Linux Audio

Check our new training course

Loading...
v6.2
 1// SPDX-License-Identifier: GPL-2.0-or-later
 2/*
 3 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
 4 */
 5
 6#include <linux/preempt.h>
 
 
 7#include <linux/kdb.h>
 8#include <linux/smp.h>
 9#include <linux/cpumask.h>
 
10#include <linux/printk.h>
11#include <linux/kprobes.h>
12
13#include "internal.h"
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15static DEFINE_PER_CPU(int, printk_context);
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17/* Can be preempted by NMI. */
18void __printk_safe_enter(void)
19{
20	this_cpu_inc(printk_context);
21}
22
23/* Can be preempted by NMI. */
24void __printk_safe_exit(void)
25{
26	this_cpu_dec(printk_context);
27}
28
29asmlinkage int vprintk(const char *fmt, va_list args)
30{
31#ifdef CONFIG_KGDB_KDB
32	/* Allow to pass printk() to kdb but avoid a recursion. */
33	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
34		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
35#endif
36
37	/*
38	 * Use the main logbuf even in NMI. But avoid calling console
39	 * drivers that might have their own locks.
40	 */
41	if (this_cpu_read(printk_context) || in_nmi()) {
 
42		int len;
43
44		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
 
45		defer_console_output();
46		return len;
47	}
48
 
 
 
 
 
 
 
 
49	/* No obstacles. */
50	return vprintk_default(fmt, args);
51}
52EXPORT_SYMBOL(vprintk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * printk_safe.c - Safe printk for printk-deadlock-prone contexts
  4 */
  5
  6#include <linux/preempt.h>
  7#include <linux/spinlock.h>
  8#include <linux/debug_locks.h>
  9#include <linux/kdb.h>
 10#include <linux/smp.h>
 11#include <linux/cpumask.h>
 12#include <linux/irq_work.h>
 13#include <linux/printk.h>
 14#include <linux/kprobes.h>
 15
 16#include "internal.h"
 17
 18/*
 19 * printk() could not take logbuf_lock in NMI context. Instead,
 20 * it uses an alternative implementation that temporary stores
 21 * the strings into a per-CPU buffer. The content of the buffer
 22 * is later flushed into the main ring buffer via IRQ work.
 23 *
 24 * The alternative implementation is chosen transparently
 25 * by examinig current printk() context mask stored in @printk_context
 26 * per-CPU variable.
 27 *
 28 * The implementation allows to flush the strings also from another CPU.
 29 * There are situations when we want to make sure that all buffers
 30 * were handled or when IRQs are blocked.
 31 */
 32
 33#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) -	\
 34				sizeof(atomic_t) -			\
 35				sizeof(atomic_t) -			\
 36				sizeof(struct irq_work))
 37
 38struct printk_safe_seq_buf {
 39	atomic_t		len;	/* length of written data */
 40	atomic_t		message_lost;
 41	struct irq_work		work;	/* IRQ work that flushes the buffer */
 42	unsigned char		buffer[SAFE_LOG_BUF_LEN];
 43};
 44
 45static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
 46static DEFINE_PER_CPU(int, printk_context);
 47
 48#ifdef CONFIG_PRINTK_NMI
 49static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
 50#endif
 51
 52/* Get flushed in a more safe context. */
 53static void queue_flush_work(struct printk_safe_seq_buf *s)
 54{
 55	if (printk_percpu_data_ready())
 56		irq_work_queue(&s->work);
 57}
 58
 59/*
 60 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe
 61 * have dedicated buffers, because otherwise printk-safe preempted by
 62 * NMI-printk would have overwritten the NMI messages.
 63 *
 64 * The messages are flushed from irq work (or from panic()), possibly,
 65 * from other CPU, concurrently with printk_safe_log_store(). Should this
 66 * happen, printk_safe_log_store() will notice the buffer->len mismatch
 67 * and repeat the write.
 68 */
 69static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
 70						const char *fmt, va_list args)
 71{
 72	int add;
 73	size_t len;
 74	va_list ap;
 75
 76again:
 77	len = atomic_read(&s->len);
 78
 79	/* The trailing '\0' is not counted into len. */
 80	if (len >= sizeof(s->buffer) - 1) {
 81		atomic_inc(&s->message_lost);
 82		queue_flush_work(s);
 83		return 0;
 84	}
 85
 86	/*
 87	 * Make sure that all old data have been read before the buffer
 88	 * was reset. This is not needed when we just append data.
 89	 */
 90	if (!len)
 91		smp_rmb();
 92
 93	va_copy(ap, args);
 94	add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
 95	va_end(ap);
 96	if (!add)
 97		return 0;
 98
 99	/*
100	 * Do it once again if the buffer has been flushed in the meantime.
101	 * Note that atomic_cmpxchg() is an implicit memory barrier that
102	 * makes sure that the data were written before updating s->len.
103	 */
104	if (atomic_cmpxchg(&s->len, len, len + add) != len)
105		goto again;
106
107	queue_flush_work(s);
108	return add;
109}
110
111static inline void printk_safe_flush_line(const char *text, int len)
112{
113	/*
114	 * Avoid any console drivers calls from here, because we may be
115	 * in NMI or printk_safe context (when in panic). The messages
116	 * must go only into the ring buffer at this stage.  Consoles will
117	 * get explicitly called later when a crashdump is not generated.
118	 */
119	printk_deferred("%.*s", len, text);
120}
121
122/* printk part of the temporary buffer line by line */
123static int printk_safe_flush_buffer(const char *start, size_t len)
124{
125	const char *c, *end;
126	bool header;
127
128	c = start;
129	end = start + len;
130	header = true;
131
132	/* Print line by line. */
133	while (c < end) {
134		if (*c == '\n') {
135			printk_safe_flush_line(start, c - start + 1);
136			start = ++c;
137			header = true;
138			continue;
139		}
140
141		/* Handle continuous lines or missing new line. */
142		if ((c + 1 < end) && printk_get_level(c)) {
143			if (header) {
144				c = printk_skip_level(c);
145				continue;
146			}
147
148			printk_safe_flush_line(start, c - start);
149			start = c++;
150			header = true;
151			continue;
152		}
153
154		header = false;
155		c++;
156	}
157
158	/* Check if there was a partial line. Ignore pure header. */
159	if (start < end && !header) {
160		static const char newline[] = KERN_CONT "\n";
161
162		printk_safe_flush_line(start, end - start);
163		printk_safe_flush_line(newline, strlen(newline));
164	}
165
166	return len;
167}
168
169static void report_message_lost(struct printk_safe_seq_buf *s)
170{
171	int lost = atomic_xchg(&s->message_lost, 0);
172
173	if (lost)
174		printk_deferred("Lost %d message(s)!\n", lost);
175}
176
177/*
178 * Flush data from the associated per-CPU buffer. The function
179 * can be called either via IRQ work or independently.
180 */
181static void __printk_safe_flush(struct irq_work *work)
182{
183	static raw_spinlock_t read_lock =
184		__RAW_SPIN_LOCK_INITIALIZER(read_lock);
185	struct printk_safe_seq_buf *s =
186		container_of(work, struct printk_safe_seq_buf, work);
187	unsigned long flags;
188	size_t len;
189	int i;
190
191	/*
192	 * The lock has two functions. First, one reader has to flush all
193	 * available message to make the lockless synchronization with
194	 * writers easier. Second, we do not want to mix messages from
195	 * different CPUs. This is especially important when printing
196	 * a backtrace.
197	 */
198	raw_spin_lock_irqsave(&read_lock, flags);
199
200	i = 0;
201more:
202	len = atomic_read(&s->len);
203
204	/*
205	 * This is just a paranoid check that nobody has manipulated
206	 * the buffer an unexpected way. If we printed something then
207	 * @len must only increase. Also it should never overflow the
208	 * buffer size.
209	 */
210	if ((i && i >= len) || len > sizeof(s->buffer)) {
211		const char *msg = "printk_safe_flush: internal error\n";
212
213		printk_safe_flush_line(msg, strlen(msg));
214		len = 0;
215	}
216
217	if (!len)
218		goto out; /* Someone else has already flushed the buffer. */
219
220	/* Make sure that data has been written up to the @len */
221	smp_rmb();
222	i += printk_safe_flush_buffer(s->buffer + i, len - i);
223
224	/*
225	 * Check that nothing has got added in the meantime and truncate
226	 * the buffer. Note that atomic_cmpxchg() is an implicit memory
227	 * barrier that makes sure that the data were copied before
228	 * updating s->len.
229	 */
230	if (atomic_cmpxchg(&s->len, len, 0) != len)
231		goto more;
232
233out:
234	report_message_lost(s);
235	raw_spin_unlock_irqrestore(&read_lock, flags);
236}
237
238/**
239 * printk_safe_flush - flush all per-cpu nmi buffers.
240 *
241 * The buffers are flushed automatically via IRQ work. This function
242 * is useful only when someone wants to be sure that all buffers have
243 * been flushed at some point.
244 */
245void printk_safe_flush(void)
246{
247	int cpu;
248
249	for_each_possible_cpu(cpu) {
250#ifdef CONFIG_PRINTK_NMI
251		__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
252#endif
253		__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
254	}
255}
256
257/**
258 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
259 *	goes down.
260 *
261 * Similar to printk_safe_flush() but it can be called even in NMI context when
262 * the system goes down. It does the best effort to get NMI messages into
263 * the main ring buffer.
264 *
265 * Note that it could try harder when there is only one CPU online.
266 */
267void printk_safe_flush_on_panic(void)
268{
269	/*
270	 * Make sure that we could access the main ring buffer.
271	 * Do not risk a double release when more CPUs are up.
272	 */
273	if (raw_spin_is_locked(&logbuf_lock)) {
274		if (num_online_cpus() > 1)
275			return;
276
277		debug_locks_off();
278		raw_spin_lock_init(&logbuf_lock);
279	}
280
281	printk_safe_flush();
282}
283
284#ifdef CONFIG_PRINTK_NMI
285/*
286 * Safe printk() for NMI context. It uses a per-CPU buffer to
287 * store the message. NMIs are not nested, so there is always only
288 * one writer running. But the buffer might get flushed from another
289 * CPU, so we need to be careful.
290 */
291static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
292{
293	struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
294
295	return printk_safe_log_store(s, fmt, args);
296}
297
298void noinstr printk_nmi_enter(void)
299{
300	this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
301}
302
303void noinstr printk_nmi_exit(void)
304{
305	this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
306}
307
308/*
309 * Marks a code that might produce many messages in NMI context
310 * and the risk of losing them is more critical than eventual
311 * reordering.
312 *
313 * It has effect only when called in NMI context. Then printk()
314 * will try to store the messages into the main logbuf directly
315 * and use the per-CPU buffers only as a fallback when the lock
316 * is not available.
317 */
318void printk_nmi_direct_enter(void)
319{
320	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
321		this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
322}
323
324void printk_nmi_direct_exit(void)
325{
326	this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
327}
328
329#else
330
331static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
332{
333	return 0;
334}
335
336#endif /* CONFIG_PRINTK_NMI */
337
338/*
339 * Lock-less printk(), to avoid deadlocks should the printk() recurse
340 * into itself. It uses a per-CPU buffer to store the message, just like
341 * NMI.
342 */
343static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
344{
345	struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
346
347	return printk_safe_log_store(s, fmt, args);
348}
349
350/* Can be preempted by NMI. */
351void __printk_safe_enter(void)
352{
353	this_cpu_inc(printk_context);
354}
355
356/* Can be preempted by NMI. */
357void __printk_safe_exit(void)
358{
359	this_cpu_dec(printk_context);
360}
361
362__printf(1, 0) int vprintk_func(const char *fmt, va_list args)
363{
364#ifdef CONFIG_KGDB_KDB
365	/* Allow to pass printk() to kdb but avoid a recursion. */
366	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0))
367		return vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
368#endif
369
370	/*
371	 * Try to use the main logbuf even in NMI. But avoid calling console
372	 * drivers that might have their own locks.
373	 */
374	if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) &&
375	    raw_spin_trylock(&logbuf_lock)) {
376		int len;
377
378		len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
379		raw_spin_unlock(&logbuf_lock);
380		defer_console_output();
381		return len;
382	}
383
384	/* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */
385	if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
386		return vprintk_nmi(fmt, args);
387
388	/* Use extra buffer to prevent a recursion deadlock in safe mode. */
389	if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
390		return vprintk_safe(fmt, args);
391
392	/* No obstacles. */
393	return vprintk_default(fmt, args);
394}
395
396void __init printk_safe_init(void)
397{
398	int cpu;
399
400	for_each_possible_cpu(cpu) {
401		struct printk_safe_seq_buf *s;
402
403		s = &per_cpu(safe_print_seq, cpu);
404		init_irq_work(&s->work, __printk_safe_flush);
405
406#ifdef CONFIG_PRINTK_NMI
407		s = &per_cpu(nmi_print_seq, cpu);
408		init_irq_work(&s->work, __printk_safe_flush);
409#endif
410	}
411
412	/* Flush pending messages that did not have scheduled IRQ works. */
413	printk_safe_flush();
414}