMEM;
2119
2120 mapping->nr_bitmaps++;
2121
2122 return 0;
2123}
2124
2125void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2126{
2127 if (mapping)
2128 kref_put(&mapping->kref, release_iommu_mapping);
2129}
2130EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2131
2132static int __arm_iommu_attach_device(struct device *dev,
2133 struct dma_iommu_mapping *mapping)
2134{
2135 int err;
2136
2137 err = iommu_attach_device(mapping->domain, dev);
2138 if (err)
2139 return err;
2140
2141 kref_get(&mapping->kref);
2142 to_dma_iommu_mapping(dev) = mapping;
2143
2144 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2145 return 0;
2146}
2147
2148/**
2149 * arm_iommu_attach_device
2150 * @dev: valid struct device pointer
2151 * @mapping: io address space mapping structure (returned from
2152 * arm_iommu_create_mapping)
2153 *
2154 * Attaches specified io address space mapping to the provided device.
2155 * This replaces the dma operations (dma_map_ops pointer) with the
2156 * IOMMU aware version.
2157 *
2158 * More than one client might be attached to the same io address space
2159 * mapping.
2160 */
2161int arm_iommu_attach_device(struct device *dev,
2162 struct dma_iommu_mapping *mapping)
2163{
2164 int err;
2165
2166 err = __arm_iommu_attach_device(dev, mapping);
2167 if (err)
2168 return err;
2169
2170 set_dma_ops(dev, &iommu_ops);
2171 return 0;
2172}
2173EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2174
2175/**
2176 * arm_iommu_detach_device
2177 * @dev: valid struct device pointer
2178 *
2179 * Detaches the provided device from a previously attached map.
2180 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2181 */
2182void arm_iommu_detach_device(struct device *dev)
2183{
2184 struct dma_iommu_mapping *mapping;
2185
2186 mapping = to_dma_iommu_mapping(dev);
2187 if (!mapping) {
2188 dev_warn(dev, "Not attached\n");
2189 return;
2190 }
2191
2192 iommu_detach_device(mapping->domain, dev);
2193 kref_put(&mapping->kref, release_iommu_mapping);
2194 to_dma_iommu_mapping(dev) = NULL;
2195 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2196
2197 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2198}
2199EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2200
2201static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2202{
2203 return coherent ? &iommu_coherent_ops : &iommu_ops;
2204}
2205
2206static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2207 const struct iommu_ops *iommu)
2208{
2209 struct dma_iommu_mapping *mapping;
2210
2211 if (!iommu)
2212 return false;
2213
2214 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2215 if (IS_ERR(mapping)) {
2216 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2217 size, dev_name(dev));
2218 return false;
2219 }
2220
2221 if (__arm_iommu_attach_device(dev, mapping)) {
2222 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2223 dev_name(dev));
2224 arm_iommu_release_mapping(mapping);
2225 return false;
2226 }
2227
2228 return true;
2229}
2230
2231static void arm_teardown_iommu_dma_ops(struct device *dev)
2232{
2233 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2234
2235 if (!mapping)
2236 return;
2237
2238 arm_iommu_detach_device(dev);
2239 arm_iommu_release_mapping(mapping);
2240}
2241
2242#else
2243
2244static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2245 const struct iommu_ops *iommu)
2246{
2247 return false;
2248}
2249
2250static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2251
2252#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2253
2254#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2255
2256void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2257 const struct iommu_ops *iommu, bool coherent)
2258{
2259 const struct dma_map_ops *dma_ops;
2260
2261 dev->archdata.dma_coherent = coherent;
2262#ifdef CONFIG_SWIOTLB
2263 dev->dma_coherent = coherent;
2264#endif
2265
2266 /*
2267 * Don't override the dma_ops if they have already been set. Ideally
2268 * this should be the only location where dma_ops are set, remove this
2269 * check when all other callers of set_dma_ops will have disappeared.
2270 */
2271 if (dev->dma_ops)
2272 return;
2273
2274 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2275 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2276 else
2277 dma_ops = arm_get_dma_map_ops(coherent);
2278
2279 set_dma_ops(dev, dma_ops);
2280
2281#ifdef CONFIG_XEN
2282 if (xen_initial_domain())
2283 dev->dma_ops = &xen_swiotlb_dma_ops;
2284#endif
2285 dev->archdata.dma_ops_setup = true;
2286}
2287
2288void arch_teardown_dma_ops(struct device *dev)
2289{
2290 if (!dev->archdata.dma_ops_setup)
2291 return;
2292
2293 arm_teardown_iommu_dma_ops(dev);
2294 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2295 set_dma_ops(dev, NULL);
2296}
2297
2298#ifdef CONFIG_SWIOTLB
2299void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2300 enum dma_data_direction dir)
2301{
2302 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2303 size, dir);
2304}
2305
2306void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2307 enum dma_data_direction dir)
2308{
2309 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2310 size, dir);
2311}
2312
2313void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2314 gfp_t gfp, unsigned long attrs)
2315{
2316 return __dma_alloc(dev, size, dma_handle, gfp,
2317 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2318 attrs, __builtin_return_address(0));
2319}
2320
2321void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2322 dma_addr_t dma_handle, unsigned long attrs)
2323{
2324 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2325}
2326#endif /* CONFIG_SWIOTLB */