Linux Audio

Check our new training course

Loading...
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
 
 
  10#include <linux/sched/cpufreq.h>
 
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
 
 
 
 
 
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
 
 
 
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
 
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
 
 
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
 
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
 
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
 
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
  71
  72#include <trace/events/power.h>
  73#include <trace/events/sched.h>
  74
  75#include "../workqueue_internal.h"
  76
  77#ifdef CONFIG_CGROUP_SCHED
  78#include <linux/cgroup.h>
  79#include <linux/psi.h>
  80#endif
  81
  82#ifdef CONFIG_SCHED_DEBUG
  83# include <linux/static_key.h>
  84#endif
  85
  86#ifdef CONFIG_PARAVIRT
  87# include <asm/paravirt.h>
  88# include <asm/paravirt_api_clock.h>
  89#endif
  90
  91#include "cpupri.h"
  92#include "cpudeadline.h"
  93
 
 
  94#ifdef CONFIG_SCHED_DEBUG
  95# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  96#else
  97# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  98#endif
  99
 100struct rq;
 101struct cpuidle_state;
 102
 103/* task_struct::on_rq states: */
 104#define TASK_ON_RQ_QUEUED	1
 105#define TASK_ON_RQ_MIGRATING	2
 106
 107extern __read_mostly int scheduler_running;
 108
 109extern unsigned long calc_load_update;
 110extern atomic_long_t calc_load_tasks;
 111
 112extern unsigned int sysctl_sched_child_runs_first;
 113
 114extern void calc_global_load_tick(struct rq *this_rq);
 115extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 116
 117extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 118
 119extern unsigned int sysctl_sched_rt_period;
 120extern int sysctl_sched_rt_runtime;
 121extern int sched_rr_timeslice;
 122
 123/*
 124 * Helpers for converting nanosecond timing to jiffy resolution
 125 */
 126#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 127
 128/*
 129 * Increase resolution of nice-level calculations for 64-bit architectures.
 130 * The extra resolution improves shares distribution and load balancing of
 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 132 * hierarchies, especially on larger systems. This is not a user-visible change
 133 * and does not change the user-interface for setting shares/weights.
 134 *
 135 * We increase resolution only if we have enough bits to allow this increased
 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 137 * are pretty high and the returns do not justify the increased costs.
 138 *
 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 140 * increase coverage and consistency always enable it on 64-bit platforms.
 141 */
 142#ifdef CONFIG_64BIT
 143# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 144# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 145# define scale_load_down(w) \
 146({ \
 147	unsigned long __w = (w); \
 148	if (__w) \
 149		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 150	__w; \
 151})
 152#else
 153# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 154# define scale_load(w)		(w)
 155# define scale_load_down(w)	(w)
 156#endif
 157
 158/*
 159 * Task weight (visible to users) and its load (invisible to users) have
 160 * independent resolution, but they should be well calibrated. We use
 161 * scale_load() and scale_load_down(w) to convert between them. The
 162 * following must be true:
 163 *
 164 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 165 *
 166 */
 167#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 168
 169/*
 170 * Single value that decides SCHED_DEADLINE internal math precision.
 171 * 10 -> just above 1us
 172 * 9  -> just above 0.5us
 173 */
 174#define DL_SCALE		10
 175
 176/*
 177 * Single value that denotes runtime == period, ie unlimited time.
 178 */
 179#define RUNTIME_INF		((u64)~0ULL)
 180
 181static inline int idle_policy(int policy)
 182{
 183	return policy == SCHED_IDLE;
 184}
 185static inline int fair_policy(int policy)
 186{
 187	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 188}
 189
 190static inline int rt_policy(int policy)
 191{
 192	return policy == SCHED_FIFO || policy == SCHED_RR;
 193}
 194
 195static inline int dl_policy(int policy)
 196{
 197	return policy == SCHED_DEADLINE;
 198}
 199static inline bool valid_policy(int policy)
 200{
 201	return idle_policy(policy) || fair_policy(policy) ||
 202		rt_policy(policy) || dl_policy(policy);
 203}
 204
 205static inline int task_has_idle_policy(struct task_struct *p)
 206{
 207	return idle_policy(p->policy);
 208}
 209
 210static inline int task_has_rt_policy(struct task_struct *p)
 211{
 212	return rt_policy(p->policy);
 213}
 214
 215static inline int task_has_dl_policy(struct task_struct *p)
 216{
 217	return dl_policy(p->policy);
 218}
 219
 220#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 221
 222static inline void update_avg(u64 *avg, u64 sample)
 223{
 224	s64 diff = sample - *avg;
 225	*avg += diff / 8;
 226}
 227
 228/*
 229 * Shifting a value by an exponent greater *or equal* to the size of said value
 230 * is UB; cap at size-1.
 231 */
 232#define shr_bound(val, shift)							\
 233	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 234
 235/*
 236 * !! For sched_setattr_nocheck() (kernel) only !!
 237 *
 238 * This is actually gross. :(
 239 *
 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 241 * tasks, but still be able to sleep. We need this on platforms that cannot
 242 * atomically change clock frequency. Remove once fast switching will be
 243 * available on such platforms.
 244 *
 245 * SUGOV stands for SchedUtil GOVernor.
 246 */
 247#define SCHED_FLAG_SUGOV	0x10000000
 248
 249#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 250
 251static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 252{
 253#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 254	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 255#else
 256	return false;
 257#endif
 258}
 259
 260/*
 261 * Tells if entity @a should preempt entity @b.
 262 */
 263static inline bool
 264dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 265{
 266	return dl_entity_is_special(a) ||
 267	       dl_time_before(a->deadline, b->deadline);
 268}
 269
 270/*
 271 * This is the priority-queue data structure of the RT scheduling class:
 272 */
 273struct rt_prio_array {
 274	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 275	struct list_head queue[MAX_RT_PRIO];
 276};
 277
 278struct rt_bandwidth {
 279	/* nests inside the rq lock: */
 280	raw_spinlock_t		rt_runtime_lock;
 281	ktime_t			rt_period;
 282	u64			rt_runtime;
 283	struct hrtimer		rt_period_timer;
 284	unsigned int		rt_period_active;
 285};
 286
 287void __dl_clear_params(struct task_struct *p);
 288
 289struct dl_bandwidth {
 290	raw_spinlock_t		dl_runtime_lock;
 291	u64			dl_runtime;
 292	u64			dl_period;
 293};
 294
 295static inline int dl_bandwidth_enabled(void)
 296{
 297	return sysctl_sched_rt_runtime >= 0;
 298}
 299
 300/*
 301 * To keep the bandwidth of -deadline tasks under control
 302 * we need some place where:
 303 *  - store the maximum -deadline bandwidth of each cpu;
 304 *  - cache the fraction of bandwidth that is currently allocated in
 305 *    each root domain;
 306 *
 307 * This is all done in the data structure below. It is similar to the
 308 * one used for RT-throttling (rt_bandwidth), with the main difference
 309 * that, since here we are only interested in admission control, we
 310 * do not decrease any runtime while the group "executes", neither we
 311 * need a timer to replenish it.
 312 *
 313 * With respect to SMP, bandwidth is given on a per root domain basis,
 314 * meaning that:
 315 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 316 *  - total_bw is the currently allocated bandwidth in each root domain;
 
 
 
 
 
 
 
 317 */
 
 
 
 
 
 
 
 
 
 
 
 318struct dl_bw {
 319	raw_spinlock_t		lock;
 320	u64			bw;
 321	u64			total_bw;
 322};
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324extern void init_dl_bw(struct dl_bw *dl_b);
 325extern int  sched_dl_global_validate(void);
 326extern void sched_dl_do_global(void);
 327extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 328extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 329extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 330extern bool __checkparam_dl(const struct sched_attr *attr);
 331extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 
 332extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 333extern int  dl_cpu_busy(int cpu, struct task_struct *p);
 334
 335#ifdef CONFIG_CGROUP_SCHED
 336
 
 
 
 337struct cfs_rq;
 338struct rt_rq;
 339
 340extern struct list_head task_groups;
 341
 342struct cfs_bandwidth {
 343#ifdef CONFIG_CFS_BANDWIDTH
 344	raw_spinlock_t		lock;
 345	ktime_t			period;
 346	u64			quota;
 347	u64			runtime;
 348	u64			burst;
 349	u64			runtime_snap;
 350	s64			hierarchical_quota;
 351
 352	u8			idle;
 353	u8			period_active;
 354	u8			slack_started;
 355	struct hrtimer		period_timer;
 356	struct hrtimer		slack_timer;
 357	struct list_head	throttled_cfs_rq;
 358
 359	/* Statistics: */
 360	int			nr_periods;
 361	int			nr_throttled;
 362	int			nr_burst;
 363	u64			throttled_time;
 364	u64			burst_time;
 365#endif
 366};
 367
 368/* Task group related information */
 369struct task_group {
 370	struct cgroup_subsys_state css;
 371
 372#ifdef CONFIG_FAIR_GROUP_SCHED
 373	/* schedulable entities of this group on each CPU */
 374	struct sched_entity	**se;
 375	/* runqueue "owned" by this group on each CPU */
 376	struct cfs_rq		**cfs_rq;
 377	unsigned long		shares;
 378
 379	/* A positive value indicates that this is a SCHED_IDLE group. */
 380	int			idle;
 381
 382#ifdef	CONFIG_SMP
 383	/*
 384	 * load_avg can be heavily contended at clock tick time, so put
 385	 * it in its own cacheline separated from the fields above which
 386	 * will also be accessed at each tick.
 387	 */
 388	atomic_long_t		load_avg ____cacheline_aligned;
 389#endif
 390#endif
 391
 392#ifdef CONFIG_RT_GROUP_SCHED
 393	struct sched_rt_entity	**rt_se;
 394	struct rt_rq		**rt_rq;
 395
 396	struct rt_bandwidth	rt_bandwidth;
 397#endif
 398
 399	struct rcu_head		rcu;
 400	struct list_head	list;
 401
 402	struct task_group	*parent;
 403	struct list_head	siblings;
 404	struct list_head	children;
 405
 406#ifdef CONFIG_SCHED_AUTOGROUP
 407	struct autogroup	*autogroup;
 408#endif
 409
 410	struct cfs_bandwidth	cfs_bandwidth;
 411
 412#ifdef CONFIG_UCLAMP_TASK_GROUP
 413	/* The two decimal precision [%] value requested from user-space */
 414	unsigned int		uclamp_pct[UCLAMP_CNT];
 415	/* Clamp values requested for a task group */
 416	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 417	/* Effective clamp values used for a task group */
 418	struct uclamp_se	uclamp[UCLAMP_CNT];
 419#endif
 420
 421};
 422
 423#ifdef CONFIG_FAIR_GROUP_SCHED
 424#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 425
 426/*
 427 * A weight of 0 or 1 can cause arithmetics problems.
 428 * A weight of a cfs_rq is the sum of weights of which entities
 429 * are queued on this cfs_rq, so a weight of a entity should not be
 430 * too large, so as the shares value of a task group.
 431 * (The default weight is 1024 - so there's no practical
 432 *  limitation from this.)
 433 */
 434#define MIN_SHARES		(1UL <<  1)
 435#define MAX_SHARES		(1UL << 18)
 436#endif
 437
 438typedef int (*tg_visitor)(struct task_group *, void *);
 439
 440extern int walk_tg_tree_from(struct task_group *from,
 441			     tg_visitor down, tg_visitor up, void *data);
 442
 443/*
 444 * Iterate the full tree, calling @down when first entering a node and @up when
 445 * leaving it for the final time.
 446 *
 447 * Caller must hold rcu_lock or sufficient equivalent.
 448 */
 449static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 450{
 451	return walk_tg_tree_from(&root_task_group, down, up, data);
 452}
 453
 454extern int tg_nop(struct task_group *tg, void *data);
 455
 456extern void free_fair_sched_group(struct task_group *tg);
 457extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 458extern void online_fair_sched_group(struct task_group *tg);
 459extern void unregister_fair_sched_group(struct task_group *tg);
 460extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 461			struct sched_entity *se, int cpu,
 462			struct sched_entity *parent);
 463extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 464
 465extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 466extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 467extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 468
 
 
 469extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 470		struct sched_rt_entity *rt_se, int cpu,
 471		struct sched_rt_entity *parent);
 472extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 473extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 474extern long sched_group_rt_runtime(struct task_group *tg);
 475extern long sched_group_rt_period(struct task_group *tg);
 476extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 477
 478extern struct task_group *sched_create_group(struct task_group *parent);
 479extern void sched_online_group(struct task_group *tg,
 480			       struct task_group *parent);
 481extern void sched_destroy_group(struct task_group *tg);
 482extern void sched_release_group(struct task_group *tg);
 483
 484extern void sched_move_task(struct task_struct *tsk);
 485
 486#ifdef CONFIG_FAIR_GROUP_SCHED
 487extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 488
 489extern int sched_group_set_idle(struct task_group *tg, long idle);
 490
 491#ifdef CONFIG_SMP
 492extern void set_task_rq_fair(struct sched_entity *se,
 493			     struct cfs_rq *prev, struct cfs_rq *next);
 494#else /* !CONFIG_SMP */
 495static inline void set_task_rq_fair(struct sched_entity *se,
 496			     struct cfs_rq *prev, struct cfs_rq *next) { }
 497#endif /* CONFIG_SMP */
 498#endif /* CONFIG_FAIR_GROUP_SCHED */
 499
 500#else /* CONFIG_CGROUP_SCHED */
 501
 502struct cfs_bandwidth { };
 503
 504#endif	/* CONFIG_CGROUP_SCHED */
 505
 506extern void unregister_rt_sched_group(struct task_group *tg);
 507extern void free_rt_sched_group(struct task_group *tg);
 508extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 509
 510/*
 511 * u64_u32_load/u64_u32_store
 512 *
 513 * Use a copy of a u64 value to protect against data race. This is only
 514 * applicable for 32-bits architectures.
 515 */
 516#ifdef CONFIG_64BIT
 517# define u64_u32_load_copy(var, copy)       var
 518# define u64_u32_store_copy(var, copy, val) (var = val)
 519#else
 520# define u64_u32_load_copy(var, copy)					\
 521({									\
 522	u64 __val, __val_copy;						\
 523	do {								\
 524		__val_copy = copy;					\
 525		/*							\
 526		 * paired with u64_u32_store_copy(), ordering access	\
 527		 * to var and copy.					\
 528		 */							\
 529		smp_rmb();						\
 530		__val = var;						\
 531	} while (__val != __val_copy);					\
 532	__val;								\
 533})
 534# define u64_u32_store_copy(var, copy, val)				\
 535do {									\
 536	typeof(val) __val = (val);					\
 537	var = __val;							\
 538	/*								\
 539	 * paired with u64_u32_load_copy(), ordering access to var and	\
 540	 * copy.							\
 541	 */								\
 542	smp_wmb();							\
 543	copy = __val;							\
 544} while (0)
 545#endif
 546# define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
 547# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
 548
 549/* CFS-related fields in a runqueue */
 550struct cfs_rq {
 551	struct load_weight	load;
 552	unsigned int		nr_running;
 553	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 554	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 555	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 556
 557	u64			exec_clock;
 558	u64			min_vruntime;
 559#ifdef CONFIG_SCHED_CORE
 560	unsigned int		forceidle_seq;
 561	u64			min_vruntime_fi;
 562#endif
 563
 564#ifndef CONFIG_64BIT
 565	u64			min_vruntime_copy;
 566#endif
 567
 568	struct rb_root_cached	tasks_timeline;
 569
 570	/*
 571	 * 'curr' points to currently running entity on this cfs_rq.
 572	 * It is set to NULL otherwise (i.e when none are currently running).
 573	 */
 574	struct sched_entity	*curr;
 575	struct sched_entity	*next;
 576	struct sched_entity	*last;
 577	struct sched_entity	*skip;
 578
 579#ifdef	CONFIG_SCHED_DEBUG
 580	unsigned int		nr_spread_over;
 581#endif
 582
 583#ifdef CONFIG_SMP
 584	/*
 585	 * CFS load tracking
 586	 */
 587	struct sched_avg	avg;
 588#ifndef CONFIG_64BIT
 589	u64			last_update_time_copy;
 590#endif
 591	struct {
 592		raw_spinlock_t	lock ____cacheline_aligned;
 593		int		nr;
 594		unsigned long	load_avg;
 595		unsigned long	util_avg;
 596		unsigned long	runnable_avg;
 597	} removed;
 598
 599#ifdef CONFIG_FAIR_GROUP_SCHED
 600	unsigned long		tg_load_avg_contrib;
 601	long			propagate;
 602	long			prop_runnable_sum;
 603
 604	/*
 605	 *   h_load = weight * f(tg)
 606	 *
 607	 * Where f(tg) is the recursive weight fraction assigned to
 608	 * this group.
 609	 */
 610	unsigned long		h_load;
 611	u64			last_h_load_update;
 612	struct sched_entity	*h_load_next;
 613#endif /* CONFIG_FAIR_GROUP_SCHED */
 614#endif /* CONFIG_SMP */
 615
 616#ifdef CONFIG_FAIR_GROUP_SCHED
 617	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 618
 619	/*
 620	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 621	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 622	 * (like users, containers etc.)
 623	 *
 624	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 625	 * This list is used during load balance.
 626	 */
 627	int			on_list;
 628	struct list_head	leaf_cfs_rq_list;
 629	struct task_group	*tg;	/* group that "owns" this runqueue */
 630
 631	/* Locally cached copy of our task_group's idle value */
 632	int			idle;
 633
 634#ifdef CONFIG_CFS_BANDWIDTH
 635	int			runtime_enabled;
 636	s64			runtime_remaining;
 637
 638	u64			throttled_pelt_idle;
 639#ifndef CONFIG_64BIT
 640	u64                     throttled_pelt_idle_copy;
 641#endif
 642	u64			throttled_clock;
 643	u64			throttled_clock_pelt;
 644	u64			throttled_clock_pelt_time;
 645	int			throttled;
 646	int			throttle_count;
 647	struct list_head	throttled_list;
 648#endif /* CONFIG_CFS_BANDWIDTH */
 649#endif /* CONFIG_FAIR_GROUP_SCHED */
 650};
 651
 652static inline int rt_bandwidth_enabled(void)
 653{
 654	return sysctl_sched_rt_runtime >= 0;
 655}
 656
 657/* RT IPI pull logic requires IRQ_WORK */
 658#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 659# define HAVE_RT_PUSH_IPI
 660#endif
 661
 662/* Real-Time classes' related field in a runqueue: */
 663struct rt_rq {
 664	struct rt_prio_array	active;
 665	unsigned int		rt_nr_running;
 666	unsigned int		rr_nr_running;
 667#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 668	struct {
 669		int		curr; /* highest queued rt task prio */
 670#ifdef CONFIG_SMP
 671		int		next; /* next highest */
 672#endif
 673	} highest_prio;
 674#endif
 675#ifdef CONFIG_SMP
 676	unsigned int		rt_nr_migratory;
 677	unsigned int		rt_nr_total;
 678	int			overloaded;
 679	struct plist_head	pushable_tasks;
 680
 681#endif /* CONFIG_SMP */
 682	int			rt_queued;
 683
 684	int			rt_throttled;
 685	u64			rt_time;
 686	u64			rt_runtime;
 687	/* Nests inside the rq lock: */
 688	raw_spinlock_t		rt_runtime_lock;
 689
 690#ifdef CONFIG_RT_GROUP_SCHED
 691	unsigned int		rt_nr_boosted;
 692
 693	struct rq		*rq;
 694	struct task_group	*tg;
 695#endif
 696};
 697
 698static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 699{
 700	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 701}
 702
 703/* Deadline class' related fields in a runqueue */
 704struct dl_rq {
 705	/* runqueue is an rbtree, ordered by deadline */
 706	struct rb_root_cached	root;
 707
 708	unsigned int		dl_nr_running;
 709
 710#ifdef CONFIG_SMP
 711	/*
 712	 * Deadline values of the currently executing and the
 713	 * earliest ready task on this rq. Caching these facilitates
 714	 * the decision whether or not a ready but not running task
 715	 * should migrate somewhere else.
 716	 */
 717	struct {
 718		u64		curr;
 719		u64		next;
 720	} earliest_dl;
 721
 722	unsigned int		dl_nr_migratory;
 723	int			overloaded;
 724
 725	/*
 726	 * Tasks on this rq that can be pushed away. They are kept in
 727	 * an rb-tree, ordered by tasks' deadlines, with caching
 728	 * of the leftmost (earliest deadline) element.
 729	 */
 730	struct rb_root_cached	pushable_dl_tasks_root;
 731#else
 732	struct dl_bw		dl_bw;
 733#endif
 734	/*
 735	 * "Active utilization" for this runqueue: increased when a
 736	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 737	 * task blocks
 738	 */
 739	u64			running_bw;
 740
 741	/*
 742	 * Utilization of the tasks "assigned" to this runqueue (including
 743	 * the tasks that are in runqueue and the tasks that executed on this
 744	 * CPU and blocked). Increased when a task moves to this runqueue, and
 745	 * decreased when the task moves away (migrates, changes scheduling
 746	 * policy, or terminates).
 747	 * This is needed to compute the "inactive utilization" for the
 748	 * runqueue (inactive utilization = this_bw - running_bw).
 749	 */
 750	u64			this_bw;
 751	u64			extra_bw;
 752
 753	/*
 754	 * Inverse of the fraction of CPU utilization that can be reclaimed
 755	 * by the GRUB algorithm.
 756	 */
 757	u64			bw_ratio;
 758};
 759
 760#ifdef CONFIG_FAIR_GROUP_SCHED
 761/* An entity is a task if it doesn't "own" a runqueue */
 762#define entity_is_task(se)	(!se->my_q)
 763
 764static inline void se_update_runnable(struct sched_entity *se)
 765{
 766	if (!entity_is_task(se))
 767		se->runnable_weight = se->my_q->h_nr_running;
 768}
 769
 770static inline long se_runnable(struct sched_entity *se)
 771{
 772	if (entity_is_task(se))
 773		return !!se->on_rq;
 774	else
 775		return se->runnable_weight;
 776}
 777
 778#else
 779#define entity_is_task(se)	1
 780
 781static inline void se_update_runnable(struct sched_entity *se) {}
 782
 783static inline long se_runnable(struct sched_entity *se)
 784{
 785	return !!se->on_rq;
 786}
 787#endif
 788
 789#ifdef CONFIG_SMP
 790/*
 791 * XXX we want to get rid of these helpers and use the full load resolution.
 792 */
 793static inline long se_weight(struct sched_entity *se)
 794{
 795	return scale_load_down(se->load.weight);
 796}
 797
 798
 799static inline bool sched_asym_prefer(int a, int b)
 800{
 801	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 802}
 803
 804struct perf_domain {
 805	struct em_perf_domain *em_pd;
 806	struct perf_domain *next;
 807	struct rcu_head rcu;
 808};
 809
 810/* Scheduling group status flags */
 811#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 812#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 813
 814/*
 815 * We add the notion of a root-domain which will be used to define per-domain
 816 * variables. Each exclusive cpuset essentially defines an island domain by
 817 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 818 * exclusive cpuset is created, we also create and attach a new root-domain
 819 * object.
 820 *
 821 */
 822struct root_domain {
 823	atomic_t		refcount;
 824	atomic_t		rto_count;
 825	struct rcu_head		rcu;
 826	cpumask_var_t		span;
 827	cpumask_var_t		online;
 828
 829	/*
 830	 * Indicate pullable load on at least one CPU, e.g:
 831	 * - More than one runnable task
 832	 * - Running task is misfit
 833	 */
 834	int			overload;
 835
 836	/* Indicate one or more cpus over-utilized (tipping point) */
 837	int			overutilized;
 838
 839	/*
 840	 * The bit corresponding to a CPU gets set here if such CPU has more
 841	 * than one runnable -deadline task (as it is below for RT tasks).
 842	 */
 843	cpumask_var_t		dlo_mask;
 844	atomic_t		dlo_count;
 845	struct dl_bw		dl_bw;
 846	struct cpudl		cpudl;
 847
 848	/*
 849	 * Indicate whether a root_domain's dl_bw has been checked or
 850	 * updated. It's monotonously increasing value.
 851	 *
 852	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 853	 * that u64 is 'big enough'. So that shouldn't be a concern.
 854	 */
 855	u64 visit_gen;
 856
 857#ifdef HAVE_RT_PUSH_IPI
 858	/*
 859	 * For IPI pull requests, loop across the rto_mask.
 860	 */
 861	struct irq_work		rto_push_work;
 862	raw_spinlock_t		rto_lock;
 863	/* These are only updated and read within rto_lock */
 864	int			rto_loop;
 865	int			rto_cpu;
 866	/* These atomics are updated outside of a lock */
 867	atomic_t		rto_loop_next;
 868	atomic_t		rto_loop_start;
 869#endif
 870	/*
 871	 * The "RT overload" flag: it gets set if a CPU has more than
 872	 * one runnable RT task.
 873	 */
 874	cpumask_var_t		rto_mask;
 875	struct cpupri		cpupri;
 876
 877	unsigned long		max_cpu_capacity;
 878
 879	/*
 880	 * NULL-terminated list of performance domains intersecting with the
 881	 * CPUs of the rd. Protected by RCU.
 882	 */
 883	struct perf_domain __rcu *pd;
 884};
 885
 886extern void init_defrootdomain(void);
 887extern int sched_init_domains(const struct cpumask *cpu_map);
 888extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 889extern void sched_get_rd(struct root_domain *rd);
 890extern void sched_put_rd(struct root_domain *rd);
 891
 892#ifdef HAVE_RT_PUSH_IPI
 893extern void rto_push_irq_work_func(struct irq_work *work);
 894#endif
 895#endif /* CONFIG_SMP */
 896
 897#ifdef CONFIG_UCLAMP_TASK
 898/*
 899 * struct uclamp_bucket - Utilization clamp bucket
 900 * @value: utilization clamp value for tasks on this clamp bucket
 901 * @tasks: number of RUNNABLE tasks on this clamp bucket
 902 *
 903 * Keep track of how many tasks are RUNNABLE for a given utilization
 904 * clamp value.
 905 */
 906struct uclamp_bucket {
 907	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 908	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 909};
 910
 911/*
 912 * struct uclamp_rq - rq's utilization clamp
 913 * @value: currently active clamp values for a rq
 914 * @bucket: utilization clamp buckets affecting a rq
 915 *
 916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 917 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 918 * (or actually running) with that value.
 919 *
 920 * There are up to UCLAMP_CNT possible different clamp values, currently there
 921 * are only two: minimum utilization and maximum utilization.
 922 *
 923 * All utilization clamping values are MAX aggregated, since:
 924 * - for util_min: we want to run the CPU at least at the max of the minimum
 925 *   utilization required by its currently RUNNABLE tasks.
 926 * - for util_max: we want to allow the CPU to run up to the max of the
 927 *   maximum utilization allowed by its currently RUNNABLE tasks.
 928 *
 929 * Since on each system we expect only a limited number of different
 930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 931 * the metrics required to compute all the per-rq utilization clamp values.
 932 */
 933struct uclamp_rq {
 934	unsigned int value;
 935	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 936};
 937
 938DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 939#endif /* CONFIG_UCLAMP_TASK */
 940
 941struct rq;
 942struct balance_callback {
 943	struct balance_callback *next;
 944	void (*func)(struct rq *rq);
 945};
 946
 947/*
 948 * This is the main, per-CPU runqueue data structure.
 949 *
 950 * Locking rule: those places that want to lock multiple runqueues
 951 * (such as the load balancing or the thread migration code), lock
 952 * acquire operations must be ordered by ascending &runqueue.
 953 */
 954struct rq {
 955	/* runqueue lock: */
 956	raw_spinlock_t		__lock;
 957
 958	/*
 959	 * nr_running and cpu_load should be in the same cacheline because
 960	 * remote CPUs use both these fields when doing load calculation.
 961	 */
 962	unsigned int		nr_running;
 963#ifdef CONFIG_NUMA_BALANCING
 964	unsigned int		nr_numa_running;
 965	unsigned int		nr_preferred_running;
 966	unsigned int		numa_migrate_on;
 967#endif
 968#ifdef CONFIG_NO_HZ_COMMON
 969#ifdef CONFIG_SMP
 970	unsigned long		last_blocked_load_update_tick;
 971	unsigned int		has_blocked_load;
 972	call_single_data_t	nohz_csd;
 973#endif /* CONFIG_SMP */
 974	unsigned int		nohz_tick_stopped;
 975	atomic_t		nohz_flags;
 976#endif /* CONFIG_NO_HZ_COMMON */
 977
 978#ifdef CONFIG_SMP
 979	unsigned int		ttwu_pending;
 980#endif
 981	u64			nr_switches;
 982
 983#ifdef CONFIG_UCLAMP_TASK
 984	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 985	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 986	unsigned int		uclamp_flags;
 987#define UCLAMP_FLAG_IDLE 0x01
 988#endif
 989
 990	struct cfs_rq		cfs;
 991	struct rt_rq		rt;
 992	struct dl_rq		dl;
 993
 994#ifdef CONFIG_FAIR_GROUP_SCHED
 995	/* list of leaf cfs_rq on this CPU: */
 996	struct list_head	leaf_cfs_rq_list;
 997	struct list_head	*tmp_alone_branch;
 998#endif /* CONFIG_FAIR_GROUP_SCHED */
 999
1000	/*
1001	 * This is part of a global counter where only the total sum
1002	 * over all CPUs matters. A task can increase this counter on
1003	 * one CPU and if it got migrated afterwards it may decrease
1004	 * it on another CPU. Always updated under the runqueue lock:
1005	 */
1006	unsigned int		nr_uninterruptible;
1007
1008	struct task_struct __rcu	*curr;
1009	struct task_struct	*idle;
1010	struct task_struct	*stop;
1011	unsigned long		next_balance;
1012	struct mm_struct	*prev_mm;
1013
1014	unsigned int		clock_update_flags;
1015	u64			clock;
1016	/* Ensure that all clocks are in the same cache line */
1017	u64			clock_task ____cacheline_aligned;
1018	u64			clock_pelt;
1019	unsigned long		lost_idle_time;
1020	u64			clock_pelt_idle;
1021	u64			clock_idle;
1022#ifndef CONFIG_64BIT
1023	u64			clock_pelt_idle_copy;
1024	u64			clock_idle_copy;
1025#endif
1026
1027	atomic_t		nr_iowait;
1028
1029#ifdef CONFIG_SCHED_DEBUG
1030	u64 last_seen_need_resched_ns;
1031	int ticks_without_resched;
1032#endif
1033
1034#ifdef CONFIG_MEMBARRIER
1035	int membarrier_state;
1036#endif
1037
1038#ifdef CONFIG_SMP
1039	struct root_domain		*rd;
1040	struct sched_domain __rcu	*sd;
1041
1042	unsigned long		cpu_capacity;
1043	unsigned long		cpu_capacity_orig;
1044	unsigned long		cpu_capacity_inverted;
1045
1046	struct balance_callback *balance_callback;
1047
1048	unsigned char		nohz_idle_balance;
1049	unsigned char		idle_balance;
1050
1051	unsigned long		misfit_task_load;
1052
1053	/* For active balancing */
1054	int			active_balance;
1055	int			push_cpu;
1056	struct cpu_stop_work	active_balance_work;
1057
1058	/* CPU of this runqueue: */
1059	int			cpu;
1060	int			online;
1061
1062	struct list_head cfs_tasks;
1063
1064	struct sched_avg	avg_rt;
1065	struct sched_avg	avg_dl;
1066#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1067	struct sched_avg	avg_irq;
1068#endif
1069#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1070	struct sched_avg	avg_thermal;
1071#endif
1072	u64			idle_stamp;
1073	u64			avg_idle;
1074
1075	unsigned long		wake_stamp;
1076	u64			wake_avg_idle;
1077
1078	/* This is used to determine avg_idle's max value */
1079	u64			max_idle_balance_cost;
1080
1081#ifdef CONFIG_HOTPLUG_CPU
1082	struct rcuwait		hotplug_wait;
1083#endif
1084#endif /* CONFIG_SMP */
1085
1086#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1087	u64			prev_irq_time;
1088#endif
1089#ifdef CONFIG_PARAVIRT
1090	u64			prev_steal_time;
1091#endif
1092#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1093	u64			prev_steal_time_rq;
1094#endif
1095
1096	/* calc_load related fields */
1097	unsigned long		calc_load_update;
1098	long			calc_load_active;
1099
1100#ifdef CONFIG_SCHED_HRTICK
1101#ifdef CONFIG_SMP
1102	call_single_data_t	hrtick_csd;
1103#endif
1104	struct hrtimer		hrtick_timer;
1105	ktime_t 		hrtick_time;
1106#endif
1107
1108#ifdef CONFIG_SCHEDSTATS
1109	/* latency stats */
1110	struct sched_info	rq_sched_info;
1111	unsigned long long	rq_cpu_time;
1112	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1113
1114	/* sys_sched_yield() stats */
1115	unsigned int		yld_count;
1116
1117	/* schedule() stats */
1118	unsigned int		sched_count;
1119	unsigned int		sched_goidle;
1120
1121	/* try_to_wake_up() stats */
1122	unsigned int		ttwu_count;
1123	unsigned int		ttwu_local;
1124#endif
1125
1126#ifdef CONFIG_CPU_IDLE
1127	/* Must be inspected within a rcu lock section */
1128	struct cpuidle_state	*idle_state;
1129#endif
1130
1131#ifdef CONFIG_SMP
1132	unsigned int		nr_pinned;
1133#endif
1134	unsigned int		push_busy;
1135	struct cpu_stop_work	push_work;
1136
1137#ifdef CONFIG_SCHED_CORE
1138	/* per rq */
1139	struct rq		*core;
1140	struct task_struct	*core_pick;
1141	unsigned int		core_enabled;
1142	unsigned int		core_sched_seq;
1143	struct rb_root		core_tree;
1144
1145	/* shared state -- careful with sched_core_cpu_deactivate() */
1146	unsigned int		core_task_seq;
1147	unsigned int		core_pick_seq;
1148	unsigned long		core_cookie;
1149	unsigned int		core_forceidle_count;
1150	unsigned int		core_forceidle_seq;
1151	unsigned int		core_forceidle_occupation;
1152	u64			core_forceidle_start;
1153#endif
1154
1155	/* Scratch cpumask to be temporarily used under rq_lock */
1156	cpumask_var_t		scratch_mask;
1157};
1158
1159#ifdef CONFIG_FAIR_GROUP_SCHED
1160
1161/* CPU runqueue to which this cfs_rq is attached */
1162static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1163{
1164	return cfs_rq->rq;
1165}
1166
1167#else
1168
1169static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1170{
1171	return container_of(cfs_rq, struct rq, cfs);
1172}
1173#endif
1174
1175static inline int cpu_of(struct rq *rq)
1176{
1177#ifdef CONFIG_SMP
1178	return rq->cpu;
1179#else
1180	return 0;
1181#endif
1182}
1183
1184#define MDF_PUSH	0x01
1185
1186static inline bool is_migration_disabled(struct task_struct *p)
1187{
1188#ifdef CONFIG_SMP
1189	return p->migration_disabled;
1190#else
1191	return false;
1192#endif
1193}
1194
1195DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1196
1197#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1198#define this_rq()		this_cpu_ptr(&runqueues)
1199#define task_rq(p)		cpu_rq(task_cpu(p))
1200#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1201#define raw_rq()		raw_cpu_ptr(&runqueues)
1202
1203struct sched_group;
1204#ifdef CONFIG_SCHED_CORE
1205static inline struct cpumask *sched_group_span(struct sched_group *sg);
1206
1207DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1208
1209static inline bool sched_core_enabled(struct rq *rq)
1210{
1211	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1212}
1213
1214static inline bool sched_core_disabled(void)
1215{
1216	return !static_branch_unlikely(&__sched_core_enabled);
1217}
1218
1219/*
1220 * Be careful with this function; not for general use. The return value isn't
1221 * stable unless you actually hold a relevant rq->__lock.
1222 */
1223static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1224{
1225	if (sched_core_enabled(rq))
1226		return &rq->core->__lock;
1227
1228	return &rq->__lock;
1229}
1230
1231static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1232{
1233	if (rq->core_enabled)
1234		return &rq->core->__lock;
1235
1236	return &rq->__lock;
1237}
1238
1239bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1240
1241/*
1242 * Helpers to check if the CPU's core cookie matches with the task's cookie
1243 * when core scheduling is enabled.
1244 * A special case is that the task's cookie always matches with CPU's core
1245 * cookie if the CPU is in an idle core.
1246 */
1247static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1248{
1249	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1250	if (!sched_core_enabled(rq))
1251		return true;
1252
1253	return rq->core->core_cookie == p->core_cookie;
1254}
1255
1256static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1257{
1258	bool idle_core = true;
1259	int cpu;
1260
1261	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1262	if (!sched_core_enabled(rq))
1263		return true;
1264
1265	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1266		if (!available_idle_cpu(cpu)) {
1267			idle_core = false;
1268			break;
1269		}
1270	}
1271
1272	/*
1273	 * A CPU in an idle core is always the best choice for tasks with
1274	 * cookies.
1275	 */
1276	return idle_core || rq->core->core_cookie == p->core_cookie;
1277}
1278
1279static inline bool sched_group_cookie_match(struct rq *rq,
1280					    struct task_struct *p,
1281					    struct sched_group *group)
1282{
1283	int cpu;
1284
1285	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1286	if (!sched_core_enabled(rq))
1287		return true;
1288
1289	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1290		if (sched_core_cookie_match(cpu_rq(cpu), p))
1291			return true;
1292	}
1293	return false;
1294}
1295
1296static inline bool sched_core_enqueued(struct task_struct *p)
1297{
1298	return !RB_EMPTY_NODE(&p->core_node);
1299}
1300
1301extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1302extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1303
1304extern void sched_core_get(void);
1305extern void sched_core_put(void);
1306
1307#else /* !CONFIG_SCHED_CORE */
1308
1309static inline bool sched_core_enabled(struct rq *rq)
1310{
1311	return false;
1312}
1313
1314static inline bool sched_core_disabled(void)
1315{
1316	return true;
1317}
1318
1319static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1320{
1321	return &rq->__lock;
1322}
1323
1324static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1325{
1326	return &rq->__lock;
1327}
1328
1329static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1330{
1331	return true;
1332}
1333
1334static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1335{
1336	return true;
1337}
1338
1339static inline bool sched_group_cookie_match(struct rq *rq,
1340					    struct task_struct *p,
1341					    struct sched_group *group)
1342{
1343	return true;
1344}
1345#endif /* CONFIG_SCHED_CORE */
1346
1347static inline void lockdep_assert_rq_held(struct rq *rq)
1348{
1349	lockdep_assert_held(__rq_lockp(rq));
1350}
1351
1352extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1353extern bool raw_spin_rq_trylock(struct rq *rq);
1354extern void raw_spin_rq_unlock(struct rq *rq);
1355
1356static inline void raw_spin_rq_lock(struct rq *rq)
1357{
1358	raw_spin_rq_lock_nested(rq, 0);
1359}
1360
1361static inline void raw_spin_rq_lock_irq(struct rq *rq)
1362{
1363	local_irq_disable();
1364	raw_spin_rq_lock(rq);
1365}
1366
1367static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1368{
1369	raw_spin_rq_unlock(rq);
1370	local_irq_enable();
1371}
1372
1373static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1374{
1375	unsigned long flags;
1376	local_irq_save(flags);
1377	raw_spin_rq_lock(rq);
1378	return flags;
1379}
1380
1381static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1382{
1383	raw_spin_rq_unlock(rq);
1384	local_irq_restore(flags);
1385}
1386
1387#define raw_spin_rq_lock_irqsave(rq, flags)	\
1388do {						\
1389	flags = _raw_spin_rq_lock_irqsave(rq);	\
1390} while (0)
1391
1392#ifdef CONFIG_SCHED_SMT
1393extern void __update_idle_core(struct rq *rq);
1394
1395static inline void update_idle_core(struct rq *rq)
1396{
1397	if (static_branch_unlikely(&sched_smt_present))
1398		__update_idle_core(rq);
1399}
1400
1401#else
1402static inline void update_idle_core(struct rq *rq) { }
1403#endif
1404
1405#ifdef CONFIG_FAIR_GROUP_SCHED
1406static inline struct task_struct *task_of(struct sched_entity *se)
1407{
1408	SCHED_WARN_ON(!entity_is_task(se));
1409	return container_of(se, struct task_struct, se);
1410}
1411
1412static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1413{
1414	return p->se.cfs_rq;
1415}
1416
1417/* runqueue on which this entity is (to be) queued */
1418static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1419{
1420	return se->cfs_rq;
1421}
1422
1423/* runqueue "owned" by this group */
1424static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1425{
1426	return grp->my_q;
1427}
1428
1429#else
1430
1431static inline struct task_struct *task_of(struct sched_entity *se)
1432{
1433	return container_of(se, struct task_struct, se);
1434}
1435
1436static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1437{
1438	return &task_rq(p)->cfs;
1439}
1440
1441static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1442{
1443	struct task_struct *p = task_of(se);
1444	struct rq *rq = task_rq(p);
 
1445
1446	return &rq->cfs;
1447}
1448
1449/* runqueue "owned" by this group */
1450static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1451{
1452	return NULL;
1453}
1454#endif
1455
1456extern void update_rq_clock(struct rq *rq);
1457
1458/*
1459 * rq::clock_update_flags bits
1460 *
1461 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1462 *  call to __schedule(). This is an optimisation to avoid
1463 *  neighbouring rq clock updates.
1464 *
1465 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1466 *  in effect and calls to update_rq_clock() are being ignored.
1467 *
1468 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1469 *  made to update_rq_clock() since the last time rq::lock was pinned.
1470 *
1471 * If inside of __schedule(), clock_update_flags will have been
1472 * shifted left (a left shift is a cheap operation for the fast path
1473 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1474 *
1475 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1476 *
1477 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1478 * one position though, because the next rq_unpin_lock() will shift it
1479 * back.
1480 */
1481#define RQCF_REQ_SKIP		0x01
1482#define RQCF_ACT_SKIP		0x02
1483#define RQCF_UPDATED		0x04
1484
1485static inline void assert_clock_updated(struct rq *rq)
1486{
1487	/*
1488	 * The only reason for not seeing a clock update since the
1489	 * last rq_pin_lock() is if we're currently skipping updates.
1490	 */
1491	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1492}
1493
1494static inline u64 rq_clock(struct rq *rq)
1495{
1496	lockdep_assert_rq_held(rq);
1497	assert_clock_updated(rq);
1498
1499	return rq->clock;
1500}
1501
1502static inline u64 rq_clock_task(struct rq *rq)
1503{
1504	lockdep_assert_rq_held(rq);
1505	assert_clock_updated(rq);
1506
1507	return rq->clock_task;
1508}
1509
1510/**
1511 * By default the decay is the default pelt decay period.
1512 * The decay shift can change the decay period in
1513 * multiples of 32.
1514 *  Decay shift		Decay period(ms)
1515 *	0			32
1516 *	1			64
1517 *	2			128
1518 *	3			256
1519 *	4			512
1520 */
1521extern int sched_thermal_decay_shift;
1522
1523static inline u64 rq_clock_thermal(struct rq *rq)
1524{
1525	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1526}
1527
1528static inline void rq_clock_skip_update(struct rq *rq)
1529{
1530	lockdep_assert_rq_held(rq);
1531	rq->clock_update_flags |= RQCF_REQ_SKIP;
1532}
1533
1534/*
1535 * See rt task throttling, which is the only time a skip
1536 * request is canceled.
1537 */
1538static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1539{
1540	lockdep_assert_rq_held(rq);
1541	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1542}
1543
1544struct rq_flags {
1545	unsigned long flags;
1546	struct pin_cookie cookie;
1547#ifdef CONFIG_SCHED_DEBUG
1548	/*
1549	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1550	 * current pin context is stashed here in case it needs to be
1551	 * restored in rq_repin_lock().
1552	 */
1553	unsigned int clock_update_flags;
1554#endif
1555};
1556
1557extern struct balance_callback balance_push_callback;
1558
1559/*
1560 * Lockdep annotation that avoids accidental unlocks; it's like a
1561 * sticky/continuous lockdep_assert_held().
1562 *
1563 * This avoids code that has access to 'struct rq *rq' (basically everything in
1564 * the scheduler) from accidentally unlocking the rq if they do not also have a
1565 * copy of the (on-stack) 'struct rq_flags rf'.
1566 *
1567 * Also see Documentation/locking/lockdep-design.rst.
1568 */
1569static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1570{
1571	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1572
1573#ifdef CONFIG_SCHED_DEBUG
1574	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1575	rf->clock_update_flags = 0;
1576#ifdef CONFIG_SMP
1577	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1578#endif
1579#endif
1580}
1581
1582static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1583{
1584#ifdef CONFIG_SCHED_DEBUG
1585	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1586		rf->clock_update_flags = RQCF_UPDATED;
1587#endif
1588
1589	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1590}
1591
1592static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1593{
1594	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1595
1596#ifdef CONFIG_SCHED_DEBUG
1597	/*
1598	 * Restore the value we stashed in @rf for this pin context.
1599	 */
1600	rq->clock_update_flags |= rf->clock_update_flags;
1601#endif
1602}
1603
1604struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1605	__acquires(rq->lock);
1606
1607struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1608	__acquires(p->pi_lock)
1609	__acquires(rq->lock);
1610
1611static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1612	__releases(rq->lock)
1613{
1614	rq_unpin_lock(rq, rf);
1615	raw_spin_rq_unlock(rq);
1616}
1617
1618static inline void
1619task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1620	__releases(rq->lock)
1621	__releases(p->pi_lock)
1622{
1623	rq_unpin_lock(rq, rf);
1624	raw_spin_rq_unlock(rq);
1625	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1626}
1627
1628static inline void
1629rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1630	__acquires(rq->lock)
1631{
1632	raw_spin_rq_lock_irqsave(rq, rf->flags);
1633	rq_pin_lock(rq, rf);
1634}
1635
1636static inline void
1637rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1638	__acquires(rq->lock)
1639{
1640	raw_spin_rq_lock_irq(rq);
1641	rq_pin_lock(rq, rf);
1642}
1643
1644static inline void
1645rq_lock(struct rq *rq, struct rq_flags *rf)
1646	__acquires(rq->lock)
1647{
1648	raw_spin_rq_lock(rq);
1649	rq_pin_lock(rq, rf);
1650}
1651
1652static inline void
 
 
 
 
 
 
 
 
1653rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1654	__releases(rq->lock)
1655{
1656	rq_unpin_lock(rq, rf);
1657	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1658}
1659
1660static inline void
1661rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1662	__releases(rq->lock)
1663{
1664	rq_unpin_lock(rq, rf);
1665	raw_spin_rq_unlock_irq(rq);
1666}
1667
1668static inline void
1669rq_unlock(struct rq *rq, struct rq_flags *rf)
1670	__releases(rq->lock)
1671{
1672	rq_unpin_lock(rq, rf);
1673	raw_spin_rq_unlock(rq);
1674}
1675
1676static inline struct rq *
1677this_rq_lock_irq(struct rq_flags *rf)
1678	__acquires(rq->lock)
1679{
1680	struct rq *rq;
1681
1682	local_irq_disable();
1683	rq = this_rq();
1684	rq_lock(rq, rf);
1685	return rq;
1686}
1687
1688#ifdef CONFIG_NUMA
1689enum numa_topology_type {
1690	NUMA_DIRECT,
1691	NUMA_GLUELESS_MESH,
1692	NUMA_BACKPLANE,
1693};
1694extern enum numa_topology_type sched_numa_topology_type;
1695extern int sched_max_numa_distance;
1696extern bool find_numa_distance(int distance);
1697extern void sched_init_numa(int offline_node);
1698extern void sched_update_numa(int cpu, bool online);
1699extern void sched_domains_numa_masks_set(unsigned int cpu);
1700extern void sched_domains_numa_masks_clear(unsigned int cpu);
1701extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1702#else
1703static inline void sched_init_numa(int offline_node) { }
1704static inline void sched_update_numa(int cpu, bool online) { }
1705static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1706static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1707static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1708{
1709	return nr_cpu_ids;
1710}
1711#endif
1712
1713#ifdef CONFIG_NUMA_BALANCING
1714/* The regions in numa_faults array from task_struct */
1715enum numa_faults_stats {
1716	NUMA_MEM = 0,
1717	NUMA_CPU,
1718	NUMA_MEMBUF,
1719	NUMA_CPUBUF
1720};
1721extern void sched_setnuma(struct task_struct *p, int node);
1722extern int migrate_task_to(struct task_struct *p, int cpu);
1723extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1724			int cpu, int scpu);
1725extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1726#else
1727static inline void
1728init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1729{
1730}
1731#endif /* CONFIG_NUMA_BALANCING */
1732
1733#ifdef CONFIG_SMP
1734
1735static inline void
1736queue_balance_callback(struct rq *rq,
1737		       struct balance_callback *head,
1738		       void (*func)(struct rq *rq))
1739{
1740	lockdep_assert_rq_held(rq);
1741
1742	/*
1743	 * Don't (re)queue an already queued item; nor queue anything when
1744	 * balance_push() is active, see the comment with
1745	 * balance_push_callback.
1746	 */
1747	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1748		return;
1749
1750	head->func = func;
1751	head->next = rq->balance_callback;
1752	rq->balance_callback = head;
1753}
1754
1755#define rcu_dereference_check_sched_domain(p) \
1756	rcu_dereference_check((p), \
1757			      lockdep_is_held(&sched_domains_mutex))
1758
1759/*
1760 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1761 * See destroy_sched_domains: call_rcu for details.
1762 *
1763 * The domain tree of any CPU may only be accessed from within
1764 * preempt-disabled sections.
1765 */
1766#define for_each_domain(cpu, __sd) \
1767	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1768			__sd; __sd = __sd->parent)
1769
1770/**
1771 * highest_flag_domain - Return highest sched_domain containing flag.
1772 * @cpu:	The CPU whose highest level of sched domain is to
1773 *		be returned.
1774 * @flag:	The flag to check for the highest sched_domain
1775 *		for the given CPU.
1776 *
1777 * Returns the highest sched_domain of a CPU which contains the given flag.
1778 */
1779static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1780{
1781	struct sched_domain *sd, *hsd = NULL;
1782
1783	for_each_domain(cpu, sd) {
1784		if (!(sd->flags & flag))
1785			break;
1786		hsd = sd;
1787	}
1788
1789	return hsd;
1790}
1791
1792static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1793{
1794	struct sched_domain *sd;
1795
1796	for_each_domain(cpu, sd) {
1797		if (sd->flags & flag)
1798			break;
1799	}
1800
1801	return sd;
1802}
1803
1804DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1805DECLARE_PER_CPU(int, sd_llc_size);
1806DECLARE_PER_CPU(int, sd_llc_id);
1807DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1808DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1809DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1810DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1811extern struct static_key_false sched_asym_cpucapacity;
1812
1813static __always_inline bool sched_asym_cpucap_active(void)
1814{
1815	return static_branch_unlikely(&sched_asym_cpucapacity);
1816}
1817
1818struct sched_group_capacity {
1819	atomic_t		ref;
1820	/*
1821	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1822	 * for a single CPU.
1823	 */
1824	unsigned long		capacity;
1825	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1826	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1827	unsigned long		next_update;
1828	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1829
1830#ifdef CONFIG_SCHED_DEBUG
1831	int			id;
1832#endif
1833
1834	unsigned long		cpumask[];		/* Balance mask */
1835};
1836
1837struct sched_group {
1838	struct sched_group	*next;			/* Must be a circular list */
1839	atomic_t		ref;
1840
1841	unsigned int		group_weight;
1842	struct sched_group_capacity *sgc;
1843	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1844	int			flags;
1845
1846	/*
1847	 * The CPUs this group covers.
1848	 *
1849	 * NOTE: this field is variable length. (Allocated dynamically
1850	 * by attaching extra space to the end of the structure,
1851	 * depending on how many CPUs the kernel has booted up with)
1852	 */
1853	unsigned long		cpumask[];
1854};
1855
1856static inline struct cpumask *sched_group_span(struct sched_group *sg)
1857{
1858	return to_cpumask(sg->cpumask);
1859}
1860
1861/*
1862 * See build_balance_mask().
1863 */
1864static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1865{
1866	return to_cpumask(sg->sgc->cpumask);
1867}
1868
 
 
 
 
 
 
 
 
 
1869extern int group_balance_cpu(struct sched_group *sg);
1870
1871#ifdef CONFIG_SCHED_DEBUG
1872void update_sched_domain_debugfs(void);
1873void dirty_sched_domain_sysctl(int cpu);
 
1874#else
1875static inline void update_sched_domain_debugfs(void)
1876{
1877}
1878static inline void dirty_sched_domain_sysctl(int cpu)
1879{
1880}
1881#endif
1882
1883extern int sched_update_scaling(void);
1884
1885static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1886{
1887	if (!p->user_cpus_ptr)
1888		return cpu_possible_mask; /* &init_task.cpus_mask */
1889	return p->user_cpus_ptr;
1890}
1891#endif /* CONFIG_SMP */
1892
1893#include "stats.h"
1894
1895#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1896
1897extern void __sched_core_account_forceidle(struct rq *rq);
1898
1899static inline void sched_core_account_forceidle(struct rq *rq)
1900{
1901	if (schedstat_enabled())
1902		__sched_core_account_forceidle(rq);
1903}
1904
1905extern void __sched_core_tick(struct rq *rq);
1906
1907static inline void sched_core_tick(struct rq *rq)
1908{
1909	if (sched_core_enabled(rq) && schedstat_enabled())
1910		__sched_core_tick(rq);
1911}
 
1912
1913#else
1914
1915static inline void sched_core_account_forceidle(struct rq *rq) {}
1916
1917static inline void sched_core_tick(struct rq *rq) {}
 
 
1918
1919#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
 
1920
1921#ifdef CONFIG_CGROUP_SCHED
1922
1923/*
1924 * Return the group to which this tasks belongs.
1925 *
1926 * We cannot use task_css() and friends because the cgroup subsystem
1927 * changes that value before the cgroup_subsys::attach() method is called,
1928 * therefore we cannot pin it and might observe the wrong value.
1929 *
1930 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1931 * core changes this before calling sched_move_task().
1932 *
1933 * Instead we use a 'copy' which is updated from sched_move_task() while
1934 * holding both task_struct::pi_lock and rq::lock.
1935 */
1936static inline struct task_group *task_group(struct task_struct *p)
1937{
1938	return p->sched_task_group;
1939}
1940
1941/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1942static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1943{
1944#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1945	struct task_group *tg = task_group(p);
1946#endif
1947
1948#ifdef CONFIG_FAIR_GROUP_SCHED
1949	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1950	p->se.cfs_rq = tg->cfs_rq[cpu];
1951	p->se.parent = tg->se[cpu];
1952	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1953#endif
1954
1955#ifdef CONFIG_RT_GROUP_SCHED
1956	p->rt.rt_rq  = tg->rt_rq[cpu];
1957	p->rt.parent = tg->rt_se[cpu];
1958#endif
1959}
1960
1961#else /* CONFIG_CGROUP_SCHED */
1962
1963static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1964static inline struct task_group *task_group(struct task_struct *p)
1965{
1966	return NULL;
1967}
1968
1969#endif /* CONFIG_CGROUP_SCHED */
1970
1971static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1972{
1973	set_task_rq(p, cpu);
1974#ifdef CONFIG_SMP
1975	/*
1976	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1977	 * successfully executed on another CPU. We must ensure that updates of
1978	 * per-task data have been completed by this moment.
1979	 */
1980	smp_wmb();
 
 
 
1981	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
 
1982	p->wake_cpu = cpu;
1983#endif
1984}
1985
1986/*
1987 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1988 */
1989#ifdef CONFIG_SCHED_DEBUG
 
1990# define const_debug __read_mostly
1991#else
1992# define const_debug const
1993#endif
1994
1995#define SCHED_FEAT(name, enabled)	\
1996	__SCHED_FEAT_##name ,
1997
1998enum {
1999#include "features.h"
2000	__SCHED_FEAT_NR,
2001};
2002
2003#undef SCHED_FEAT
2004
2005#ifdef CONFIG_SCHED_DEBUG
2006
2007/*
2008 * To support run-time toggling of sched features, all the translation units
2009 * (but core.c) reference the sysctl_sched_features defined in core.c.
2010 */
2011extern const_debug unsigned int sysctl_sched_features;
2012
2013#ifdef CONFIG_JUMP_LABEL
2014#define SCHED_FEAT(name, enabled)					\
2015static __always_inline bool static_branch_##name(struct static_key *key) \
2016{									\
2017	return static_key_##enabled(key);				\
2018}
2019
2020#include "features.h"
2021#undef SCHED_FEAT
2022
2023extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2024#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2025
2026#else /* !CONFIG_JUMP_LABEL */
2027
2028#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2029
2030#endif /* CONFIG_JUMP_LABEL */
2031
2032#else /* !SCHED_DEBUG */
2033
2034/*
2035 * Each translation unit has its own copy of sysctl_sched_features to allow
2036 * constants propagation at compile time and compiler optimization based on
2037 * features default.
2038 */
2039#define SCHED_FEAT(name, enabled)	\
2040	(1UL << __SCHED_FEAT_##name) * enabled |
2041static const_debug __maybe_unused unsigned int sysctl_sched_features =
2042#include "features.h"
2043	0;
2044#undef SCHED_FEAT
2045
2046#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2047
2048#endif /* SCHED_DEBUG */
2049
2050extern struct static_key_false sched_numa_balancing;
2051extern struct static_key_false sched_schedstats;
2052
2053static inline u64 global_rt_period(void)
2054{
2055	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2056}
2057
2058static inline u64 global_rt_runtime(void)
2059{
2060	if (sysctl_sched_rt_runtime < 0)
2061		return RUNTIME_INF;
2062
2063	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2064}
2065
2066static inline int task_current(struct rq *rq, struct task_struct *p)
2067{
2068	return rq->curr == p;
2069}
2070
2071static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2072{
2073#ifdef CONFIG_SMP
2074	return p->on_cpu;
2075#else
2076	return task_current(rq, p);
2077#endif
2078}
2079
2080static inline int task_on_rq_queued(struct task_struct *p)
2081{
2082	return p->on_rq == TASK_ON_RQ_QUEUED;
2083}
2084
2085static inline int task_on_rq_migrating(struct task_struct *p)
2086{
2087	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2088}
2089
2090/* Wake flags. The first three directly map to some SD flag value */
2091#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2092#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2093#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2094
2095#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2096#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2097
2098#ifdef CONFIG_SMP
2099static_assert(WF_EXEC == SD_BALANCE_EXEC);
2100static_assert(WF_FORK == SD_BALANCE_FORK);
2101static_assert(WF_TTWU == SD_BALANCE_WAKE);
2102#endif
2103
2104/*
2105 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2106 * of tasks with abnormal "nice" values across CPUs the contribution that
2107 * each task makes to its run queue's load is weighted according to its
2108 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2109 * scaled version of the new time slice allocation that they receive on time
2110 * slice expiry etc.
2111 */
2112
2113#define WEIGHT_IDLEPRIO		3
2114#define WMULT_IDLEPRIO		1431655765
2115
2116extern const int		sched_prio_to_weight[40];
2117extern const u32		sched_prio_to_wmult[40];
2118
2119/*
2120 * {de,en}queue flags:
2121 *
2122 * DEQUEUE_SLEEP  - task is no longer runnable
2123 * ENQUEUE_WAKEUP - task just became runnable
2124 *
2125 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2126 *                are in a known state which allows modification. Such pairs
2127 *                should preserve as much state as possible.
2128 *
2129 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2130 *        in the runqueue.
2131 *
2132 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2133 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2134 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2135 *
2136 */
2137
2138#define DEQUEUE_SLEEP		0x01
2139#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2140#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2141#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2142
2143#define ENQUEUE_WAKEUP		0x01
2144#define ENQUEUE_RESTORE		0x02
2145#define ENQUEUE_MOVE		0x04
2146#define ENQUEUE_NOCLOCK		0x08
2147
2148#define ENQUEUE_HEAD		0x10
2149#define ENQUEUE_REPLENISH	0x20
2150#ifdef CONFIG_SMP
2151#define ENQUEUE_MIGRATED	0x40
2152#else
2153#define ENQUEUE_MIGRATED	0x00
2154#endif
2155
2156#define RETRY_TASK		((void *)-1UL)
2157
2158struct affinity_context {
2159	const struct cpumask *new_mask;
2160	struct cpumask *user_mask;
2161	unsigned int flags;
2162};
2163
2164struct sched_class {
2165
2166#ifdef CONFIG_UCLAMP_TASK
2167	int uclamp_enabled;
2168#endif
2169
2170	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2171	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2172	void (*yield_task)   (struct rq *rq);
2173	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2174
2175	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2176
2177	struct task_struct *(*pick_next_task)(struct rq *rq);
2178
2179	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2180	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2181
2182#ifdef CONFIG_SMP
2183	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2184	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2185
2186	struct task_struct * (*pick_task)(struct rq *rq);
2187
2188	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2189
2190	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2191
2192	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
 
2193
2194	void (*rq_online)(struct rq *rq);
2195	void (*rq_offline)(struct rq *rq);
2196
2197	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2198#endif
2199
2200	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2201	void (*task_fork)(struct task_struct *p);
2202	void (*task_dead)(struct task_struct *p);
2203
2204	/*
2205	 * The switched_from() call is allowed to drop rq->lock, therefore we
2206	 * cannot assume the switched_from/switched_to pair is serialized by
2207	 * rq->lock. They are however serialized by p->pi_lock.
2208	 */
2209	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2210	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2211	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2212			      int oldprio);
2213
2214	unsigned int (*get_rr_interval)(struct rq *rq,
2215					struct task_struct *task);
2216
2217	void (*update_curr)(struct rq *rq);
2218
 
 
 
2219#ifdef CONFIG_FAIR_GROUP_SCHED
2220	void (*task_change_group)(struct task_struct *p);
2221#endif
2222};
2223
2224static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2225{
2226	WARN_ON_ONCE(rq->curr != prev);
2227	prev->sched_class->put_prev_task(rq, prev);
2228}
2229
2230static inline void set_next_task(struct rq *rq, struct task_struct *next)
2231{
 
2232	next->sched_class->set_next_task(rq, next, false);
2233}
2234
2235
2236/*
2237 * Helper to define a sched_class instance; each one is placed in a separate
2238 * section which is ordered by the linker script:
2239 *
2240 *   include/asm-generic/vmlinux.lds.h
2241 *
2242 * *CAREFUL* they are laid out in *REVERSE* order!!!
2243 *
2244 * Also enforce alignment on the instance, not the type, to guarantee layout.
2245 */
2246#define DEFINE_SCHED_CLASS(name) \
2247const struct sched_class name##_sched_class \
2248	__aligned(__alignof__(struct sched_class)) \
2249	__section("__" #name "_sched_class")
2250
2251/* Defined in include/asm-generic/vmlinux.lds.h */
2252extern struct sched_class __sched_class_highest[];
2253extern struct sched_class __sched_class_lowest[];
 
 
 
2254
2255#define for_class_range(class, _from, _to) \
2256	for (class = (_from); class < (_to); class++)
2257
2258#define for_each_class(class) \
2259	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2260
2261#define sched_class_above(_a, _b)	((_a) < (_b))
2262
2263extern const struct sched_class stop_sched_class;
2264extern const struct sched_class dl_sched_class;
2265extern const struct sched_class rt_sched_class;
2266extern const struct sched_class fair_sched_class;
2267extern const struct sched_class idle_sched_class;
2268
2269static inline bool sched_stop_runnable(struct rq *rq)
2270{
2271	return rq->stop && task_on_rq_queued(rq->stop);
2272}
2273
2274static inline bool sched_dl_runnable(struct rq *rq)
2275{
2276	return rq->dl.dl_nr_running > 0;
2277}
2278
2279static inline bool sched_rt_runnable(struct rq *rq)
2280{
2281	return rq->rt.rt_queued > 0;
2282}
2283
2284static inline bool sched_fair_runnable(struct rq *rq)
2285{
2286	return rq->cfs.nr_running > 0;
2287}
2288
2289extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2290extern struct task_struct *pick_next_task_idle(struct rq *rq);
2291
2292#define SCA_CHECK		0x01
2293#define SCA_MIGRATE_DISABLE	0x02
2294#define SCA_MIGRATE_ENABLE	0x04
2295#define SCA_USER		0x08
2296
2297#ifdef CONFIG_SMP
2298
2299extern void update_group_capacity(struct sched_domain *sd, int cpu);
2300
2301extern void trigger_load_balance(struct rq *rq);
2302
2303extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2304
2305static inline struct task_struct *get_push_task(struct rq *rq)
2306{
2307	struct task_struct *p = rq->curr;
2308
2309	lockdep_assert_rq_held(rq);
2310
2311	if (rq->push_busy)
2312		return NULL;
2313
2314	if (p->nr_cpus_allowed == 1)
2315		return NULL;
2316
2317	if (p->migration_disabled)
2318		return NULL;
2319
2320	rq->push_busy = true;
2321	return get_task_struct(p);
2322}
2323
2324extern int push_cpu_stop(void *arg);
2325
2326#endif
2327
2328#ifdef CONFIG_CPU_IDLE
2329static inline void idle_set_state(struct rq *rq,
2330				  struct cpuidle_state *idle_state)
2331{
2332	rq->idle_state = idle_state;
2333}
2334
2335static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2336{
2337	SCHED_WARN_ON(!rcu_read_lock_held());
2338
2339	return rq->idle_state;
2340}
2341#else
2342static inline void idle_set_state(struct rq *rq,
2343				  struct cpuidle_state *idle_state)
2344{
2345}
2346
2347static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2348{
2349	return NULL;
2350}
2351#endif
2352
2353extern void schedule_idle(void);
2354
2355extern void sysrq_sched_debug_show(void);
2356extern void sched_init_granularity(void);
2357extern void update_max_interval(void);
2358
2359extern void init_sched_dl_class(void);
2360extern void init_sched_rt_class(void);
2361extern void init_sched_fair_class(void);
2362
2363extern void reweight_task(struct task_struct *p, int prio);
2364
2365extern void resched_curr(struct rq *rq);
2366extern void resched_cpu(int cpu);
2367
2368extern struct rt_bandwidth def_rt_bandwidth;
2369extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2370extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2371
 
2372extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2373extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2374extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2375
2376#define BW_SHIFT		20
2377#define BW_UNIT			(1 << BW_SHIFT)
2378#define RATIO_SHIFT		8
2379#define MAX_BW_BITS		(64 - BW_SHIFT)
2380#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2381unsigned long to_ratio(u64 period, u64 runtime);
2382
2383extern void init_entity_runnable_average(struct sched_entity *se);
2384extern void post_init_entity_util_avg(struct task_struct *p);
2385
2386#ifdef CONFIG_NO_HZ_FULL
2387extern bool sched_can_stop_tick(struct rq *rq);
2388extern int __init sched_tick_offload_init(void);
2389
2390/*
2391 * Tick may be needed by tasks in the runqueue depending on their policy and
2392 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2393 * nohz mode if necessary.
2394 */
2395static inline void sched_update_tick_dependency(struct rq *rq)
2396{
2397	int cpu = cpu_of(rq);
2398
2399	if (!tick_nohz_full_cpu(cpu))
2400		return;
2401
2402	if (sched_can_stop_tick(rq))
2403		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2404	else
2405		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2406}
2407#else
2408static inline int sched_tick_offload_init(void) { return 0; }
2409static inline void sched_update_tick_dependency(struct rq *rq) { }
2410#endif
2411
2412static inline void add_nr_running(struct rq *rq, unsigned count)
2413{
2414	unsigned prev_nr = rq->nr_running;
2415
2416	rq->nr_running = prev_nr + count;
2417	if (trace_sched_update_nr_running_tp_enabled()) {
2418		call_trace_sched_update_nr_running(rq, count);
2419	}
2420
2421#ifdef CONFIG_SMP
2422	if (prev_nr < 2 && rq->nr_running >= 2) {
2423		if (!READ_ONCE(rq->rd->overload))
2424			WRITE_ONCE(rq->rd->overload, 1);
2425	}
2426#endif
2427
2428	sched_update_tick_dependency(rq);
2429}
2430
2431static inline void sub_nr_running(struct rq *rq, unsigned count)
2432{
2433	rq->nr_running -= count;
2434	if (trace_sched_update_nr_running_tp_enabled()) {
2435		call_trace_sched_update_nr_running(rq, -count);
2436	}
2437
2438	/* Check if we still need preemption */
2439	sched_update_tick_dependency(rq);
2440}
2441
2442extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2443extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2444
2445extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2446
2447#ifdef CONFIG_PREEMPT_RT
2448#define SCHED_NR_MIGRATE_BREAK 8
2449#else
2450#define SCHED_NR_MIGRATE_BREAK 32
2451#endif
2452
2453extern const_debug unsigned int sysctl_sched_nr_migrate;
2454extern const_debug unsigned int sysctl_sched_migration_cost;
2455
2456#ifdef CONFIG_SCHED_DEBUG
2457extern unsigned int sysctl_sched_latency;
2458extern unsigned int sysctl_sched_min_granularity;
2459extern unsigned int sysctl_sched_idle_min_granularity;
2460extern unsigned int sysctl_sched_wakeup_granularity;
2461extern int sysctl_resched_latency_warn_ms;
2462extern int sysctl_resched_latency_warn_once;
2463
2464extern unsigned int sysctl_sched_tunable_scaling;
2465
2466extern unsigned int sysctl_numa_balancing_scan_delay;
2467extern unsigned int sysctl_numa_balancing_scan_period_min;
2468extern unsigned int sysctl_numa_balancing_scan_period_max;
2469extern unsigned int sysctl_numa_balancing_scan_size;
2470extern unsigned int sysctl_numa_balancing_hot_threshold;
2471#endif
2472
2473#ifdef CONFIG_SCHED_HRTICK
2474
2475/*
2476 * Use hrtick when:
2477 *  - enabled by features
2478 *  - hrtimer is actually high res
2479 */
2480static inline int hrtick_enabled(struct rq *rq)
2481{
2482	if (!cpu_active(cpu_of(rq)))
2483		return 0;
2484	return hrtimer_is_hres_active(&rq->hrtick_timer);
2485}
2486
2487static inline int hrtick_enabled_fair(struct rq *rq)
2488{
2489	if (!sched_feat(HRTICK))
2490		return 0;
2491	return hrtick_enabled(rq);
2492}
2493
2494static inline int hrtick_enabled_dl(struct rq *rq)
2495{
2496	if (!sched_feat(HRTICK_DL))
2497		return 0;
2498	return hrtick_enabled(rq);
2499}
2500
2501void hrtick_start(struct rq *rq, u64 delay);
2502
2503#else
2504
2505static inline int hrtick_enabled_fair(struct rq *rq)
2506{
2507	return 0;
2508}
2509
2510static inline int hrtick_enabled_dl(struct rq *rq)
2511{
2512	return 0;
2513}
2514
2515static inline int hrtick_enabled(struct rq *rq)
2516{
2517	return 0;
2518}
2519
2520#endif /* CONFIG_SCHED_HRTICK */
2521
2522#ifndef arch_scale_freq_tick
2523static __always_inline
2524void arch_scale_freq_tick(void)
2525{
2526}
2527#endif
2528
2529#ifndef arch_scale_freq_capacity
2530/**
2531 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2532 * @cpu: the CPU in question.
2533 *
2534 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2535 *
2536 *     f_curr
2537 *     ------ * SCHED_CAPACITY_SCALE
2538 *     f_max
2539 */
2540static __always_inline
2541unsigned long arch_scale_freq_capacity(int cpu)
2542{
2543	return SCHED_CAPACITY_SCALE;
2544}
2545#endif
2546
2547#ifdef CONFIG_SCHED_DEBUG
2548/*
2549 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2550 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2551 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2552 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2553 */
2554static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2555{
2556	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2557	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2558#ifdef CONFIG_SMP
2559	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2560#endif
2561}
2562#else
2563static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2564#endif
2565
2566#ifdef CONFIG_SMP
2567
2568static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2569{
2570#ifdef CONFIG_SCHED_CORE
2571	/*
2572	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2573	 * order by core-id first and cpu-id second.
2574	 *
2575	 * Notably:
2576	 *
2577	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2578	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2579	 *
2580	 * when only cpu-id is considered.
2581	 */
2582	if (rq1->core->cpu < rq2->core->cpu)
2583		return true;
2584	if (rq1->core->cpu > rq2->core->cpu)
2585		return false;
2586
2587	/*
2588	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2589	 */
2590#endif
2591	return rq1->cpu < rq2->cpu;
2592}
2593
2594extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2595
2596#ifdef CONFIG_PREEMPTION
2597
 
 
2598/*
2599 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2600 * way at the expense of forcing extra atomic operations in all
2601 * invocations.  This assures that the double_lock is acquired using the
2602 * same underlying policy as the spinlock_t on this architecture, which
2603 * reduces latency compared to the unfair variant below.  However, it
2604 * also adds more overhead and therefore may reduce throughput.
2605 */
2606static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2607	__releases(this_rq->lock)
2608	__acquires(busiest->lock)
2609	__acquires(this_rq->lock)
2610{
2611	raw_spin_rq_unlock(this_rq);
2612	double_rq_lock(this_rq, busiest);
2613
2614	return 1;
2615}
2616
2617#else
2618/*
2619 * Unfair double_lock_balance: Optimizes throughput at the expense of
2620 * latency by eliminating extra atomic operations when the locks are
2621 * already in proper order on entry.  This favors lower CPU-ids and will
2622 * grant the double lock to lower CPUs over higher ids under contention,
2623 * regardless of entry order into the function.
2624 */
2625static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2626	__releases(this_rq->lock)
2627	__acquires(busiest->lock)
2628	__acquires(this_rq->lock)
2629{
2630	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2631	    likely(raw_spin_rq_trylock(busiest))) {
2632		double_rq_clock_clear_update(this_rq, busiest);
2633		return 0;
2634	}
2635
2636	if (rq_order_less(this_rq, busiest)) {
2637		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2638		double_rq_clock_clear_update(this_rq, busiest);
2639		return 0;
 
 
 
 
 
 
2640	}
2641
2642	raw_spin_rq_unlock(this_rq);
2643	double_rq_lock(this_rq, busiest);
2644
2645	return 1;
2646}
2647
2648#endif /* CONFIG_PREEMPTION */
2649
2650/*
2651 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2652 */
2653static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2654{
2655	lockdep_assert_irqs_disabled();
 
 
 
 
2656
2657	return _double_lock_balance(this_rq, busiest);
2658}
2659
2660static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2661	__releases(busiest->lock)
2662{
2663	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2664		raw_spin_rq_unlock(busiest);
2665	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2666}
2667
2668static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2669{
2670	if (l1 > l2)
2671		swap(l1, l2);
2672
2673	spin_lock(l1);
2674	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2675}
2676
2677static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2678{
2679	if (l1 > l2)
2680		swap(l1, l2);
2681
2682	spin_lock_irq(l1);
2683	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2684}
2685
2686static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2687{
2688	if (l1 > l2)
2689		swap(l1, l2);
2690
2691	raw_spin_lock(l1);
2692	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2693}
2694
2695/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696 * double_rq_unlock - safely unlock two runqueues
2697 *
2698 * Note this does not restore interrupts like task_rq_unlock,
2699 * you need to do so manually after calling.
2700 */
2701static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2702	__releases(rq1->lock)
2703	__releases(rq2->lock)
2704{
2705	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2706		raw_spin_rq_unlock(rq2);
 
2707	else
2708		__release(rq2->lock);
2709	raw_spin_rq_unlock(rq1);
2710}
2711
2712extern void set_rq_online (struct rq *rq);
2713extern void set_rq_offline(struct rq *rq);
2714extern bool sched_smp_initialized;
2715
2716#else /* CONFIG_SMP */
2717
2718/*
2719 * double_rq_lock - safely lock two runqueues
2720 *
2721 * Note this does not disable interrupts like task_rq_lock,
2722 * you need to do so manually before calling.
2723 */
2724static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2725	__acquires(rq1->lock)
2726	__acquires(rq2->lock)
2727{
2728	WARN_ON_ONCE(!irqs_disabled());
2729	WARN_ON_ONCE(rq1 != rq2);
2730	raw_spin_rq_lock(rq1);
2731	__acquire(rq2->lock);	/* Fake it out ;) */
2732	double_rq_clock_clear_update(rq1, rq2);
2733}
2734
2735/*
2736 * double_rq_unlock - safely unlock two runqueues
2737 *
2738 * Note this does not restore interrupts like task_rq_unlock,
2739 * you need to do so manually after calling.
2740 */
2741static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2742	__releases(rq1->lock)
2743	__releases(rq2->lock)
2744{
2745	WARN_ON_ONCE(rq1 != rq2);
2746	raw_spin_rq_unlock(rq1);
2747	__release(rq2->lock);
2748}
2749
2750#endif
2751
2752extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2753extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2754
2755#ifdef	CONFIG_SCHED_DEBUG
2756extern bool sched_debug_verbose;
2757
2758extern void print_cfs_stats(struct seq_file *m, int cpu);
2759extern void print_rt_stats(struct seq_file *m, int cpu);
2760extern void print_dl_stats(struct seq_file *m, int cpu);
2761extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2762extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2763extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2764
2765extern void resched_latency_warn(int cpu, u64 latency);
2766#ifdef CONFIG_NUMA_BALANCING
2767extern void
2768show_numa_stats(struct task_struct *p, struct seq_file *m);
2769extern void
2770print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2771	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2772#endif /* CONFIG_NUMA_BALANCING */
2773#else
2774static inline void resched_latency_warn(int cpu, u64 latency) {}
2775#endif /* CONFIG_SCHED_DEBUG */
2776
2777extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2778extern void init_rt_rq(struct rt_rq *rt_rq);
2779extern void init_dl_rq(struct dl_rq *dl_rq);
2780
2781extern void cfs_bandwidth_usage_inc(void);
2782extern void cfs_bandwidth_usage_dec(void);
2783
2784#ifdef CONFIG_NO_HZ_COMMON
2785#define NOHZ_BALANCE_KICK_BIT	0
2786#define NOHZ_STATS_KICK_BIT	1
2787#define NOHZ_NEWILB_KICK_BIT	2
2788#define NOHZ_NEXT_KICK_BIT	3
2789
2790/* Run rebalance_domains() */
2791#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2792/* Update blocked load */
2793#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2794/* Update blocked load when entering idle */
2795#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2796/* Update nohz.next_balance */
2797#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2798
2799#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2800
2801#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2802
2803extern void nohz_balance_exit_idle(struct rq *rq);
2804#else
2805static inline void nohz_balance_exit_idle(struct rq *rq) { }
2806#endif
2807
2808#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2809extern void nohz_run_idle_balance(int cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2810#else
2811static inline void nohz_run_idle_balance(int cpu) { }
 
 
 
 
 
 
2812#endif
2813
 
2814#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2815struct irqtime {
2816	u64			total;
2817	u64			tick_delta;
2818	u64			irq_start_time;
2819	struct u64_stats_sync	sync;
2820};
2821
2822DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2823
2824/*
2825 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2826 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2827 * and never move forward.
2828 */
2829static inline u64 irq_time_read(int cpu)
2830{
2831	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2832	unsigned int seq;
2833	u64 total;
2834
2835	do {
2836		seq = __u64_stats_fetch_begin(&irqtime->sync);
2837		total = irqtime->total;
2838	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2839
2840	return total;
2841}
2842#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2843
2844#ifdef CONFIG_CPU_FREQ
2845DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2846
2847/**
2848 * cpufreq_update_util - Take a note about CPU utilization changes.
2849 * @rq: Runqueue to carry out the update for.
2850 * @flags: Update reason flags.
2851 *
2852 * This function is called by the scheduler on the CPU whose utilization is
2853 * being updated.
2854 *
2855 * It can only be called from RCU-sched read-side critical sections.
2856 *
2857 * The way cpufreq is currently arranged requires it to evaluate the CPU
2858 * performance state (frequency/voltage) on a regular basis to prevent it from
2859 * being stuck in a completely inadequate performance level for too long.
2860 * That is not guaranteed to happen if the updates are only triggered from CFS
2861 * and DL, though, because they may not be coming in if only RT tasks are
2862 * active all the time (or there are RT tasks only).
2863 *
2864 * As a workaround for that issue, this function is called periodically by the
2865 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2866 * but that really is a band-aid.  Going forward it should be replaced with
2867 * solutions targeted more specifically at RT tasks.
2868 */
2869static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2870{
2871	struct update_util_data *data;
2872
2873	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2874						  cpu_of(rq)));
2875	if (data)
2876		data->func(data, rq_clock(rq), flags);
2877}
2878#else
2879static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2880#endif /* CONFIG_CPU_FREQ */
2881
2882#ifdef arch_scale_freq_capacity
2883# ifndef arch_scale_freq_invariant
2884#  define arch_scale_freq_invariant()	true
2885# endif
2886#else
2887# define arch_scale_freq_invariant()	false
2888#endif
2889
2890#ifdef CONFIG_SMP
2891static inline unsigned long capacity_orig_of(int cpu)
2892{
2893	return cpu_rq(cpu)->cpu_capacity_orig;
2894}
2895
2896/*
2897 * Returns inverted capacity if the CPU is in capacity inversion state.
2898 * 0 otherwise.
2899 *
2900 * Capacity inversion detection only considers thermal impact where actual
2901 * performance points (OPPs) gets dropped.
2902 *
2903 * Capacity inversion state happens when another performance domain that has
2904 * equal or lower capacity_orig_of() becomes effectively larger than the perf
2905 * domain this CPU belongs to due to thermal pressure throttling it hard.
2906 *
2907 * See comment in update_cpu_capacity().
2908 */
2909static inline unsigned long cpu_in_capacity_inversion(int cpu)
2910{
2911	return cpu_rq(cpu)->cpu_capacity_inverted;
2912}
2913
2914/**
2915 * enum cpu_util_type - CPU utilization type
2916 * @FREQUENCY_UTIL:	Utilization used to select frequency
2917 * @ENERGY_UTIL:	Utilization used during energy calculation
2918 *
2919 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2920 * need to be aggregated differently depending on the usage made of them. This
2921 * enum is used within effective_cpu_util() to differentiate the types of
2922 * utilization expected by the callers, and adjust the aggregation accordingly.
2923 */
2924enum cpu_util_type {
2925	FREQUENCY_UTIL,
2926	ENERGY_UTIL,
2927};
2928
2929unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2930				 enum cpu_util_type type,
2931				 struct task_struct *p);
2932
2933/*
2934 * Verify the fitness of task @p to run on @cpu taking into account the
2935 * CPU original capacity and the runtime/deadline ratio of the task.
2936 *
2937 * The function will return true if the original capacity of @cpu is
2938 * greater than or equal to task's deadline density right shifted by
2939 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2940 */
2941static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2942{
2943	unsigned long cap = arch_scale_cpu_capacity(cpu);
2944
2945	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2946}
2947
2948static inline unsigned long cpu_bw_dl(struct rq *rq)
2949{
2950	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2951}
2952
2953static inline unsigned long cpu_util_dl(struct rq *rq)
2954{
2955	return READ_ONCE(rq->avg_dl.util_avg);
2956}
2957
2958/**
2959 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2960 * @cpu: the CPU to get the utilization for.
2961 *
2962 * The unit of the return value must be the same as the one of CPU capacity
2963 * so that CPU utilization can be compared with CPU capacity.
2964 *
2965 * CPU utilization is the sum of running time of runnable tasks plus the
2966 * recent utilization of currently non-runnable tasks on that CPU.
2967 * It represents the amount of CPU capacity currently used by CFS tasks in
2968 * the range [0..max CPU capacity] with max CPU capacity being the CPU
2969 * capacity at f_max.
2970 *
2971 * The estimated CPU utilization is defined as the maximum between CPU
2972 * utilization and sum of the estimated utilization of the currently
2973 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2974 * previously-executed tasks, which helps better deduce how busy a CPU will
2975 * be when a long-sleeping task wakes up. The contribution to CPU utilization
2976 * of such a task would be significantly decayed at this point of time.
2977 *
2978 * CPU utilization can be higher than the current CPU capacity
2979 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2980 * of rounding errors as well as task migrations or wakeups of new tasks.
2981 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2982 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2983 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2984 * capacity. CPU utilization is allowed to overshoot current CPU capacity
2985 * though since this is useful for predicting the CPU capacity required
2986 * after task migrations (scheduler-driven DVFS).
2987 *
2988 * Return: (Estimated) utilization for the specified CPU.
2989 */
2990static inline unsigned long cpu_util_cfs(int cpu)
2991{
2992	struct cfs_rq *cfs_rq;
2993	unsigned long util;
2994
2995	cfs_rq = &cpu_rq(cpu)->cfs;
2996	util = READ_ONCE(cfs_rq->avg.util_avg);
2997
2998	if (sched_feat(UTIL_EST)) {
2999		util = max_t(unsigned long, util,
3000			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
3001	}
3002
3003	return min(util, capacity_orig_of(cpu));
3004}
3005
3006static inline unsigned long cpu_util_rt(struct rq *rq)
3007{
3008	return READ_ONCE(rq->avg_rt.util_avg);
3009}
3010#endif
3011
3012#ifdef CONFIG_UCLAMP_TASK
3013unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3014
3015static inline unsigned long uclamp_rq_get(struct rq *rq,
3016					  enum uclamp_id clamp_id)
3017{
3018	return READ_ONCE(rq->uclamp[clamp_id].value);
3019}
3020
3021static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3022				 unsigned int value)
3023{
3024	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3025}
3026
3027static inline bool uclamp_rq_is_idle(struct rq *rq)
3028{
3029	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3030}
3031
3032/**
3033 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3034 * @rq:		The rq to clamp against. Must not be NULL.
3035 * @util:	The util value to clamp.
3036 * @p:		The task to clamp against. Can be NULL if you want to clamp
3037 *		against @rq only.
3038 *
3039 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3040 *
3041 * If sched_uclamp_used static key is disabled, then just return the util
3042 * without any clamping since uclamp aggregation at the rq level in the fast
3043 * path is disabled, rendering this operation a NOP.
3044 *
3045 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3046 * will return the correct effective uclamp value of the task even if the
3047 * static key is disabled.
3048 */
3049static __always_inline
3050unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3051				  struct task_struct *p)
3052{
3053	unsigned long min_util = 0;
3054	unsigned long max_util = 0;
3055
3056	if (!static_branch_likely(&sched_uclamp_used))
3057		return util;
3058
3059	if (p) {
3060		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3061		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3062
3063		/*
3064		 * Ignore last runnable task's max clamp, as this task will
3065		 * reset it. Similarly, no need to read the rq's min clamp.
3066		 */
3067		if (uclamp_rq_is_idle(rq))
3068			goto out;
3069	}
3070
3071	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3072	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3073out:
3074	/*
3075	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3076	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3077	 * inversion. Fix it now when the clamps are applied.
3078	 */
3079	if (unlikely(min_util >= max_util))
3080		return min_util;
3081
3082	return clamp(util, min_util, max_util);
3083}
3084
3085/* Is the rq being capped/throttled by uclamp_max? */
3086static inline bool uclamp_rq_is_capped(struct rq *rq)
3087{
3088	unsigned long rq_util;
3089	unsigned long max_util;
3090
3091	if (!static_branch_likely(&sched_uclamp_used))
3092		return false;
3093
3094	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3095	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3096
3097	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3098}
3099
3100/*
3101 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3102 * by default in the fast path and only gets turned on once userspace performs
3103 * an operation that requires it.
3104 *
3105 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3106 * hence is active.
3107 */
3108static inline bool uclamp_is_used(void)
3109{
3110	return static_branch_likely(&sched_uclamp_used);
3111}
3112#else /* CONFIG_UCLAMP_TASK */
3113static inline unsigned long uclamp_eff_value(struct task_struct *p,
3114					     enum uclamp_id clamp_id)
3115{
3116	if (clamp_id == UCLAMP_MIN)
3117		return 0;
3118
3119	return SCHED_CAPACITY_SCALE;
3120}
3121
3122static inline
3123unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3124				  struct task_struct *p)
3125{
3126	return util;
3127}
3128
3129static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3130
3131static inline bool uclamp_is_used(void)
3132{
3133	return false;
3134}
 
3135
3136static inline unsigned long uclamp_rq_get(struct rq *rq,
3137					  enum uclamp_id clamp_id)
 
 
 
 
 
 
 
 
3138{
3139	if (clamp_id == UCLAMP_MIN)
3140		return 0;
 
3141
3142	return SCHED_CAPACITY_SCALE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143}
3144
3145static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3146				 unsigned int value)
3147{
 
3148}
3149
3150static inline bool uclamp_rq_is_idle(struct rq *rq)
3151{
3152	return false;
 
 
 
 
 
 
 
3153}
3154#endif /* CONFIG_UCLAMP_TASK */
 
 
 
 
 
 
 
 
 
 
 
 
3155
3156#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3157static inline unsigned long cpu_util_irq(struct rq *rq)
3158{
3159	return rq->avg_irq.util_avg;
3160}
3161
3162static inline
3163unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3164{
3165	util *= (max - irq);
3166	util /= max;
3167
3168	return util;
3169
3170}
3171#else
3172static inline unsigned long cpu_util_irq(struct rq *rq)
3173{
3174	return 0;
3175}
3176
3177static inline
3178unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3179{
3180	return util;
3181}
3182#endif
3183
3184#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3185
3186#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3187
3188DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3189
3190static inline bool sched_energy_enabled(void)
3191{
3192	return static_branch_unlikely(&sched_energy_present);
3193}
3194
3195#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3196
3197#define perf_domain_span(pd) NULL
3198static inline bool sched_energy_enabled(void) { return false; }
3199
3200#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3201
3202#ifdef CONFIG_MEMBARRIER
3203/*
3204 * The scheduler provides memory barriers required by membarrier between:
3205 * - prior user-space memory accesses and store to rq->membarrier_state,
3206 * - store to rq->membarrier_state and following user-space memory accesses.
3207 * In the same way it provides those guarantees around store to rq->curr.
3208 */
3209static inline void membarrier_switch_mm(struct rq *rq,
3210					struct mm_struct *prev_mm,
3211					struct mm_struct *next_mm)
3212{
3213	int membarrier_state;
3214
3215	if (prev_mm == next_mm)
3216		return;
3217
3218	membarrier_state = atomic_read(&next_mm->membarrier_state);
3219	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3220		return;
3221
3222	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3223}
3224#else
3225static inline void membarrier_switch_mm(struct rq *rq,
3226					struct mm_struct *prev_mm,
3227					struct mm_struct *next_mm)
3228{
3229}
3230#endif
3231
3232#ifdef CONFIG_SMP
3233static inline bool is_per_cpu_kthread(struct task_struct *p)
3234{
3235	if (!(p->flags & PF_KTHREAD))
3236		return false;
3237
3238	if (p->nr_cpus_allowed != 1)
3239		return false;
3240
3241	return true;
3242}
3243#endif
3244
3245extern void swake_up_all_locked(struct swait_queue_head *q);
3246extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3247
3248#ifdef CONFIG_PREEMPT_DYNAMIC
3249extern int preempt_dynamic_mode;
3250extern int sched_dynamic_mode(const char *str);
3251extern void sched_dynamic_update(int mode);
3252#endif
3253
3254static inline void update_current_exec_runtime(struct task_struct *curr,
3255						u64 now, u64 delta_exec)
3256{
3257	curr->se.sum_exec_runtime += delta_exec;
3258	account_group_exec_runtime(curr, delta_exec);
3259
3260	curr->se.exec_start = now;
3261	cgroup_account_cputime(curr, delta_exec);
3262}
3263
3264#endif /* _KERNEL_SCHED_SCHED_H */
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#include <linux/sched.h>
 
   6
 
   7#include <linux/sched/autogroup.h>
   8#include <linux/sched/clock.h>
   9#include <linux/sched/coredump.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/cputime.h>
  12#include <linux/sched/deadline.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/hotplug.h>
  15#include <linux/sched/idle.h>
  16#include <linux/sched/init.h>
  17#include <linux/sched/isolation.h>
  18#include <linux/sched/jobctl.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/mm.h>
  21#include <linux/sched/nohz.h>
  22#include <linux/sched/numa_balancing.h>
  23#include <linux/sched/prio.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/smt.h>
  27#include <linux/sched/stat.h>
  28#include <linux/sched/sysctl.h>
 
  29#include <linux/sched/task.h>
  30#include <linux/sched/task_stack.h>
  31#include <linux/sched/topology.h>
  32#include <linux/sched/user.h>
  33#include <linux/sched/wake_q.h>
  34#include <linux/sched/xacct.h>
  35
  36#include <uapi/linux/sched/types.h>
  37
  38#include <linux/binfmts.h>
  39#include <linux/blkdev.h>
  40#include <linux/compat.h>
  41#include <linux/context_tracking.h>
  42#include <linux/cpufreq.h>
  43#include <linux/cpuidle.h>
  44#include <linux/cpuset.h>
  45#include <linux/ctype.h>
  46#include <linux/debugfs.h>
  47#include <linux/delayacct.h>
  48#include <linux/energy_model.h>
  49#include <linux/init_task.h>
  50#include <linux/kprobes.h>
 
 
  51#include <linux/kthread.h>
  52#include <linux/membarrier.h>
  53#include <linux/migrate.h>
  54#include <linux/mmu_context.h>
  55#include <linux/nmi.h>
 
 
 
 
 
  56#include <linux/proc_fs.h>
  57#include <linux/prefetch.h>
  58#include <linux/profile.h>
  59#include <linux/psi.h>
  60#include <linux/rcupdate_wait.h>
  61#include <linux/security.h>
 
 
 
 
  62#include <linux/stop_machine.h>
  63#include <linux/suspend.h>
  64#include <linux/swait.h>
  65#include <linux/syscalls.h>
  66#include <linux/task_work.h>
  67#include <linux/tsacct_kern.h>
 
 
 
 
 
 
 
 
 
  68
  69#include <asm/tlb.h>
  70#include <asm-generic/vmlinux.lds.h>
 
 
 
 
 
 
 
 
  71
  72#ifdef CONFIG_PARAVIRT
  73# include <asm/paravirt.h>
 
  74#endif
  75
  76#include "cpupri.h"
  77#include "cpudeadline.h"
  78
  79#include <trace/events/sched.h>
  80
  81#ifdef CONFIG_SCHED_DEBUG
  82# define SCHED_WARN_ON(x)	WARN_ONCE(x, #x)
  83#else
  84# define SCHED_WARN_ON(x)	({ (void)(x), 0; })
  85#endif
  86
  87struct rq;
  88struct cpuidle_state;
  89
  90/* task_struct::on_rq states: */
  91#define TASK_ON_RQ_QUEUED	1
  92#define TASK_ON_RQ_MIGRATING	2
  93
  94extern __read_mostly int scheduler_running;
  95
  96extern unsigned long calc_load_update;
  97extern atomic_long_t calc_load_tasks;
  98
 
 
  99extern void calc_global_load_tick(struct rq *this_rq);
 100extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 101
 102extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 
 
 
 
 
 103/*
 104 * Helpers for converting nanosecond timing to jiffy resolution
 105 */
 106#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 107
 108/*
 109 * Increase resolution of nice-level calculations for 64-bit architectures.
 110 * The extra resolution improves shares distribution and load balancing of
 111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 112 * hierarchies, especially on larger systems. This is not a user-visible change
 113 * and does not change the user-interface for setting shares/weights.
 114 *
 115 * We increase resolution only if we have enough bits to allow this increased
 116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 117 * are pretty high and the returns do not justify the increased costs.
 118 *
 119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 120 * increase coverage and consistency always enable it on 64-bit platforms.
 121 */
 122#ifdef CONFIG_64BIT
 123# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 124# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 125# define scale_load_down(w) \
 126({ \
 127	unsigned long __w = (w); \
 128	if (__w) \
 129		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 130	__w; \
 131})
 132#else
 133# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 134# define scale_load(w)		(w)
 135# define scale_load_down(w)	(w)
 136#endif
 137
 138/*
 139 * Task weight (visible to users) and its load (invisible to users) have
 140 * independent resolution, but they should be well calibrated. We use
 141 * scale_load() and scale_load_down(w) to convert between them. The
 142 * following must be true:
 143 *
 144 *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
 145 *
 146 */
 147#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 148
 149/*
 150 * Single value that decides SCHED_DEADLINE internal math precision.
 151 * 10 -> just above 1us
 152 * 9  -> just above 0.5us
 153 */
 154#define DL_SCALE		10
 155
 156/*
 157 * Single value that denotes runtime == period, ie unlimited time.
 158 */
 159#define RUNTIME_INF		((u64)~0ULL)
 160
 161static inline int idle_policy(int policy)
 162{
 163	return policy == SCHED_IDLE;
 164}
 165static inline int fair_policy(int policy)
 166{
 167	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 168}
 169
 170static inline int rt_policy(int policy)
 171{
 172	return policy == SCHED_FIFO || policy == SCHED_RR;
 173}
 174
 175static inline int dl_policy(int policy)
 176{
 177	return policy == SCHED_DEADLINE;
 178}
 179static inline bool valid_policy(int policy)
 180{
 181	return idle_policy(policy) || fair_policy(policy) ||
 182		rt_policy(policy) || dl_policy(policy);
 183}
 184
 185static inline int task_has_idle_policy(struct task_struct *p)
 186{
 187	return idle_policy(p->policy);
 188}
 189
 190static inline int task_has_rt_policy(struct task_struct *p)
 191{
 192	return rt_policy(p->policy);
 193}
 194
 195static inline int task_has_dl_policy(struct task_struct *p)
 196{
 197	return dl_policy(p->policy);
 198}
 199
 200#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 201
 202static inline void update_avg(u64 *avg, u64 sample)
 203{
 204	s64 diff = sample - *avg;
 205	*avg += diff / 8;
 206}
 207
 208/*
 
 
 
 
 
 
 
 209 * !! For sched_setattr_nocheck() (kernel) only !!
 210 *
 211 * This is actually gross. :(
 212 *
 213 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 214 * tasks, but still be able to sleep. We need this on platforms that cannot
 215 * atomically change clock frequency. Remove once fast switching will be
 216 * available on such platforms.
 217 *
 218 * SUGOV stands for SchedUtil GOVernor.
 219 */
 220#define SCHED_FLAG_SUGOV	0x10000000
 221
 
 
 222static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 223{
 224#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 225	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 226#else
 227	return false;
 228#endif
 229}
 230
 231/*
 232 * Tells if entity @a should preempt entity @b.
 233 */
 234static inline bool
 235dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 236{
 237	return dl_entity_is_special(a) ||
 238	       dl_time_before(a->deadline, b->deadline);
 239}
 240
 241/*
 242 * This is the priority-queue data structure of the RT scheduling class:
 243 */
 244struct rt_prio_array {
 245	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 246	struct list_head queue[MAX_RT_PRIO];
 247};
 248
 249struct rt_bandwidth {
 250	/* nests inside the rq lock: */
 251	raw_spinlock_t		rt_runtime_lock;
 252	ktime_t			rt_period;
 253	u64			rt_runtime;
 254	struct hrtimer		rt_period_timer;
 255	unsigned int		rt_period_active;
 256};
 257
 258void __dl_clear_params(struct task_struct *p);
 259
 
 
 
 
 
 
 
 
 
 
 
 260/*
 261 * To keep the bandwidth of -deadline tasks and groups under control
 262 * we need some place where:
 263 *  - store the maximum -deadline bandwidth of the system (the group);
 264 *  - cache the fraction of that bandwidth that is currently allocated.
 
 265 *
 266 * This is all done in the data structure below. It is similar to the
 267 * one used for RT-throttling (rt_bandwidth), with the main difference
 268 * that, since here we are only interested in admission control, we
 269 * do not decrease any runtime while the group "executes", neither we
 270 * need a timer to replenish it.
 271 *
 272 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 273 * meaning that:
 274 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 275 *  - dl_total_bw array contains, in the i-eth element, the currently
 276 *    allocated bandwidth on the i-eth CPU.
 277 * Moreover, groups consume bandwidth on each CPU, while tasks only
 278 * consume bandwidth on the CPU they're running on.
 279 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 280 * that will be shown the next time the proc or cgroup controls will
 281 * be red. It on its turn can be changed by writing on its own
 282 * control.
 283 */
 284struct dl_bandwidth {
 285	raw_spinlock_t		dl_runtime_lock;
 286	u64			dl_runtime;
 287	u64			dl_period;
 288};
 289
 290static inline int dl_bandwidth_enabled(void)
 291{
 292	return sysctl_sched_rt_runtime >= 0;
 293}
 294
 295struct dl_bw {
 296	raw_spinlock_t		lock;
 297	u64			bw;
 298	u64			total_bw;
 299};
 300
 301static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
 302
 303static inline
 304void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 305{
 306	dl_b->total_bw -= tsk_bw;
 307	__dl_update(dl_b, (s32)tsk_bw / cpus);
 308}
 309
 310static inline
 311void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 312{
 313	dl_b->total_bw += tsk_bw;
 314	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 315}
 316
 317static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
 318				 u64 old_bw, u64 new_bw)
 319{
 320	return dl_b->bw != -1 &&
 321	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 322}
 323
 324/*
 325 * Verify the fitness of task @p to run on @cpu taking into account the
 326 * CPU original capacity and the runtime/deadline ratio of the task.
 327 *
 328 * The function will return true if the CPU original capacity of the
 329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 330 * task and false otherwise.
 331 */
 332static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
 333{
 334	unsigned long cap = arch_scale_cpu_capacity(cpu);
 335
 336	return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
 337}
 338
 339extern void init_dl_bw(struct dl_bw *dl_b);
 340extern int  sched_dl_global_validate(void);
 341extern void sched_dl_do_global(void);
 342extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 343extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 344extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 345extern bool __checkparam_dl(const struct sched_attr *attr);
 346extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 347extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
 348extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 349extern bool dl_cpu_busy(unsigned int cpu);
 350
 351#ifdef CONFIG_CGROUP_SCHED
 352
 353#include <linux/cgroup.h>
 354#include <linux/psi.h>
 355
 356struct cfs_rq;
 357struct rt_rq;
 358
 359extern struct list_head task_groups;
 360
 361struct cfs_bandwidth {
 362#ifdef CONFIG_CFS_BANDWIDTH
 363	raw_spinlock_t		lock;
 364	ktime_t			period;
 365	u64			quota;
 366	u64			runtime;
 
 
 367	s64			hierarchical_quota;
 368
 369	u8			idle;
 370	u8			period_active;
 371	u8			slack_started;
 372	struct hrtimer		period_timer;
 373	struct hrtimer		slack_timer;
 374	struct list_head	throttled_cfs_rq;
 375
 376	/* Statistics: */
 377	int			nr_periods;
 378	int			nr_throttled;
 
 379	u64			throttled_time;
 
 380#endif
 381};
 382
 383/* Task group related information */
 384struct task_group {
 385	struct cgroup_subsys_state css;
 386
 387#ifdef CONFIG_FAIR_GROUP_SCHED
 388	/* schedulable entities of this group on each CPU */
 389	struct sched_entity	**se;
 390	/* runqueue "owned" by this group on each CPU */
 391	struct cfs_rq		**cfs_rq;
 392	unsigned long		shares;
 393
 
 
 
 394#ifdef	CONFIG_SMP
 395	/*
 396	 * load_avg can be heavily contended at clock tick time, so put
 397	 * it in its own cacheline separated from the fields above which
 398	 * will also be accessed at each tick.
 399	 */
 400	atomic_long_t		load_avg ____cacheline_aligned;
 401#endif
 402#endif
 403
 404#ifdef CONFIG_RT_GROUP_SCHED
 405	struct sched_rt_entity	**rt_se;
 406	struct rt_rq		**rt_rq;
 407
 408	struct rt_bandwidth	rt_bandwidth;
 409#endif
 410
 411	struct rcu_head		rcu;
 412	struct list_head	list;
 413
 414	struct task_group	*parent;
 415	struct list_head	siblings;
 416	struct list_head	children;
 417
 418#ifdef CONFIG_SCHED_AUTOGROUP
 419	struct autogroup	*autogroup;
 420#endif
 421
 422	struct cfs_bandwidth	cfs_bandwidth;
 423
 424#ifdef CONFIG_UCLAMP_TASK_GROUP
 425	/* The two decimal precision [%] value requested from user-space */
 426	unsigned int		uclamp_pct[UCLAMP_CNT];
 427	/* Clamp values requested for a task group */
 428	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 429	/* Effective clamp values used for a task group */
 430	struct uclamp_se	uclamp[UCLAMP_CNT];
 431#endif
 432
 433};
 434
 435#ifdef CONFIG_FAIR_GROUP_SCHED
 436#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 437
 438/*
 439 * A weight of 0 or 1 can cause arithmetics problems.
 440 * A weight of a cfs_rq is the sum of weights of which entities
 441 * are queued on this cfs_rq, so a weight of a entity should not be
 442 * too large, so as the shares value of a task group.
 443 * (The default weight is 1024 - so there's no practical
 444 *  limitation from this.)
 445 */
 446#define MIN_SHARES		(1UL <<  1)
 447#define MAX_SHARES		(1UL << 18)
 448#endif
 449
 450typedef int (*tg_visitor)(struct task_group *, void *);
 451
 452extern int walk_tg_tree_from(struct task_group *from,
 453			     tg_visitor down, tg_visitor up, void *data);
 454
 455/*
 456 * Iterate the full tree, calling @down when first entering a node and @up when
 457 * leaving it for the final time.
 458 *
 459 * Caller must hold rcu_lock or sufficient equivalent.
 460 */
 461static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 462{
 463	return walk_tg_tree_from(&root_task_group, down, up, data);
 464}
 465
 466extern int tg_nop(struct task_group *tg, void *data);
 467
 468extern void free_fair_sched_group(struct task_group *tg);
 469extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 470extern void online_fair_sched_group(struct task_group *tg);
 471extern void unregister_fair_sched_group(struct task_group *tg);
 472extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 473			struct sched_entity *se, int cpu,
 474			struct sched_entity *parent);
 475extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 476
 477extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 478extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 479extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 480
 481extern void free_rt_sched_group(struct task_group *tg);
 482extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 483extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 484		struct sched_rt_entity *rt_se, int cpu,
 485		struct sched_rt_entity *parent);
 486extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 487extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 488extern long sched_group_rt_runtime(struct task_group *tg);
 489extern long sched_group_rt_period(struct task_group *tg);
 490extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 491
 492extern struct task_group *sched_create_group(struct task_group *parent);
 493extern void sched_online_group(struct task_group *tg,
 494			       struct task_group *parent);
 495extern void sched_destroy_group(struct task_group *tg);
 496extern void sched_offline_group(struct task_group *tg);
 497
 498extern void sched_move_task(struct task_struct *tsk);
 499
 500#ifdef CONFIG_FAIR_GROUP_SCHED
 501extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 502
 
 
 503#ifdef CONFIG_SMP
 504extern void set_task_rq_fair(struct sched_entity *se,
 505			     struct cfs_rq *prev, struct cfs_rq *next);
 506#else /* !CONFIG_SMP */
 507static inline void set_task_rq_fair(struct sched_entity *se,
 508			     struct cfs_rq *prev, struct cfs_rq *next) { }
 509#endif /* CONFIG_SMP */
 510#endif /* CONFIG_FAIR_GROUP_SCHED */
 511
 512#else /* CONFIG_CGROUP_SCHED */
 513
 514struct cfs_bandwidth { };
 515
 516#endif	/* CONFIG_CGROUP_SCHED */
 517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518/* CFS-related fields in a runqueue */
 519struct cfs_rq {
 520	struct load_weight	load;
 521	unsigned int		nr_running;
 522	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 
 523	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 524
 525	u64			exec_clock;
 526	u64			min_vruntime;
 
 
 
 
 
 527#ifndef CONFIG_64BIT
 528	u64			min_vruntime_copy;
 529#endif
 530
 531	struct rb_root_cached	tasks_timeline;
 532
 533	/*
 534	 * 'curr' points to currently running entity on this cfs_rq.
 535	 * It is set to NULL otherwise (i.e when none are currently running).
 536	 */
 537	struct sched_entity	*curr;
 538	struct sched_entity	*next;
 539	struct sched_entity	*last;
 540	struct sched_entity	*skip;
 541
 542#ifdef	CONFIG_SCHED_DEBUG
 543	unsigned int		nr_spread_over;
 544#endif
 545
 546#ifdef CONFIG_SMP
 547	/*
 548	 * CFS load tracking
 549	 */
 550	struct sched_avg	avg;
 551#ifndef CONFIG_64BIT
 552	u64			load_last_update_time_copy;
 553#endif
 554	struct {
 555		raw_spinlock_t	lock ____cacheline_aligned;
 556		int		nr;
 557		unsigned long	load_avg;
 558		unsigned long	util_avg;
 559		unsigned long	runnable_avg;
 560	} removed;
 561
 562#ifdef CONFIG_FAIR_GROUP_SCHED
 563	unsigned long		tg_load_avg_contrib;
 564	long			propagate;
 565	long			prop_runnable_sum;
 566
 567	/*
 568	 *   h_load = weight * f(tg)
 569	 *
 570	 * Where f(tg) is the recursive weight fraction assigned to
 571	 * this group.
 572	 */
 573	unsigned long		h_load;
 574	u64			last_h_load_update;
 575	struct sched_entity	*h_load_next;
 576#endif /* CONFIG_FAIR_GROUP_SCHED */
 577#endif /* CONFIG_SMP */
 578
 579#ifdef CONFIG_FAIR_GROUP_SCHED
 580	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 581
 582	/*
 583	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 584	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 585	 * (like users, containers etc.)
 586	 *
 587	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 588	 * This list is used during load balance.
 589	 */
 590	int			on_list;
 591	struct list_head	leaf_cfs_rq_list;
 592	struct task_group	*tg;	/* group that "owns" this runqueue */
 593
 
 
 
 594#ifdef CONFIG_CFS_BANDWIDTH
 595	int			runtime_enabled;
 596	s64			runtime_remaining;
 597
 
 
 
 
 598	u64			throttled_clock;
 599	u64			throttled_clock_task;
 600	u64			throttled_clock_task_time;
 601	int			throttled;
 602	int			throttle_count;
 603	struct list_head	throttled_list;
 604#endif /* CONFIG_CFS_BANDWIDTH */
 605#endif /* CONFIG_FAIR_GROUP_SCHED */
 606};
 607
 608static inline int rt_bandwidth_enabled(void)
 609{
 610	return sysctl_sched_rt_runtime >= 0;
 611}
 612
 613/* RT IPI pull logic requires IRQ_WORK */
 614#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 615# define HAVE_RT_PUSH_IPI
 616#endif
 617
 618/* Real-Time classes' related field in a runqueue: */
 619struct rt_rq {
 620	struct rt_prio_array	active;
 621	unsigned int		rt_nr_running;
 622	unsigned int		rr_nr_running;
 623#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 624	struct {
 625		int		curr; /* highest queued rt task prio */
 626#ifdef CONFIG_SMP
 627		int		next; /* next highest */
 628#endif
 629	} highest_prio;
 630#endif
 631#ifdef CONFIG_SMP
 632	unsigned long		rt_nr_migratory;
 633	unsigned long		rt_nr_total;
 634	int			overloaded;
 635	struct plist_head	pushable_tasks;
 636
 637#endif /* CONFIG_SMP */
 638	int			rt_queued;
 639
 640	int			rt_throttled;
 641	u64			rt_time;
 642	u64			rt_runtime;
 643	/* Nests inside the rq lock: */
 644	raw_spinlock_t		rt_runtime_lock;
 645
 646#ifdef CONFIG_RT_GROUP_SCHED
 647	unsigned long		rt_nr_boosted;
 648
 649	struct rq		*rq;
 650	struct task_group	*tg;
 651#endif
 652};
 653
 654static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 655{
 656	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 657}
 658
 659/* Deadline class' related fields in a runqueue */
 660struct dl_rq {
 661	/* runqueue is an rbtree, ordered by deadline */
 662	struct rb_root_cached	root;
 663
 664	unsigned long		dl_nr_running;
 665
 666#ifdef CONFIG_SMP
 667	/*
 668	 * Deadline values of the currently executing and the
 669	 * earliest ready task on this rq. Caching these facilitates
 670	 * the decision whether or not a ready but not running task
 671	 * should migrate somewhere else.
 672	 */
 673	struct {
 674		u64		curr;
 675		u64		next;
 676	} earliest_dl;
 677
 678	unsigned long		dl_nr_migratory;
 679	int			overloaded;
 680
 681	/*
 682	 * Tasks on this rq that can be pushed away. They are kept in
 683	 * an rb-tree, ordered by tasks' deadlines, with caching
 684	 * of the leftmost (earliest deadline) element.
 685	 */
 686	struct rb_root_cached	pushable_dl_tasks_root;
 687#else
 688	struct dl_bw		dl_bw;
 689#endif
 690	/*
 691	 * "Active utilization" for this runqueue: increased when a
 692	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 693	 * task blocks
 694	 */
 695	u64			running_bw;
 696
 697	/*
 698	 * Utilization of the tasks "assigned" to this runqueue (including
 699	 * the tasks that are in runqueue and the tasks that executed on this
 700	 * CPU and blocked). Increased when a task moves to this runqueue, and
 701	 * decreased when the task moves away (migrates, changes scheduling
 702	 * policy, or terminates).
 703	 * This is needed to compute the "inactive utilization" for the
 704	 * runqueue (inactive utilization = this_bw - running_bw).
 705	 */
 706	u64			this_bw;
 707	u64			extra_bw;
 708
 709	/*
 710	 * Inverse of the fraction of CPU utilization that can be reclaimed
 711	 * by the GRUB algorithm.
 712	 */
 713	u64			bw_ratio;
 714};
 715
 716#ifdef CONFIG_FAIR_GROUP_SCHED
 717/* An entity is a task if it doesn't "own" a runqueue */
 718#define entity_is_task(se)	(!se->my_q)
 719
 720static inline void se_update_runnable(struct sched_entity *se)
 721{
 722	if (!entity_is_task(se))
 723		se->runnable_weight = se->my_q->h_nr_running;
 724}
 725
 726static inline long se_runnable(struct sched_entity *se)
 727{
 728	if (entity_is_task(se))
 729		return !!se->on_rq;
 730	else
 731		return se->runnable_weight;
 732}
 733
 734#else
 735#define entity_is_task(se)	1
 736
 737static inline void se_update_runnable(struct sched_entity *se) {}
 738
 739static inline long se_runnable(struct sched_entity *se)
 740{
 741	return !!se->on_rq;
 742}
 743#endif
 744
 745#ifdef CONFIG_SMP
 746/*
 747 * XXX we want to get rid of these helpers and use the full load resolution.
 748 */
 749static inline long se_weight(struct sched_entity *se)
 750{
 751	return scale_load_down(se->load.weight);
 752}
 753
 754
 755static inline bool sched_asym_prefer(int a, int b)
 756{
 757	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 758}
 759
 760struct perf_domain {
 761	struct em_perf_domain *em_pd;
 762	struct perf_domain *next;
 763	struct rcu_head rcu;
 764};
 765
 766/* Scheduling group status flags */
 767#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 768#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 769
 770/*
 771 * We add the notion of a root-domain which will be used to define per-domain
 772 * variables. Each exclusive cpuset essentially defines an island domain by
 773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 774 * exclusive cpuset is created, we also create and attach a new root-domain
 775 * object.
 776 *
 777 */
 778struct root_domain {
 779	atomic_t		refcount;
 780	atomic_t		rto_count;
 781	struct rcu_head		rcu;
 782	cpumask_var_t		span;
 783	cpumask_var_t		online;
 784
 785	/*
 786	 * Indicate pullable load on at least one CPU, e.g:
 787	 * - More than one runnable task
 788	 * - Running task is misfit
 789	 */
 790	int			overload;
 791
 792	/* Indicate one or more cpus over-utilized (tipping point) */
 793	int			overutilized;
 794
 795	/*
 796	 * The bit corresponding to a CPU gets set here if such CPU has more
 797	 * than one runnable -deadline task (as it is below for RT tasks).
 798	 */
 799	cpumask_var_t		dlo_mask;
 800	atomic_t		dlo_count;
 801	struct dl_bw		dl_bw;
 802	struct cpudl		cpudl;
 803
 
 
 
 
 
 
 
 
 
 804#ifdef HAVE_RT_PUSH_IPI
 805	/*
 806	 * For IPI pull requests, loop across the rto_mask.
 807	 */
 808	struct irq_work		rto_push_work;
 809	raw_spinlock_t		rto_lock;
 810	/* These are only updated and read within rto_lock */
 811	int			rto_loop;
 812	int			rto_cpu;
 813	/* These atomics are updated outside of a lock */
 814	atomic_t		rto_loop_next;
 815	atomic_t		rto_loop_start;
 816#endif
 817	/*
 818	 * The "RT overload" flag: it gets set if a CPU has more than
 819	 * one runnable RT task.
 820	 */
 821	cpumask_var_t		rto_mask;
 822	struct cpupri		cpupri;
 823
 824	unsigned long		max_cpu_capacity;
 825
 826	/*
 827	 * NULL-terminated list of performance domains intersecting with the
 828	 * CPUs of the rd. Protected by RCU.
 829	 */
 830	struct perf_domain __rcu *pd;
 831};
 832
 833extern void init_defrootdomain(void);
 834extern int sched_init_domains(const struct cpumask *cpu_map);
 835extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 836extern void sched_get_rd(struct root_domain *rd);
 837extern void sched_put_rd(struct root_domain *rd);
 838
 839#ifdef HAVE_RT_PUSH_IPI
 840extern void rto_push_irq_work_func(struct irq_work *work);
 841#endif
 842#endif /* CONFIG_SMP */
 843
 844#ifdef CONFIG_UCLAMP_TASK
 845/*
 846 * struct uclamp_bucket - Utilization clamp bucket
 847 * @value: utilization clamp value for tasks on this clamp bucket
 848 * @tasks: number of RUNNABLE tasks on this clamp bucket
 849 *
 850 * Keep track of how many tasks are RUNNABLE for a given utilization
 851 * clamp value.
 852 */
 853struct uclamp_bucket {
 854	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 855	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 856};
 857
 858/*
 859 * struct uclamp_rq - rq's utilization clamp
 860 * @value: currently active clamp values for a rq
 861 * @bucket: utilization clamp buckets affecting a rq
 862 *
 863 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 864 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 865 * (or actually running) with that value.
 866 *
 867 * There are up to UCLAMP_CNT possible different clamp values, currently there
 868 * are only two: minimum utilization and maximum utilization.
 869 *
 870 * All utilization clamping values are MAX aggregated, since:
 871 * - for util_min: we want to run the CPU at least at the max of the minimum
 872 *   utilization required by its currently RUNNABLE tasks.
 873 * - for util_max: we want to allow the CPU to run up to the max of the
 874 *   maximum utilization allowed by its currently RUNNABLE tasks.
 875 *
 876 * Since on each system we expect only a limited number of different
 877 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 878 * the metrics required to compute all the per-rq utilization clamp values.
 879 */
 880struct uclamp_rq {
 881	unsigned int value;
 882	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 883};
 884
 885DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 886#endif /* CONFIG_UCLAMP_TASK */
 887
 
 
 
 
 
 
 888/*
 889 * This is the main, per-CPU runqueue data structure.
 890 *
 891 * Locking rule: those places that want to lock multiple runqueues
 892 * (such as the load balancing or the thread migration code), lock
 893 * acquire operations must be ordered by ascending &runqueue.
 894 */
 895struct rq {
 896	/* runqueue lock: */
 897	raw_spinlock_t		lock;
 898
 899	/*
 900	 * nr_running and cpu_load should be in the same cacheline because
 901	 * remote CPUs use both these fields when doing load calculation.
 902	 */
 903	unsigned int		nr_running;
 904#ifdef CONFIG_NUMA_BALANCING
 905	unsigned int		nr_numa_running;
 906	unsigned int		nr_preferred_running;
 907	unsigned int		numa_migrate_on;
 908#endif
 909#ifdef CONFIG_NO_HZ_COMMON
 910#ifdef CONFIG_SMP
 911	unsigned long		last_blocked_load_update_tick;
 912	unsigned int		has_blocked_load;
 913	call_single_data_t	nohz_csd;
 914#endif /* CONFIG_SMP */
 915	unsigned int		nohz_tick_stopped;
 916	atomic_t		nohz_flags;
 917#endif /* CONFIG_NO_HZ_COMMON */
 918
 919#ifdef CONFIG_SMP
 920	unsigned int		ttwu_pending;
 921#endif
 922	u64			nr_switches;
 923
 924#ifdef CONFIG_UCLAMP_TASK
 925	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 926	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 927	unsigned int		uclamp_flags;
 928#define UCLAMP_FLAG_IDLE 0x01
 929#endif
 930
 931	struct cfs_rq		cfs;
 932	struct rt_rq		rt;
 933	struct dl_rq		dl;
 934
 935#ifdef CONFIG_FAIR_GROUP_SCHED
 936	/* list of leaf cfs_rq on this CPU: */
 937	struct list_head	leaf_cfs_rq_list;
 938	struct list_head	*tmp_alone_branch;
 939#endif /* CONFIG_FAIR_GROUP_SCHED */
 940
 941	/*
 942	 * This is part of a global counter where only the total sum
 943	 * over all CPUs matters. A task can increase this counter on
 944	 * one CPU and if it got migrated afterwards it may decrease
 945	 * it on another CPU. Always updated under the runqueue lock:
 946	 */
 947	unsigned long		nr_uninterruptible;
 948
 949	struct task_struct __rcu	*curr;
 950	struct task_struct	*idle;
 951	struct task_struct	*stop;
 952	unsigned long		next_balance;
 953	struct mm_struct	*prev_mm;
 954
 955	unsigned int		clock_update_flags;
 956	u64			clock;
 957	/* Ensure that all clocks are in the same cache line */
 958	u64			clock_task ____cacheline_aligned;
 959	u64			clock_pelt;
 960	unsigned long		lost_idle_time;
 
 
 
 
 
 
 961
 962	atomic_t		nr_iowait;
 963
 
 
 
 
 
 964#ifdef CONFIG_MEMBARRIER
 965	int membarrier_state;
 966#endif
 967
 968#ifdef CONFIG_SMP
 969	struct root_domain		*rd;
 970	struct sched_domain __rcu	*sd;
 971
 972	unsigned long		cpu_capacity;
 973	unsigned long		cpu_capacity_orig;
 
 974
 975	struct callback_head	*balance_callback;
 976
 977	unsigned char		nohz_idle_balance;
 978	unsigned char		idle_balance;
 979
 980	unsigned long		misfit_task_load;
 981
 982	/* For active balancing */
 983	int			active_balance;
 984	int			push_cpu;
 985	struct cpu_stop_work	active_balance_work;
 986
 987	/* CPU of this runqueue: */
 988	int			cpu;
 989	int			online;
 990
 991	struct list_head cfs_tasks;
 992
 993	struct sched_avg	avg_rt;
 994	struct sched_avg	avg_dl;
 995#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
 996	struct sched_avg	avg_irq;
 997#endif
 998#ifdef CONFIG_SCHED_THERMAL_PRESSURE
 999	struct sched_avg	avg_thermal;
1000#endif
1001	u64			idle_stamp;
1002	u64			avg_idle;
1003
 
 
 
1004	/* This is used to determine avg_idle's max value */
1005	u64			max_idle_balance_cost;
 
 
 
 
1006#endif /* CONFIG_SMP */
1007
1008#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1009	u64			prev_irq_time;
1010#endif
1011#ifdef CONFIG_PARAVIRT
1012	u64			prev_steal_time;
1013#endif
1014#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1015	u64			prev_steal_time_rq;
1016#endif
1017
1018	/* calc_load related fields */
1019	unsigned long		calc_load_update;
1020	long			calc_load_active;
1021
1022#ifdef CONFIG_SCHED_HRTICK
1023#ifdef CONFIG_SMP
1024	call_single_data_t	hrtick_csd;
1025#endif
1026	struct hrtimer		hrtick_timer;
 
1027#endif
1028
1029#ifdef CONFIG_SCHEDSTATS
1030	/* latency stats */
1031	struct sched_info	rq_sched_info;
1032	unsigned long long	rq_cpu_time;
1033	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1034
1035	/* sys_sched_yield() stats */
1036	unsigned int		yld_count;
1037
1038	/* schedule() stats */
1039	unsigned int		sched_count;
1040	unsigned int		sched_goidle;
1041
1042	/* try_to_wake_up() stats */
1043	unsigned int		ttwu_count;
1044	unsigned int		ttwu_local;
1045#endif
1046
1047#ifdef CONFIG_CPU_IDLE
1048	/* Must be inspected within a rcu lock section */
1049	struct cpuidle_state	*idle_state;
1050#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051};
1052
1053#ifdef CONFIG_FAIR_GROUP_SCHED
1054
1055/* CPU runqueue to which this cfs_rq is attached */
1056static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1057{
1058	return cfs_rq->rq;
1059}
1060
1061#else
1062
1063static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1064{
1065	return container_of(cfs_rq, struct rq, cfs);
1066}
1067#endif
1068
1069static inline int cpu_of(struct rq *rq)
1070{
1071#ifdef CONFIG_SMP
1072	return rq->cpu;
1073#else
1074	return 0;
1075#endif
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079#ifdef CONFIG_SCHED_SMT
1080extern void __update_idle_core(struct rq *rq);
1081
1082static inline void update_idle_core(struct rq *rq)
1083{
1084	if (static_branch_unlikely(&sched_smt_present))
1085		__update_idle_core(rq);
1086}
1087
1088#else
1089static inline void update_idle_core(struct rq *rq) { }
1090#endif
1091
1092DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1095#define this_rq()		this_cpu_ptr(&runqueues)
1096#define task_rq(p)		cpu_rq(task_cpu(p))
1097#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1098#define raw_rq()		raw_cpu_ptr(&runqueues)
1099
1100extern void update_rq_clock(struct rq *rq);
 
1101
1102static inline u64 __rq_clock_broken(struct rq *rq)
 
1103{
1104	return READ_ONCE(rq->clock);
1105}
 
 
 
1106
1107/*
1108 * rq::clock_update_flags bits
1109 *
1110 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1111 *  call to __schedule(). This is an optimisation to avoid
1112 *  neighbouring rq clock updates.
1113 *
1114 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1115 *  in effect and calls to update_rq_clock() are being ignored.
1116 *
1117 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1118 *  made to update_rq_clock() since the last time rq::lock was pinned.
1119 *
1120 * If inside of __schedule(), clock_update_flags will have been
1121 * shifted left (a left shift is a cheap operation for the fast path
1122 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1123 *
1124 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1125 *
1126 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1127 * one position though, because the next rq_unpin_lock() will shift it
1128 * back.
1129 */
1130#define RQCF_REQ_SKIP		0x01
1131#define RQCF_ACT_SKIP		0x02
1132#define RQCF_UPDATED		0x04
1133
1134static inline void assert_clock_updated(struct rq *rq)
1135{
1136	/*
1137	 * The only reason for not seeing a clock update since the
1138	 * last rq_pin_lock() is if we're currently skipping updates.
1139	 */
1140	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1141}
1142
1143static inline u64 rq_clock(struct rq *rq)
1144{
1145	lockdep_assert_held(&rq->lock);
1146	assert_clock_updated(rq);
1147
1148	return rq->clock;
1149}
1150
1151static inline u64 rq_clock_task(struct rq *rq)
1152{
1153	lockdep_assert_held(&rq->lock);
1154	assert_clock_updated(rq);
1155
1156	return rq->clock_task;
1157}
1158
1159/**
1160 * By default the decay is the default pelt decay period.
1161 * The decay shift can change the decay period in
1162 * multiples of 32.
1163 *  Decay shift		Decay period(ms)
1164 *	0			32
1165 *	1			64
1166 *	2			128
1167 *	3			256
1168 *	4			512
1169 */
1170extern int sched_thermal_decay_shift;
1171
1172static inline u64 rq_clock_thermal(struct rq *rq)
1173{
1174	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1175}
1176
1177static inline void rq_clock_skip_update(struct rq *rq)
1178{
1179	lockdep_assert_held(&rq->lock);
1180	rq->clock_update_flags |= RQCF_REQ_SKIP;
1181}
1182
1183/*
1184 * See rt task throttling, which is the only time a skip
1185 * request is cancelled.
1186 */
1187static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1188{
1189	lockdep_assert_held(&rq->lock);
1190	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1191}
1192
1193struct rq_flags {
1194	unsigned long flags;
1195	struct pin_cookie cookie;
1196#ifdef CONFIG_SCHED_DEBUG
1197	/*
1198	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1199	 * current pin context is stashed here in case it needs to be
1200	 * restored in rq_repin_lock().
1201	 */
1202	unsigned int clock_update_flags;
1203#endif
1204};
1205
 
 
1206/*
1207 * Lockdep annotation that avoids accidental unlocks; it's like a
1208 * sticky/continuous lockdep_assert_held().
1209 *
1210 * This avoids code that has access to 'struct rq *rq' (basically everything in
1211 * the scheduler) from accidentally unlocking the rq if they do not also have a
1212 * copy of the (on-stack) 'struct rq_flags rf'.
1213 *
1214 * Also see Documentation/locking/lockdep-design.rst.
1215 */
1216static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1217{
1218	rf->cookie = lockdep_pin_lock(&rq->lock);
1219
1220#ifdef CONFIG_SCHED_DEBUG
1221	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1222	rf->clock_update_flags = 0;
 
 
 
1223#endif
1224}
1225
1226static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1227{
1228#ifdef CONFIG_SCHED_DEBUG
1229	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1230		rf->clock_update_flags = RQCF_UPDATED;
1231#endif
1232
1233	lockdep_unpin_lock(&rq->lock, rf->cookie);
1234}
1235
1236static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1237{
1238	lockdep_repin_lock(&rq->lock, rf->cookie);
1239
1240#ifdef CONFIG_SCHED_DEBUG
1241	/*
1242	 * Restore the value we stashed in @rf for this pin context.
1243	 */
1244	rq->clock_update_flags |= rf->clock_update_flags;
1245#endif
1246}
1247
1248struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1249	__acquires(rq->lock);
1250
1251struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1252	__acquires(p->pi_lock)
1253	__acquires(rq->lock);
1254
1255static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1256	__releases(rq->lock)
1257{
1258	rq_unpin_lock(rq, rf);
1259	raw_spin_unlock(&rq->lock);
1260}
1261
1262static inline void
1263task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1264	__releases(rq->lock)
1265	__releases(p->pi_lock)
1266{
1267	rq_unpin_lock(rq, rf);
1268	raw_spin_unlock(&rq->lock);
1269	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1270}
1271
1272static inline void
1273rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1274	__acquires(rq->lock)
1275{
1276	raw_spin_lock_irqsave(&rq->lock, rf->flags);
1277	rq_pin_lock(rq, rf);
1278}
1279
1280static inline void
1281rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1282	__acquires(rq->lock)
1283{
1284	raw_spin_lock_irq(&rq->lock);
1285	rq_pin_lock(rq, rf);
1286}
1287
1288static inline void
1289rq_lock(struct rq *rq, struct rq_flags *rf)
1290	__acquires(rq->lock)
1291{
1292	raw_spin_lock(&rq->lock);
1293	rq_pin_lock(rq, rf);
1294}
1295
1296static inline void
1297rq_relock(struct rq *rq, struct rq_flags *rf)
1298	__acquires(rq->lock)
1299{
1300	raw_spin_lock(&rq->lock);
1301	rq_repin_lock(rq, rf);
1302}
1303
1304static inline void
1305rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1306	__releases(rq->lock)
1307{
1308	rq_unpin_lock(rq, rf);
1309	raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1310}
1311
1312static inline void
1313rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1314	__releases(rq->lock)
1315{
1316	rq_unpin_lock(rq, rf);
1317	raw_spin_unlock_irq(&rq->lock);
1318}
1319
1320static inline void
1321rq_unlock(struct rq *rq, struct rq_flags *rf)
1322	__releases(rq->lock)
1323{
1324	rq_unpin_lock(rq, rf);
1325	raw_spin_unlock(&rq->lock);
1326}
1327
1328static inline struct rq *
1329this_rq_lock_irq(struct rq_flags *rf)
1330	__acquires(rq->lock)
1331{
1332	struct rq *rq;
1333
1334	local_irq_disable();
1335	rq = this_rq();
1336	rq_lock(rq, rf);
1337	return rq;
1338}
1339
1340#ifdef CONFIG_NUMA
1341enum numa_topology_type {
1342	NUMA_DIRECT,
1343	NUMA_GLUELESS_MESH,
1344	NUMA_BACKPLANE,
1345};
1346extern enum numa_topology_type sched_numa_topology_type;
1347extern int sched_max_numa_distance;
1348extern bool find_numa_distance(int distance);
1349extern void sched_init_numa(void);
 
1350extern void sched_domains_numa_masks_set(unsigned int cpu);
1351extern void sched_domains_numa_masks_clear(unsigned int cpu);
1352extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1353#else
1354static inline void sched_init_numa(void) { }
 
1355static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1356static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1357static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1358{
1359	return nr_cpu_ids;
1360}
1361#endif
1362
1363#ifdef CONFIG_NUMA_BALANCING
1364/* The regions in numa_faults array from task_struct */
1365enum numa_faults_stats {
1366	NUMA_MEM = 0,
1367	NUMA_CPU,
1368	NUMA_MEMBUF,
1369	NUMA_CPUBUF
1370};
1371extern void sched_setnuma(struct task_struct *p, int node);
1372extern int migrate_task_to(struct task_struct *p, int cpu);
1373extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1374			int cpu, int scpu);
1375extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1376#else
1377static inline void
1378init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1379{
1380}
1381#endif /* CONFIG_NUMA_BALANCING */
1382
1383#ifdef CONFIG_SMP
1384
1385static inline void
1386queue_balance_callback(struct rq *rq,
1387		       struct callback_head *head,
1388		       void (*func)(struct rq *rq))
1389{
1390	lockdep_assert_held(&rq->lock);
1391
1392	if (unlikely(head->next))
 
 
 
 
 
1393		return;
1394
1395	head->func = (void (*)(struct callback_head *))func;
1396	head->next = rq->balance_callback;
1397	rq->balance_callback = head;
1398}
1399
1400#define rcu_dereference_check_sched_domain(p) \
1401	rcu_dereference_check((p), \
1402			      lockdep_is_held(&sched_domains_mutex))
1403
1404/*
1405 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1406 * See destroy_sched_domains: call_rcu for details.
1407 *
1408 * The domain tree of any CPU may only be accessed from within
1409 * preempt-disabled sections.
1410 */
1411#define for_each_domain(cpu, __sd) \
1412	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1413			__sd; __sd = __sd->parent)
1414
1415/**
1416 * highest_flag_domain - Return highest sched_domain containing flag.
1417 * @cpu:	The CPU whose highest level of sched domain is to
1418 *		be returned.
1419 * @flag:	The flag to check for the highest sched_domain
1420 *		for the given CPU.
1421 *
1422 * Returns the highest sched_domain of a CPU which contains the given flag.
1423 */
1424static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1425{
1426	struct sched_domain *sd, *hsd = NULL;
1427
1428	for_each_domain(cpu, sd) {
1429		if (!(sd->flags & flag))
1430			break;
1431		hsd = sd;
1432	}
1433
1434	return hsd;
1435}
1436
1437static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1438{
1439	struct sched_domain *sd;
1440
1441	for_each_domain(cpu, sd) {
1442		if (sd->flags & flag)
1443			break;
1444	}
1445
1446	return sd;
1447}
1448
1449DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1450DECLARE_PER_CPU(int, sd_llc_size);
1451DECLARE_PER_CPU(int, sd_llc_id);
1452DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1453DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1454DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1455DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1456extern struct static_key_false sched_asym_cpucapacity;
1457
 
 
 
 
 
1458struct sched_group_capacity {
1459	atomic_t		ref;
1460	/*
1461	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1462	 * for a single CPU.
1463	 */
1464	unsigned long		capacity;
1465	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1466	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1467	unsigned long		next_update;
1468	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1469
1470#ifdef CONFIG_SCHED_DEBUG
1471	int			id;
1472#endif
1473
1474	unsigned long		cpumask[0];		/* Balance mask */
1475};
1476
1477struct sched_group {
1478	struct sched_group	*next;			/* Must be a circular list */
1479	atomic_t		ref;
1480
1481	unsigned int		group_weight;
1482	struct sched_group_capacity *sgc;
1483	int			asym_prefer_cpu;	/* CPU of highest priority in group */
 
1484
1485	/*
1486	 * The CPUs this group covers.
1487	 *
1488	 * NOTE: this field is variable length. (Allocated dynamically
1489	 * by attaching extra space to the end of the structure,
1490	 * depending on how many CPUs the kernel has booted up with)
1491	 */
1492	unsigned long		cpumask[];
1493};
1494
1495static inline struct cpumask *sched_group_span(struct sched_group *sg)
1496{
1497	return to_cpumask(sg->cpumask);
1498}
1499
1500/*
1501 * See build_balance_mask().
1502 */
1503static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1504{
1505	return to_cpumask(sg->sgc->cpumask);
1506}
1507
1508/**
1509 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1510 * @group: The group whose first CPU is to be returned.
1511 */
1512static inline unsigned int group_first_cpu(struct sched_group *group)
1513{
1514	return cpumask_first(sched_group_span(group));
1515}
1516
1517extern int group_balance_cpu(struct sched_group *sg);
1518
1519#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1520void register_sched_domain_sysctl(void);
1521void dirty_sched_domain_sysctl(int cpu);
1522void unregister_sched_domain_sysctl(void);
1523#else
1524static inline void register_sched_domain_sysctl(void)
1525{
1526}
1527static inline void dirty_sched_domain_sysctl(int cpu)
1528{
1529}
1530static inline void unregister_sched_domain_sysctl(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531{
 
 
1532}
1533#endif
1534
1535extern void flush_smp_call_function_from_idle(void);
 
 
1536
1537#else /* !CONFIG_SMP: */
1538static inline void flush_smp_call_function_from_idle(void) { }
1539#endif
1540
1541#include "stats.h"
1542#include "autogroup.h"
1543
1544#ifdef CONFIG_CGROUP_SCHED
1545
1546/*
1547 * Return the group to which this tasks belongs.
1548 *
1549 * We cannot use task_css() and friends because the cgroup subsystem
1550 * changes that value before the cgroup_subsys::attach() method is called,
1551 * therefore we cannot pin it and might observe the wrong value.
1552 *
1553 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1554 * core changes this before calling sched_move_task().
1555 *
1556 * Instead we use a 'copy' which is updated from sched_move_task() while
1557 * holding both task_struct::pi_lock and rq::lock.
1558 */
1559static inline struct task_group *task_group(struct task_struct *p)
1560{
1561	return p->sched_task_group;
1562}
1563
1564/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1565static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1566{
1567#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1568	struct task_group *tg = task_group(p);
1569#endif
1570
1571#ifdef CONFIG_FAIR_GROUP_SCHED
1572	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1573	p->se.cfs_rq = tg->cfs_rq[cpu];
1574	p->se.parent = tg->se[cpu];
 
1575#endif
1576
1577#ifdef CONFIG_RT_GROUP_SCHED
1578	p->rt.rt_rq  = tg->rt_rq[cpu];
1579	p->rt.parent = tg->rt_se[cpu];
1580#endif
1581}
1582
1583#else /* CONFIG_CGROUP_SCHED */
1584
1585static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1586static inline struct task_group *task_group(struct task_struct *p)
1587{
1588	return NULL;
1589}
1590
1591#endif /* CONFIG_CGROUP_SCHED */
1592
1593static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1594{
1595	set_task_rq(p, cpu);
1596#ifdef CONFIG_SMP
1597	/*
1598	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1599	 * successfully executed on another CPU. We must ensure that updates of
1600	 * per-task data have been completed by this moment.
1601	 */
1602	smp_wmb();
1603#ifdef CONFIG_THREAD_INFO_IN_TASK
1604	WRITE_ONCE(p->cpu, cpu);
1605#else
1606	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1607#endif
1608	p->wake_cpu = cpu;
1609#endif
1610}
1611
1612/*
1613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1614 */
1615#ifdef CONFIG_SCHED_DEBUG
1616# include <linux/static_key.h>
1617# define const_debug __read_mostly
1618#else
1619# define const_debug const
1620#endif
1621
1622#define SCHED_FEAT(name, enabled)	\
1623	__SCHED_FEAT_##name ,
1624
1625enum {
1626#include "features.h"
1627	__SCHED_FEAT_NR,
1628};
1629
1630#undef SCHED_FEAT
1631
1632#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1633
1634/*
1635 * To support run-time toggling of sched features, all the translation units
1636 * (but core.c) reference the sysctl_sched_features defined in core.c.
1637 */
1638extern const_debug unsigned int sysctl_sched_features;
1639
 
1640#define SCHED_FEAT(name, enabled)					\
1641static __always_inline bool static_branch_##name(struct static_key *key) \
1642{									\
1643	return static_key_##enabled(key);				\
1644}
1645
1646#include "features.h"
1647#undef SCHED_FEAT
1648
1649extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1650#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1651
1652#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
 
 
 
 
 
 
1653
1654/*
1655 * Each translation unit has its own copy of sysctl_sched_features to allow
1656 * constants propagation at compile time and compiler optimization based on
1657 * features default.
1658 */
1659#define SCHED_FEAT(name, enabled)	\
1660	(1UL << __SCHED_FEAT_##name) * enabled |
1661static const_debug __maybe_unused unsigned int sysctl_sched_features =
1662#include "features.h"
1663	0;
1664#undef SCHED_FEAT
1665
1666#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1667
1668#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1669
1670extern struct static_key_false sched_numa_balancing;
1671extern struct static_key_false sched_schedstats;
1672
1673static inline u64 global_rt_period(void)
1674{
1675	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1676}
1677
1678static inline u64 global_rt_runtime(void)
1679{
1680	if (sysctl_sched_rt_runtime < 0)
1681		return RUNTIME_INF;
1682
1683	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1684}
1685
1686static inline int task_current(struct rq *rq, struct task_struct *p)
1687{
1688	return rq->curr == p;
1689}
1690
1691static inline int task_running(struct rq *rq, struct task_struct *p)
1692{
1693#ifdef CONFIG_SMP
1694	return p->on_cpu;
1695#else
1696	return task_current(rq, p);
1697#endif
1698}
1699
1700static inline int task_on_rq_queued(struct task_struct *p)
1701{
1702	return p->on_rq == TASK_ON_RQ_QUEUED;
1703}
1704
1705static inline int task_on_rq_migrating(struct task_struct *p)
1706{
1707	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1708}
1709
1710/*
1711 * wake flags
1712 */
1713#define WF_SYNC			0x01		/* Waker goes to sleep after wakeup */
1714#define WF_FORK			0x02		/* Child wakeup after fork */
1715#define WF_MIGRATED		0x04		/* Internal use, task got migrated */
1716#define WF_ON_CPU		0x08		/* Wakee is on_cpu */
 
 
 
 
 
 
1717
1718/*
1719 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1720 * of tasks with abnormal "nice" values across CPUs the contribution that
1721 * each task makes to its run queue's load is weighted according to its
1722 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1723 * scaled version of the new time slice allocation that they receive on time
1724 * slice expiry etc.
1725 */
1726
1727#define WEIGHT_IDLEPRIO		3
1728#define WMULT_IDLEPRIO		1431655765
1729
1730extern const int		sched_prio_to_weight[40];
1731extern const u32		sched_prio_to_wmult[40];
1732
1733/*
1734 * {de,en}queue flags:
1735 *
1736 * DEQUEUE_SLEEP  - task is no longer runnable
1737 * ENQUEUE_WAKEUP - task just became runnable
1738 *
1739 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1740 *                are in a known state which allows modification. Such pairs
1741 *                should preserve as much state as possible.
1742 *
1743 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1744 *        in the runqueue.
1745 *
1746 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1747 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1748 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1749 *
1750 */
1751
1752#define DEQUEUE_SLEEP		0x01
1753#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
1754#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
1755#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
1756
1757#define ENQUEUE_WAKEUP		0x01
1758#define ENQUEUE_RESTORE		0x02
1759#define ENQUEUE_MOVE		0x04
1760#define ENQUEUE_NOCLOCK		0x08
1761
1762#define ENQUEUE_HEAD		0x10
1763#define ENQUEUE_REPLENISH	0x20
1764#ifdef CONFIG_SMP
1765#define ENQUEUE_MIGRATED	0x40
1766#else
1767#define ENQUEUE_MIGRATED	0x00
1768#endif
1769
1770#define RETRY_TASK		((void *)-1UL)
1771
 
 
 
 
 
 
1772struct sched_class {
1773
1774#ifdef CONFIG_UCLAMP_TASK
1775	int uclamp_enabled;
1776#endif
1777
1778	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1779	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1780	void (*yield_task)   (struct rq *rq);
1781	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1782
1783	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1784
1785	struct task_struct *(*pick_next_task)(struct rq *rq);
1786
1787	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1788	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1789
1790#ifdef CONFIG_SMP
1791	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1792	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
 
 
 
1793	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1794
1795	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1796
1797	void (*set_cpus_allowed)(struct task_struct *p,
1798				 const struct cpumask *newmask);
1799
1800	void (*rq_online)(struct rq *rq);
1801	void (*rq_offline)(struct rq *rq);
 
 
1802#endif
1803
1804	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1805	void (*task_fork)(struct task_struct *p);
1806	void (*task_dead)(struct task_struct *p);
1807
1808	/*
1809	 * The switched_from() call is allowed to drop rq->lock, therefore we
1810	 * cannot assume the switched_from/switched_to pair is serliazed by
1811	 * rq->lock. They are however serialized by p->pi_lock.
1812	 */
1813	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1814	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1815	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1816			      int oldprio);
1817
1818	unsigned int (*get_rr_interval)(struct rq *rq,
1819					struct task_struct *task);
1820
1821	void (*update_curr)(struct rq *rq);
1822
1823#define TASK_SET_GROUP		0
1824#define TASK_MOVE_GROUP		1
1825
1826#ifdef CONFIG_FAIR_GROUP_SCHED
1827	void (*task_change_group)(struct task_struct *p, int type);
1828#endif
1829} __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1830
1831static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1832{
1833	WARN_ON_ONCE(rq->curr != prev);
1834	prev->sched_class->put_prev_task(rq, prev);
1835}
1836
1837static inline void set_next_task(struct rq *rq, struct task_struct *next)
1838{
1839	WARN_ON_ONCE(rq->curr != next);
1840	next->sched_class->set_next_task(rq, next, false);
1841}
1842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843/* Defined in include/asm-generic/vmlinux.lds.h */
1844extern struct sched_class __begin_sched_classes[];
1845extern struct sched_class __end_sched_classes[];
1846
1847#define sched_class_highest (__end_sched_classes - 1)
1848#define sched_class_lowest  (__begin_sched_classes - 1)
1849
1850#define for_class_range(class, _from, _to) \
1851	for (class = (_from); class != (_to); class--)
1852
1853#define for_each_class(class) \
1854	for_class_range(class, sched_class_highest, sched_class_lowest)
 
 
1855
1856extern const struct sched_class stop_sched_class;
1857extern const struct sched_class dl_sched_class;
1858extern const struct sched_class rt_sched_class;
1859extern const struct sched_class fair_sched_class;
1860extern const struct sched_class idle_sched_class;
1861
1862static inline bool sched_stop_runnable(struct rq *rq)
1863{
1864	return rq->stop && task_on_rq_queued(rq->stop);
1865}
1866
1867static inline bool sched_dl_runnable(struct rq *rq)
1868{
1869	return rq->dl.dl_nr_running > 0;
1870}
1871
1872static inline bool sched_rt_runnable(struct rq *rq)
1873{
1874	return rq->rt.rt_queued > 0;
1875}
1876
1877static inline bool sched_fair_runnable(struct rq *rq)
1878{
1879	return rq->cfs.nr_running > 0;
1880}
1881
1882extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1883extern struct task_struct *pick_next_task_idle(struct rq *rq);
1884
 
 
 
 
 
1885#ifdef CONFIG_SMP
1886
1887extern void update_group_capacity(struct sched_domain *sd, int cpu);
1888
1889extern void trigger_load_balance(struct rq *rq);
1890
1891extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892
1893#endif
1894
1895#ifdef CONFIG_CPU_IDLE
1896static inline void idle_set_state(struct rq *rq,
1897				  struct cpuidle_state *idle_state)
1898{
1899	rq->idle_state = idle_state;
1900}
1901
1902static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1903{
1904	SCHED_WARN_ON(!rcu_read_lock_held());
1905
1906	return rq->idle_state;
1907}
1908#else
1909static inline void idle_set_state(struct rq *rq,
1910				  struct cpuidle_state *idle_state)
1911{
1912}
1913
1914static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1915{
1916	return NULL;
1917}
1918#endif
1919
1920extern void schedule_idle(void);
1921
1922extern void sysrq_sched_debug_show(void);
1923extern void sched_init_granularity(void);
1924extern void update_max_interval(void);
1925
1926extern void init_sched_dl_class(void);
1927extern void init_sched_rt_class(void);
1928extern void init_sched_fair_class(void);
1929
1930extern void reweight_task(struct task_struct *p, int prio);
1931
1932extern void resched_curr(struct rq *rq);
1933extern void resched_cpu(int cpu);
1934
1935extern struct rt_bandwidth def_rt_bandwidth;
1936extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 
1937
1938extern struct dl_bandwidth def_dl_bandwidth;
1939extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1940extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1941extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1942
1943#define BW_SHIFT		20
1944#define BW_UNIT			(1 << BW_SHIFT)
1945#define RATIO_SHIFT		8
1946#define MAX_BW_BITS		(64 - BW_SHIFT)
1947#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
1948unsigned long to_ratio(u64 period, u64 runtime);
1949
1950extern void init_entity_runnable_average(struct sched_entity *se);
1951extern void post_init_entity_util_avg(struct task_struct *p);
1952
1953#ifdef CONFIG_NO_HZ_FULL
1954extern bool sched_can_stop_tick(struct rq *rq);
1955extern int __init sched_tick_offload_init(void);
1956
1957/*
1958 * Tick may be needed by tasks in the runqueue depending on their policy and
1959 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1960 * nohz mode if necessary.
1961 */
1962static inline void sched_update_tick_dependency(struct rq *rq)
1963{
1964	int cpu = cpu_of(rq);
1965
1966	if (!tick_nohz_full_cpu(cpu))
1967		return;
1968
1969	if (sched_can_stop_tick(rq))
1970		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1971	else
1972		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1973}
1974#else
1975static inline int sched_tick_offload_init(void) { return 0; }
1976static inline void sched_update_tick_dependency(struct rq *rq) { }
1977#endif
1978
1979static inline void add_nr_running(struct rq *rq, unsigned count)
1980{
1981	unsigned prev_nr = rq->nr_running;
1982
1983	rq->nr_running = prev_nr + count;
1984	if (trace_sched_update_nr_running_tp_enabled()) {
1985		call_trace_sched_update_nr_running(rq, count);
1986	}
1987
1988#ifdef CONFIG_SMP
1989	if (prev_nr < 2 && rq->nr_running >= 2) {
1990		if (!READ_ONCE(rq->rd->overload))
1991			WRITE_ONCE(rq->rd->overload, 1);
1992	}
1993#endif
1994
1995	sched_update_tick_dependency(rq);
1996}
1997
1998static inline void sub_nr_running(struct rq *rq, unsigned count)
1999{
2000	rq->nr_running -= count;
2001	if (trace_sched_update_nr_running_tp_enabled()) {
2002		call_trace_sched_update_nr_running(rq, -count);
2003	}
2004
2005	/* Check if we still need preemption */
2006	sched_update_tick_dependency(rq);
2007}
2008
2009extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2010extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2011
2012extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2013
 
 
 
 
 
 
2014extern const_debug unsigned int sysctl_sched_nr_migrate;
2015extern const_debug unsigned int sysctl_sched_migration_cost;
2016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2017#ifdef CONFIG_SCHED_HRTICK
2018
2019/*
2020 * Use hrtick when:
2021 *  - enabled by features
2022 *  - hrtimer is actually high res
2023 */
2024static inline int hrtick_enabled(struct rq *rq)
2025{
 
 
 
 
 
 
 
2026	if (!sched_feat(HRTICK))
2027		return 0;
2028	if (!cpu_active(cpu_of(rq)))
 
 
 
 
 
2029		return 0;
2030	return hrtimer_is_hres_active(&rq->hrtick_timer);
2031}
2032
2033void hrtick_start(struct rq *rq, u64 delay);
2034
2035#else
2036
 
 
 
 
 
 
 
 
 
 
2037static inline int hrtick_enabled(struct rq *rq)
2038{
2039	return 0;
2040}
2041
2042#endif /* CONFIG_SCHED_HRTICK */
2043
2044#ifndef arch_scale_freq_tick
2045static __always_inline
2046void arch_scale_freq_tick(void)
2047{
2048}
2049#endif
2050
2051#ifndef arch_scale_freq_capacity
2052/**
2053 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2054 * @cpu: the CPU in question.
2055 *
2056 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2057 *
2058 *     f_curr
2059 *     ------ * SCHED_CAPACITY_SCALE
2060 *     f_max
2061 */
2062static __always_inline
2063unsigned long arch_scale_freq_capacity(int cpu)
2064{
2065	return SCHED_CAPACITY_SCALE;
2066}
2067#endif
2068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2070#ifdef CONFIG_PREEMPTION
2071
2072static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2073
2074/*
2075 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2076 * way at the expense of forcing extra atomic operations in all
2077 * invocations.  This assures that the double_lock is acquired using the
2078 * same underlying policy as the spinlock_t on this architecture, which
2079 * reduces latency compared to the unfair variant below.  However, it
2080 * also adds more overhead and therefore may reduce throughput.
2081 */
2082static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2083	__releases(this_rq->lock)
2084	__acquires(busiest->lock)
2085	__acquires(this_rq->lock)
2086{
2087	raw_spin_unlock(&this_rq->lock);
2088	double_rq_lock(this_rq, busiest);
2089
2090	return 1;
2091}
2092
2093#else
2094/*
2095 * Unfair double_lock_balance: Optimizes throughput at the expense of
2096 * latency by eliminating extra atomic operations when the locks are
2097 * already in proper order on entry.  This favors lower CPU-ids and will
2098 * grant the double lock to lower CPUs over higher ids under contention,
2099 * regardless of entry order into the function.
2100 */
2101static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2102	__releases(this_rq->lock)
2103	__acquires(busiest->lock)
2104	__acquires(this_rq->lock)
2105{
2106	int ret = 0;
 
 
 
 
2107
2108	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2109		if (busiest < this_rq) {
2110			raw_spin_unlock(&this_rq->lock);
2111			raw_spin_lock(&busiest->lock);
2112			raw_spin_lock_nested(&this_rq->lock,
2113					      SINGLE_DEPTH_NESTING);
2114			ret = 1;
2115		} else
2116			raw_spin_lock_nested(&busiest->lock,
2117					      SINGLE_DEPTH_NESTING);
2118	}
2119	return ret;
 
 
 
 
2120}
2121
2122#endif /* CONFIG_PREEMPTION */
2123
2124/*
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126 */
2127static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2128{
2129	if (unlikely(!irqs_disabled())) {
2130		/* printk() doesn't work well under rq->lock */
2131		raw_spin_unlock(&this_rq->lock);
2132		BUG_ON(1);
2133	}
2134
2135	return _double_lock_balance(this_rq, busiest);
2136}
2137
2138static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2139	__releases(busiest->lock)
2140{
2141	raw_spin_unlock(&busiest->lock);
2142	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 
2143}
2144
2145static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2146{
2147	if (l1 > l2)
2148		swap(l1, l2);
2149
2150	spin_lock(l1);
2151	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2152}
2153
2154static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2155{
2156	if (l1 > l2)
2157		swap(l1, l2);
2158
2159	spin_lock_irq(l1);
2160	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2161}
2162
2163static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2164{
2165	if (l1 > l2)
2166		swap(l1, l2);
2167
2168	raw_spin_lock(l1);
2169	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2170}
2171
2172/*
2173 * double_rq_lock - safely lock two runqueues
2174 *
2175 * Note this does not disable interrupts like task_rq_lock,
2176 * you need to do so manually before calling.
2177 */
2178static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2179	__acquires(rq1->lock)
2180	__acquires(rq2->lock)
2181{
2182	BUG_ON(!irqs_disabled());
2183	if (rq1 == rq2) {
2184		raw_spin_lock(&rq1->lock);
2185		__acquire(rq2->lock);	/* Fake it out ;) */
2186	} else {
2187		if (rq1 < rq2) {
2188			raw_spin_lock(&rq1->lock);
2189			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2190		} else {
2191			raw_spin_lock(&rq2->lock);
2192			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2193		}
2194	}
2195}
2196
2197/*
2198 * double_rq_unlock - safely unlock two runqueues
2199 *
2200 * Note this does not restore interrupts like task_rq_unlock,
2201 * you need to do so manually after calling.
2202 */
2203static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2204	__releases(rq1->lock)
2205	__releases(rq2->lock)
2206{
2207	raw_spin_unlock(&rq1->lock);
2208	if (rq1 != rq2)
2209		raw_spin_unlock(&rq2->lock);
2210	else
2211		__release(rq2->lock);
 
2212}
2213
2214extern void set_rq_online (struct rq *rq);
2215extern void set_rq_offline(struct rq *rq);
2216extern bool sched_smp_initialized;
2217
2218#else /* CONFIG_SMP */
2219
2220/*
2221 * double_rq_lock - safely lock two runqueues
2222 *
2223 * Note this does not disable interrupts like task_rq_lock,
2224 * you need to do so manually before calling.
2225 */
2226static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2227	__acquires(rq1->lock)
2228	__acquires(rq2->lock)
2229{
2230	BUG_ON(!irqs_disabled());
2231	BUG_ON(rq1 != rq2);
2232	raw_spin_lock(&rq1->lock);
2233	__acquire(rq2->lock);	/* Fake it out ;) */
 
2234}
2235
2236/*
2237 * double_rq_unlock - safely unlock two runqueues
2238 *
2239 * Note this does not restore interrupts like task_rq_unlock,
2240 * you need to do so manually after calling.
2241 */
2242static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2243	__releases(rq1->lock)
2244	__releases(rq2->lock)
2245{
2246	BUG_ON(rq1 != rq2);
2247	raw_spin_unlock(&rq1->lock);
2248	__release(rq2->lock);
2249}
2250
2251#endif
2252
2253extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2254extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2255
2256#ifdef	CONFIG_SCHED_DEBUG
2257extern bool sched_debug_enabled;
2258
2259extern void print_cfs_stats(struct seq_file *m, int cpu);
2260extern void print_rt_stats(struct seq_file *m, int cpu);
2261extern void print_dl_stats(struct seq_file *m, int cpu);
2262extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2263extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2264extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
 
 
2265#ifdef CONFIG_NUMA_BALANCING
2266extern void
2267show_numa_stats(struct task_struct *p, struct seq_file *m);
2268extern void
2269print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2270	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2271#endif /* CONFIG_NUMA_BALANCING */
 
 
2272#endif /* CONFIG_SCHED_DEBUG */
2273
2274extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2275extern void init_rt_rq(struct rt_rq *rt_rq);
2276extern void init_dl_rq(struct dl_rq *dl_rq);
2277
2278extern void cfs_bandwidth_usage_inc(void);
2279extern void cfs_bandwidth_usage_dec(void);
2280
2281#ifdef CONFIG_NO_HZ_COMMON
2282#define NOHZ_BALANCE_KICK_BIT	0
2283#define NOHZ_STATS_KICK_BIT	1
 
 
2284
 
2285#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
 
2286#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
 
 
 
 
2287
2288#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2289
2290#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2291
2292extern void nohz_balance_exit_idle(struct rq *rq);
2293#else
2294static inline void nohz_balance_exit_idle(struct rq *rq) { }
2295#endif
2296
2297
2298#ifdef CONFIG_SMP
2299static inline
2300void __dl_update(struct dl_bw *dl_b, s64 bw)
2301{
2302	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2303	int i;
2304
2305	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2306			 "sched RCU must be held");
2307	for_each_cpu_and(i, rd->span, cpu_active_mask) {
2308		struct rq *rq = cpu_rq(i);
2309
2310		rq->dl.extra_bw += bw;
2311	}
2312}
2313#else
2314static inline
2315void __dl_update(struct dl_bw *dl_b, s64 bw)
2316{
2317	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2318
2319	dl->extra_bw += bw;
2320}
2321#endif
2322
2323
2324#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2325struct irqtime {
2326	u64			total;
2327	u64			tick_delta;
2328	u64			irq_start_time;
2329	struct u64_stats_sync	sync;
2330};
2331
2332DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2333
2334/*
2335 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2336 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2337 * and never move forward.
2338 */
2339static inline u64 irq_time_read(int cpu)
2340{
2341	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2342	unsigned int seq;
2343	u64 total;
2344
2345	do {
2346		seq = __u64_stats_fetch_begin(&irqtime->sync);
2347		total = irqtime->total;
2348	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2349
2350	return total;
2351}
2352#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2353
2354#ifdef CONFIG_CPU_FREQ
2355DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2356
2357/**
2358 * cpufreq_update_util - Take a note about CPU utilization changes.
2359 * @rq: Runqueue to carry out the update for.
2360 * @flags: Update reason flags.
2361 *
2362 * This function is called by the scheduler on the CPU whose utilization is
2363 * being updated.
2364 *
2365 * It can only be called from RCU-sched read-side critical sections.
2366 *
2367 * The way cpufreq is currently arranged requires it to evaluate the CPU
2368 * performance state (frequency/voltage) on a regular basis to prevent it from
2369 * being stuck in a completely inadequate performance level for too long.
2370 * That is not guaranteed to happen if the updates are only triggered from CFS
2371 * and DL, though, because they may not be coming in if only RT tasks are
2372 * active all the time (or there are RT tasks only).
2373 *
2374 * As a workaround for that issue, this function is called periodically by the
2375 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2376 * but that really is a band-aid.  Going forward it should be replaced with
2377 * solutions targeted more specifically at RT tasks.
2378 */
2379static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2380{
2381	struct update_util_data *data;
2382
2383	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2384						  cpu_of(rq)));
2385	if (data)
2386		data->func(data, rq_clock(rq), flags);
2387}
2388#else
2389static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2390#endif /* CONFIG_CPU_FREQ */
2391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392#ifdef CONFIG_UCLAMP_TASK
2393unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395/**
2396 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2397 * @rq:		The rq to clamp against. Must not be NULL.
2398 * @util:	The util value to clamp.
2399 * @p:		The task to clamp against. Can be NULL if you want to clamp
2400 *		against @rq only.
2401 *
2402 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2403 *
2404 * If sched_uclamp_used static key is disabled, then just return the util
2405 * without any clamping since uclamp aggregation at the rq level in the fast
2406 * path is disabled, rendering this operation a NOP.
2407 *
2408 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2409 * will return the correct effective uclamp value of the task even if the
2410 * static key is disabled.
2411 */
2412static __always_inline
2413unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2414				  struct task_struct *p)
2415{
2416	unsigned long min_util;
2417	unsigned long max_util;
2418
2419	if (!static_branch_likely(&sched_uclamp_used))
2420		return util;
2421
2422	min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2423	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
 
2424
2425	if (p) {
2426		min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2427		max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
 
 
 
2428	}
2429
 
 
 
2430	/*
2431	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2432	 * RUNNABLE tasks with _different_ clamps, we can end up with an
2433	 * inversion. Fix it now when the clamps are applied.
2434	 */
2435	if (unlikely(min_util >= max_util))
2436		return min_util;
2437
2438	return clamp(util, min_util, max_util);
2439}
2440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441/*
2442 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2443 * by default in the fast path and only gets turned on once userspace performs
2444 * an operation that requires it.
2445 *
2446 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2447 * hence is active.
2448 */
2449static inline bool uclamp_is_used(void)
2450{
2451	return static_branch_likely(&sched_uclamp_used);
2452}
2453#else /* CONFIG_UCLAMP_TASK */
 
 
 
 
 
 
 
 
 
2454static inline
2455unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2456				  struct task_struct *p)
2457{
2458	return util;
2459}
2460
 
 
2461static inline bool uclamp_is_used(void)
2462{
2463	return false;
2464}
2465#endif /* CONFIG_UCLAMP_TASK */
2466
2467#ifdef arch_scale_freq_capacity
2468# ifndef arch_scale_freq_invariant
2469#  define arch_scale_freq_invariant()	true
2470# endif
2471#else
2472# define arch_scale_freq_invariant()	false
2473#endif
2474
2475#ifdef CONFIG_SMP
2476static inline unsigned long capacity_orig_of(int cpu)
2477{
2478	return cpu_rq(cpu)->cpu_capacity_orig;
2479}
2480#endif
2481
2482/**
2483 * enum schedutil_type - CPU utilization type
2484 * @FREQUENCY_UTIL:	Utilization used to select frequency
2485 * @ENERGY_UTIL:	Utilization used during energy calculation
2486 *
2487 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2488 * need to be aggregated differently depending on the usage made of them. This
2489 * enum is used within schedutil_freq_util() to differentiate the types of
2490 * utilization expected by the callers, and adjust the aggregation accordingly.
2491 */
2492enum schedutil_type {
2493	FREQUENCY_UTIL,
2494	ENERGY_UTIL,
2495};
2496
2497#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2498
2499unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2500				 unsigned long max, enum schedutil_type type,
2501				 struct task_struct *p);
2502
2503static inline unsigned long cpu_bw_dl(struct rq *rq)
2504{
2505	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2506}
2507
2508static inline unsigned long cpu_util_dl(struct rq *rq)
 
2509{
2510	return READ_ONCE(rq->avg_dl.util_avg);
2511}
2512
2513static inline unsigned long cpu_util_cfs(struct rq *rq)
2514{
2515	unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2516
2517	if (sched_feat(UTIL_EST)) {
2518		util = max_t(unsigned long, util,
2519			     READ_ONCE(rq->cfs.avg.util_est.enqueued));
2520	}
2521
2522	return util;
2523}
2524
2525static inline unsigned long cpu_util_rt(struct rq *rq)
2526{
2527	return READ_ONCE(rq->avg_rt.util_avg);
2528}
2529#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2530static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2531				 unsigned long max, enum schedutil_type type,
2532				 struct task_struct *p)
2533{
2534	return 0;
2535}
2536#endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2537
2538#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2539static inline unsigned long cpu_util_irq(struct rq *rq)
2540{
2541	return rq->avg_irq.util_avg;
2542}
2543
2544static inline
2545unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2546{
2547	util *= (max - irq);
2548	util /= max;
2549
2550	return util;
2551
2552}
2553#else
2554static inline unsigned long cpu_util_irq(struct rq *rq)
2555{
2556	return 0;
2557}
2558
2559static inline
2560unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2561{
2562	return util;
2563}
2564#endif
2565
2566#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2567
2568#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2569
2570DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2571
2572static inline bool sched_energy_enabled(void)
2573{
2574	return static_branch_unlikely(&sched_energy_present);
2575}
2576
2577#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2578
2579#define perf_domain_span(pd) NULL
2580static inline bool sched_energy_enabled(void) { return false; }
2581
2582#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2583
2584#ifdef CONFIG_MEMBARRIER
2585/*
2586 * The scheduler provides memory barriers required by membarrier between:
2587 * - prior user-space memory accesses and store to rq->membarrier_state,
2588 * - store to rq->membarrier_state and following user-space memory accesses.
2589 * In the same way it provides those guarantees around store to rq->curr.
2590 */
2591static inline void membarrier_switch_mm(struct rq *rq,
2592					struct mm_struct *prev_mm,
2593					struct mm_struct *next_mm)
2594{
2595	int membarrier_state;
2596
2597	if (prev_mm == next_mm)
2598		return;
2599
2600	membarrier_state = atomic_read(&next_mm->membarrier_state);
2601	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2602		return;
2603
2604	WRITE_ONCE(rq->membarrier_state, membarrier_state);
2605}
2606#else
2607static inline void membarrier_switch_mm(struct rq *rq,
2608					struct mm_struct *prev_mm,
2609					struct mm_struct *next_mm)
2610{
2611}
2612#endif
2613
2614#ifdef CONFIG_SMP
2615static inline bool is_per_cpu_kthread(struct task_struct *p)
2616{
2617	if (!(p->flags & PF_KTHREAD))
2618		return false;
2619
2620	if (p->nr_cpus_allowed != 1)
2621		return false;
2622
2623	return true;
2624}
2625#endif
2626
2627void swake_up_all_locked(struct swait_queue_head *q);
2628void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);