Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/secretmem.h>
  14
  15#include <linux/sched/signal.h>
  16#include <linux/rwsem.h>
  17#include <linux/hugetlb.h>
  18#include <linux/migrate.h>
  19#include <linux/mm_inline.h>
  20#include <linux/sched/mm.h>
  21
  22#include <asm/mmu_context.h>
  23#include <asm/tlbflush.h>
  24
  25#include "internal.h"
  26
  27struct follow_page_context {
  28	struct dev_pagemap *pgmap;
  29	unsigned int page_mask;
  30};
  31
  32static inline void sanity_check_pinned_pages(struct page **pages,
  33					     unsigned long npages)
  34{
  35	if (!IS_ENABLED(CONFIG_DEBUG_VM))
  36		return;
  37
  38	/*
  39	 * We only pin anonymous pages if they are exclusive. Once pinned, we
  40	 * can no longer turn them possibly shared and PageAnonExclusive() will
  41	 * stick around until the page is freed.
  42	 *
  43	 * We'd like to verify that our pinned anonymous pages are still mapped
  44	 * exclusively. The issue with anon THP is that we don't know how
  45	 * they are/were mapped when pinning them. However, for anon
  46	 * THP we can assume that either the given page (PTE-mapped THP) or
  47	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
  48	 * neither is the case, there is certainly something wrong.
  49	 */
  50	for (; npages; npages--, pages++) {
  51		struct page *page = *pages;
  52		struct folio *folio = page_folio(page);
  53
  54		if (!folio_test_anon(folio))
  55			continue;
  56		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
  57			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
  58		else
  59			/* Either a PTE-mapped or a PMD-mapped THP. */
  60			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
  61				       !PageAnonExclusive(page), page);
  62	}
  63}
  64
  65/*
  66 * Return the folio with ref appropriately incremented,
  67 * or NULL if that failed.
  68 */
  69static inline struct folio *try_get_folio(struct page *page, int refs)
  70{
  71	struct folio *folio;
  72
  73retry:
  74	folio = page_folio(page);
  75	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
  76		return NULL;
  77	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
  78		return NULL;
  79
  80	/*
  81	 * At this point we have a stable reference to the folio; but it
  82	 * could be that between calling page_folio() and the refcount
  83	 * increment, the folio was split, in which case we'd end up
  84	 * holding a reference on a folio that has nothing to do with the page
  85	 * we were given anymore.
  86	 * So now that the folio is stable, recheck that the page still
  87	 * belongs to this folio.
  88	 */
  89	if (unlikely(page_folio(page) != folio)) {
  90		if (!put_devmap_managed_page_refs(&folio->page, refs))
  91			folio_put_refs(folio, refs);
  92		goto retry;
  93	}
  94
  95	return folio;
  96}
  97
  98/**
  99 * try_grab_folio() - Attempt to get or pin a folio.
 100 * @page:  pointer to page to be grabbed
 101 * @refs:  the value to (effectively) add to the folio's refcount
 102 * @flags: gup flags: these are the FOLL_* flag values.
 103 *
 104 * "grab" names in this file mean, "look at flags to decide whether to use
 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 106 *
 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 108 * same time. (That's true throughout the get_user_pages*() and
 109 * pin_user_pages*() APIs.) Cases:
 110 *
 111 *    FOLL_GET: folio's refcount will be incremented by @refs.
 
 112 *
 113 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 114 *    @refs, and its compound_pincount will be incremented by @refs.
 115 *
 116 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
 117 *    @refs * GUP_PIN_COUNTING_BIAS.
 118 *
 119 * Return: The folio containing @page (with refcount appropriately
 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 122 * a likely bug in the caller, so a warning is also emitted.
 123 */
 124struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
 125{
 126	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 127		return NULL;
 128
 129	if (flags & FOLL_GET)
 130		return try_get_folio(page, refs);
 131	else if (flags & FOLL_PIN) {
 132		struct folio *folio;
 133
 134		/*
 135		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
 136		 * right zone, so fail and let the caller fall back to the slow
 137		 * path.
 138		 */
 139		if (unlikely((flags & FOLL_LONGTERM) &&
 140			     !is_longterm_pinnable_page(page)))
 141			return NULL;
 142
 143		/*
 144		 * CAUTION: Don't use compound_head() on the page before this
 145		 * point, the result won't be stable.
 
 
 
 
 146		 */
 147		folio = try_get_folio(page, refs);
 148		if (!folio)
 
 
 
 149			return NULL;
 150
 151		/*
 152		 * When pinning a large folio, use an exact count to track it.
 153		 *
 154		 * However, be sure to *also* increment the normal folio
 155		 * refcount field at least once, so that the folio really
 156		 * is pinned.  That's why the refcount from the earlier
 157		 * try_get_folio() is left intact.
 158		 */
 159		if (folio_test_large(folio))
 160			atomic_add(refs, folio_pincount_ptr(folio));
 161		else
 162			folio_ref_add(folio,
 163					refs * (GUP_PIN_COUNTING_BIAS - 1));
 164		/*
 165		 * Adjust the pincount before re-checking the PTE for changes.
 166		 * This is essentially a smp_mb() and is paired with a memory
 167		 * barrier in page_try_share_anon_rmap().
 168		 */
 169		smp_mb__after_atomic();
 170
 171		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 
 172
 173		return folio;
 174	}
 175
 176	WARN_ON_ONCE(1);
 177	return NULL;
 178}
 179
 180static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
 181{
 182	if (flags & FOLL_PIN) {
 183		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
 184		if (folio_test_large(folio))
 185			atomic_sub(refs, folio_pincount_ptr(folio));
 186		else
 187			refs *= GUP_PIN_COUNTING_BIAS;
 188	}
 189
 190	if (!put_devmap_managed_page_refs(&folio->page, refs))
 191		folio_put_refs(folio, refs);
 192}
 193
 194/**
 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 196 * @page:    pointer to page to be grabbed
 197 * @flags:   gup flags: these are the FOLL_* flag values.
 198 *
 199 * This might not do anything at all, depending on the flags argument.
 200 *
 201 * "grab" names in this file mean, "look at flags to decide whether to use
 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 203 *
 
 
 
 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 205 * time. Cases: please see the try_grab_folio() documentation, with
 206 * "refs=1".
 207 *
 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
 210 *
 211 *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
 212 *			be grabbed.
 
 213 */
 214int __must_check try_grab_page(struct page *page, unsigned int flags)
 215{
 216	struct folio *folio = page_folio(page);
 217
 218	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 219	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
 220		return -ENOMEM;
 221
 222	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 223		return -EREMOTEIO;
 224
 225	if (flags & FOLL_GET)
 226		folio_ref_inc(folio);
 227	else if (flags & FOLL_PIN) {
 
 
 
 
 
 
 
 
 
 
 
 
 228		/*
 229		 * Similar to try_grab_folio(): be sure to *also*
 230		 * increment the normal page refcount field at least once,
 231		 * so that the page really is pinned.
 232		 */
 233		if (folio_test_large(folio)) {
 234			folio_ref_add(folio, 1);
 235			atomic_add(1, folio_pincount_ptr(folio));
 236		} else {
 237			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 238		}
 239
 240		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
 241	}
 242
 243	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244}
 
 
 
 
 
 
 245
 246/**
 247 * unpin_user_page() - release a dma-pinned page
 248 * @page:            pointer to page to be released
 249 *
 250 * Pages that were pinned via pin_user_pages*() must be released via either
 251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 252 * that such pages can be separately tracked and uniquely handled. In
 253 * particular, interactions with RDMA and filesystems need special handling.
 254 */
 255void unpin_user_page(struct page *page)
 256{
 257	sanity_check_pinned_pages(&page, 1);
 258	gup_put_folio(page_folio(page), 1, FOLL_PIN);
 259}
 260EXPORT_SYMBOL(unpin_user_page);
 261
 262static inline struct folio *gup_folio_range_next(struct page *start,
 263		unsigned long npages, unsigned long i, unsigned int *ntails)
 264{
 265	struct page *next = nth_page(start, i);
 266	struct folio *folio = page_folio(next);
 267	unsigned int nr = 1;
 268
 269	if (folio_test_large(folio))
 270		nr = min_t(unsigned int, npages - i,
 271			   folio_nr_pages(folio) - folio_page_idx(folio, next));
 272
 273	*ntails = nr;
 274	return folio;
 275}
 
 
 
 
 
 276
 277static inline struct folio *gup_folio_next(struct page **list,
 278		unsigned long npages, unsigned long i, unsigned int *ntails)
 279{
 280	struct folio *folio = page_folio(list[i]);
 281	unsigned int nr;
 282
 283	for (nr = i + 1; nr < npages; nr++) {
 284		if (page_folio(list[nr]) != folio)
 285			break;
 286	}
 287
 288	*ntails = nr - i;
 289	return folio;
 290}
 
 291
 292/**
 293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 294 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 295 * @npages: number of pages in the @pages array.
 296 * @make_dirty: whether to mark the pages dirty
 297 *
 298 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 299 * variants called on that page.
 300 *
 301 * For each page in the @pages array, make that page (or its head page, if a
 302 * compound page) dirty, if @make_dirty is true, and if the page was previously
 303 * listed as clean. In any case, releases all pages using unpin_user_page(),
 304 * possibly via unpin_user_pages(), for the non-dirty case.
 305 *
 306 * Please see the unpin_user_page() documentation for details.
 307 *
 308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 309 * required, then the caller should a) verify that this is really correct,
 310 * because _lock() is usually required, and b) hand code it:
 311 * set_page_dirty_lock(), unpin_user_page().
 312 *
 313 */
 314void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 315				 bool make_dirty)
 316{
 317	unsigned long i;
 318	struct folio *folio;
 319	unsigned int nr;
 
 
 
 
 320
 321	if (!make_dirty) {
 322		unpin_user_pages(pages, npages);
 323		return;
 324	}
 325
 326	sanity_check_pinned_pages(pages, npages);
 327	for (i = 0; i < npages; i += nr) {
 328		folio = gup_folio_next(pages, npages, i, &nr);
 329		/*
 330		 * Checking PageDirty at this point may race with
 331		 * clear_page_dirty_for_io(), but that's OK. Two key
 332		 * cases:
 333		 *
 334		 * 1) This code sees the page as already dirty, so it
 335		 * skips the call to set_page_dirty(). That could happen
 336		 * because clear_page_dirty_for_io() called
 337		 * page_mkclean(), followed by set_page_dirty().
 338		 * However, now the page is going to get written back,
 339		 * which meets the original intention of setting it
 340		 * dirty, so all is well: clear_page_dirty_for_io() goes
 341		 * on to call TestClearPageDirty(), and write the page
 342		 * back.
 343		 *
 344		 * 2) This code sees the page as clean, so it calls
 345		 * set_page_dirty(). The page stays dirty, despite being
 346		 * written back, so it gets written back again in the
 347		 * next writeback cycle. This is harmless.
 348		 */
 349		if (!folio_test_dirty(folio)) {
 350			folio_lock(folio);
 351			folio_mark_dirty(folio);
 352			folio_unlock(folio);
 353		}
 354		gup_put_folio(folio, nr, FOLL_PIN);
 355	}
 356}
 357EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 358
 359/**
 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 361 * gup-pinned page range
 362 *
 363 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 364 * @npages: number of consecutive pages to release.
 365 * @make_dirty: whether to mark the pages dirty
 366 *
 367 * "gup-pinned page range" refers to a range of pages that has had one of the
 368 * pin_user_pages() variants called on that page.
 369 *
 370 * For the page ranges defined by [page .. page+npages], make that range (or
 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 372 * page range was previously listed as clean.
 373 *
 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 375 * required, then the caller should a) verify that this is really correct,
 376 * because _lock() is usually required, and b) hand code it:
 377 * set_page_dirty_lock(), unpin_user_page().
 378 *
 379 */
 380void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 381				      bool make_dirty)
 382{
 383	unsigned long i;
 384	struct folio *folio;
 385	unsigned int nr;
 386
 387	for (i = 0; i < npages; i += nr) {
 388		folio = gup_folio_range_next(page, npages, i, &nr);
 389		if (make_dirty && !folio_test_dirty(folio)) {
 390			folio_lock(folio);
 391			folio_mark_dirty(folio);
 392			folio_unlock(folio);
 393		}
 394		gup_put_folio(folio, nr, FOLL_PIN);
 395	}
 396}
 397EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
 398
 399static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
 400{
 401	unsigned long i;
 402	struct folio *folio;
 403	unsigned int nr;
 404
 405	/*
 406	 * Don't perform any sanity checks because we might have raced with
 407	 * fork() and some anonymous pages might now actually be shared --
 408	 * which is why we're unpinning after all.
 409	 */
 410	for (i = 0; i < npages; i += nr) {
 411		folio = gup_folio_next(pages, npages, i, &nr);
 412		gup_put_folio(folio, nr, FOLL_PIN);
 413	}
 414}
 415
 416/**
 417 * unpin_user_pages() - release an array of gup-pinned pages.
 418 * @pages:  array of pages to be marked dirty and released.
 419 * @npages: number of pages in the @pages array.
 420 *
 421 * For each page in the @pages array, release the page using unpin_user_page().
 422 *
 423 * Please see the unpin_user_page() documentation for details.
 424 */
 425void unpin_user_pages(struct page **pages, unsigned long npages)
 426{
 427	unsigned long i;
 428	struct folio *folio;
 429	unsigned int nr;
 430
 431	/*
 432	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
 433	 * leaving them pinned), but probably not. More likely, gup/pup returned
 434	 * a hard -ERRNO error to the caller, who erroneously passed it here.
 435	 */
 436	if (WARN_ON(IS_ERR_VALUE(npages)))
 437		return;
 438
 439	sanity_check_pinned_pages(pages, npages);
 440	for (i = 0; i < npages; i += nr) {
 441		folio = gup_folio_next(pages, npages, i, &nr);
 442		gup_put_folio(folio, nr, FOLL_PIN);
 443	}
 444}
 445EXPORT_SYMBOL(unpin_user_pages);
 446
 447/*
 448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 449 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 450 * cache bouncing on large SMP machines for concurrent pinned gups.
 451 */
 452static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
 453{
 454	if (!test_bit(MMF_HAS_PINNED, mm_flags))
 455		set_bit(MMF_HAS_PINNED, mm_flags);
 456}
 457
 458#ifdef CONFIG_MMU
 459static struct page *no_page_table(struct vm_area_struct *vma,
 460		unsigned int flags)
 461{
 462	/*
 463	 * When core dumping an enormous anonymous area that nobody
 464	 * has touched so far, we don't want to allocate unnecessary pages or
 465	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 466	 * then get_dump_page() will return NULL to leave a hole in the dump.
 467	 * But we can only make this optimization where a hole would surely
 468	 * be zero-filled if handle_mm_fault() actually did handle it.
 469	 */
 470	if ((flags & FOLL_DUMP) &&
 471			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 472		return ERR_PTR(-EFAULT);
 473	return NULL;
 474}
 475
 476static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 477		pte_t *pte, unsigned int flags)
 478{
 
 
 
 
 479	if (flags & FOLL_TOUCH) {
 480		pte_t entry = *pte;
 481
 482		if (flags & FOLL_WRITE)
 483			entry = pte_mkdirty(entry);
 484		entry = pte_mkyoung(entry);
 485
 486		if (!pte_same(*pte, entry)) {
 487			set_pte_at(vma->vm_mm, address, pte, entry);
 488			update_mmu_cache(vma, address, pte);
 489		}
 490	}
 491
 492	/* Proper page table entry exists, but no corresponding struct page */
 493	return -EEXIST;
 494}
 495
 496/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
 497static inline bool can_follow_write_pte(pte_t pte, struct page *page,
 498					struct vm_area_struct *vma,
 499					unsigned int flags)
 500{
 501	/* If the pte is writable, we can write to the page. */
 502	if (pte_write(pte))
 503		return true;
 504
 505	/* Maybe FOLL_FORCE is set to override it? */
 506	if (!(flags & FOLL_FORCE))
 507		return false;
 508
 509	/* But FOLL_FORCE has no effect on shared mappings */
 510	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 511		return false;
 512
 513	/* ... or read-only private ones */
 514	if (!(vma->vm_flags & VM_MAYWRITE))
 515		return false;
 516
 517	/* ... or already writable ones that just need to take a write fault */
 518	if (vma->vm_flags & VM_WRITE)
 519		return false;
 520
 521	/*
 522	 * See can_change_pte_writable(): we broke COW and could map the page
 523	 * writable if we have an exclusive anonymous page ...
 524	 */
 525	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
 526		return false;
 527
 528	/* ... and a write-fault isn't required for other reasons. */
 529	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
 530		return false;
 531	return !userfaultfd_pte_wp(vma, pte);
 532}
 533
 534static struct page *follow_page_pte(struct vm_area_struct *vma,
 535		unsigned long address, pmd_t *pmd, unsigned int flags,
 536		struct dev_pagemap **pgmap)
 537{
 538	struct mm_struct *mm = vma->vm_mm;
 539	struct page *page;
 540	spinlock_t *ptl;
 541	pte_t *ptep, pte;
 542	int ret;
 543
 544	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 545	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 546			 (FOLL_PIN | FOLL_GET)))
 547		return ERR_PTR(-EINVAL);
 
 548	if (unlikely(pmd_bad(*pmd)))
 549		return no_page_table(vma, flags);
 550
 551	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 552	pte = *ptep;
 553	if (!pte_present(pte))
 554		goto no_page;
 555	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556		goto no_page;
 557
 558	page = vm_normal_page(vma, address, pte);
 559
 560	/*
 561	 * We only care about anon pages in can_follow_write_pte() and don't
 562	 * have to worry about pte_devmap() because they are never anon.
 563	 */
 564	if ((flags & FOLL_WRITE) &&
 565	    !can_follow_write_pte(pte, page, vma, flags)) {
 566		page = NULL;
 567		goto out;
 568	}
 569
 
 570	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 571		/*
 572		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 573		 * case since they are only valid while holding the pgmap
 574		 * reference.
 575		 */
 576		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 577		if (*pgmap)
 578			page = pte_page(pte);
 579		else
 580			goto no_page;
 581	} else if (unlikely(!page)) {
 582		if (flags & FOLL_DUMP) {
 583			/* Avoid special (like zero) pages in core dumps */
 584			page = ERR_PTR(-EFAULT);
 585			goto out;
 586		}
 587
 588		if (is_zero_pfn(pte_pfn(pte))) {
 589			page = pte_page(pte);
 590		} else {
 591			ret = follow_pfn_pte(vma, address, ptep, flags);
 592			page = ERR_PTR(ret);
 593			goto out;
 594		}
 595	}
 596
 597	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
 598		page = ERR_PTR(-EMLINK);
 599		goto out;
 
 
 
 
 
 
 
 600	}
 601
 602	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 603		       !PageAnonExclusive(page), page);
 604
 605	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 606	ret = try_grab_page(page, flags);
 607	if (unlikely(ret)) {
 608		page = ERR_PTR(ret);
 609		goto out;
 610	}
 611
 612	/*
 613	 * We need to make the page accessible if and only if we are going
 614	 * to access its content (the FOLL_PIN case).  Please see
 615	 * Documentation/core-api/pin_user_pages.rst for details.
 616	 */
 617	if (flags & FOLL_PIN) {
 618		ret = arch_make_page_accessible(page);
 619		if (ret) {
 620			unpin_user_page(page);
 621			page = ERR_PTR(ret);
 622			goto out;
 623		}
 624	}
 625	if (flags & FOLL_TOUCH) {
 626		if ((flags & FOLL_WRITE) &&
 627		    !pte_dirty(pte) && !PageDirty(page))
 628			set_page_dirty(page);
 629		/*
 630		 * pte_mkyoung() would be more correct here, but atomic care
 631		 * is needed to avoid losing the dirty bit: it is easier to use
 632		 * mark_page_accessed().
 633		 */
 634		mark_page_accessed(page);
 635	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636out:
 637	pte_unmap_unlock(ptep, ptl);
 638	return page;
 639no_page:
 640	pte_unmap_unlock(ptep, ptl);
 641	if (!pte_none(pte))
 642		return NULL;
 643	return no_page_table(vma, flags);
 644}
 645
 646static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 647				    unsigned long address, pud_t *pudp,
 648				    unsigned int flags,
 649				    struct follow_page_context *ctx)
 650{
 651	pmd_t *pmd, pmdval;
 652	spinlock_t *ptl;
 653	struct page *page;
 654	struct mm_struct *mm = vma->vm_mm;
 655
 656	pmd = pmd_offset(pudp, address);
 657	/*
 658	 * The READ_ONCE() will stabilize the pmdval in a register or
 659	 * on the stack so that it will stop changing under the code.
 660	 */
 661	pmdval = READ_ONCE(*pmd);
 662	if (pmd_none(pmdval))
 663		return no_page_table(vma, flags);
 664	if (!pmd_present(pmdval))
 
 
 
 665		return no_page_table(vma, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666	if (pmd_devmap(pmdval)) {
 667		ptl = pmd_lock(mm, pmd);
 668		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 669		spin_unlock(ptl);
 670		if (page)
 671			return page;
 672	}
 673	if (likely(!pmd_trans_huge(pmdval)))
 674		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 675
 676	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
 677		return no_page_table(vma, flags);
 678
 
 679	ptl = pmd_lock(mm, pmd);
 680	if (unlikely(!pmd_present(*pmd))) {
 681		spin_unlock(ptl);
 682		return no_page_table(vma, flags);
 683	}
 
 
 
 
 
 
 
 684	if (unlikely(!pmd_trans_huge(*pmd))) {
 685		spin_unlock(ptl);
 686		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 687	}
 688	if (flags & FOLL_SPLIT_PMD) {
 689		int ret;
 690		page = pmd_page(*pmd);
 691		if (is_huge_zero_page(page)) {
 692			spin_unlock(ptl);
 693			ret = 0;
 694			split_huge_pmd(vma, pmd, address);
 695			if (pmd_trans_unstable(pmd))
 696				ret = -EBUSY;
 697		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 698			spin_unlock(ptl);
 699			split_huge_pmd(vma, pmd, address);
 700			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 701		}
 702
 703		return ret ? ERR_PTR(ret) :
 704			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 705	}
 706	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 707	spin_unlock(ptl);
 708	ctx->page_mask = HPAGE_PMD_NR - 1;
 709	return page;
 710}
 711
 712static struct page *follow_pud_mask(struct vm_area_struct *vma,
 713				    unsigned long address, p4d_t *p4dp,
 714				    unsigned int flags,
 715				    struct follow_page_context *ctx)
 716{
 717	pud_t *pud;
 718	spinlock_t *ptl;
 719	struct page *page;
 720	struct mm_struct *mm = vma->vm_mm;
 721
 722	pud = pud_offset(p4dp, address);
 723	if (pud_none(*pud))
 724		return no_page_table(vma, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725	if (pud_devmap(*pud)) {
 726		ptl = pud_lock(mm, pud);
 727		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 728		spin_unlock(ptl);
 729		if (page)
 730			return page;
 731	}
 732	if (unlikely(pud_bad(*pud)))
 733		return no_page_table(vma, flags);
 734
 735	return follow_pmd_mask(vma, address, pud, flags, ctx);
 736}
 737
 738static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 739				    unsigned long address, pgd_t *pgdp,
 740				    unsigned int flags,
 741				    struct follow_page_context *ctx)
 742{
 743	p4d_t *p4d;
 
 744
 745	p4d = p4d_offset(pgdp, address);
 746	if (p4d_none(*p4d))
 747		return no_page_table(vma, flags);
 748	BUILD_BUG_ON(p4d_huge(*p4d));
 749	if (unlikely(p4d_bad(*p4d)))
 750		return no_page_table(vma, flags);
 751
 
 
 
 
 
 
 
 
 752	return follow_pud_mask(vma, address, p4d, flags, ctx);
 753}
 754
 755/**
 756 * follow_page_mask - look up a page descriptor from a user-virtual address
 757 * @vma: vm_area_struct mapping @address
 758 * @address: virtual address to look up
 759 * @flags: flags modifying lookup behaviour
 760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 761 *       pointer to output page_mask
 762 *
 763 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 764 *
 765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 766 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 767 *
 768 * When getting an anonymous page and the caller has to trigger unsharing
 769 * of a shared anonymous page first, -EMLINK is returned. The caller should
 770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 771 * relevant with FOLL_PIN and !FOLL_WRITE.
 772 *
 773 * On output, the @ctx->page_mask is set according to the size of the page.
 774 *
 775 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 776 * an error pointer if there is a mapping to something not represented
 777 * by a page descriptor (see also vm_normal_page()).
 778 */
 779static struct page *follow_page_mask(struct vm_area_struct *vma,
 780			      unsigned long address, unsigned int flags,
 781			      struct follow_page_context *ctx)
 782{
 783	pgd_t *pgd;
 784	struct page *page;
 785	struct mm_struct *mm = vma->vm_mm;
 786
 787	ctx->page_mask = 0;
 788
 789	/*
 790	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
 791	 * special hugetlb page table walking code.  This eliminates the
 792	 * need to check for hugetlb entries in the general walking code.
 793	 *
 794	 * hugetlb_follow_page_mask is only for follow_page() handling here.
 795	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
 796	 */
 797	if (is_vm_hugetlb_page(vma)) {
 798		page = hugetlb_follow_page_mask(vma, address, flags);
 799		if (!page)
 800			page = no_page_table(vma, flags);
 801		return page;
 802	}
 803
 804	pgd = pgd_offset(mm, address);
 805
 806	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 807		return no_page_table(vma, flags);
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 810}
 811
 812struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 813			 unsigned int foll_flags)
 814{
 815	struct follow_page_context ctx = { NULL };
 816	struct page *page;
 817
 818	if (vma_is_secretmem(vma))
 819		return NULL;
 820
 821	if (foll_flags & FOLL_PIN)
 822		return NULL;
 823
 824	page = follow_page_mask(vma, address, foll_flags, &ctx);
 825	if (ctx.pgmap)
 826		put_dev_pagemap(ctx.pgmap);
 827	return page;
 828}
 829
 830static int get_gate_page(struct mm_struct *mm, unsigned long address,
 831		unsigned int gup_flags, struct vm_area_struct **vma,
 832		struct page **page)
 833{
 834	pgd_t *pgd;
 835	p4d_t *p4d;
 836	pud_t *pud;
 837	pmd_t *pmd;
 838	pte_t *pte;
 839	int ret = -EFAULT;
 840
 841	/* user gate pages are read-only */
 842	if (gup_flags & FOLL_WRITE)
 843		return -EFAULT;
 844	if (address > TASK_SIZE)
 845		pgd = pgd_offset_k(address);
 846	else
 847		pgd = pgd_offset_gate(mm, address);
 848	if (pgd_none(*pgd))
 849		return -EFAULT;
 850	p4d = p4d_offset(pgd, address);
 851	if (p4d_none(*p4d))
 852		return -EFAULT;
 853	pud = pud_offset(p4d, address);
 854	if (pud_none(*pud))
 855		return -EFAULT;
 856	pmd = pmd_offset(pud, address);
 857	if (!pmd_present(*pmd))
 858		return -EFAULT;
 859	VM_BUG_ON(pmd_trans_huge(*pmd));
 860	pte = pte_offset_map(pmd, address);
 861	if (pte_none(*pte))
 862		goto unmap;
 863	*vma = get_gate_vma(mm);
 864	if (!page)
 865		goto out;
 866	*page = vm_normal_page(*vma, address, *pte);
 867	if (!*page) {
 868		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 869			goto unmap;
 870		*page = pte_page(*pte);
 871	}
 872	ret = try_grab_page(*page, gup_flags);
 873	if (unlikely(ret))
 874		goto unmap;
 
 875out:
 876	ret = 0;
 877unmap:
 878	pte_unmap(pte);
 879	return ret;
 880}
 881
 882/*
 883 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 884 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 885 * is, *@locked will be set to 0 and -EBUSY returned.
 886 */
 887static int faultin_page(struct vm_area_struct *vma,
 888		unsigned long address, unsigned int *flags, bool unshare,
 889		int *locked)
 890{
 891	unsigned int fault_flags = 0;
 892	vm_fault_t ret;
 893
 894	if (*flags & FOLL_NOFAULT)
 895		return -EFAULT;
 
 896	if (*flags & FOLL_WRITE)
 897		fault_flags |= FAULT_FLAG_WRITE;
 898	if (*flags & FOLL_REMOTE)
 899		fault_flags |= FAULT_FLAG_REMOTE;
 900	if (locked) {
 901		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 902		/*
 903		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
 904		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
 905		 * That's because some callers may not be prepared to
 906		 * handle early exits caused by non-fatal signals.
 907		 */
 908		if (*flags & FOLL_INTERRUPTIBLE)
 909			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 910	}
 911	if (*flags & FOLL_NOWAIT)
 912		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 913	if (*flags & FOLL_TRIED) {
 914		/*
 915		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 916		 * can co-exist
 917		 */
 918		fault_flags |= FAULT_FLAG_TRIED;
 919	}
 920	if (unshare) {
 921		fault_flags |= FAULT_FLAG_UNSHARE;
 922		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
 923		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
 924	}
 925
 926	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 927
 928	if (ret & VM_FAULT_COMPLETED) {
 929		/*
 930		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
 931		 * mmap lock in the page fault handler. Sanity check this.
 932		 */
 933		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
 934		if (locked)
 935			*locked = 0;
 936		/*
 937		 * We should do the same as VM_FAULT_RETRY, but let's not
 938		 * return -EBUSY since that's not reflecting the reality of
 939		 * what has happened - we've just fully completed a page
 940		 * fault, with the mmap lock released.  Use -EAGAIN to show
 941		 * that we want to take the mmap lock _again_.
 942		 */
 943		return -EAGAIN;
 944	}
 945
 946	if (ret & VM_FAULT_ERROR) {
 947		int err = vm_fault_to_errno(ret, *flags);
 948
 949		if (err)
 950			return err;
 951		BUG();
 952	}
 953
 954	if (ret & VM_FAULT_RETRY) {
 955		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 956			*locked = 0;
 957		return -EBUSY;
 958	}
 959
 
 
 
 
 
 
 
 
 
 
 
 960	return 0;
 961}
 962
 963static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 964{
 965	vm_flags_t vm_flags = vma->vm_flags;
 966	int write = (gup_flags & FOLL_WRITE);
 967	int foreign = (gup_flags & FOLL_REMOTE);
 968
 969	if (vm_flags & (VM_IO | VM_PFNMAP))
 970		return -EFAULT;
 971
 972	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 973		return -EFAULT;
 974
 975	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
 976		return -EOPNOTSUPP;
 977
 978	if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
 979		return -EOPNOTSUPP;
 980
 981	if (vma_is_secretmem(vma))
 982		return -EFAULT;
 983
 984	if (write) {
 985		if (!(vm_flags & VM_WRITE)) {
 986			if (!(gup_flags & FOLL_FORCE))
 987				return -EFAULT;
 988			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
 989			if (is_vm_hugetlb_page(vma))
 990				return -EFAULT;
 991			/*
 992			 * We used to let the write,force case do COW in a
 993			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 994			 * set a breakpoint in a read-only mapping of an
 995			 * executable, without corrupting the file (yet only
 996			 * when that file had been opened for writing!).
 997			 * Anon pages in shared mappings are surprising: now
 998			 * just reject it.
 999			 */
1000			if (!is_cow_mapping(vm_flags))
1001				return -EFAULT;
1002		}
1003	} else if (!(vm_flags & VM_READ)) {
1004		if (!(gup_flags & FOLL_FORCE))
1005			return -EFAULT;
1006		/*
1007		 * Is there actually any vma we can reach here which does not
1008		 * have VM_MAYREAD set?
1009		 */
1010		if (!(vm_flags & VM_MAYREAD))
1011			return -EFAULT;
1012	}
1013	/*
1014	 * gups are always data accesses, not instruction
1015	 * fetches, so execute=false here
1016	 */
1017	if (!arch_vma_access_permitted(vma, write, false, foreign))
1018		return -EFAULT;
1019	return 0;
1020}
1021
1022/**
1023 * __get_user_pages() - pin user pages in memory
1024 * @mm:		mm_struct of target mm
1025 * @start:	starting user address
1026 * @nr_pages:	number of pages from start to pin
1027 * @gup_flags:	flags modifying pin behaviour
1028 * @pages:	array that receives pointers to the pages pinned.
1029 *		Should be at least nr_pages long. Or NULL, if caller
1030 *		only intends to ensure the pages are faulted in.
1031 * @vmas:	array of pointers to vmas corresponding to each page.
1032 *		Or NULL if the caller does not require them.
1033 * @locked:     whether we're still with the mmap_lock held
1034 *
1035 * Returns either number of pages pinned (which may be less than the
1036 * number requested), or an error. Details about the return value:
1037 *
1038 * -- If nr_pages is 0, returns 0.
1039 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1040 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1041 *    pages pinned. Again, this may be less than nr_pages.
1042 * -- 0 return value is possible when the fault would need to be retried.
1043 *
1044 * The caller is responsible for releasing returned @pages, via put_page().
1045 *
1046 * @vmas are valid only as long as mmap_lock is held.
1047 *
1048 * Must be called with mmap_lock held.  It may be released.  See below.
1049 *
1050 * __get_user_pages walks a process's page tables and takes a reference to
1051 * each struct page that each user address corresponds to at a given
1052 * instant. That is, it takes the page that would be accessed if a user
1053 * thread accesses the given user virtual address at that instant.
1054 *
1055 * This does not guarantee that the page exists in the user mappings when
1056 * __get_user_pages returns, and there may even be a completely different
1057 * page there in some cases (eg. if mmapped pagecache has been invalidated
1058 * and subsequently re faulted). However it does guarantee that the page
1059 * won't be freed completely. And mostly callers simply care that the page
1060 * contains data that was valid *at some point in time*. Typically, an IO
1061 * or similar operation cannot guarantee anything stronger anyway because
1062 * locks can't be held over the syscall boundary.
1063 *
1064 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1065 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1066 * appropriate) must be called after the page is finished with, and
1067 * before put_page is called.
1068 *
1069 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1070 * released by an up_read().  That can happen if @gup_flags does not
1071 * have FOLL_NOWAIT.
1072 *
1073 * A caller using such a combination of @locked and @gup_flags
1074 * must therefore hold the mmap_lock for reading only, and recognize
1075 * when it's been released.  Otherwise, it must be held for either
1076 * reading or writing and will not be released.
1077 *
1078 * In most cases, get_user_pages or get_user_pages_fast should be used
1079 * instead of __get_user_pages. __get_user_pages should be used only if
1080 * you need some special @gup_flags.
1081 */
1082static long __get_user_pages(struct mm_struct *mm,
1083		unsigned long start, unsigned long nr_pages,
1084		unsigned int gup_flags, struct page **pages,
1085		struct vm_area_struct **vmas, int *locked)
1086{
1087	long ret = 0, i = 0;
1088	struct vm_area_struct *vma = NULL;
1089	struct follow_page_context ctx = { NULL };
1090
1091	if (!nr_pages)
1092		return 0;
1093
1094	start = untagged_addr(start);
1095
1096	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1097
 
 
 
 
 
 
 
 
1098	do {
1099		struct page *page;
1100		unsigned int foll_flags = gup_flags;
1101		unsigned int page_increm;
1102
1103		/* first iteration or cross vma bound */
1104		if (!vma || start >= vma->vm_end) {
1105			vma = find_extend_vma(mm, start);
1106			if (!vma && in_gate_area(mm, start)) {
1107				ret = get_gate_page(mm, start & PAGE_MASK,
1108						gup_flags, &vma,
1109						pages ? &pages[i] : NULL);
1110				if (ret)
1111					goto out;
1112				ctx.page_mask = 0;
1113				goto next_page;
1114			}
1115
1116			if (!vma) {
1117				ret = -EFAULT;
1118				goto out;
1119			}
1120			ret = check_vma_flags(vma, gup_flags);
1121			if (ret)
1122				goto out;
1123
1124			if (is_vm_hugetlb_page(vma)) {
1125				i = follow_hugetlb_page(mm, vma, pages, vmas,
1126						&start, &nr_pages, i,
1127						gup_flags, locked);
1128				if (locked && *locked == 0) {
1129					/*
1130					 * We've got a VM_FAULT_RETRY
1131					 * and we've lost mmap_lock.
1132					 * We must stop here.
1133					 */
1134					BUG_ON(gup_flags & FOLL_NOWAIT);
 
1135					goto out;
1136				}
1137				continue;
1138			}
1139		}
1140retry:
1141		/*
1142		 * If we have a pending SIGKILL, don't keep faulting pages and
1143		 * potentially allocating memory.
1144		 */
1145		if (fatal_signal_pending(current)) {
1146			ret = -EINTR;
1147			goto out;
1148		}
1149		cond_resched();
1150
1151		page = follow_page_mask(vma, start, foll_flags, &ctx);
1152		if (!page || PTR_ERR(page) == -EMLINK) {
1153			ret = faultin_page(vma, start, &foll_flags,
1154					   PTR_ERR(page) == -EMLINK, locked);
1155			switch (ret) {
1156			case 0:
1157				goto retry;
1158			case -EBUSY:
1159			case -EAGAIN:
1160				ret = 0;
1161				fallthrough;
1162			case -EFAULT:
1163			case -ENOMEM:
1164			case -EHWPOISON:
1165				goto out;
 
 
1166			}
1167			BUG();
1168		} else if (PTR_ERR(page) == -EEXIST) {
1169			/*
1170			 * Proper page table entry exists, but no corresponding
1171			 * struct page. If the caller expects **pages to be
1172			 * filled in, bail out now, because that can't be done
1173			 * for this page.
1174			 */
1175			if (pages) {
1176				ret = PTR_ERR(page);
1177				goto out;
1178			}
1179
1180			goto next_page;
1181		} else if (IS_ERR(page)) {
1182			ret = PTR_ERR(page);
1183			goto out;
1184		}
1185		if (pages) {
1186			pages[i] = page;
1187			flush_anon_page(vma, page, start);
1188			flush_dcache_page(page);
1189			ctx.page_mask = 0;
1190		}
1191next_page:
1192		if (vmas) {
1193			vmas[i] = vma;
1194			ctx.page_mask = 0;
1195		}
1196		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197		if (page_increm > nr_pages)
1198			page_increm = nr_pages;
1199		i += page_increm;
1200		start += page_increm * PAGE_SIZE;
1201		nr_pages -= page_increm;
1202	} while (nr_pages);
1203out:
1204	if (ctx.pgmap)
1205		put_dev_pagemap(ctx.pgmap);
1206	return i ? i : ret;
1207}
1208
1209static bool vma_permits_fault(struct vm_area_struct *vma,
1210			      unsigned int fault_flags)
1211{
1212	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1213	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215
1216	if (!(vm_flags & vma->vm_flags))
1217		return false;
1218
1219	/*
1220	 * The architecture might have a hardware protection
1221	 * mechanism other than read/write that can deny access.
1222	 *
1223	 * gup always represents data access, not instruction
1224	 * fetches, so execute=false here:
1225	 */
1226	if (!arch_vma_access_permitted(vma, write, false, foreign))
1227		return false;
1228
1229	return true;
1230}
1231
1232/**
1233 * fixup_user_fault() - manually resolve a user page fault
1234 * @mm:		mm_struct of target mm
1235 * @address:	user address
1236 * @fault_flags:flags to pass down to handle_mm_fault()
1237 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1238 *		does not allow retry. If NULL, the caller must guarantee
1239 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240 *
1241 * This is meant to be called in the specific scenario where for locking reasons
1242 * we try to access user memory in atomic context (within a pagefault_disable()
1243 * section), this returns -EFAULT, and we want to resolve the user fault before
1244 * trying again.
1245 *
1246 * Typically this is meant to be used by the futex code.
1247 *
1248 * The main difference with get_user_pages() is that this function will
1249 * unconditionally call handle_mm_fault() which will in turn perform all the
1250 * necessary SW fixup of the dirty and young bits in the PTE, while
1251 * get_user_pages() only guarantees to update these in the struct page.
1252 *
1253 * This is important for some architectures where those bits also gate the
1254 * access permission to the page because they are maintained in software.  On
1255 * such architectures, gup() will not be enough to make a subsequent access
1256 * succeed.
1257 *
1258 * This function will not return with an unlocked mmap_lock. So it has not the
1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260 */
1261int fixup_user_fault(struct mm_struct *mm,
1262		     unsigned long address, unsigned int fault_flags,
1263		     bool *unlocked)
1264{
1265	struct vm_area_struct *vma;
1266	vm_fault_t ret;
1267
1268	address = untagged_addr(address);
1269
1270	if (unlocked)
1271		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272
1273retry:
1274	vma = find_extend_vma(mm, address);
1275	if (!vma || address < vma->vm_start)
1276		return -EFAULT;
1277
1278	if (!vma_permits_fault(vma, fault_flags))
1279		return -EFAULT;
1280
1281	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282	    fatal_signal_pending(current))
1283		return -EINTR;
1284
1285	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286
1287	if (ret & VM_FAULT_COMPLETED) {
1288		/*
1289		 * NOTE: it's a pity that we need to retake the lock here
1290		 * to pair with the unlock() in the callers. Ideally we
1291		 * could tell the callers so they do not need to unlock.
1292		 */
1293		mmap_read_lock(mm);
1294		*unlocked = true;
1295		return 0;
1296	}
1297
1298	if (ret & VM_FAULT_ERROR) {
1299		int err = vm_fault_to_errno(ret, 0);
1300
1301		if (err)
1302			return err;
1303		BUG();
1304	}
1305
1306	if (ret & VM_FAULT_RETRY) {
1307		mmap_read_lock(mm);
1308		*unlocked = true;
1309		fault_flags |= FAULT_FLAG_TRIED;
1310		goto retry;
1311	}
1312
1313	return 0;
1314}
1315EXPORT_SYMBOL_GPL(fixup_user_fault);
1316
1317/*
1318 * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1319 * specified, it'll also respond to generic signals.  The caller of GUP
1320 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1321 */
1322static bool gup_signal_pending(unsigned int flags)
1323{
1324	if (fatal_signal_pending(current))
1325		return true;
1326
1327	if (!(flags & FOLL_INTERRUPTIBLE))
1328		return false;
1329
1330	return signal_pending(current);
1331}
1332
1333/*
1334 * Please note that this function, unlike __get_user_pages will not
1335 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1336 */
1337static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1338						unsigned long start,
1339						unsigned long nr_pages,
1340						struct page **pages,
1341						struct vm_area_struct **vmas,
1342						int *locked,
1343						unsigned int flags)
1344{
1345	long ret, pages_done;
1346	bool lock_dropped;
1347
1348	if (locked) {
1349		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1350		BUG_ON(vmas);
1351		/* check caller initialized locked */
1352		BUG_ON(*locked != 1);
1353	}
1354
1355	if (flags & FOLL_PIN)
1356		mm_set_has_pinned_flag(&mm->flags);
1357
1358	/*
1359	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1360	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1361	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1362	 * for FOLL_GET, not for the newer FOLL_PIN.
1363	 *
1364	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1365	 * that here, as any failures will be obvious enough.
1366	 */
1367	if (pages && !(flags & FOLL_PIN))
1368		flags |= FOLL_GET;
1369
1370	pages_done = 0;
1371	lock_dropped = false;
1372	for (;;) {
1373		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1374				       vmas, locked);
1375		if (!locked)
1376			/* VM_FAULT_RETRY couldn't trigger, bypass */
1377			return ret;
1378
1379		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1380		if (!*locked) {
1381			BUG_ON(ret < 0);
1382			BUG_ON(ret >= nr_pages);
1383		}
1384
1385		if (ret > 0) {
1386			nr_pages -= ret;
1387			pages_done += ret;
1388			if (!nr_pages)
1389				break;
1390		}
1391		if (*locked) {
1392			/*
1393			 * VM_FAULT_RETRY didn't trigger or it was a
1394			 * FOLL_NOWAIT.
1395			 */
1396			if (!pages_done)
1397				pages_done = ret;
1398			break;
1399		}
1400		/*
1401		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1402		 * For the prefault case (!pages) we only update counts.
1403		 */
1404		if (likely(pages))
1405			pages += ret;
1406		start += ret << PAGE_SHIFT;
1407		lock_dropped = true;
1408
1409retry:
1410		/*
1411		 * Repeat on the address that fired VM_FAULT_RETRY
1412		 * with both FAULT_FLAG_ALLOW_RETRY and
1413		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1414		 * by fatal signals of even common signals, depending on
1415		 * the caller's request. So we need to check it before we
1416		 * start trying again otherwise it can loop forever.
1417		 */
1418		if (gup_signal_pending(flags)) {
 
1419			if (!pages_done)
1420				pages_done = -EINTR;
1421			break;
1422		}
1423
1424		ret = mmap_read_lock_killable(mm);
1425		if (ret) {
1426			BUG_ON(ret > 0);
1427			if (!pages_done)
1428				pages_done = ret;
1429			break;
1430		}
1431
1432		*locked = 1;
1433		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1434				       pages, NULL, locked);
1435		if (!*locked) {
1436			/* Continue to retry until we succeeded */
1437			BUG_ON(ret != 0);
1438			goto retry;
1439		}
1440		if (ret != 1) {
1441			BUG_ON(ret > 1);
1442			if (!pages_done)
1443				pages_done = ret;
1444			break;
1445		}
1446		nr_pages--;
1447		pages_done++;
1448		if (!nr_pages)
1449			break;
1450		if (likely(pages))
1451			pages++;
1452		start += PAGE_SIZE;
1453	}
1454	if (lock_dropped && *locked) {
1455		/*
1456		 * We must let the caller know we temporarily dropped the lock
1457		 * and so the critical section protected by it was lost.
1458		 */
1459		mmap_read_unlock(mm);
1460		*locked = 0;
1461	}
1462	return pages_done;
1463}
1464
1465/**
1466 * populate_vma_page_range() -  populate a range of pages in the vma.
1467 * @vma:   target vma
1468 * @start: start address
1469 * @end:   end address
1470 * @locked: whether the mmap_lock is still held
1471 *
1472 * This takes care of mlocking the pages too if VM_LOCKED is set.
1473 *
1474 * Return either number of pages pinned in the vma, or a negative error
1475 * code on error.
1476 *
1477 * vma->vm_mm->mmap_lock must be held.
1478 *
1479 * If @locked is NULL, it may be held for read or write and will
1480 * be unperturbed.
1481 *
1482 * If @locked is non-NULL, it must held for read only and may be
1483 * released.  If it's released, *@locked will be set to 0.
1484 */
1485long populate_vma_page_range(struct vm_area_struct *vma,
1486		unsigned long start, unsigned long end, int *locked)
1487{
1488	struct mm_struct *mm = vma->vm_mm;
1489	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1490	int gup_flags;
1491	long ret;
1492
1493	VM_BUG_ON(!PAGE_ALIGNED(start));
1494	VM_BUG_ON(!PAGE_ALIGNED(end));
1495	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1496	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1497	mmap_assert_locked(mm);
1498
1499	/*
1500	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1501	 * faultin_page() to break COW, so it has no work to do here.
1502	 */
1503	if (vma->vm_flags & VM_LOCKONFAULT)
1504		return nr_pages;
1505
1506	gup_flags = FOLL_TOUCH;
1507	/*
1508	 * We want to touch writable mappings with a write fault in order
1509	 * to break COW, except for shared mappings because these don't COW
1510	 * and we would not want to dirty them for nothing.
1511	 */
1512	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1513		gup_flags |= FOLL_WRITE;
1514
1515	/*
1516	 * We want mlock to succeed for regions that have any permissions
1517	 * other than PROT_NONE.
1518	 */
1519	if (vma_is_accessible(vma))
1520		gup_flags |= FOLL_FORCE;
1521
1522	/*
1523	 * We made sure addr is within a VMA, so the following will
1524	 * not result in a stack expansion that recurses back here.
1525	 */
1526	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1527				NULL, NULL, locked);
1528	lru_add_drain();
1529	return ret;
1530}
1531
1532/*
1533 * faultin_vma_page_range() - populate (prefault) page tables inside the
1534 *			      given VMA range readable/writable
1535 *
1536 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1537 *
1538 * @vma: target vma
1539 * @start: start address
1540 * @end: end address
1541 * @write: whether to prefault readable or writable
1542 * @locked: whether the mmap_lock is still held
1543 *
1544 * Returns either number of processed pages in the vma, or a negative error
1545 * code on error (see __get_user_pages()).
1546 *
1547 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1548 * covered by the VMA.
1549 *
1550 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1551 *
1552 * If @locked is non-NULL, it must held for read only and may be released.  If
1553 * it's released, *@locked will be set to 0.
1554 */
1555long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1556			    unsigned long end, bool write, int *locked)
1557{
1558	struct mm_struct *mm = vma->vm_mm;
1559	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1560	int gup_flags;
1561	long ret;
1562
1563	VM_BUG_ON(!PAGE_ALIGNED(start));
1564	VM_BUG_ON(!PAGE_ALIGNED(end));
1565	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1566	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1567	mmap_assert_locked(mm);
1568
1569	/*
1570	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1571	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1572	 *	       difference with !FOLL_FORCE, because the page is writable
1573	 *	       in the page table.
1574	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1575	 *		  a poisoned page.
1576	 * !FOLL_FORCE: Require proper access permissions.
1577	 */
1578	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1579	if (write)
1580		gup_flags |= FOLL_WRITE;
1581
1582	/*
1583	 * We want to report -EINVAL instead of -EFAULT for any permission
1584	 * problems or incompatible mappings.
1585	 */
1586	if (check_vma_flags(vma, gup_flags))
1587		return -EINVAL;
1588
1589	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1590				NULL, NULL, locked);
1591	lru_add_drain();
1592	return ret;
1593}
1594
1595/*
1596 * __mm_populate - populate and/or mlock pages within a range of address space.
1597 *
1598 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1599 * flags. VMAs must be already marked with the desired vm_flags, and
1600 * mmap_lock must not be held.
1601 */
1602int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1603{
1604	struct mm_struct *mm = current->mm;
1605	unsigned long end, nstart, nend;
1606	struct vm_area_struct *vma = NULL;
1607	int locked = 0;
1608	long ret = 0;
1609
1610	end = start + len;
1611
1612	for (nstart = start; nstart < end; nstart = nend) {
1613		/*
1614		 * We want to fault in pages for [nstart; end) address range.
1615		 * Find first corresponding VMA.
1616		 */
1617		if (!locked) {
1618			locked = 1;
1619			mmap_read_lock(mm);
1620			vma = find_vma_intersection(mm, nstart, end);
1621		} else if (nstart >= vma->vm_end)
1622			vma = find_vma_intersection(mm, vma->vm_end, end);
1623
1624		if (!vma)
1625			break;
1626		/*
1627		 * Set [nstart; nend) to intersection of desired address
1628		 * range with the first VMA. Also, skip undesirable VMA types.
1629		 */
1630		nend = min(end, vma->vm_end);
1631		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1632			continue;
1633		if (nstart < vma->vm_start)
1634			nstart = vma->vm_start;
1635		/*
1636		 * Now fault in a range of pages. populate_vma_page_range()
1637		 * double checks the vma flags, so that it won't mlock pages
1638		 * if the vma was already munlocked.
1639		 */
1640		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1641		if (ret < 0) {
1642			if (ignore_errors) {
1643				ret = 0;
1644				continue;	/* continue at next VMA */
1645			}
1646			break;
1647		}
1648		nend = nstart + ret * PAGE_SIZE;
1649		ret = 0;
1650	}
1651	if (locked)
1652		mmap_read_unlock(mm);
1653	return ret;	/* 0 or negative error code */
1654}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1655#else /* CONFIG_MMU */
1656static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1657		unsigned long nr_pages, struct page **pages,
1658		struct vm_area_struct **vmas, int *locked,
1659		unsigned int foll_flags)
1660{
1661	struct vm_area_struct *vma;
1662	unsigned long vm_flags;
1663	long i;
1664
1665	/* calculate required read or write permissions.
1666	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1667	 */
1668	vm_flags  = (foll_flags & FOLL_WRITE) ?
1669			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1670	vm_flags &= (foll_flags & FOLL_FORCE) ?
1671			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1672
1673	for (i = 0; i < nr_pages; i++) {
1674		vma = find_vma(mm, start);
1675		if (!vma)
1676			goto finish_or_fault;
1677
1678		/* protect what we can, including chardevs */
1679		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1680		    !(vm_flags & vma->vm_flags))
1681			goto finish_or_fault;
1682
1683		if (pages) {
1684			pages[i] = virt_to_page((void *)start);
1685			if (pages[i])
1686				get_page(pages[i]);
1687		}
1688		if (vmas)
1689			vmas[i] = vma;
1690		start = (start + PAGE_SIZE) & PAGE_MASK;
1691	}
1692
1693	return i;
1694
1695finish_or_fault:
1696	return i ? : -EFAULT;
1697}
1698#endif /* !CONFIG_MMU */
1699
1700/**
1701 * fault_in_writeable - fault in userspace address range for writing
1702 * @uaddr: start of address range
1703 * @size: size of address range
1704 *
1705 * Returns the number of bytes not faulted in (like copy_to_user() and
1706 * copy_from_user()).
1707 */
1708size_t fault_in_writeable(char __user *uaddr, size_t size)
1709{
1710	char __user *start = uaddr, *end;
1711
1712	if (unlikely(size == 0))
1713		return 0;
1714	if (!user_write_access_begin(uaddr, size))
1715		return size;
1716	if (!PAGE_ALIGNED(uaddr)) {
1717		unsafe_put_user(0, uaddr, out);
1718		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1719	}
1720	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1721	if (unlikely(end < start))
1722		end = NULL;
1723	while (uaddr != end) {
1724		unsafe_put_user(0, uaddr, out);
1725		uaddr += PAGE_SIZE;
1726	}
1727
1728out:
1729	user_write_access_end();
1730	if (size > uaddr - start)
1731		return size - (uaddr - start);
1732	return 0;
1733}
1734EXPORT_SYMBOL(fault_in_writeable);
1735
1736/**
1737 * fault_in_subpage_writeable - fault in an address range for writing
1738 * @uaddr: start of address range
1739 * @size: size of address range
1740 *
1741 * Fault in a user address range for writing while checking for permissions at
1742 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1743 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1744 *
1745 * Returns the number of bytes not faulted in (like copy_to_user() and
1746 * copy_from_user()).
1747 */
1748size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1749{
1750	size_t faulted_in;
1751
1752	/*
1753	 * Attempt faulting in at page granularity first for page table
1754	 * permission checking. The arch-specific probe_subpage_writeable()
1755	 * functions may not check for this.
1756	 */
1757	faulted_in = size - fault_in_writeable(uaddr, size);
1758	if (faulted_in)
1759		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1760
1761	return size - faulted_in;
1762}
1763EXPORT_SYMBOL(fault_in_subpage_writeable);
1764
1765/*
1766 * fault_in_safe_writeable - fault in an address range for writing
1767 * @uaddr: start of address range
1768 * @size: length of address range
1769 *
1770 * Faults in an address range for writing.  This is primarily useful when we
1771 * already know that some or all of the pages in the address range aren't in
1772 * memory.
1773 *
1774 * Unlike fault_in_writeable(), this function is non-destructive.
1775 *
1776 * Note that we don't pin or otherwise hold the pages referenced that we fault
1777 * in.  There's no guarantee that they'll stay in memory for any duration of
1778 * time.
1779 *
1780 * Returns the number of bytes not faulted in, like copy_to_user() and
1781 * copy_from_user().
1782 */
1783size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1784{
1785	unsigned long start = (unsigned long)uaddr, end;
1786	struct mm_struct *mm = current->mm;
1787	bool unlocked = false;
1788
1789	if (unlikely(size == 0))
1790		return 0;
1791	end = PAGE_ALIGN(start + size);
1792	if (end < start)
1793		end = 0;
1794
1795	mmap_read_lock(mm);
1796	do {
1797		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1798			break;
1799		start = (start + PAGE_SIZE) & PAGE_MASK;
1800	} while (start != end);
1801	mmap_read_unlock(mm);
1802
1803	if (size > (unsigned long)uaddr - start)
1804		return size - ((unsigned long)uaddr - start);
1805	return 0;
1806}
1807EXPORT_SYMBOL(fault_in_safe_writeable);
1808
1809/**
1810 * fault_in_readable - fault in userspace address range for reading
1811 * @uaddr: start of user address range
1812 * @size: size of user address range
1813 *
1814 * Returns the number of bytes not faulted in (like copy_to_user() and
1815 * copy_from_user()).
1816 */
1817size_t fault_in_readable(const char __user *uaddr, size_t size)
1818{
1819	const char __user *start = uaddr, *end;
1820	volatile char c;
1821
1822	if (unlikely(size == 0))
1823		return 0;
1824	if (!user_read_access_begin(uaddr, size))
1825		return size;
1826	if (!PAGE_ALIGNED(uaddr)) {
1827		unsafe_get_user(c, uaddr, out);
1828		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1829	}
1830	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1831	if (unlikely(end < start))
1832		end = NULL;
1833	while (uaddr != end) {
1834		unsafe_get_user(c, uaddr, out);
1835		uaddr += PAGE_SIZE;
1836	}
1837
1838out:
1839	user_read_access_end();
1840	(void)c;
1841	if (size > uaddr - start)
1842		return size - (uaddr - start);
1843	return 0;
1844}
1845EXPORT_SYMBOL(fault_in_readable);
1846
1847/**
1848 * get_dump_page() - pin user page in memory while writing it to core dump
1849 * @addr: user address
1850 *
1851 * Returns struct page pointer of user page pinned for dump,
1852 * to be freed afterwards by put_page().
1853 *
1854 * Returns NULL on any kind of failure - a hole must then be inserted into
1855 * the corefile, to preserve alignment with its headers; and also returns
1856 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1857 * allowing a hole to be left in the corefile to save disk space.
1858 *
1859 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1860 */
1861#ifdef CONFIG_ELF_CORE
1862struct page *get_dump_page(unsigned long addr)
1863{
1864	struct mm_struct *mm = current->mm;
1865	struct page *page;
1866	int locked = 1;
1867	int ret;
1868
1869	if (mmap_read_lock_killable(mm))
1870		return NULL;
1871	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1872				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1873	if (locked)
1874		mmap_read_unlock(mm);
1875	return (ret == 1) ? page : NULL;
1876}
1877#endif /* CONFIG_ELF_CORE */
1878
1879#ifdef CONFIG_MIGRATION
1880/*
1881 * Returns the number of collected pages. Return value is always >= 0.
1882 */
1883static unsigned long collect_longterm_unpinnable_pages(
1884					struct list_head *movable_page_list,
1885					unsigned long nr_pages,
1886					struct page **pages)
 
 
1887{
1888	unsigned long i, collected = 0;
1889	struct folio *prev_folio = NULL;
1890	bool drain_allow = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891
1892	for (i = 0; i < nr_pages; i++) {
1893		struct folio *folio = page_folio(pages[i]);
1894
1895		if (folio == prev_folio)
1896			continue;
1897		prev_folio = folio;
1898
1899		if (folio_is_longterm_pinnable(folio))
1900			continue;
1901
1902		collected++;
1903
1904		if (folio_is_device_coherent(folio))
1905			continue;
1906
1907		if (folio_test_hugetlb(folio)) {
1908			isolate_hugetlb(&folio->page, movable_page_list);
1909			continue;
1910		}
1911
1912		if (!folio_test_lru(folio) && drain_allow) {
1913			lru_add_drain_all();
1914			drain_allow = false;
1915		}
1916
1917		if (folio_isolate_lru(folio))
1918			continue;
1919
1920		list_add_tail(&folio->lru, movable_page_list);
1921		node_stat_mod_folio(folio,
1922				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1923				    folio_nr_pages(folio));
1924	}
1925
1926	return collected;
1927}
1928
1929/*
1930 * Unpins all pages and migrates device coherent pages and movable_page_list.
1931 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1932 * (or partial success).
1933 */
1934static int migrate_longterm_unpinnable_pages(
1935					struct list_head *movable_page_list,
1936					unsigned long nr_pages,
1937					struct page **pages)
1938{
1939	int ret;
1940	unsigned long i;
1941
1942	for (i = 0; i < nr_pages; i++) {
1943		struct folio *folio = page_folio(pages[i]);
1944
1945		if (folio_is_device_coherent(folio)) {
 
1946			/*
1947			 * Migration will fail if the page is pinned, so convert
1948			 * the pin on the source page to a normal reference.
1949			 */
1950			pages[i] = NULL;
1951			folio_get(folio);
1952			gup_put_folio(folio, 1, FOLL_PIN);
1953
1954			if (migrate_device_coherent_page(&folio->page)) {
1955				ret = -EBUSY;
1956				goto err;
1957			}
1958
1959			continue;
1960		}
1961
1962		/*
1963		 * We can't migrate pages with unexpected references, so drop
1964		 * the reference obtained by __get_user_pages_locked().
1965		 * Migrating pages have been added to movable_page_list after
1966		 * calling folio_isolate_lru() which takes a reference so the
1967		 * page won't be freed if it's migrating.
1968		 */
1969		unpin_user_page(pages[i]);
1970		pages[i] = NULL;
1971	}
1972
1973	if (!list_empty(movable_page_list)) {
1974		struct migration_target_control mtc = {
1975			.nid = NUMA_NO_NODE,
1976			.gfp_mask = GFP_USER | __GFP_NOWARN,
1977		};
1978
1979		if (migrate_pages(movable_page_list, alloc_migration_target,
1980				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1981				  MR_LONGTERM_PIN, NULL)) {
1982			ret = -ENOMEM;
1983			goto err;
1984		}
1985	}
1986
1987	putback_movable_pages(movable_page_list);
1988
1989	return -EAGAIN;
1990
1991err:
1992	for (i = 0; i < nr_pages; i++)
1993		if (pages[i])
1994			unpin_user_page(pages[i]);
1995	putback_movable_pages(movable_page_list);
1996
1997	return ret;
1998}
1999
2000/*
2001 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2002 * pages in the range are required to be pinned via FOLL_PIN, before calling
2003 * this routine.
2004 *
2005 * If any pages in the range are not allowed to be pinned, then this routine
2006 * will migrate those pages away, unpin all the pages in the range and return
2007 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2008 * call this routine again.
2009 *
2010 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2011 * The caller should give up, and propagate the error back up the call stack.
2012 *
2013 * If everything is OK and all pages in the range are allowed to be pinned, then
2014 * this routine leaves all pages pinned and returns zero for success.
2015 */
2016static long check_and_migrate_movable_pages(unsigned long nr_pages,
2017					    struct page **pages)
2018{
2019	unsigned long collected;
2020	LIST_HEAD(movable_page_list);
2021
2022	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2023						nr_pages, pages);
2024	if (!collected)
2025		return 0;
2026
2027	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2028						pages);
2029}
2030#else
2031static long check_and_migrate_movable_pages(unsigned long nr_pages,
2032					    struct page **pages)
 
 
 
 
2033{
2034	return 0;
2035}
2036#endif /* CONFIG_MIGRATION */
2037
2038/*
2039 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2040 * allows us to process the FOLL_LONGTERM flag.
2041 */
2042static long __gup_longterm_locked(struct mm_struct *mm,
2043				  unsigned long start,
2044				  unsigned long nr_pages,
2045				  struct page **pages,
2046				  struct vm_area_struct **vmas,
2047				  int *locked,
2048				  unsigned int gup_flags)
2049{
2050	bool must_unlock = false;
2051	unsigned int flags;
2052	long rc, nr_pinned_pages;
2053
2054	if (locked && WARN_ON_ONCE(!*locked))
2055		return -EINVAL;
2056
2057	if (!(gup_flags & FOLL_LONGTERM))
2058		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2059					       locked, gup_flags);
2060
2061	/*
2062	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064	 * correct to unconditionally call check_and_migrate_movable_pages()
2065	 * which assumes pages have been pinned via FOLL_PIN.
2066	 *
2067	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2068	 */
2069	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2070		return -EINVAL;
2071	flags = memalloc_pin_save();
2072	do {
2073		if (locked && !*locked) {
2074			mmap_read_lock(mm);
2075			must_unlock = true;
2076			*locked = 1;
2077		}
2078		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2079							  pages, vmas, locked,
2080							  gup_flags);
2081		if (nr_pinned_pages <= 0) {
2082			rc = nr_pinned_pages;
2083			break;
 
 
 
 
 
 
 
 
 
2084		}
2085		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2086	} while (rc == -EAGAIN);
2087	memalloc_pin_restore(flags);
2088
2089	if (locked && *locked && must_unlock) {
2090		mmap_read_unlock(mm);
2091		*locked = 0;
 
2092	}
2093	return rc ? rc : nr_pinned_pages;
2094}
2095
2096static bool is_valid_gup_flags(unsigned int gup_flags)
 
 
 
 
 
 
 
 
 
 
2097{
2098	/*
2099	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2100	 * never directly by the caller, so enforce that with an assertion:
2101	 */
2102	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2103		return false;
2104	/*
2105	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2106	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2107	 * FOLL_PIN.
2108	 */
2109	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2110		return false;
2111
2112	return true;
2113}
 
2114
2115#ifdef CONFIG_MMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116/**
2117 * get_user_pages_remote() - pin user pages in memory
2118 * @mm:		mm_struct of target mm
2119 * @start:	starting user address
2120 * @nr_pages:	number of pages from start to pin
2121 * @gup_flags:	flags modifying lookup behaviour
2122 * @pages:	array that receives pointers to the pages pinned.
2123 *		Should be at least nr_pages long. Or NULL, if caller
2124 *		only intends to ensure the pages are faulted in.
2125 * @vmas:	array of pointers to vmas corresponding to each page.
2126 *		Or NULL if the caller does not require them.
2127 * @locked:	pointer to lock flag indicating whether lock is held and
2128 *		subsequently whether VM_FAULT_RETRY functionality can be
2129 *		utilised. Lock must initially be held.
2130 *
2131 * Returns either number of pages pinned (which may be less than the
2132 * number requested), or an error. Details about the return value:
2133 *
2134 * -- If nr_pages is 0, returns 0.
2135 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2136 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2137 *    pages pinned. Again, this may be less than nr_pages.
2138 *
2139 * The caller is responsible for releasing returned @pages, via put_page().
2140 *
2141 * @vmas are valid only as long as mmap_lock is held.
2142 *
2143 * Must be called with mmap_lock held for read or write.
2144 *
2145 * get_user_pages_remote walks a process's page tables and takes a reference
2146 * to each struct page that each user address corresponds to at a given
2147 * instant. That is, it takes the page that would be accessed if a user
2148 * thread accesses the given user virtual address at that instant.
2149 *
2150 * This does not guarantee that the page exists in the user mappings when
2151 * get_user_pages_remote returns, and there may even be a completely different
2152 * page there in some cases (eg. if mmapped pagecache has been invalidated
2153 * and subsequently re faulted). However it does guarantee that the page
2154 * won't be freed completely. And mostly callers simply care that the page
2155 * contains data that was valid *at some point in time*. Typically, an IO
2156 * or similar operation cannot guarantee anything stronger anyway because
2157 * locks can't be held over the syscall boundary.
2158 *
2159 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2160 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2161 * be called after the page is finished with, and before put_page is called.
2162 *
2163 * get_user_pages_remote is typically used for fewer-copy IO operations,
2164 * to get a handle on the memory by some means other than accesses
2165 * via the user virtual addresses. The pages may be submitted for
2166 * DMA to devices or accessed via their kernel linear mapping (via the
2167 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2168 *
2169 * See also get_user_pages_fast, for performance critical applications.
2170 *
2171 * get_user_pages_remote should be phased out in favor of
2172 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2173 * should use get_user_pages_remote because it cannot pass
2174 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2175 */
2176long get_user_pages_remote(struct mm_struct *mm,
2177		unsigned long start, unsigned long nr_pages,
2178		unsigned int gup_flags, struct page **pages,
2179		struct vm_area_struct **vmas, int *locked)
2180{
2181	if (!is_valid_gup_flags(gup_flags))
 
 
 
 
2182		return -EINVAL;
2183
2184	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2185				     gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2186}
2187EXPORT_SYMBOL(get_user_pages_remote);
2188
2189#else /* CONFIG_MMU */
2190long get_user_pages_remote(struct mm_struct *mm,
2191			   unsigned long start, unsigned long nr_pages,
2192			   unsigned int gup_flags, struct page **pages,
2193			   struct vm_area_struct **vmas, int *locked)
2194{
2195	return 0;
2196}
 
 
 
 
 
 
 
 
2197#endif /* !CONFIG_MMU */
2198
2199/**
2200 * get_user_pages() - pin user pages in memory
2201 * @start:      starting user address
2202 * @nr_pages:   number of pages from start to pin
2203 * @gup_flags:  flags modifying lookup behaviour
2204 * @pages:      array that receives pointers to the pages pinned.
2205 *              Should be at least nr_pages long. Or NULL, if caller
2206 *              only intends to ensure the pages are faulted in.
2207 * @vmas:       array of pointers to vmas corresponding to each page.
2208 *              Or NULL if the caller does not require them.
2209 *
2210 * This is the same as get_user_pages_remote(), just with a less-flexible
2211 * calling convention where we assume that the mm being operated on belongs to
2212 * the current task, and doesn't allow passing of a locked parameter.  We also
2213 * obviously don't pass FOLL_REMOTE in here.
2214 */
2215long get_user_pages(unsigned long start, unsigned long nr_pages,
2216		unsigned int gup_flags, struct page **pages,
2217		struct vm_area_struct **vmas)
2218{
2219	if (!is_valid_gup_flags(gup_flags))
 
 
 
 
2220		return -EINVAL;
2221
2222	return __gup_longterm_locked(current->mm, start, nr_pages,
2223				     pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2224}
2225EXPORT_SYMBOL(get_user_pages);
2226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227/*
2228 * get_user_pages_unlocked() is suitable to replace the form:
2229 *
2230 *      mmap_read_lock(mm);
2231 *      get_user_pages(mm, ..., pages, NULL);
2232 *      mmap_read_unlock(mm);
2233 *
2234 *  with:
2235 *
2236 *      get_user_pages_unlocked(mm, ..., pages);
2237 *
2238 * It is functionally equivalent to get_user_pages_fast so
2239 * get_user_pages_fast should be used instead if specific gup_flags
2240 * (e.g. FOLL_FORCE) are not required.
2241 */
2242long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243			     struct page **pages, unsigned int gup_flags)
2244{
2245	struct mm_struct *mm = current->mm;
2246	int locked = 1;
2247	long ret;
2248
 
 
 
 
 
 
 
 
 
2249	mmap_read_lock(mm);
2250	ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2251				    gup_flags | FOLL_TOUCH);
2252	if (locked)
2253		mmap_read_unlock(mm);
2254	return ret;
2255}
2256EXPORT_SYMBOL(get_user_pages_unlocked);
2257
2258/*
2259 * Fast GUP
2260 *
2261 * get_user_pages_fast attempts to pin user pages by walking the page
2262 * tables directly and avoids taking locks. Thus the walker needs to be
2263 * protected from page table pages being freed from under it, and should
2264 * block any THP splits.
2265 *
2266 * One way to achieve this is to have the walker disable interrupts, and
2267 * rely on IPIs from the TLB flushing code blocking before the page table
2268 * pages are freed. This is unsuitable for architectures that do not need
2269 * to broadcast an IPI when invalidating TLBs.
2270 *
2271 * Another way to achieve this is to batch up page table containing pages
2272 * belonging to more than one mm_user, then rcu_sched a callback to free those
2273 * pages. Disabling interrupts will allow the fast_gup walker to both block
2274 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2275 * (which is a relatively rare event). The code below adopts this strategy.
2276 *
2277 * Before activating this code, please be aware that the following assumptions
2278 * are currently made:
2279 *
2280 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2281 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2282 *
2283 *  *) ptes can be read atomically by the architecture.
2284 *
2285 *  *) access_ok is sufficient to validate userspace address ranges.
2286 *
2287 * The last two assumptions can be relaxed by the addition of helper functions.
2288 *
2289 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2290 */
2291#ifdef CONFIG_HAVE_FAST_GUP
2292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2293static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2294					    unsigned int flags,
2295					    struct page **pages)
2296{
2297	while ((*nr) - nr_start) {
2298		struct page *page = pages[--(*nr)];
2299
2300		ClearPageReferenced(page);
2301		if (flags & FOLL_PIN)
2302			unpin_user_page(page);
2303		else
2304			put_page(page);
2305	}
2306}
2307
2308#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2309/*
2310 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2311 * operations.
2312 *
2313 * To pin the page, fast-gup needs to do below in order:
2314 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2315 *
2316 * For the rest of pgtable operations where pgtable updates can be racy
2317 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2318 * is pinned.
2319 *
2320 * Above will work for all pte-level operations, including THP split.
2321 *
2322 * For THP collapse, it's a bit more complicated because fast-gup may be
2323 * walking a pgtable page that is being freed (pte is still valid but pmd
2324 * can be cleared already).  To avoid race in such condition, we need to
2325 * also check pmd here to make sure pmd doesn't change (corresponds to
2326 * pmdp_collapse_flush() in the THP collapse code path).
2327 */
2328static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2329			 unsigned long end, unsigned int flags,
2330			 struct page **pages, int *nr)
2331{
2332	struct dev_pagemap *pgmap = NULL;
2333	int nr_start = *nr, ret = 0;
2334	pte_t *ptep, *ptem;
2335
2336	ptem = ptep = pte_offset_map(&pmd, addr);
2337	do {
2338		pte_t pte = ptep_get_lockless(ptep);
2339		struct page *page;
2340		struct folio *folio;
2341
2342		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
 
 
 
 
2343			goto pte_unmap;
2344
2345		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2346			goto pte_unmap;
2347
2348		if (pte_devmap(pte)) {
2349			if (unlikely(flags & FOLL_LONGTERM))
2350				goto pte_unmap;
2351
2352			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2353			if (unlikely(!pgmap)) {
2354				undo_dev_pagemap(nr, nr_start, flags, pages);
2355				goto pte_unmap;
2356			}
2357		} else if (pte_special(pte))
2358			goto pte_unmap;
2359
2360		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361		page = pte_page(pte);
2362
2363		folio = try_grab_folio(page, 1, flags);
2364		if (!folio)
2365			goto pte_unmap;
2366
2367		if (unlikely(page_is_secretmem(page))) {
2368			gup_put_folio(folio, 1, flags);
2369			goto pte_unmap;
2370		}
2371
2372		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2373		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2374			gup_put_folio(folio, 1, flags);
2375			goto pte_unmap;
2376		}
2377
2378		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2379			gup_put_folio(folio, 1, flags);
2380			goto pte_unmap;
2381		}
2382
2383		/*
2384		 * We need to make the page accessible if and only if we are
2385		 * going to access its content (the FOLL_PIN case).  Please
2386		 * see Documentation/core-api/pin_user_pages.rst for
2387		 * details.
2388		 */
2389		if (flags & FOLL_PIN) {
2390			ret = arch_make_page_accessible(page);
2391			if (ret) {
2392				gup_put_folio(folio, 1, flags);
2393				goto pte_unmap;
2394			}
2395		}
2396		folio_set_referenced(folio);
2397		pages[*nr] = page;
2398		(*nr)++;
 
2399	} while (ptep++, addr += PAGE_SIZE, addr != end);
2400
2401	ret = 1;
2402
2403pte_unmap:
2404	if (pgmap)
2405		put_dev_pagemap(pgmap);
2406	pte_unmap(ptem);
2407	return ret;
2408}
2409#else
2410
2411/*
2412 * If we can't determine whether or not a pte is special, then fail immediately
2413 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2414 * to be special.
2415 *
2416 * For a futex to be placed on a THP tail page, get_futex_key requires a
2417 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2418 * useful to have gup_huge_pmd even if we can't operate on ptes.
2419 */
2420static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2421			 unsigned long end, unsigned int flags,
2422			 struct page **pages, int *nr)
2423{
2424	return 0;
2425}
2426#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2427
2428#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2429static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2430			     unsigned long end, unsigned int flags,
2431			     struct page **pages, int *nr)
2432{
2433	int nr_start = *nr;
2434	struct dev_pagemap *pgmap = NULL;
2435
2436	do {
2437		struct page *page = pfn_to_page(pfn);
2438
2439		pgmap = get_dev_pagemap(pfn, pgmap);
2440		if (unlikely(!pgmap)) {
2441			undo_dev_pagemap(nr, nr_start, flags, pages);
2442			break;
2443		}
2444
2445		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2446			undo_dev_pagemap(nr, nr_start, flags, pages);
2447			break;
2448		}
2449
2450		SetPageReferenced(page);
2451		pages[*nr] = page;
2452		if (unlikely(try_grab_page(page, flags))) {
2453			undo_dev_pagemap(nr, nr_start, flags, pages);
2454			break;
2455		}
2456		(*nr)++;
2457		pfn++;
2458	} while (addr += PAGE_SIZE, addr != end);
2459
2460	put_dev_pagemap(pgmap);
2461	return addr == end;
 
2462}
2463
2464static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2465				 unsigned long end, unsigned int flags,
2466				 struct page **pages, int *nr)
2467{
2468	unsigned long fault_pfn;
2469	int nr_start = *nr;
2470
2471	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2472	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2473		return 0;
2474
2475	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2476		undo_dev_pagemap(nr, nr_start, flags, pages);
2477		return 0;
2478	}
2479	return 1;
2480}
2481
2482static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2483				 unsigned long end, unsigned int flags,
2484				 struct page **pages, int *nr)
2485{
2486	unsigned long fault_pfn;
2487	int nr_start = *nr;
2488
2489	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2490	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2491		return 0;
2492
2493	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2494		undo_dev_pagemap(nr, nr_start, flags, pages);
2495		return 0;
2496	}
2497	return 1;
2498}
2499#else
2500static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2501				 unsigned long end, unsigned int flags,
2502				 struct page **pages, int *nr)
2503{
2504	BUILD_BUG();
2505	return 0;
2506}
2507
2508static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2509				 unsigned long end, unsigned int flags,
2510				 struct page **pages, int *nr)
2511{
2512	BUILD_BUG();
2513	return 0;
2514}
2515#endif
2516
2517static int record_subpages(struct page *page, unsigned long addr,
2518			   unsigned long end, struct page **pages)
2519{
2520	int nr;
2521
2522	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2523		pages[nr] = nth_page(page, nr);
2524
2525	return nr;
2526}
2527
2528#ifdef CONFIG_ARCH_HAS_HUGEPD
2529static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2530				      unsigned long sz)
2531{
2532	unsigned long __boundary = (addr + sz) & ~(sz-1);
2533	return (__boundary - 1 < end - 1) ? __boundary : end;
2534}
2535
2536static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2537		       unsigned long end, unsigned int flags,
2538		       struct page **pages, int *nr)
2539{
2540	unsigned long pte_end;
2541	struct page *page;
2542	struct folio *folio;
2543	pte_t pte;
2544	int refs;
2545
2546	pte_end = (addr + sz) & ~(sz-1);
2547	if (pte_end < end)
2548		end = pte_end;
2549
2550	pte = huge_ptep_get(ptep);
2551
2552	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2553		return 0;
2554
2555	/* hugepages are never "special" */
2556	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2557
2558	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
 
2559	refs = record_subpages(page, addr, end, pages + *nr);
2560
2561	folio = try_grab_folio(page, refs, flags);
2562	if (!folio)
2563		return 0;
2564
2565	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2566		gup_put_folio(folio, refs, flags);
2567		return 0;
2568	}
2569
2570	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2571		gup_put_folio(folio, refs, flags);
2572		return 0;
2573	}
2574
2575	*nr += refs;
2576	folio_set_referenced(folio);
2577	return 1;
2578}
2579
2580static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2581		unsigned int pdshift, unsigned long end, unsigned int flags,
2582		struct page **pages, int *nr)
2583{
2584	pte_t *ptep;
2585	unsigned long sz = 1UL << hugepd_shift(hugepd);
2586	unsigned long next;
2587
2588	ptep = hugepte_offset(hugepd, addr, pdshift);
2589	do {
2590		next = hugepte_addr_end(addr, end, sz);
2591		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2592			return 0;
2593	} while (ptep++, addr = next, addr != end);
2594
2595	return 1;
2596}
2597#else
2598static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2599		unsigned int pdshift, unsigned long end, unsigned int flags,
2600		struct page **pages, int *nr)
2601{
2602	return 0;
2603}
2604#endif /* CONFIG_ARCH_HAS_HUGEPD */
2605
2606static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2607			unsigned long end, unsigned int flags,
2608			struct page **pages, int *nr)
2609{
2610	struct page *page;
2611	struct folio *folio;
2612	int refs;
2613
2614	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2615		return 0;
2616
2617	if (pmd_devmap(orig)) {
2618		if (unlikely(flags & FOLL_LONGTERM))
2619			return 0;
2620		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2621					     pages, nr);
2622	}
2623
2624	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2625	refs = record_subpages(page, addr, end, pages + *nr);
2626
2627	folio = try_grab_folio(page, refs, flags);
2628	if (!folio)
2629		return 0;
2630
2631	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2632		gup_put_folio(folio, refs, flags);
2633		return 0;
2634	}
2635
2636	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2637		gup_put_folio(folio, refs, flags);
2638		return 0;
2639	}
2640
2641	*nr += refs;
2642	folio_set_referenced(folio);
2643	return 1;
2644}
2645
2646static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2647			unsigned long end, unsigned int flags,
2648			struct page **pages, int *nr)
2649{
2650	struct page *page;
2651	struct folio *folio;
2652	int refs;
2653
2654	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2655		return 0;
2656
2657	if (pud_devmap(orig)) {
2658		if (unlikely(flags & FOLL_LONGTERM))
2659			return 0;
2660		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2661					     pages, nr);
2662	}
2663
2664	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2665	refs = record_subpages(page, addr, end, pages + *nr);
2666
2667	folio = try_grab_folio(page, refs, flags);
2668	if (!folio)
2669		return 0;
2670
2671	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2672		gup_put_folio(folio, refs, flags);
2673		return 0;
2674	}
2675
2676	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2677		gup_put_folio(folio, refs, flags);
2678		return 0;
2679	}
2680
2681	*nr += refs;
2682	folio_set_referenced(folio);
2683	return 1;
2684}
2685
2686static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2687			unsigned long end, unsigned int flags,
2688			struct page **pages, int *nr)
2689{
2690	int refs;
2691	struct page *page;
2692	struct folio *folio;
2693
2694	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2695		return 0;
2696
2697	BUILD_BUG_ON(pgd_devmap(orig));
2698
2699	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2700	refs = record_subpages(page, addr, end, pages + *nr);
2701
2702	folio = try_grab_folio(page, refs, flags);
2703	if (!folio)
2704		return 0;
2705
2706	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2707		gup_put_folio(folio, refs, flags);
2708		return 0;
2709	}
2710
2711	*nr += refs;
2712	folio_set_referenced(folio);
2713	return 1;
2714}
2715
2716static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2717		unsigned int flags, struct page **pages, int *nr)
2718{
2719	unsigned long next;
2720	pmd_t *pmdp;
2721
2722	pmdp = pmd_offset_lockless(pudp, pud, addr);
2723	do {
2724		pmd_t pmd = pmdp_get_lockless(pmdp);
2725
2726		next = pmd_addr_end(addr, end);
2727		if (!pmd_present(pmd))
2728			return 0;
2729
2730		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2731			     pmd_devmap(pmd))) {
2732			if (pmd_protnone(pmd) &&
2733			    !gup_can_follow_protnone(flags))
 
 
 
 
2734				return 0;
2735
2736			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2737				pages, nr))
2738				return 0;
2739
2740		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2741			/*
2742			 * architecture have different format for hugetlbfs
2743			 * pmd format and THP pmd format
2744			 */
2745			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2746					 PMD_SHIFT, next, flags, pages, nr))
2747				return 0;
2748		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2749			return 0;
2750	} while (pmdp++, addr = next, addr != end);
2751
2752	return 1;
2753}
2754
2755static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2756			 unsigned int flags, struct page **pages, int *nr)
2757{
2758	unsigned long next;
2759	pud_t *pudp;
2760
2761	pudp = pud_offset_lockless(p4dp, p4d, addr);
2762	do {
2763		pud_t pud = READ_ONCE(*pudp);
2764
2765		next = pud_addr_end(addr, end);
2766		if (unlikely(!pud_present(pud)))
2767			return 0;
2768		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2769			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2770					  pages, nr))
2771				return 0;
2772		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2773			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2774					 PUD_SHIFT, next, flags, pages, nr))
2775				return 0;
2776		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2777			return 0;
2778	} while (pudp++, addr = next, addr != end);
2779
2780	return 1;
2781}
2782
2783static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2784			 unsigned int flags, struct page **pages, int *nr)
2785{
2786	unsigned long next;
2787	p4d_t *p4dp;
2788
2789	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2790	do {
2791		p4d_t p4d = READ_ONCE(*p4dp);
2792
2793		next = p4d_addr_end(addr, end);
2794		if (p4d_none(p4d))
2795			return 0;
2796		BUILD_BUG_ON(p4d_huge(p4d));
2797		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2798			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2799					 P4D_SHIFT, next, flags, pages, nr))
2800				return 0;
2801		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2802			return 0;
2803	} while (p4dp++, addr = next, addr != end);
2804
2805	return 1;
2806}
2807
2808static void gup_pgd_range(unsigned long addr, unsigned long end,
2809		unsigned int flags, struct page **pages, int *nr)
2810{
2811	unsigned long next;
2812	pgd_t *pgdp;
2813
2814	pgdp = pgd_offset(current->mm, addr);
2815	do {
2816		pgd_t pgd = READ_ONCE(*pgdp);
2817
2818		next = pgd_addr_end(addr, end);
2819		if (pgd_none(pgd))
2820			return;
2821		if (unlikely(pgd_huge(pgd))) {
2822			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2823					  pages, nr))
2824				return;
2825		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2826			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2827					 PGDIR_SHIFT, next, flags, pages, nr))
2828				return;
2829		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2830			return;
2831	} while (pgdp++, addr = next, addr != end);
2832}
2833#else
2834static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2835		unsigned int flags, struct page **pages, int *nr)
2836{
2837}
2838#endif /* CONFIG_HAVE_FAST_GUP */
2839
2840#ifndef gup_fast_permitted
2841/*
2842 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2843 * we need to fall back to the slow version:
2844 */
2845static bool gup_fast_permitted(unsigned long start, unsigned long end)
2846{
2847	return true;
2848}
2849#endif
2850
2851static unsigned long lockless_pages_from_mm(unsigned long start,
2852					    unsigned long end,
2853					    unsigned int gup_flags,
2854					    struct page **pages)
2855{
2856	unsigned long flags;
2857	int nr_pinned = 0;
2858	unsigned seq;
2859
2860	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2861	    !gup_fast_permitted(start, end))
2862		return 0;
2863
2864	if (gup_flags & FOLL_PIN) {
2865		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2866		if (seq & 1)
2867			return 0;
2868	}
2869
2870	/*
2871	 * Disable interrupts. The nested form is used, in order to allow full,
2872	 * general purpose use of this routine.
2873	 *
2874	 * With interrupts disabled, we block page table pages from being freed
2875	 * from under us. See struct mmu_table_batch comments in
2876	 * include/asm-generic/tlb.h for more details.
2877	 *
2878	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2879	 * that come from THPs splitting.
2880	 */
2881	local_irq_save(flags);
2882	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2883	local_irq_restore(flags);
2884
2885	/*
2886	 * When pinning pages for DMA there could be a concurrent write protect
2887	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2888	 */
2889	if (gup_flags & FOLL_PIN) {
2890		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2891			unpin_user_pages_lockless(pages, nr_pinned);
2892			return 0;
2893		} else {
2894			sanity_check_pinned_pages(pages, nr_pinned);
2895		}
 
 
2896	}
2897	return nr_pinned;
 
2898}
2899
2900static int internal_get_user_pages_fast(unsigned long start,
2901					unsigned long nr_pages,
2902					unsigned int gup_flags,
2903					struct page **pages)
2904{
2905	unsigned long len, end;
2906	unsigned long nr_pinned;
2907	int ret;
2908
2909	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2910				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2911				       FOLL_FAST_ONLY | FOLL_NOFAULT |
2912				       FOLL_PCI_P2PDMA)))
2913		return -EINVAL;
2914
2915	if (gup_flags & FOLL_PIN)
2916		mm_set_has_pinned_flag(&current->mm->flags);
2917
2918	if (!(gup_flags & FOLL_FAST_ONLY))
2919		might_lock_read(&current->mm->mmap_lock);
2920
2921	start = untagged_addr(start) & PAGE_MASK;
2922	len = nr_pages << PAGE_SHIFT;
2923	if (check_add_overflow(start, len, &end))
 
 
 
2924		return 0;
2925	if (unlikely(!access_ok((void __user *)start, len)))
2926		return -EFAULT;
2927
2928	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2929	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2930		return nr_pinned;
2931
2932	/* Slow path: try to get the remaining pages with get_user_pages */
2933	start += nr_pinned << PAGE_SHIFT;
2934	pages += nr_pinned;
2935	ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2936				      gup_flags);
2937	if (ret < 0) {
2938		/*
2939		 * The caller has to unpin the pages we already pinned so
2940		 * returning -errno is not an option
2941		 */
2942		if (nr_pinned)
2943			return nr_pinned;
2944		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945	}
2946	return ret + nr_pinned;
2947}
2948
 
 
2949/**
2950 * get_user_pages_fast_only() - pin user pages in memory
2951 * @start:      starting user address
2952 * @nr_pages:   number of pages from start to pin
2953 * @gup_flags:  flags modifying pin behaviour
2954 * @pages:      array that receives pointers to the pages pinned.
2955 *              Should be at least nr_pages long.
2956 *
2957 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2958 * the regular GUP.
2959 * Note a difference with get_user_pages_fast: this always returns the
2960 * number of pages pinned, 0 if no pages were pinned.
2961 *
2962 * If the architecture does not support this function, simply return with no
2963 * pages pinned.
2964 *
2965 * Careful, careful! COW breaking can go either way, so a non-write
2966 * access can get ambiguous page results. If you call this function without
2967 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2968 */
2969int get_user_pages_fast_only(unsigned long start, int nr_pages,
2970			     unsigned int gup_flags, struct page **pages)
2971{
2972	int nr_pinned;
2973	/*
2974	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2975	 * because gup fast is always a "pin with a +1 page refcount" request.
2976	 *
2977	 * FOLL_FAST_ONLY is required in order to match the API description of
2978	 * this routine: no fall back to regular ("slow") GUP.
2979	 */
2980	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2981
2982	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2983						 pages);
2984
2985	/*
2986	 * As specified in the API description above, this routine is not
2987	 * allowed to return negative values. However, the common core
2988	 * routine internal_get_user_pages_fast() *can* return -errno.
2989	 * Therefore, correct for that here:
2990	 */
2991	if (nr_pinned < 0)
2992		nr_pinned = 0;
2993
2994	return nr_pinned;
2995}
2996EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2997
2998/**
2999 * get_user_pages_fast() - pin user pages in memory
3000 * @start:      starting user address
3001 * @nr_pages:   number of pages from start to pin
3002 * @gup_flags:  flags modifying pin behaviour
3003 * @pages:      array that receives pointers to the pages pinned.
3004 *              Should be at least nr_pages long.
3005 *
3006 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3007 * If not successful, it will fall back to taking the lock and
3008 * calling get_user_pages().
3009 *
3010 * Returns number of pages pinned. This may be fewer than the number requested.
3011 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3012 * -errno.
3013 */
3014int get_user_pages_fast(unsigned long start, int nr_pages,
3015			unsigned int gup_flags, struct page **pages)
3016{
3017	if (!is_valid_gup_flags(gup_flags))
 
 
 
 
3018		return -EINVAL;
3019
3020	/*
3021	 * The caller may or may not have explicitly set FOLL_GET; either way is
3022	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3023	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3024	 * request.
3025	 */
3026	gup_flags |= FOLL_GET;
3027	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3028}
3029EXPORT_SYMBOL_GPL(get_user_pages_fast);
3030
3031/**
3032 * pin_user_pages_fast() - pin user pages in memory without taking locks
3033 *
3034 * @start:      starting user address
3035 * @nr_pages:   number of pages from start to pin
3036 * @gup_flags:  flags modifying pin behaviour
3037 * @pages:      array that receives pointers to the pages pinned.
3038 *              Should be at least nr_pages long.
3039 *
3040 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3041 * get_user_pages_fast() for documentation on the function arguments, because
3042 * the arguments here are identical.
3043 *
3044 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3045 * see Documentation/core-api/pin_user_pages.rst for further details.
3046 */
3047int pin_user_pages_fast(unsigned long start, int nr_pages,
3048			unsigned int gup_flags, struct page **pages)
3049{
3050	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052		return -EINVAL;
3053
3054	if (WARN_ON_ONCE(!pages))
3055		return -EINVAL;
3056
3057	gup_flags |= FOLL_PIN;
3058	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3059}
3060EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3061
3062/*
3063 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3064 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3065 *
3066 * The API rules are the same, too: no negative values may be returned.
3067 */
3068int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3069			     unsigned int gup_flags, struct page **pages)
3070{
3071	int nr_pinned;
3072
3073	/*
3074	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3075	 * rules require returning 0, rather than -errno:
3076	 */
3077	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3078		return 0;
3079
3080	if (WARN_ON_ONCE(!pages))
3081		return 0;
3082	/*
3083	 * FOLL_FAST_ONLY is required in order to match the API description of
3084	 * this routine: no fall back to regular ("slow") GUP.
3085	 */
3086	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3087	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3088						 pages);
3089	/*
3090	 * This routine is not allowed to return negative values. However,
3091	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3092	 * correct for that here:
3093	 */
3094	if (nr_pinned < 0)
3095		nr_pinned = 0;
3096
3097	return nr_pinned;
3098}
3099EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3100
3101/**
3102 * pin_user_pages_remote() - pin pages of a remote process
3103 *
3104 * @mm:		mm_struct of target mm
3105 * @start:	starting user address
3106 * @nr_pages:	number of pages from start to pin
3107 * @gup_flags:	flags modifying lookup behaviour
3108 * @pages:	array that receives pointers to the pages pinned.
3109 *		Should be at least nr_pages long.
 
3110 * @vmas:	array of pointers to vmas corresponding to each page.
3111 *		Or NULL if the caller does not require them.
3112 * @locked:	pointer to lock flag indicating whether lock is held and
3113 *		subsequently whether VM_FAULT_RETRY functionality can be
3114 *		utilised. Lock must initially be held.
3115 *
3116 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3117 * get_user_pages_remote() for documentation on the function arguments, because
3118 * the arguments here are identical.
3119 *
3120 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3121 * see Documentation/core-api/pin_user_pages.rst for details.
3122 */
3123long pin_user_pages_remote(struct mm_struct *mm,
3124			   unsigned long start, unsigned long nr_pages,
3125			   unsigned int gup_flags, struct page **pages,
3126			   struct vm_area_struct **vmas, int *locked)
3127{
3128	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3129	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3130		return -EINVAL;
3131
3132	if (WARN_ON_ONCE(!pages))
3133		return -EINVAL;
3134
3135	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3136				     gup_flags | FOLL_PIN | FOLL_TOUCH |
3137					     FOLL_REMOTE);
3138}
3139EXPORT_SYMBOL(pin_user_pages_remote);
3140
3141/**
3142 * pin_user_pages() - pin user pages in memory for use by other devices
3143 *
3144 * @start:	starting user address
3145 * @nr_pages:	number of pages from start to pin
3146 * @gup_flags:	flags modifying lookup behaviour
3147 * @pages:	array that receives pointers to the pages pinned.
3148 *		Should be at least nr_pages long.
 
3149 * @vmas:	array of pointers to vmas corresponding to each page.
3150 *		Or NULL if the caller does not require them.
3151 *
3152 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3153 * FOLL_PIN is set.
3154 *
3155 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3156 * see Documentation/core-api/pin_user_pages.rst for details.
3157 */
3158long pin_user_pages(unsigned long start, unsigned long nr_pages,
3159		    unsigned int gup_flags, struct page **pages,
3160		    struct vm_area_struct **vmas)
3161{
3162	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3163	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3164		return -EINVAL;
3165
3166	if (WARN_ON_ONCE(!pages))
3167		return -EINVAL;
3168
3169	gup_flags |= FOLL_PIN;
3170	return __gup_longterm_locked(current->mm, start, nr_pages,
3171				     pages, vmas, NULL, gup_flags);
3172}
3173EXPORT_SYMBOL(pin_user_pages);
3174
3175/*
3176 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3177 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3178 * FOLL_PIN and rejects FOLL_GET.
3179 */
3180long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3181			     struct page **pages, unsigned int gup_flags)
3182{
3183	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3184	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3185		return -EINVAL;
3186
3187	if (WARN_ON_ONCE(!pages))
3188		return -EINVAL;
3189
3190	gup_flags |= FOLL_PIN;
3191	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3192}
3193EXPORT_SYMBOL(pin_user_pages_unlocked);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
 
  13
  14#include <linux/sched/signal.h>
  15#include <linux/rwsem.h>
  16#include <linux/hugetlb.h>
  17#include <linux/migrate.h>
  18#include <linux/mm_inline.h>
  19#include <linux/sched/mm.h>
  20
  21#include <asm/mmu_context.h>
  22#include <asm/tlbflush.h>
  23
  24#include "internal.h"
  25
  26struct follow_page_context {
  27	struct dev_pagemap *pgmap;
  28	unsigned int page_mask;
  29};
  30
  31static void hpage_pincount_add(struct page *page, int refs)
 
  32{
  33	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  34	VM_BUG_ON_PAGE(page != compound_head(page), page);
  35
  36	atomic_add(refs, compound_pincount_ptr(page));
  37}
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39static void hpage_pincount_sub(struct page *page, int refs)
  40{
  41	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  42	VM_BUG_ON_PAGE(page != compound_head(page), page);
  43
  44	atomic_sub(refs, compound_pincount_ptr(page));
 
 
 
  45}
  46
  47/*
  48 * Return the compound head page with ref appropriately incremented,
  49 * or NULL if that failed.
  50 */
  51static inline struct page *try_get_compound_head(struct page *page, int refs)
  52{
  53	struct page *head = compound_head(page);
  54
  55	if (WARN_ON_ONCE(page_ref_count(head) < 0))
 
 
  56		return NULL;
  57	if (unlikely(!page_cache_add_speculative(head, refs)))
  58		return NULL;
  59	return head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60}
  61
  62/*
  63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
  64 * flags-dependent amount.
 
 
  65 *
  66 * "grab" names in this file mean, "look at flags to decide whether to use
  67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
  68 *
  69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
  70 * same time. (That's true throughout the get_user_pages*() and
  71 * pin_user_pages*() APIs.) Cases:
  72 *
  73 *    FOLL_GET: page's refcount will be incremented by 1.
  74 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
  75 *
  76 * Return: head page (with refcount appropriately incremented) for success, or
  77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
  78 * considered failure, and furthermore, a likely bug in the caller, so a warning
  79 * is also emitted.
  80 */
  81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
  82							  int refs,
  83							  unsigned int flags)
 
 
 
 
  84{
 
 
 
  85	if (flags & FOLL_GET)
  86		return try_get_compound_head(page, refs);
  87	else if (flags & FOLL_PIN) {
  88		int orig_refs = refs;
  89
  90		/*
  91		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
  92		 * path, so fail and let the caller fall back to the slow path.
 
  93		 */
  94		if (unlikely(flags & FOLL_LONGTERM) &&
  95				is_migrate_cma_page(page))
  96			return NULL;
  97
  98		/*
  99		 * When pinning a compound page of order > 1 (which is what
 100		 * hpage_pincount_available() checks for), use an exact count to
 101		 * track it, via hpage_pincount_add/_sub().
 102		 *
 103		 * However, be sure to *also* increment the normal page refcount
 104		 * field at least once, so that the page really is pinned.
 105		 */
 106		if (!hpage_pincount_available(page))
 107			refs *= GUP_PIN_COUNTING_BIAS;
 108
 109		page = try_get_compound_head(page, refs);
 110		if (!page)
 111			return NULL;
 112
 113		if (hpage_pincount_available(page))
 114			hpage_pincount_add(page, refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115
 116		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
 117				    orig_refs);
 118
 119		return page;
 120	}
 121
 122	WARN_ON_ONCE(1);
 123	return NULL;
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126/**
 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 
 
 128 *
 129 * This might not do anything at all, depending on the flags argument.
 130 *
 131 * "grab" names in this file mean, "look at flags to decide whether to use
 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 133 *
 134 * @page:    pointer to page to be grabbed
 135 * @flags:   gup flags: these are the FOLL_* flag values.
 136 *
 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 138 * time. Cases:
 
 139 *
 140 *    FOLL_GET: page's refcount will be incremented by 1.
 141 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 142 *
 143 * Return: true for success, or if no action was required (if neither FOLL_PIN
 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 145 * FOLL_PIN was set, but the page could not be grabbed.
 146 */
 147bool __must_check try_grab_page(struct page *page, unsigned int flags)
 148{
 
 
 149	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 
 
 
 
 
 150
 151	if (flags & FOLL_GET)
 152		return try_get_page(page);
 153	else if (flags & FOLL_PIN) {
 154		int refs = 1;
 155
 156		page = compound_head(page);
 157
 158		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 159			return false;
 160
 161		if (hpage_pincount_available(page))
 162			hpage_pincount_add(page, 1);
 163		else
 164			refs = GUP_PIN_COUNTING_BIAS;
 165
 166		/*
 167		 * Similar to try_grab_compound_head(): even if using the
 168		 * hpage_pincount_add/_sub() routines, be sure to
 169		 * *also* increment the normal page refcount field at least
 170		 * once, so that the page really is pinned.
 171		 */
 172		page_ref_add(page, refs);
 
 
 
 
 173
 174		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
 175	}
 176
 177	return true;
 178}
 179
 180#ifdef CONFIG_DEV_PAGEMAP_OPS
 181static bool __unpin_devmap_managed_user_page(struct page *page)
 182{
 183	int count, refs = 1;
 184
 185	if (!page_is_devmap_managed(page))
 186		return false;
 187
 188	if (hpage_pincount_available(page))
 189		hpage_pincount_sub(page, 1);
 190	else
 191		refs = GUP_PIN_COUNTING_BIAS;
 192
 193	count = page_ref_sub_return(page, refs);
 194
 195	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 196	/*
 197	 * devmap page refcounts are 1-based, rather than 0-based: if
 198	 * refcount is 1, then the page is free and the refcount is
 199	 * stable because nobody holds a reference on the page.
 200	 */
 201	if (count == 1)
 202		free_devmap_managed_page(page);
 203	else if (!count)
 204		__put_page(page);
 205
 206	return true;
 207}
 208#else
 209static bool __unpin_devmap_managed_user_page(struct page *page)
 210{
 211	return false;
 212}
 213#endif /* CONFIG_DEV_PAGEMAP_OPS */
 214
 215/**
 216 * unpin_user_page() - release a dma-pinned page
 217 * @page:            pointer to page to be released
 218 *
 219 * Pages that were pinned via pin_user_pages*() must be released via either
 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 221 * that such pages can be separately tracked and uniquely handled. In
 222 * particular, interactions with RDMA and filesystems need special handling.
 223 */
 224void unpin_user_page(struct page *page)
 225{
 226	int refs = 1;
 
 
 
 
 
 
 
 
 
 
 227
 228	page = compound_head(page);
 
 
 229
 230	/*
 231	 * For devmap managed pages we need to catch refcount transition from
 232	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
 233	 * page is free and we need to inform the device driver through
 234	 * callback. See include/linux/memremap.h and HMM for details.
 235	 */
 236	if (__unpin_devmap_managed_user_page(page))
 237		return;
 238
 239	if (hpage_pincount_available(page))
 240		hpage_pincount_sub(page, 1);
 241	else
 242		refs = GUP_PIN_COUNTING_BIAS;
 
 243
 244	if (page_ref_sub_and_test(page, refs))
 245		__put_page(page);
 
 
 246
 247	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 
 248}
 249EXPORT_SYMBOL(unpin_user_page);
 250
 251/**
 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 253 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 254 * @npages: number of pages in the @pages array.
 255 * @make_dirty: whether to mark the pages dirty
 256 *
 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 258 * variants called on that page.
 259 *
 260 * For each page in the @pages array, make that page (or its head page, if a
 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
 262 * listed as clean. In any case, releases all pages using unpin_user_page(),
 263 * possibly via unpin_user_pages(), for the non-dirty case.
 264 *
 265 * Please see the unpin_user_page() documentation for details.
 266 *
 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 268 * required, then the caller should a) verify that this is really correct,
 269 * because _lock() is usually required, and b) hand code it:
 270 * set_page_dirty_lock(), unpin_user_page().
 271 *
 272 */
 273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 274				 bool make_dirty)
 275{
 276	unsigned long index;
 277
 278	/*
 279	 * TODO: this can be optimized for huge pages: if a series of pages is
 280	 * physically contiguous and part of the same compound page, then a
 281	 * single operation to the head page should suffice.
 282	 */
 283
 284	if (!make_dirty) {
 285		unpin_user_pages(pages, npages);
 286		return;
 287	}
 288
 289	for (index = 0; index < npages; index++) {
 290		struct page *page = compound_head(pages[index]);
 
 291		/*
 292		 * Checking PageDirty at this point may race with
 293		 * clear_page_dirty_for_io(), but that's OK. Two key
 294		 * cases:
 295		 *
 296		 * 1) This code sees the page as already dirty, so it
 297		 * skips the call to set_page_dirty(). That could happen
 298		 * because clear_page_dirty_for_io() called
 299		 * page_mkclean(), followed by set_page_dirty().
 300		 * However, now the page is going to get written back,
 301		 * which meets the original intention of setting it
 302		 * dirty, so all is well: clear_page_dirty_for_io() goes
 303		 * on to call TestClearPageDirty(), and write the page
 304		 * back.
 305		 *
 306		 * 2) This code sees the page as clean, so it calls
 307		 * set_page_dirty(). The page stays dirty, despite being
 308		 * written back, so it gets written back again in the
 309		 * next writeback cycle. This is harmless.
 310		 */
 311		if (!PageDirty(page))
 312			set_page_dirty_lock(page);
 313		unpin_user_page(page);
 
 
 
 314	}
 315}
 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 317
 318/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319 * unpin_user_pages() - release an array of gup-pinned pages.
 320 * @pages:  array of pages to be marked dirty and released.
 321 * @npages: number of pages in the @pages array.
 322 *
 323 * For each page in the @pages array, release the page using unpin_user_page().
 324 *
 325 * Please see the unpin_user_page() documentation for details.
 326 */
 327void unpin_user_pages(struct page **pages, unsigned long npages)
 328{
 329	unsigned long index;
 
 
 330
 331	/*
 332	 * TODO: this can be optimized for huge pages: if a series of pages is
 333	 * physically contiguous and part of the same compound page, then a
 334	 * single operation to the head page should suffice.
 335	 */
 336	for (index = 0; index < npages; index++)
 337		unpin_user_page(pages[index]);
 
 
 
 
 
 
 338}
 339EXPORT_SYMBOL(unpin_user_pages);
 340
 
 
 
 
 
 
 
 
 
 
 
 341#ifdef CONFIG_MMU
 342static struct page *no_page_table(struct vm_area_struct *vma,
 343		unsigned int flags)
 344{
 345	/*
 346	 * When core dumping an enormous anonymous area that nobody
 347	 * has touched so far, we don't want to allocate unnecessary pages or
 348	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 349	 * then get_dump_page() will return NULL to leave a hole in the dump.
 350	 * But we can only make this optimization where a hole would surely
 351	 * be zero-filled if handle_mm_fault() actually did handle it.
 352	 */
 353	if ((flags & FOLL_DUMP) &&
 354			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 355		return ERR_PTR(-EFAULT);
 356	return NULL;
 357}
 358
 359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 360		pte_t *pte, unsigned int flags)
 361{
 362	/* No page to get reference */
 363	if (flags & FOLL_GET)
 364		return -EFAULT;
 365
 366	if (flags & FOLL_TOUCH) {
 367		pte_t entry = *pte;
 368
 369		if (flags & FOLL_WRITE)
 370			entry = pte_mkdirty(entry);
 371		entry = pte_mkyoung(entry);
 372
 373		if (!pte_same(*pte, entry)) {
 374			set_pte_at(vma->vm_mm, address, pte, entry);
 375			update_mmu_cache(vma, address, pte);
 376		}
 377	}
 378
 379	/* Proper page table entry exists, but no corresponding struct page */
 380	return -EEXIST;
 381}
 382
 383/*
 384 * FOLL_FORCE can write to even unwritable pte's, but only
 385 * after we've gone through a COW cycle and they are dirty.
 386 */
 387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
 388{
 389	return pte_write(pte) ||
 390		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393static struct page *follow_page_pte(struct vm_area_struct *vma,
 394		unsigned long address, pmd_t *pmd, unsigned int flags,
 395		struct dev_pagemap **pgmap)
 396{
 397	struct mm_struct *mm = vma->vm_mm;
 398	struct page *page;
 399	spinlock_t *ptl;
 400	pte_t *ptep, pte;
 401	int ret;
 402
 403	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 404	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 405			 (FOLL_PIN | FOLL_GET)))
 406		return ERR_PTR(-EINVAL);
 407retry:
 408	if (unlikely(pmd_bad(*pmd)))
 409		return no_page_table(vma, flags);
 410
 411	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 412	pte = *ptep;
 413	if (!pte_present(pte)) {
 414		swp_entry_t entry;
 415		/*
 416		 * KSM's break_ksm() relies upon recognizing a ksm page
 417		 * even while it is being migrated, so for that case we
 418		 * need migration_entry_wait().
 419		 */
 420		if (likely(!(flags & FOLL_MIGRATION)))
 421			goto no_page;
 422		if (pte_none(pte))
 423			goto no_page;
 424		entry = pte_to_swp_entry(pte);
 425		if (!is_migration_entry(entry))
 426			goto no_page;
 427		pte_unmap_unlock(ptep, ptl);
 428		migration_entry_wait(mm, pmd, address);
 429		goto retry;
 430	}
 431	if ((flags & FOLL_NUMA) && pte_protnone(pte))
 432		goto no_page;
 433	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 434		pte_unmap_unlock(ptep, ptl);
 435		return NULL;
 
 
 
 
 
 
 
 
 436	}
 437
 438	page = vm_normal_page(vma, address, pte);
 439	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 440		/*
 441		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 442		 * case since they are only valid while holding the pgmap
 443		 * reference.
 444		 */
 445		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 446		if (*pgmap)
 447			page = pte_page(pte);
 448		else
 449			goto no_page;
 450	} else if (unlikely(!page)) {
 451		if (flags & FOLL_DUMP) {
 452			/* Avoid special (like zero) pages in core dumps */
 453			page = ERR_PTR(-EFAULT);
 454			goto out;
 455		}
 456
 457		if (is_zero_pfn(pte_pfn(pte))) {
 458			page = pte_page(pte);
 459		} else {
 460			ret = follow_pfn_pte(vma, address, ptep, flags);
 461			page = ERR_PTR(ret);
 462			goto out;
 463		}
 464	}
 465
 466	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 467		get_page(page);
 468		pte_unmap_unlock(ptep, ptl);
 469		lock_page(page);
 470		ret = split_huge_page(page);
 471		unlock_page(page);
 472		put_page(page);
 473		if (ret)
 474			return ERR_PTR(ret);
 475		goto retry;
 476	}
 477
 
 
 
 478	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 479	if (unlikely(!try_grab_page(page, flags))) {
 480		page = ERR_PTR(-ENOMEM);
 
 481		goto out;
 482	}
 
 483	/*
 484	 * We need to make the page accessible if and only if we are going
 485	 * to access its content (the FOLL_PIN case).  Please see
 486	 * Documentation/core-api/pin_user_pages.rst for details.
 487	 */
 488	if (flags & FOLL_PIN) {
 489		ret = arch_make_page_accessible(page);
 490		if (ret) {
 491			unpin_user_page(page);
 492			page = ERR_PTR(ret);
 493			goto out;
 494		}
 495	}
 496	if (flags & FOLL_TOUCH) {
 497		if ((flags & FOLL_WRITE) &&
 498		    !pte_dirty(pte) && !PageDirty(page))
 499			set_page_dirty(page);
 500		/*
 501		 * pte_mkyoung() would be more correct here, but atomic care
 502		 * is needed to avoid losing the dirty bit: it is easier to use
 503		 * mark_page_accessed().
 504		 */
 505		mark_page_accessed(page);
 506	}
 507	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 508		/* Do not mlock pte-mapped THP */
 509		if (PageTransCompound(page))
 510			goto out;
 511
 512		/*
 513		 * The preliminary mapping check is mainly to avoid the
 514		 * pointless overhead of lock_page on the ZERO_PAGE
 515		 * which might bounce very badly if there is contention.
 516		 *
 517		 * If the page is already locked, we don't need to
 518		 * handle it now - vmscan will handle it later if and
 519		 * when it attempts to reclaim the page.
 520		 */
 521		if (page->mapping && trylock_page(page)) {
 522			lru_add_drain();  /* push cached pages to LRU */
 523			/*
 524			 * Because we lock page here, and migration is
 525			 * blocked by the pte's page reference, and we
 526			 * know the page is still mapped, we don't even
 527			 * need to check for file-cache page truncation.
 528			 */
 529			mlock_vma_page(page);
 530			unlock_page(page);
 531		}
 532	}
 533out:
 534	pte_unmap_unlock(ptep, ptl);
 535	return page;
 536no_page:
 537	pte_unmap_unlock(ptep, ptl);
 538	if (!pte_none(pte))
 539		return NULL;
 540	return no_page_table(vma, flags);
 541}
 542
 543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 544				    unsigned long address, pud_t *pudp,
 545				    unsigned int flags,
 546				    struct follow_page_context *ctx)
 547{
 548	pmd_t *pmd, pmdval;
 549	spinlock_t *ptl;
 550	struct page *page;
 551	struct mm_struct *mm = vma->vm_mm;
 552
 553	pmd = pmd_offset(pudp, address);
 554	/*
 555	 * The READ_ONCE() will stabilize the pmdval in a register or
 556	 * on the stack so that it will stop changing under the code.
 557	 */
 558	pmdval = READ_ONCE(*pmd);
 559	if (pmd_none(pmdval))
 560		return no_page_table(vma, flags);
 561	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
 562		page = follow_huge_pmd(mm, address, pmd, flags);
 563		if (page)
 564			return page;
 565		return no_page_table(vma, flags);
 566	}
 567	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 568		page = follow_huge_pd(vma, address,
 569				      __hugepd(pmd_val(pmdval)), flags,
 570				      PMD_SHIFT);
 571		if (page)
 572			return page;
 573		return no_page_table(vma, flags);
 574	}
 575retry:
 576	if (!pmd_present(pmdval)) {
 577		if (likely(!(flags & FOLL_MIGRATION)))
 578			return no_page_table(vma, flags);
 579		VM_BUG_ON(thp_migration_supported() &&
 580				  !is_pmd_migration_entry(pmdval));
 581		if (is_pmd_migration_entry(pmdval))
 582			pmd_migration_entry_wait(mm, pmd);
 583		pmdval = READ_ONCE(*pmd);
 584		/*
 585		 * MADV_DONTNEED may convert the pmd to null because
 586		 * mmap_lock is held in read mode
 587		 */
 588		if (pmd_none(pmdval))
 589			return no_page_table(vma, flags);
 590		goto retry;
 591	}
 592	if (pmd_devmap(pmdval)) {
 593		ptl = pmd_lock(mm, pmd);
 594		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 595		spin_unlock(ptl);
 596		if (page)
 597			return page;
 598	}
 599	if (likely(!pmd_trans_huge(pmdval)))
 600		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 601
 602	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 603		return no_page_table(vma, flags);
 604
 605retry_locked:
 606	ptl = pmd_lock(mm, pmd);
 607	if (unlikely(pmd_none(*pmd))) {
 608		spin_unlock(ptl);
 609		return no_page_table(vma, flags);
 610	}
 611	if (unlikely(!pmd_present(*pmd))) {
 612		spin_unlock(ptl);
 613		if (likely(!(flags & FOLL_MIGRATION)))
 614			return no_page_table(vma, flags);
 615		pmd_migration_entry_wait(mm, pmd);
 616		goto retry_locked;
 617	}
 618	if (unlikely(!pmd_trans_huge(*pmd))) {
 619		spin_unlock(ptl);
 620		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 621	}
 622	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
 623		int ret;
 624		page = pmd_page(*pmd);
 625		if (is_huge_zero_page(page)) {
 626			spin_unlock(ptl);
 627			ret = 0;
 628			split_huge_pmd(vma, pmd, address);
 629			if (pmd_trans_unstable(pmd))
 630				ret = -EBUSY;
 631		} else if (flags & FOLL_SPLIT) {
 632			if (unlikely(!try_get_page(page))) {
 633				spin_unlock(ptl);
 634				return ERR_PTR(-ENOMEM);
 635			}
 636			spin_unlock(ptl);
 637			lock_page(page);
 638			ret = split_huge_page(page);
 639			unlock_page(page);
 640			put_page(page);
 641			if (pmd_none(*pmd))
 642				return no_page_table(vma, flags);
 643		} else {  /* flags & FOLL_SPLIT_PMD */
 644			spin_unlock(ptl);
 645			split_huge_pmd(vma, pmd, address);
 646			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 647		}
 648
 649		return ret ? ERR_PTR(ret) :
 650			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 651	}
 652	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 653	spin_unlock(ptl);
 654	ctx->page_mask = HPAGE_PMD_NR - 1;
 655	return page;
 656}
 657
 658static struct page *follow_pud_mask(struct vm_area_struct *vma,
 659				    unsigned long address, p4d_t *p4dp,
 660				    unsigned int flags,
 661				    struct follow_page_context *ctx)
 662{
 663	pud_t *pud;
 664	spinlock_t *ptl;
 665	struct page *page;
 666	struct mm_struct *mm = vma->vm_mm;
 667
 668	pud = pud_offset(p4dp, address);
 669	if (pud_none(*pud))
 670		return no_page_table(vma, flags);
 671	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
 672		page = follow_huge_pud(mm, address, pud, flags);
 673		if (page)
 674			return page;
 675		return no_page_table(vma, flags);
 676	}
 677	if (is_hugepd(__hugepd(pud_val(*pud)))) {
 678		page = follow_huge_pd(vma, address,
 679				      __hugepd(pud_val(*pud)), flags,
 680				      PUD_SHIFT);
 681		if (page)
 682			return page;
 683		return no_page_table(vma, flags);
 684	}
 685	if (pud_devmap(*pud)) {
 686		ptl = pud_lock(mm, pud);
 687		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 688		spin_unlock(ptl);
 689		if (page)
 690			return page;
 691	}
 692	if (unlikely(pud_bad(*pud)))
 693		return no_page_table(vma, flags);
 694
 695	return follow_pmd_mask(vma, address, pud, flags, ctx);
 696}
 697
 698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 699				    unsigned long address, pgd_t *pgdp,
 700				    unsigned int flags,
 701				    struct follow_page_context *ctx)
 702{
 703	p4d_t *p4d;
 704	struct page *page;
 705
 706	p4d = p4d_offset(pgdp, address);
 707	if (p4d_none(*p4d))
 708		return no_page_table(vma, flags);
 709	BUILD_BUG_ON(p4d_huge(*p4d));
 710	if (unlikely(p4d_bad(*p4d)))
 711		return no_page_table(vma, flags);
 712
 713	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 714		page = follow_huge_pd(vma, address,
 715				      __hugepd(p4d_val(*p4d)), flags,
 716				      P4D_SHIFT);
 717		if (page)
 718			return page;
 719		return no_page_table(vma, flags);
 720	}
 721	return follow_pud_mask(vma, address, p4d, flags, ctx);
 722}
 723
 724/**
 725 * follow_page_mask - look up a page descriptor from a user-virtual address
 726 * @vma: vm_area_struct mapping @address
 727 * @address: virtual address to look up
 728 * @flags: flags modifying lookup behaviour
 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 730 *       pointer to output page_mask
 731 *
 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 733 *
 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 736 *
 
 
 
 
 
 737 * On output, the @ctx->page_mask is set according to the size of the page.
 738 *
 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 740 * an error pointer if there is a mapping to something not represented
 741 * by a page descriptor (see also vm_normal_page()).
 742 */
 743static struct page *follow_page_mask(struct vm_area_struct *vma,
 744			      unsigned long address, unsigned int flags,
 745			      struct follow_page_context *ctx)
 746{
 747	pgd_t *pgd;
 748	struct page *page;
 749	struct mm_struct *mm = vma->vm_mm;
 750
 751	ctx->page_mask = 0;
 752
 753	/* make this handle hugepd */
 754	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 755	if (!IS_ERR(page)) {
 756		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
 
 
 
 
 
 
 
 
 757		return page;
 758	}
 759
 760	pgd = pgd_offset(mm, address);
 761
 762	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 763		return no_page_table(vma, flags);
 764
 765	if (pgd_huge(*pgd)) {
 766		page = follow_huge_pgd(mm, address, pgd, flags);
 767		if (page)
 768			return page;
 769		return no_page_table(vma, flags);
 770	}
 771	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 772		page = follow_huge_pd(vma, address,
 773				      __hugepd(pgd_val(*pgd)), flags,
 774				      PGDIR_SHIFT);
 775		if (page)
 776			return page;
 777		return no_page_table(vma, flags);
 778	}
 779
 780	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 781}
 782
 783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 784			 unsigned int foll_flags)
 785{
 786	struct follow_page_context ctx = { NULL };
 787	struct page *page;
 788
 
 
 
 
 
 
 789	page = follow_page_mask(vma, address, foll_flags, &ctx);
 790	if (ctx.pgmap)
 791		put_dev_pagemap(ctx.pgmap);
 792	return page;
 793}
 794
 795static int get_gate_page(struct mm_struct *mm, unsigned long address,
 796		unsigned int gup_flags, struct vm_area_struct **vma,
 797		struct page **page)
 798{
 799	pgd_t *pgd;
 800	p4d_t *p4d;
 801	pud_t *pud;
 802	pmd_t *pmd;
 803	pte_t *pte;
 804	int ret = -EFAULT;
 805
 806	/* user gate pages are read-only */
 807	if (gup_flags & FOLL_WRITE)
 808		return -EFAULT;
 809	if (address > TASK_SIZE)
 810		pgd = pgd_offset_k(address);
 811	else
 812		pgd = pgd_offset_gate(mm, address);
 813	if (pgd_none(*pgd))
 814		return -EFAULT;
 815	p4d = p4d_offset(pgd, address);
 816	if (p4d_none(*p4d))
 817		return -EFAULT;
 818	pud = pud_offset(p4d, address);
 819	if (pud_none(*pud))
 820		return -EFAULT;
 821	pmd = pmd_offset(pud, address);
 822	if (!pmd_present(*pmd))
 823		return -EFAULT;
 824	VM_BUG_ON(pmd_trans_huge(*pmd));
 825	pte = pte_offset_map(pmd, address);
 826	if (pte_none(*pte))
 827		goto unmap;
 828	*vma = get_gate_vma(mm);
 829	if (!page)
 830		goto out;
 831	*page = vm_normal_page(*vma, address, *pte);
 832	if (!*page) {
 833		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 834			goto unmap;
 835		*page = pte_page(*pte);
 836	}
 837	if (unlikely(!try_grab_page(*page, gup_flags))) {
 838		ret = -ENOMEM;
 839		goto unmap;
 840	}
 841out:
 842	ret = 0;
 843unmap:
 844	pte_unmap(pte);
 845	return ret;
 846}
 847
 848/*
 849 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 850 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 851 * is, *@locked will be set to 0 and -EBUSY returned.
 852 */
 853static int faultin_page(struct vm_area_struct *vma,
 854		unsigned long address, unsigned int *flags, int *locked)
 
 855{
 856	unsigned int fault_flags = 0;
 857	vm_fault_t ret;
 858
 859	/* mlock all present pages, but do not fault in new pages */
 860	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 861		return -ENOENT;
 862	if (*flags & FOLL_WRITE)
 863		fault_flags |= FAULT_FLAG_WRITE;
 864	if (*flags & FOLL_REMOTE)
 865		fault_flags |= FAULT_FLAG_REMOTE;
 866	if (locked)
 867		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 
 
 
 
 
 
 
 
 
 868	if (*flags & FOLL_NOWAIT)
 869		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 870	if (*flags & FOLL_TRIED) {
 871		/*
 872		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 873		 * can co-exist
 874		 */
 875		fault_flags |= FAULT_FLAG_TRIED;
 876	}
 
 
 
 
 
 877
 878	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	if (ret & VM_FAULT_ERROR) {
 880		int err = vm_fault_to_errno(ret, *flags);
 881
 882		if (err)
 883			return err;
 884		BUG();
 885	}
 886
 887	if (ret & VM_FAULT_RETRY) {
 888		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 889			*locked = 0;
 890		return -EBUSY;
 891	}
 892
 893	/*
 894	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 895	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
 896	 * can thus safely do subsequent page lookups as if they were reads.
 897	 * But only do so when looping for pte_write is futile: in some cases
 898	 * userspace may also be wanting to write to the gotten user page,
 899	 * which a read fault here might prevent (a readonly page might get
 900	 * reCOWed by userspace write).
 901	 */
 902	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 903		*flags |= FOLL_COW;
 904	return 0;
 905}
 906
 907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 908{
 909	vm_flags_t vm_flags = vma->vm_flags;
 910	int write = (gup_flags & FOLL_WRITE);
 911	int foreign = (gup_flags & FOLL_REMOTE);
 912
 913	if (vm_flags & (VM_IO | VM_PFNMAP))
 914		return -EFAULT;
 915
 916	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 917		return -EFAULT;
 918
 
 
 
 
 
 
 
 
 
 919	if (write) {
 920		if (!(vm_flags & VM_WRITE)) {
 921			if (!(gup_flags & FOLL_FORCE))
 922				return -EFAULT;
 
 
 
 923			/*
 924			 * We used to let the write,force case do COW in a
 925			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 926			 * set a breakpoint in a read-only mapping of an
 927			 * executable, without corrupting the file (yet only
 928			 * when that file had been opened for writing!).
 929			 * Anon pages in shared mappings are surprising: now
 930			 * just reject it.
 931			 */
 932			if (!is_cow_mapping(vm_flags))
 933				return -EFAULT;
 934		}
 935	} else if (!(vm_flags & VM_READ)) {
 936		if (!(gup_flags & FOLL_FORCE))
 937			return -EFAULT;
 938		/*
 939		 * Is there actually any vma we can reach here which does not
 940		 * have VM_MAYREAD set?
 941		 */
 942		if (!(vm_flags & VM_MAYREAD))
 943			return -EFAULT;
 944	}
 945	/*
 946	 * gups are always data accesses, not instruction
 947	 * fetches, so execute=false here
 948	 */
 949	if (!arch_vma_access_permitted(vma, write, false, foreign))
 950		return -EFAULT;
 951	return 0;
 952}
 953
 954/**
 955 * __get_user_pages() - pin user pages in memory
 956 * @mm:		mm_struct of target mm
 957 * @start:	starting user address
 958 * @nr_pages:	number of pages from start to pin
 959 * @gup_flags:	flags modifying pin behaviour
 960 * @pages:	array that receives pointers to the pages pinned.
 961 *		Should be at least nr_pages long. Or NULL, if caller
 962 *		only intends to ensure the pages are faulted in.
 963 * @vmas:	array of pointers to vmas corresponding to each page.
 964 *		Or NULL if the caller does not require them.
 965 * @locked:     whether we're still with the mmap_lock held
 966 *
 967 * Returns either number of pages pinned (which may be less than the
 968 * number requested), or an error. Details about the return value:
 969 *
 970 * -- If nr_pages is 0, returns 0.
 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 973 *    pages pinned. Again, this may be less than nr_pages.
 974 * -- 0 return value is possible when the fault would need to be retried.
 975 *
 976 * The caller is responsible for releasing returned @pages, via put_page().
 977 *
 978 * @vmas are valid only as long as mmap_lock is held.
 979 *
 980 * Must be called with mmap_lock held.  It may be released.  See below.
 981 *
 982 * __get_user_pages walks a process's page tables and takes a reference to
 983 * each struct page that each user address corresponds to at a given
 984 * instant. That is, it takes the page that would be accessed if a user
 985 * thread accesses the given user virtual address at that instant.
 986 *
 987 * This does not guarantee that the page exists in the user mappings when
 988 * __get_user_pages returns, and there may even be a completely different
 989 * page there in some cases (eg. if mmapped pagecache has been invalidated
 990 * and subsequently re faulted). However it does guarantee that the page
 991 * won't be freed completely. And mostly callers simply care that the page
 992 * contains data that was valid *at some point in time*. Typically, an IO
 993 * or similar operation cannot guarantee anything stronger anyway because
 994 * locks can't be held over the syscall boundary.
 995 *
 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 998 * appropriate) must be called after the page is finished with, and
 999 * before put_page is called.
1000 *
1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 * released by an up_read().  That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
1004 *
1005 * A caller using such a combination of @locked and @gup_flags
1006 * must therefore hold the mmap_lock for reading only, and recognize
1007 * when it's been released.  Otherwise, it must be held for either
1008 * reading or writing and will not be released.
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
1014static long __get_user_pages(struct mm_struct *mm,
1015		unsigned long start, unsigned long nr_pages,
1016		unsigned int gup_flags, struct page **pages,
1017		struct vm_area_struct **vmas, int *locked)
1018{
1019	long ret = 0, i = 0;
1020	struct vm_area_struct *vma = NULL;
1021	struct follow_page_context ctx = { NULL };
1022
1023	if (!nr_pages)
1024		return 0;
1025
1026	start = untagged_addr(start);
1027
1028	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029
1030	/*
1031	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032	 * fault information is unrelated to the reference behaviour of a task
1033	 * using the address space
1034	 */
1035	if (!(gup_flags & FOLL_FORCE))
1036		gup_flags |= FOLL_NUMA;
1037
1038	do {
1039		struct page *page;
1040		unsigned int foll_flags = gup_flags;
1041		unsigned int page_increm;
1042
1043		/* first iteration or cross vma bound */
1044		if (!vma || start >= vma->vm_end) {
1045			vma = find_extend_vma(mm, start);
1046			if (!vma && in_gate_area(mm, start)) {
1047				ret = get_gate_page(mm, start & PAGE_MASK,
1048						gup_flags, &vma,
1049						pages ? &pages[i] : NULL);
1050				if (ret)
1051					goto out;
1052				ctx.page_mask = 0;
1053				goto next_page;
1054			}
1055
1056			if (!vma || check_vma_flags(vma, gup_flags)) {
1057				ret = -EFAULT;
1058				goto out;
1059			}
 
 
 
 
1060			if (is_vm_hugetlb_page(vma)) {
1061				i = follow_hugetlb_page(mm, vma, pages, vmas,
1062						&start, &nr_pages, i,
1063						gup_flags, locked);
1064				if (locked && *locked == 0) {
1065					/*
1066					 * We've got a VM_FAULT_RETRY
1067					 * and we've lost mmap_lock.
1068					 * We must stop here.
1069					 */
1070					BUG_ON(gup_flags & FOLL_NOWAIT);
1071					BUG_ON(ret != 0);
1072					goto out;
1073				}
1074				continue;
1075			}
1076		}
1077retry:
1078		/*
1079		 * If we have a pending SIGKILL, don't keep faulting pages and
1080		 * potentially allocating memory.
1081		 */
1082		if (fatal_signal_pending(current)) {
1083			ret = -EINTR;
1084			goto out;
1085		}
1086		cond_resched();
1087
1088		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089		if (!page) {
1090			ret = faultin_page(vma, start, &foll_flags, locked);
 
1091			switch (ret) {
1092			case 0:
1093				goto retry;
1094			case -EBUSY:
 
1095				ret = 0;
1096				fallthrough;
1097			case -EFAULT:
1098			case -ENOMEM:
1099			case -EHWPOISON:
1100				goto out;
1101			case -ENOENT:
1102				goto next_page;
1103			}
1104			BUG();
1105		} else if (PTR_ERR(page) == -EEXIST) {
1106			/*
1107			 * Proper page table entry exists, but no corresponding
1108			 * struct page.
 
 
1109			 */
 
 
 
 
 
1110			goto next_page;
1111		} else if (IS_ERR(page)) {
1112			ret = PTR_ERR(page);
1113			goto out;
1114		}
1115		if (pages) {
1116			pages[i] = page;
1117			flush_anon_page(vma, page, start);
1118			flush_dcache_page(page);
1119			ctx.page_mask = 0;
1120		}
1121next_page:
1122		if (vmas) {
1123			vmas[i] = vma;
1124			ctx.page_mask = 0;
1125		}
1126		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127		if (page_increm > nr_pages)
1128			page_increm = nr_pages;
1129		i += page_increm;
1130		start += page_increm * PAGE_SIZE;
1131		nr_pages -= page_increm;
1132	} while (nr_pages);
1133out:
1134	if (ctx.pgmap)
1135		put_dev_pagemap(ctx.pgmap);
1136	return i ? i : ret;
1137}
1138
1139static bool vma_permits_fault(struct vm_area_struct *vma,
1140			      unsigned int fault_flags)
1141{
1142	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145
1146	if (!(vm_flags & vma->vm_flags))
1147		return false;
1148
1149	/*
1150	 * The architecture might have a hardware protection
1151	 * mechanism other than read/write that can deny access.
1152	 *
1153	 * gup always represents data access, not instruction
1154	 * fetches, so execute=false here:
1155	 */
1156	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157		return false;
1158
1159	return true;
1160}
1161
1162/**
1163 * fixup_user_fault() - manually resolve a user page fault
1164 * @mm:		mm_struct of target mm
1165 * @address:	user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
1167 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 *		does not allow retry. If NULL, the caller must guarantee
1169 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
1181 * get_user_pages() only guarantees to update these in the struct page.
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software.  On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190 */
1191int fixup_user_fault(struct mm_struct *mm,
1192		     unsigned long address, unsigned int fault_flags,
1193		     bool *unlocked)
1194{
1195	struct vm_area_struct *vma;
1196	vm_fault_t ret, major = 0;
1197
1198	address = untagged_addr(address);
1199
1200	if (unlocked)
1201		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202
1203retry:
1204	vma = find_extend_vma(mm, address);
1205	if (!vma || address < vma->vm_start)
1206		return -EFAULT;
1207
1208	if (!vma_permits_fault(vma, fault_flags))
1209		return -EFAULT;
1210
1211	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212	    fatal_signal_pending(current))
1213		return -EINTR;
1214
1215	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216	major |= ret & VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
1217	if (ret & VM_FAULT_ERROR) {
1218		int err = vm_fault_to_errno(ret, 0);
1219
1220		if (err)
1221			return err;
1222		BUG();
1223	}
1224
1225	if (ret & VM_FAULT_RETRY) {
1226		mmap_read_lock(mm);
1227		*unlocked = true;
1228		fault_flags |= FAULT_FLAG_TRIED;
1229		goto retry;
1230	}
1231
1232	return 0;
1233}
1234EXPORT_SYMBOL_GPL(fixup_user_fault);
1235
1236/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239 */
1240static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241						unsigned long start,
1242						unsigned long nr_pages,
1243						struct page **pages,
1244						struct vm_area_struct **vmas,
1245						int *locked,
1246						unsigned int flags)
1247{
1248	long ret, pages_done;
1249	bool lock_dropped;
1250
1251	if (locked) {
1252		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253		BUG_ON(vmas);
1254		/* check caller initialized locked */
1255		BUG_ON(*locked != 1);
1256	}
1257
1258	if (flags & FOLL_PIN)
1259		atomic_set(&mm->has_pinned, 1);
1260
1261	/*
1262	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265	 * for FOLL_GET, not for the newer FOLL_PIN.
1266	 *
1267	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1268	 * that here, as any failures will be obvious enough.
1269	 */
1270	if (pages && !(flags & FOLL_PIN))
1271		flags |= FOLL_GET;
1272
1273	pages_done = 0;
1274	lock_dropped = false;
1275	for (;;) {
1276		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1277				       vmas, locked);
1278		if (!locked)
1279			/* VM_FAULT_RETRY couldn't trigger, bypass */
1280			return ret;
1281
1282		/* VM_FAULT_RETRY cannot return errors */
1283		if (!*locked) {
1284			BUG_ON(ret < 0);
1285			BUG_ON(ret >= nr_pages);
1286		}
1287
1288		if (ret > 0) {
1289			nr_pages -= ret;
1290			pages_done += ret;
1291			if (!nr_pages)
1292				break;
1293		}
1294		if (*locked) {
1295			/*
1296			 * VM_FAULT_RETRY didn't trigger or it was a
1297			 * FOLL_NOWAIT.
1298			 */
1299			if (!pages_done)
1300				pages_done = ret;
1301			break;
1302		}
1303		/*
1304		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305		 * For the prefault case (!pages) we only update counts.
1306		 */
1307		if (likely(pages))
1308			pages += ret;
1309		start += ret << PAGE_SHIFT;
1310		lock_dropped = true;
1311
1312retry:
1313		/*
1314		 * Repeat on the address that fired VM_FAULT_RETRY
1315		 * with both FAULT_FLAG_ALLOW_RETRY and
1316		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1317		 * by fatal signals, so we need to check it before we
 
1318		 * start trying again otherwise it can loop forever.
1319		 */
1320
1321		if (fatal_signal_pending(current)) {
1322			if (!pages_done)
1323				pages_done = -EINTR;
1324			break;
1325		}
1326
1327		ret = mmap_read_lock_killable(mm);
1328		if (ret) {
1329			BUG_ON(ret > 0);
1330			if (!pages_done)
1331				pages_done = ret;
1332			break;
1333		}
1334
1335		*locked = 1;
1336		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1337				       pages, NULL, locked);
1338		if (!*locked) {
1339			/* Continue to retry until we succeeded */
1340			BUG_ON(ret != 0);
1341			goto retry;
1342		}
1343		if (ret != 1) {
1344			BUG_ON(ret > 1);
1345			if (!pages_done)
1346				pages_done = ret;
1347			break;
1348		}
1349		nr_pages--;
1350		pages_done++;
1351		if (!nr_pages)
1352			break;
1353		if (likely(pages))
1354			pages++;
1355		start += PAGE_SIZE;
1356	}
1357	if (lock_dropped && *locked) {
1358		/*
1359		 * We must let the caller know we temporarily dropped the lock
1360		 * and so the critical section protected by it was lost.
1361		 */
1362		mmap_read_unlock(mm);
1363		*locked = 0;
1364	}
1365	return pages_done;
1366}
1367
1368/**
1369 * populate_vma_page_range() -  populate a range of pages in the vma.
1370 * @vma:   target vma
1371 * @start: start address
1372 * @end:   end address
1373 * @locked: whether the mmap_lock is still held
1374 *
1375 * This takes care of mlocking the pages too if VM_LOCKED is set.
1376 *
1377 * Return either number of pages pinned in the vma, or a negative error
1378 * code on error.
1379 *
1380 * vma->vm_mm->mmap_lock must be held.
1381 *
1382 * If @locked is NULL, it may be held for read or write and will
1383 * be unperturbed.
1384 *
1385 * If @locked is non-NULL, it must held for read only and may be
1386 * released.  If it's released, *@locked will be set to 0.
1387 */
1388long populate_vma_page_range(struct vm_area_struct *vma,
1389		unsigned long start, unsigned long end, int *locked)
1390{
1391	struct mm_struct *mm = vma->vm_mm;
1392	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1393	int gup_flags;
 
1394
1395	VM_BUG_ON(start & ~PAGE_MASK);
1396	VM_BUG_ON(end   & ~PAGE_MASK);
1397	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1399	mmap_assert_locked(mm);
1400
1401	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
 
 
 
1402	if (vma->vm_flags & VM_LOCKONFAULT)
1403		gup_flags &= ~FOLL_POPULATE;
 
 
1404	/*
1405	 * We want to touch writable mappings with a write fault in order
1406	 * to break COW, except for shared mappings because these don't COW
1407	 * and we would not want to dirty them for nothing.
1408	 */
1409	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410		gup_flags |= FOLL_WRITE;
1411
1412	/*
1413	 * We want mlock to succeed for regions that have any permissions
1414	 * other than PROT_NONE.
1415	 */
1416	if (vma_is_accessible(vma))
1417		gup_flags |= FOLL_FORCE;
1418
1419	/*
1420	 * We made sure addr is within a VMA, so the following will
1421	 * not result in a stack expansion that recurses back here.
1422	 */
1423	return __get_user_pages(mm, start, nr_pages, gup_flags,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424				NULL, NULL, locked);
 
 
1425}
1426
1427/*
1428 * __mm_populate - populate and/or mlock pages within a range of address space.
1429 *
1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431 * flags. VMAs must be already marked with the desired vm_flags, and
1432 * mmap_lock must not be held.
1433 */
1434int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435{
1436	struct mm_struct *mm = current->mm;
1437	unsigned long end, nstart, nend;
1438	struct vm_area_struct *vma = NULL;
1439	int locked = 0;
1440	long ret = 0;
1441
1442	end = start + len;
1443
1444	for (nstart = start; nstart < end; nstart = nend) {
1445		/*
1446		 * We want to fault in pages for [nstart; end) address range.
1447		 * Find first corresponding VMA.
1448		 */
1449		if (!locked) {
1450			locked = 1;
1451			mmap_read_lock(mm);
1452			vma = find_vma(mm, nstart);
1453		} else if (nstart >= vma->vm_end)
1454			vma = vma->vm_next;
1455		if (!vma || vma->vm_start >= end)
 
1456			break;
1457		/*
1458		 * Set [nstart; nend) to intersection of desired address
1459		 * range with the first VMA. Also, skip undesirable VMA types.
1460		 */
1461		nend = min(end, vma->vm_end);
1462		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463			continue;
1464		if (nstart < vma->vm_start)
1465			nstart = vma->vm_start;
1466		/*
1467		 * Now fault in a range of pages. populate_vma_page_range()
1468		 * double checks the vma flags, so that it won't mlock pages
1469		 * if the vma was already munlocked.
1470		 */
1471		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472		if (ret < 0) {
1473			if (ignore_errors) {
1474				ret = 0;
1475				continue;	/* continue at next VMA */
1476			}
1477			break;
1478		}
1479		nend = nstart + ret * PAGE_SIZE;
1480		ret = 0;
1481	}
1482	if (locked)
1483		mmap_read_unlock(mm);
1484	return ret;	/* 0 or negative error code */
1485}
1486
1487/**
1488 * get_dump_page() - pin user page in memory while writing it to core dump
1489 * @addr: user address
1490 *
1491 * Returns struct page pointer of user page pinned for dump,
1492 * to be freed afterwards by put_page().
1493 *
1494 * Returns NULL on any kind of failure - a hole must then be inserted into
1495 * the corefile, to preserve alignment with its headers; and also returns
1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497 * allowing a hole to be left in the corefile to save diskspace.
1498 *
1499 * Called without mmap_lock, but after all other threads have been killed.
1500 */
1501#ifdef CONFIG_ELF_CORE
1502struct page *get_dump_page(unsigned long addr)
1503{
1504	struct vm_area_struct *vma;
1505	struct page *page;
1506
1507	if (__get_user_pages(current->mm, addr, 1,
1508			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509			     NULL) < 1)
1510		return NULL;
1511	flush_cache_page(vma, addr, page_to_pfn(page));
1512	return page;
1513}
1514#endif /* CONFIG_ELF_CORE */
1515#else /* CONFIG_MMU */
1516static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1517		unsigned long nr_pages, struct page **pages,
1518		struct vm_area_struct **vmas, int *locked,
1519		unsigned int foll_flags)
1520{
1521	struct vm_area_struct *vma;
1522	unsigned long vm_flags;
1523	int i;
1524
1525	/* calculate required read or write permissions.
1526	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1527	 */
1528	vm_flags  = (foll_flags & FOLL_WRITE) ?
1529			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530	vm_flags &= (foll_flags & FOLL_FORCE) ?
1531			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532
1533	for (i = 0; i < nr_pages; i++) {
1534		vma = find_vma(mm, start);
1535		if (!vma)
1536			goto finish_or_fault;
1537
1538		/* protect what we can, including chardevs */
1539		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540		    !(vm_flags & vma->vm_flags))
1541			goto finish_or_fault;
1542
1543		if (pages) {
1544			pages[i] = virt_to_page(start);
1545			if (pages[i])
1546				get_page(pages[i]);
1547		}
1548		if (vmas)
1549			vmas[i] = vma;
1550		start = (start + PAGE_SIZE) & PAGE_MASK;
1551	}
1552
1553	return i;
1554
1555finish_or_fault:
1556	return i ? : -EFAULT;
1557}
1558#endif /* !CONFIG_MMU */
1559
1560#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1561static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
 
 
 
 
 
 
 
1562{
1563	long i;
1564	struct vm_area_struct *vma_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
1566	for (i = 0; i < nr_pages; i++) {
1567		struct vm_area_struct *vma = vmas[i];
 
 
 
 
 
1568
1569		if (vma == vma_prev)
1570			continue;
 
 
 
1571
1572		vma_prev = vma;
 
 
 
 
 
 
 
 
 
 
 
1573
1574		if (vma_is_fsdax(vma))
1575			return true;
 
 
 
 
 
 
 
 
 
 
 
 
1576	}
1577	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578}
 
1579
1580#ifdef CONFIG_CMA
1581static long check_and_migrate_cma_pages(struct mm_struct *mm,
1582					unsigned long start,
 
 
 
1583					unsigned long nr_pages,
1584					struct page **pages,
1585					struct vm_area_struct **vmas,
1586					unsigned int gup_flags)
1587{
1588	unsigned long i;
1589	unsigned long step;
1590	bool drain_allow = true;
1591	bool migrate_allow = true;
1592	LIST_HEAD(cma_page_list);
1593	long ret = nr_pages;
1594	struct migration_target_control mtc = {
1595		.nid = NUMA_NO_NODE,
1596		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597	};
1598
1599check_again:
1600	for (i = 0; i < nr_pages;) {
1601
1602		struct page *head = compound_head(pages[i]);
1603
1604		/*
1605		 * gup may start from a tail page. Advance step by the left
1606		 * part.
1607		 */
1608		step = compound_nr(head) - (pages[i] - head);
1609		/*
1610		 * If we get a page from the CMA zone, since we are going to
1611		 * be pinning these entries, we might as well move them out
1612		 * of the CMA zone if possible.
1613		 */
1614		if (is_migrate_cma_page(head)) {
1615			if (PageHuge(head))
1616				isolate_huge_page(head, &cma_page_list);
1617			else {
1618				if (!PageLRU(head) && drain_allow) {
1619					lru_add_drain_all();
1620					drain_allow = false;
1621				}
1622
1623				if (!isolate_lru_page(head)) {
1624					list_add_tail(&head->lru, &cma_page_list);
1625					mod_node_page_state(page_pgdat(head),
1626							    NR_ISOLATED_ANON +
1627							    page_is_file_lru(head),
1628							    thp_nr_pages(head));
1629				}
1630			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631		}
1632
1633		i += step;
 
 
 
 
 
 
1634	}
1635
1636	if (!list_empty(&cma_page_list)) {
1637		/*
1638		 * drop the above get_user_pages reference.
1639		 */
1640		for (i = 0; i < nr_pages; i++)
1641			put_page(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1645			/*
1646			 * some of the pages failed migration. Do get_user_pages
1647			 * without migration.
1648			 */
1649			migrate_allow = false;
 
 
1650
1651			if (!list_empty(&cma_page_list))
1652				putback_movable_pages(&cma_page_list);
 
 
 
 
1653		}
 
1654		/*
1655		 * We did migrate all the pages, Try to get the page references
1656		 * again migrating any new CMA pages which we failed to isolate
1657		 * earlier.
 
 
1658		 */
1659		ret = __get_user_pages_locked(mm, start, nr_pages,
1660						   pages, vmas, NULL,
1661						   gup_flags);
1662
1663		if ((ret > 0) && migrate_allow) {
1664			nr_pages = ret;
1665			drain_allow = true;
1666			goto check_again;
 
 
 
 
 
 
 
1667		}
1668	}
1669
 
 
 
 
 
 
 
 
 
 
1670	return ret;
1671}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672#else
1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
1674					unsigned long start,
1675					unsigned long nr_pages,
1676					struct page **pages,
1677					struct vm_area_struct **vmas,
1678					unsigned int gup_flags)
1679{
1680	return nr_pages;
1681}
1682#endif /* CONFIG_CMA */
1683
1684/*
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
1687 */
1688static long __gup_longterm_locked(struct mm_struct *mm,
1689				  unsigned long start,
1690				  unsigned long nr_pages,
1691				  struct page **pages,
1692				  struct vm_area_struct **vmas,
 
1693				  unsigned int gup_flags)
1694{
1695	struct vm_area_struct **vmas_tmp = vmas;
1696	unsigned long flags = 0;
1697	long rc, i;
 
 
 
1698
1699	if (gup_flags & FOLL_LONGTERM) {
1700		if (!pages)
1701			return -EINVAL;
1702
1703		if (!vmas_tmp) {
1704			vmas_tmp = kcalloc(nr_pages,
1705					   sizeof(struct vm_area_struct *),
1706					   GFP_KERNEL);
1707			if (!vmas_tmp)
1708				return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
1709		}
1710		flags = memalloc_nocma_save();
1711	}
1712
1713	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1714				     vmas_tmp, NULL, gup_flags);
1715
1716	if (gup_flags & FOLL_LONGTERM) {
1717		if (rc < 0)
1718			goto out;
1719
1720		if (check_dax_vmas(vmas_tmp, rc)) {
1721			for (i = 0; i < rc; i++)
1722				put_page(pages[i]);
1723			rc = -EOPNOTSUPP;
1724			goto out;
1725		}
 
 
 
1726
1727		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1728						 vmas_tmp, gup_flags);
1729out:
1730		memalloc_nocma_restore(flags);
1731	}
 
 
1732
1733	if (vmas_tmp != vmas)
1734		kfree(vmas_tmp);
1735	return rc;
1736}
1737#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1738static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1739						  unsigned long start,
1740						  unsigned long nr_pages,
1741						  struct page **pages,
1742						  struct vm_area_struct **vmas,
1743						  unsigned int flags)
1744{
1745	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1746				       NULL, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1747}
1748#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749
1750#ifdef CONFIG_MMU
1751static long __get_user_pages_remote(struct mm_struct *mm,
1752				    unsigned long start, unsigned long nr_pages,
1753				    unsigned int gup_flags, struct page **pages,
1754				    struct vm_area_struct **vmas, int *locked)
1755{
1756	/*
1757	 * Parts of FOLL_LONGTERM behavior are incompatible with
1758	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759	 * vmas. However, this only comes up if locked is set, and there are
1760	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761	 * allow what we can.
1762	 */
1763	if (gup_flags & FOLL_LONGTERM) {
1764		if (WARN_ON_ONCE(locked))
1765			return -EINVAL;
1766		/*
1767		 * This will check the vmas (even if our vmas arg is NULL)
1768		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769		 */
1770		return __gup_longterm_locked(mm, start, nr_pages, pages,
1771					     vmas, gup_flags | FOLL_TOUCH |
1772					     FOLL_REMOTE);
1773	}
1774
1775	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1776				       locked,
1777				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1778}
1779
1780/**
1781 * get_user_pages_remote() - pin user pages in memory
1782 * @mm:		mm_struct of target mm
1783 * @start:	starting user address
1784 * @nr_pages:	number of pages from start to pin
1785 * @gup_flags:	flags modifying lookup behaviour
1786 * @pages:	array that receives pointers to the pages pinned.
1787 *		Should be at least nr_pages long. Or NULL, if caller
1788 *		only intends to ensure the pages are faulted in.
1789 * @vmas:	array of pointers to vmas corresponding to each page.
1790 *		Or NULL if the caller does not require them.
1791 * @locked:	pointer to lock flag indicating whether lock is held and
1792 *		subsequently whether VM_FAULT_RETRY functionality can be
1793 *		utilised. Lock must initially be held.
1794 *
1795 * Returns either number of pages pinned (which may be less than the
1796 * number requested), or an error. Details about the return value:
1797 *
1798 * -- If nr_pages is 0, returns 0.
1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801 *    pages pinned. Again, this may be less than nr_pages.
1802 *
1803 * The caller is responsible for releasing returned @pages, via put_page().
1804 *
1805 * @vmas are valid only as long as mmap_lock is held.
1806 *
1807 * Must be called with mmap_lock held for read or write.
1808 *
1809 * get_user_pages_remote walks a process's page tables and takes a reference
1810 * to each struct page that each user address corresponds to at a given
1811 * instant. That is, it takes the page that would be accessed if a user
1812 * thread accesses the given user virtual address at that instant.
1813 *
1814 * This does not guarantee that the page exists in the user mappings when
1815 * get_user_pages_remote returns, and there may even be a completely different
1816 * page there in some cases (eg. if mmapped pagecache has been invalidated
1817 * and subsequently re faulted). However it does guarantee that the page
1818 * won't be freed completely. And mostly callers simply care that the page
1819 * contains data that was valid *at some point in time*. Typically, an IO
1820 * or similar operation cannot guarantee anything stronger anyway because
1821 * locks can't be held over the syscall boundary.
1822 *
1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825 * be called after the page is finished with, and before put_page is called.
1826 *
1827 * get_user_pages_remote is typically used for fewer-copy IO operations,
1828 * to get a handle on the memory by some means other than accesses
1829 * via the user virtual addresses. The pages may be submitted for
1830 * DMA to devices or accessed via their kernel linear mapping (via the
1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1832 *
1833 * See also get_user_pages_fast, for performance critical applications.
1834 *
1835 * get_user_pages_remote should be phased out in favor of
1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1837 * should use get_user_pages_remote because it cannot pass
1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839 */
1840long get_user_pages_remote(struct mm_struct *mm,
1841		unsigned long start, unsigned long nr_pages,
1842		unsigned int gup_flags, struct page **pages,
1843		struct vm_area_struct **vmas, int *locked)
1844{
1845	/*
1846	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1847	 * never directly by the caller, so enforce that with an assertion:
1848	 */
1849	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1850		return -EINVAL;
1851
1852	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1853				       pages, vmas, locked);
1854}
1855EXPORT_SYMBOL(get_user_pages_remote);
1856
1857#else /* CONFIG_MMU */
1858long get_user_pages_remote(struct mm_struct *mm,
1859			   unsigned long start, unsigned long nr_pages,
1860			   unsigned int gup_flags, struct page **pages,
1861			   struct vm_area_struct **vmas, int *locked)
1862{
1863	return 0;
1864}
1865
1866static long __get_user_pages_remote(struct mm_struct *mm,
1867				    unsigned long start, unsigned long nr_pages,
1868				    unsigned int gup_flags, struct page **pages,
1869				    struct vm_area_struct **vmas, int *locked)
1870{
1871	return 0;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * get_user_pages() - pin user pages in memory
1877 * @start:      starting user address
1878 * @nr_pages:   number of pages from start to pin
1879 * @gup_flags:  flags modifying lookup behaviour
1880 * @pages:      array that receives pointers to the pages pinned.
1881 *              Should be at least nr_pages long. Or NULL, if caller
1882 *              only intends to ensure the pages are faulted in.
1883 * @vmas:       array of pointers to vmas corresponding to each page.
1884 *              Or NULL if the caller does not require them.
1885 *
1886 * This is the same as get_user_pages_remote(), just with a less-flexible
1887 * calling convention where we assume that the mm being operated on belongs to
1888 * the current task, and doesn't allow passing of a locked parameter.  We also
1889 * obviously don't pass FOLL_REMOTE in here.
1890 */
1891long get_user_pages(unsigned long start, unsigned long nr_pages,
1892		unsigned int gup_flags, struct page **pages,
1893		struct vm_area_struct **vmas)
1894{
1895	/*
1896	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1897	 * never directly by the caller, so enforce that with an assertion:
1898	 */
1899	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1900		return -EINVAL;
1901
1902	return __gup_longterm_locked(current->mm, start, nr_pages,
1903				     pages, vmas, gup_flags | FOLL_TOUCH);
1904}
1905EXPORT_SYMBOL(get_user_pages);
1906
1907/**
1908 * get_user_pages_locked() is suitable to replace the form:
1909 *
1910 *      mmap_read_lock(mm);
1911 *      do_something()
1912 *      get_user_pages(mm, ..., pages, NULL);
1913 *      mmap_read_unlock(mm);
1914 *
1915 *  to:
1916 *
1917 *      int locked = 1;
1918 *      mmap_read_lock(mm);
1919 *      do_something()
1920 *      get_user_pages_locked(mm, ..., pages, &locked);
1921 *      if (locked)
1922 *          mmap_read_unlock(mm);
1923 *
1924 * @start:      starting user address
1925 * @nr_pages:   number of pages from start to pin
1926 * @gup_flags:  flags modifying lookup behaviour
1927 * @pages:      array that receives pointers to the pages pinned.
1928 *              Should be at least nr_pages long. Or NULL, if caller
1929 *              only intends to ensure the pages are faulted in.
1930 * @locked:     pointer to lock flag indicating whether lock is held and
1931 *              subsequently whether VM_FAULT_RETRY functionality can be
1932 *              utilised. Lock must initially be held.
1933 *
1934 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1935 * paths better by using either get_user_pages_locked() or
1936 * get_user_pages_unlocked().
1937 *
1938 */
1939long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1940			   unsigned int gup_flags, struct page **pages,
1941			   int *locked)
1942{
1943	/*
1944	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1945	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1946	 * vmas.  As there are no users of this flag in this call we simply
1947	 * disallow this option for now.
1948	 */
1949	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1950		return -EINVAL;
1951	/*
1952	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953	 * never directly by the caller, so enforce that:
1954	 */
1955	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956		return -EINVAL;
1957
1958	return __get_user_pages_locked(current->mm, start, nr_pages,
1959				       pages, NULL, locked,
1960				       gup_flags | FOLL_TOUCH);
1961}
1962EXPORT_SYMBOL(get_user_pages_locked);
1963
1964/*
1965 * get_user_pages_unlocked() is suitable to replace the form:
1966 *
1967 *      mmap_read_lock(mm);
1968 *      get_user_pages(mm, ..., pages, NULL);
1969 *      mmap_read_unlock(mm);
1970 *
1971 *  with:
1972 *
1973 *      get_user_pages_unlocked(mm, ..., pages);
1974 *
1975 * It is functionally equivalent to get_user_pages_fast so
1976 * get_user_pages_fast should be used instead if specific gup_flags
1977 * (e.g. FOLL_FORCE) are not required.
1978 */
1979long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1980			     struct page **pages, unsigned int gup_flags)
1981{
1982	struct mm_struct *mm = current->mm;
1983	int locked = 1;
1984	long ret;
1985
1986	/*
1987	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989	 * vmas.  As there are no users of this flag in this call we simply
1990	 * disallow this option for now.
1991	 */
1992	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993		return -EINVAL;
1994
1995	mmap_read_lock(mm);
1996	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1997				      &locked, gup_flags | FOLL_TOUCH);
1998	if (locked)
1999		mmap_read_unlock(mm);
2000	return ret;
2001}
2002EXPORT_SYMBOL(get_user_pages_unlocked);
2003
2004/*
2005 * Fast GUP
2006 *
2007 * get_user_pages_fast attempts to pin user pages by walking the page
2008 * tables directly and avoids taking locks. Thus the walker needs to be
2009 * protected from page table pages being freed from under it, and should
2010 * block any THP splits.
2011 *
2012 * One way to achieve this is to have the walker disable interrupts, and
2013 * rely on IPIs from the TLB flushing code blocking before the page table
2014 * pages are freed. This is unsuitable for architectures that do not need
2015 * to broadcast an IPI when invalidating TLBs.
2016 *
2017 * Another way to achieve this is to batch up page table containing pages
2018 * belonging to more than one mm_user, then rcu_sched a callback to free those
2019 * pages. Disabling interrupts will allow the fast_gup walker to both block
2020 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2021 * (which is a relatively rare event). The code below adopts this strategy.
2022 *
2023 * Before activating this code, please be aware that the following assumptions
2024 * are currently made:
2025 *
2026 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2027 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2028 *
2029 *  *) ptes can be read atomically by the architecture.
2030 *
2031 *  *) access_ok is sufficient to validate userspace address ranges.
2032 *
2033 * The last two assumptions can be relaxed by the addition of helper functions.
2034 *
2035 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2036 */
2037#ifdef CONFIG_HAVE_FAST_GUP
2038
2039static void put_compound_head(struct page *page, int refs, unsigned int flags)
2040{
2041	if (flags & FOLL_PIN) {
2042		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2043				    refs);
2044
2045		if (hpage_pincount_available(page))
2046			hpage_pincount_sub(page, refs);
2047		else
2048			refs *= GUP_PIN_COUNTING_BIAS;
2049	}
2050
2051	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2052	/*
2053	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2054	 * ref needs a put_page().
2055	 */
2056	if (refs > 1)
2057		page_ref_sub(page, refs - 1);
2058	put_page(page);
2059}
2060
2061#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2062
2063/*
2064 * WARNING: only to be used in the get_user_pages_fast() implementation.
2065 *
2066 * With get_user_pages_fast(), we walk down the pagetables without taking any
2067 * locks.  For this we would like to load the pointers atomically, but sometimes
2068 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2069 * we do have is the guarantee that a PTE will only either go from not present
2070 * to present, or present to not present or both -- it will not switch to a
2071 * completely different present page without a TLB flush in between; something
2072 * that we are blocking by holding interrupts off.
2073 *
2074 * Setting ptes from not present to present goes:
2075 *
2076 *   ptep->pte_high = h;
2077 *   smp_wmb();
2078 *   ptep->pte_low = l;
2079 *
2080 * And present to not present goes:
2081 *
2082 *   ptep->pte_low = 0;
2083 *   smp_wmb();
2084 *   ptep->pte_high = 0;
2085 *
2086 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2087 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2088 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2089 * picked up a changed pte high. We might have gotten rubbish values from
2090 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2091 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2092 * operates on present ptes we're safe.
2093 */
2094static inline pte_t gup_get_pte(pte_t *ptep)
2095{
2096	pte_t pte;
2097
2098	do {
2099		pte.pte_low = ptep->pte_low;
2100		smp_rmb();
2101		pte.pte_high = ptep->pte_high;
2102		smp_rmb();
2103	} while (unlikely(pte.pte_low != ptep->pte_low));
2104
2105	return pte;
2106}
2107#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108/*
2109 * We require that the PTE can be read atomically.
2110 */
2111static inline pte_t gup_get_pte(pte_t *ptep)
2112{
2113	return ptep_get(ptep);
2114}
2115#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2116
2117static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2118					    unsigned int flags,
2119					    struct page **pages)
2120{
2121	while ((*nr) - nr_start) {
2122		struct page *page = pages[--(*nr)];
2123
2124		ClearPageReferenced(page);
2125		if (flags & FOLL_PIN)
2126			unpin_user_page(page);
2127		else
2128			put_page(page);
2129	}
2130}
2131
2132#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2133static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2134			 unsigned int flags, struct page **pages, int *nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135{
2136	struct dev_pagemap *pgmap = NULL;
2137	int nr_start = *nr, ret = 0;
2138	pte_t *ptep, *ptem;
2139
2140	ptem = ptep = pte_offset_map(&pmd, addr);
2141	do {
2142		pte_t pte = gup_get_pte(ptep);
2143		struct page *head, *page;
 
2144
2145		/*
2146		 * Similar to the PMD case below, NUMA hinting must take slow
2147		 * path using the pte_protnone check.
2148		 */
2149		if (pte_protnone(pte))
2150			goto pte_unmap;
2151
2152		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2153			goto pte_unmap;
2154
2155		if (pte_devmap(pte)) {
2156			if (unlikely(flags & FOLL_LONGTERM))
2157				goto pte_unmap;
2158
2159			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2160			if (unlikely(!pgmap)) {
2161				undo_dev_pagemap(nr, nr_start, flags, pages);
2162				goto pte_unmap;
2163			}
2164		} else if (pte_special(pte))
2165			goto pte_unmap;
2166
2167		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2168		page = pte_page(pte);
2169
2170		head = try_grab_compound_head(page, 1, flags);
2171		if (!head)
2172			goto pte_unmap;
2173
2174		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2175			put_compound_head(head, 1, flags);
2176			goto pte_unmap;
2177		}
2178
2179		VM_BUG_ON_PAGE(compound_head(page) != head, page);
 
 
 
 
 
 
 
 
 
2180
2181		/*
2182		 * We need to make the page accessible if and only if we are
2183		 * going to access its content (the FOLL_PIN case).  Please
2184		 * see Documentation/core-api/pin_user_pages.rst for
2185		 * details.
2186		 */
2187		if (flags & FOLL_PIN) {
2188			ret = arch_make_page_accessible(page);
2189			if (ret) {
2190				unpin_user_page(page);
2191				goto pte_unmap;
2192			}
2193		}
2194		SetPageReferenced(page);
2195		pages[*nr] = page;
2196		(*nr)++;
2197
2198	} while (ptep++, addr += PAGE_SIZE, addr != end);
2199
2200	ret = 1;
2201
2202pte_unmap:
2203	if (pgmap)
2204		put_dev_pagemap(pgmap);
2205	pte_unmap(ptem);
2206	return ret;
2207}
2208#else
2209
2210/*
2211 * If we can't determine whether or not a pte is special, then fail immediately
2212 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2213 * to be special.
2214 *
2215 * For a futex to be placed on a THP tail page, get_futex_key requires a
2216 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2217 * useful to have gup_huge_pmd even if we can't operate on ptes.
2218 */
2219static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220			 unsigned int flags, struct page **pages, int *nr)
 
2221{
2222	return 0;
2223}
2224#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2225
2226#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2227static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2228			     unsigned long end, unsigned int flags,
2229			     struct page **pages, int *nr)
2230{
2231	int nr_start = *nr;
2232	struct dev_pagemap *pgmap = NULL;
2233
2234	do {
2235		struct page *page = pfn_to_page(pfn);
2236
2237		pgmap = get_dev_pagemap(pfn, pgmap);
2238		if (unlikely(!pgmap)) {
2239			undo_dev_pagemap(nr, nr_start, flags, pages);
2240			return 0;
 
 
 
 
 
2241		}
 
2242		SetPageReferenced(page);
2243		pages[*nr] = page;
2244		if (unlikely(!try_grab_page(page, flags))) {
2245			undo_dev_pagemap(nr, nr_start, flags, pages);
2246			return 0;
2247		}
2248		(*nr)++;
2249		pfn++;
2250	} while (addr += PAGE_SIZE, addr != end);
2251
2252	if (pgmap)
2253		put_dev_pagemap(pgmap);
2254	return 1;
2255}
2256
2257static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258				 unsigned long end, unsigned int flags,
2259				 struct page **pages, int *nr)
2260{
2261	unsigned long fault_pfn;
2262	int nr_start = *nr;
2263
2264	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266		return 0;
2267
2268	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269		undo_dev_pagemap(nr, nr_start, flags, pages);
2270		return 0;
2271	}
2272	return 1;
2273}
2274
2275static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276				 unsigned long end, unsigned int flags,
2277				 struct page **pages, int *nr)
2278{
2279	unsigned long fault_pfn;
2280	int nr_start = *nr;
2281
2282	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284		return 0;
2285
2286	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287		undo_dev_pagemap(nr, nr_start, flags, pages);
2288		return 0;
2289	}
2290	return 1;
2291}
2292#else
2293static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294				 unsigned long end, unsigned int flags,
2295				 struct page **pages, int *nr)
2296{
2297	BUILD_BUG();
2298	return 0;
2299}
2300
2301static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302				 unsigned long end, unsigned int flags,
2303				 struct page **pages, int *nr)
2304{
2305	BUILD_BUG();
2306	return 0;
2307}
2308#endif
2309
2310static int record_subpages(struct page *page, unsigned long addr,
2311			   unsigned long end, struct page **pages)
2312{
2313	int nr;
2314
2315	for (nr = 0; addr != end; addr += PAGE_SIZE)
2316		pages[nr++] = page++;
2317
2318	return nr;
2319}
2320
2321#ifdef CONFIG_ARCH_HAS_HUGEPD
2322static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323				      unsigned long sz)
2324{
2325	unsigned long __boundary = (addr + sz) & ~(sz-1);
2326	return (__boundary - 1 < end - 1) ? __boundary : end;
2327}
2328
2329static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330		       unsigned long end, unsigned int flags,
2331		       struct page **pages, int *nr)
2332{
2333	unsigned long pte_end;
2334	struct page *head, *page;
 
2335	pte_t pte;
2336	int refs;
2337
2338	pte_end = (addr + sz) & ~(sz-1);
2339	if (pte_end < end)
2340		end = pte_end;
2341
2342	pte = huge_ptep_get(ptep);
2343
2344	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345		return 0;
2346
2347	/* hugepages are never "special" */
2348	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349
2350	head = pte_page(pte);
2351	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352	refs = record_subpages(page, addr, end, pages + *nr);
2353
2354	head = try_grab_compound_head(head, refs, flags);
2355	if (!head)
2356		return 0;
2357
2358	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359		put_compound_head(head, refs, flags);
 
 
 
 
 
2360		return 0;
2361	}
2362
2363	*nr += refs;
2364	SetPageReferenced(head);
2365	return 1;
2366}
2367
2368static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369		unsigned int pdshift, unsigned long end, unsigned int flags,
2370		struct page **pages, int *nr)
2371{
2372	pte_t *ptep;
2373	unsigned long sz = 1UL << hugepd_shift(hugepd);
2374	unsigned long next;
2375
2376	ptep = hugepte_offset(hugepd, addr, pdshift);
2377	do {
2378		next = hugepte_addr_end(addr, end, sz);
2379		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380			return 0;
2381	} while (ptep++, addr = next, addr != end);
2382
2383	return 1;
2384}
2385#else
2386static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387		unsigned int pdshift, unsigned long end, unsigned int flags,
2388		struct page **pages, int *nr)
2389{
2390	return 0;
2391}
2392#endif /* CONFIG_ARCH_HAS_HUGEPD */
2393
2394static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395			unsigned long end, unsigned int flags,
2396			struct page **pages, int *nr)
2397{
2398	struct page *head, *page;
 
2399	int refs;
2400
2401	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2402		return 0;
2403
2404	if (pmd_devmap(orig)) {
2405		if (unlikely(flags & FOLL_LONGTERM))
2406			return 0;
2407		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408					     pages, nr);
2409	}
2410
2411	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412	refs = record_subpages(page, addr, end, pages + *nr);
2413
2414	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415	if (!head)
2416		return 0;
2417
2418	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419		put_compound_head(head, refs, flags);
 
 
 
 
 
2420		return 0;
2421	}
2422
2423	*nr += refs;
2424	SetPageReferenced(head);
2425	return 1;
2426}
2427
2428static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429			unsigned long end, unsigned int flags,
2430			struct page **pages, int *nr)
2431{
2432	struct page *head, *page;
 
2433	int refs;
2434
2435	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436		return 0;
2437
2438	if (pud_devmap(orig)) {
2439		if (unlikely(flags & FOLL_LONGTERM))
2440			return 0;
2441		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442					     pages, nr);
2443	}
2444
2445	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446	refs = record_subpages(page, addr, end, pages + *nr);
2447
2448	head = try_grab_compound_head(pud_page(orig), refs, flags);
2449	if (!head)
2450		return 0;
2451
2452	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453		put_compound_head(head, refs, flags);
 
 
 
 
 
2454		return 0;
2455	}
2456
2457	*nr += refs;
2458	SetPageReferenced(head);
2459	return 1;
2460}
2461
2462static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463			unsigned long end, unsigned int flags,
2464			struct page **pages, int *nr)
2465{
2466	int refs;
2467	struct page *head, *page;
 
2468
2469	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470		return 0;
2471
2472	BUILD_BUG_ON(pgd_devmap(orig));
2473
2474	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475	refs = record_subpages(page, addr, end, pages + *nr);
2476
2477	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478	if (!head)
2479		return 0;
2480
2481	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482		put_compound_head(head, refs, flags);
2483		return 0;
2484	}
2485
2486	*nr += refs;
2487	SetPageReferenced(head);
2488	return 1;
2489}
2490
2491static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492		unsigned int flags, struct page **pages, int *nr)
2493{
2494	unsigned long next;
2495	pmd_t *pmdp;
2496
2497	pmdp = pmd_offset_lockless(pudp, pud, addr);
2498	do {
2499		pmd_t pmd = READ_ONCE(*pmdp);
2500
2501		next = pmd_addr_end(addr, end);
2502		if (!pmd_present(pmd))
2503			return 0;
2504
2505		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506			     pmd_devmap(pmd))) {
2507			/*
2508			 * NUMA hinting faults need to be handled in the GUP
2509			 * slowpath for accounting purposes and so that they
2510			 * can be serialised against THP migration.
2511			 */
2512			if (pmd_protnone(pmd))
2513				return 0;
2514
2515			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516				pages, nr))
2517				return 0;
2518
2519		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520			/*
2521			 * architecture have different format for hugetlbfs
2522			 * pmd format and THP pmd format
2523			 */
2524			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525					 PMD_SHIFT, next, flags, pages, nr))
2526				return 0;
2527		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528			return 0;
2529	} while (pmdp++, addr = next, addr != end);
2530
2531	return 1;
2532}
2533
2534static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535			 unsigned int flags, struct page **pages, int *nr)
2536{
2537	unsigned long next;
2538	pud_t *pudp;
2539
2540	pudp = pud_offset_lockless(p4dp, p4d, addr);
2541	do {
2542		pud_t pud = READ_ONCE(*pudp);
2543
2544		next = pud_addr_end(addr, end);
2545		if (unlikely(!pud_present(pud)))
2546			return 0;
2547		if (unlikely(pud_huge(pud))) {
2548			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549					  pages, nr))
2550				return 0;
2551		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553					 PUD_SHIFT, next, flags, pages, nr))
2554				return 0;
2555		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556			return 0;
2557	} while (pudp++, addr = next, addr != end);
2558
2559	return 1;
2560}
2561
2562static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563			 unsigned int flags, struct page **pages, int *nr)
2564{
2565	unsigned long next;
2566	p4d_t *p4dp;
2567
2568	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569	do {
2570		p4d_t p4d = READ_ONCE(*p4dp);
2571
2572		next = p4d_addr_end(addr, end);
2573		if (p4d_none(p4d))
2574			return 0;
2575		BUILD_BUG_ON(p4d_huge(p4d));
2576		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578					 P4D_SHIFT, next, flags, pages, nr))
2579				return 0;
2580		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581			return 0;
2582	} while (p4dp++, addr = next, addr != end);
2583
2584	return 1;
2585}
2586
2587static void gup_pgd_range(unsigned long addr, unsigned long end,
2588		unsigned int flags, struct page **pages, int *nr)
2589{
2590	unsigned long next;
2591	pgd_t *pgdp;
2592
2593	pgdp = pgd_offset(current->mm, addr);
2594	do {
2595		pgd_t pgd = READ_ONCE(*pgdp);
2596
2597		next = pgd_addr_end(addr, end);
2598		if (pgd_none(pgd))
2599			return;
2600		if (unlikely(pgd_huge(pgd))) {
2601			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602					  pages, nr))
2603				return;
2604		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606					 PGDIR_SHIFT, next, flags, pages, nr))
2607				return;
2608		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609			return;
2610	} while (pgdp++, addr = next, addr != end);
2611}
2612#else
2613static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614		unsigned int flags, struct page **pages, int *nr)
2615{
2616}
2617#endif /* CONFIG_HAVE_FAST_GUP */
2618
2619#ifndef gup_fast_permitted
2620/*
2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622 * we need to fall back to the slow version:
2623 */
2624static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625{
2626	return true;
2627}
2628#endif
2629
2630static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631				   unsigned int gup_flags, struct page **pages)
 
 
2632{
2633	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634
2635	/*
2636	 * FIXME: FOLL_LONGTERM does not work with
2637	 * get_user_pages_unlocked() (see comments in that function)
2638	 */
2639	if (gup_flags & FOLL_LONGTERM) {
2640		mmap_read_lock(current->mm);
2641		ret = __gup_longterm_locked(current->mm,
2642					    start, nr_pages,
2643					    pages, NULL, gup_flags);
2644		mmap_read_unlock(current->mm);
2645	} else {
2646		ret = get_user_pages_unlocked(start, nr_pages,
2647					      pages, gup_flags);
2648	}
2649
2650	return ret;
2651}
2652
2653static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
 
2654					unsigned int gup_flags,
2655					struct page **pages)
2656{
2657	unsigned long addr, len, end;
2658	unsigned long flags;
2659	int nr_pinned = 0, ret = 0;
2660
2661	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2662				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2663				       FOLL_FAST_ONLY)))
 
2664		return -EINVAL;
2665
2666	if (gup_flags & FOLL_PIN)
2667		atomic_set(&current->mm->has_pinned, 1);
2668
2669	if (!(gup_flags & FOLL_FAST_ONLY))
2670		might_lock_read(&current->mm->mmap_lock);
2671
2672	start = untagged_addr(start) & PAGE_MASK;
2673	addr = start;
2674	len = (unsigned long) nr_pages << PAGE_SHIFT;
2675	end = start + len;
2676
2677	if (end <= start)
2678		return 0;
2679	if (unlikely(!access_ok((void __user *)start, len)))
2680		return -EFAULT;
2681
2682	/*
2683	 * Disable interrupts. The nested form is used, in order to allow
2684	 * full, general purpose use of this routine.
2685	 *
2686	 * With interrupts disabled, we block page table pages from being
2687	 * freed from under us. See struct mmu_table_batch comments in
2688	 * include/asm-generic/tlb.h for more details.
2689	 *
2690	 * We do not adopt an rcu_read_lock(.) here as we also want to
2691	 * block IPIs that come from THPs splitting.
2692	 */
2693	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2694		unsigned long fast_flags = gup_flags;
2695
2696		local_irq_save(flags);
2697		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2698		local_irq_restore(flags);
2699		ret = nr_pinned;
2700	}
2701
2702	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2703		/* Try to get the remaining pages with get_user_pages */
2704		start += nr_pinned << PAGE_SHIFT;
2705		pages += nr_pinned;
2706
2707		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2708					      gup_flags, pages);
2709
2710		/* Have to be a bit careful with return values */
2711		if (nr_pinned > 0) {
2712			if (ret < 0)
2713				ret = nr_pinned;
2714			else
2715				ret += nr_pinned;
2716		}
2717	}
 
 
2718
2719	return ret;
2720}
2721/**
2722 * get_user_pages_fast_only() - pin user pages in memory
2723 * @start:      starting user address
2724 * @nr_pages:   number of pages from start to pin
2725 * @gup_flags:  flags modifying pin behaviour
2726 * @pages:      array that receives pointers to the pages pinned.
2727 *              Should be at least nr_pages long.
2728 *
2729 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2730 * the regular GUP.
2731 * Note a difference with get_user_pages_fast: this always returns the
2732 * number of pages pinned, 0 if no pages were pinned.
2733 *
2734 * If the architecture does not support this function, simply return with no
2735 * pages pinned.
2736 *
2737 * Careful, careful! COW breaking can go either way, so a non-write
2738 * access can get ambiguous page results. If you call this function without
2739 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2740 */
2741int get_user_pages_fast_only(unsigned long start, int nr_pages,
2742			     unsigned int gup_flags, struct page **pages)
2743{
2744	int nr_pinned;
2745	/*
2746	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2747	 * because gup fast is always a "pin with a +1 page refcount" request.
2748	 *
2749	 * FOLL_FAST_ONLY is required in order to match the API description of
2750	 * this routine: no fall back to regular ("slow") GUP.
2751	 */
2752	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2753
2754	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2755						 pages);
2756
2757	/*
2758	 * As specified in the API description above, this routine is not
2759	 * allowed to return negative values. However, the common core
2760	 * routine internal_get_user_pages_fast() *can* return -errno.
2761	 * Therefore, correct for that here:
2762	 */
2763	if (nr_pinned < 0)
2764		nr_pinned = 0;
2765
2766	return nr_pinned;
2767}
2768EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2769
2770/**
2771 * get_user_pages_fast() - pin user pages in memory
2772 * @start:      starting user address
2773 * @nr_pages:   number of pages from start to pin
2774 * @gup_flags:  flags modifying pin behaviour
2775 * @pages:      array that receives pointers to the pages pinned.
2776 *              Should be at least nr_pages long.
2777 *
2778 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2779 * If not successful, it will fall back to taking the lock and
2780 * calling get_user_pages().
2781 *
2782 * Returns number of pages pinned. This may be fewer than the number requested.
2783 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2784 * -errno.
2785 */
2786int get_user_pages_fast(unsigned long start, int nr_pages,
2787			unsigned int gup_flags, struct page **pages)
2788{
2789	/*
2790	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2791	 * never directly by the caller, so enforce that:
2792	 */
2793	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2794		return -EINVAL;
2795
2796	/*
2797	 * The caller may or may not have explicitly set FOLL_GET; either way is
2798	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2799	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2800	 * request.
2801	 */
2802	gup_flags |= FOLL_GET;
2803	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2804}
2805EXPORT_SYMBOL_GPL(get_user_pages_fast);
2806
2807/**
2808 * pin_user_pages_fast() - pin user pages in memory without taking locks
2809 *
2810 * @start:      starting user address
2811 * @nr_pages:   number of pages from start to pin
2812 * @gup_flags:  flags modifying pin behaviour
2813 * @pages:      array that receives pointers to the pages pinned.
2814 *              Should be at least nr_pages long.
2815 *
2816 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2817 * get_user_pages_fast() for documentation on the function arguments, because
2818 * the arguments here are identical.
2819 *
2820 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2821 * see Documentation/core-api/pin_user_pages.rst for further details.
2822 */
2823int pin_user_pages_fast(unsigned long start, int nr_pages,
2824			unsigned int gup_flags, struct page **pages)
2825{
2826	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2827	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2828		return -EINVAL;
2829
 
 
 
2830	gup_flags |= FOLL_PIN;
2831	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2832}
2833EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2834
2835/*
2836 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2837 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2838 *
2839 * The API rules are the same, too: no negative values may be returned.
2840 */
2841int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2842			     unsigned int gup_flags, struct page **pages)
2843{
2844	int nr_pinned;
2845
2846	/*
2847	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2848	 * rules require returning 0, rather than -errno:
2849	 */
2850	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851		return 0;
 
 
 
2852	/*
2853	 * FOLL_FAST_ONLY is required in order to match the API description of
2854	 * this routine: no fall back to regular ("slow") GUP.
2855	 */
2856	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2857	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2858						 pages);
2859	/*
2860	 * This routine is not allowed to return negative values. However,
2861	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2862	 * correct for that here:
2863	 */
2864	if (nr_pinned < 0)
2865		nr_pinned = 0;
2866
2867	return nr_pinned;
2868}
2869EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2870
2871/**
2872 * pin_user_pages_remote() - pin pages of a remote process
2873 *
2874 * @mm:		mm_struct of target mm
2875 * @start:	starting user address
2876 * @nr_pages:	number of pages from start to pin
2877 * @gup_flags:	flags modifying lookup behaviour
2878 * @pages:	array that receives pointers to the pages pinned.
2879 *		Should be at least nr_pages long. Or NULL, if caller
2880 *		only intends to ensure the pages are faulted in.
2881 * @vmas:	array of pointers to vmas corresponding to each page.
2882 *		Or NULL if the caller does not require them.
2883 * @locked:	pointer to lock flag indicating whether lock is held and
2884 *		subsequently whether VM_FAULT_RETRY functionality can be
2885 *		utilised. Lock must initially be held.
2886 *
2887 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2888 * get_user_pages_remote() for documentation on the function arguments, because
2889 * the arguments here are identical.
2890 *
2891 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2892 * see Documentation/core-api/pin_user_pages.rst for details.
2893 */
2894long pin_user_pages_remote(struct mm_struct *mm,
2895			   unsigned long start, unsigned long nr_pages,
2896			   unsigned int gup_flags, struct page **pages,
2897			   struct vm_area_struct **vmas, int *locked)
2898{
2899	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901		return -EINVAL;
2902
2903	gup_flags |= FOLL_PIN;
2904	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2905				       pages, vmas, locked);
 
 
 
2906}
2907EXPORT_SYMBOL(pin_user_pages_remote);
2908
2909/**
2910 * pin_user_pages() - pin user pages in memory for use by other devices
2911 *
2912 * @start:	starting user address
2913 * @nr_pages:	number of pages from start to pin
2914 * @gup_flags:	flags modifying lookup behaviour
2915 * @pages:	array that receives pointers to the pages pinned.
2916 *		Should be at least nr_pages long. Or NULL, if caller
2917 *		only intends to ensure the pages are faulted in.
2918 * @vmas:	array of pointers to vmas corresponding to each page.
2919 *		Or NULL if the caller does not require them.
2920 *
2921 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2922 * FOLL_PIN is set.
2923 *
2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925 * see Documentation/core-api/pin_user_pages.rst for details.
2926 */
2927long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928		    unsigned int gup_flags, struct page **pages,
2929		    struct vm_area_struct **vmas)
2930{
2931	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933		return -EINVAL;
2934
 
 
 
2935	gup_flags |= FOLL_PIN;
2936	return __gup_longterm_locked(current->mm, start, nr_pages,
2937				     pages, vmas, gup_flags);
2938}
2939EXPORT_SYMBOL(pin_user_pages);
2940
2941/*
2942 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2943 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2944 * FOLL_PIN and rejects FOLL_GET.
2945 */
2946long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2947			     struct page **pages, unsigned int gup_flags)
2948{
2949	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2950	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2951		return -EINVAL;
2952
 
 
 
2953	gup_flags |= FOLL_PIN;
2954	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2955}
2956EXPORT_SYMBOL(pin_user_pages_unlocked);
2957
2958/*
2959 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2960 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2961 * FOLL_GET.
2962 */
2963long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2964			   unsigned int gup_flags, struct page **pages,
2965			   int *locked)
2966{
2967	/*
2968	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2969	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2970	 * vmas.  As there are no users of this flag in this call we simply
2971	 * disallow this option for now.
2972	 */
2973	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2974		return -EINVAL;
2975
2976	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978		return -EINVAL;
2979
2980	gup_flags |= FOLL_PIN;
2981	return __get_user_pages_locked(current->mm, start, nr_pages,
2982				       pages, NULL, locked,
2983				       gup_flags | FOLL_TOUCH);
2984}
2985EXPORT_SYMBOL(pin_user_pages_locked);