Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel Debug Core
   4 *
   5 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
   6 *
   7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
   8 * Copyright (C) 2002-2004 Timesys Corporation
   9 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
  10 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
  11 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
  12 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
  13 * Copyright (C) 2005-2009 Wind River Systems, Inc.
  14 * Copyright (C) 2007 MontaVista Software, Inc.
  15 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  16 *
  17 * Contributors at various stages not listed above:
  18 *  Jason Wessel ( jason.wessel@windriver.com )
  19 *  George Anzinger <george@mvista.com>
  20 *  Anurekh Saxena (anurekh.saxena@timesys.com)
  21 *  Lake Stevens Instrument Division (Glenn Engel)
  22 *  Jim Kingdon, Cygnus Support.
  23 *
  24 * Original KGDB stub: David Grothe <dave@gcom.com>,
  25 * Tigran Aivazian <tigran@sco.com>
 
 
 
 
  26 */
  27
  28#define pr_fmt(fmt) "KGDB: " fmt
  29
  30#include <linux/pid_namespace.h>
  31#include <linux/clocksource.h>
  32#include <linux/serial_core.h>
  33#include <linux/interrupt.h>
  34#include <linux/spinlock.h>
  35#include <linux/console.h>
  36#include <linux/threads.h>
  37#include <linux/uaccess.h>
  38#include <linux/kernel.h>
  39#include <linux/module.h>
  40#include <linux/ptrace.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/sched.h>
  44#include <linux/sysrq.h>
  45#include <linux/reboot.h>
  46#include <linux/init.h>
  47#include <linux/kgdb.h>
  48#include <linux/kdb.h>
  49#include <linux/nmi.h>
  50#include <linux/pid.h>
  51#include <linux/smp.h>
  52#include <linux/mm.h>
 
  53#include <linux/rcupdate.h>
  54#include <linux/irq.h>
  55#include <linux/security.h>
  56
  57#include <asm/cacheflush.h>
  58#include <asm/byteorder.h>
  59#include <linux/atomic.h>
  60
  61#include "debug_core.h"
  62
  63static int kgdb_break_asap;
  64
  65struct debuggerinfo_struct kgdb_info[NR_CPUS];
  66
  67/* kgdb_connected - Is a host GDB connected to us? */
  68int				kgdb_connected;
  69EXPORT_SYMBOL_GPL(kgdb_connected);
  70
  71/* All the KGDB handlers are installed */
  72int			kgdb_io_module_registered;
  73
  74/* Guard for recursive entry */
  75static int			exception_level;
  76
  77struct kgdb_io		*dbg_io_ops;
  78static DEFINE_SPINLOCK(kgdb_registration_lock);
  79
  80/* Action for the reboot notifier, a global allow kdb to change it */
  81static int kgdbreboot;
  82/* kgdb console driver is loaded */
  83static int kgdb_con_registered;
  84/* determine if kgdb console output should be used */
  85static int kgdb_use_con;
  86/* Flag for alternate operations for early debugging */
  87bool dbg_is_early = true;
  88/* Next cpu to become the master debug core */
  89int dbg_switch_cpu;
  90
  91/* Use kdb or gdbserver mode */
  92int dbg_kdb_mode = 1;
  93
 
 
 
 
 
 
 
 
  94module_param(kgdb_use_con, int, 0644);
  95module_param(kgdbreboot, int, 0644);
  96
  97/*
  98 * Holds information about breakpoints in a kernel. These breakpoints are
  99 * added and removed by gdb.
 100 */
 101static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
 102	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
 103};
 104
 105/*
 106 * The CPU# of the active CPU, or -1 if none:
 107 */
 108atomic_t			kgdb_active = ATOMIC_INIT(-1);
 109EXPORT_SYMBOL_GPL(kgdb_active);
 110static DEFINE_RAW_SPINLOCK(dbg_master_lock);
 111static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
 112
 113/*
 114 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
 115 * bootup code (which might not have percpu set up yet):
 116 */
 117static atomic_t			masters_in_kgdb;
 118static atomic_t			slaves_in_kgdb;
 
 119atomic_t			kgdb_setting_breakpoint;
 120
 121struct task_struct		*kgdb_usethread;
 122struct task_struct		*kgdb_contthread;
 123
 124int				kgdb_single_step;
 125static pid_t			kgdb_sstep_pid;
 126
 127/* to keep track of the CPU which is doing the single stepping*/
 128atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
 129
 130/*
 131 * If you are debugging a problem where roundup (the collection of
 132 * all other CPUs) is a problem [this should be extremely rare],
 133 * then use the nokgdbroundup option to avoid roundup. In that case
 134 * the other CPUs might interfere with your debugging context, so
 135 * use this with care:
 136 */
 137static int kgdb_do_roundup = 1;
 138
 139static int __init opt_nokgdbroundup(char *str)
 140{
 141	kgdb_do_roundup = 0;
 142
 143	return 0;
 144}
 145
 146early_param("nokgdbroundup", opt_nokgdbroundup);
 147
 148/*
 149 * Finally, some KGDB code :-)
 150 */
 151
 152/*
 153 * Weak aliases for breakpoint management,
 154 * can be overridden by architectures when needed:
 155 */
 156int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
 157{
 158	int err;
 159
 160	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
 161				BREAK_INSTR_SIZE);
 162	if (err)
 163		return err;
 164	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
 165				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
 166	return err;
 167}
 168NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
 169
 170int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
 171{
 172	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
 173				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
 174}
 175NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
 176
 177int __weak kgdb_validate_break_address(unsigned long addr)
 178{
 179	struct kgdb_bkpt tmp;
 180	int err;
 181
 182	if (kgdb_within_blocklist(addr))
 183		return -EINVAL;
 184
 185	/* Validate setting the breakpoint and then removing it.  If the
 186	 * remove fails, the kernel needs to emit a bad message because we
 187	 * are deep trouble not being able to put things back the way we
 188	 * found them.
 189	 */
 190	tmp.bpt_addr = addr;
 191	err = kgdb_arch_set_breakpoint(&tmp);
 192	if (err)
 193		return err;
 194	err = kgdb_arch_remove_breakpoint(&tmp);
 195	if (err)
 196		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
 197		       addr);
 198	return err;
 199}
 200
 201unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
 202{
 203	return instruction_pointer(regs);
 204}
 205NOKPROBE_SYMBOL(kgdb_arch_pc);
 206
 207int __weak kgdb_arch_init(void)
 208{
 209	return 0;
 210}
 211
 212int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
 213{
 214	return 0;
 215}
 216NOKPROBE_SYMBOL(kgdb_skipexception);
 217
 218#ifdef CONFIG_SMP
 219
 220/*
 221 * Default (weak) implementation for kgdb_roundup_cpus
 222 */
 223
 
 
 224void __weak kgdb_call_nmi_hook(void *ignored)
 225{
 226	/*
 227	 * NOTE: get_irq_regs() is supposed to get the registers from
 228	 * before the IPI interrupt happened and so is supposed to
 229	 * show where the processor was.  In some situations it's
 230	 * possible we might be called without an IPI, so it might be
 231	 * safer to figure out how to make kgdb_breakpoint() work
 232	 * properly here.
 233	 */
 234	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
 235}
 236NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
 237
 238static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
 239	CSD_INIT(kgdb_call_nmi_hook, NULL);
 240
 241void __weak kgdb_roundup_cpus(void)
 242{
 243	call_single_data_t *csd;
 244	int this_cpu = raw_smp_processor_id();
 245	int cpu;
 246	int ret;
 247
 248	for_each_online_cpu(cpu) {
 249		/* No need to roundup ourselves */
 250		if (cpu == this_cpu)
 251			continue;
 252
 253		csd = &per_cpu(kgdb_roundup_csd, cpu);
 254
 255		/*
 256		 * If it didn't round up last time, don't try again
 257		 * since smp_call_function_single_async() will block.
 258		 *
 259		 * If rounding_up is false then we know that the
 260		 * previous call must have at least started and that
 261		 * means smp_call_function_single_async() won't block.
 262		 */
 263		if (kgdb_info[cpu].rounding_up)
 264			continue;
 265		kgdb_info[cpu].rounding_up = true;
 266
 
 267		ret = smp_call_function_single_async(cpu, csd);
 268		if (ret)
 269			kgdb_info[cpu].rounding_up = false;
 270	}
 271}
 272NOKPROBE_SYMBOL(kgdb_roundup_cpus);
 273
 274#endif
 275
 276/*
 277 * Some architectures need cache flushes when we set/clear a
 278 * breakpoint:
 279 */
 280static void kgdb_flush_swbreak_addr(unsigned long addr)
 281{
 282	if (!CACHE_FLUSH_IS_SAFE)
 283		return;
 284
 
 
 
 
 
 
 
 
 
 
 
 285	/* Force flush instruction cache if it was outside the mm */
 286	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
 287}
 288NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
 289
 290/*
 291 * SW breakpoint management:
 292 */
 293int dbg_activate_sw_breakpoints(void)
 294{
 295	int error;
 296	int ret = 0;
 297	int i;
 298
 299	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 300		if (kgdb_break[i].state != BP_SET)
 301			continue;
 302
 303		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
 304		if (error) {
 305			ret = error;
 306			pr_info("BP install failed: %lx\n",
 307				kgdb_break[i].bpt_addr);
 308			continue;
 309		}
 310
 311		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 312		kgdb_break[i].state = BP_ACTIVE;
 313	}
 314	return ret;
 315}
 316NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
 317
 318int dbg_set_sw_break(unsigned long addr)
 319{
 320	int err = kgdb_validate_break_address(addr);
 321	int breakno = -1;
 322	int i;
 323
 324	if (err)
 325		return err;
 326
 327	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 328		if ((kgdb_break[i].state == BP_SET) &&
 329					(kgdb_break[i].bpt_addr == addr))
 330			return -EEXIST;
 331	}
 332	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 333		if (kgdb_break[i].state == BP_REMOVED &&
 334					kgdb_break[i].bpt_addr == addr) {
 335			breakno = i;
 336			break;
 337		}
 338	}
 339
 340	if (breakno == -1) {
 341		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 342			if (kgdb_break[i].state == BP_UNDEFINED) {
 343				breakno = i;
 344				break;
 345			}
 346		}
 347	}
 348
 349	if (breakno == -1)
 350		return -E2BIG;
 351
 352	kgdb_break[breakno].state = BP_SET;
 353	kgdb_break[breakno].type = BP_BREAKPOINT;
 354	kgdb_break[breakno].bpt_addr = addr;
 355
 356	return 0;
 357}
 358
 359int dbg_deactivate_sw_breakpoints(void)
 360{
 361	int error;
 362	int ret = 0;
 363	int i;
 364
 365	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 366		if (kgdb_break[i].state != BP_ACTIVE)
 367			continue;
 368		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 369		if (error) {
 370			pr_info("BP remove failed: %lx\n",
 371				kgdb_break[i].bpt_addr);
 372			ret = error;
 373		}
 374
 375		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 376		kgdb_break[i].state = BP_SET;
 377	}
 378	return ret;
 379}
 380NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
 381
 382int dbg_remove_sw_break(unsigned long addr)
 383{
 384	int i;
 385
 386	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 387		if ((kgdb_break[i].state == BP_SET) &&
 388				(kgdb_break[i].bpt_addr == addr)) {
 389			kgdb_break[i].state = BP_REMOVED;
 390			return 0;
 391		}
 392	}
 393	return -ENOENT;
 394}
 395
 396int kgdb_isremovedbreak(unsigned long addr)
 397{
 398	int i;
 399
 400	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 401		if ((kgdb_break[i].state == BP_REMOVED) &&
 402					(kgdb_break[i].bpt_addr == addr))
 403			return 1;
 404	}
 405	return 0;
 406}
 407
 408int kgdb_has_hit_break(unsigned long addr)
 409{
 410	int i;
 411
 412	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 413		if (kgdb_break[i].state == BP_ACTIVE &&
 414		    kgdb_break[i].bpt_addr == addr)
 415			return 1;
 416	}
 417	return 0;
 418}
 419
 420int dbg_remove_all_break(void)
 421{
 422	int error;
 423	int i;
 424
 425	/* Clear memory breakpoints. */
 426	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 427		if (kgdb_break[i].state != BP_ACTIVE)
 428			goto setundefined;
 429		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 430		if (error)
 431			pr_err("breakpoint remove failed: %lx\n",
 432			       kgdb_break[i].bpt_addr);
 433setundefined:
 434		kgdb_break[i].state = BP_UNDEFINED;
 435	}
 436
 437	/* Clear hardware breakpoints. */
 438	if (arch_kgdb_ops.remove_all_hw_break)
 439		arch_kgdb_ops.remove_all_hw_break();
 440
 441	return 0;
 442}
 443
 444void kgdb_free_init_mem(void)
 445{
 446	int i;
 447
 448	/* Clear init memory breakpoints. */
 449	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 450		if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
 451			kgdb_break[i].state = BP_UNDEFINED;
 452	}
 453}
 454
 455#ifdef CONFIG_KGDB_KDB
 456void kdb_dump_stack_on_cpu(int cpu)
 457{
 458	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
 459		dump_stack();
 460		return;
 461	}
 462
 463	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
 464		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
 465			   cpu);
 466		return;
 467	}
 468
 469	/*
 470	 * In general, architectures don't support dumping the stack of a
 471	 * "running" process that's not the current one.  From the point of
 472	 * view of the Linux, kernel processes that are looping in the kgdb
 473	 * slave loop are still "running".  There's also no API (that actually
 474	 * works across all architectures) that can do a stack crawl based
 475	 * on registers passed as a parameter.
 476	 *
 477	 * Solve this conundrum by asking slave CPUs to do the backtrace
 478	 * themselves.
 479	 */
 480	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
 481	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
 482		cpu_relax();
 483}
 484#endif
 485
 486/*
 487 * Return true if there is a valid kgdb I/O module.  Also if no
 488 * debugger is attached a message can be printed to the console about
 489 * waiting for the debugger to attach.
 490 *
 491 * The print_wait argument is only to be true when called from inside
 492 * the core kgdb_handle_exception, because it will wait for the
 493 * debugger to attach.
 494 */
 495static int kgdb_io_ready(int print_wait)
 496{
 497	if (!dbg_io_ops)
 498		return 0;
 499	if (kgdb_connected)
 500		return 1;
 501	if (atomic_read(&kgdb_setting_breakpoint))
 502		return 1;
 503	if (print_wait) {
 504#ifdef CONFIG_KGDB_KDB
 505		if (!dbg_kdb_mode)
 506			pr_crit("waiting... or $3#33 for KDB\n");
 507#else
 508		pr_crit("Waiting for remote debugger\n");
 509#endif
 510	}
 511	return 1;
 512}
 513NOKPROBE_SYMBOL(kgdb_io_ready);
 514
 515static int kgdb_reenter_check(struct kgdb_state *ks)
 516{
 517	unsigned long addr;
 518
 519	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
 520		return 0;
 521
 522	/* Panic on recursive debugger calls: */
 523	exception_level++;
 524	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
 525	dbg_deactivate_sw_breakpoints();
 526
 527	/*
 528	 * If the break point removed ok at the place exception
 529	 * occurred, try to recover and print a warning to the end
 530	 * user because the user planted a breakpoint in a place that
 531	 * KGDB needs in order to function.
 532	 */
 533	if (dbg_remove_sw_break(addr) == 0) {
 534		exception_level = 0;
 535		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 536		dbg_activate_sw_breakpoints();
 537		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
 538		WARN_ON_ONCE(1);
 539
 540		return 1;
 541	}
 542	dbg_remove_all_break();
 543	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 544
 545	if (exception_level > 1) {
 546		dump_stack();
 547		kgdb_io_module_registered = false;
 548		panic("Recursive entry to debugger");
 549	}
 550
 551	pr_crit("re-enter exception: ALL breakpoints killed\n");
 552#ifdef CONFIG_KGDB_KDB
 553	/* Allow kdb to debug itself one level */
 554	return 0;
 555#endif
 556	dump_stack();
 557	panic("Recursive entry to debugger");
 558
 559	return 1;
 560}
 561NOKPROBE_SYMBOL(kgdb_reenter_check);
 562
 563static void dbg_touch_watchdogs(void)
 564{
 565	touch_softlockup_watchdog_sync();
 566	clocksource_touch_watchdog();
 567	rcu_cpu_stall_reset();
 568}
 569NOKPROBE_SYMBOL(dbg_touch_watchdogs);
 570
 571static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
 572		int exception_state)
 573{
 574	unsigned long flags;
 575	int sstep_tries = 100;
 576	int error;
 577	int cpu;
 578	int trace_on = 0;
 579	int online_cpus = num_online_cpus();
 580	u64 time_left;
 581
 582	kgdb_info[ks->cpu].enter_kgdb++;
 583	kgdb_info[ks->cpu].exception_state |= exception_state;
 584
 585	if (exception_state == DCPU_WANT_MASTER)
 586		atomic_inc(&masters_in_kgdb);
 587	else
 588		atomic_inc(&slaves_in_kgdb);
 589
 590	if (arch_kgdb_ops.disable_hw_break)
 591		arch_kgdb_ops.disable_hw_break(regs);
 592
 593acquirelock:
 594	rcu_read_lock();
 595	/*
 596	 * Interrupts will be restored by the 'trap return' code, except when
 597	 * single stepping.
 598	 */
 599	local_irq_save(flags);
 600
 601	cpu = ks->cpu;
 602	kgdb_info[cpu].debuggerinfo = regs;
 603	kgdb_info[cpu].task = current;
 604	kgdb_info[cpu].ret_state = 0;
 605	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
 606
 607	/* Make sure the above info reaches the primary CPU */
 608	smp_mb();
 609
 610	if (exception_level == 1) {
 611		if (raw_spin_trylock(&dbg_master_lock))
 612			atomic_xchg(&kgdb_active, cpu);
 613		goto cpu_master_loop;
 614	}
 615
 616	/*
 617	 * CPU will loop if it is a slave or request to become a kgdb
 618	 * master cpu and acquire the kgdb_active lock:
 619	 */
 620	while (1) {
 621cpu_loop:
 622		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
 623			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
 624			goto cpu_master_loop;
 625		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
 626			if (raw_spin_trylock(&dbg_master_lock)) {
 627				atomic_xchg(&kgdb_active, cpu);
 628				break;
 629			}
 630		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
 631			dump_stack();
 632			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
 633		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
 634			if (!raw_spin_is_locked(&dbg_slave_lock))
 635				goto return_normal;
 636		} else {
 637return_normal:
 638			/* Return to normal operation by executing any
 639			 * hw breakpoint fixup.
 640			 */
 641			if (arch_kgdb_ops.correct_hw_break)
 642				arch_kgdb_ops.correct_hw_break();
 643			if (trace_on)
 644				tracing_on();
 645			kgdb_info[cpu].debuggerinfo = NULL;
 646			kgdb_info[cpu].task = NULL;
 647			kgdb_info[cpu].exception_state &=
 648				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 649			kgdb_info[cpu].enter_kgdb--;
 650			smp_mb__before_atomic();
 651			atomic_dec(&slaves_in_kgdb);
 652			dbg_touch_watchdogs();
 653			local_irq_restore(flags);
 654			rcu_read_unlock();
 655			return 0;
 656		}
 657		cpu_relax();
 658	}
 659
 660	/*
 661	 * For single stepping, try to only enter on the processor
 662	 * that was single stepping.  To guard against a deadlock, the
 663	 * kernel will only try for the value of sstep_tries before
 664	 * giving up and continuing on.
 665	 */
 666	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
 667	    (kgdb_info[cpu].task &&
 668	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
 669		atomic_set(&kgdb_active, -1);
 670		raw_spin_unlock(&dbg_master_lock);
 671		dbg_touch_watchdogs();
 672		local_irq_restore(flags);
 673		rcu_read_unlock();
 674
 675		goto acquirelock;
 676	}
 677
 678	if (!kgdb_io_ready(1)) {
 679		kgdb_info[cpu].ret_state = 1;
 680		goto kgdb_restore; /* No I/O connection, resume the system */
 681	}
 682
 683	/*
 684	 * Don't enter if we have hit a removed breakpoint.
 685	 */
 686	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
 687		goto kgdb_restore;
 688
 689	atomic_inc(&ignore_console_lock_warning);
 690
 691	/* Call the I/O driver's pre_exception routine */
 692	if (dbg_io_ops->pre_exception)
 693		dbg_io_ops->pre_exception();
 694
 695	/*
 696	 * Get the passive CPU lock which will hold all the non-primary
 697	 * CPU in a spin state while the debugger is active
 698	 */
 699	if (!kgdb_single_step)
 700		raw_spin_lock(&dbg_slave_lock);
 701
 702#ifdef CONFIG_SMP
 703	/* If send_ready set, slaves are already waiting */
 704	if (ks->send_ready)
 705		atomic_set(ks->send_ready, 1);
 706
 707	/* Signal the other CPUs to enter kgdb_wait() */
 708	else if ((!kgdb_single_step) && kgdb_do_roundup)
 709		kgdb_roundup_cpus();
 710#endif
 711
 712	/*
 713	 * Wait for the other CPUs to be notified and be waiting for us:
 714	 */
 715	time_left = MSEC_PER_SEC;
 716	while (kgdb_do_roundup && --time_left &&
 717	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
 718		   online_cpus)
 719		udelay(1000);
 720	if (!time_left)
 721		pr_crit("Timed out waiting for secondary CPUs.\n");
 722
 723	/*
 724	 * At this point the primary processor is completely
 725	 * in the debugger and all secondary CPUs are quiescent
 726	 */
 727	dbg_deactivate_sw_breakpoints();
 728	kgdb_single_step = 0;
 729	kgdb_contthread = current;
 730	exception_level = 0;
 731	trace_on = tracing_is_on();
 732	if (trace_on)
 733		tracing_off();
 734
 735	while (1) {
 736cpu_master_loop:
 737		if (dbg_kdb_mode) {
 738			kgdb_connected = 1;
 739			error = kdb_stub(ks);
 740			if (error == -1)
 741				continue;
 742			kgdb_connected = 0;
 743		} else {
 744			/*
 745			 * This is a brutal way to interfere with the debugger
 746			 * and prevent gdb being used to poke at kernel memory.
 747			 * This could cause trouble if lockdown is applied when
 748			 * there is already an active gdb session. For now the
 749			 * answer is simply "don't do that". Typically lockdown
 750			 * *will* be applied before the debug core gets started
 751			 * so only developers using kgdb for fairly advanced
 752			 * early kernel debug can be biten by this. Hopefully
 753			 * they are sophisticated enough to take care of
 754			 * themselves, especially with help from the lockdown
 755			 * message printed on the console!
 756			 */
 757			if (security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL)) {
 758				if (IS_ENABLED(CONFIG_KGDB_KDB)) {
 759					/* Switch back to kdb if possible... */
 760					dbg_kdb_mode = 1;
 761					continue;
 762				} else {
 763					/* ... otherwise just bail */
 764					break;
 765				}
 766			}
 767			error = gdb_serial_stub(ks);
 768		}
 769
 770		if (error == DBG_PASS_EVENT) {
 771			dbg_kdb_mode = !dbg_kdb_mode;
 772		} else if (error == DBG_SWITCH_CPU_EVENT) {
 773			kgdb_info[dbg_switch_cpu].exception_state |=
 774				DCPU_NEXT_MASTER;
 775			goto cpu_loop;
 776		} else {
 777			kgdb_info[cpu].ret_state = error;
 778			break;
 779		}
 780	}
 781
 782	dbg_activate_sw_breakpoints();
 783
 784	/* Call the I/O driver's post_exception routine */
 785	if (dbg_io_ops->post_exception)
 786		dbg_io_ops->post_exception();
 787
 788	atomic_dec(&ignore_console_lock_warning);
 789
 790	if (!kgdb_single_step) {
 791		raw_spin_unlock(&dbg_slave_lock);
 792		/* Wait till all the CPUs have quit from the debugger. */
 793		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
 794			cpu_relax();
 795	}
 796
 797kgdb_restore:
 798	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
 799		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
 800		if (kgdb_info[sstep_cpu].task)
 801			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
 802		else
 803			kgdb_sstep_pid = 0;
 804	}
 805	if (arch_kgdb_ops.correct_hw_break)
 806		arch_kgdb_ops.correct_hw_break();
 807	if (trace_on)
 808		tracing_on();
 809
 810	kgdb_info[cpu].debuggerinfo = NULL;
 811	kgdb_info[cpu].task = NULL;
 812	kgdb_info[cpu].exception_state &=
 813		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 814	kgdb_info[cpu].enter_kgdb--;
 815	smp_mb__before_atomic();
 816	atomic_dec(&masters_in_kgdb);
 817	/* Free kgdb_active */
 818	atomic_set(&kgdb_active, -1);
 819	raw_spin_unlock(&dbg_master_lock);
 820	dbg_touch_watchdogs();
 821	local_irq_restore(flags);
 822	rcu_read_unlock();
 823
 824	return kgdb_info[cpu].ret_state;
 825}
 826NOKPROBE_SYMBOL(kgdb_cpu_enter);
 827
 828/*
 829 * kgdb_handle_exception() - main entry point from a kernel exception
 830 *
 831 * Locking hierarchy:
 832 *	interface locks, if any (begin_session)
 833 *	kgdb lock (kgdb_active)
 834 */
 835int
 836kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
 837{
 838	struct kgdb_state kgdb_var;
 839	struct kgdb_state *ks = &kgdb_var;
 840	int ret = 0;
 841
 842	if (arch_kgdb_ops.enable_nmi)
 843		arch_kgdb_ops.enable_nmi(0);
 844	/*
 845	 * Avoid entering the debugger if we were triggered due to an oops
 846	 * but panic_timeout indicates the system should automatically
 847	 * reboot on panic. We don't want to get stuck waiting for input
 848	 * on such systems, especially if its "just" an oops.
 849	 */
 850	if (signo != SIGTRAP && panic_timeout)
 851		return 1;
 852
 853	memset(ks, 0, sizeof(struct kgdb_state));
 854	ks->cpu			= raw_smp_processor_id();
 855	ks->ex_vector		= evector;
 856	ks->signo		= signo;
 857	ks->err_code		= ecode;
 858	ks->linux_regs		= regs;
 859
 860	if (kgdb_reenter_check(ks))
 861		goto out; /* Ouch, double exception ! */
 862	if (kgdb_info[ks->cpu].enter_kgdb != 0)
 863		goto out;
 864
 865	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 866out:
 867	if (arch_kgdb_ops.enable_nmi)
 868		arch_kgdb_ops.enable_nmi(1);
 869	return ret;
 870}
 871NOKPROBE_SYMBOL(kgdb_handle_exception);
 872
 873/*
 874 * GDB places a breakpoint at this function to know dynamically loaded objects.
 875 */
 876static int module_event(struct notifier_block *self, unsigned long val,
 877	void *data)
 878{
 879	return 0;
 880}
 881
 882static struct notifier_block dbg_module_load_nb = {
 883	.notifier_call	= module_event,
 884};
 885
 886int kgdb_nmicallback(int cpu, void *regs)
 887{
 888#ifdef CONFIG_SMP
 889	struct kgdb_state kgdb_var;
 890	struct kgdb_state *ks = &kgdb_var;
 891
 892	kgdb_info[cpu].rounding_up = false;
 893
 894	memset(ks, 0, sizeof(struct kgdb_state));
 895	ks->cpu			= cpu;
 896	ks->linux_regs		= regs;
 897
 898	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
 899			raw_spin_is_locked(&dbg_master_lock)) {
 900		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
 901		return 0;
 902	}
 903#endif
 904	return 1;
 905}
 906NOKPROBE_SYMBOL(kgdb_nmicallback);
 907
 908int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
 909							atomic_t *send_ready)
 910{
 911#ifdef CONFIG_SMP
 912	if (!kgdb_io_ready(0) || !send_ready)
 913		return 1;
 914
 915	if (kgdb_info[cpu].enter_kgdb == 0) {
 916		struct kgdb_state kgdb_var;
 917		struct kgdb_state *ks = &kgdb_var;
 918
 919		memset(ks, 0, sizeof(struct kgdb_state));
 920		ks->cpu			= cpu;
 921		ks->ex_vector		= trapnr;
 922		ks->signo		= SIGTRAP;
 923		ks->err_code		= err_code;
 924		ks->linux_regs		= regs;
 925		ks->send_ready		= send_ready;
 926		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 927		return 0;
 928	}
 929#endif
 930	return 1;
 931}
 932NOKPROBE_SYMBOL(kgdb_nmicallin);
 933
 934static void kgdb_console_write(struct console *co, const char *s,
 935   unsigned count)
 936{
 937	unsigned long flags;
 938
 939	/* If we're debugging, or KGDB has not connected, don't try
 940	 * and print. */
 941	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
 942		return;
 943
 944	local_irq_save(flags);
 945	gdbstub_msg_write(s, count);
 946	local_irq_restore(flags);
 947}
 948
 949static struct console kgdbcons = {
 950	.name		= "kgdb",
 951	.write		= kgdb_console_write,
 952	.flags		= CON_PRINTBUFFER | CON_ENABLED,
 953	.index		= -1,
 954};
 955
 956static int __init opt_kgdb_con(char *str)
 957{
 958	kgdb_use_con = 1;
 959
 960	if (kgdb_io_module_registered && !kgdb_con_registered) {
 961		register_console(&kgdbcons);
 962		kgdb_con_registered = 1;
 963	}
 964
 965	return 0;
 966}
 967
 968early_param("kgdbcon", opt_kgdb_con);
 969
 970#ifdef CONFIG_MAGIC_SYSRQ
 971static void sysrq_handle_dbg(int key)
 972{
 973	if (!dbg_io_ops) {
 974		pr_crit("ERROR: No KGDB I/O module available\n");
 975		return;
 976	}
 977	if (!kgdb_connected) {
 978#ifdef CONFIG_KGDB_KDB
 979		if (!dbg_kdb_mode)
 980			pr_crit("KGDB or $3#33 for KDB\n");
 981#else
 982		pr_crit("Entering KGDB\n");
 983#endif
 984	}
 985
 986	kgdb_breakpoint();
 987}
 988
 989static const struct sysrq_key_op sysrq_dbg_op = {
 990	.handler	= sysrq_handle_dbg,
 991	.help_msg	= "debug(g)",
 992	.action_msg	= "DEBUG",
 993};
 994#endif
 995
 996void kgdb_panic(const char *msg)
 997{
 998	if (!kgdb_io_module_registered)
 999		return;
1000
1001	/*
1002	 * We don't want to get stuck waiting for input from user if
1003	 * "panic_timeout" indicates the system should automatically
1004	 * reboot on panic.
1005	 */
1006	if (panic_timeout)
1007		return;
1008
1009	if (dbg_kdb_mode)
1010		kdb_printf("PANIC: %s\n", msg);
1011
1012	kgdb_breakpoint();
1013}
1014
1015static void kgdb_initial_breakpoint(void)
1016{
1017	kgdb_break_asap = 0;
1018
1019	pr_crit("Waiting for connection from remote gdb...\n");
1020	kgdb_breakpoint();
1021}
1022
1023void __weak kgdb_arch_late(void)
1024{
1025}
1026
1027void __init dbg_late_init(void)
1028{
1029	dbg_is_early = false;
1030	if (kgdb_io_module_registered)
1031		kgdb_arch_late();
1032	kdb_init(KDB_INIT_FULL);
1033
1034	if (kgdb_io_module_registered && kgdb_break_asap)
1035		kgdb_initial_breakpoint();
1036}
1037
1038static int
1039dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1040{
1041	/*
1042	 * Take the following action on reboot notify depending on value:
1043	 *    1 == Enter debugger
1044	 *    0 == [the default] detach debug client
1045	 *   -1 == Do nothing... and use this until the board resets
1046	 */
1047	switch (kgdbreboot) {
1048	case 1:
1049		kgdb_breakpoint();
1050		goto done;
1051	case -1:
1052		goto done;
1053	}
1054	if (!dbg_kdb_mode)
1055		gdbstub_exit(code);
1056done:
1057	return NOTIFY_DONE;
1058}
1059
1060static struct notifier_block dbg_reboot_notifier = {
1061	.notifier_call		= dbg_notify_reboot,
1062	.next			= NULL,
1063	.priority		= INT_MAX,
1064};
1065
1066static void kgdb_register_callbacks(void)
1067{
1068	if (!kgdb_io_module_registered) {
1069		kgdb_io_module_registered = 1;
1070		kgdb_arch_init();
1071		if (!dbg_is_early)
1072			kgdb_arch_late();
1073		register_module_notifier(&dbg_module_load_nb);
1074		register_reboot_notifier(&dbg_reboot_notifier);
1075#ifdef CONFIG_MAGIC_SYSRQ
1076		register_sysrq_key('g', &sysrq_dbg_op);
1077#endif
1078		if (kgdb_use_con && !kgdb_con_registered) {
1079			register_console(&kgdbcons);
1080			kgdb_con_registered = 1;
1081		}
1082	}
1083}
1084
1085static void kgdb_unregister_callbacks(void)
1086{
1087	/*
1088	 * When this routine is called KGDB should unregister from
1089	 * handlers and clean up, making sure it is not handling any
1090	 * break exceptions at the time.
1091	 */
1092	if (kgdb_io_module_registered) {
1093		kgdb_io_module_registered = 0;
1094		unregister_reboot_notifier(&dbg_reboot_notifier);
1095		unregister_module_notifier(&dbg_module_load_nb);
1096		kgdb_arch_exit();
1097#ifdef CONFIG_MAGIC_SYSRQ
1098		unregister_sysrq_key('g', &sysrq_dbg_op);
1099#endif
1100		if (kgdb_con_registered) {
1101			unregister_console(&kgdbcons);
1102			kgdb_con_registered = 0;
1103		}
1104	}
1105}
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107/**
1108 *	kgdb_register_io_module - register KGDB IO module
1109 *	@new_dbg_io_ops: the io ops vector
1110 *
1111 *	Register it with the KGDB core.
1112 */
1113int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1114{
1115	struct kgdb_io *old_dbg_io_ops;
1116	int err;
1117
1118	spin_lock(&kgdb_registration_lock);
1119
1120	old_dbg_io_ops = dbg_io_ops;
1121	if (old_dbg_io_ops) {
1122		if (!old_dbg_io_ops->deinit) {
1123			spin_unlock(&kgdb_registration_lock);
1124
1125			pr_err("KGDB I/O driver %s can't replace %s.\n",
1126				new_dbg_io_ops->name, old_dbg_io_ops->name);
1127			return -EBUSY;
1128		}
1129		pr_info("Replacing I/O driver %s with %s\n",
1130			old_dbg_io_ops->name, new_dbg_io_ops->name);
1131	}
1132
1133	if (new_dbg_io_ops->init) {
1134		err = new_dbg_io_ops->init();
1135		if (err) {
1136			spin_unlock(&kgdb_registration_lock);
1137			return err;
1138		}
1139	}
1140
1141	dbg_io_ops = new_dbg_io_ops;
1142
1143	spin_unlock(&kgdb_registration_lock);
1144
1145	if (old_dbg_io_ops) {
1146		old_dbg_io_ops->deinit();
1147		return 0;
1148	}
1149
1150	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1151
1152	/* Arm KGDB now. */
1153	kgdb_register_callbacks();
1154
1155	if (kgdb_break_asap &&
1156	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1157		kgdb_initial_breakpoint();
1158
1159	return 0;
1160}
1161EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1162
1163/**
1164 *	kgdb_unregister_io_module - unregister KGDB IO module
1165 *	@old_dbg_io_ops: the io ops vector
1166 *
1167 *	Unregister it with the KGDB core.
1168 */
1169void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1170{
1171	BUG_ON(kgdb_connected);
1172
1173	/*
1174	 * KGDB is no longer able to communicate out, so
1175	 * unregister our callbacks and reset state.
1176	 */
1177	kgdb_unregister_callbacks();
1178
1179	spin_lock(&kgdb_registration_lock);
1180
1181	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1182	dbg_io_ops = NULL;
1183
1184	spin_unlock(&kgdb_registration_lock);
1185
1186	if (old_dbg_io_ops->deinit)
1187		old_dbg_io_ops->deinit();
1188
1189	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1190		old_dbg_io_ops->name);
1191}
1192EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1193
1194int dbg_io_get_char(void)
1195{
1196	int ret = dbg_io_ops->read_char();
1197	if (ret == NO_POLL_CHAR)
1198		return -1;
1199	if (!dbg_kdb_mode)
1200		return ret;
1201	if (ret == 127)
1202		return 8;
1203	return ret;
1204}
1205
1206/**
1207 * kgdb_breakpoint - generate breakpoint exception
1208 *
1209 * This function will generate a breakpoint exception.  It is used at the
1210 * beginning of a program to sync up with a debugger and can be used
1211 * otherwise as a quick means to stop program execution and "break" into
1212 * the debugger.
1213 */
1214noinline void kgdb_breakpoint(void)
1215{
1216	atomic_inc(&kgdb_setting_breakpoint);
1217	wmb(); /* Sync point before breakpoint */
1218	arch_kgdb_breakpoint();
1219	wmb(); /* Sync point after breakpoint */
1220	atomic_dec(&kgdb_setting_breakpoint);
1221}
1222EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1223
1224static int __init opt_kgdb_wait(char *str)
1225{
1226	kgdb_break_asap = 1;
1227
1228	kdb_init(KDB_INIT_EARLY);
1229	if (kgdb_io_module_registered &&
1230	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1231		kgdb_initial_breakpoint();
1232
1233	return 0;
1234}
1235
1236early_param("kgdbwait", opt_kgdb_wait);
v5.9
 
   1/*
   2 * Kernel Debug Core
   3 *
   4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
   5 *
   6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
   7 * Copyright (C) 2002-2004 Timesys Corporation
   8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
   9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
  10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
  11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
  12 * Copyright (C) 2005-2009 Wind River Systems, Inc.
  13 * Copyright (C) 2007 MontaVista Software, Inc.
  14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  15 *
  16 * Contributors at various stages not listed above:
  17 *  Jason Wessel ( jason.wessel@windriver.com )
  18 *  George Anzinger <george@mvista.com>
  19 *  Anurekh Saxena (anurekh.saxena@timesys.com)
  20 *  Lake Stevens Instrument Division (Glenn Engel)
  21 *  Jim Kingdon, Cygnus Support.
  22 *
  23 * Original KGDB stub: David Grothe <dave@gcom.com>,
  24 * Tigran Aivazian <tigran@sco.com>
  25 *
  26 * This file is licensed under the terms of the GNU General Public License
  27 * version 2. This program is licensed "as is" without any warranty of any
  28 * kind, whether express or implied.
  29 */
  30
  31#define pr_fmt(fmt) "KGDB: " fmt
  32
  33#include <linux/pid_namespace.h>
  34#include <linux/clocksource.h>
  35#include <linux/serial_core.h>
  36#include <linux/interrupt.h>
  37#include <linux/spinlock.h>
  38#include <linux/console.h>
  39#include <linux/threads.h>
  40#include <linux/uaccess.h>
  41#include <linux/kernel.h>
  42#include <linux/module.h>
  43#include <linux/ptrace.h>
  44#include <linux/string.h>
  45#include <linux/delay.h>
  46#include <linux/sched.h>
  47#include <linux/sysrq.h>
  48#include <linux/reboot.h>
  49#include <linux/init.h>
  50#include <linux/kgdb.h>
  51#include <linux/kdb.h>
  52#include <linux/nmi.h>
  53#include <linux/pid.h>
  54#include <linux/smp.h>
  55#include <linux/mm.h>
  56#include <linux/vmacache.h>
  57#include <linux/rcupdate.h>
  58#include <linux/irq.h>
 
  59
  60#include <asm/cacheflush.h>
  61#include <asm/byteorder.h>
  62#include <linux/atomic.h>
  63
  64#include "debug_core.h"
  65
  66static int kgdb_break_asap;
  67
  68struct debuggerinfo_struct kgdb_info[NR_CPUS];
  69
  70/* kgdb_connected - Is a host GDB connected to us? */
  71int				kgdb_connected;
  72EXPORT_SYMBOL_GPL(kgdb_connected);
  73
  74/* All the KGDB handlers are installed */
  75int			kgdb_io_module_registered;
  76
  77/* Guard for recursive entry */
  78static int			exception_level;
  79
  80struct kgdb_io		*dbg_io_ops;
  81static DEFINE_SPINLOCK(kgdb_registration_lock);
  82
  83/* Action for the reboot notifiter, a global allow kdb to change it */
  84static int kgdbreboot;
  85/* kgdb console driver is loaded */
  86static int kgdb_con_registered;
  87/* determine if kgdb console output should be used */
  88static int kgdb_use_con;
  89/* Flag for alternate operations for early debugging */
  90bool dbg_is_early = true;
  91/* Next cpu to become the master debug core */
  92int dbg_switch_cpu;
  93
  94/* Use kdb or gdbserver mode */
  95int dbg_kdb_mode = 1;
  96
  97static int __init opt_kgdb_con(char *str)
  98{
  99	kgdb_use_con = 1;
 100	return 0;
 101}
 102
 103early_param("kgdbcon", opt_kgdb_con);
 104
 105module_param(kgdb_use_con, int, 0644);
 106module_param(kgdbreboot, int, 0644);
 107
 108/*
 109 * Holds information about breakpoints in a kernel. These breakpoints are
 110 * added and removed by gdb.
 111 */
 112static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
 113	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
 114};
 115
 116/*
 117 * The CPU# of the active CPU, or -1 if none:
 118 */
 119atomic_t			kgdb_active = ATOMIC_INIT(-1);
 120EXPORT_SYMBOL_GPL(kgdb_active);
 121static DEFINE_RAW_SPINLOCK(dbg_master_lock);
 122static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
 123
 124/*
 125 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
 126 * bootup code (which might not have percpu set up yet):
 127 */
 128static atomic_t			masters_in_kgdb;
 129static atomic_t			slaves_in_kgdb;
 130static atomic_t			kgdb_break_tasklet_var;
 131atomic_t			kgdb_setting_breakpoint;
 132
 133struct task_struct		*kgdb_usethread;
 134struct task_struct		*kgdb_contthread;
 135
 136int				kgdb_single_step;
 137static pid_t			kgdb_sstep_pid;
 138
 139/* to keep track of the CPU which is doing the single stepping*/
 140atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
 141
 142/*
 143 * If you are debugging a problem where roundup (the collection of
 144 * all other CPUs) is a problem [this should be extremely rare],
 145 * then use the nokgdbroundup option to avoid roundup. In that case
 146 * the other CPUs might interfere with your debugging context, so
 147 * use this with care:
 148 */
 149static int kgdb_do_roundup = 1;
 150
 151static int __init opt_nokgdbroundup(char *str)
 152{
 153	kgdb_do_roundup = 0;
 154
 155	return 0;
 156}
 157
 158early_param("nokgdbroundup", opt_nokgdbroundup);
 159
 160/*
 161 * Finally, some KGDB code :-)
 162 */
 163
 164/*
 165 * Weak aliases for breakpoint management,
 166 * can be overriden by architectures when needed:
 167 */
 168int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
 169{
 170	int err;
 171
 172	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
 173				BREAK_INSTR_SIZE);
 174	if (err)
 175		return err;
 176	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
 177				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
 178	return err;
 179}
 
 180
 181int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
 182{
 183	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
 184				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
 185}
 
 186
 187int __weak kgdb_validate_break_address(unsigned long addr)
 188{
 189	struct kgdb_bkpt tmp;
 190	int err;
 
 
 
 
 191	/* Validate setting the breakpoint and then removing it.  If the
 192	 * remove fails, the kernel needs to emit a bad message because we
 193	 * are deep trouble not being able to put things back the way we
 194	 * found them.
 195	 */
 196	tmp.bpt_addr = addr;
 197	err = kgdb_arch_set_breakpoint(&tmp);
 198	if (err)
 199		return err;
 200	err = kgdb_arch_remove_breakpoint(&tmp);
 201	if (err)
 202		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
 203		       addr);
 204	return err;
 205}
 206
 207unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
 208{
 209	return instruction_pointer(regs);
 210}
 
 211
 212int __weak kgdb_arch_init(void)
 213{
 214	return 0;
 215}
 216
 217int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
 218{
 219	return 0;
 220}
 
 221
 222#ifdef CONFIG_SMP
 223
 224/*
 225 * Default (weak) implementation for kgdb_roundup_cpus
 226 */
 227
 228static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
 229
 230void __weak kgdb_call_nmi_hook(void *ignored)
 231{
 232	/*
 233	 * NOTE: get_irq_regs() is supposed to get the registers from
 234	 * before the IPI interrupt happened and so is supposed to
 235	 * show where the processor was.  In some situations it's
 236	 * possible we might be called without an IPI, so it might be
 237	 * safer to figure out how to make kgdb_breakpoint() work
 238	 * properly here.
 239	 */
 240	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
 241}
 
 
 
 
 242
 243void __weak kgdb_roundup_cpus(void)
 244{
 245	call_single_data_t *csd;
 246	int this_cpu = raw_smp_processor_id();
 247	int cpu;
 248	int ret;
 249
 250	for_each_online_cpu(cpu) {
 251		/* No need to roundup ourselves */
 252		if (cpu == this_cpu)
 253			continue;
 254
 255		csd = &per_cpu(kgdb_roundup_csd, cpu);
 256
 257		/*
 258		 * If it didn't round up last time, don't try again
 259		 * since smp_call_function_single_async() will block.
 260		 *
 261		 * If rounding_up is false then we know that the
 262		 * previous call must have at least started and that
 263		 * means smp_call_function_single_async() won't block.
 264		 */
 265		if (kgdb_info[cpu].rounding_up)
 266			continue;
 267		kgdb_info[cpu].rounding_up = true;
 268
 269		csd->func = kgdb_call_nmi_hook;
 270		ret = smp_call_function_single_async(cpu, csd);
 271		if (ret)
 272			kgdb_info[cpu].rounding_up = false;
 273	}
 274}
 
 275
 276#endif
 277
 278/*
 279 * Some architectures need cache flushes when we set/clear a
 280 * breakpoint:
 281 */
 282static void kgdb_flush_swbreak_addr(unsigned long addr)
 283{
 284	if (!CACHE_FLUSH_IS_SAFE)
 285		return;
 286
 287	if (current->mm) {
 288		int i;
 289
 290		for (i = 0; i < VMACACHE_SIZE; i++) {
 291			if (!current->vmacache.vmas[i])
 292				continue;
 293			flush_cache_range(current->vmacache.vmas[i],
 294					  addr, addr + BREAK_INSTR_SIZE);
 295		}
 296	}
 297
 298	/* Force flush instruction cache if it was outside the mm */
 299	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
 300}
 
 301
 302/*
 303 * SW breakpoint management:
 304 */
 305int dbg_activate_sw_breakpoints(void)
 306{
 307	int error;
 308	int ret = 0;
 309	int i;
 310
 311	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 312		if (kgdb_break[i].state != BP_SET)
 313			continue;
 314
 315		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
 316		if (error) {
 317			ret = error;
 318			pr_info("BP install failed: %lx\n",
 319				kgdb_break[i].bpt_addr);
 320			continue;
 321		}
 322
 323		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 324		kgdb_break[i].state = BP_ACTIVE;
 325	}
 326	return ret;
 327}
 
 328
 329int dbg_set_sw_break(unsigned long addr)
 330{
 331	int err = kgdb_validate_break_address(addr);
 332	int breakno = -1;
 333	int i;
 334
 335	if (err)
 336		return err;
 337
 338	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 339		if ((kgdb_break[i].state == BP_SET) &&
 340					(kgdb_break[i].bpt_addr == addr))
 341			return -EEXIST;
 342	}
 343	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 344		if (kgdb_break[i].state == BP_REMOVED &&
 345					kgdb_break[i].bpt_addr == addr) {
 346			breakno = i;
 347			break;
 348		}
 349	}
 350
 351	if (breakno == -1) {
 352		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 353			if (kgdb_break[i].state == BP_UNDEFINED) {
 354				breakno = i;
 355				break;
 356			}
 357		}
 358	}
 359
 360	if (breakno == -1)
 361		return -E2BIG;
 362
 363	kgdb_break[breakno].state = BP_SET;
 364	kgdb_break[breakno].type = BP_BREAKPOINT;
 365	kgdb_break[breakno].bpt_addr = addr;
 366
 367	return 0;
 368}
 369
 370int dbg_deactivate_sw_breakpoints(void)
 371{
 372	int error;
 373	int ret = 0;
 374	int i;
 375
 376	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 377		if (kgdb_break[i].state != BP_ACTIVE)
 378			continue;
 379		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 380		if (error) {
 381			pr_info("BP remove failed: %lx\n",
 382				kgdb_break[i].bpt_addr);
 383			ret = error;
 384		}
 385
 386		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
 387		kgdb_break[i].state = BP_SET;
 388	}
 389	return ret;
 390}
 
 391
 392int dbg_remove_sw_break(unsigned long addr)
 393{
 394	int i;
 395
 396	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 397		if ((kgdb_break[i].state == BP_SET) &&
 398				(kgdb_break[i].bpt_addr == addr)) {
 399			kgdb_break[i].state = BP_REMOVED;
 400			return 0;
 401		}
 402	}
 403	return -ENOENT;
 404}
 405
 406int kgdb_isremovedbreak(unsigned long addr)
 407{
 408	int i;
 409
 410	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 411		if ((kgdb_break[i].state == BP_REMOVED) &&
 412					(kgdb_break[i].bpt_addr == addr))
 413			return 1;
 414	}
 415	return 0;
 416}
 417
 418int kgdb_has_hit_break(unsigned long addr)
 419{
 420	int i;
 421
 422	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 423		if (kgdb_break[i].state == BP_ACTIVE &&
 424		    kgdb_break[i].bpt_addr == addr)
 425			return 1;
 426	}
 427	return 0;
 428}
 429
 430int dbg_remove_all_break(void)
 431{
 432	int error;
 433	int i;
 434
 435	/* Clear memory breakpoints. */
 436	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
 437		if (kgdb_break[i].state != BP_ACTIVE)
 438			goto setundefined;
 439		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
 440		if (error)
 441			pr_err("breakpoint remove failed: %lx\n",
 442			       kgdb_break[i].bpt_addr);
 443setundefined:
 444		kgdb_break[i].state = BP_UNDEFINED;
 445	}
 446
 447	/* Clear hardware breakpoints. */
 448	if (arch_kgdb_ops.remove_all_hw_break)
 449		arch_kgdb_ops.remove_all_hw_break();
 450
 451	return 0;
 452}
 453
 
 
 
 
 
 
 
 
 
 
 
 454#ifdef CONFIG_KGDB_KDB
 455void kdb_dump_stack_on_cpu(int cpu)
 456{
 457	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
 458		dump_stack();
 459		return;
 460	}
 461
 462	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
 463		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
 464			   cpu);
 465		return;
 466	}
 467
 468	/*
 469	 * In general, architectures don't support dumping the stack of a
 470	 * "running" process that's not the current one.  From the point of
 471	 * view of the Linux, kernel processes that are looping in the kgdb
 472	 * slave loop are still "running".  There's also no API (that actually
 473	 * works across all architectures) that can do a stack crawl based
 474	 * on registers passed as a parameter.
 475	 *
 476	 * Solve this conundrum by asking slave CPUs to do the backtrace
 477	 * themselves.
 478	 */
 479	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
 480	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
 481		cpu_relax();
 482}
 483#endif
 484
 485/*
 486 * Return true if there is a valid kgdb I/O module.  Also if no
 487 * debugger is attached a message can be printed to the console about
 488 * waiting for the debugger to attach.
 489 *
 490 * The print_wait argument is only to be true when called from inside
 491 * the core kgdb_handle_exception, because it will wait for the
 492 * debugger to attach.
 493 */
 494static int kgdb_io_ready(int print_wait)
 495{
 496	if (!dbg_io_ops)
 497		return 0;
 498	if (kgdb_connected)
 499		return 1;
 500	if (atomic_read(&kgdb_setting_breakpoint))
 501		return 1;
 502	if (print_wait) {
 503#ifdef CONFIG_KGDB_KDB
 504		if (!dbg_kdb_mode)
 505			pr_crit("waiting... or $3#33 for KDB\n");
 506#else
 507		pr_crit("Waiting for remote debugger\n");
 508#endif
 509	}
 510	return 1;
 511}
 
 512
 513static int kgdb_reenter_check(struct kgdb_state *ks)
 514{
 515	unsigned long addr;
 516
 517	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
 518		return 0;
 519
 520	/* Panic on recursive debugger calls: */
 521	exception_level++;
 522	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
 523	dbg_deactivate_sw_breakpoints();
 524
 525	/*
 526	 * If the break point removed ok at the place exception
 527	 * occurred, try to recover and print a warning to the end
 528	 * user because the user planted a breakpoint in a place that
 529	 * KGDB needs in order to function.
 530	 */
 531	if (dbg_remove_sw_break(addr) == 0) {
 532		exception_level = 0;
 533		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 534		dbg_activate_sw_breakpoints();
 535		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
 536		WARN_ON_ONCE(1);
 537
 538		return 1;
 539	}
 540	dbg_remove_all_break();
 541	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
 542
 543	if (exception_level > 1) {
 544		dump_stack();
 545		kgdb_io_module_registered = false;
 546		panic("Recursive entry to debugger");
 547	}
 548
 549	pr_crit("re-enter exception: ALL breakpoints killed\n");
 550#ifdef CONFIG_KGDB_KDB
 551	/* Allow kdb to debug itself one level */
 552	return 0;
 553#endif
 554	dump_stack();
 555	panic("Recursive entry to debugger");
 556
 557	return 1;
 558}
 
 559
 560static void dbg_touch_watchdogs(void)
 561{
 562	touch_softlockup_watchdog_sync();
 563	clocksource_touch_watchdog();
 564	rcu_cpu_stall_reset();
 565}
 
 566
 567static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
 568		int exception_state)
 569{
 570	unsigned long flags;
 571	int sstep_tries = 100;
 572	int error;
 573	int cpu;
 574	int trace_on = 0;
 575	int online_cpus = num_online_cpus();
 576	u64 time_left;
 577
 578	kgdb_info[ks->cpu].enter_kgdb++;
 579	kgdb_info[ks->cpu].exception_state |= exception_state;
 580
 581	if (exception_state == DCPU_WANT_MASTER)
 582		atomic_inc(&masters_in_kgdb);
 583	else
 584		atomic_inc(&slaves_in_kgdb);
 585
 586	if (arch_kgdb_ops.disable_hw_break)
 587		arch_kgdb_ops.disable_hw_break(regs);
 588
 589acquirelock:
 590	rcu_read_lock();
 591	/*
 592	 * Interrupts will be restored by the 'trap return' code, except when
 593	 * single stepping.
 594	 */
 595	local_irq_save(flags);
 596
 597	cpu = ks->cpu;
 598	kgdb_info[cpu].debuggerinfo = regs;
 599	kgdb_info[cpu].task = current;
 600	kgdb_info[cpu].ret_state = 0;
 601	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
 602
 603	/* Make sure the above info reaches the primary CPU */
 604	smp_mb();
 605
 606	if (exception_level == 1) {
 607		if (raw_spin_trylock(&dbg_master_lock))
 608			atomic_xchg(&kgdb_active, cpu);
 609		goto cpu_master_loop;
 610	}
 611
 612	/*
 613	 * CPU will loop if it is a slave or request to become a kgdb
 614	 * master cpu and acquire the kgdb_active lock:
 615	 */
 616	while (1) {
 617cpu_loop:
 618		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
 619			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
 620			goto cpu_master_loop;
 621		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
 622			if (raw_spin_trylock(&dbg_master_lock)) {
 623				atomic_xchg(&kgdb_active, cpu);
 624				break;
 625			}
 626		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
 627			dump_stack();
 628			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
 629		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
 630			if (!raw_spin_is_locked(&dbg_slave_lock))
 631				goto return_normal;
 632		} else {
 633return_normal:
 634			/* Return to normal operation by executing any
 635			 * hw breakpoint fixup.
 636			 */
 637			if (arch_kgdb_ops.correct_hw_break)
 638				arch_kgdb_ops.correct_hw_break();
 639			if (trace_on)
 640				tracing_on();
 641			kgdb_info[cpu].debuggerinfo = NULL;
 642			kgdb_info[cpu].task = NULL;
 643			kgdb_info[cpu].exception_state &=
 644				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 645			kgdb_info[cpu].enter_kgdb--;
 646			smp_mb__before_atomic();
 647			atomic_dec(&slaves_in_kgdb);
 648			dbg_touch_watchdogs();
 649			local_irq_restore(flags);
 650			rcu_read_unlock();
 651			return 0;
 652		}
 653		cpu_relax();
 654	}
 655
 656	/*
 657	 * For single stepping, try to only enter on the processor
 658	 * that was single stepping.  To guard against a deadlock, the
 659	 * kernel will only try for the value of sstep_tries before
 660	 * giving up and continuing on.
 661	 */
 662	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
 663	    (kgdb_info[cpu].task &&
 664	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
 665		atomic_set(&kgdb_active, -1);
 666		raw_spin_unlock(&dbg_master_lock);
 667		dbg_touch_watchdogs();
 668		local_irq_restore(flags);
 669		rcu_read_unlock();
 670
 671		goto acquirelock;
 672	}
 673
 674	if (!kgdb_io_ready(1)) {
 675		kgdb_info[cpu].ret_state = 1;
 676		goto kgdb_restore; /* No I/O connection, resume the system */
 677	}
 678
 679	/*
 680	 * Don't enter if we have hit a removed breakpoint.
 681	 */
 682	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
 683		goto kgdb_restore;
 684
 685	atomic_inc(&ignore_console_lock_warning);
 686
 687	/* Call the I/O driver's pre_exception routine */
 688	if (dbg_io_ops->pre_exception)
 689		dbg_io_ops->pre_exception();
 690
 691	/*
 692	 * Get the passive CPU lock which will hold all the non-primary
 693	 * CPU in a spin state while the debugger is active
 694	 */
 695	if (!kgdb_single_step)
 696		raw_spin_lock(&dbg_slave_lock);
 697
 698#ifdef CONFIG_SMP
 699	/* If send_ready set, slaves are already waiting */
 700	if (ks->send_ready)
 701		atomic_set(ks->send_ready, 1);
 702
 703	/* Signal the other CPUs to enter kgdb_wait() */
 704	else if ((!kgdb_single_step) && kgdb_do_roundup)
 705		kgdb_roundup_cpus();
 706#endif
 707
 708	/*
 709	 * Wait for the other CPUs to be notified and be waiting for us:
 710	 */
 711	time_left = MSEC_PER_SEC;
 712	while (kgdb_do_roundup && --time_left &&
 713	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
 714		   online_cpus)
 715		udelay(1000);
 716	if (!time_left)
 717		pr_crit("Timed out waiting for secondary CPUs.\n");
 718
 719	/*
 720	 * At this point the primary processor is completely
 721	 * in the debugger and all secondary CPUs are quiescent
 722	 */
 723	dbg_deactivate_sw_breakpoints();
 724	kgdb_single_step = 0;
 725	kgdb_contthread = current;
 726	exception_level = 0;
 727	trace_on = tracing_is_on();
 728	if (trace_on)
 729		tracing_off();
 730
 731	while (1) {
 732cpu_master_loop:
 733		if (dbg_kdb_mode) {
 734			kgdb_connected = 1;
 735			error = kdb_stub(ks);
 736			if (error == -1)
 737				continue;
 738			kgdb_connected = 0;
 739		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740			error = gdb_serial_stub(ks);
 741		}
 742
 743		if (error == DBG_PASS_EVENT) {
 744			dbg_kdb_mode = !dbg_kdb_mode;
 745		} else if (error == DBG_SWITCH_CPU_EVENT) {
 746			kgdb_info[dbg_switch_cpu].exception_state |=
 747				DCPU_NEXT_MASTER;
 748			goto cpu_loop;
 749		} else {
 750			kgdb_info[cpu].ret_state = error;
 751			break;
 752		}
 753	}
 754
 
 
 755	/* Call the I/O driver's post_exception routine */
 756	if (dbg_io_ops->post_exception)
 757		dbg_io_ops->post_exception();
 758
 759	atomic_dec(&ignore_console_lock_warning);
 760
 761	if (!kgdb_single_step) {
 762		raw_spin_unlock(&dbg_slave_lock);
 763		/* Wait till all the CPUs have quit from the debugger. */
 764		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
 765			cpu_relax();
 766	}
 767
 768kgdb_restore:
 769	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
 770		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
 771		if (kgdb_info[sstep_cpu].task)
 772			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
 773		else
 774			kgdb_sstep_pid = 0;
 775	}
 776	if (arch_kgdb_ops.correct_hw_break)
 777		arch_kgdb_ops.correct_hw_break();
 778	if (trace_on)
 779		tracing_on();
 780
 781	kgdb_info[cpu].debuggerinfo = NULL;
 782	kgdb_info[cpu].task = NULL;
 783	kgdb_info[cpu].exception_state &=
 784		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
 785	kgdb_info[cpu].enter_kgdb--;
 786	smp_mb__before_atomic();
 787	atomic_dec(&masters_in_kgdb);
 788	/* Free kgdb_active */
 789	atomic_set(&kgdb_active, -1);
 790	raw_spin_unlock(&dbg_master_lock);
 791	dbg_touch_watchdogs();
 792	local_irq_restore(flags);
 793	rcu_read_unlock();
 794
 795	return kgdb_info[cpu].ret_state;
 796}
 
 797
 798/*
 799 * kgdb_handle_exception() - main entry point from a kernel exception
 800 *
 801 * Locking hierarchy:
 802 *	interface locks, if any (begin_session)
 803 *	kgdb lock (kgdb_active)
 804 */
 805int
 806kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
 807{
 808	struct kgdb_state kgdb_var;
 809	struct kgdb_state *ks = &kgdb_var;
 810	int ret = 0;
 811
 812	if (arch_kgdb_ops.enable_nmi)
 813		arch_kgdb_ops.enable_nmi(0);
 814	/*
 815	 * Avoid entering the debugger if we were triggered due to an oops
 816	 * but panic_timeout indicates the system should automatically
 817	 * reboot on panic. We don't want to get stuck waiting for input
 818	 * on such systems, especially if its "just" an oops.
 819	 */
 820	if (signo != SIGTRAP && panic_timeout)
 821		return 1;
 822
 823	memset(ks, 0, sizeof(struct kgdb_state));
 824	ks->cpu			= raw_smp_processor_id();
 825	ks->ex_vector		= evector;
 826	ks->signo		= signo;
 827	ks->err_code		= ecode;
 828	ks->linux_regs		= regs;
 829
 830	if (kgdb_reenter_check(ks))
 831		goto out; /* Ouch, double exception ! */
 832	if (kgdb_info[ks->cpu].enter_kgdb != 0)
 833		goto out;
 834
 835	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 836out:
 837	if (arch_kgdb_ops.enable_nmi)
 838		arch_kgdb_ops.enable_nmi(1);
 839	return ret;
 840}
 
 841
 842/*
 843 * GDB places a breakpoint at this function to know dynamically loaded objects.
 844 */
 845static int module_event(struct notifier_block *self, unsigned long val,
 846	void *data)
 847{
 848	return 0;
 849}
 850
 851static struct notifier_block dbg_module_load_nb = {
 852	.notifier_call	= module_event,
 853};
 854
 855int kgdb_nmicallback(int cpu, void *regs)
 856{
 857#ifdef CONFIG_SMP
 858	struct kgdb_state kgdb_var;
 859	struct kgdb_state *ks = &kgdb_var;
 860
 861	kgdb_info[cpu].rounding_up = false;
 862
 863	memset(ks, 0, sizeof(struct kgdb_state));
 864	ks->cpu			= cpu;
 865	ks->linux_regs		= regs;
 866
 867	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
 868			raw_spin_is_locked(&dbg_master_lock)) {
 869		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
 870		return 0;
 871	}
 872#endif
 873	return 1;
 874}
 
 875
 876int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
 877							atomic_t *send_ready)
 878{
 879#ifdef CONFIG_SMP
 880	if (!kgdb_io_ready(0) || !send_ready)
 881		return 1;
 882
 883	if (kgdb_info[cpu].enter_kgdb == 0) {
 884		struct kgdb_state kgdb_var;
 885		struct kgdb_state *ks = &kgdb_var;
 886
 887		memset(ks, 0, sizeof(struct kgdb_state));
 888		ks->cpu			= cpu;
 889		ks->ex_vector		= trapnr;
 890		ks->signo		= SIGTRAP;
 891		ks->err_code		= err_code;
 892		ks->linux_regs		= regs;
 893		ks->send_ready		= send_ready;
 894		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
 895		return 0;
 896	}
 897#endif
 898	return 1;
 899}
 
 900
 901static void kgdb_console_write(struct console *co, const char *s,
 902   unsigned count)
 903{
 904	unsigned long flags;
 905
 906	/* If we're debugging, or KGDB has not connected, don't try
 907	 * and print. */
 908	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
 909		return;
 910
 911	local_irq_save(flags);
 912	gdbstub_msg_write(s, count);
 913	local_irq_restore(flags);
 914}
 915
 916static struct console kgdbcons = {
 917	.name		= "kgdb",
 918	.write		= kgdb_console_write,
 919	.flags		= CON_PRINTBUFFER | CON_ENABLED,
 920	.index		= -1,
 921};
 922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923#ifdef CONFIG_MAGIC_SYSRQ
 924static void sysrq_handle_dbg(int key)
 925{
 926	if (!dbg_io_ops) {
 927		pr_crit("ERROR: No KGDB I/O module available\n");
 928		return;
 929	}
 930	if (!kgdb_connected) {
 931#ifdef CONFIG_KGDB_KDB
 932		if (!dbg_kdb_mode)
 933			pr_crit("KGDB or $3#33 for KDB\n");
 934#else
 935		pr_crit("Entering KGDB\n");
 936#endif
 937	}
 938
 939	kgdb_breakpoint();
 940}
 941
 942static const struct sysrq_key_op sysrq_dbg_op = {
 943	.handler	= sysrq_handle_dbg,
 944	.help_msg	= "debug(g)",
 945	.action_msg	= "DEBUG",
 946};
 947#endif
 948
 949void kgdb_panic(const char *msg)
 950{
 951	if (!kgdb_io_module_registered)
 952		return;
 953
 954	/*
 955	 * We don't want to get stuck waiting for input from user if
 956	 * "panic_timeout" indicates the system should automatically
 957	 * reboot on panic.
 958	 */
 959	if (panic_timeout)
 960		return;
 961
 962	if (dbg_kdb_mode)
 963		kdb_printf("PANIC: %s\n", msg);
 964
 965	kgdb_breakpoint();
 966}
 967
 968static void kgdb_initial_breakpoint(void)
 969{
 970	kgdb_break_asap = 0;
 971
 972	pr_crit("Waiting for connection from remote gdb...\n");
 973	kgdb_breakpoint();
 974}
 975
 976void __weak kgdb_arch_late(void)
 977{
 978}
 979
 980void __init dbg_late_init(void)
 981{
 982	dbg_is_early = false;
 983	if (kgdb_io_module_registered)
 984		kgdb_arch_late();
 985	kdb_init(KDB_INIT_FULL);
 986
 987	if (kgdb_io_module_registered && kgdb_break_asap)
 988		kgdb_initial_breakpoint();
 989}
 990
 991static int
 992dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
 993{
 994	/*
 995	 * Take the following action on reboot notify depending on value:
 996	 *    1 == Enter debugger
 997	 *    0 == [the default] detatch debug client
 998	 *   -1 == Do nothing... and use this until the board resets
 999	 */
1000	switch (kgdbreboot) {
1001	case 1:
1002		kgdb_breakpoint();
 
1003	case -1:
1004		goto done;
1005	}
1006	if (!dbg_kdb_mode)
1007		gdbstub_exit(code);
1008done:
1009	return NOTIFY_DONE;
1010}
1011
1012static struct notifier_block dbg_reboot_notifier = {
1013	.notifier_call		= dbg_notify_reboot,
1014	.next			= NULL,
1015	.priority		= INT_MAX,
1016};
1017
1018static void kgdb_register_callbacks(void)
1019{
1020	if (!kgdb_io_module_registered) {
1021		kgdb_io_module_registered = 1;
1022		kgdb_arch_init();
1023		if (!dbg_is_early)
1024			kgdb_arch_late();
1025		register_module_notifier(&dbg_module_load_nb);
1026		register_reboot_notifier(&dbg_reboot_notifier);
1027#ifdef CONFIG_MAGIC_SYSRQ
1028		register_sysrq_key('g', &sysrq_dbg_op);
1029#endif
1030		if (kgdb_use_con && !kgdb_con_registered) {
1031			register_console(&kgdbcons);
1032			kgdb_con_registered = 1;
1033		}
1034	}
1035}
1036
1037static void kgdb_unregister_callbacks(void)
1038{
1039	/*
1040	 * When this routine is called KGDB should unregister from
1041	 * handlers and clean up, making sure it is not handling any
1042	 * break exceptions at the time.
1043	 */
1044	if (kgdb_io_module_registered) {
1045		kgdb_io_module_registered = 0;
1046		unregister_reboot_notifier(&dbg_reboot_notifier);
1047		unregister_module_notifier(&dbg_module_load_nb);
1048		kgdb_arch_exit();
1049#ifdef CONFIG_MAGIC_SYSRQ
1050		unregister_sysrq_key('g', &sysrq_dbg_op);
1051#endif
1052		if (kgdb_con_registered) {
1053			unregister_console(&kgdbcons);
1054			kgdb_con_registered = 0;
1055		}
1056	}
1057}
1058
1059/*
1060 * There are times a tasklet needs to be used vs a compiled in
1061 * break point so as to cause an exception outside a kgdb I/O module,
1062 * such as is the case with kgdboe, where calling a breakpoint in the
1063 * I/O driver itself would be fatal.
1064 */
1065static void kgdb_tasklet_bpt(unsigned long ing)
1066{
1067	kgdb_breakpoint();
1068	atomic_set(&kgdb_break_tasklet_var, 0);
1069}
1070
1071static DECLARE_TASKLET_OLD(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt);
1072
1073void kgdb_schedule_breakpoint(void)
1074{
1075	if (atomic_read(&kgdb_break_tasklet_var) ||
1076		atomic_read(&kgdb_active) != -1 ||
1077		atomic_read(&kgdb_setting_breakpoint))
1078		return;
1079	atomic_inc(&kgdb_break_tasklet_var);
1080	tasklet_schedule(&kgdb_tasklet_breakpoint);
1081}
1082EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1083
1084/**
1085 *	kgdb_register_io_module - register KGDB IO module
1086 *	@new_dbg_io_ops: the io ops vector
1087 *
1088 *	Register it with the KGDB core.
1089 */
1090int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1091{
1092	struct kgdb_io *old_dbg_io_ops;
1093	int err;
1094
1095	spin_lock(&kgdb_registration_lock);
1096
1097	old_dbg_io_ops = dbg_io_ops;
1098	if (old_dbg_io_ops) {
1099		if (!old_dbg_io_ops->deinit) {
1100			spin_unlock(&kgdb_registration_lock);
1101
1102			pr_err("KGDB I/O driver %s can't replace %s.\n",
1103				new_dbg_io_ops->name, old_dbg_io_ops->name);
1104			return -EBUSY;
1105		}
1106		pr_info("Replacing I/O driver %s with %s\n",
1107			old_dbg_io_ops->name, new_dbg_io_ops->name);
1108	}
1109
1110	if (new_dbg_io_ops->init) {
1111		err = new_dbg_io_ops->init();
1112		if (err) {
1113			spin_unlock(&kgdb_registration_lock);
1114			return err;
1115		}
1116	}
1117
1118	dbg_io_ops = new_dbg_io_ops;
1119
1120	spin_unlock(&kgdb_registration_lock);
1121
1122	if (old_dbg_io_ops) {
1123		old_dbg_io_ops->deinit();
1124		return 0;
1125	}
1126
1127	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1128
1129	/* Arm KGDB now. */
1130	kgdb_register_callbacks();
1131
1132	if (kgdb_break_asap &&
1133	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1134		kgdb_initial_breakpoint();
1135
1136	return 0;
1137}
1138EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1139
1140/**
1141 *	kkgdb_unregister_io_module - unregister KGDB IO module
1142 *	@old_dbg_io_ops: the io ops vector
1143 *
1144 *	Unregister it with the KGDB core.
1145 */
1146void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1147{
1148	BUG_ON(kgdb_connected);
1149
1150	/*
1151	 * KGDB is no longer able to communicate out, so
1152	 * unregister our callbacks and reset state.
1153	 */
1154	kgdb_unregister_callbacks();
1155
1156	spin_lock(&kgdb_registration_lock);
1157
1158	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1159	dbg_io_ops = NULL;
1160
1161	spin_unlock(&kgdb_registration_lock);
1162
1163	if (old_dbg_io_ops->deinit)
1164		old_dbg_io_ops->deinit();
1165
1166	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1167		old_dbg_io_ops->name);
1168}
1169EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1170
1171int dbg_io_get_char(void)
1172{
1173	int ret = dbg_io_ops->read_char();
1174	if (ret == NO_POLL_CHAR)
1175		return -1;
1176	if (!dbg_kdb_mode)
1177		return ret;
1178	if (ret == 127)
1179		return 8;
1180	return ret;
1181}
1182
1183/**
1184 * kgdb_breakpoint - generate breakpoint exception
1185 *
1186 * This function will generate a breakpoint exception.  It is used at the
1187 * beginning of a program to sync up with a debugger and can be used
1188 * otherwise as a quick means to stop program execution and "break" into
1189 * the debugger.
1190 */
1191noinline void kgdb_breakpoint(void)
1192{
1193	atomic_inc(&kgdb_setting_breakpoint);
1194	wmb(); /* Sync point before breakpoint */
1195	arch_kgdb_breakpoint();
1196	wmb(); /* Sync point after breakpoint */
1197	atomic_dec(&kgdb_setting_breakpoint);
1198}
1199EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1200
1201static int __init opt_kgdb_wait(char *str)
1202{
1203	kgdb_break_asap = 1;
1204
1205	kdb_init(KDB_INIT_EARLY);
1206	if (kgdb_io_module_registered &&
1207	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1208		kgdb_initial_breakpoint();
1209
1210	return 0;
1211}
1212
1213early_param("kgdbwait", opt_kgdb_wait);