Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 * Adaptive Spinlocks:
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13 * and Peter Morreale,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16 *
17 * See Documentation/locking/rt-mutex-design.rst for details.
18 */
19#include <linux/sched.h>
20#include <linux/sched/debug.h>
21#include <linux/sched/deadline.h>
22#include <linux/sched/signal.h>
23#include <linux/sched/rt.h>
24#include <linux/sched/wake_q.h>
25#include <linux/ww_mutex.h>
26
27#include <trace/events/lock.h>
28
29#include "rtmutex_common.h"
30
31#ifndef WW_RT
32# define build_ww_mutex() (false)
33# define ww_container_of(rtm) NULL
34
35static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 struct rt_mutex *lock,
37 struct ww_acquire_ctx *ww_ctx)
38{
39 return 0;
40}
41
42static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43 struct ww_acquire_ctx *ww_ctx)
44{
45}
46
47static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48 struct ww_acquire_ctx *ww_ctx)
49{
50}
51
52static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53 struct rt_mutex_waiter *waiter,
54 struct ww_acquire_ctx *ww_ctx)
55{
56 return 0;
57}
58
59#else
60# define build_ww_mutex() (true)
61# define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
62# include "ww_mutex.h"
63#endif
64
65/*
66 * lock->owner state tracking:
67 *
68 * lock->owner holds the task_struct pointer of the owner. Bit 0
69 * is used to keep track of the "lock has waiters" state.
70 *
71 * owner bit0
72 * NULL 0 lock is free (fast acquire possible)
73 * NULL 1 lock is free and has waiters and the top waiter
74 * is going to take the lock*
75 * taskpointer 0 lock is held (fast release possible)
76 * taskpointer 1 lock is held and has waiters**
77 *
78 * The fast atomic compare exchange based acquire and release is only
79 * possible when bit 0 of lock->owner is 0.
80 *
81 * (*) It also can be a transitional state when grabbing the lock
82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83 * we need to set the bit0 before looking at the lock, and the owner may be
84 * NULL in this small time, hence this can be a transitional state.
85 *
86 * (**) There is a small time when bit 0 is set but there are no
87 * waiters. This can happen when grabbing the lock in the slow path.
88 * To prevent a cmpxchg of the owner releasing the lock, we need to
89 * set this bit before looking at the lock.
90 */
91
92static __always_inline struct task_struct *
93rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
94{
95 unsigned long val = (unsigned long)owner;
96
97 if (rt_mutex_has_waiters(lock))
98 val |= RT_MUTEX_HAS_WAITERS;
99
100 return (struct task_struct *)val;
101}
102
103static __always_inline void
104rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
105{
106 /*
107 * lock->wait_lock is held but explicit acquire semantics are needed
108 * for a new lock owner so WRITE_ONCE is insufficient.
109 */
110 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
111}
112
113static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
114{
115 /* lock->wait_lock is held so the unlock provides release semantics. */
116 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
117}
118
119static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
120{
121 lock->owner = (struct task_struct *)
122 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
123}
124
125static __always_inline void
126fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
127{
128 unsigned long owner, *p = (unsigned long *) &lock->owner;
129
130 if (rt_mutex_has_waiters(lock))
131 return;
132
133 /*
134 * The rbtree has no waiters enqueued, now make sure that the
135 * lock->owner still has the waiters bit set, otherwise the
136 * following can happen:
137 *
138 * CPU 0 CPU 1 CPU2
139 * l->owner=T1
140 * rt_mutex_lock(l)
141 * lock(l->lock)
142 * l->owner = T1 | HAS_WAITERS;
143 * enqueue(T2)
144 * boost()
145 * unlock(l->lock)
146 * block()
147 *
148 * rt_mutex_lock(l)
149 * lock(l->lock)
150 * l->owner = T1 | HAS_WAITERS;
151 * enqueue(T3)
152 * boost()
153 * unlock(l->lock)
154 * block()
155 * signal(->T2) signal(->T3)
156 * lock(l->lock)
157 * dequeue(T2)
158 * deboost()
159 * unlock(l->lock)
160 * lock(l->lock)
161 * dequeue(T3)
162 * ==> wait list is empty
163 * deboost()
164 * unlock(l->lock)
165 * lock(l->lock)
166 * fixup_rt_mutex_waiters()
167 * if (wait_list_empty(l) {
168 * l->owner = owner
169 * owner = l->owner & ~HAS_WAITERS;
170 * ==> l->owner = T1
171 * }
172 * lock(l->lock)
173 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
174 * if (wait_list_empty(l) {
175 * owner = l->owner & ~HAS_WAITERS;
176 * cmpxchg(l->owner, T1, NULL)
177 * ===> Success (l->owner = NULL)
178 *
179 * l->owner = owner
180 * ==> l->owner = T1
181 * }
182 *
183 * With the check for the waiter bit in place T3 on CPU2 will not
184 * overwrite. All tasks fiddling with the waiters bit are
185 * serialized by l->lock, so nothing else can modify the waiters
186 * bit. If the bit is set then nothing can change l->owner either
187 * so the simple RMW is safe. The cmpxchg() will simply fail if it
188 * happens in the middle of the RMW because the waiters bit is
189 * still set.
190 */
191 owner = READ_ONCE(*p);
192 if (owner & RT_MUTEX_HAS_WAITERS) {
193 /*
194 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
195 * why xchg_acquire() is used for updating owner for
196 * locking and WRITE_ONCE() for unlocking.
197 *
198 * WRITE_ONCE() would work for the acquire case too, but
199 * in case that the lock acquisition failed it might
200 * force other lockers into the slow path unnecessarily.
201 */
202 if (acquire_lock)
203 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
204 else
205 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
206 }
207}
208
209/*
210 * We can speed up the acquire/release, if there's no debugging state to be
211 * set up.
212 */
213#ifndef CONFIG_DEBUG_RT_MUTEXES
214static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
215 struct task_struct *old,
216 struct task_struct *new)
217{
218 return try_cmpxchg_acquire(&lock->owner, &old, new);
219}
220
221static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
222 struct task_struct *old,
223 struct task_struct *new)
224{
225 return try_cmpxchg_release(&lock->owner, &old, new);
226}
227
228/*
229 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
230 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
231 * relaxed semantics suffice.
232 */
233static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
234{
235 unsigned long owner, *p = (unsigned long *) &lock->owner;
236
237 do {
238 owner = *p;
239 } while (cmpxchg_relaxed(p, owner,
240 owner | RT_MUTEX_HAS_WAITERS) != owner);
241
242 /*
243 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
244 * operations in the event of contention. Ensure the successful
245 * cmpxchg is visible.
246 */
247 smp_mb__after_atomic();
248}
249
250/*
251 * Safe fastpath aware unlock:
252 * 1) Clear the waiters bit
253 * 2) Drop lock->wait_lock
254 * 3) Try to unlock the lock with cmpxchg
255 */
256static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
257 unsigned long flags)
258 __releases(lock->wait_lock)
259{
260 struct task_struct *owner = rt_mutex_owner(lock);
261
262 clear_rt_mutex_waiters(lock);
263 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
264 /*
265 * If a new waiter comes in between the unlock and the cmpxchg
266 * we have two situations:
267 *
268 * unlock(wait_lock);
269 * lock(wait_lock);
270 * cmpxchg(p, owner, 0) == owner
271 * mark_rt_mutex_waiters(lock);
272 * acquire(lock);
273 * or:
274 *
275 * unlock(wait_lock);
276 * lock(wait_lock);
277 * mark_rt_mutex_waiters(lock);
278 *
279 * cmpxchg(p, owner, 0) != owner
280 * enqueue_waiter();
281 * unlock(wait_lock);
282 * lock(wait_lock);
283 * wake waiter();
284 * unlock(wait_lock);
285 * lock(wait_lock);
286 * acquire(lock);
287 */
288 return rt_mutex_cmpxchg_release(lock, owner, NULL);
289}
290
291#else
292static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
293 struct task_struct *old,
294 struct task_struct *new)
295{
296 return false;
297
298}
299
300static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
301 struct task_struct *old,
302 struct task_struct *new)
303{
304 return false;
305}
306
307static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
308{
309 lock->owner = (struct task_struct *)
310 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
311}
312
313/*
314 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
315 */
316static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
317 unsigned long flags)
318 __releases(lock->wait_lock)
319{
320 lock->owner = NULL;
321 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
322 return true;
323}
324#endif
325
326static __always_inline int __waiter_prio(struct task_struct *task)
327{
328 int prio = task->prio;
329
330 if (!rt_prio(prio))
331 return DEFAULT_PRIO;
332
333 return prio;
334}
335
336static __always_inline void
337waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
338{
339 waiter->prio = __waiter_prio(task);
340 waiter->deadline = task->dl.deadline;
341}
342
343/*
344 * Only use with rt_mutex_waiter_{less,equal}()
345 */
346#define task_to_waiter(p) \
347 &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
348
349static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
350 struct rt_mutex_waiter *right)
351{
352 if (left->prio < right->prio)
353 return 1;
354
355 /*
356 * If both waiters have dl_prio(), we check the deadlines of the
357 * associated tasks.
358 * If left waiter has a dl_prio(), and we didn't return 1 above,
359 * then right waiter has a dl_prio() too.
360 */
361 if (dl_prio(left->prio))
362 return dl_time_before(left->deadline, right->deadline);
363
364 return 0;
365}
366
367static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
368 struct rt_mutex_waiter *right)
369{
370 if (left->prio != right->prio)
371 return 0;
372
373 /*
374 * If both waiters have dl_prio(), we check the deadlines of the
375 * associated tasks.
376 * If left waiter has a dl_prio(), and we didn't return 0 above,
377 * then right waiter has a dl_prio() too.
378 */
379 if (dl_prio(left->prio))
380 return left->deadline == right->deadline;
381
382 return 1;
383}
384
385static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
386 struct rt_mutex_waiter *top_waiter)
387{
388 if (rt_mutex_waiter_less(waiter, top_waiter))
389 return true;
390
391#ifdef RT_MUTEX_BUILD_SPINLOCKS
392 /*
393 * Note that RT tasks are excluded from same priority (lateral)
394 * steals to prevent the introduction of an unbounded latency.
395 */
396 if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
397 return false;
398
399 return rt_mutex_waiter_equal(waiter, top_waiter);
400#else
401 return false;
402#endif
403}
404
405#define __node_2_waiter(node) \
406 rb_entry((node), struct rt_mutex_waiter, tree_entry)
407
408static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
409{
410 struct rt_mutex_waiter *aw = __node_2_waiter(a);
411 struct rt_mutex_waiter *bw = __node_2_waiter(b);
412
413 if (rt_mutex_waiter_less(aw, bw))
414 return 1;
415
416 if (!build_ww_mutex())
417 return 0;
418
419 if (rt_mutex_waiter_less(bw, aw))
420 return 0;
421
422 /* NOTE: relies on waiter->ww_ctx being set before insertion */
423 if (aw->ww_ctx) {
424 if (!bw->ww_ctx)
425 return 1;
426
427 return (signed long)(aw->ww_ctx->stamp -
428 bw->ww_ctx->stamp) < 0;
429 }
430
431 return 0;
432}
433
434static __always_inline void
435rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
436{
437 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
438}
439
440static __always_inline void
441rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
442{
443 if (RB_EMPTY_NODE(&waiter->tree_entry))
444 return;
445
446 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
447 RB_CLEAR_NODE(&waiter->tree_entry);
448}
449
450#define __node_2_pi_waiter(node) \
451 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
452
453static __always_inline bool
454__pi_waiter_less(struct rb_node *a, const struct rb_node *b)
455{
456 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
457}
458
459static __always_inline void
460rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
461{
462 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
463}
464
465static __always_inline void
466rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
467{
468 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
469 return;
470
471 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
472 RB_CLEAR_NODE(&waiter->pi_tree_entry);
473}
474
475static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
476{
477 struct task_struct *pi_task = NULL;
478
479 lockdep_assert_held(&p->pi_lock);
480
481 if (task_has_pi_waiters(p))
482 pi_task = task_top_pi_waiter(p)->task;
483
484 rt_mutex_setprio(p, pi_task);
485}
486
487/* RT mutex specific wake_q wrappers */
488static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
489 struct task_struct *task,
490 unsigned int wake_state)
491{
492 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
493 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
494 WARN_ON_ONCE(wqh->rtlock_task);
495 get_task_struct(task);
496 wqh->rtlock_task = task;
497 } else {
498 wake_q_add(&wqh->head, task);
499 }
500}
501
502static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
503 struct rt_mutex_waiter *w)
504{
505 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
506}
507
508static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
509{
510 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
511 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
512 put_task_struct(wqh->rtlock_task);
513 wqh->rtlock_task = NULL;
514 }
515
516 if (!wake_q_empty(&wqh->head))
517 wake_up_q(&wqh->head);
518
519 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
520 preempt_enable();
521}
522
523/*
524 * Deadlock detection is conditional:
525 *
526 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
527 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
528 *
529 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
530 * conducted independent of the detect argument.
531 *
532 * If the waiter argument is NULL this indicates the deboost path and
533 * deadlock detection is disabled independent of the detect argument
534 * and the config settings.
535 */
536static __always_inline bool
537rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
538 enum rtmutex_chainwalk chwalk)
539{
540 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
541 return waiter != NULL;
542 return chwalk == RT_MUTEX_FULL_CHAINWALK;
543}
544
545static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
546{
547 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
548}
549
550/*
551 * Adjust the priority chain. Also used for deadlock detection.
552 * Decreases task's usage by one - may thus free the task.
553 *
554 * @task: the task owning the mutex (owner) for which a chain walk is
555 * probably needed
556 * @chwalk: do we have to carry out deadlock detection?
557 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
558 * things for a task that has just got its priority adjusted, and
559 * is waiting on a mutex)
560 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
561 * we dropped its pi_lock. Is never dereferenced, only used for
562 * comparison to detect lock chain changes.
563 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
564 * its priority to the mutex owner (can be NULL in the case
565 * depicted above or if the top waiter is gone away and we are
566 * actually deboosting the owner)
567 * @top_task: the current top waiter
568 *
569 * Returns 0 or -EDEADLK.
570 *
571 * Chain walk basics and protection scope
572 *
573 * [R] refcount on task
574 * [P] task->pi_lock held
575 * [L] rtmutex->wait_lock held
576 *
577 * Step Description Protected by
578 * function arguments:
579 * @task [R]
580 * @orig_lock if != NULL @top_task is blocked on it
581 * @next_lock Unprotected. Cannot be
582 * dereferenced. Only used for
583 * comparison.
584 * @orig_waiter if != NULL @top_task is blocked on it
585 * @top_task current, or in case of proxy
586 * locking protected by calling
587 * code
588 * again:
589 * loop_sanity_check();
590 * retry:
591 * [1] lock(task->pi_lock); [R] acquire [P]
592 * [2] waiter = task->pi_blocked_on; [P]
593 * [3] check_exit_conditions_1(); [P]
594 * [4] lock = waiter->lock; [P]
595 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
596 * unlock(task->pi_lock); release [P]
597 * goto retry;
598 * }
599 * [6] check_exit_conditions_2(); [P] + [L]
600 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
601 * [8] unlock(task->pi_lock); release [P]
602 * put_task_struct(task); release [R]
603 * [9] check_exit_conditions_3(); [L]
604 * [10] task = owner(lock); [L]
605 * get_task_struct(task); [L] acquire [R]
606 * lock(task->pi_lock); [L] acquire [P]
607 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
608 * [12] check_exit_conditions_4(); [P] + [L]
609 * [13] unlock(task->pi_lock); release [P]
610 * unlock(lock->wait_lock); release [L]
611 * goto again;
612 */
613static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
614 enum rtmutex_chainwalk chwalk,
615 struct rt_mutex_base *orig_lock,
616 struct rt_mutex_base *next_lock,
617 struct rt_mutex_waiter *orig_waiter,
618 struct task_struct *top_task)
619{
620 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
621 struct rt_mutex_waiter *prerequeue_top_waiter;
622 int ret = 0, depth = 0;
623 struct rt_mutex_base *lock;
624 bool detect_deadlock;
625 bool requeue = true;
626
627 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
628
629 /*
630 * The (de)boosting is a step by step approach with a lot of
631 * pitfalls. We want this to be preemptible and we want hold a
632 * maximum of two locks per step. So we have to check
633 * carefully whether things change under us.
634 */
635 again:
636 /*
637 * We limit the lock chain length for each invocation.
638 */
639 if (++depth > max_lock_depth) {
640 static int prev_max;
641
642 /*
643 * Print this only once. If the admin changes the limit,
644 * print a new message when reaching the limit again.
645 */
646 if (prev_max != max_lock_depth) {
647 prev_max = max_lock_depth;
648 printk(KERN_WARNING "Maximum lock depth %d reached "
649 "task: %s (%d)\n", max_lock_depth,
650 top_task->comm, task_pid_nr(top_task));
651 }
652 put_task_struct(task);
653
654 return -EDEADLK;
655 }
656
657 /*
658 * We are fully preemptible here and only hold the refcount on
659 * @task. So everything can have changed under us since the
660 * caller or our own code below (goto retry/again) dropped all
661 * locks.
662 */
663 retry:
664 /*
665 * [1] Task cannot go away as we did a get_task() before !
666 */
667 raw_spin_lock_irq(&task->pi_lock);
668
669 /*
670 * [2] Get the waiter on which @task is blocked on.
671 */
672 waiter = task->pi_blocked_on;
673
674 /*
675 * [3] check_exit_conditions_1() protected by task->pi_lock.
676 */
677
678 /*
679 * Check whether the end of the boosting chain has been
680 * reached or the state of the chain has changed while we
681 * dropped the locks.
682 */
683 if (!waiter)
684 goto out_unlock_pi;
685
686 /*
687 * Check the orig_waiter state. After we dropped the locks,
688 * the previous owner of the lock might have released the lock.
689 */
690 if (orig_waiter && !rt_mutex_owner(orig_lock))
691 goto out_unlock_pi;
692
693 /*
694 * We dropped all locks after taking a refcount on @task, so
695 * the task might have moved on in the lock chain or even left
696 * the chain completely and blocks now on an unrelated lock or
697 * on @orig_lock.
698 *
699 * We stored the lock on which @task was blocked in @next_lock,
700 * so we can detect the chain change.
701 */
702 if (next_lock != waiter->lock)
703 goto out_unlock_pi;
704
705 /*
706 * There could be 'spurious' loops in the lock graph due to ww_mutex,
707 * consider:
708 *
709 * P1: A, ww_A, ww_B
710 * P2: ww_B, ww_A
711 * P3: A
712 *
713 * P3 should not return -EDEADLK because it gets trapped in the cycle
714 * created by P1 and P2 (which will resolve -- and runs into
715 * max_lock_depth above). Therefore disable detect_deadlock such that
716 * the below termination condition can trigger once all relevant tasks
717 * are boosted.
718 *
719 * Even when we start with ww_mutex we can disable deadlock detection,
720 * since we would supress a ww_mutex induced deadlock at [6] anyway.
721 * Supressing it here however is not sufficient since we might still
722 * hit [6] due to adjustment driven iteration.
723 *
724 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
725 * utterly fail to report it; lockdep should.
726 */
727 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
728 detect_deadlock = false;
729
730 /*
731 * Drop out, when the task has no waiters. Note,
732 * top_waiter can be NULL, when we are in the deboosting
733 * mode!
734 */
735 if (top_waiter) {
736 if (!task_has_pi_waiters(task))
737 goto out_unlock_pi;
738 /*
739 * If deadlock detection is off, we stop here if we
740 * are not the top pi waiter of the task. If deadlock
741 * detection is enabled we continue, but stop the
742 * requeueing in the chain walk.
743 */
744 if (top_waiter != task_top_pi_waiter(task)) {
745 if (!detect_deadlock)
746 goto out_unlock_pi;
747 else
748 requeue = false;
749 }
750 }
751
752 /*
753 * If the waiter priority is the same as the task priority
754 * then there is no further priority adjustment necessary. If
755 * deadlock detection is off, we stop the chain walk. If its
756 * enabled we continue, but stop the requeueing in the chain
757 * walk.
758 */
759 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
760 if (!detect_deadlock)
761 goto out_unlock_pi;
762 else
763 requeue = false;
764 }
765
766 /*
767 * [4] Get the next lock
768 */
769 lock = waiter->lock;
770 /*
771 * [5] We need to trylock here as we are holding task->pi_lock,
772 * which is the reverse lock order versus the other rtmutex
773 * operations.
774 */
775 if (!raw_spin_trylock(&lock->wait_lock)) {
776 raw_spin_unlock_irq(&task->pi_lock);
777 cpu_relax();
778 goto retry;
779 }
780
781 /*
782 * [6] check_exit_conditions_2() protected by task->pi_lock and
783 * lock->wait_lock.
784 *
785 * Deadlock detection. If the lock is the same as the original
786 * lock which caused us to walk the lock chain or if the
787 * current lock is owned by the task which initiated the chain
788 * walk, we detected a deadlock.
789 */
790 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
791 ret = -EDEADLK;
792
793 /*
794 * When the deadlock is due to ww_mutex; also see above. Don't
795 * report the deadlock and instead let the ww_mutex wound/die
796 * logic pick which of the contending threads gets -EDEADLK.
797 *
798 * NOTE: assumes the cycle only contains a single ww_class; any
799 * other configuration and we fail to report; also, see
800 * lockdep.
801 */
802 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
803 ret = 0;
804
805 raw_spin_unlock(&lock->wait_lock);
806 goto out_unlock_pi;
807 }
808
809 /*
810 * If we just follow the lock chain for deadlock detection, no
811 * need to do all the requeue operations. To avoid a truckload
812 * of conditionals around the various places below, just do the
813 * minimum chain walk checks.
814 */
815 if (!requeue) {
816 /*
817 * No requeue[7] here. Just release @task [8]
818 */
819 raw_spin_unlock(&task->pi_lock);
820 put_task_struct(task);
821
822 /*
823 * [9] check_exit_conditions_3 protected by lock->wait_lock.
824 * If there is no owner of the lock, end of chain.
825 */
826 if (!rt_mutex_owner(lock)) {
827 raw_spin_unlock_irq(&lock->wait_lock);
828 return 0;
829 }
830
831 /* [10] Grab the next task, i.e. owner of @lock */
832 task = get_task_struct(rt_mutex_owner(lock));
833 raw_spin_lock(&task->pi_lock);
834
835 /*
836 * No requeue [11] here. We just do deadlock detection.
837 *
838 * [12] Store whether owner is blocked
839 * itself. Decision is made after dropping the locks
840 */
841 next_lock = task_blocked_on_lock(task);
842 /*
843 * Get the top waiter for the next iteration
844 */
845 top_waiter = rt_mutex_top_waiter(lock);
846
847 /* [13] Drop locks */
848 raw_spin_unlock(&task->pi_lock);
849 raw_spin_unlock_irq(&lock->wait_lock);
850
851 /* If owner is not blocked, end of chain. */
852 if (!next_lock)
853 goto out_put_task;
854 goto again;
855 }
856
857 /*
858 * Store the current top waiter before doing the requeue
859 * operation on @lock. We need it for the boost/deboost
860 * decision below.
861 */
862 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
863
864 /* [7] Requeue the waiter in the lock waiter tree. */
865 rt_mutex_dequeue(lock, waiter);
866
867 /*
868 * Update the waiter prio fields now that we're dequeued.
869 *
870 * These values can have changed through either:
871 *
872 * sys_sched_set_scheduler() / sys_sched_setattr()
873 *
874 * or
875 *
876 * DL CBS enforcement advancing the effective deadline.
877 *
878 * Even though pi_waiters also uses these fields, and that tree is only
879 * updated in [11], we can do this here, since we hold [L], which
880 * serializes all pi_waiters access and rb_erase() does not care about
881 * the values of the node being removed.
882 */
883 waiter_update_prio(waiter, task);
884
885 rt_mutex_enqueue(lock, waiter);
886
887 /* [8] Release the task */
888 raw_spin_unlock(&task->pi_lock);
889 put_task_struct(task);
890
891 /*
892 * [9] check_exit_conditions_3 protected by lock->wait_lock.
893 *
894 * We must abort the chain walk if there is no lock owner even
895 * in the dead lock detection case, as we have nothing to
896 * follow here. This is the end of the chain we are walking.
897 */
898 if (!rt_mutex_owner(lock)) {
899 /*
900 * If the requeue [7] above changed the top waiter,
901 * then we need to wake the new top waiter up to try
902 * to get the lock.
903 */
904 top_waiter = rt_mutex_top_waiter(lock);
905 if (prerequeue_top_waiter != top_waiter)
906 wake_up_state(top_waiter->task, top_waiter->wake_state);
907 raw_spin_unlock_irq(&lock->wait_lock);
908 return 0;
909 }
910
911 /* [10] Grab the next task, i.e. the owner of @lock */
912 task = get_task_struct(rt_mutex_owner(lock));
913 raw_spin_lock(&task->pi_lock);
914
915 /* [11] requeue the pi waiters if necessary */
916 if (waiter == rt_mutex_top_waiter(lock)) {
917 /*
918 * The waiter became the new top (highest priority)
919 * waiter on the lock. Replace the previous top waiter
920 * in the owner tasks pi waiters tree with this waiter
921 * and adjust the priority of the owner.
922 */
923 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
924 rt_mutex_enqueue_pi(task, waiter);
925 rt_mutex_adjust_prio(task);
926
927 } else if (prerequeue_top_waiter == waiter) {
928 /*
929 * The waiter was the top waiter on the lock, but is
930 * no longer the top priority waiter. Replace waiter in
931 * the owner tasks pi waiters tree with the new top
932 * (highest priority) waiter and adjust the priority
933 * of the owner.
934 * The new top waiter is stored in @waiter so that
935 * @waiter == @top_waiter evaluates to true below and
936 * we continue to deboost the rest of the chain.
937 */
938 rt_mutex_dequeue_pi(task, waiter);
939 waiter = rt_mutex_top_waiter(lock);
940 rt_mutex_enqueue_pi(task, waiter);
941 rt_mutex_adjust_prio(task);
942 } else {
943 /*
944 * Nothing changed. No need to do any priority
945 * adjustment.
946 */
947 }
948
949 /*
950 * [12] check_exit_conditions_4() protected by task->pi_lock
951 * and lock->wait_lock. The actual decisions are made after we
952 * dropped the locks.
953 *
954 * Check whether the task which owns the current lock is pi
955 * blocked itself. If yes we store a pointer to the lock for
956 * the lock chain change detection above. After we dropped
957 * task->pi_lock next_lock cannot be dereferenced anymore.
958 */
959 next_lock = task_blocked_on_lock(task);
960 /*
961 * Store the top waiter of @lock for the end of chain walk
962 * decision below.
963 */
964 top_waiter = rt_mutex_top_waiter(lock);
965
966 /* [13] Drop the locks */
967 raw_spin_unlock(&task->pi_lock);
968 raw_spin_unlock_irq(&lock->wait_lock);
969
970 /*
971 * Make the actual exit decisions [12], based on the stored
972 * values.
973 *
974 * We reached the end of the lock chain. Stop right here. No
975 * point to go back just to figure that out.
976 */
977 if (!next_lock)
978 goto out_put_task;
979
980 /*
981 * If the current waiter is not the top waiter on the lock,
982 * then we can stop the chain walk here if we are not in full
983 * deadlock detection mode.
984 */
985 if (!detect_deadlock && waiter != top_waiter)
986 goto out_put_task;
987
988 goto again;
989
990 out_unlock_pi:
991 raw_spin_unlock_irq(&task->pi_lock);
992 out_put_task:
993 put_task_struct(task);
994
995 return ret;
996}
997
998/*
999 * Try to take an rt-mutex
1000 *
1001 * Must be called with lock->wait_lock held and interrupts disabled
1002 *
1003 * @lock: The lock to be acquired.
1004 * @task: The task which wants to acquire the lock
1005 * @waiter: The waiter that is queued to the lock's wait tree if the
1006 * callsite called task_blocked_on_lock(), otherwise NULL
1007 */
1008static int __sched
1009try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1010 struct rt_mutex_waiter *waiter)
1011{
1012 lockdep_assert_held(&lock->wait_lock);
1013
1014 /*
1015 * Before testing whether we can acquire @lock, we set the
1016 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1017 * other tasks which try to modify @lock into the slow path
1018 * and they serialize on @lock->wait_lock.
1019 *
1020 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1021 * as explained at the top of this file if and only if:
1022 *
1023 * - There is a lock owner. The caller must fixup the
1024 * transient state if it does a trylock or leaves the lock
1025 * function due to a signal or timeout.
1026 *
1027 * - @task acquires the lock and there are no other
1028 * waiters. This is undone in rt_mutex_set_owner(@task) at
1029 * the end of this function.
1030 */
1031 mark_rt_mutex_waiters(lock);
1032
1033 /*
1034 * If @lock has an owner, give up.
1035 */
1036 if (rt_mutex_owner(lock))
1037 return 0;
1038
1039 /*
1040 * If @waiter != NULL, @task has already enqueued the waiter
1041 * into @lock waiter tree. If @waiter == NULL then this is a
1042 * trylock attempt.
1043 */
1044 if (waiter) {
1045 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1046
1047 /*
1048 * If waiter is the highest priority waiter of @lock,
1049 * or allowed to steal it, take it over.
1050 */
1051 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1052 /*
1053 * We can acquire the lock. Remove the waiter from the
1054 * lock waiters tree.
1055 */
1056 rt_mutex_dequeue(lock, waiter);
1057 } else {
1058 return 0;
1059 }
1060 } else {
1061 /*
1062 * If the lock has waiters already we check whether @task is
1063 * eligible to take over the lock.
1064 *
1065 * If there are no other waiters, @task can acquire
1066 * the lock. @task->pi_blocked_on is NULL, so it does
1067 * not need to be dequeued.
1068 */
1069 if (rt_mutex_has_waiters(lock)) {
1070 /* Check whether the trylock can steal it. */
1071 if (!rt_mutex_steal(task_to_waiter(task),
1072 rt_mutex_top_waiter(lock)))
1073 return 0;
1074
1075 /*
1076 * The current top waiter stays enqueued. We
1077 * don't have to change anything in the lock
1078 * waiters order.
1079 */
1080 } else {
1081 /*
1082 * No waiters. Take the lock without the
1083 * pi_lock dance.@task->pi_blocked_on is NULL
1084 * and we have no waiters to enqueue in @task
1085 * pi waiters tree.
1086 */
1087 goto takeit;
1088 }
1089 }
1090
1091 /*
1092 * Clear @task->pi_blocked_on. Requires protection by
1093 * @task->pi_lock. Redundant operation for the @waiter == NULL
1094 * case, but conditionals are more expensive than a redundant
1095 * store.
1096 */
1097 raw_spin_lock(&task->pi_lock);
1098 task->pi_blocked_on = NULL;
1099 /*
1100 * Finish the lock acquisition. @task is the new owner. If
1101 * other waiters exist we have to insert the highest priority
1102 * waiter into @task->pi_waiters tree.
1103 */
1104 if (rt_mutex_has_waiters(lock))
1105 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1106 raw_spin_unlock(&task->pi_lock);
1107
1108takeit:
1109 /*
1110 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1111 * are still waiters or clears it.
1112 */
1113 rt_mutex_set_owner(lock, task);
1114
1115 return 1;
1116}
1117
1118/*
1119 * Task blocks on lock.
1120 *
1121 * Prepare waiter and propagate pi chain
1122 *
1123 * This must be called with lock->wait_lock held and interrupts disabled
1124 */
1125static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1126 struct rt_mutex_waiter *waiter,
1127 struct task_struct *task,
1128 struct ww_acquire_ctx *ww_ctx,
1129 enum rtmutex_chainwalk chwalk)
1130{
1131 struct task_struct *owner = rt_mutex_owner(lock);
1132 struct rt_mutex_waiter *top_waiter = waiter;
1133 struct rt_mutex_base *next_lock;
1134 int chain_walk = 0, res;
1135
1136 lockdep_assert_held(&lock->wait_lock);
1137
1138 /*
1139 * Early deadlock detection. We really don't want the task to
1140 * enqueue on itself just to untangle the mess later. It's not
1141 * only an optimization. We drop the locks, so another waiter
1142 * can come in before the chain walk detects the deadlock. So
1143 * the other will detect the deadlock and return -EDEADLOCK,
1144 * which is wrong, as the other waiter is not in a deadlock
1145 * situation.
1146 *
1147 * Except for ww_mutex, in that case the chain walk must already deal
1148 * with spurious cycles, see the comments at [3] and [6].
1149 */
1150 if (owner == task && !(build_ww_mutex() && ww_ctx))
1151 return -EDEADLK;
1152
1153 raw_spin_lock(&task->pi_lock);
1154 waiter->task = task;
1155 waiter->lock = lock;
1156 waiter_update_prio(waiter, task);
1157
1158 /* Get the top priority waiter on the lock */
1159 if (rt_mutex_has_waiters(lock))
1160 top_waiter = rt_mutex_top_waiter(lock);
1161 rt_mutex_enqueue(lock, waiter);
1162
1163 task->pi_blocked_on = waiter;
1164
1165 raw_spin_unlock(&task->pi_lock);
1166
1167 if (build_ww_mutex() && ww_ctx) {
1168 struct rt_mutex *rtm;
1169
1170 /* Check whether the waiter should back out immediately */
1171 rtm = container_of(lock, struct rt_mutex, rtmutex);
1172 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1173 if (res) {
1174 raw_spin_lock(&task->pi_lock);
1175 rt_mutex_dequeue(lock, waiter);
1176 task->pi_blocked_on = NULL;
1177 raw_spin_unlock(&task->pi_lock);
1178 return res;
1179 }
1180 }
1181
1182 if (!owner)
1183 return 0;
1184
1185 raw_spin_lock(&owner->pi_lock);
1186 if (waiter == rt_mutex_top_waiter(lock)) {
1187 rt_mutex_dequeue_pi(owner, top_waiter);
1188 rt_mutex_enqueue_pi(owner, waiter);
1189
1190 rt_mutex_adjust_prio(owner);
1191 if (owner->pi_blocked_on)
1192 chain_walk = 1;
1193 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1194 chain_walk = 1;
1195 }
1196
1197 /* Store the lock on which owner is blocked or NULL */
1198 next_lock = task_blocked_on_lock(owner);
1199
1200 raw_spin_unlock(&owner->pi_lock);
1201 /*
1202 * Even if full deadlock detection is on, if the owner is not
1203 * blocked itself, we can avoid finding this out in the chain
1204 * walk.
1205 */
1206 if (!chain_walk || !next_lock)
1207 return 0;
1208
1209 /*
1210 * The owner can't disappear while holding a lock,
1211 * so the owner struct is protected by wait_lock.
1212 * Gets dropped in rt_mutex_adjust_prio_chain()!
1213 */
1214 get_task_struct(owner);
1215
1216 raw_spin_unlock_irq(&lock->wait_lock);
1217
1218 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1219 next_lock, waiter, task);
1220
1221 raw_spin_lock_irq(&lock->wait_lock);
1222
1223 return res;
1224}
1225
1226/*
1227 * Remove the top waiter from the current tasks pi waiter tree and
1228 * queue it up.
1229 *
1230 * Called with lock->wait_lock held and interrupts disabled.
1231 */
1232static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1233 struct rt_mutex_base *lock)
1234{
1235 struct rt_mutex_waiter *waiter;
1236
1237 raw_spin_lock(¤t->pi_lock);
1238
1239 waiter = rt_mutex_top_waiter(lock);
1240
1241 /*
1242 * Remove it from current->pi_waiters and deboost.
1243 *
1244 * We must in fact deboost here in order to ensure we call
1245 * rt_mutex_setprio() to update p->pi_top_task before the
1246 * task unblocks.
1247 */
1248 rt_mutex_dequeue_pi(current, waiter);
1249 rt_mutex_adjust_prio(current);
1250
1251 /*
1252 * As we are waking up the top waiter, and the waiter stays
1253 * queued on the lock until it gets the lock, this lock
1254 * obviously has waiters. Just set the bit here and this has
1255 * the added benefit of forcing all new tasks into the
1256 * slow path making sure no task of lower priority than
1257 * the top waiter can steal this lock.
1258 */
1259 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1260
1261 /*
1262 * We deboosted before waking the top waiter task such that we don't
1263 * run two tasks with the 'same' priority (and ensure the
1264 * p->pi_top_task pointer points to a blocked task). This however can
1265 * lead to priority inversion if we would get preempted after the
1266 * deboost but before waking our donor task, hence the preempt_disable()
1267 * before unlock.
1268 *
1269 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1270 */
1271 preempt_disable();
1272 rt_mutex_wake_q_add(wqh, waiter);
1273 raw_spin_unlock(¤t->pi_lock);
1274}
1275
1276static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1277{
1278 int ret = try_to_take_rt_mutex(lock, current, NULL);
1279
1280 /*
1281 * try_to_take_rt_mutex() sets the lock waiters bit
1282 * unconditionally. Clean this up.
1283 */
1284 fixup_rt_mutex_waiters(lock, true);
1285
1286 return ret;
1287}
1288
1289/*
1290 * Slow path try-lock function:
1291 */
1292static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1293{
1294 unsigned long flags;
1295 int ret;
1296
1297 /*
1298 * If the lock already has an owner we fail to get the lock.
1299 * This can be done without taking the @lock->wait_lock as
1300 * it is only being read, and this is a trylock anyway.
1301 */
1302 if (rt_mutex_owner(lock))
1303 return 0;
1304
1305 /*
1306 * The mutex has currently no owner. Lock the wait lock and try to
1307 * acquire the lock. We use irqsave here to support early boot calls.
1308 */
1309 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1310
1311 ret = __rt_mutex_slowtrylock(lock);
1312
1313 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1314
1315 return ret;
1316}
1317
1318static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1319{
1320 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1321 return 1;
1322
1323 return rt_mutex_slowtrylock(lock);
1324}
1325
1326/*
1327 * Slow path to release a rt-mutex.
1328 */
1329static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1330{
1331 DEFINE_RT_WAKE_Q(wqh);
1332 unsigned long flags;
1333
1334 /* irqsave required to support early boot calls */
1335 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1336
1337 debug_rt_mutex_unlock(lock);
1338
1339 /*
1340 * We must be careful here if the fast path is enabled. If we
1341 * have no waiters queued we cannot set owner to NULL here
1342 * because of:
1343 *
1344 * foo->lock->owner = NULL;
1345 * rtmutex_lock(foo->lock); <- fast path
1346 * free = atomic_dec_and_test(foo->refcnt);
1347 * rtmutex_unlock(foo->lock); <- fast path
1348 * if (free)
1349 * kfree(foo);
1350 * raw_spin_unlock(foo->lock->wait_lock);
1351 *
1352 * So for the fastpath enabled kernel:
1353 *
1354 * Nothing can set the waiters bit as long as we hold
1355 * lock->wait_lock. So we do the following sequence:
1356 *
1357 * owner = rt_mutex_owner(lock);
1358 * clear_rt_mutex_waiters(lock);
1359 * raw_spin_unlock(&lock->wait_lock);
1360 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1361 * return;
1362 * goto retry;
1363 *
1364 * The fastpath disabled variant is simple as all access to
1365 * lock->owner is serialized by lock->wait_lock:
1366 *
1367 * lock->owner = NULL;
1368 * raw_spin_unlock(&lock->wait_lock);
1369 */
1370 while (!rt_mutex_has_waiters(lock)) {
1371 /* Drops lock->wait_lock ! */
1372 if (unlock_rt_mutex_safe(lock, flags) == true)
1373 return;
1374 /* Relock the rtmutex and try again */
1375 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1376 }
1377
1378 /*
1379 * The wakeup next waiter path does not suffer from the above
1380 * race. See the comments there.
1381 *
1382 * Queue the next waiter for wakeup once we release the wait_lock.
1383 */
1384 mark_wakeup_next_waiter(&wqh, lock);
1385 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1386
1387 rt_mutex_wake_up_q(&wqh);
1388}
1389
1390static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1391{
1392 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1393 return;
1394
1395 rt_mutex_slowunlock(lock);
1396}
1397
1398#ifdef CONFIG_SMP
1399static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1400 struct rt_mutex_waiter *waiter,
1401 struct task_struct *owner)
1402{
1403 bool res = true;
1404
1405 rcu_read_lock();
1406 for (;;) {
1407 /* If owner changed, trylock again. */
1408 if (owner != rt_mutex_owner(lock))
1409 break;
1410 /*
1411 * Ensure that @owner is dereferenced after checking that
1412 * the lock owner still matches @owner. If that fails,
1413 * @owner might point to freed memory. If it still matches,
1414 * the rcu_read_lock() ensures the memory stays valid.
1415 */
1416 barrier();
1417 /*
1418 * Stop spinning when:
1419 * - the lock owner has been scheduled out
1420 * - current is not longer the top waiter
1421 * - current is requested to reschedule (redundant
1422 * for CONFIG_PREEMPT_RCU=y)
1423 * - the VCPU on which owner runs is preempted
1424 */
1425 if (!owner_on_cpu(owner) || need_resched() ||
1426 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1427 res = false;
1428 break;
1429 }
1430 cpu_relax();
1431 }
1432 rcu_read_unlock();
1433 return res;
1434}
1435#else
1436static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1437 struct rt_mutex_waiter *waiter,
1438 struct task_struct *owner)
1439{
1440 return false;
1441}
1442#endif
1443
1444#ifdef RT_MUTEX_BUILD_MUTEX
1445/*
1446 * Functions required for:
1447 * - rtmutex, futex on all kernels
1448 * - mutex and rwsem substitutions on RT kernels
1449 */
1450
1451/*
1452 * Remove a waiter from a lock and give up
1453 *
1454 * Must be called with lock->wait_lock held and interrupts disabled. It must
1455 * have just failed to try_to_take_rt_mutex().
1456 */
1457static void __sched remove_waiter(struct rt_mutex_base *lock,
1458 struct rt_mutex_waiter *waiter)
1459{
1460 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1461 struct task_struct *owner = rt_mutex_owner(lock);
1462 struct rt_mutex_base *next_lock;
1463
1464 lockdep_assert_held(&lock->wait_lock);
1465
1466 raw_spin_lock(¤t->pi_lock);
1467 rt_mutex_dequeue(lock, waiter);
1468 current->pi_blocked_on = NULL;
1469 raw_spin_unlock(¤t->pi_lock);
1470
1471 /*
1472 * Only update priority if the waiter was the highest priority
1473 * waiter of the lock and there is an owner to update.
1474 */
1475 if (!owner || !is_top_waiter)
1476 return;
1477
1478 raw_spin_lock(&owner->pi_lock);
1479
1480 rt_mutex_dequeue_pi(owner, waiter);
1481
1482 if (rt_mutex_has_waiters(lock))
1483 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1484
1485 rt_mutex_adjust_prio(owner);
1486
1487 /* Store the lock on which owner is blocked or NULL */
1488 next_lock = task_blocked_on_lock(owner);
1489
1490 raw_spin_unlock(&owner->pi_lock);
1491
1492 /*
1493 * Don't walk the chain, if the owner task is not blocked
1494 * itself.
1495 */
1496 if (!next_lock)
1497 return;
1498
1499 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1500 get_task_struct(owner);
1501
1502 raw_spin_unlock_irq(&lock->wait_lock);
1503
1504 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1505 next_lock, NULL, current);
1506
1507 raw_spin_lock_irq(&lock->wait_lock);
1508}
1509
1510/**
1511 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1512 * @lock: the rt_mutex to take
1513 * @ww_ctx: WW mutex context pointer
1514 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1515 * or TASK_UNINTERRUPTIBLE)
1516 * @timeout: the pre-initialized and started timer, or NULL for none
1517 * @waiter: the pre-initialized rt_mutex_waiter
1518 *
1519 * Must be called with lock->wait_lock held and interrupts disabled
1520 */
1521static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1522 struct ww_acquire_ctx *ww_ctx,
1523 unsigned int state,
1524 struct hrtimer_sleeper *timeout,
1525 struct rt_mutex_waiter *waiter)
1526{
1527 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1528 struct task_struct *owner;
1529 int ret = 0;
1530
1531 for (;;) {
1532 /* Try to acquire the lock: */
1533 if (try_to_take_rt_mutex(lock, current, waiter))
1534 break;
1535
1536 if (timeout && !timeout->task) {
1537 ret = -ETIMEDOUT;
1538 break;
1539 }
1540 if (signal_pending_state(state, current)) {
1541 ret = -EINTR;
1542 break;
1543 }
1544
1545 if (build_ww_mutex() && ww_ctx) {
1546 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1547 if (ret)
1548 break;
1549 }
1550
1551 if (waiter == rt_mutex_top_waiter(lock))
1552 owner = rt_mutex_owner(lock);
1553 else
1554 owner = NULL;
1555 raw_spin_unlock_irq(&lock->wait_lock);
1556
1557 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1558 schedule();
1559
1560 raw_spin_lock_irq(&lock->wait_lock);
1561 set_current_state(state);
1562 }
1563
1564 __set_current_state(TASK_RUNNING);
1565 return ret;
1566}
1567
1568static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1569 struct rt_mutex_waiter *w)
1570{
1571 /*
1572 * If the result is not -EDEADLOCK or the caller requested
1573 * deadlock detection, nothing to do here.
1574 */
1575 if (res != -EDEADLOCK || detect_deadlock)
1576 return;
1577
1578 if (build_ww_mutex() && w->ww_ctx)
1579 return;
1580
1581 /*
1582 * Yell loudly and stop the task right here.
1583 */
1584 WARN(1, "rtmutex deadlock detected\n");
1585 while (1) {
1586 set_current_state(TASK_INTERRUPTIBLE);
1587 schedule();
1588 }
1589}
1590
1591/**
1592 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1593 * @lock: The rtmutex to block lock
1594 * @ww_ctx: WW mutex context pointer
1595 * @state: The task state for sleeping
1596 * @chwalk: Indicator whether full or partial chainwalk is requested
1597 * @waiter: Initializer waiter for blocking
1598 */
1599static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1600 struct ww_acquire_ctx *ww_ctx,
1601 unsigned int state,
1602 enum rtmutex_chainwalk chwalk,
1603 struct rt_mutex_waiter *waiter)
1604{
1605 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1606 struct ww_mutex *ww = ww_container_of(rtm);
1607 int ret;
1608
1609 lockdep_assert_held(&lock->wait_lock);
1610
1611 /* Try to acquire the lock again: */
1612 if (try_to_take_rt_mutex(lock, current, NULL)) {
1613 if (build_ww_mutex() && ww_ctx) {
1614 __ww_mutex_check_waiters(rtm, ww_ctx);
1615 ww_mutex_lock_acquired(ww, ww_ctx);
1616 }
1617 return 0;
1618 }
1619
1620 set_current_state(state);
1621
1622 trace_contention_begin(lock, LCB_F_RT);
1623
1624 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1625 if (likely(!ret))
1626 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1627
1628 if (likely(!ret)) {
1629 /* acquired the lock */
1630 if (build_ww_mutex() && ww_ctx) {
1631 if (!ww_ctx->is_wait_die)
1632 __ww_mutex_check_waiters(rtm, ww_ctx);
1633 ww_mutex_lock_acquired(ww, ww_ctx);
1634 }
1635 } else {
1636 __set_current_state(TASK_RUNNING);
1637 remove_waiter(lock, waiter);
1638 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1639 }
1640
1641 /*
1642 * try_to_take_rt_mutex() sets the waiter bit
1643 * unconditionally. We might have to fix that up.
1644 */
1645 fixup_rt_mutex_waiters(lock, true);
1646
1647 trace_contention_end(lock, ret);
1648
1649 return ret;
1650}
1651
1652static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1653 struct ww_acquire_ctx *ww_ctx,
1654 unsigned int state)
1655{
1656 struct rt_mutex_waiter waiter;
1657 int ret;
1658
1659 rt_mutex_init_waiter(&waiter);
1660 waiter.ww_ctx = ww_ctx;
1661
1662 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1663 &waiter);
1664
1665 debug_rt_mutex_free_waiter(&waiter);
1666 return ret;
1667}
1668
1669/*
1670 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1671 * @lock: The rtmutex to block lock
1672 * @ww_ctx: WW mutex context pointer
1673 * @state: The task state for sleeping
1674 */
1675static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1676 struct ww_acquire_ctx *ww_ctx,
1677 unsigned int state)
1678{
1679 unsigned long flags;
1680 int ret;
1681
1682 /*
1683 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1684 * be called in early boot if the cmpxchg() fast path is disabled
1685 * (debug, no architecture support). In this case we will acquire the
1686 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1687 * enable interrupts in that early boot case. So we need to use the
1688 * irqsave/restore variants.
1689 */
1690 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1691 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1692 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1693
1694 return ret;
1695}
1696
1697static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1698 unsigned int state)
1699{
1700 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1701 return 0;
1702
1703 return rt_mutex_slowlock(lock, NULL, state);
1704}
1705#endif /* RT_MUTEX_BUILD_MUTEX */
1706
1707#ifdef RT_MUTEX_BUILD_SPINLOCKS
1708/*
1709 * Functions required for spin/rw_lock substitution on RT kernels
1710 */
1711
1712/**
1713 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1714 * @lock: The underlying RT mutex
1715 */
1716static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1717{
1718 struct rt_mutex_waiter waiter;
1719 struct task_struct *owner;
1720
1721 lockdep_assert_held(&lock->wait_lock);
1722
1723 if (try_to_take_rt_mutex(lock, current, NULL))
1724 return;
1725
1726 rt_mutex_init_rtlock_waiter(&waiter);
1727
1728 /* Save current state and set state to TASK_RTLOCK_WAIT */
1729 current_save_and_set_rtlock_wait_state();
1730
1731 trace_contention_begin(lock, LCB_F_RT);
1732
1733 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1734
1735 for (;;) {
1736 /* Try to acquire the lock again */
1737 if (try_to_take_rt_mutex(lock, current, &waiter))
1738 break;
1739
1740 if (&waiter == rt_mutex_top_waiter(lock))
1741 owner = rt_mutex_owner(lock);
1742 else
1743 owner = NULL;
1744 raw_spin_unlock_irq(&lock->wait_lock);
1745
1746 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1747 schedule_rtlock();
1748
1749 raw_spin_lock_irq(&lock->wait_lock);
1750 set_current_state(TASK_RTLOCK_WAIT);
1751 }
1752
1753 /* Restore the task state */
1754 current_restore_rtlock_saved_state();
1755
1756 /*
1757 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1758 * We might have to fix that up:
1759 */
1760 fixup_rt_mutex_waiters(lock, true);
1761 debug_rt_mutex_free_waiter(&waiter);
1762
1763 trace_contention_end(lock, 0);
1764}
1765
1766static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1767{
1768 unsigned long flags;
1769
1770 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1771 rtlock_slowlock_locked(lock);
1772 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1773}
1774
1775#endif /* RT_MUTEX_BUILD_SPINLOCKS */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 *
12 * See Documentation/locking/rt-mutex-design.rst for details.
13 */
14#include <linux/spinlock.h>
15#include <linux/export.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/rt.h>
18#include <linux/sched/deadline.h>
19#include <linux/sched/wake_q.h>
20#include <linux/sched/debug.h>
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
25/*
26 * lock->owner state tracking:
27 *
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
30 *
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
37 *
38 * The fast atomic compare exchange based acquire and release is only
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
45 *
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
50 */
51
52static void
53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54{
55 unsigned long val = (unsigned long)owner;
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
61}
62
63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137}
138
139/*
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
142 */
143#ifndef CONFIG_DEBUG_RT_MUTEXES
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
160}
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
201}
202
203#else
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
207static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
216static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 return true;
223}
224#endif
225
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232static inline int
233rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235{
236 if (left->prio < right->prio)
237 return 1;
238
239 /*
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
244 */
245 if (dl_prio(left->prio))
246 return dl_time_before(left->deadline, right->deadline);
247
248 return 0;
249}
250
251static inline int
252rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254{
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268}
269
270static void
271rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272{
273 struct rb_node **link = &lock->waiters.rb_root.rb_node;
274 struct rb_node *parent = NULL;
275 struct rt_mutex_waiter *entry;
276 bool leftmost = true;
277
278 while (*link) {
279 parent = *link;
280 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
281 if (rt_mutex_waiter_less(waiter, entry)) {
282 link = &parent->rb_left;
283 } else {
284 link = &parent->rb_right;
285 leftmost = false;
286 }
287 }
288
289 rb_link_node(&waiter->tree_entry, parent, link);
290 rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
291}
292
293static void
294rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
295{
296 if (RB_EMPTY_NODE(&waiter->tree_entry))
297 return;
298
299 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
300 RB_CLEAR_NODE(&waiter->tree_entry);
301}
302
303static void
304rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
305{
306 struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rt_mutex_waiter *entry;
309 bool leftmost = true;
310
311 while (*link) {
312 parent = *link;
313 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
314 if (rt_mutex_waiter_less(waiter, entry)) {
315 link = &parent->rb_left;
316 } else {
317 link = &parent->rb_right;
318 leftmost = false;
319 }
320 }
321
322 rb_link_node(&waiter->pi_tree_entry, parent, link);
323 rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
324}
325
326static void
327rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
328{
329 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
330 return;
331
332 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
333 RB_CLEAR_NODE(&waiter->pi_tree_entry);
334}
335
336static void rt_mutex_adjust_prio(struct task_struct *p)
337{
338 struct task_struct *pi_task = NULL;
339
340 lockdep_assert_held(&p->pi_lock);
341
342 if (task_has_pi_waiters(p))
343 pi_task = task_top_pi_waiter(p)->task;
344
345 rt_mutex_setprio(p, pi_task);
346}
347
348/*
349 * Deadlock detection is conditional:
350 *
351 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
352 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
353 *
354 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
355 * conducted independent of the detect argument.
356 *
357 * If the waiter argument is NULL this indicates the deboost path and
358 * deadlock detection is disabled independent of the detect argument
359 * and the config settings.
360 */
361static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
362 enum rtmutex_chainwalk chwalk)
363{
364 /*
365 * This is just a wrapper function for the following call,
366 * because debug_rt_mutex_detect_deadlock() smells like a magic
367 * debug feature and I wanted to keep the cond function in the
368 * main source file along with the comments instead of having
369 * two of the same in the headers.
370 */
371 return debug_rt_mutex_detect_deadlock(waiter, chwalk);
372}
373
374/*
375 * Max number of times we'll walk the boosting chain:
376 */
377int max_lock_depth = 1024;
378
379static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
380{
381 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
382}
383
384/*
385 * Adjust the priority chain. Also used for deadlock detection.
386 * Decreases task's usage by one - may thus free the task.
387 *
388 * @task: the task owning the mutex (owner) for which a chain walk is
389 * probably needed
390 * @chwalk: do we have to carry out deadlock detection?
391 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
392 * things for a task that has just got its priority adjusted, and
393 * is waiting on a mutex)
394 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
395 * we dropped its pi_lock. Is never dereferenced, only used for
396 * comparison to detect lock chain changes.
397 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
398 * its priority to the mutex owner (can be NULL in the case
399 * depicted above or if the top waiter is gone away and we are
400 * actually deboosting the owner)
401 * @top_task: the current top waiter
402 *
403 * Returns 0 or -EDEADLK.
404 *
405 * Chain walk basics and protection scope
406 *
407 * [R] refcount on task
408 * [P] task->pi_lock held
409 * [L] rtmutex->wait_lock held
410 *
411 * Step Description Protected by
412 * function arguments:
413 * @task [R]
414 * @orig_lock if != NULL @top_task is blocked on it
415 * @next_lock Unprotected. Cannot be
416 * dereferenced. Only used for
417 * comparison.
418 * @orig_waiter if != NULL @top_task is blocked on it
419 * @top_task current, or in case of proxy
420 * locking protected by calling
421 * code
422 * again:
423 * loop_sanity_check();
424 * retry:
425 * [1] lock(task->pi_lock); [R] acquire [P]
426 * [2] waiter = task->pi_blocked_on; [P]
427 * [3] check_exit_conditions_1(); [P]
428 * [4] lock = waiter->lock; [P]
429 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
430 * unlock(task->pi_lock); release [P]
431 * goto retry;
432 * }
433 * [6] check_exit_conditions_2(); [P] + [L]
434 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
435 * [8] unlock(task->pi_lock); release [P]
436 * put_task_struct(task); release [R]
437 * [9] check_exit_conditions_3(); [L]
438 * [10] task = owner(lock); [L]
439 * get_task_struct(task); [L] acquire [R]
440 * lock(task->pi_lock); [L] acquire [P]
441 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
442 * [12] check_exit_conditions_4(); [P] + [L]
443 * [13] unlock(task->pi_lock); release [P]
444 * unlock(lock->wait_lock); release [L]
445 * goto again;
446 */
447static int rt_mutex_adjust_prio_chain(struct task_struct *task,
448 enum rtmutex_chainwalk chwalk,
449 struct rt_mutex *orig_lock,
450 struct rt_mutex *next_lock,
451 struct rt_mutex_waiter *orig_waiter,
452 struct task_struct *top_task)
453{
454 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
455 struct rt_mutex_waiter *prerequeue_top_waiter;
456 int ret = 0, depth = 0;
457 struct rt_mutex *lock;
458 bool detect_deadlock;
459 bool requeue = true;
460
461 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
462
463 /*
464 * The (de)boosting is a step by step approach with a lot of
465 * pitfalls. We want this to be preemptible and we want hold a
466 * maximum of two locks per step. So we have to check
467 * carefully whether things change under us.
468 */
469 again:
470 /*
471 * We limit the lock chain length for each invocation.
472 */
473 if (++depth > max_lock_depth) {
474 static int prev_max;
475
476 /*
477 * Print this only once. If the admin changes the limit,
478 * print a new message when reaching the limit again.
479 */
480 if (prev_max != max_lock_depth) {
481 prev_max = max_lock_depth;
482 printk(KERN_WARNING "Maximum lock depth %d reached "
483 "task: %s (%d)\n", max_lock_depth,
484 top_task->comm, task_pid_nr(top_task));
485 }
486 put_task_struct(task);
487
488 return -EDEADLK;
489 }
490
491 /*
492 * We are fully preemptible here and only hold the refcount on
493 * @task. So everything can have changed under us since the
494 * caller or our own code below (goto retry/again) dropped all
495 * locks.
496 */
497 retry:
498 /*
499 * [1] Task cannot go away as we did a get_task() before !
500 */
501 raw_spin_lock_irq(&task->pi_lock);
502
503 /*
504 * [2] Get the waiter on which @task is blocked on.
505 */
506 waiter = task->pi_blocked_on;
507
508 /*
509 * [3] check_exit_conditions_1() protected by task->pi_lock.
510 */
511
512 /*
513 * Check whether the end of the boosting chain has been
514 * reached or the state of the chain has changed while we
515 * dropped the locks.
516 */
517 if (!waiter)
518 goto out_unlock_pi;
519
520 /*
521 * Check the orig_waiter state. After we dropped the locks,
522 * the previous owner of the lock might have released the lock.
523 */
524 if (orig_waiter && !rt_mutex_owner(orig_lock))
525 goto out_unlock_pi;
526
527 /*
528 * We dropped all locks after taking a refcount on @task, so
529 * the task might have moved on in the lock chain or even left
530 * the chain completely and blocks now on an unrelated lock or
531 * on @orig_lock.
532 *
533 * We stored the lock on which @task was blocked in @next_lock,
534 * so we can detect the chain change.
535 */
536 if (next_lock != waiter->lock)
537 goto out_unlock_pi;
538
539 /*
540 * Drop out, when the task has no waiters. Note,
541 * top_waiter can be NULL, when we are in the deboosting
542 * mode!
543 */
544 if (top_waiter) {
545 if (!task_has_pi_waiters(task))
546 goto out_unlock_pi;
547 /*
548 * If deadlock detection is off, we stop here if we
549 * are not the top pi waiter of the task. If deadlock
550 * detection is enabled we continue, but stop the
551 * requeueing in the chain walk.
552 */
553 if (top_waiter != task_top_pi_waiter(task)) {
554 if (!detect_deadlock)
555 goto out_unlock_pi;
556 else
557 requeue = false;
558 }
559 }
560
561 /*
562 * If the waiter priority is the same as the task priority
563 * then there is no further priority adjustment necessary. If
564 * deadlock detection is off, we stop the chain walk. If its
565 * enabled we continue, but stop the requeueing in the chain
566 * walk.
567 */
568 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
569 if (!detect_deadlock)
570 goto out_unlock_pi;
571 else
572 requeue = false;
573 }
574
575 /*
576 * [4] Get the next lock
577 */
578 lock = waiter->lock;
579 /*
580 * [5] We need to trylock here as we are holding task->pi_lock,
581 * which is the reverse lock order versus the other rtmutex
582 * operations.
583 */
584 if (!raw_spin_trylock(&lock->wait_lock)) {
585 raw_spin_unlock_irq(&task->pi_lock);
586 cpu_relax();
587 goto retry;
588 }
589
590 /*
591 * [6] check_exit_conditions_2() protected by task->pi_lock and
592 * lock->wait_lock.
593 *
594 * Deadlock detection. If the lock is the same as the original
595 * lock which caused us to walk the lock chain or if the
596 * current lock is owned by the task which initiated the chain
597 * walk, we detected a deadlock.
598 */
599 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
600 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
601 raw_spin_unlock(&lock->wait_lock);
602 ret = -EDEADLK;
603 goto out_unlock_pi;
604 }
605
606 /*
607 * If we just follow the lock chain for deadlock detection, no
608 * need to do all the requeue operations. To avoid a truckload
609 * of conditionals around the various places below, just do the
610 * minimum chain walk checks.
611 */
612 if (!requeue) {
613 /*
614 * No requeue[7] here. Just release @task [8]
615 */
616 raw_spin_unlock(&task->pi_lock);
617 put_task_struct(task);
618
619 /*
620 * [9] check_exit_conditions_3 protected by lock->wait_lock.
621 * If there is no owner of the lock, end of chain.
622 */
623 if (!rt_mutex_owner(lock)) {
624 raw_spin_unlock_irq(&lock->wait_lock);
625 return 0;
626 }
627
628 /* [10] Grab the next task, i.e. owner of @lock */
629 task = get_task_struct(rt_mutex_owner(lock));
630 raw_spin_lock(&task->pi_lock);
631
632 /*
633 * No requeue [11] here. We just do deadlock detection.
634 *
635 * [12] Store whether owner is blocked
636 * itself. Decision is made after dropping the locks
637 */
638 next_lock = task_blocked_on_lock(task);
639 /*
640 * Get the top waiter for the next iteration
641 */
642 top_waiter = rt_mutex_top_waiter(lock);
643
644 /* [13] Drop locks */
645 raw_spin_unlock(&task->pi_lock);
646 raw_spin_unlock_irq(&lock->wait_lock);
647
648 /* If owner is not blocked, end of chain. */
649 if (!next_lock)
650 goto out_put_task;
651 goto again;
652 }
653
654 /*
655 * Store the current top waiter before doing the requeue
656 * operation on @lock. We need it for the boost/deboost
657 * decision below.
658 */
659 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
660
661 /* [7] Requeue the waiter in the lock waiter tree. */
662 rt_mutex_dequeue(lock, waiter);
663
664 /*
665 * Update the waiter prio fields now that we're dequeued.
666 *
667 * These values can have changed through either:
668 *
669 * sys_sched_set_scheduler() / sys_sched_setattr()
670 *
671 * or
672 *
673 * DL CBS enforcement advancing the effective deadline.
674 *
675 * Even though pi_waiters also uses these fields, and that tree is only
676 * updated in [11], we can do this here, since we hold [L], which
677 * serializes all pi_waiters access and rb_erase() does not care about
678 * the values of the node being removed.
679 */
680 waiter->prio = task->prio;
681 waiter->deadline = task->dl.deadline;
682
683 rt_mutex_enqueue(lock, waiter);
684
685 /* [8] Release the task */
686 raw_spin_unlock(&task->pi_lock);
687 put_task_struct(task);
688
689 /*
690 * [9] check_exit_conditions_3 protected by lock->wait_lock.
691 *
692 * We must abort the chain walk if there is no lock owner even
693 * in the dead lock detection case, as we have nothing to
694 * follow here. This is the end of the chain we are walking.
695 */
696 if (!rt_mutex_owner(lock)) {
697 /*
698 * If the requeue [7] above changed the top waiter,
699 * then we need to wake the new top waiter up to try
700 * to get the lock.
701 */
702 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
703 wake_up_process(rt_mutex_top_waiter(lock)->task);
704 raw_spin_unlock_irq(&lock->wait_lock);
705 return 0;
706 }
707
708 /* [10] Grab the next task, i.e. the owner of @lock */
709 task = get_task_struct(rt_mutex_owner(lock));
710 raw_spin_lock(&task->pi_lock);
711
712 /* [11] requeue the pi waiters if necessary */
713 if (waiter == rt_mutex_top_waiter(lock)) {
714 /*
715 * The waiter became the new top (highest priority)
716 * waiter on the lock. Replace the previous top waiter
717 * in the owner tasks pi waiters tree with this waiter
718 * and adjust the priority of the owner.
719 */
720 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
721 rt_mutex_enqueue_pi(task, waiter);
722 rt_mutex_adjust_prio(task);
723
724 } else if (prerequeue_top_waiter == waiter) {
725 /*
726 * The waiter was the top waiter on the lock, but is
727 * no longer the top prority waiter. Replace waiter in
728 * the owner tasks pi waiters tree with the new top
729 * (highest priority) waiter and adjust the priority
730 * of the owner.
731 * The new top waiter is stored in @waiter so that
732 * @waiter == @top_waiter evaluates to true below and
733 * we continue to deboost the rest of the chain.
734 */
735 rt_mutex_dequeue_pi(task, waiter);
736 waiter = rt_mutex_top_waiter(lock);
737 rt_mutex_enqueue_pi(task, waiter);
738 rt_mutex_adjust_prio(task);
739 } else {
740 /*
741 * Nothing changed. No need to do any priority
742 * adjustment.
743 */
744 }
745
746 /*
747 * [12] check_exit_conditions_4() protected by task->pi_lock
748 * and lock->wait_lock. The actual decisions are made after we
749 * dropped the locks.
750 *
751 * Check whether the task which owns the current lock is pi
752 * blocked itself. If yes we store a pointer to the lock for
753 * the lock chain change detection above. After we dropped
754 * task->pi_lock next_lock cannot be dereferenced anymore.
755 */
756 next_lock = task_blocked_on_lock(task);
757 /*
758 * Store the top waiter of @lock for the end of chain walk
759 * decision below.
760 */
761 top_waiter = rt_mutex_top_waiter(lock);
762
763 /* [13] Drop the locks */
764 raw_spin_unlock(&task->pi_lock);
765 raw_spin_unlock_irq(&lock->wait_lock);
766
767 /*
768 * Make the actual exit decisions [12], based on the stored
769 * values.
770 *
771 * We reached the end of the lock chain. Stop right here. No
772 * point to go back just to figure that out.
773 */
774 if (!next_lock)
775 goto out_put_task;
776
777 /*
778 * If the current waiter is not the top waiter on the lock,
779 * then we can stop the chain walk here if we are not in full
780 * deadlock detection mode.
781 */
782 if (!detect_deadlock && waiter != top_waiter)
783 goto out_put_task;
784
785 goto again;
786
787 out_unlock_pi:
788 raw_spin_unlock_irq(&task->pi_lock);
789 out_put_task:
790 put_task_struct(task);
791
792 return ret;
793}
794
795/*
796 * Try to take an rt-mutex
797 *
798 * Must be called with lock->wait_lock held and interrupts disabled
799 *
800 * @lock: The lock to be acquired.
801 * @task: The task which wants to acquire the lock
802 * @waiter: The waiter that is queued to the lock's wait tree if the
803 * callsite called task_blocked_on_lock(), otherwise NULL
804 */
805static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
806 struct rt_mutex_waiter *waiter)
807{
808 lockdep_assert_held(&lock->wait_lock);
809
810 /*
811 * Before testing whether we can acquire @lock, we set the
812 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
813 * other tasks which try to modify @lock into the slow path
814 * and they serialize on @lock->wait_lock.
815 *
816 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
817 * as explained at the top of this file if and only if:
818 *
819 * - There is a lock owner. The caller must fixup the
820 * transient state if it does a trylock or leaves the lock
821 * function due to a signal or timeout.
822 *
823 * - @task acquires the lock and there are no other
824 * waiters. This is undone in rt_mutex_set_owner(@task) at
825 * the end of this function.
826 */
827 mark_rt_mutex_waiters(lock);
828
829 /*
830 * If @lock has an owner, give up.
831 */
832 if (rt_mutex_owner(lock))
833 return 0;
834
835 /*
836 * If @waiter != NULL, @task has already enqueued the waiter
837 * into @lock waiter tree. If @waiter == NULL then this is a
838 * trylock attempt.
839 */
840 if (waiter) {
841 /*
842 * If waiter is not the highest priority waiter of
843 * @lock, give up.
844 */
845 if (waiter != rt_mutex_top_waiter(lock))
846 return 0;
847
848 /*
849 * We can acquire the lock. Remove the waiter from the
850 * lock waiters tree.
851 */
852 rt_mutex_dequeue(lock, waiter);
853
854 } else {
855 /*
856 * If the lock has waiters already we check whether @task is
857 * eligible to take over the lock.
858 *
859 * If there are no other waiters, @task can acquire
860 * the lock. @task->pi_blocked_on is NULL, so it does
861 * not need to be dequeued.
862 */
863 if (rt_mutex_has_waiters(lock)) {
864 /*
865 * If @task->prio is greater than or equal to
866 * the top waiter priority (kernel view),
867 * @task lost.
868 */
869 if (!rt_mutex_waiter_less(task_to_waiter(task),
870 rt_mutex_top_waiter(lock)))
871 return 0;
872
873 /*
874 * The current top waiter stays enqueued. We
875 * don't have to change anything in the lock
876 * waiters order.
877 */
878 } else {
879 /*
880 * No waiters. Take the lock without the
881 * pi_lock dance.@task->pi_blocked_on is NULL
882 * and we have no waiters to enqueue in @task
883 * pi waiters tree.
884 */
885 goto takeit;
886 }
887 }
888
889 /*
890 * Clear @task->pi_blocked_on. Requires protection by
891 * @task->pi_lock. Redundant operation for the @waiter == NULL
892 * case, but conditionals are more expensive than a redundant
893 * store.
894 */
895 raw_spin_lock(&task->pi_lock);
896 task->pi_blocked_on = NULL;
897 /*
898 * Finish the lock acquisition. @task is the new owner. If
899 * other waiters exist we have to insert the highest priority
900 * waiter into @task->pi_waiters tree.
901 */
902 if (rt_mutex_has_waiters(lock))
903 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
904 raw_spin_unlock(&task->pi_lock);
905
906takeit:
907 /* We got the lock. */
908 debug_rt_mutex_lock(lock);
909
910 /*
911 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
912 * are still waiters or clears it.
913 */
914 rt_mutex_set_owner(lock, task);
915
916 return 1;
917}
918
919/*
920 * Task blocks on lock.
921 *
922 * Prepare waiter and propagate pi chain
923 *
924 * This must be called with lock->wait_lock held and interrupts disabled
925 */
926static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
927 struct rt_mutex_waiter *waiter,
928 struct task_struct *task,
929 enum rtmutex_chainwalk chwalk)
930{
931 struct task_struct *owner = rt_mutex_owner(lock);
932 struct rt_mutex_waiter *top_waiter = waiter;
933 struct rt_mutex *next_lock;
934 int chain_walk = 0, res;
935
936 lockdep_assert_held(&lock->wait_lock);
937
938 /*
939 * Early deadlock detection. We really don't want the task to
940 * enqueue on itself just to untangle the mess later. It's not
941 * only an optimization. We drop the locks, so another waiter
942 * can come in before the chain walk detects the deadlock. So
943 * the other will detect the deadlock and return -EDEADLOCK,
944 * which is wrong, as the other waiter is not in a deadlock
945 * situation.
946 */
947 if (owner == task)
948 return -EDEADLK;
949
950 raw_spin_lock(&task->pi_lock);
951 waiter->task = task;
952 waiter->lock = lock;
953 waiter->prio = task->prio;
954 waiter->deadline = task->dl.deadline;
955
956 /* Get the top priority waiter on the lock */
957 if (rt_mutex_has_waiters(lock))
958 top_waiter = rt_mutex_top_waiter(lock);
959 rt_mutex_enqueue(lock, waiter);
960
961 task->pi_blocked_on = waiter;
962
963 raw_spin_unlock(&task->pi_lock);
964
965 if (!owner)
966 return 0;
967
968 raw_spin_lock(&owner->pi_lock);
969 if (waiter == rt_mutex_top_waiter(lock)) {
970 rt_mutex_dequeue_pi(owner, top_waiter);
971 rt_mutex_enqueue_pi(owner, waiter);
972
973 rt_mutex_adjust_prio(owner);
974 if (owner->pi_blocked_on)
975 chain_walk = 1;
976 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
977 chain_walk = 1;
978 }
979
980 /* Store the lock on which owner is blocked or NULL */
981 next_lock = task_blocked_on_lock(owner);
982
983 raw_spin_unlock(&owner->pi_lock);
984 /*
985 * Even if full deadlock detection is on, if the owner is not
986 * blocked itself, we can avoid finding this out in the chain
987 * walk.
988 */
989 if (!chain_walk || !next_lock)
990 return 0;
991
992 /*
993 * The owner can't disappear while holding a lock,
994 * so the owner struct is protected by wait_lock.
995 * Gets dropped in rt_mutex_adjust_prio_chain()!
996 */
997 get_task_struct(owner);
998
999 raw_spin_unlock_irq(&lock->wait_lock);
1000
1001 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1002 next_lock, waiter, task);
1003
1004 raw_spin_lock_irq(&lock->wait_lock);
1005
1006 return res;
1007}
1008
1009/*
1010 * Remove the top waiter from the current tasks pi waiter tree and
1011 * queue it up.
1012 *
1013 * Called with lock->wait_lock held and interrupts disabled.
1014 */
1015static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1016 struct rt_mutex *lock)
1017{
1018 struct rt_mutex_waiter *waiter;
1019
1020 raw_spin_lock(¤t->pi_lock);
1021
1022 waiter = rt_mutex_top_waiter(lock);
1023
1024 /*
1025 * Remove it from current->pi_waiters and deboost.
1026 *
1027 * We must in fact deboost here in order to ensure we call
1028 * rt_mutex_setprio() to update p->pi_top_task before the
1029 * task unblocks.
1030 */
1031 rt_mutex_dequeue_pi(current, waiter);
1032 rt_mutex_adjust_prio(current);
1033
1034 /*
1035 * As we are waking up the top waiter, and the waiter stays
1036 * queued on the lock until it gets the lock, this lock
1037 * obviously has waiters. Just set the bit here and this has
1038 * the added benefit of forcing all new tasks into the
1039 * slow path making sure no task of lower priority than
1040 * the top waiter can steal this lock.
1041 */
1042 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1043
1044 /*
1045 * We deboosted before waking the top waiter task such that we don't
1046 * run two tasks with the 'same' priority (and ensure the
1047 * p->pi_top_task pointer points to a blocked task). This however can
1048 * lead to priority inversion if we would get preempted after the
1049 * deboost but before waking our donor task, hence the preempt_disable()
1050 * before unlock.
1051 *
1052 * Pairs with preempt_enable() in rt_mutex_postunlock();
1053 */
1054 preempt_disable();
1055 wake_q_add(wake_q, waiter->task);
1056 raw_spin_unlock(¤t->pi_lock);
1057}
1058
1059/*
1060 * Remove a waiter from a lock and give up
1061 *
1062 * Must be called with lock->wait_lock held and interrupts disabled. I must
1063 * have just failed to try_to_take_rt_mutex().
1064 */
1065static void remove_waiter(struct rt_mutex *lock,
1066 struct rt_mutex_waiter *waiter)
1067{
1068 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1069 struct task_struct *owner = rt_mutex_owner(lock);
1070 struct rt_mutex *next_lock;
1071
1072 lockdep_assert_held(&lock->wait_lock);
1073
1074 raw_spin_lock(¤t->pi_lock);
1075 rt_mutex_dequeue(lock, waiter);
1076 current->pi_blocked_on = NULL;
1077 raw_spin_unlock(¤t->pi_lock);
1078
1079 /*
1080 * Only update priority if the waiter was the highest priority
1081 * waiter of the lock and there is an owner to update.
1082 */
1083 if (!owner || !is_top_waiter)
1084 return;
1085
1086 raw_spin_lock(&owner->pi_lock);
1087
1088 rt_mutex_dequeue_pi(owner, waiter);
1089
1090 if (rt_mutex_has_waiters(lock))
1091 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1092
1093 rt_mutex_adjust_prio(owner);
1094
1095 /* Store the lock on which owner is blocked or NULL */
1096 next_lock = task_blocked_on_lock(owner);
1097
1098 raw_spin_unlock(&owner->pi_lock);
1099
1100 /*
1101 * Don't walk the chain, if the owner task is not blocked
1102 * itself.
1103 */
1104 if (!next_lock)
1105 return;
1106
1107 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1108 get_task_struct(owner);
1109
1110 raw_spin_unlock_irq(&lock->wait_lock);
1111
1112 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1113 next_lock, NULL, current);
1114
1115 raw_spin_lock_irq(&lock->wait_lock);
1116}
1117
1118/*
1119 * Recheck the pi chain, in case we got a priority setting
1120 *
1121 * Called from sched_setscheduler
1122 */
1123void rt_mutex_adjust_pi(struct task_struct *task)
1124{
1125 struct rt_mutex_waiter *waiter;
1126 struct rt_mutex *next_lock;
1127 unsigned long flags;
1128
1129 raw_spin_lock_irqsave(&task->pi_lock, flags);
1130
1131 waiter = task->pi_blocked_on;
1132 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1133 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1134 return;
1135 }
1136 next_lock = waiter->lock;
1137 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138
1139 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1140 get_task_struct(task);
1141
1142 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1143 next_lock, NULL, task);
1144}
1145
1146void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1147{
1148 debug_rt_mutex_init_waiter(waiter);
1149 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1150 RB_CLEAR_NODE(&waiter->tree_entry);
1151 waiter->task = NULL;
1152}
1153
1154/**
1155 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1156 * @lock: the rt_mutex to take
1157 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1158 * or TASK_UNINTERRUPTIBLE)
1159 * @timeout: the pre-initialized and started timer, or NULL for none
1160 * @waiter: the pre-initialized rt_mutex_waiter
1161 *
1162 * Must be called with lock->wait_lock held and interrupts disabled
1163 */
1164static int __sched
1165__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1166 struct hrtimer_sleeper *timeout,
1167 struct rt_mutex_waiter *waiter)
1168{
1169 int ret = 0;
1170
1171 for (;;) {
1172 /* Try to acquire the lock: */
1173 if (try_to_take_rt_mutex(lock, current, waiter))
1174 break;
1175
1176 /*
1177 * TASK_INTERRUPTIBLE checks for signals and
1178 * timeout. Ignored otherwise.
1179 */
1180 if (likely(state == TASK_INTERRUPTIBLE)) {
1181 /* Signal pending? */
1182 if (signal_pending(current))
1183 ret = -EINTR;
1184 if (timeout && !timeout->task)
1185 ret = -ETIMEDOUT;
1186 if (ret)
1187 break;
1188 }
1189
1190 raw_spin_unlock_irq(&lock->wait_lock);
1191
1192 debug_rt_mutex_print_deadlock(waiter);
1193
1194 schedule();
1195
1196 raw_spin_lock_irq(&lock->wait_lock);
1197 set_current_state(state);
1198 }
1199
1200 __set_current_state(TASK_RUNNING);
1201 return ret;
1202}
1203
1204static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1205 struct rt_mutex_waiter *w)
1206{
1207 /*
1208 * If the result is not -EDEADLOCK or the caller requested
1209 * deadlock detection, nothing to do here.
1210 */
1211 if (res != -EDEADLOCK || detect_deadlock)
1212 return;
1213
1214 /*
1215 * Yell lowdly and stop the task right here.
1216 */
1217 rt_mutex_print_deadlock(w);
1218 while (1) {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220 schedule();
1221 }
1222}
1223
1224/*
1225 * Slow path lock function:
1226 */
1227static int __sched
1228rt_mutex_slowlock(struct rt_mutex *lock, int state,
1229 struct hrtimer_sleeper *timeout,
1230 enum rtmutex_chainwalk chwalk)
1231{
1232 struct rt_mutex_waiter waiter;
1233 unsigned long flags;
1234 int ret = 0;
1235
1236 rt_mutex_init_waiter(&waiter);
1237
1238 /*
1239 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1240 * be called in early boot if the cmpxchg() fast path is disabled
1241 * (debug, no architecture support). In this case we will acquire the
1242 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1243 * enable interrupts in that early boot case. So we need to use the
1244 * irqsave/restore variants.
1245 */
1246 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1247
1248 /* Try to acquire the lock again: */
1249 if (try_to_take_rt_mutex(lock, current, NULL)) {
1250 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1251 return 0;
1252 }
1253
1254 set_current_state(state);
1255
1256 /* Setup the timer, when timeout != NULL */
1257 if (unlikely(timeout))
1258 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1259
1260 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1261
1262 if (likely(!ret))
1263 /* sleep on the mutex */
1264 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1265
1266 if (unlikely(ret)) {
1267 __set_current_state(TASK_RUNNING);
1268 remove_waiter(lock, &waiter);
1269 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1270 }
1271
1272 /*
1273 * try_to_take_rt_mutex() sets the waiter bit
1274 * unconditionally. We might have to fix that up.
1275 */
1276 fixup_rt_mutex_waiters(lock);
1277
1278 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1279
1280 /* Remove pending timer: */
1281 if (unlikely(timeout))
1282 hrtimer_cancel(&timeout->timer);
1283
1284 debug_rt_mutex_free_waiter(&waiter);
1285
1286 return ret;
1287}
1288
1289static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1290{
1291 int ret = try_to_take_rt_mutex(lock, current, NULL);
1292
1293 /*
1294 * try_to_take_rt_mutex() sets the lock waiters bit
1295 * unconditionally. Clean this up.
1296 */
1297 fixup_rt_mutex_waiters(lock);
1298
1299 return ret;
1300}
1301
1302/*
1303 * Slow path try-lock function:
1304 */
1305static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1306{
1307 unsigned long flags;
1308 int ret;
1309
1310 /*
1311 * If the lock already has an owner we fail to get the lock.
1312 * This can be done without taking the @lock->wait_lock as
1313 * it is only being read, and this is a trylock anyway.
1314 */
1315 if (rt_mutex_owner(lock))
1316 return 0;
1317
1318 /*
1319 * The mutex has currently no owner. Lock the wait lock and try to
1320 * acquire the lock. We use irqsave here to support early boot calls.
1321 */
1322 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1323
1324 ret = __rt_mutex_slowtrylock(lock);
1325
1326 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327
1328 return ret;
1329}
1330
1331/*
1332 * Slow path to release a rt-mutex.
1333 *
1334 * Return whether the current task needs to call rt_mutex_postunlock().
1335 */
1336static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1337 struct wake_q_head *wake_q)
1338{
1339 unsigned long flags;
1340
1341 /* irqsave required to support early boot calls */
1342 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1343
1344 debug_rt_mutex_unlock(lock);
1345
1346 /*
1347 * We must be careful here if the fast path is enabled. If we
1348 * have no waiters queued we cannot set owner to NULL here
1349 * because of:
1350 *
1351 * foo->lock->owner = NULL;
1352 * rtmutex_lock(foo->lock); <- fast path
1353 * free = atomic_dec_and_test(foo->refcnt);
1354 * rtmutex_unlock(foo->lock); <- fast path
1355 * if (free)
1356 * kfree(foo);
1357 * raw_spin_unlock(foo->lock->wait_lock);
1358 *
1359 * So for the fastpath enabled kernel:
1360 *
1361 * Nothing can set the waiters bit as long as we hold
1362 * lock->wait_lock. So we do the following sequence:
1363 *
1364 * owner = rt_mutex_owner(lock);
1365 * clear_rt_mutex_waiters(lock);
1366 * raw_spin_unlock(&lock->wait_lock);
1367 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1368 * return;
1369 * goto retry;
1370 *
1371 * The fastpath disabled variant is simple as all access to
1372 * lock->owner is serialized by lock->wait_lock:
1373 *
1374 * lock->owner = NULL;
1375 * raw_spin_unlock(&lock->wait_lock);
1376 */
1377 while (!rt_mutex_has_waiters(lock)) {
1378 /* Drops lock->wait_lock ! */
1379 if (unlock_rt_mutex_safe(lock, flags) == true)
1380 return false;
1381 /* Relock the rtmutex and try again */
1382 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1383 }
1384
1385 /*
1386 * The wakeup next waiter path does not suffer from the above
1387 * race. See the comments there.
1388 *
1389 * Queue the next waiter for wakeup once we release the wait_lock.
1390 */
1391 mark_wakeup_next_waiter(wake_q, lock);
1392 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394 return true; /* call rt_mutex_postunlock() */
1395}
1396
1397/*
1398 * debug aware fast / slowpath lock,trylock,unlock
1399 *
1400 * The atomic acquire/release ops are compiled away, when either the
1401 * architecture does not support cmpxchg or when debugging is enabled.
1402 */
1403static inline int
1404rt_mutex_fastlock(struct rt_mutex *lock, int state,
1405 int (*slowfn)(struct rt_mutex *lock, int state,
1406 struct hrtimer_sleeper *timeout,
1407 enum rtmutex_chainwalk chwalk))
1408{
1409 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1410 return 0;
1411
1412 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1413}
1414
1415static inline int
1416rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1417 struct hrtimer_sleeper *timeout,
1418 enum rtmutex_chainwalk chwalk,
1419 int (*slowfn)(struct rt_mutex *lock, int state,
1420 struct hrtimer_sleeper *timeout,
1421 enum rtmutex_chainwalk chwalk))
1422{
1423 if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1424 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1425 return 0;
1426
1427 return slowfn(lock, state, timeout, chwalk);
1428}
1429
1430static inline int
1431rt_mutex_fasttrylock(struct rt_mutex *lock,
1432 int (*slowfn)(struct rt_mutex *lock))
1433{
1434 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 return 1;
1436
1437 return slowfn(lock);
1438}
1439
1440/*
1441 * Performs the wakeup of the the top-waiter and re-enables preemption.
1442 */
1443void rt_mutex_postunlock(struct wake_q_head *wake_q)
1444{
1445 wake_up_q(wake_q);
1446
1447 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1448 preempt_enable();
1449}
1450
1451static inline void
1452rt_mutex_fastunlock(struct rt_mutex *lock,
1453 bool (*slowfn)(struct rt_mutex *lock,
1454 struct wake_q_head *wqh))
1455{
1456 DEFINE_WAKE_Q(wake_q);
1457
1458 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459 return;
1460
1461 if (slowfn(lock, &wake_q))
1462 rt_mutex_postunlock(&wake_q);
1463}
1464
1465static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1466{
1467 might_sleep();
1468
1469 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1470 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1471}
1472
1473#ifdef CONFIG_DEBUG_LOCK_ALLOC
1474/**
1475 * rt_mutex_lock_nested - lock a rt_mutex
1476 *
1477 * @lock: the rt_mutex to be locked
1478 * @subclass: the lockdep subclass
1479 */
1480void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1481{
1482 __rt_mutex_lock(lock, subclass);
1483}
1484EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1485
1486#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1487
1488/**
1489 * rt_mutex_lock - lock a rt_mutex
1490 *
1491 * @lock: the rt_mutex to be locked
1492 */
1493void __sched rt_mutex_lock(struct rt_mutex *lock)
1494{
1495 __rt_mutex_lock(lock, 0);
1496}
1497EXPORT_SYMBOL_GPL(rt_mutex_lock);
1498#endif
1499
1500/**
1501 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1502 *
1503 * @lock: the rt_mutex to be locked
1504 *
1505 * Returns:
1506 * 0 on success
1507 * -EINTR when interrupted by a signal
1508 */
1509int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1510{
1511 int ret;
1512
1513 might_sleep();
1514
1515 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1516 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1517 if (ret)
1518 mutex_release(&lock->dep_map, _RET_IP_);
1519
1520 return ret;
1521}
1522EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1523
1524/*
1525 * Futex variant, must not use fastpath.
1526 */
1527int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1528{
1529 return rt_mutex_slowtrylock(lock);
1530}
1531
1532int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1533{
1534 return __rt_mutex_slowtrylock(lock);
1535}
1536
1537/**
1538 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1539 * the timeout structure is provided
1540 * by the caller
1541 *
1542 * @lock: the rt_mutex to be locked
1543 * @timeout: timeout structure or NULL (no timeout)
1544 *
1545 * Returns:
1546 * 0 on success
1547 * -EINTR when interrupted by a signal
1548 * -ETIMEDOUT when the timeout expired
1549 */
1550int
1551rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1552{
1553 int ret;
1554
1555 might_sleep();
1556
1557 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1558 ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1559 RT_MUTEX_MIN_CHAINWALK,
1560 rt_mutex_slowlock);
1561 if (ret)
1562 mutex_release(&lock->dep_map, _RET_IP_);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1567
1568/**
1569 * rt_mutex_trylock - try to lock a rt_mutex
1570 *
1571 * @lock: the rt_mutex to be locked
1572 *
1573 * This function can only be called in thread context. It's safe to
1574 * call it from atomic regions, but not from hard interrupt or soft
1575 * interrupt context.
1576 *
1577 * Returns 1 on success and 0 on contention
1578 */
1579int __sched rt_mutex_trylock(struct rt_mutex *lock)
1580{
1581 int ret;
1582
1583 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1584 return 0;
1585
1586 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1587 if (ret)
1588 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1589
1590 return ret;
1591}
1592EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1593
1594/**
1595 * rt_mutex_unlock - unlock a rt_mutex
1596 *
1597 * @lock: the rt_mutex to be unlocked
1598 */
1599void __sched rt_mutex_unlock(struct rt_mutex *lock)
1600{
1601 mutex_release(&lock->dep_map, _RET_IP_);
1602 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1603}
1604EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1605
1606/**
1607 * Futex variant, that since futex variants do not use the fast-path, can be
1608 * simple and will not need to retry.
1609 */
1610bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1611 struct wake_q_head *wake_q)
1612{
1613 lockdep_assert_held(&lock->wait_lock);
1614
1615 debug_rt_mutex_unlock(lock);
1616
1617 if (!rt_mutex_has_waiters(lock)) {
1618 lock->owner = NULL;
1619 return false; /* done */
1620 }
1621
1622 /*
1623 * We've already deboosted, mark_wakeup_next_waiter() will
1624 * retain preempt_disabled when we drop the wait_lock, to
1625 * avoid inversion prior to the wakeup. preempt_disable()
1626 * therein pairs with rt_mutex_postunlock().
1627 */
1628 mark_wakeup_next_waiter(wake_q, lock);
1629
1630 return true; /* call postunlock() */
1631}
1632
1633void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1634{
1635 DEFINE_WAKE_Q(wake_q);
1636 unsigned long flags;
1637 bool postunlock;
1638
1639 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1640 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1641 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1642
1643 if (postunlock)
1644 rt_mutex_postunlock(&wake_q);
1645}
1646
1647/**
1648 * rt_mutex_destroy - mark a mutex unusable
1649 * @lock: the mutex to be destroyed
1650 *
1651 * This function marks the mutex uninitialized, and any subsequent
1652 * use of the mutex is forbidden. The mutex must not be locked when
1653 * this function is called.
1654 */
1655void rt_mutex_destroy(struct rt_mutex *lock)
1656{
1657 WARN_ON(rt_mutex_is_locked(lock));
1658#ifdef CONFIG_DEBUG_RT_MUTEXES
1659 lock->magic = NULL;
1660#endif
1661}
1662EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1663
1664/**
1665 * __rt_mutex_init - initialize the rt lock
1666 *
1667 * @lock: the rt lock to be initialized
1668 *
1669 * Initialize the rt lock to unlocked state.
1670 *
1671 * Initializing of a locked rt lock is not allowed
1672 */
1673void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1674 struct lock_class_key *key)
1675{
1676 lock->owner = NULL;
1677 raw_spin_lock_init(&lock->wait_lock);
1678 lock->waiters = RB_ROOT_CACHED;
1679
1680 if (name && key)
1681 debug_rt_mutex_init(lock, name, key);
1682}
1683EXPORT_SYMBOL_GPL(__rt_mutex_init);
1684
1685/**
1686 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1687 * proxy owner
1688 *
1689 * @lock: the rt_mutex to be locked
1690 * @proxy_owner:the task to set as owner
1691 *
1692 * No locking. Caller has to do serializing itself
1693 *
1694 * Special API call for PI-futex support. This initializes the rtmutex and
1695 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1696 * possible at this point because the pi_state which contains the rtmutex
1697 * is not yet visible to other tasks.
1698 */
1699void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1700 struct task_struct *proxy_owner)
1701{
1702 __rt_mutex_init(lock, NULL, NULL);
1703 debug_rt_mutex_proxy_lock(lock, proxy_owner);
1704 rt_mutex_set_owner(lock, proxy_owner);
1705}
1706
1707/**
1708 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1709 *
1710 * @lock: the rt_mutex to be locked
1711 *
1712 * No locking. Caller has to do serializing itself
1713 *
1714 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1715 * (debugging) state. Concurrent operations on this rt_mutex are not
1716 * possible because it belongs to the pi_state which is about to be freed
1717 * and it is not longer visible to other tasks.
1718 */
1719void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1720 struct task_struct *proxy_owner)
1721{
1722 debug_rt_mutex_proxy_unlock(lock);
1723 rt_mutex_set_owner(lock, NULL);
1724}
1725
1726/**
1727 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1728 * @lock: the rt_mutex to take
1729 * @waiter: the pre-initialized rt_mutex_waiter
1730 * @task: the task to prepare
1731 *
1732 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1733 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1734 *
1735 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1736 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1737 *
1738 * Returns:
1739 * 0 - task blocked on lock
1740 * 1 - acquired the lock for task, caller should wake it up
1741 * <0 - error
1742 *
1743 * Special API call for PI-futex support.
1744 */
1745int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1746 struct rt_mutex_waiter *waiter,
1747 struct task_struct *task)
1748{
1749 int ret;
1750
1751 lockdep_assert_held(&lock->wait_lock);
1752
1753 if (try_to_take_rt_mutex(lock, task, NULL))
1754 return 1;
1755
1756 /* We enforce deadlock detection for futexes */
1757 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1758 RT_MUTEX_FULL_CHAINWALK);
1759
1760 if (ret && !rt_mutex_owner(lock)) {
1761 /*
1762 * Reset the return value. We might have
1763 * returned with -EDEADLK and the owner
1764 * released the lock while we were walking the
1765 * pi chain. Let the waiter sort it out.
1766 */
1767 ret = 0;
1768 }
1769
1770 debug_rt_mutex_print_deadlock(waiter);
1771
1772 return ret;
1773}
1774
1775/**
1776 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1777 * @lock: the rt_mutex to take
1778 * @waiter: the pre-initialized rt_mutex_waiter
1779 * @task: the task to prepare
1780 *
1781 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1782 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1783 *
1784 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1785 * on failure.
1786 *
1787 * Returns:
1788 * 0 - task blocked on lock
1789 * 1 - acquired the lock for task, caller should wake it up
1790 * <0 - error
1791 *
1792 * Special API call for PI-futex support.
1793 */
1794int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1795 struct rt_mutex_waiter *waiter,
1796 struct task_struct *task)
1797{
1798 int ret;
1799
1800 raw_spin_lock_irq(&lock->wait_lock);
1801 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1802 if (unlikely(ret))
1803 remove_waiter(lock, waiter);
1804 raw_spin_unlock_irq(&lock->wait_lock);
1805
1806 return ret;
1807}
1808
1809/**
1810 * rt_mutex_next_owner - return the next owner of the lock
1811 *
1812 * @lock: the rt lock query
1813 *
1814 * Returns the next owner of the lock or NULL
1815 *
1816 * Caller has to serialize against other accessors to the lock
1817 * itself.
1818 *
1819 * Special API call for PI-futex support
1820 */
1821struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1822{
1823 if (!rt_mutex_has_waiters(lock))
1824 return NULL;
1825
1826 return rt_mutex_top_waiter(lock)->task;
1827}
1828
1829/**
1830 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1831 * @lock: the rt_mutex we were woken on
1832 * @to: the timeout, null if none. hrtimer should already have
1833 * been started.
1834 * @waiter: the pre-initialized rt_mutex_waiter
1835 *
1836 * Wait for the the lock acquisition started on our behalf by
1837 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1838 * rt_mutex_cleanup_proxy_lock().
1839 *
1840 * Returns:
1841 * 0 - success
1842 * <0 - error, one of -EINTR, -ETIMEDOUT
1843 *
1844 * Special API call for PI-futex support
1845 */
1846int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1847 struct hrtimer_sleeper *to,
1848 struct rt_mutex_waiter *waiter)
1849{
1850 int ret;
1851
1852 raw_spin_lock_irq(&lock->wait_lock);
1853 /* sleep on the mutex */
1854 set_current_state(TASK_INTERRUPTIBLE);
1855 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1856 /*
1857 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1858 * have to fix that up.
1859 */
1860 fixup_rt_mutex_waiters(lock);
1861 raw_spin_unlock_irq(&lock->wait_lock);
1862
1863 return ret;
1864}
1865
1866/**
1867 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1868 * @lock: the rt_mutex we were woken on
1869 * @waiter: the pre-initialized rt_mutex_waiter
1870 *
1871 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1872 * rt_mutex_wait_proxy_lock().
1873 *
1874 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1875 * in fact still be granted ownership until we're removed. Therefore we can
1876 * find we are in fact the owner and must disregard the
1877 * rt_mutex_wait_proxy_lock() failure.
1878 *
1879 * Returns:
1880 * true - did the cleanup, we done.
1881 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1882 * caller should disregards its return value.
1883 *
1884 * Special API call for PI-futex support
1885 */
1886bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1887 struct rt_mutex_waiter *waiter)
1888{
1889 bool cleanup = false;
1890
1891 raw_spin_lock_irq(&lock->wait_lock);
1892 /*
1893 * Do an unconditional try-lock, this deals with the lock stealing
1894 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1895 * sets a NULL owner.
1896 *
1897 * We're not interested in the return value, because the subsequent
1898 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1899 * we will own the lock and it will have removed the waiter. If we
1900 * failed the trylock, we're still not owner and we need to remove
1901 * ourselves.
1902 */
1903 try_to_take_rt_mutex(lock, current, waiter);
1904 /*
1905 * Unless we're the owner; we're still enqueued on the wait_list.
1906 * So check if we became owner, if not, take us off the wait_list.
1907 */
1908 if (rt_mutex_owner(lock) != current) {
1909 remove_waiter(lock, waiter);
1910 cleanup = true;
1911 }
1912 /*
1913 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1914 * have to fix that up.
1915 */
1916 fixup_rt_mutex_waiters(lock);
1917
1918 raw_spin_unlock_irq(&lock->wait_lock);
1919
1920 return cleanup;
1921}