Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* Define this to get the SOCK_DBG debugging facility. */
80#define SOCK_DEBUGGING
81#ifdef SOCK_DEBUGGING
82#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84#else
85/* Validate arguments and do nothing */
86static inline __printf(2, 3)
87void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88{
89}
90#endif
91
92/* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106#ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108#endif
109} socket_lock_t;
110
111struct sock;
112struct proto;
113struct net;
114
115typedef __u32 __bitwise __portpair;
116typedef __u64 __bitwise __addrpair;
117
118/**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163struct sock_common {
164 union {
165 __addrpair skc_addrpair;
166 struct {
167 __be32 skc_daddr;
168 __be32 skc_rcv_saddr;
169 };
170 };
171 union {
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
174 };
175 /* skc_dport && skc_num must be grouped as well */
176 union {
177 __portpair skc_portpair;
178 struct {
179 __be16 skc_dport;
180 __u16 skc_num;
181 };
182 };
183
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
191 union {
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
194 };
195 struct proto *skc_prot;
196 possible_net_t skc_net;
197
198#if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201#endif
202
203 atomic64_t skc_cookie;
204
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
209 */
210 union {
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
214 };
215 /*
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
218 */
219 /* private: */
220 int skc_dontcopy_begin[0];
221 /* public: */
222 union {
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
225 };
226 unsigned short skc_tx_queue_mapping;
227#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
229#endif
230 union {
231 int skc_incoming_cpu;
232 u32 skc_rcv_wnd;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
234 };
235
236 refcount_t skc_refcnt;
237 /* private: */
238 int skc_dontcopy_end[0];
239 union {
240 u32 skc_rxhash;
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
243 };
244 /* public: */
245};
246
247struct bpf_local_storage;
248struct sk_filter;
249
250/**
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
322 * Sockets that can be used under memory reclaim should
323 * set this to false.
324 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
325 * for timestamping
326 * @sk_tskey: counter to disambiguate concurrent tstamp requests
327 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
328 * @sk_socket: Identd and reporting IO signals
329 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
330 * @sk_frag: cached page frag
331 * @sk_peek_off: current peek_offset value
332 * @sk_send_head: front of stuff to transmit
333 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
334 * @sk_security: used by security modules
335 * @sk_mark: generic packet mark
336 * @sk_cgrp_data: cgroup data for this cgroup
337 * @sk_memcg: this socket's memory cgroup association
338 * @sk_write_pending: a write to stream socket waits to start
339 * @sk_state_change: callback to indicate change in the state of the sock
340 * @sk_data_ready: callback to indicate there is data to be processed
341 * @sk_write_space: callback to indicate there is bf sending space available
342 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
343 * @sk_backlog_rcv: callback to process the backlog
344 * @sk_validate_xmit_skb: ptr to an optional validate function
345 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
346 * @sk_reuseport_cb: reuseport group container
347 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
348 * @sk_rcu: used during RCU grace period
349 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
350 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
351 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
352 * @sk_txtime_unused: unused txtime flags
353 * @ns_tracker: tracker for netns reference
354 * @sk_bind2_node: bind node in the bhash2 table
355 */
356struct sock {
357 /*
358 * Now struct inet_timewait_sock also uses sock_common, so please just
359 * don't add nothing before this first member (__sk_common) --acme
360 */
361 struct sock_common __sk_common;
362#define sk_node __sk_common.skc_node
363#define sk_nulls_node __sk_common.skc_nulls_node
364#define sk_refcnt __sk_common.skc_refcnt
365#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
366#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
367#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
368#endif
369
370#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
371#define sk_dontcopy_end __sk_common.skc_dontcopy_end
372#define sk_hash __sk_common.skc_hash
373#define sk_portpair __sk_common.skc_portpair
374#define sk_num __sk_common.skc_num
375#define sk_dport __sk_common.skc_dport
376#define sk_addrpair __sk_common.skc_addrpair
377#define sk_daddr __sk_common.skc_daddr
378#define sk_rcv_saddr __sk_common.skc_rcv_saddr
379#define sk_family __sk_common.skc_family
380#define sk_state __sk_common.skc_state
381#define sk_reuse __sk_common.skc_reuse
382#define sk_reuseport __sk_common.skc_reuseport
383#define sk_ipv6only __sk_common.skc_ipv6only
384#define sk_net_refcnt __sk_common.skc_net_refcnt
385#define sk_bound_dev_if __sk_common.skc_bound_dev_if
386#define sk_bind_node __sk_common.skc_bind_node
387#define sk_prot __sk_common.skc_prot
388#define sk_net __sk_common.skc_net
389#define sk_v6_daddr __sk_common.skc_v6_daddr
390#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
391#define sk_cookie __sk_common.skc_cookie
392#define sk_incoming_cpu __sk_common.skc_incoming_cpu
393#define sk_flags __sk_common.skc_flags
394#define sk_rxhash __sk_common.skc_rxhash
395
396 /* early demux fields */
397 struct dst_entry __rcu *sk_rx_dst;
398 int sk_rx_dst_ifindex;
399 u32 sk_rx_dst_cookie;
400
401 socket_lock_t sk_lock;
402 atomic_t sk_drops;
403 int sk_rcvlowat;
404 struct sk_buff_head sk_error_queue;
405 struct sk_buff_head sk_receive_queue;
406 /*
407 * The backlog queue is special, it is always used with
408 * the per-socket spinlock held and requires low latency
409 * access. Therefore we special case it's implementation.
410 * Note : rmem_alloc is in this structure to fill a hole
411 * on 64bit arches, not because its logically part of
412 * backlog.
413 */
414 struct {
415 atomic_t rmem_alloc;
416 int len;
417 struct sk_buff *head;
418 struct sk_buff *tail;
419 } sk_backlog;
420
421#define sk_rmem_alloc sk_backlog.rmem_alloc
422
423 int sk_forward_alloc;
424 u32 sk_reserved_mem;
425#ifdef CONFIG_NET_RX_BUSY_POLL
426 unsigned int sk_ll_usec;
427 /* ===== mostly read cache line ===== */
428 unsigned int sk_napi_id;
429#endif
430 int sk_rcvbuf;
431
432 struct sk_filter __rcu *sk_filter;
433 union {
434 struct socket_wq __rcu *sk_wq;
435 /* private: */
436 struct socket_wq *sk_wq_raw;
437 /* public: */
438 };
439#ifdef CONFIG_XFRM
440 struct xfrm_policy __rcu *sk_policy[2];
441#endif
442
443 struct dst_entry __rcu *sk_dst_cache;
444 atomic_t sk_omem_alloc;
445 int sk_sndbuf;
446
447 /* ===== cache line for TX ===== */
448 int sk_wmem_queued;
449 refcount_t sk_wmem_alloc;
450 unsigned long sk_tsq_flags;
451 union {
452 struct sk_buff *sk_send_head;
453 struct rb_root tcp_rtx_queue;
454 };
455 struct sk_buff_head sk_write_queue;
456 __s32 sk_peek_off;
457 int sk_write_pending;
458 __u32 sk_dst_pending_confirm;
459 u32 sk_pacing_status; /* see enum sk_pacing */
460 long sk_sndtimeo;
461 struct timer_list sk_timer;
462 __u32 sk_priority;
463 __u32 sk_mark;
464 unsigned long sk_pacing_rate; /* bytes per second */
465 unsigned long sk_max_pacing_rate;
466 struct page_frag sk_frag;
467 netdev_features_t sk_route_caps;
468 int sk_gso_type;
469 unsigned int sk_gso_max_size;
470 gfp_t sk_allocation;
471 __u32 sk_txhash;
472
473 /*
474 * Because of non atomicity rules, all
475 * changes are protected by socket lock.
476 */
477 u8 sk_gso_disabled : 1,
478 sk_kern_sock : 1,
479 sk_no_check_tx : 1,
480 sk_no_check_rx : 1,
481 sk_userlocks : 4;
482 u8 sk_pacing_shift;
483 u16 sk_type;
484 u16 sk_protocol;
485 u16 sk_gso_max_segs;
486 unsigned long sk_lingertime;
487 struct proto *sk_prot_creator;
488 rwlock_t sk_callback_lock;
489 int sk_err,
490 sk_err_soft;
491 u32 sk_ack_backlog;
492 u32 sk_max_ack_backlog;
493 kuid_t sk_uid;
494 u8 sk_txrehash;
495#ifdef CONFIG_NET_RX_BUSY_POLL
496 u8 sk_prefer_busy_poll;
497 u16 sk_busy_poll_budget;
498#endif
499 spinlock_t sk_peer_lock;
500 int sk_bind_phc;
501 struct pid *sk_peer_pid;
502 const struct cred *sk_peer_cred;
503
504 long sk_rcvtimeo;
505 ktime_t sk_stamp;
506#if BITS_PER_LONG==32
507 seqlock_t sk_stamp_seq;
508#endif
509 atomic_t sk_tskey;
510 atomic_t sk_zckey;
511 u32 sk_tsflags;
512 u8 sk_shutdown;
513
514 u8 sk_clockid;
515 u8 sk_txtime_deadline_mode : 1,
516 sk_txtime_report_errors : 1,
517 sk_txtime_unused : 6;
518 bool sk_use_task_frag;
519
520 struct socket *sk_socket;
521 void *sk_user_data;
522#ifdef CONFIG_SECURITY
523 void *sk_security;
524#endif
525 struct sock_cgroup_data sk_cgrp_data;
526 struct mem_cgroup *sk_memcg;
527 void (*sk_state_change)(struct sock *sk);
528 void (*sk_data_ready)(struct sock *sk);
529 void (*sk_write_space)(struct sock *sk);
530 void (*sk_error_report)(struct sock *sk);
531 int (*sk_backlog_rcv)(struct sock *sk,
532 struct sk_buff *skb);
533#ifdef CONFIG_SOCK_VALIDATE_XMIT
534 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
535 struct net_device *dev,
536 struct sk_buff *skb);
537#endif
538 void (*sk_destruct)(struct sock *sk);
539 struct sock_reuseport __rcu *sk_reuseport_cb;
540#ifdef CONFIG_BPF_SYSCALL
541 struct bpf_local_storage __rcu *sk_bpf_storage;
542#endif
543 struct rcu_head sk_rcu;
544 netns_tracker ns_tracker;
545 struct hlist_node sk_bind2_node;
546};
547
548enum sk_pacing {
549 SK_PACING_NONE = 0,
550 SK_PACING_NEEDED = 1,
551 SK_PACING_FQ = 2,
552};
553
554/* flag bits in sk_user_data
555 *
556 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
557 * not be suitable for copying when cloning the socket. For instance,
558 * it can point to a reference counted object. sk_user_data bottom
559 * bit is set if pointer must not be copied.
560 *
561 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
562 * managed/owned by a BPF reuseport array. This bit should be set
563 * when sk_user_data's sk is added to the bpf's reuseport_array.
564 *
565 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
566 * sk_user_data points to psock type. This bit should be set
567 * when sk_user_data is assigned to a psock object.
568 */
569#define SK_USER_DATA_NOCOPY 1UL
570#define SK_USER_DATA_BPF 2UL
571#define SK_USER_DATA_PSOCK 4UL
572#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
573 SK_USER_DATA_PSOCK)
574
575/**
576 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
577 * @sk: socket
578 */
579static inline bool sk_user_data_is_nocopy(const struct sock *sk)
580{
581 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
582}
583
584#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
585
586/**
587 * __locked_read_sk_user_data_with_flags - return the pointer
588 * only if argument flags all has been set in sk_user_data. Otherwise
589 * return NULL
590 *
591 * @sk: socket
592 * @flags: flag bits
593 *
594 * The caller must be holding sk->sk_callback_lock.
595 */
596static inline void *
597__locked_read_sk_user_data_with_flags(const struct sock *sk,
598 uintptr_t flags)
599{
600 uintptr_t sk_user_data =
601 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
602 lockdep_is_held(&sk->sk_callback_lock));
603
604 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
605
606 if ((sk_user_data & flags) == flags)
607 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
608 return NULL;
609}
610
611/**
612 * __rcu_dereference_sk_user_data_with_flags - return the pointer
613 * only if argument flags all has been set in sk_user_data. Otherwise
614 * return NULL
615 *
616 * @sk: socket
617 * @flags: flag bits
618 */
619static inline void *
620__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
621 uintptr_t flags)
622{
623 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
624
625 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
626
627 if ((sk_user_data & flags) == flags)
628 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
629 return NULL;
630}
631
632#define rcu_dereference_sk_user_data(sk) \
633 __rcu_dereference_sk_user_data_with_flags(sk, 0)
634#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
635({ \
636 uintptr_t __tmp1 = (uintptr_t)(ptr), \
637 __tmp2 = (uintptr_t)(flags); \
638 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
639 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
640 rcu_assign_pointer(__sk_user_data((sk)), \
641 __tmp1 | __tmp2); \
642})
643#define rcu_assign_sk_user_data(sk, ptr) \
644 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
645
646static inline
647struct net *sock_net(const struct sock *sk)
648{
649 return read_pnet(&sk->sk_net);
650}
651
652static inline
653void sock_net_set(struct sock *sk, struct net *net)
654{
655 write_pnet(&sk->sk_net, net);
656}
657
658/*
659 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
660 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
661 * on a socket means that the socket will reuse everybody else's port
662 * without looking at the other's sk_reuse value.
663 */
664
665#define SK_NO_REUSE 0
666#define SK_CAN_REUSE 1
667#define SK_FORCE_REUSE 2
668
669int sk_set_peek_off(struct sock *sk, int val);
670
671static inline int sk_peek_offset(const struct sock *sk, int flags)
672{
673 if (unlikely(flags & MSG_PEEK)) {
674 return READ_ONCE(sk->sk_peek_off);
675 }
676
677 return 0;
678}
679
680static inline void sk_peek_offset_bwd(struct sock *sk, int val)
681{
682 s32 off = READ_ONCE(sk->sk_peek_off);
683
684 if (unlikely(off >= 0)) {
685 off = max_t(s32, off - val, 0);
686 WRITE_ONCE(sk->sk_peek_off, off);
687 }
688}
689
690static inline void sk_peek_offset_fwd(struct sock *sk, int val)
691{
692 sk_peek_offset_bwd(sk, -val);
693}
694
695/*
696 * Hashed lists helper routines
697 */
698static inline struct sock *sk_entry(const struct hlist_node *node)
699{
700 return hlist_entry(node, struct sock, sk_node);
701}
702
703static inline struct sock *__sk_head(const struct hlist_head *head)
704{
705 return hlist_entry(head->first, struct sock, sk_node);
706}
707
708static inline struct sock *sk_head(const struct hlist_head *head)
709{
710 return hlist_empty(head) ? NULL : __sk_head(head);
711}
712
713static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
714{
715 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
716}
717
718static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
719{
720 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
721}
722
723static inline struct sock *sk_next(const struct sock *sk)
724{
725 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
726}
727
728static inline struct sock *sk_nulls_next(const struct sock *sk)
729{
730 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
731 hlist_nulls_entry(sk->sk_nulls_node.next,
732 struct sock, sk_nulls_node) :
733 NULL;
734}
735
736static inline bool sk_unhashed(const struct sock *sk)
737{
738 return hlist_unhashed(&sk->sk_node);
739}
740
741static inline bool sk_hashed(const struct sock *sk)
742{
743 return !sk_unhashed(sk);
744}
745
746static inline void sk_node_init(struct hlist_node *node)
747{
748 node->pprev = NULL;
749}
750
751static inline void __sk_del_node(struct sock *sk)
752{
753 __hlist_del(&sk->sk_node);
754}
755
756/* NB: equivalent to hlist_del_init_rcu */
757static inline bool __sk_del_node_init(struct sock *sk)
758{
759 if (sk_hashed(sk)) {
760 __sk_del_node(sk);
761 sk_node_init(&sk->sk_node);
762 return true;
763 }
764 return false;
765}
766
767/* Grab socket reference count. This operation is valid only
768 when sk is ALREADY grabbed f.e. it is found in hash table
769 or a list and the lookup is made under lock preventing hash table
770 modifications.
771 */
772
773static __always_inline void sock_hold(struct sock *sk)
774{
775 refcount_inc(&sk->sk_refcnt);
776}
777
778/* Ungrab socket in the context, which assumes that socket refcnt
779 cannot hit zero, f.e. it is true in context of any socketcall.
780 */
781static __always_inline void __sock_put(struct sock *sk)
782{
783 refcount_dec(&sk->sk_refcnt);
784}
785
786static inline bool sk_del_node_init(struct sock *sk)
787{
788 bool rc = __sk_del_node_init(sk);
789
790 if (rc) {
791 /* paranoid for a while -acme */
792 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
793 __sock_put(sk);
794 }
795 return rc;
796}
797#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
798
799static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
800{
801 if (sk_hashed(sk)) {
802 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
803 return true;
804 }
805 return false;
806}
807
808static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
809{
810 bool rc = __sk_nulls_del_node_init_rcu(sk);
811
812 if (rc) {
813 /* paranoid for a while -acme */
814 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
815 __sock_put(sk);
816 }
817 return rc;
818}
819
820static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
821{
822 hlist_add_head(&sk->sk_node, list);
823}
824
825static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
826{
827 sock_hold(sk);
828 __sk_add_node(sk, list);
829}
830
831static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
832{
833 sock_hold(sk);
834 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
835 sk->sk_family == AF_INET6)
836 hlist_add_tail_rcu(&sk->sk_node, list);
837 else
838 hlist_add_head_rcu(&sk->sk_node, list);
839}
840
841static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
842{
843 sock_hold(sk);
844 hlist_add_tail_rcu(&sk->sk_node, list);
845}
846
847static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
848{
849 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
850}
851
852static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
853{
854 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
855}
856
857static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
858{
859 sock_hold(sk);
860 __sk_nulls_add_node_rcu(sk, list);
861}
862
863static inline void __sk_del_bind_node(struct sock *sk)
864{
865 __hlist_del(&sk->sk_bind_node);
866}
867
868static inline void sk_add_bind_node(struct sock *sk,
869 struct hlist_head *list)
870{
871 hlist_add_head(&sk->sk_bind_node, list);
872}
873
874static inline void __sk_del_bind2_node(struct sock *sk)
875{
876 __hlist_del(&sk->sk_bind2_node);
877}
878
879static inline void sk_add_bind2_node(struct sock *sk, struct hlist_head *list)
880{
881 hlist_add_head(&sk->sk_bind2_node, list);
882}
883
884#define sk_for_each(__sk, list) \
885 hlist_for_each_entry(__sk, list, sk_node)
886#define sk_for_each_rcu(__sk, list) \
887 hlist_for_each_entry_rcu(__sk, list, sk_node)
888#define sk_nulls_for_each(__sk, node, list) \
889 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
890#define sk_nulls_for_each_rcu(__sk, node, list) \
891 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
892#define sk_for_each_from(__sk) \
893 hlist_for_each_entry_from(__sk, sk_node)
894#define sk_nulls_for_each_from(__sk, node) \
895 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
896 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
897#define sk_for_each_safe(__sk, tmp, list) \
898 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
899#define sk_for_each_bound(__sk, list) \
900 hlist_for_each_entry(__sk, list, sk_bind_node)
901#define sk_for_each_bound_bhash2(__sk, list) \
902 hlist_for_each_entry(__sk, list, sk_bind2_node)
903
904/**
905 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
906 * @tpos: the type * to use as a loop cursor.
907 * @pos: the &struct hlist_node to use as a loop cursor.
908 * @head: the head for your list.
909 * @offset: offset of hlist_node within the struct.
910 *
911 */
912#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
913 for (pos = rcu_dereference(hlist_first_rcu(head)); \
914 pos != NULL && \
915 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
916 pos = rcu_dereference(hlist_next_rcu(pos)))
917
918static inline struct user_namespace *sk_user_ns(const struct sock *sk)
919{
920 /* Careful only use this in a context where these parameters
921 * can not change and must all be valid, such as recvmsg from
922 * userspace.
923 */
924 return sk->sk_socket->file->f_cred->user_ns;
925}
926
927/* Sock flags */
928enum sock_flags {
929 SOCK_DEAD,
930 SOCK_DONE,
931 SOCK_URGINLINE,
932 SOCK_KEEPOPEN,
933 SOCK_LINGER,
934 SOCK_DESTROY,
935 SOCK_BROADCAST,
936 SOCK_TIMESTAMP,
937 SOCK_ZAPPED,
938 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
939 SOCK_DBG, /* %SO_DEBUG setting */
940 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
941 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
942 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
943 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
944 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
945 SOCK_FASYNC, /* fasync() active */
946 SOCK_RXQ_OVFL,
947 SOCK_ZEROCOPY, /* buffers from userspace */
948 SOCK_WIFI_STATUS, /* push wifi status to userspace */
949 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
950 * Will use last 4 bytes of packet sent from
951 * user-space instead.
952 */
953 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
954 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
955 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
956 SOCK_TXTIME,
957 SOCK_XDP, /* XDP is attached */
958 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
959 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
960};
961
962#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
963
964static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
965{
966 nsk->sk_flags = osk->sk_flags;
967}
968
969static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
970{
971 __set_bit(flag, &sk->sk_flags);
972}
973
974static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
975{
976 __clear_bit(flag, &sk->sk_flags);
977}
978
979static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
980 int valbool)
981{
982 if (valbool)
983 sock_set_flag(sk, bit);
984 else
985 sock_reset_flag(sk, bit);
986}
987
988static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
989{
990 return test_bit(flag, &sk->sk_flags);
991}
992
993#ifdef CONFIG_NET
994DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
995static inline int sk_memalloc_socks(void)
996{
997 return static_branch_unlikely(&memalloc_socks_key);
998}
999
1000void __receive_sock(struct file *file);
1001#else
1002
1003static inline int sk_memalloc_socks(void)
1004{
1005 return 0;
1006}
1007
1008static inline void __receive_sock(struct file *file)
1009{ }
1010#endif
1011
1012static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1013{
1014 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1015}
1016
1017static inline void sk_acceptq_removed(struct sock *sk)
1018{
1019 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1020}
1021
1022static inline void sk_acceptq_added(struct sock *sk)
1023{
1024 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1025}
1026
1027/* Note: If you think the test should be:
1028 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1029 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1030 */
1031static inline bool sk_acceptq_is_full(const struct sock *sk)
1032{
1033 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1034}
1035
1036/*
1037 * Compute minimal free write space needed to queue new packets.
1038 */
1039static inline int sk_stream_min_wspace(const struct sock *sk)
1040{
1041 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1042}
1043
1044static inline int sk_stream_wspace(const struct sock *sk)
1045{
1046 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1047}
1048
1049static inline void sk_wmem_queued_add(struct sock *sk, int val)
1050{
1051 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1052}
1053
1054void sk_stream_write_space(struct sock *sk);
1055
1056/* OOB backlog add */
1057static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1058{
1059 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1060 skb_dst_force(skb);
1061
1062 if (!sk->sk_backlog.tail)
1063 WRITE_ONCE(sk->sk_backlog.head, skb);
1064 else
1065 sk->sk_backlog.tail->next = skb;
1066
1067 WRITE_ONCE(sk->sk_backlog.tail, skb);
1068 skb->next = NULL;
1069}
1070
1071/*
1072 * Take into account size of receive queue and backlog queue
1073 * Do not take into account this skb truesize,
1074 * to allow even a single big packet to come.
1075 */
1076static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1077{
1078 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1079
1080 return qsize > limit;
1081}
1082
1083/* The per-socket spinlock must be held here. */
1084static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1085 unsigned int limit)
1086{
1087 if (sk_rcvqueues_full(sk, limit))
1088 return -ENOBUFS;
1089
1090 /*
1091 * If the skb was allocated from pfmemalloc reserves, only
1092 * allow SOCK_MEMALLOC sockets to use it as this socket is
1093 * helping free memory
1094 */
1095 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1096 return -ENOMEM;
1097
1098 __sk_add_backlog(sk, skb);
1099 sk->sk_backlog.len += skb->truesize;
1100 return 0;
1101}
1102
1103int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1104
1105INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1106INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1107
1108static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1109{
1110 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1111 return __sk_backlog_rcv(sk, skb);
1112
1113 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1114 tcp_v6_do_rcv,
1115 tcp_v4_do_rcv,
1116 sk, skb);
1117}
1118
1119static inline void sk_incoming_cpu_update(struct sock *sk)
1120{
1121 int cpu = raw_smp_processor_id();
1122
1123 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1124 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1125}
1126
1127static inline void sock_rps_record_flow_hash(__u32 hash)
1128{
1129#ifdef CONFIG_RPS
1130 struct rps_sock_flow_table *sock_flow_table;
1131
1132 rcu_read_lock();
1133 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1134 rps_record_sock_flow(sock_flow_table, hash);
1135 rcu_read_unlock();
1136#endif
1137}
1138
1139static inline void sock_rps_record_flow(const struct sock *sk)
1140{
1141#ifdef CONFIG_RPS
1142 if (static_branch_unlikely(&rfs_needed)) {
1143 /* Reading sk->sk_rxhash might incur an expensive cache line
1144 * miss.
1145 *
1146 * TCP_ESTABLISHED does cover almost all states where RFS
1147 * might be useful, and is cheaper [1] than testing :
1148 * IPv4: inet_sk(sk)->inet_daddr
1149 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1150 * OR an additional socket flag
1151 * [1] : sk_state and sk_prot are in the same cache line.
1152 */
1153 if (sk->sk_state == TCP_ESTABLISHED)
1154 sock_rps_record_flow_hash(sk->sk_rxhash);
1155 }
1156#endif
1157}
1158
1159static inline void sock_rps_save_rxhash(struct sock *sk,
1160 const struct sk_buff *skb)
1161{
1162#ifdef CONFIG_RPS
1163 if (unlikely(sk->sk_rxhash != skb->hash))
1164 sk->sk_rxhash = skb->hash;
1165#endif
1166}
1167
1168static inline void sock_rps_reset_rxhash(struct sock *sk)
1169{
1170#ifdef CONFIG_RPS
1171 sk->sk_rxhash = 0;
1172#endif
1173}
1174
1175#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1176 ({ int __rc; \
1177 release_sock(__sk); \
1178 __rc = __condition; \
1179 if (!__rc) { \
1180 *(__timeo) = wait_woken(__wait, \
1181 TASK_INTERRUPTIBLE, \
1182 *(__timeo)); \
1183 } \
1184 sched_annotate_sleep(); \
1185 lock_sock(__sk); \
1186 __rc = __condition; \
1187 __rc; \
1188 })
1189
1190int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1191int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1192void sk_stream_wait_close(struct sock *sk, long timeo_p);
1193int sk_stream_error(struct sock *sk, int flags, int err);
1194void sk_stream_kill_queues(struct sock *sk);
1195void sk_set_memalloc(struct sock *sk);
1196void sk_clear_memalloc(struct sock *sk);
1197
1198void __sk_flush_backlog(struct sock *sk);
1199
1200static inline bool sk_flush_backlog(struct sock *sk)
1201{
1202 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1203 __sk_flush_backlog(sk);
1204 return true;
1205 }
1206 return false;
1207}
1208
1209int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1210
1211struct request_sock_ops;
1212struct timewait_sock_ops;
1213struct inet_hashinfo;
1214struct raw_hashinfo;
1215struct smc_hashinfo;
1216struct module;
1217struct sk_psock;
1218
1219/*
1220 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1221 * un-modified. Special care is taken when initializing object to zero.
1222 */
1223static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1224{
1225 if (offsetof(struct sock, sk_node.next) != 0)
1226 memset(sk, 0, offsetof(struct sock, sk_node.next));
1227 memset(&sk->sk_node.pprev, 0,
1228 size - offsetof(struct sock, sk_node.pprev));
1229}
1230
1231/* Networking protocol blocks we attach to sockets.
1232 * socket layer -> transport layer interface
1233 */
1234struct proto {
1235 void (*close)(struct sock *sk,
1236 long timeout);
1237 int (*pre_connect)(struct sock *sk,
1238 struct sockaddr *uaddr,
1239 int addr_len);
1240 int (*connect)(struct sock *sk,
1241 struct sockaddr *uaddr,
1242 int addr_len);
1243 int (*disconnect)(struct sock *sk, int flags);
1244
1245 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1246 bool kern);
1247
1248 int (*ioctl)(struct sock *sk, int cmd,
1249 unsigned long arg);
1250 int (*init)(struct sock *sk);
1251 void (*destroy)(struct sock *sk);
1252 void (*shutdown)(struct sock *sk, int how);
1253 int (*setsockopt)(struct sock *sk, int level,
1254 int optname, sockptr_t optval,
1255 unsigned int optlen);
1256 int (*getsockopt)(struct sock *sk, int level,
1257 int optname, char __user *optval,
1258 int __user *option);
1259 void (*keepalive)(struct sock *sk, int valbool);
1260#ifdef CONFIG_COMPAT
1261 int (*compat_ioctl)(struct sock *sk,
1262 unsigned int cmd, unsigned long arg);
1263#endif
1264 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1265 size_t len);
1266 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1267 size_t len, int flags, int *addr_len);
1268 int (*sendpage)(struct sock *sk, struct page *page,
1269 int offset, size_t size, int flags);
1270 int (*bind)(struct sock *sk,
1271 struct sockaddr *addr, int addr_len);
1272 int (*bind_add)(struct sock *sk,
1273 struct sockaddr *addr, int addr_len);
1274
1275 int (*backlog_rcv) (struct sock *sk,
1276 struct sk_buff *skb);
1277 bool (*bpf_bypass_getsockopt)(int level,
1278 int optname);
1279
1280 void (*release_cb)(struct sock *sk);
1281
1282 /* Keeping track of sk's, looking them up, and port selection methods. */
1283 int (*hash)(struct sock *sk);
1284 void (*unhash)(struct sock *sk);
1285 void (*rehash)(struct sock *sk);
1286 int (*get_port)(struct sock *sk, unsigned short snum);
1287 void (*put_port)(struct sock *sk);
1288#ifdef CONFIG_BPF_SYSCALL
1289 int (*psock_update_sk_prot)(struct sock *sk,
1290 struct sk_psock *psock,
1291 bool restore);
1292#endif
1293
1294 /* Keeping track of sockets in use */
1295#ifdef CONFIG_PROC_FS
1296 unsigned int inuse_idx;
1297#endif
1298
1299#if IS_ENABLED(CONFIG_MPTCP)
1300 int (*forward_alloc_get)(const struct sock *sk);
1301#endif
1302
1303 bool (*stream_memory_free)(const struct sock *sk, int wake);
1304 bool (*sock_is_readable)(struct sock *sk);
1305 /* Memory pressure */
1306 void (*enter_memory_pressure)(struct sock *sk);
1307 void (*leave_memory_pressure)(struct sock *sk);
1308 atomic_long_t *memory_allocated; /* Current allocated memory. */
1309 int __percpu *per_cpu_fw_alloc;
1310 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1311
1312 /*
1313 * Pressure flag: try to collapse.
1314 * Technical note: it is used by multiple contexts non atomically.
1315 * All the __sk_mem_schedule() is of this nature: accounting
1316 * is strict, actions are advisory and have some latency.
1317 */
1318 unsigned long *memory_pressure;
1319 long *sysctl_mem;
1320
1321 int *sysctl_wmem;
1322 int *sysctl_rmem;
1323 u32 sysctl_wmem_offset;
1324 u32 sysctl_rmem_offset;
1325
1326 int max_header;
1327 bool no_autobind;
1328
1329 struct kmem_cache *slab;
1330 unsigned int obj_size;
1331 slab_flags_t slab_flags;
1332 unsigned int useroffset; /* Usercopy region offset */
1333 unsigned int usersize; /* Usercopy region size */
1334
1335 unsigned int __percpu *orphan_count;
1336
1337 struct request_sock_ops *rsk_prot;
1338 struct timewait_sock_ops *twsk_prot;
1339
1340 union {
1341 struct inet_hashinfo *hashinfo;
1342 struct udp_table *udp_table;
1343 struct raw_hashinfo *raw_hash;
1344 struct smc_hashinfo *smc_hash;
1345 } h;
1346
1347 struct module *owner;
1348
1349 char name[32];
1350
1351 struct list_head node;
1352#ifdef SOCK_REFCNT_DEBUG
1353 atomic_t socks;
1354#endif
1355 int (*diag_destroy)(struct sock *sk, int err);
1356} __randomize_layout;
1357
1358int proto_register(struct proto *prot, int alloc_slab);
1359void proto_unregister(struct proto *prot);
1360int sock_load_diag_module(int family, int protocol);
1361
1362#ifdef SOCK_REFCNT_DEBUG
1363static inline void sk_refcnt_debug_inc(struct sock *sk)
1364{
1365 atomic_inc(&sk->sk_prot->socks);
1366}
1367
1368static inline void sk_refcnt_debug_dec(struct sock *sk)
1369{
1370 atomic_dec(&sk->sk_prot->socks);
1371 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1372 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1373}
1374
1375static inline void sk_refcnt_debug_release(const struct sock *sk)
1376{
1377 if (refcount_read(&sk->sk_refcnt) != 1)
1378 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1379 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1380}
1381#else /* SOCK_REFCNT_DEBUG */
1382#define sk_refcnt_debug_inc(sk) do { } while (0)
1383#define sk_refcnt_debug_dec(sk) do { } while (0)
1384#define sk_refcnt_debug_release(sk) do { } while (0)
1385#endif /* SOCK_REFCNT_DEBUG */
1386
1387INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1388
1389static inline int sk_forward_alloc_get(const struct sock *sk)
1390{
1391#if IS_ENABLED(CONFIG_MPTCP)
1392 if (sk->sk_prot->forward_alloc_get)
1393 return sk->sk_prot->forward_alloc_get(sk);
1394#endif
1395 return sk->sk_forward_alloc;
1396}
1397
1398static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1399{
1400 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1401 return false;
1402
1403 return sk->sk_prot->stream_memory_free ?
1404 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1405 tcp_stream_memory_free, sk, wake) : true;
1406}
1407
1408static inline bool sk_stream_memory_free(const struct sock *sk)
1409{
1410 return __sk_stream_memory_free(sk, 0);
1411}
1412
1413static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1414{
1415 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1416 __sk_stream_memory_free(sk, wake);
1417}
1418
1419static inline bool sk_stream_is_writeable(const struct sock *sk)
1420{
1421 return __sk_stream_is_writeable(sk, 0);
1422}
1423
1424static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1425 struct cgroup *ancestor)
1426{
1427#ifdef CONFIG_SOCK_CGROUP_DATA
1428 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1429 ancestor);
1430#else
1431 return -ENOTSUPP;
1432#endif
1433}
1434
1435static inline bool sk_has_memory_pressure(const struct sock *sk)
1436{
1437 return sk->sk_prot->memory_pressure != NULL;
1438}
1439
1440static inline bool sk_under_memory_pressure(const struct sock *sk)
1441{
1442 if (!sk->sk_prot->memory_pressure)
1443 return false;
1444
1445 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1446 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1447 return true;
1448
1449 return !!*sk->sk_prot->memory_pressure;
1450}
1451
1452static inline long
1453proto_memory_allocated(const struct proto *prot)
1454{
1455 return max(0L, atomic_long_read(prot->memory_allocated));
1456}
1457
1458static inline long
1459sk_memory_allocated(const struct sock *sk)
1460{
1461 return proto_memory_allocated(sk->sk_prot);
1462}
1463
1464/* 1 MB per cpu, in page units */
1465#define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1466
1467static inline void
1468sk_memory_allocated_add(struct sock *sk, int amt)
1469{
1470 int local_reserve;
1471
1472 preempt_disable();
1473 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1474 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1475 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1476 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1477 }
1478 preempt_enable();
1479}
1480
1481static inline void
1482sk_memory_allocated_sub(struct sock *sk, int amt)
1483{
1484 int local_reserve;
1485
1486 preempt_disable();
1487 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1488 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1489 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1490 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1491 }
1492 preempt_enable();
1493}
1494
1495#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1496
1497static inline void sk_sockets_allocated_dec(struct sock *sk)
1498{
1499 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1500 SK_ALLOC_PERCPU_COUNTER_BATCH);
1501}
1502
1503static inline void sk_sockets_allocated_inc(struct sock *sk)
1504{
1505 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1506 SK_ALLOC_PERCPU_COUNTER_BATCH);
1507}
1508
1509static inline u64
1510sk_sockets_allocated_read_positive(struct sock *sk)
1511{
1512 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1513}
1514
1515static inline int
1516proto_sockets_allocated_sum_positive(struct proto *prot)
1517{
1518 return percpu_counter_sum_positive(prot->sockets_allocated);
1519}
1520
1521static inline bool
1522proto_memory_pressure(struct proto *prot)
1523{
1524 if (!prot->memory_pressure)
1525 return false;
1526 return !!*prot->memory_pressure;
1527}
1528
1529
1530#ifdef CONFIG_PROC_FS
1531#define PROTO_INUSE_NR 64 /* should be enough for the first time */
1532struct prot_inuse {
1533 int all;
1534 int val[PROTO_INUSE_NR];
1535};
1536
1537static inline void sock_prot_inuse_add(const struct net *net,
1538 const struct proto *prot, int val)
1539{
1540 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1541}
1542
1543static inline void sock_inuse_add(const struct net *net, int val)
1544{
1545 this_cpu_add(net->core.prot_inuse->all, val);
1546}
1547
1548int sock_prot_inuse_get(struct net *net, struct proto *proto);
1549int sock_inuse_get(struct net *net);
1550#else
1551static inline void sock_prot_inuse_add(const struct net *net,
1552 const struct proto *prot, int val)
1553{
1554}
1555
1556static inline void sock_inuse_add(const struct net *net, int val)
1557{
1558}
1559#endif
1560
1561
1562/* With per-bucket locks this operation is not-atomic, so that
1563 * this version is not worse.
1564 */
1565static inline int __sk_prot_rehash(struct sock *sk)
1566{
1567 sk->sk_prot->unhash(sk);
1568 return sk->sk_prot->hash(sk);
1569}
1570
1571/* About 10 seconds */
1572#define SOCK_DESTROY_TIME (10*HZ)
1573
1574/* Sockets 0-1023 can't be bound to unless you are superuser */
1575#define PROT_SOCK 1024
1576
1577#define SHUTDOWN_MASK 3
1578#define RCV_SHUTDOWN 1
1579#define SEND_SHUTDOWN 2
1580
1581#define SOCK_BINDADDR_LOCK 4
1582#define SOCK_BINDPORT_LOCK 8
1583
1584struct socket_alloc {
1585 struct socket socket;
1586 struct inode vfs_inode;
1587};
1588
1589static inline struct socket *SOCKET_I(struct inode *inode)
1590{
1591 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1592}
1593
1594static inline struct inode *SOCK_INODE(struct socket *socket)
1595{
1596 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1597}
1598
1599/*
1600 * Functions for memory accounting
1601 */
1602int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1603int __sk_mem_schedule(struct sock *sk, int size, int kind);
1604void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1605void __sk_mem_reclaim(struct sock *sk, int amount);
1606
1607#define SK_MEM_SEND 0
1608#define SK_MEM_RECV 1
1609
1610/* sysctl_mem values are in pages */
1611static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1612{
1613 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1614}
1615
1616static inline int sk_mem_pages(int amt)
1617{
1618 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1619}
1620
1621static inline bool sk_has_account(struct sock *sk)
1622{
1623 /* return true if protocol supports memory accounting */
1624 return !!sk->sk_prot->memory_allocated;
1625}
1626
1627static inline bool sk_wmem_schedule(struct sock *sk, int size)
1628{
1629 int delta;
1630
1631 if (!sk_has_account(sk))
1632 return true;
1633 delta = size - sk->sk_forward_alloc;
1634 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1635}
1636
1637static inline bool
1638sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1639{
1640 int delta;
1641
1642 if (!sk_has_account(sk))
1643 return true;
1644 delta = size - sk->sk_forward_alloc;
1645 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1646 skb_pfmemalloc(skb);
1647}
1648
1649static inline int sk_unused_reserved_mem(const struct sock *sk)
1650{
1651 int unused_mem;
1652
1653 if (likely(!sk->sk_reserved_mem))
1654 return 0;
1655
1656 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1657 atomic_read(&sk->sk_rmem_alloc);
1658
1659 return unused_mem > 0 ? unused_mem : 0;
1660}
1661
1662static inline void sk_mem_reclaim(struct sock *sk)
1663{
1664 int reclaimable;
1665
1666 if (!sk_has_account(sk))
1667 return;
1668
1669 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1670
1671 if (reclaimable >= (int)PAGE_SIZE)
1672 __sk_mem_reclaim(sk, reclaimable);
1673}
1674
1675static inline void sk_mem_reclaim_final(struct sock *sk)
1676{
1677 sk->sk_reserved_mem = 0;
1678 sk_mem_reclaim(sk);
1679}
1680
1681static inline void sk_mem_charge(struct sock *sk, int size)
1682{
1683 if (!sk_has_account(sk))
1684 return;
1685 sk->sk_forward_alloc -= size;
1686}
1687
1688static inline void sk_mem_uncharge(struct sock *sk, int size)
1689{
1690 if (!sk_has_account(sk))
1691 return;
1692 sk->sk_forward_alloc += size;
1693 sk_mem_reclaim(sk);
1694}
1695
1696/*
1697 * Macro so as to not evaluate some arguments when
1698 * lockdep is not enabled.
1699 *
1700 * Mark both the sk_lock and the sk_lock.slock as a
1701 * per-address-family lock class.
1702 */
1703#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1704do { \
1705 sk->sk_lock.owned = 0; \
1706 init_waitqueue_head(&sk->sk_lock.wq); \
1707 spin_lock_init(&(sk)->sk_lock.slock); \
1708 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1709 sizeof((sk)->sk_lock)); \
1710 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1711 (skey), (sname)); \
1712 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1713} while (0)
1714
1715static inline bool lockdep_sock_is_held(const struct sock *sk)
1716{
1717 return lockdep_is_held(&sk->sk_lock) ||
1718 lockdep_is_held(&sk->sk_lock.slock);
1719}
1720
1721void lock_sock_nested(struct sock *sk, int subclass);
1722
1723static inline void lock_sock(struct sock *sk)
1724{
1725 lock_sock_nested(sk, 0);
1726}
1727
1728void __lock_sock(struct sock *sk);
1729void __release_sock(struct sock *sk);
1730void release_sock(struct sock *sk);
1731
1732/* BH context may only use the following locking interface. */
1733#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1734#define bh_lock_sock_nested(__sk) \
1735 spin_lock_nested(&((__sk)->sk_lock.slock), \
1736 SINGLE_DEPTH_NESTING)
1737#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1738
1739bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1740
1741/**
1742 * lock_sock_fast - fast version of lock_sock
1743 * @sk: socket
1744 *
1745 * This version should be used for very small section, where process wont block
1746 * return false if fast path is taken:
1747 *
1748 * sk_lock.slock locked, owned = 0, BH disabled
1749 *
1750 * return true if slow path is taken:
1751 *
1752 * sk_lock.slock unlocked, owned = 1, BH enabled
1753 */
1754static inline bool lock_sock_fast(struct sock *sk)
1755{
1756 /* The sk_lock has mutex_lock() semantics here. */
1757 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1758
1759 return __lock_sock_fast(sk);
1760}
1761
1762/* fast socket lock variant for caller already holding a [different] socket lock */
1763static inline bool lock_sock_fast_nested(struct sock *sk)
1764{
1765 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1766
1767 return __lock_sock_fast(sk);
1768}
1769
1770/**
1771 * unlock_sock_fast - complement of lock_sock_fast
1772 * @sk: socket
1773 * @slow: slow mode
1774 *
1775 * fast unlock socket for user context.
1776 * If slow mode is on, we call regular release_sock()
1777 */
1778static inline void unlock_sock_fast(struct sock *sk, bool slow)
1779 __releases(&sk->sk_lock.slock)
1780{
1781 if (slow) {
1782 release_sock(sk);
1783 __release(&sk->sk_lock.slock);
1784 } else {
1785 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1786 spin_unlock_bh(&sk->sk_lock.slock);
1787 }
1788}
1789
1790void sockopt_lock_sock(struct sock *sk);
1791void sockopt_release_sock(struct sock *sk);
1792bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1793bool sockopt_capable(int cap);
1794
1795/* Used by processes to "lock" a socket state, so that
1796 * interrupts and bottom half handlers won't change it
1797 * from under us. It essentially blocks any incoming
1798 * packets, so that we won't get any new data or any
1799 * packets that change the state of the socket.
1800 *
1801 * While locked, BH processing will add new packets to
1802 * the backlog queue. This queue is processed by the
1803 * owner of the socket lock right before it is released.
1804 *
1805 * Since ~2.3.5 it is also exclusive sleep lock serializing
1806 * accesses from user process context.
1807 */
1808
1809static inline void sock_owned_by_me(const struct sock *sk)
1810{
1811#ifdef CONFIG_LOCKDEP
1812 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1813#endif
1814}
1815
1816static inline bool sock_owned_by_user(const struct sock *sk)
1817{
1818 sock_owned_by_me(sk);
1819 return sk->sk_lock.owned;
1820}
1821
1822static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1823{
1824 return sk->sk_lock.owned;
1825}
1826
1827static inline void sock_release_ownership(struct sock *sk)
1828{
1829 if (sock_owned_by_user_nocheck(sk)) {
1830 sk->sk_lock.owned = 0;
1831
1832 /* The sk_lock has mutex_unlock() semantics: */
1833 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1834 }
1835}
1836
1837/* no reclassification while locks are held */
1838static inline bool sock_allow_reclassification(const struct sock *csk)
1839{
1840 struct sock *sk = (struct sock *)csk;
1841
1842 return !sock_owned_by_user_nocheck(sk) &&
1843 !spin_is_locked(&sk->sk_lock.slock);
1844}
1845
1846struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1847 struct proto *prot, int kern);
1848void sk_free(struct sock *sk);
1849void sk_destruct(struct sock *sk);
1850struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1851void sk_free_unlock_clone(struct sock *sk);
1852
1853struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1854 gfp_t priority);
1855void __sock_wfree(struct sk_buff *skb);
1856void sock_wfree(struct sk_buff *skb);
1857struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1858 gfp_t priority);
1859void skb_orphan_partial(struct sk_buff *skb);
1860void sock_rfree(struct sk_buff *skb);
1861void sock_efree(struct sk_buff *skb);
1862#ifdef CONFIG_INET
1863void sock_edemux(struct sk_buff *skb);
1864void sock_pfree(struct sk_buff *skb);
1865#else
1866#define sock_edemux sock_efree
1867#endif
1868
1869int sk_setsockopt(struct sock *sk, int level, int optname,
1870 sockptr_t optval, unsigned int optlen);
1871int sock_setsockopt(struct socket *sock, int level, int op,
1872 sockptr_t optval, unsigned int optlen);
1873
1874int sk_getsockopt(struct sock *sk, int level, int optname,
1875 sockptr_t optval, sockptr_t optlen);
1876int sock_getsockopt(struct socket *sock, int level, int op,
1877 char __user *optval, int __user *optlen);
1878int sock_gettstamp(struct socket *sock, void __user *userstamp,
1879 bool timeval, bool time32);
1880struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1881 unsigned long data_len, int noblock,
1882 int *errcode, int max_page_order);
1883
1884static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1885 unsigned long size,
1886 int noblock, int *errcode)
1887{
1888 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1889}
1890
1891void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1892void sock_kfree_s(struct sock *sk, void *mem, int size);
1893void sock_kzfree_s(struct sock *sk, void *mem, int size);
1894void sk_send_sigurg(struct sock *sk);
1895
1896static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1897{
1898 if (sk->sk_socket)
1899 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1900 WRITE_ONCE(sk->sk_prot, proto);
1901}
1902
1903struct sockcm_cookie {
1904 u64 transmit_time;
1905 u32 mark;
1906 u32 tsflags;
1907};
1908
1909static inline void sockcm_init(struct sockcm_cookie *sockc,
1910 const struct sock *sk)
1911{
1912 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1913}
1914
1915int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1916 struct sockcm_cookie *sockc);
1917int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1918 struct sockcm_cookie *sockc);
1919
1920/*
1921 * Functions to fill in entries in struct proto_ops when a protocol
1922 * does not implement a particular function.
1923 */
1924int sock_no_bind(struct socket *, struct sockaddr *, int);
1925int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1926int sock_no_socketpair(struct socket *, struct socket *);
1927int sock_no_accept(struct socket *, struct socket *, int, bool);
1928int sock_no_getname(struct socket *, struct sockaddr *, int);
1929int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1930int sock_no_listen(struct socket *, int);
1931int sock_no_shutdown(struct socket *, int);
1932int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1933int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1934int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1935int sock_no_mmap(struct file *file, struct socket *sock,
1936 struct vm_area_struct *vma);
1937ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1938 size_t size, int flags);
1939ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1940 int offset, size_t size, int flags);
1941
1942/*
1943 * Functions to fill in entries in struct proto_ops when a protocol
1944 * uses the inet style.
1945 */
1946int sock_common_getsockopt(struct socket *sock, int level, int optname,
1947 char __user *optval, int __user *optlen);
1948int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1949 int flags);
1950int sock_common_setsockopt(struct socket *sock, int level, int optname,
1951 sockptr_t optval, unsigned int optlen);
1952
1953void sk_common_release(struct sock *sk);
1954
1955/*
1956 * Default socket callbacks and setup code
1957 */
1958
1959/* Initialise core socket variables */
1960void sock_init_data(struct socket *sock, struct sock *sk);
1961
1962/*
1963 * Socket reference counting postulates.
1964 *
1965 * * Each user of socket SHOULD hold a reference count.
1966 * * Each access point to socket (an hash table bucket, reference from a list,
1967 * running timer, skb in flight MUST hold a reference count.
1968 * * When reference count hits 0, it means it will never increase back.
1969 * * When reference count hits 0, it means that no references from
1970 * outside exist to this socket and current process on current CPU
1971 * is last user and may/should destroy this socket.
1972 * * sk_free is called from any context: process, BH, IRQ. When
1973 * it is called, socket has no references from outside -> sk_free
1974 * may release descendant resources allocated by the socket, but
1975 * to the time when it is called, socket is NOT referenced by any
1976 * hash tables, lists etc.
1977 * * Packets, delivered from outside (from network or from another process)
1978 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1979 * when they sit in queue. Otherwise, packets will leak to hole, when
1980 * socket is looked up by one cpu and unhasing is made by another CPU.
1981 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1982 * (leak to backlog). Packet socket does all the processing inside
1983 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1984 * use separate SMP lock, so that they are prone too.
1985 */
1986
1987/* Ungrab socket and destroy it, if it was the last reference. */
1988static inline void sock_put(struct sock *sk)
1989{
1990 if (refcount_dec_and_test(&sk->sk_refcnt))
1991 sk_free(sk);
1992}
1993/* Generic version of sock_put(), dealing with all sockets
1994 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1995 */
1996void sock_gen_put(struct sock *sk);
1997
1998int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1999 unsigned int trim_cap, bool refcounted);
2000static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
2001 const int nested)
2002{
2003 return __sk_receive_skb(sk, skb, nested, 1, true);
2004}
2005
2006static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
2007{
2008 /* sk_tx_queue_mapping accept only upto a 16-bit value */
2009 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
2010 return;
2011 sk->sk_tx_queue_mapping = tx_queue;
2012}
2013
2014#define NO_QUEUE_MAPPING USHRT_MAX
2015
2016static inline void sk_tx_queue_clear(struct sock *sk)
2017{
2018 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
2019}
2020
2021static inline int sk_tx_queue_get(const struct sock *sk)
2022{
2023 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
2024 return sk->sk_tx_queue_mapping;
2025
2026 return -1;
2027}
2028
2029static inline void __sk_rx_queue_set(struct sock *sk,
2030 const struct sk_buff *skb,
2031 bool force_set)
2032{
2033#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2034 if (skb_rx_queue_recorded(skb)) {
2035 u16 rx_queue = skb_get_rx_queue(skb);
2036
2037 if (force_set ||
2038 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2039 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2040 }
2041#endif
2042}
2043
2044static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2045{
2046 __sk_rx_queue_set(sk, skb, true);
2047}
2048
2049static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2050{
2051 __sk_rx_queue_set(sk, skb, false);
2052}
2053
2054static inline void sk_rx_queue_clear(struct sock *sk)
2055{
2056#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2057 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2058#endif
2059}
2060
2061static inline int sk_rx_queue_get(const struct sock *sk)
2062{
2063#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2064 if (sk) {
2065 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2066
2067 if (res != NO_QUEUE_MAPPING)
2068 return res;
2069 }
2070#endif
2071
2072 return -1;
2073}
2074
2075static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2076{
2077 sk->sk_socket = sock;
2078}
2079
2080static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2081{
2082 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2083 return &rcu_dereference_raw(sk->sk_wq)->wait;
2084}
2085/* Detach socket from process context.
2086 * Announce socket dead, detach it from wait queue and inode.
2087 * Note that parent inode held reference count on this struct sock,
2088 * we do not release it in this function, because protocol
2089 * probably wants some additional cleanups or even continuing
2090 * to work with this socket (TCP).
2091 */
2092static inline void sock_orphan(struct sock *sk)
2093{
2094 write_lock_bh(&sk->sk_callback_lock);
2095 sock_set_flag(sk, SOCK_DEAD);
2096 sk_set_socket(sk, NULL);
2097 sk->sk_wq = NULL;
2098 write_unlock_bh(&sk->sk_callback_lock);
2099}
2100
2101static inline void sock_graft(struct sock *sk, struct socket *parent)
2102{
2103 WARN_ON(parent->sk);
2104 write_lock_bh(&sk->sk_callback_lock);
2105 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2106 parent->sk = sk;
2107 sk_set_socket(sk, parent);
2108 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2109 security_sock_graft(sk, parent);
2110 write_unlock_bh(&sk->sk_callback_lock);
2111}
2112
2113kuid_t sock_i_uid(struct sock *sk);
2114unsigned long sock_i_ino(struct sock *sk);
2115
2116static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2117{
2118 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2119}
2120
2121static inline u32 net_tx_rndhash(void)
2122{
2123 u32 v = get_random_u32();
2124
2125 return v ?: 1;
2126}
2127
2128static inline void sk_set_txhash(struct sock *sk)
2129{
2130 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2131 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2132}
2133
2134static inline bool sk_rethink_txhash(struct sock *sk)
2135{
2136 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2137 sk_set_txhash(sk);
2138 return true;
2139 }
2140 return false;
2141}
2142
2143static inline struct dst_entry *
2144__sk_dst_get(struct sock *sk)
2145{
2146 return rcu_dereference_check(sk->sk_dst_cache,
2147 lockdep_sock_is_held(sk));
2148}
2149
2150static inline struct dst_entry *
2151sk_dst_get(struct sock *sk)
2152{
2153 struct dst_entry *dst;
2154
2155 rcu_read_lock();
2156 dst = rcu_dereference(sk->sk_dst_cache);
2157 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2158 dst = NULL;
2159 rcu_read_unlock();
2160 return dst;
2161}
2162
2163static inline void __dst_negative_advice(struct sock *sk)
2164{
2165 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2166
2167 if (dst && dst->ops->negative_advice) {
2168 ndst = dst->ops->negative_advice(dst);
2169
2170 if (ndst != dst) {
2171 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2172 sk_tx_queue_clear(sk);
2173 sk->sk_dst_pending_confirm = 0;
2174 }
2175 }
2176}
2177
2178static inline void dst_negative_advice(struct sock *sk)
2179{
2180 sk_rethink_txhash(sk);
2181 __dst_negative_advice(sk);
2182}
2183
2184static inline void
2185__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2186{
2187 struct dst_entry *old_dst;
2188
2189 sk_tx_queue_clear(sk);
2190 sk->sk_dst_pending_confirm = 0;
2191 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2192 lockdep_sock_is_held(sk));
2193 rcu_assign_pointer(sk->sk_dst_cache, dst);
2194 dst_release(old_dst);
2195}
2196
2197static inline void
2198sk_dst_set(struct sock *sk, struct dst_entry *dst)
2199{
2200 struct dst_entry *old_dst;
2201
2202 sk_tx_queue_clear(sk);
2203 sk->sk_dst_pending_confirm = 0;
2204 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2205 dst_release(old_dst);
2206}
2207
2208static inline void
2209__sk_dst_reset(struct sock *sk)
2210{
2211 __sk_dst_set(sk, NULL);
2212}
2213
2214static inline void
2215sk_dst_reset(struct sock *sk)
2216{
2217 sk_dst_set(sk, NULL);
2218}
2219
2220struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2221
2222struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2223
2224static inline void sk_dst_confirm(struct sock *sk)
2225{
2226 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2227 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2228}
2229
2230static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2231{
2232 if (skb_get_dst_pending_confirm(skb)) {
2233 struct sock *sk = skb->sk;
2234
2235 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2236 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2237 neigh_confirm(n);
2238 }
2239}
2240
2241bool sk_mc_loop(struct sock *sk);
2242
2243static inline bool sk_can_gso(const struct sock *sk)
2244{
2245 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2246}
2247
2248void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2249
2250static inline void sk_gso_disable(struct sock *sk)
2251{
2252 sk->sk_gso_disabled = 1;
2253 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2254}
2255
2256static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2257 struct iov_iter *from, char *to,
2258 int copy, int offset)
2259{
2260 if (skb->ip_summed == CHECKSUM_NONE) {
2261 __wsum csum = 0;
2262 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2263 return -EFAULT;
2264 skb->csum = csum_block_add(skb->csum, csum, offset);
2265 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2266 if (!copy_from_iter_full_nocache(to, copy, from))
2267 return -EFAULT;
2268 } else if (!copy_from_iter_full(to, copy, from))
2269 return -EFAULT;
2270
2271 return 0;
2272}
2273
2274static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2275 struct iov_iter *from, int copy)
2276{
2277 int err, offset = skb->len;
2278
2279 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2280 copy, offset);
2281 if (err)
2282 __skb_trim(skb, offset);
2283
2284 return err;
2285}
2286
2287static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2288 struct sk_buff *skb,
2289 struct page *page,
2290 int off, int copy)
2291{
2292 int err;
2293
2294 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2295 copy, skb->len);
2296 if (err)
2297 return err;
2298
2299 skb_len_add(skb, copy);
2300 sk_wmem_queued_add(sk, copy);
2301 sk_mem_charge(sk, copy);
2302 return 0;
2303}
2304
2305/**
2306 * sk_wmem_alloc_get - returns write allocations
2307 * @sk: socket
2308 *
2309 * Return: sk_wmem_alloc minus initial offset of one
2310 */
2311static inline int sk_wmem_alloc_get(const struct sock *sk)
2312{
2313 return refcount_read(&sk->sk_wmem_alloc) - 1;
2314}
2315
2316/**
2317 * sk_rmem_alloc_get - returns read allocations
2318 * @sk: socket
2319 *
2320 * Return: sk_rmem_alloc
2321 */
2322static inline int sk_rmem_alloc_get(const struct sock *sk)
2323{
2324 return atomic_read(&sk->sk_rmem_alloc);
2325}
2326
2327/**
2328 * sk_has_allocations - check if allocations are outstanding
2329 * @sk: socket
2330 *
2331 * Return: true if socket has write or read allocations
2332 */
2333static inline bool sk_has_allocations(const struct sock *sk)
2334{
2335 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2336}
2337
2338/**
2339 * skwq_has_sleeper - check if there are any waiting processes
2340 * @wq: struct socket_wq
2341 *
2342 * Return: true if socket_wq has waiting processes
2343 *
2344 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2345 * barrier call. They were added due to the race found within the tcp code.
2346 *
2347 * Consider following tcp code paths::
2348 *
2349 * CPU1 CPU2
2350 * sys_select receive packet
2351 * ... ...
2352 * __add_wait_queue update tp->rcv_nxt
2353 * ... ...
2354 * tp->rcv_nxt check sock_def_readable
2355 * ... {
2356 * schedule rcu_read_lock();
2357 * wq = rcu_dereference(sk->sk_wq);
2358 * if (wq && waitqueue_active(&wq->wait))
2359 * wake_up_interruptible(&wq->wait)
2360 * ...
2361 * }
2362 *
2363 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2364 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2365 * could then endup calling schedule and sleep forever if there are no more
2366 * data on the socket.
2367 *
2368 */
2369static inline bool skwq_has_sleeper(struct socket_wq *wq)
2370{
2371 return wq && wq_has_sleeper(&wq->wait);
2372}
2373
2374/**
2375 * sock_poll_wait - place memory barrier behind the poll_wait call.
2376 * @filp: file
2377 * @sock: socket to wait on
2378 * @p: poll_table
2379 *
2380 * See the comments in the wq_has_sleeper function.
2381 */
2382static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2383 poll_table *p)
2384{
2385 if (!poll_does_not_wait(p)) {
2386 poll_wait(filp, &sock->wq.wait, p);
2387 /* We need to be sure we are in sync with the
2388 * socket flags modification.
2389 *
2390 * This memory barrier is paired in the wq_has_sleeper.
2391 */
2392 smp_mb();
2393 }
2394}
2395
2396static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2397{
2398 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2399 u32 txhash = READ_ONCE(sk->sk_txhash);
2400
2401 if (txhash) {
2402 skb->l4_hash = 1;
2403 skb->hash = txhash;
2404 }
2405}
2406
2407void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2408
2409/*
2410 * Queue a received datagram if it will fit. Stream and sequenced
2411 * protocols can't normally use this as they need to fit buffers in
2412 * and play with them.
2413 *
2414 * Inlined as it's very short and called for pretty much every
2415 * packet ever received.
2416 */
2417static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2418{
2419 skb_orphan(skb);
2420 skb->sk = sk;
2421 skb->destructor = sock_rfree;
2422 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2423 sk_mem_charge(sk, skb->truesize);
2424}
2425
2426static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2427{
2428 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2429 skb_orphan(skb);
2430 skb->destructor = sock_efree;
2431 skb->sk = sk;
2432 return true;
2433 }
2434 return false;
2435}
2436
2437static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2438{
2439 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2440 if (skb) {
2441 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2442 skb_set_owner_r(skb, sk);
2443 return skb;
2444 }
2445 __kfree_skb(skb);
2446 }
2447 return NULL;
2448}
2449
2450static inline void skb_prepare_for_gro(struct sk_buff *skb)
2451{
2452 if (skb->destructor != sock_wfree) {
2453 skb_orphan(skb);
2454 return;
2455 }
2456 skb->slow_gro = 1;
2457}
2458
2459void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2460 unsigned long expires);
2461
2462void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2463
2464void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2465
2466int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2467 struct sk_buff *skb, unsigned int flags,
2468 void (*destructor)(struct sock *sk,
2469 struct sk_buff *skb));
2470int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2471
2472int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2473 enum skb_drop_reason *reason);
2474
2475static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2476{
2477 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2478}
2479
2480int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2481struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2482
2483/*
2484 * Recover an error report and clear atomically
2485 */
2486
2487static inline int sock_error(struct sock *sk)
2488{
2489 int err;
2490
2491 /* Avoid an atomic operation for the common case.
2492 * This is racy since another cpu/thread can change sk_err under us.
2493 */
2494 if (likely(data_race(!sk->sk_err)))
2495 return 0;
2496
2497 err = xchg(&sk->sk_err, 0);
2498 return -err;
2499}
2500
2501void sk_error_report(struct sock *sk);
2502
2503static inline unsigned long sock_wspace(struct sock *sk)
2504{
2505 int amt = 0;
2506
2507 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2508 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2509 if (amt < 0)
2510 amt = 0;
2511 }
2512 return amt;
2513}
2514
2515/* Note:
2516 * We use sk->sk_wq_raw, from contexts knowing this
2517 * pointer is not NULL and cannot disappear/change.
2518 */
2519static inline void sk_set_bit(int nr, struct sock *sk)
2520{
2521 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2522 !sock_flag(sk, SOCK_FASYNC))
2523 return;
2524
2525 set_bit(nr, &sk->sk_wq_raw->flags);
2526}
2527
2528static inline void sk_clear_bit(int nr, struct sock *sk)
2529{
2530 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2531 !sock_flag(sk, SOCK_FASYNC))
2532 return;
2533
2534 clear_bit(nr, &sk->sk_wq_raw->flags);
2535}
2536
2537static inline void sk_wake_async(const struct sock *sk, int how, int band)
2538{
2539 if (sock_flag(sk, SOCK_FASYNC)) {
2540 rcu_read_lock();
2541 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2542 rcu_read_unlock();
2543 }
2544}
2545
2546/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2547 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2548 * Note: for send buffers, TCP works better if we can build two skbs at
2549 * minimum.
2550 */
2551#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2552
2553#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2554#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2555
2556static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2557{
2558 u32 val;
2559
2560 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2561 return;
2562
2563 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2564 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2565
2566 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2567}
2568
2569/**
2570 * sk_page_frag - return an appropriate page_frag
2571 * @sk: socket
2572 *
2573 * Use the per task page_frag instead of the per socket one for
2574 * optimization when we know that we're in process context and own
2575 * everything that's associated with %current.
2576 *
2577 * Both direct reclaim and page faults can nest inside other
2578 * socket operations and end up recursing into sk_page_frag()
2579 * while it's already in use: explicitly avoid task page_frag
2580 * when users disable sk_use_task_frag.
2581 *
2582 * Return: a per task page_frag if context allows that,
2583 * otherwise a per socket one.
2584 */
2585static inline struct page_frag *sk_page_frag(struct sock *sk)
2586{
2587 if (sk->sk_use_task_frag)
2588 return ¤t->task_frag;
2589
2590 return &sk->sk_frag;
2591}
2592
2593bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2594
2595/*
2596 * Default write policy as shown to user space via poll/select/SIGIO
2597 */
2598static inline bool sock_writeable(const struct sock *sk)
2599{
2600 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2601}
2602
2603static inline gfp_t gfp_any(void)
2604{
2605 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2606}
2607
2608static inline gfp_t gfp_memcg_charge(void)
2609{
2610 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2611}
2612
2613static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2614{
2615 return noblock ? 0 : sk->sk_rcvtimeo;
2616}
2617
2618static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2619{
2620 return noblock ? 0 : sk->sk_sndtimeo;
2621}
2622
2623static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2624{
2625 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2626
2627 return v ?: 1;
2628}
2629
2630/* Alas, with timeout socket operations are not restartable.
2631 * Compare this to poll().
2632 */
2633static inline int sock_intr_errno(long timeo)
2634{
2635 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2636}
2637
2638struct sock_skb_cb {
2639 u32 dropcount;
2640};
2641
2642/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2643 * using skb->cb[] would keep using it directly and utilize its
2644 * alignement guarantee.
2645 */
2646#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2647 sizeof(struct sock_skb_cb)))
2648
2649#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2650 SOCK_SKB_CB_OFFSET))
2651
2652#define sock_skb_cb_check_size(size) \
2653 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2654
2655static inline void
2656sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2657{
2658 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2659 atomic_read(&sk->sk_drops) : 0;
2660}
2661
2662static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2663{
2664 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2665
2666 atomic_add(segs, &sk->sk_drops);
2667}
2668
2669static inline ktime_t sock_read_timestamp(struct sock *sk)
2670{
2671#if BITS_PER_LONG==32
2672 unsigned int seq;
2673 ktime_t kt;
2674
2675 do {
2676 seq = read_seqbegin(&sk->sk_stamp_seq);
2677 kt = sk->sk_stamp;
2678 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2679
2680 return kt;
2681#else
2682 return READ_ONCE(sk->sk_stamp);
2683#endif
2684}
2685
2686static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2687{
2688#if BITS_PER_LONG==32
2689 write_seqlock(&sk->sk_stamp_seq);
2690 sk->sk_stamp = kt;
2691 write_sequnlock(&sk->sk_stamp_seq);
2692#else
2693 WRITE_ONCE(sk->sk_stamp, kt);
2694#endif
2695}
2696
2697void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2698 struct sk_buff *skb);
2699void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2700 struct sk_buff *skb);
2701
2702static inline void
2703sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2704{
2705 ktime_t kt = skb->tstamp;
2706 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2707
2708 /*
2709 * generate control messages if
2710 * - receive time stamping in software requested
2711 * - software time stamp available and wanted
2712 * - hardware time stamps available and wanted
2713 */
2714 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2715 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2716 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2717 (hwtstamps->hwtstamp &&
2718 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2719 __sock_recv_timestamp(msg, sk, skb);
2720 else
2721 sock_write_timestamp(sk, kt);
2722
2723 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2724 __sock_recv_wifi_status(msg, sk, skb);
2725}
2726
2727void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2728 struct sk_buff *skb);
2729
2730#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2731static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2732 struct sk_buff *skb)
2733{
2734#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2735 (1UL << SOCK_RCVTSTAMP) | \
2736 (1UL << SOCK_RCVMARK))
2737#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2738 SOF_TIMESTAMPING_RAW_HARDWARE)
2739
2740 if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2741 __sock_recv_cmsgs(msg, sk, skb);
2742 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2743 sock_write_timestamp(sk, skb->tstamp);
2744 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2745 sock_write_timestamp(sk, 0);
2746}
2747
2748void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2749
2750/**
2751 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2752 * @sk: socket sending this packet
2753 * @tsflags: timestamping flags to use
2754 * @tx_flags: completed with instructions for time stamping
2755 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2756 *
2757 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2758 */
2759static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2760 __u8 *tx_flags, __u32 *tskey)
2761{
2762 if (unlikely(tsflags)) {
2763 __sock_tx_timestamp(tsflags, tx_flags);
2764 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2765 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2766 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2767 }
2768 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2769 *tx_flags |= SKBTX_WIFI_STATUS;
2770}
2771
2772static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2773 __u8 *tx_flags)
2774{
2775 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2776}
2777
2778static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2779{
2780 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2781 &skb_shinfo(skb)->tskey);
2782}
2783
2784static inline bool sk_is_tcp(const struct sock *sk)
2785{
2786 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2787}
2788
2789/**
2790 * sk_eat_skb - Release a skb if it is no longer needed
2791 * @sk: socket to eat this skb from
2792 * @skb: socket buffer to eat
2793 *
2794 * This routine must be called with interrupts disabled or with the socket
2795 * locked so that the sk_buff queue operation is ok.
2796*/
2797static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2798{
2799 __skb_unlink(skb, &sk->sk_receive_queue);
2800 __kfree_skb(skb);
2801}
2802
2803static inline bool
2804skb_sk_is_prefetched(struct sk_buff *skb)
2805{
2806#ifdef CONFIG_INET
2807 return skb->destructor == sock_pfree;
2808#else
2809 return false;
2810#endif /* CONFIG_INET */
2811}
2812
2813/* This helper checks if a socket is a full socket,
2814 * ie _not_ a timewait or request socket.
2815 */
2816static inline bool sk_fullsock(const struct sock *sk)
2817{
2818 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2819}
2820
2821static inline bool
2822sk_is_refcounted(struct sock *sk)
2823{
2824 /* Only full sockets have sk->sk_flags. */
2825 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2826}
2827
2828/**
2829 * skb_steal_sock - steal a socket from an sk_buff
2830 * @skb: sk_buff to steal the socket from
2831 * @refcounted: is set to true if the socket is reference-counted
2832 */
2833static inline struct sock *
2834skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2835{
2836 if (skb->sk) {
2837 struct sock *sk = skb->sk;
2838
2839 *refcounted = true;
2840 if (skb_sk_is_prefetched(skb))
2841 *refcounted = sk_is_refcounted(sk);
2842 skb->destructor = NULL;
2843 skb->sk = NULL;
2844 return sk;
2845 }
2846 *refcounted = false;
2847 return NULL;
2848}
2849
2850/* Checks if this SKB belongs to an HW offloaded socket
2851 * and whether any SW fallbacks are required based on dev.
2852 * Check decrypted mark in case skb_orphan() cleared socket.
2853 */
2854static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2855 struct net_device *dev)
2856{
2857#ifdef CONFIG_SOCK_VALIDATE_XMIT
2858 struct sock *sk = skb->sk;
2859
2860 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2861 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2862#ifdef CONFIG_TLS_DEVICE
2863 } else if (unlikely(skb->decrypted)) {
2864 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2865 kfree_skb(skb);
2866 skb = NULL;
2867#endif
2868 }
2869#endif
2870
2871 return skb;
2872}
2873
2874/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2875 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2876 */
2877static inline bool sk_listener(const struct sock *sk)
2878{
2879 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2880}
2881
2882void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2883int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2884 int type);
2885
2886bool sk_ns_capable(const struct sock *sk,
2887 struct user_namespace *user_ns, int cap);
2888bool sk_capable(const struct sock *sk, int cap);
2889bool sk_net_capable(const struct sock *sk, int cap);
2890
2891void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2892
2893/* Take into consideration the size of the struct sk_buff overhead in the
2894 * determination of these values, since that is non-constant across
2895 * platforms. This makes socket queueing behavior and performance
2896 * not depend upon such differences.
2897 */
2898#define _SK_MEM_PACKETS 256
2899#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2900#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2901#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2902
2903extern __u32 sysctl_wmem_max;
2904extern __u32 sysctl_rmem_max;
2905
2906extern int sysctl_tstamp_allow_data;
2907extern int sysctl_optmem_max;
2908
2909extern __u32 sysctl_wmem_default;
2910extern __u32 sysctl_rmem_default;
2911
2912#define SKB_FRAG_PAGE_ORDER get_order(32768)
2913DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2914
2915static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2916{
2917 /* Does this proto have per netns sysctl_wmem ? */
2918 if (proto->sysctl_wmem_offset)
2919 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2920
2921 return READ_ONCE(*proto->sysctl_wmem);
2922}
2923
2924static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2925{
2926 /* Does this proto have per netns sysctl_rmem ? */
2927 if (proto->sysctl_rmem_offset)
2928 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2929
2930 return READ_ONCE(*proto->sysctl_rmem);
2931}
2932
2933/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2934 * Some wifi drivers need to tweak it to get more chunks.
2935 * They can use this helper from their ndo_start_xmit()
2936 */
2937static inline void sk_pacing_shift_update(struct sock *sk, int val)
2938{
2939 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2940 return;
2941 WRITE_ONCE(sk->sk_pacing_shift, val);
2942}
2943
2944/* if a socket is bound to a device, check that the given device
2945 * index is either the same or that the socket is bound to an L3
2946 * master device and the given device index is also enslaved to
2947 * that L3 master
2948 */
2949static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2950{
2951 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2952 int mdif;
2953
2954 if (!bound_dev_if || bound_dev_if == dif)
2955 return true;
2956
2957 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2958 if (mdif && mdif == bound_dev_if)
2959 return true;
2960
2961 return false;
2962}
2963
2964void sock_def_readable(struct sock *sk);
2965
2966int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2967void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2968int sock_set_timestamping(struct sock *sk, int optname,
2969 struct so_timestamping timestamping);
2970
2971void sock_enable_timestamps(struct sock *sk);
2972void sock_no_linger(struct sock *sk);
2973void sock_set_keepalive(struct sock *sk);
2974void sock_set_priority(struct sock *sk, u32 priority);
2975void sock_set_rcvbuf(struct sock *sk, int val);
2976void sock_set_mark(struct sock *sk, u32 val);
2977void sock_set_reuseaddr(struct sock *sk);
2978void sock_set_reuseport(struct sock *sk);
2979void sock_set_sndtimeo(struct sock *sk, s64 secs);
2980
2981int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2982
2983int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2984int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2985 sockptr_t optval, int optlen, bool old_timeval);
2986
2987static inline bool sk_is_readable(struct sock *sk)
2988{
2989 if (sk->sk_prot->sock_is_readable)
2990 return sk->sk_prot->sock_is_readable(sk);
2991 return false;
2992}
2993#endif /* _SOCK_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
62#include <linux/sockptr.h>
63
64#include <linux/atomic.h>
65#include <linux/refcount.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71
72/*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78/* Define this to get the SOCK_DBG debugging facility. */
79#define SOCK_DEBUGGING
80#ifdef SOCK_DEBUGGING
81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83#else
84/* Validate arguments and do nothing */
85static inline __printf(2, 3)
86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87{
88}
89#endif
90
91/* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105#ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107#endif
108} socket_lock_t;
109
110struct sock;
111struct proto;
112struct net;
113
114typedef __u32 __bitwise __portpair;
115typedef __u64 __bitwise __addrpair;
116
117/**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
152 * @skc_incoming_cpu: record/match cpu processing incoming packets
153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203#endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229#ifdef CONFIG_XPS
230 unsigned short skc_rx_queue_mapping;
231#endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247};
248
249struct bpf_sk_storage;
250
251/**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_priority: %SO_PRIORITY setting
305 * @sk_type: socket type (%SOCK_STREAM, etc)
306 * @sk_protocol: which protocol this socket belongs in this network family
307 * @sk_peer_pid: &struct pid for this socket's peer
308 * @sk_peer_cred: %SO_PEERCRED setting
309 * @sk_rcvlowat: %SO_RCVLOWAT setting
310 * @sk_rcvtimeo: %SO_RCVTIMEO setting
311 * @sk_sndtimeo: %SO_SNDTIMEO setting
312 * @sk_txhash: computed flow hash for use on transmit
313 * @sk_filter: socket filtering instructions
314 * @sk_timer: sock cleanup timer
315 * @sk_stamp: time stamp of last packet received
316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
317 * @sk_tsflags: SO_TIMESTAMPING socket options
318 * @sk_tskey: counter to disambiguate concurrent tstamp requests
319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
320 * @sk_socket: Identd and reporting IO signals
321 * @sk_user_data: RPC layer private data
322 * @sk_frag: cached page frag
323 * @sk_peek_off: current peek_offset value
324 * @sk_send_head: front of stuff to transmit
325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
327 * @sk_security: used by security modules
328 * @sk_mark: generic packet mark
329 * @sk_cgrp_data: cgroup data for this cgroup
330 * @sk_memcg: this socket's memory cgroup association
331 * @sk_write_pending: a write to stream socket waits to start
332 * @sk_state_change: callback to indicate change in the state of the sock
333 * @sk_data_ready: callback to indicate there is data to be processed
334 * @sk_write_space: callback to indicate there is bf sending space available
335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336 * @sk_backlog_rcv: callback to process the backlog
337 * @sk_validate_xmit_skb: ptr to an optional validate function
338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339 * @sk_reuseport_cb: reuseport group container
340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
341 * @sk_rcu: used during RCU grace period
342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
345 * @sk_txtime_unused: unused txtime flags
346 */
347struct sock {
348 /*
349 * Now struct inet_timewait_sock also uses sock_common, so please just
350 * don't add nothing before this first member (__sk_common) --acme
351 */
352 struct sock_common __sk_common;
353#define sk_node __sk_common.skc_node
354#define sk_nulls_node __sk_common.skc_nulls_node
355#define sk_refcnt __sk_common.skc_refcnt
356#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
357#ifdef CONFIG_XPS
358#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
359#endif
360
361#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
362#define sk_dontcopy_end __sk_common.skc_dontcopy_end
363#define sk_hash __sk_common.skc_hash
364#define sk_portpair __sk_common.skc_portpair
365#define sk_num __sk_common.skc_num
366#define sk_dport __sk_common.skc_dport
367#define sk_addrpair __sk_common.skc_addrpair
368#define sk_daddr __sk_common.skc_daddr
369#define sk_rcv_saddr __sk_common.skc_rcv_saddr
370#define sk_family __sk_common.skc_family
371#define sk_state __sk_common.skc_state
372#define sk_reuse __sk_common.skc_reuse
373#define sk_reuseport __sk_common.skc_reuseport
374#define sk_ipv6only __sk_common.skc_ipv6only
375#define sk_net_refcnt __sk_common.skc_net_refcnt
376#define sk_bound_dev_if __sk_common.skc_bound_dev_if
377#define sk_bind_node __sk_common.skc_bind_node
378#define sk_prot __sk_common.skc_prot
379#define sk_net __sk_common.skc_net
380#define sk_v6_daddr __sk_common.skc_v6_daddr
381#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
382#define sk_cookie __sk_common.skc_cookie
383#define sk_incoming_cpu __sk_common.skc_incoming_cpu
384#define sk_flags __sk_common.skc_flags
385#define sk_rxhash __sk_common.skc_rxhash
386
387 socket_lock_t sk_lock;
388 atomic_t sk_drops;
389 int sk_rcvlowat;
390 struct sk_buff_head sk_error_queue;
391 struct sk_buff *sk_rx_skb_cache;
392 struct sk_buff_head sk_receive_queue;
393 /*
394 * The backlog queue is special, it is always used with
395 * the per-socket spinlock held and requires low latency
396 * access. Therefore we special case it's implementation.
397 * Note : rmem_alloc is in this structure to fill a hole
398 * on 64bit arches, not because its logically part of
399 * backlog.
400 */
401 struct {
402 atomic_t rmem_alloc;
403 int len;
404 struct sk_buff *head;
405 struct sk_buff *tail;
406 } sk_backlog;
407#define sk_rmem_alloc sk_backlog.rmem_alloc
408
409 int sk_forward_alloc;
410#ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int sk_ll_usec;
412 /* ===== mostly read cache line ===== */
413 unsigned int sk_napi_id;
414#endif
415 int sk_rcvbuf;
416
417 struct sk_filter __rcu *sk_filter;
418 union {
419 struct socket_wq __rcu *sk_wq;
420 /* private: */
421 struct socket_wq *sk_wq_raw;
422 /* public: */
423 };
424#ifdef CONFIG_XFRM
425 struct xfrm_policy __rcu *sk_policy[2];
426#endif
427 struct dst_entry *sk_rx_dst;
428 struct dst_entry __rcu *sk_dst_cache;
429 atomic_t sk_omem_alloc;
430 int sk_sndbuf;
431
432 /* ===== cache line for TX ===== */
433 int sk_wmem_queued;
434 refcount_t sk_wmem_alloc;
435 unsigned long sk_tsq_flags;
436 union {
437 struct sk_buff *sk_send_head;
438 struct rb_root tcp_rtx_queue;
439 };
440 struct sk_buff *sk_tx_skb_cache;
441 struct sk_buff_head sk_write_queue;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 __u32 sk_dst_pending_confirm;
445 u32 sk_pacing_status; /* see enum sk_pacing */
446 long sk_sndtimeo;
447 struct timer_list sk_timer;
448 __u32 sk_priority;
449 __u32 sk_mark;
450 unsigned long sk_pacing_rate; /* bytes per second */
451 unsigned long sk_max_pacing_rate;
452 struct page_frag sk_frag;
453 netdev_features_t sk_route_caps;
454 netdev_features_t sk_route_nocaps;
455 netdev_features_t sk_route_forced_caps;
456 int sk_gso_type;
457 unsigned int sk_gso_max_size;
458 gfp_t sk_allocation;
459 __u32 sk_txhash;
460
461 /*
462 * Because of non atomicity rules, all
463 * changes are protected by socket lock.
464 */
465 u8 sk_padding : 1,
466 sk_kern_sock : 1,
467 sk_no_check_tx : 1,
468 sk_no_check_rx : 1,
469 sk_userlocks : 4;
470 u8 sk_pacing_shift;
471 u16 sk_type;
472 u16 sk_protocol;
473 u16 sk_gso_max_segs;
474 unsigned long sk_lingertime;
475 struct proto *sk_prot_creator;
476 rwlock_t sk_callback_lock;
477 int sk_err,
478 sk_err_soft;
479 u32 sk_ack_backlog;
480 u32 sk_max_ack_backlog;
481 kuid_t sk_uid;
482 struct pid *sk_peer_pid;
483 const struct cred *sk_peer_cred;
484 long sk_rcvtimeo;
485 ktime_t sk_stamp;
486#if BITS_PER_LONG==32
487 seqlock_t sk_stamp_seq;
488#endif
489 u16 sk_tsflags;
490 u8 sk_shutdown;
491 u32 sk_tskey;
492 atomic_t sk_zckey;
493
494 u8 sk_clockid;
495 u8 sk_txtime_deadline_mode : 1,
496 sk_txtime_report_errors : 1,
497 sk_txtime_unused : 6;
498
499 struct socket *sk_socket;
500 void *sk_user_data;
501#ifdef CONFIG_SECURITY
502 void *sk_security;
503#endif
504 struct sock_cgroup_data sk_cgrp_data;
505 struct mem_cgroup *sk_memcg;
506 void (*sk_state_change)(struct sock *sk);
507 void (*sk_data_ready)(struct sock *sk);
508 void (*sk_write_space)(struct sock *sk);
509 void (*sk_error_report)(struct sock *sk);
510 int (*sk_backlog_rcv)(struct sock *sk,
511 struct sk_buff *skb);
512#ifdef CONFIG_SOCK_VALIDATE_XMIT
513 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
514 struct net_device *dev,
515 struct sk_buff *skb);
516#endif
517 void (*sk_destruct)(struct sock *sk);
518 struct sock_reuseport __rcu *sk_reuseport_cb;
519#ifdef CONFIG_BPF_SYSCALL
520 struct bpf_sk_storage __rcu *sk_bpf_storage;
521#endif
522 struct rcu_head sk_rcu;
523};
524
525enum sk_pacing {
526 SK_PACING_NONE = 0,
527 SK_PACING_NEEDED = 1,
528 SK_PACING_FQ = 2,
529};
530
531/* Pointer stored in sk_user_data might not be suitable for copying
532 * when cloning the socket. For instance, it can point to a reference
533 * counted object. sk_user_data bottom bit is set if pointer must not
534 * be copied.
535 */
536#define SK_USER_DATA_NOCOPY 1UL
537#define SK_USER_DATA_BPF 2UL /* Managed by BPF */
538#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
539
540/**
541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
542 * @sk: socket
543 */
544static inline bool sk_user_data_is_nocopy(const struct sock *sk)
545{
546 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
547}
548
549#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
550
551#define rcu_dereference_sk_user_data(sk) \
552({ \
553 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
554 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
555})
556#define rcu_assign_sk_user_data(sk, ptr) \
557({ \
558 uintptr_t __tmp = (uintptr_t)(ptr); \
559 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
560 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
561})
562#define rcu_assign_sk_user_data_nocopy(sk, ptr) \
563({ \
564 uintptr_t __tmp = (uintptr_t)(ptr); \
565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
566 rcu_assign_pointer(__sk_user_data((sk)), \
567 __tmp | SK_USER_DATA_NOCOPY); \
568})
569
570/*
571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
573 * on a socket means that the socket will reuse everybody else's port
574 * without looking at the other's sk_reuse value.
575 */
576
577#define SK_NO_REUSE 0
578#define SK_CAN_REUSE 1
579#define SK_FORCE_REUSE 2
580
581int sk_set_peek_off(struct sock *sk, int val);
582
583static inline int sk_peek_offset(struct sock *sk, int flags)
584{
585 if (unlikely(flags & MSG_PEEK)) {
586 return READ_ONCE(sk->sk_peek_off);
587 }
588
589 return 0;
590}
591
592static inline void sk_peek_offset_bwd(struct sock *sk, int val)
593{
594 s32 off = READ_ONCE(sk->sk_peek_off);
595
596 if (unlikely(off >= 0)) {
597 off = max_t(s32, off - val, 0);
598 WRITE_ONCE(sk->sk_peek_off, off);
599 }
600}
601
602static inline void sk_peek_offset_fwd(struct sock *sk, int val)
603{
604 sk_peek_offset_bwd(sk, -val);
605}
606
607/*
608 * Hashed lists helper routines
609 */
610static inline struct sock *sk_entry(const struct hlist_node *node)
611{
612 return hlist_entry(node, struct sock, sk_node);
613}
614
615static inline struct sock *__sk_head(const struct hlist_head *head)
616{
617 return hlist_entry(head->first, struct sock, sk_node);
618}
619
620static inline struct sock *sk_head(const struct hlist_head *head)
621{
622 return hlist_empty(head) ? NULL : __sk_head(head);
623}
624
625static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
626{
627 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
628}
629
630static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
631{
632 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
633}
634
635static inline struct sock *sk_next(const struct sock *sk)
636{
637 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
638}
639
640static inline struct sock *sk_nulls_next(const struct sock *sk)
641{
642 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
643 hlist_nulls_entry(sk->sk_nulls_node.next,
644 struct sock, sk_nulls_node) :
645 NULL;
646}
647
648static inline bool sk_unhashed(const struct sock *sk)
649{
650 return hlist_unhashed(&sk->sk_node);
651}
652
653static inline bool sk_hashed(const struct sock *sk)
654{
655 return !sk_unhashed(sk);
656}
657
658static inline void sk_node_init(struct hlist_node *node)
659{
660 node->pprev = NULL;
661}
662
663static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
664{
665 node->pprev = NULL;
666}
667
668static inline void __sk_del_node(struct sock *sk)
669{
670 __hlist_del(&sk->sk_node);
671}
672
673/* NB: equivalent to hlist_del_init_rcu */
674static inline bool __sk_del_node_init(struct sock *sk)
675{
676 if (sk_hashed(sk)) {
677 __sk_del_node(sk);
678 sk_node_init(&sk->sk_node);
679 return true;
680 }
681 return false;
682}
683
684/* Grab socket reference count. This operation is valid only
685 when sk is ALREADY grabbed f.e. it is found in hash table
686 or a list and the lookup is made under lock preventing hash table
687 modifications.
688 */
689
690static __always_inline void sock_hold(struct sock *sk)
691{
692 refcount_inc(&sk->sk_refcnt);
693}
694
695/* Ungrab socket in the context, which assumes that socket refcnt
696 cannot hit zero, f.e. it is true in context of any socketcall.
697 */
698static __always_inline void __sock_put(struct sock *sk)
699{
700 refcount_dec(&sk->sk_refcnt);
701}
702
703static inline bool sk_del_node_init(struct sock *sk)
704{
705 bool rc = __sk_del_node_init(sk);
706
707 if (rc) {
708 /* paranoid for a while -acme */
709 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
710 __sock_put(sk);
711 }
712 return rc;
713}
714#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
715
716static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
717{
718 if (sk_hashed(sk)) {
719 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
720 return true;
721 }
722 return false;
723}
724
725static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
726{
727 bool rc = __sk_nulls_del_node_init_rcu(sk);
728
729 if (rc) {
730 /* paranoid for a while -acme */
731 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
732 __sock_put(sk);
733 }
734 return rc;
735}
736
737static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
738{
739 hlist_add_head(&sk->sk_node, list);
740}
741
742static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
743{
744 sock_hold(sk);
745 __sk_add_node(sk, list);
746}
747
748static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
749{
750 sock_hold(sk);
751 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
752 sk->sk_family == AF_INET6)
753 hlist_add_tail_rcu(&sk->sk_node, list);
754 else
755 hlist_add_head_rcu(&sk->sk_node, list);
756}
757
758static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
759{
760 sock_hold(sk);
761 hlist_add_tail_rcu(&sk->sk_node, list);
762}
763
764static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
765{
766 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
767}
768
769static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
770{
771 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
772}
773
774static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775{
776 sock_hold(sk);
777 __sk_nulls_add_node_rcu(sk, list);
778}
779
780static inline void __sk_del_bind_node(struct sock *sk)
781{
782 __hlist_del(&sk->sk_bind_node);
783}
784
785static inline void sk_add_bind_node(struct sock *sk,
786 struct hlist_head *list)
787{
788 hlist_add_head(&sk->sk_bind_node, list);
789}
790
791#define sk_for_each(__sk, list) \
792 hlist_for_each_entry(__sk, list, sk_node)
793#define sk_for_each_rcu(__sk, list) \
794 hlist_for_each_entry_rcu(__sk, list, sk_node)
795#define sk_nulls_for_each(__sk, node, list) \
796 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
797#define sk_nulls_for_each_rcu(__sk, node, list) \
798 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
799#define sk_for_each_from(__sk) \
800 hlist_for_each_entry_from(__sk, sk_node)
801#define sk_nulls_for_each_from(__sk, node) \
802 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
803 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
804#define sk_for_each_safe(__sk, tmp, list) \
805 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
806#define sk_for_each_bound(__sk, list) \
807 hlist_for_each_entry(__sk, list, sk_bind_node)
808
809/**
810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
811 * @tpos: the type * to use as a loop cursor.
812 * @pos: the &struct hlist_node to use as a loop cursor.
813 * @head: the head for your list.
814 * @offset: offset of hlist_node within the struct.
815 *
816 */
817#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
818 for (pos = rcu_dereference(hlist_first_rcu(head)); \
819 pos != NULL && \
820 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
821 pos = rcu_dereference(hlist_next_rcu(pos)))
822
823static inline struct user_namespace *sk_user_ns(struct sock *sk)
824{
825 /* Careful only use this in a context where these parameters
826 * can not change and must all be valid, such as recvmsg from
827 * userspace.
828 */
829 return sk->sk_socket->file->f_cred->user_ns;
830}
831
832/* Sock flags */
833enum sock_flags {
834 SOCK_DEAD,
835 SOCK_DONE,
836 SOCK_URGINLINE,
837 SOCK_KEEPOPEN,
838 SOCK_LINGER,
839 SOCK_DESTROY,
840 SOCK_BROADCAST,
841 SOCK_TIMESTAMP,
842 SOCK_ZAPPED,
843 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
844 SOCK_DBG, /* %SO_DEBUG setting */
845 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
846 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
847 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
848 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
849 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
850 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
851 SOCK_FASYNC, /* fasync() active */
852 SOCK_RXQ_OVFL,
853 SOCK_ZEROCOPY, /* buffers from userspace */
854 SOCK_WIFI_STATUS, /* push wifi status to userspace */
855 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
856 * Will use last 4 bytes of packet sent from
857 * user-space instead.
858 */
859 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
860 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
861 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
862 SOCK_TXTIME,
863 SOCK_XDP, /* XDP is attached */
864 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
865};
866
867#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
868
869static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
870{
871 nsk->sk_flags = osk->sk_flags;
872}
873
874static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
875{
876 __set_bit(flag, &sk->sk_flags);
877}
878
879static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
880{
881 __clear_bit(flag, &sk->sk_flags);
882}
883
884static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
885 int valbool)
886{
887 if (valbool)
888 sock_set_flag(sk, bit);
889 else
890 sock_reset_flag(sk, bit);
891}
892
893static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
894{
895 return test_bit(flag, &sk->sk_flags);
896}
897
898#ifdef CONFIG_NET
899DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
900static inline int sk_memalloc_socks(void)
901{
902 return static_branch_unlikely(&memalloc_socks_key);
903}
904
905void __receive_sock(struct file *file);
906#else
907
908static inline int sk_memalloc_socks(void)
909{
910 return 0;
911}
912
913static inline void __receive_sock(struct file *file)
914{ }
915#endif
916
917static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
918{
919 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
920}
921
922static inline void sk_acceptq_removed(struct sock *sk)
923{
924 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
925}
926
927static inline void sk_acceptq_added(struct sock *sk)
928{
929 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
930}
931
932static inline bool sk_acceptq_is_full(const struct sock *sk)
933{
934 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
935}
936
937/*
938 * Compute minimal free write space needed to queue new packets.
939 */
940static inline int sk_stream_min_wspace(const struct sock *sk)
941{
942 return READ_ONCE(sk->sk_wmem_queued) >> 1;
943}
944
945static inline int sk_stream_wspace(const struct sock *sk)
946{
947 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
948}
949
950static inline void sk_wmem_queued_add(struct sock *sk, int val)
951{
952 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
953}
954
955void sk_stream_write_space(struct sock *sk);
956
957/* OOB backlog add */
958static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
959{
960 /* dont let skb dst not refcounted, we are going to leave rcu lock */
961 skb_dst_force(skb);
962
963 if (!sk->sk_backlog.tail)
964 WRITE_ONCE(sk->sk_backlog.head, skb);
965 else
966 sk->sk_backlog.tail->next = skb;
967
968 WRITE_ONCE(sk->sk_backlog.tail, skb);
969 skb->next = NULL;
970}
971
972/*
973 * Take into account size of receive queue and backlog queue
974 * Do not take into account this skb truesize,
975 * to allow even a single big packet to come.
976 */
977static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
978{
979 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
980
981 return qsize > limit;
982}
983
984/* The per-socket spinlock must be held here. */
985static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
986 unsigned int limit)
987{
988 if (sk_rcvqueues_full(sk, limit))
989 return -ENOBUFS;
990
991 /*
992 * If the skb was allocated from pfmemalloc reserves, only
993 * allow SOCK_MEMALLOC sockets to use it as this socket is
994 * helping free memory
995 */
996 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
997 return -ENOMEM;
998
999 __sk_add_backlog(sk, skb);
1000 sk->sk_backlog.len += skb->truesize;
1001 return 0;
1002}
1003
1004int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1005
1006static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1007{
1008 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1009 return __sk_backlog_rcv(sk, skb);
1010
1011 return sk->sk_backlog_rcv(sk, skb);
1012}
1013
1014static inline void sk_incoming_cpu_update(struct sock *sk)
1015{
1016 int cpu = raw_smp_processor_id();
1017
1018 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1019 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1020}
1021
1022static inline void sock_rps_record_flow_hash(__u32 hash)
1023{
1024#ifdef CONFIG_RPS
1025 struct rps_sock_flow_table *sock_flow_table;
1026
1027 rcu_read_lock();
1028 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1029 rps_record_sock_flow(sock_flow_table, hash);
1030 rcu_read_unlock();
1031#endif
1032}
1033
1034static inline void sock_rps_record_flow(const struct sock *sk)
1035{
1036#ifdef CONFIG_RPS
1037 if (static_branch_unlikely(&rfs_needed)) {
1038 /* Reading sk->sk_rxhash might incur an expensive cache line
1039 * miss.
1040 *
1041 * TCP_ESTABLISHED does cover almost all states where RFS
1042 * might be useful, and is cheaper [1] than testing :
1043 * IPv4: inet_sk(sk)->inet_daddr
1044 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1045 * OR an additional socket flag
1046 * [1] : sk_state and sk_prot are in the same cache line.
1047 */
1048 if (sk->sk_state == TCP_ESTABLISHED)
1049 sock_rps_record_flow_hash(sk->sk_rxhash);
1050 }
1051#endif
1052}
1053
1054static inline void sock_rps_save_rxhash(struct sock *sk,
1055 const struct sk_buff *skb)
1056{
1057#ifdef CONFIG_RPS
1058 if (unlikely(sk->sk_rxhash != skb->hash))
1059 sk->sk_rxhash = skb->hash;
1060#endif
1061}
1062
1063static inline void sock_rps_reset_rxhash(struct sock *sk)
1064{
1065#ifdef CONFIG_RPS
1066 sk->sk_rxhash = 0;
1067#endif
1068}
1069
1070#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1071 ({ int __rc; \
1072 release_sock(__sk); \
1073 __rc = __condition; \
1074 if (!__rc) { \
1075 *(__timeo) = wait_woken(__wait, \
1076 TASK_INTERRUPTIBLE, \
1077 *(__timeo)); \
1078 } \
1079 sched_annotate_sleep(); \
1080 lock_sock(__sk); \
1081 __rc = __condition; \
1082 __rc; \
1083 })
1084
1085int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1086int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1087void sk_stream_wait_close(struct sock *sk, long timeo_p);
1088int sk_stream_error(struct sock *sk, int flags, int err);
1089void sk_stream_kill_queues(struct sock *sk);
1090void sk_set_memalloc(struct sock *sk);
1091void sk_clear_memalloc(struct sock *sk);
1092
1093void __sk_flush_backlog(struct sock *sk);
1094
1095static inline bool sk_flush_backlog(struct sock *sk)
1096{
1097 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1098 __sk_flush_backlog(sk);
1099 return true;
1100 }
1101 return false;
1102}
1103
1104int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1105
1106struct request_sock_ops;
1107struct timewait_sock_ops;
1108struct inet_hashinfo;
1109struct raw_hashinfo;
1110struct smc_hashinfo;
1111struct module;
1112
1113/*
1114 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1115 * un-modified. Special care is taken when initializing object to zero.
1116 */
1117static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1118{
1119 if (offsetof(struct sock, sk_node.next) != 0)
1120 memset(sk, 0, offsetof(struct sock, sk_node.next));
1121 memset(&sk->sk_node.pprev, 0,
1122 size - offsetof(struct sock, sk_node.pprev));
1123}
1124
1125/* Networking protocol blocks we attach to sockets.
1126 * socket layer -> transport layer interface
1127 */
1128struct proto {
1129 void (*close)(struct sock *sk,
1130 long timeout);
1131 int (*pre_connect)(struct sock *sk,
1132 struct sockaddr *uaddr,
1133 int addr_len);
1134 int (*connect)(struct sock *sk,
1135 struct sockaddr *uaddr,
1136 int addr_len);
1137 int (*disconnect)(struct sock *sk, int flags);
1138
1139 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1140 bool kern);
1141
1142 int (*ioctl)(struct sock *sk, int cmd,
1143 unsigned long arg);
1144 int (*init)(struct sock *sk);
1145 void (*destroy)(struct sock *sk);
1146 void (*shutdown)(struct sock *sk, int how);
1147 int (*setsockopt)(struct sock *sk, int level,
1148 int optname, sockptr_t optval,
1149 unsigned int optlen);
1150 int (*getsockopt)(struct sock *sk, int level,
1151 int optname, char __user *optval,
1152 int __user *option);
1153 void (*keepalive)(struct sock *sk, int valbool);
1154#ifdef CONFIG_COMPAT
1155 int (*compat_ioctl)(struct sock *sk,
1156 unsigned int cmd, unsigned long arg);
1157#endif
1158 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1159 size_t len);
1160 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1161 size_t len, int noblock, int flags,
1162 int *addr_len);
1163 int (*sendpage)(struct sock *sk, struct page *page,
1164 int offset, size_t size, int flags);
1165 int (*bind)(struct sock *sk,
1166 struct sockaddr *addr, int addr_len);
1167 int (*bind_add)(struct sock *sk,
1168 struct sockaddr *addr, int addr_len);
1169
1170 int (*backlog_rcv) (struct sock *sk,
1171 struct sk_buff *skb);
1172
1173 void (*release_cb)(struct sock *sk);
1174
1175 /* Keeping track of sk's, looking them up, and port selection methods. */
1176 int (*hash)(struct sock *sk);
1177 void (*unhash)(struct sock *sk);
1178 void (*rehash)(struct sock *sk);
1179 int (*get_port)(struct sock *sk, unsigned short snum);
1180
1181 /* Keeping track of sockets in use */
1182#ifdef CONFIG_PROC_FS
1183 unsigned int inuse_idx;
1184#endif
1185
1186 bool (*stream_memory_free)(const struct sock *sk, int wake);
1187 bool (*stream_memory_read)(const struct sock *sk);
1188 /* Memory pressure */
1189 void (*enter_memory_pressure)(struct sock *sk);
1190 void (*leave_memory_pressure)(struct sock *sk);
1191 atomic_long_t *memory_allocated; /* Current allocated memory. */
1192 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1193 /*
1194 * Pressure flag: try to collapse.
1195 * Technical note: it is used by multiple contexts non atomically.
1196 * All the __sk_mem_schedule() is of this nature: accounting
1197 * is strict, actions are advisory and have some latency.
1198 */
1199 unsigned long *memory_pressure;
1200 long *sysctl_mem;
1201
1202 int *sysctl_wmem;
1203 int *sysctl_rmem;
1204 u32 sysctl_wmem_offset;
1205 u32 sysctl_rmem_offset;
1206
1207 int max_header;
1208 bool no_autobind;
1209
1210 struct kmem_cache *slab;
1211 unsigned int obj_size;
1212 slab_flags_t slab_flags;
1213 unsigned int useroffset; /* Usercopy region offset */
1214 unsigned int usersize; /* Usercopy region size */
1215
1216 struct percpu_counter *orphan_count;
1217
1218 struct request_sock_ops *rsk_prot;
1219 struct timewait_sock_ops *twsk_prot;
1220
1221 union {
1222 struct inet_hashinfo *hashinfo;
1223 struct udp_table *udp_table;
1224 struct raw_hashinfo *raw_hash;
1225 struct smc_hashinfo *smc_hash;
1226 } h;
1227
1228 struct module *owner;
1229
1230 char name[32];
1231
1232 struct list_head node;
1233#ifdef SOCK_REFCNT_DEBUG
1234 atomic_t socks;
1235#endif
1236 int (*diag_destroy)(struct sock *sk, int err);
1237} __randomize_layout;
1238
1239int proto_register(struct proto *prot, int alloc_slab);
1240void proto_unregister(struct proto *prot);
1241int sock_load_diag_module(int family, int protocol);
1242
1243#ifdef SOCK_REFCNT_DEBUG
1244static inline void sk_refcnt_debug_inc(struct sock *sk)
1245{
1246 atomic_inc(&sk->sk_prot->socks);
1247}
1248
1249static inline void sk_refcnt_debug_dec(struct sock *sk)
1250{
1251 atomic_dec(&sk->sk_prot->socks);
1252 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1253 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1254}
1255
1256static inline void sk_refcnt_debug_release(const struct sock *sk)
1257{
1258 if (refcount_read(&sk->sk_refcnt) != 1)
1259 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1260 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1261}
1262#else /* SOCK_REFCNT_DEBUG */
1263#define sk_refcnt_debug_inc(sk) do { } while (0)
1264#define sk_refcnt_debug_dec(sk) do { } while (0)
1265#define sk_refcnt_debug_release(sk) do { } while (0)
1266#endif /* SOCK_REFCNT_DEBUG */
1267
1268static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1269{
1270 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1271 return false;
1272
1273 return sk->sk_prot->stream_memory_free ?
1274 sk->sk_prot->stream_memory_free(sk, wake) : true;
1275}
1276
1277static inline bool sk_stream_memory_free(const struct sock *sk)
1278{
1279 return __sk_stream_memory_free(sk, 0);
1280}
1281
1282static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1283{
1284 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1285 __sk_stream_memory_free(sk, wake);
1286}
1287
1288static inline bool sk_stream_is_writeable(const struct sock *sk)
1289{
1290 return __sk_stream_is_writeable(sk, 0);
1291}
1292
1293static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1294 struct cgroup *ancestor)
1295{
1296#ifdef CONFIG_SOCK_CGROUP_DATA
1297 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1298 ancestor);
1299#else
1300 return -ENOTSUPP;
1301#endif
1302}
1303
1304static inline bool sk_has_memory_pressure(const struct sock *sk)
1305{
1306 return sk->sk_prot->memory_pressure != NULL;
1307}
1308
1309static inline bool sk_under_memory_pressure(const struct sock *sk)
1310{
1311 if (!sk->sk_prot->memory_pressure)
1312 return false;
1313
1314 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1315 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1316 return true;
1317
1318 return !!*sk->sk_prot->memory_pressure;
1319}
1320
1321static inline long
1322sk_memory_allocated(const struct sock *sk)
1323{
1324 return atomic_long_read(sk->sk_prot->memory_allocated);
1325}
1326
1327static inline long
1328sk_memory_allocated_add(struct sock *sk, int amt)
1329{
1330 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1331}
1332
1333static inline void
1334sk_memory_allocated_sub(struct sock *sk, int amt)
1335{
1336 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1337}
1338
1339static inline void sk_sockets_allocated_dec(struct sock *sk)
1340{
1341 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1342}
1343
1344static inline void sk_sockets_allocated_inc(struct sock *sk)
1345{
1346 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1347}
1348
1349static inline u64
1350sk_sockets_allocated_read_positive(struct sock *sk)
1351{
1352 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1353}
1354
1355static inline int
1356proto_sockets_allocated_sum_positive(struct proto *prot)
1357{
1358 return percpu_counter_sum_positive(prot->sockets_allocated);
1359}
1360
1361static inline long
1362proto_memory_allocated(struct proto *prot)
1363{
1364 return atomic_long_read(prot->memory_allocated);
1365}
1366
1367static inline bool
1368proto_memory_pressure(struct proto *prot)
1369{
1370 if (!prot->memory_pressure)
1371 return false;
1372 return !!*prot->memory_pressure;
1373}
1374
1375
1376#ifdef CONFIG_PROC_FS
1377/* Called with local bh disabled */
1378void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1379int sock_prot_inuse_get(struct net *net, struct proto *proto);
1380int sock_inuse_get(struct net *net);
1381#else
1382static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1383 int inc)
1384{
1385}
1386#endif
1387
1388
1389/* With per-bucket locks this operation is not-atomic, so that
1390 * this version is not worse.
1391 */
1392static inline int __sk_prot_rehash(struct sock *sk)
1393{
1394 sk->sk_prot->unhash(sk);
1395 return sk->sk_prot->hash(sk);
1396}
1397
1398/* About 10 seconds */
1399#define SOCK_DESTROY_TIME (10*HZ)
1400
1401/* Sockets 0-1023 can't be bound to unless you are superuser */
1402#define PROT_SOCK 1024
1403
1404#define SHUTDOWN_MASK 3
1405#define RCV_SHUTDOWN 1
1406#define SEND_SHUTDOWN 2
1407
1408#define SOCK_SNDBUF_LOCK 1
1409#define SOCK_RCVBUF_LOCK 2
1410#define SOCK_BINDADDR_LOCK 4
1411#define SOCK_BINDPORT_LOCK 8
1412
1413struct socket_alloc {
1414 struct socket socket;
1415 struct inode vfs_inode;
1416};
1417
1418static inline struct socket *SOCKET_I(struct inode *inode)
1419{
1420 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1421}
1422
1423static inline struct inode *SOCK_INODE(struct socket *socket)
1424{
1425 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1426}
1427
1428/*
1429 * Functions for memory accounting
1430 */
1431int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1432int __sk_mem_schedule(struct sock *sk, int size, int kind);
1433void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1434void __sk_mem_reclaim(struct sock *sk, int amount);
1435
1436/* We used to have PAGE_SIZE here, but systems with 64KB pages
1437 * do not necessarily have 16x time more memory than 4KB ones.
1438 */
1439#define SK_MEM_QUANTUM 4096
1440#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1441#define SK_MEM_SEND 0
1442#define SK_MEM_RECV 1
1443
1444/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1445static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1446{
1447 long val = sk->sk_prot->sysctl_mem[index];
1448
1449#if PAGE_SIZE > SK_MEM_QUANTUM
1450 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1451#elif PAGE_SIZE < SK_MEM_QUANTUM
1452 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1453#endif
1454 return val;
1455}
1456
1457static inline int sk_mem_pages(int amt)
1458{
1459 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1460}
1461
1462static inline bool sk_has_account(struct sock *sk)
1463{
1464 /* return true if protocol supports memory accounting */
1465 return !!sk->sk_prot->memory_allocated;
1466}
1467
1468static inline bool sk_wmem_schedule(struct sock *sk, int size)
1469{
1470 if (!sk_has_account(sk))
1471 return true;
1472 return size <= sk->sk_forward_alloc ||
1473 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1474}
1475
1476static inline bool
1477sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1478{
1479 if (!sk_has_account(sk))
1480 return true;
1481 return size<= sk->sk_forward_alloc ||
1482 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1483 skb_pfmemalloc(skb);
1484}
1485
1486static inline void sk_mem_reclaim(struct sock *sk)
1487{
1488 if (!sk_has_account(sk))
1489 return;
1490 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1491 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1492}
1493
1494static inline void sk_mem_reclaim_partial(struct sock *sk)
1495{
1496 if (!sk_has_account(sk))
1497 return;
1498 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1499 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1500}
1501
1502static inline void sk_mem_charge(struct sock *sk, int size)
1503{
1504 if (!sk_has_account(sk))
1505 return;
1506 sk->sk_forward_alloc -= size;
1507}
1508
1509static inline void sk_mem_uncharge(struct sock *sk, int size)
1510{
1511 if (!sk_has_account(sk))
1512 return;
1513 sk->sk_forward_alloc += size;
1514
1515 /* Avoid a possible overflow.
1516 * TCP send queues can make this happen, if sk_mem_reclaim()
1517 * is not called and more than 2 GBytes are released at once.
1518 *
1519 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1520 * no need to hold that much forward allocation anyway.
1521 */
1522 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1523 __sk_mem_reclaim(sk, 1 << 20);
1524}
1525
1526DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1527static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1528{
1529 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530 sk_wmem_queued_add(sk, -skb->truesize);
1531 sk_mem_uncharge(sk, skb->truesize);
1532 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1533 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1534 skb_ext_reset(skb);
1535 skb_zcopy_clear(skb, true);
1536 sk->sk_tx_skb_cache = skb;
1537 return;
1538 }
1539 __kfree_skb(skb);
1540}
1541
1542static inline void sock_release_ownership(struct sock *sk)
1543{
1544 if (sk->sk_lock.owned) {
1545 sk->sk_lock.owned = 0;
1546
1547 /* The sk_lock has mutex_unlock() semantics: */
1548 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1549 }
1550}
1551
1552/*
1553 * Macro so as to not evaluate some arguments when
1554 * lockdep is not enabled.
1555 *
1556 * Mark both the sk_lock and the sk_lock.slock as a
1557 * per-address-family lock class.
1558 */
1559#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1560do { \
1561 sk->sk_lock.owned = 0; \
1562 init_waitqueue_head(&sk->sk_lock.wq); \
1563 spin_lock_init(&(sk)->sk_lock.slock); \
1564 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1565 sizeof((sk)->sk_lock)); \
1566 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1567 (skey), (sname)); \
1568 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1569} while (0)
1570
1571#ifdef CONFIG_LOCKDEP
1572static inline bool lockdep_sock_is_held(const struct sock *sk)
1573{
1574 return lockdep_is_held(&sk->sk_lock) ||
1575 lockdep_is_held(&sk->sk_lock.slock);
1576}
1577#endif
1578
1579void lock_sock_nested(struct sock *sk, int subclass);
1580
1581static inline void lock_sock(struct sock *sk)
1582{
1583 lock_sock_nested(sk, 0);
1584}
1585
1586void __release_sock(struct sock *sk);
1587void release_sock(struct sock *sk);
1588
1589/* BH context may only use the following locking interface. */
1590#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1591#define bh_lock_sock_nested(__sk) \
1592 spin_lock_nested(&((__sk)->sk_lock.slock), \
1593 SINGLE_DEPTH_NESTING)
1594#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1595
1596bool lock_sock_fast(struct sock *sk);
1597/**
1598 * unlock_sock_fast - complement of lock_sock_fast
1599 * @sk: socket
1600 * @slow: slow mode
1601 *
1602 * fast unlock socket for user context.
1603 * If slow mode is on, we call regular release_sock()
1604 */
1605static inline void unlock_sock_fast(struct sock *sk, bool slow)
1606{
1607 if (slow)
1608 release_sock(sk);
1609 else
1610 spin_unlock_bh(&sk->sk_lock.slock);
1611}
1612
1613/* Used by processes to "lock" a socket state, so that
1614 * interrupts and bottom half handlers won't change it
1615 * from under us. It essentially blocks any incoming
1616 * packets, so that we won't get any new data or any
1617 * packets that change the state of the socket.
1618 *
1619 * While locked, BH processing will add new packets to
1620 * the backlog queue. This queue is processed by the
1621 * owner of the socket lock right before it is released.
1622 *
1623 * Since ~2.3.5 it is also exclusive sleep lock serializing
1624 * accesses from user process context.
1625 */
1626
1627static inline void sock_owned_by_me(const struct sock *sk)
1628{
1629#ifdef CONFIG_LOCKDEP
1630 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1631#endif
1632}
1633
1634static inline bool sock_owned_by_user(const struct sock *sk)
1635{
1636 sock_owned_by_me(sk);
1637 return sk->sk_lock.owned;
1638}
1639
1640static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1641{
1642 return sk->sk_lock.owned;
1643}
1644
1645/* no reclassification while locks are held */
1646static inline bool sock_allow_reclassification(const struct sock *csk)
1647{
1648 struct sock *sk = (struct sock *)csk;
1649
1650 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1651}
1652
1653struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 struct proto *prot, int kern);
1655void sk_free(struct sock *sk);
1656void sk_destruct(struct sock *sk);
1657struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1658void sk_free_unlock_clone(struct sock *sk);
1659
1660struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1661 gfp_t priority);
1662void __sock_wfree(struct sk_buff *skb);
1663void sock_wfree(struct sk_buff *skb);
1664struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1665 gfp_t priority);
1666void skb_orphan_partial(struct sk_buff *skb);
1667void sock_rfree(struct sk_buff *skb);
1668void sock_efree(struct sk_buff *skb);
1669#ifdef CONFIG_INET
1670void sock_edemux(struct sk_buff *skb);
1671void sock_pfree(struct sk_buff *skb);
1672#else
1673#define sock_edemux sock_efree
1674#endif
1675
1676int sock_setsockopt(struct socket *sock, int level, int op,
1677 sockptr_t optval, unsigned int optlen);
1678
1679int sock_getsockopt(struct socket *sock, int level, int op,
1680 char __user *optval, int __user *optlen);
1681int sock_gettstamp(struct socket *sock, void __user *userstamp,
1682 bool timeval, bool time32);
1683struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1684 int noblock, int *errcode);
1685struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1686 unsigned long data_len, int noblock,
1687 int *errcode, int max_page_order);
1688void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1689void sock_kfree_s(struct sock *sk, void *mem, int size);
1690void sock_kzfree_s(struct sock *sk, void *mem, int size);
1691void sk_send_sigurg(struct sock *sk);
1692
1693struct sockcm_cookie {
1694 u64 transmit_time;
1695 u32 mark;
1696 u16 tsflags;
1697};
1698
1699static inline void sockcm_init(struct sockcm_cookie *sockc,
1700 const struct sock *sk)
1701{
1702 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1703}
1704
1705int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1706 struct sockcm_cookie *sockc);
1707int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1708 struct sockcm_cookie *sockc);
1709
1710/*
1711 * Functions to fill in entries in struct proto_ops when a protocol
1712 * does not implement a particular function.
1713 */
1714int sock_no_bind(struct socket *, struct sockaddr *, int);
1715int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1716int sock_no_socketpair(struct socket *, struct socket *);
1717int sock_no_accept(struct socket *, struct socket *, int, bool);
1718int sock_no_getname(struct socket *, struct sockaddr *, int);
1719int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1720int sock_no_listen(struct socket *, int);
1721int sock_no_shutdown(struct socket *, int);
1722int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1723int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1724int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1725int sock_no_mmap(struct file *file, struct socket *sock,
1726 struct vm_area_struct *vma);
1727ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1728 size_t size, int flags);
1729ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1730 int offset, size_t size, int flags);
1731
1732/*
1733 * Functions to fill in entries in struct proto_ops when a protocol
1734 * uses the inet style.
1735 */
1736int sock_common_getsockopt(struct socket *sock, int level, int optname,
1737 char __user *optval, int __user *optlen);
1738int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1739 int flags);
1740int sock_common_setsockopt(struct socket *sock, int level, int optname,
1741 sockptr_t optval, unsigned int optlen);
1742
1743void sk_common_release(struct sock *sk);
1744
1745/*
1746 * Default socket callbacks and setup code
1747 */
1748
1749/* Initialise core socket variables */
1750void sock_init_data(struct socket *sock, struct sock *sk);
1751
1752/*
1753 * Socket reference counting postulates.
1754 *
1755 * * Each user of socket SHOULD hold a reference count.
1756 * * Each access point to socket (an hash table bucket, reference from a list,
1757 * running timer, skb in flight MUST hold a reference count.
1758 * * When reference count hits 0, it means it will never increase back.
1759 * * When reference count hits 0, it means that no references from
1760 * outside exist to this socket and current process on current CPU
1761 * is last user and may/should destroy this socket.
1762 * * sk_free is called from any context: process, BH, IRQ. When
1763 * it is called, socket has no references from outside -> sk_free
1764 * may release descendant resources allocated by the socket, but
1765 * to the time when it is called, socket is NOT referenced by any
1766 * hash tables, lists etc.
1767 * * Packets, delivered from outside (from network or from another process)
1768 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1769 * when they sit in queue. Otherwise, packets will leak to hole, when
1770 * socket is looked up by one cpu and unhasing is made by another CPU.
1771 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1772 * (leak to backlog). Packet socket does all the processing inside
1773 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1774 * use separate SMP lock, so that they are prone too.
1775 */
1776
1777/* Ungrab socket and destroy it, if it was the last reference. */
1778static inline void sock_put(struct sock *sk)
1779{
1780 if (refcount_dec_and_test(&sk->sk_refcnt))
1781 sk_free(sk);
1782}
1783/* Generic version of sock_put(), dealing with all sockets
1784 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1785 */
1786void sock_gen_put(struct sock *sk);
1787
1788int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1789 unsigned int trim_cap, bool refcounted);
1790static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1791 const int nested)
1792{
1793 return __sk_receive_skb(sk, skb, nested, 1, true);
1794}
1795
1796static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1797{
1798 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1799 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1800 return;
1801 sk->sk_tx_queue_mapping = tx_queue;
1802}
1803
1804#define NO_QUEUE_MAPPING USHRT_MAX
1805
1806static inline void sk_tx_queue_clear(struct sock *sk)
1807{
1808 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1809}
1810
1811static inline int sk_tx_queue_get(const struct sock *sk)
1812{
1813 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1814 return sk->sk_tx_queue_mapping;
1815
1816 return -1;
1817}
1818
1819static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1820{
1821#ifdef CONFIG_XPS
1822 if (skb_rx_queue_recorded(skb)) {
1823 u16 rx_queue = skb_get_rx_queue(skb);
1824
1825 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1826 return;
1827
1828 sk->sk_rx_queue_mapping = rx_queue;
1829 }
1830#endif
1831}
1832
1833static inline void sk_rx_queue_clear(struct sock *sk)
1834{
1835#ifdef CONFIG_XPS
1836 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1837#endif
1838}
1839
1840#ifdef CONFIG_XPS
1841static inline int sk_rx_queue_get(const struct sock *sk)
1842{
1843 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1844 return sk->sk_rx_queue_mapping;
1845
1846 return -1;
1847}
1848#endif
1849
1850static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1851{
1852 sk->sk_socket = sock;
1853}
1854
1855static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1856{
1857 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1858 return &rcu_dereference_raw(sk->sk_wq)->wait;
1859}
1860/* Detach socket from process context.
1861 * Announce socket dead, detach it from wait queue and inode.
1862 * Note that parent inode held reference count on this struct sock,
1863 * we do not release it in this function, because protocol
1864 * probably wants some additional cleanups or even continuing
1865 * to work with this socket (TCP).
1866 */
1867static inline void sock_orphan(struct sock *sk)
1868{
1869 write_lock_bh(&sk->sk_callback_lock);
1870 sock_set_flag(sk, SOCK_DEAD);
1871 sk_set_socket(sk, NULL);
1872 sk->sk_wq = NULL;
1873 write_unlock_bh(&sk->sk_callback_lock);
1874}
1875
1876static inline void sock_graft(struct sock *sk, struct socket *parent)
1877{
1878 WARN_ON(parent->sk);
1879 write_lock_bh(&sk->sk_callback_lock);
1880 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1881 parent->sk = sk;
1882 sk_set_socket(sk, parent);
1883 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1884 security_sock_graft(sk, parent);
1885 write_unlock_bh(&sk->sk_callback_lock);
1886}
1887
1888kuid_t sock_i_uid(struct sock *sk);
1889unsigned long sock_i_ino(struct sock *sk);
1890
1891static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1892{
1893 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1894}
1895
1896static inline u32 net_tx_rndhash(void)
1897{
1898 u32 v = prandom_u32();
1899
1900 return v ?: 1;
1901}
1902
1903static inline void sk_set_txhash(struct sock *sk)
1904{
1905 sk->sk_txhash = net_tx_rndhash();
1906}
1907
1908static inline void sk_rethink_txhash(struct sock *sk)
1909{
1910 if (sk->sk_txhash)
1911 sk_set_txhash(sk);
1912}
1913
1914static inline struct dst_entry *
1915__sk_dst_get(struct sock *sk)
1916{
1917 return rcu_dereference_check(sk->sk_dst_cache,
1918 lockdep_sock_is_held(sk));
1919}
1920
1921static inline struct dst_entry *
1922sk_dst_get(struct sock *sk)
1923{
1924 struct dst_entry *dst;
1925
1926 rcu_read_lock();
1927 dst = rcu_dereference(sk->sk_dst_cache);
1928 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1929 dst = NULL;
1930 rcu_read_unlock();
1931 return dst;
1932}
1933
1934static inline void dst_negative_advice(struct sock *sk)
1935{
1936 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1937
1938 sk_rethink_txhash(sk);
1939
1940 if (dst && dst->ops->negative_advice) {
1941 ndst = dst->ops->negative_advice(dst);
1942
1943 if (ndst != dst) {
1944 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1945 sk_tx_queue_clear(sk);
1946 sk->sk_dst_pending_confirm = 0;
1947 }
1948 }
1949}
1950
1951static inline void
1952__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1953{
1954 struct dst_entry *old_dst;
1955
1956 sk_tx_queue_clear(sk);
1957 sk->sk_dst_pending_confirm = 0;
1958 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1959 lockdep_sock_is_held(sk));
1960 rcu_assign_pointer(sk->sk_dst_cache, dst);
1961 dst_release(old_dst);
1962}
1963
1964static inline void
1965sk_dst_set(struct sock *sk, struct dst_entry *dst)
1966{
1967 struct dst_entry *old_dst;
1968
1969 sk_tx_queue_clear(sk);
1970 sk->sk_dst_pending_confirm = 0;
1971 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1972 dst_release(old_dst);
1973}
1974
1975static inline void
1976__sk_dst_reset(struct sock *sk)
1977{
1978 __sk_dst_set(sk, NULL);
1979}
1980
1981static inline void
1982sk_dst_reset(struct sock *sk)
1983{
1984 sk_dst_set(sk, NULL);
1985}
1986
1987struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1988
1989struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1990
1991static inline void sk_dst_confirm(struct sock *sk)
1992{
1993 if (!READ_ONCE(sk->sk_dst_pending_confirm))
1994 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1995}
1996
1997static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1998{
1999 if (skb_get_dst_pending_confirm(skb)) {
2000 struct sock *sk = skb->sk;
2001 unsigned long now = jiffies;
2002
2003 /* avoid dirtying neighbour */
2004 if (READ_ONCE(n->confirmed) != now)
2005 WRITE_ONCE(n->confirmed, now);
2006 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2007 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2008 }
2009}
2010
2011bool sk_mc_loop(struct sock *sk);
2012
2013static inline bool sk_can_gso(const struct sock *sk)
2014{
2015 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2016}
2017
2018void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2019
2020static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2021{
2022 sk->sk_route_nocaps |= flags;
2023 sk->sk_route_caps &= ~flags;
2024}
2025
2026static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2027 struct iov_iter *from, char *to,
2028 int copy, int offset)
2029{
2030 if (skb->ip_summed == CHECKSUM_NONE) {
2031 __wsum csum = 0;
2032 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2033 return -EFAULT;
2034 skb->csum = csum_block_add(skb->csum, csum, offset);
2035 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2036 if (!copy_from_iter_full_nocache(to, copy, from))
2037 return -EFAULT;
2038 } else if (!copy_from_iter_full(to, copy, from))
2039 return -EFAULT;
2040
2041 return 0;
2042}
2043
2044static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2045 struct iov_iter *from, int copy)
2046{
2047 int err, offset = skb->len;
2048
2049 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2050 copy, offset);
2051 if (err)
2052 __skb_trim(skb, offset);
2053
2054 return err;
2055}
2056
2057static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2058 struct sk_buff *skb,
2059 struct page *page,
2060 int off, int copy)
2061{
2062 int err;
2063
2064 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2065 copy, skb->len);
2066 if (err)
2067 return err;
2068
2069 skb->len += copy;
2070 skb->data_len += copy;
2071 skb->truesize += copy;
2072 sk_wmem_queued_add(sk, copy);
2073 sk_mem_charge(sk, copy);
2074 return 0;
2075}
2076
2077/**
2078 * sk_wmem_alloc_get - returns write allocations
2079 * @sk: socket
2080 *
2081 * Return: sk_wmem_alloc minus initial offset of one
2082 */
2083static inline int sk_wmem_alloc_get(const struct sock *sk)
2084{
2085 return refcount_read(&sk->sk_wmem_alloc) - 1;
2086}
2087
2088/**
2089 * sk_rmem_alloc_get - returns read allocations
2090 * @sk: socket
2091 *
2092 * Return: sk_rmem_alloc
2093 */
2094static inline int sk_rmem_alloc_get(const struct sock *sk)
2095{
2096 return atomic_read(&sk->sk_rmem_alloc);
2097}
2098
2099/**
2100 * sk_has_allocations - check if allocations are outstanding
2101 * @sk: socket
2102 *
2103 * Return: true if socket has write or read allocations
2104 */
2105static inline bool sk_has_allocations(const struct sock *sk)
2106{
2107 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2108}
2109
2110/**
2111 * skwq_has_sleeper - check if there are any waiting processes
2112 * @wq: struct socket_wq
2113 *
2114 * Return: true if socket_wq has waiting processes
2115 *
2116 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2117 * barrier call. They were added due to the race found within the tcp code.
2118 *
2119 * Consider following tcp code paths::
2120 *
2121 * CPU1 CPU2
2122 * sys_select receive packet
2123 * ... ...
2124 * __add_wait_queue update tp->rcv_nxt
2125 * ... ...
2126 * tp->rcv_nxt check sock_def_readable
2127 * ... {
2128 * schedule rcu_read_lock();
2129 * wq = rcu_dereference(sk->sk_wq);
2130 * if (wq && waitqueue_active(&wq->wait))
2131 * wake_up_interruptible(&wq->wait)
2132 * ...
2133 * }
2134 *
2135 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2136 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2137 * could then endup calling schedule and sleep forever if there are no more
2138 * data on the socket.
2139 *
2140 */
2141static inline bool skwq_has_sleeper(struct socket_wq *wq)
2142{
2143 return wq && wq_has_sleeper(&wq->wait);
2144}
2145
2146/**
2147 * sock_poll_wait - place memory barrier behind the poll_wait call.
2148 * @filp: file
2149 * @sock: socket to wait on
2150 * @p: poll_table
2151 *
2152 * See the comments in the wq_has_sleeper function.
2153 */
2154static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2155 poll_table *p)
2156{
2157 if (!poll_does_not_wait(p)) {
2158 poll_wait(filp, &sock->wq.wait, p);
2159 /* We need to be sure we are in sync with the
2160 * socket flags modification.
2161 *
2162 * This memory barrier is paired in the wq_has_sleeper.
2163 */
2164 smp_mb();
2165 }
2166}
2167
2168static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2169{
2170 if (sk->sk_txhash) {
2171 skb->l4_hash = 1;
2172 skb->hash = sk->sk_txhash;
2173 }
2174}
2175
2176void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2177
2178/*
2179 * Queue a received datagram if it will fit. Stream and sequenced
2180 * protocols can't normally use this as they need to fit buffers in
2181 * and play with them.
2182 *
2183 * Inlined as it's very short and called for pretty much every
2184 * packet ever received.
2185 */
2186static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2187{
2188 skb_orphan(skb);
2189 skb->sk = sk;
2190 skb->destructor = sock_rfree;
2191 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2192 sk_mem_charge(sk, skb->truesize);
2193}
2194
2195void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2196 unsigned long expires);
2197
2198void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2199
2200int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201 struct sk_buff *skb, unsigned int flags,
2202 void (*destructor)(struct sock *sk,
2203 struct sk_buff *skb));
2204int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210/*
2211 * Recover an error report and clear atomically
2212 */
2213
2214static inline int sock_error(struct sock *sk)
2215{
2216 int err;
2217 if (likely(!sk->sk_err))
2218 return 0;
2219 err = xchg(&sk->sk_err, 0);
2220 return -err;
2221}
2222
2223static inline unsigned long sock_wspace(struct sock *sk)
2224{
2225 int amt = 0;
2226
2227 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229 if (amt < 0)
2230 amt = 0;
2231 }
2232 return amt;
2233}
2234
2235/* Note:
2236 * We use sk->sk_wq_raw, from contexts knowing this
2237 * pointer is not NULL and cannot disappear/change.
2238 */
2239static inline void sk_set_bit(int nr, struct sock *sk)
2240{
2241 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242 !sock_flag(sk, SOCK_FASYNC))
2243 return;
2244
2245 set_bit(nr, &sk->sk_wq_raw->flags);
2246}
2247
2248static inline void sk_clear_bit(int nr, struct sock *sk)
2249{
2250 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251 !sock_flag(sk, SOCK_FASYNC))
2252 return;
2253
2254 clear_bit(nr, &sk->sk_wq_raw->flags);
2255}
2256
2257static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258{
2259 if (sock_flag(sk, SOCK_FASYNC)) {
2260 rcu_read_lock();
2261 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262 rcu_read_unlock();
2263 }
2264}
2265
2266/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2274#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2275
2276static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277{
2278 u32 val;
2279
2280 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281 return;
2282
2283 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286}
2287
2288struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289 bool force_schedule);
2290
2291/**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
2306static inline struct page_frag *sk_page_frag(struct sock *sk)
2307{
2308 if (gfpflags_normal_context(sk->sk_allocation))
2309 return ¤t->task_frag;
2310
2311 return &sk->sk_frag;
2312}
2313
2314bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316/*
2317 * Default write policy as shown to user space via poll/select/SIGIO
2318 */
2319static inline bool sock_writeable(const struct sock *sk)
2320{
2321 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322}
2323
2324static inline gfp_t gfp_any(void)
2325{
2326 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327}
2328
2329static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330{
2331 return noblock ? 0 : sk->sk_rcvtimeo;
2332}
2333
2334static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335{
2336 return noblock ? 0 : sk->sk_sndtimeo;
2337}
2338
2339static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340{
2341 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343 return v ?: 1;
2344}
2345
2346/* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
2349static inline int sock_intr_errno(long timeo)
2350{
2351 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352}
2353
2354struct sock_skb_cb {
2355 u32 dropcount;
2356};
2357
2358/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363 sizeof(struct sock_skb_cb)))
2364
2365#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366 SOCK_SKB_CB_OFFSET))
2367
2368#define sock_skb_cb_check_size(size) \
2369 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371static inline void
2372sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373{
2374 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375 atomic_read(&sk->sk_drops) : 0;
2376}
2377
2378static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379{
2380 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382 atomic_add(segs, &sk->sk_drops);
2383}
2384
2385static inline ktime_t sock_read_timestamp(struct sock *sk)
2386{
2387#if BITS_PER_LONG==32
2388 unsigned int seq;
2389 ktime_t kt;
2390
2391 do {
2392 seq = read_seqbegin(&sk->sk_stamp_seq);
2393 kt = sk->sk_stamp;
2394 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396 return kt;
2397#else
2398 return READ_ONCE(sk->sk_stamp);
2399#endif
2400}
2401
2402static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403{
2404#if BITS_PER_LONG==32
2405 write_seqlock(&sk->sk_stamp_seq);
2406 sk->sk_stamp = kt;
2407 write_sequnlock(&sk->sk_stamp_seq);
2408#else
2409 WRITE_ONCE(sk->sk_stamp, kt);
2410#endif
2411}
2412
2413void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414 struct sk_buff *skb);
2415void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416 struct sk_buff *skb);
2417
2418static inline void
2419sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420{
2421 ktime_t kt = skb->tstamp;
2422 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424 /*
2425 * generate control messages if
2426 * - receive time stamping in software requested
2427 * - software time stamp available and wanted
2428 * - hardware time stamps available and wanted
2429 */
2430 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433 (hwtstamps->hwtstamp &&
2434 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2435 __sock_recv_timestamp(msg, sk, skb);
2436 else
2437 sock_write_timestamp(sk, kt);
2438
2439 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440 __sock_recv_wifi_status(msg, sk, skb);
2441}
2442
2443void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444 struct sk_buff *skb);
2445
2446#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2447static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448 struct sk_buff *skb)
2449{
2450#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2451 (1UL << SOCK_RCVTSTAMP))
2452#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2453 SOF_TIMESTAMPING_RAW_HARDWARE)
2454
2455 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456 __sock_recv_ts_and_drops(msg, sk, skb);
2457 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458 sock_write_timestamp(sk, skb->tstamp);
2459 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460 sock_write_timestamp(sk, 0);
2461}
2462
2463void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465/**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk: socket sending this packet
2468 * @tsflags: timestamping flags to use
2469 * @tx_flags: completed with instructions for time stamping
2470 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
2474static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475 __u8 *tx_flags, __u32 *tskey)
2476{
2477 if (unlikely(tsflags)) {
2478 __sock_tx_timestamp(tsflags, tx_flags);
2479 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481 *tskey = sk->sk_tskey++;
2482 }
2483 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484 *tx_flags |= SKBTX_WIFI_STATUS;
2485}
2486
2487static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488 __u8 *tx_flags)
2489{
2490 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491}
2492
2493static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494{
2495 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496 &skb_shinfo(skb)->tskey);
2497}
2498
2499DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500/**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507*/
2508static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2509{
2510 __skb_unlink(skb, &sk->sk_receive_queue);
2511 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512 !sk->sk_rx_skb_cache) {
2513 sk->sk_rx_skb_cache = skb;
2514 skb_orphan(skb);
2515 return;
2516 }
2517 __kfree_skb(skb);
2518}
2519
2520static inline
2521struct net *sock_net(const struct sock *sk)
2522{
2523 return read_pnet(&sk->sk_net);
2524}
2525
2526static inline
2527void sock_net_set(struct sock *sk, struct net *net)
2528{
2529 write_pnet(&sk->sk_net, net);
2530}
2531
2532static inline bool
2533skb_sk_is_prefetched(struct sk_buff *skb)
2534{
2535#ifdef CONFIG_INET
2536 return skb->destructor == sock_pfree;
2537#else
2538 return false;
2539#endif /* CONFIG_INET */
2540}
2541
2542/* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
2545static inline bool sk_fullsock(const struct sock *sk)
2546{
2547 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548}
2549
2550static inline bool
2551sk_is_refcounted(struct sock *sk)
2552{
2553 /* Only full sockets have sk->sk_flags. */
2554 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555}
2556
2557/**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562static inline struct sock *
2563skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564{
2565 if (skb->sk) {
2566 struct sock *sk = skb->sk;
2567
2568 *refcounted = true;
2569 if (skb_sk_is_prefetched(skb))
2570 *refcounted = sk_is_refcounted(sk);
2571 skb->destructor = NULL;
2572 skb->sk = NULL;
2573 return sk;
2574 }
2575 *refcounted = false;
2576 return NULL;
2577}
2578
2579/* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
2583static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584 struct net_device *dev)
2585{
2586#ifdef CONFIG_SOCK_VALIDATE_XMIT
2587 struct sock *sk = skb->sk;
2588
2589 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591#ifdef CONFIG_TLS_DEVICE
2592 } else if (unlikely(skb->decrypted)) {
2593 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594 kfree_skb(skb);
2595 skb = NULL;
2596#endif
2597 }
2598#endif
2599
2600 return skb;
2601}
2602
2603/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
2606static inline bool sk_listener(const struct sock *sk)
2607{
2608 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609}
2610
2611void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613 int type);
2614
2615bool sk_ns_capable(const struct sock *sk,
2616 struct user_namespace *user_ns, int cap);
2617bool sk_capable(const struct sock *sk, int cap);
2618bool sk_net_capable(const struct sock *sk, int cap);
2619
2620void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622/* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms. This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627#define _SK_MEM_PACKETS 256
2628#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2629#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632extern __u32 sysctl_wmem_max;
2633extern __u32 sysctl_rmem_max;
2634
2635extern int sysctl_tstamp_allow_data;
2636extern int sysctl_optmem_max;
2637
2638extern __u32 sysctl_wmem_default;
2639extern __u32 sysctl_rmem_default;
2640
2641DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
2643static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644{
2645 /* Does this proto have per netns sysctl_wmem ? */
2646 if (proto->sysctl_wmem_offset)
2647 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649 return *proto->sysctl_wmem;
2650}
2651
2652static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653{
2654 /* Does this proto have per netns sysctl_rmem ? */
2655 if (proto->sysctl_rmem_offset)
2656 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658 return *proto->sysctl_rmem;
2659}
2660
2661/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
2665static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666{
2667 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668 return;
2669 WRITE_ONCE(sk->sk_pacing_shift, val);
2670}
2671
2672/* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
2677static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678{
2679 int mdif;
2680
2681 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682 return true;
2683
2684 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685 if (mdif && mdif == sk->sk_bound_dev_if)
2686 return true;
2687
2688 return false;
2689}
2690
2691void sock_def_readable(struct sock *sk);
2692
2693int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694void sock_enable_timestamps(struct sock *sk);
2695void sock_no_linger(struct sock *sk);
2696void sock_set_keepalive(struct sock *sk);
2697void sock_set_priority(struct sock *sk, u32 priority);
2698void sock_set_rcvbuf(struct sock *sk, int val);
2699void sock_set_mark(struct sock *sk, u32 val);
2700void sock_set_reuseaddr(struct sock *sk);
2701void sock_set_reuseport(struct sock *sk);
2702void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706#endif /* _SOCK_H */