Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24struct kmem_cache	*xfs_log_ticket_cache;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43	struct xlog_in_core	*iclog);
  44STATIC void xlog_state_do_callback(
  45	struct xlog		*log);
  46STATIC int
  47xlog_state_get_iclog_space(
  48	struct xlog		*log,
  49	int			len,
  50	struct xlog_in_core	**iclog,
  51	struct xlog_ticket	*ticket,
 
  52	int			*logoffsetp);
  53STATIC void
 
 
 
 
 
  54xlog_grant_push_ail(
  55	struct xlog		*log,
  56	int			need_bytes);
  57STATIC void
  58xlog_sync(
  59	struct xlog		*log,
  60	struct xlog_in_core	*iclog,
  61	struct xlog_ticket	*ticket);
  62#if defined(DEBUG)
  63STATIC void
 
 
 
 
  64xlog_verify_grant_tail(
  65	struct xlog *log);
  66STATIC void
  67xlog_verify_iclog(
  68	struct xlog		*log,
  69	struct xlog_in_core	*iclog,
  70	int			count);
  71STATIC void
  72xlog_verify_tail_lsn(
  73	struct xlog		*log,
  74	struct xlog_in_core	*iclog);
 
  75#else
 
  76#define xlog_verify_grant_tail(a)
  77#define xlog_verify_iclog(a,b,c)
  78#define xlog_verify_tail_lsn(a,b)
  79#endif
  80
  81STATIC int
  82xlog_iclogs_empty(
  83	struct xlog		*log);
  84
  85static int
  86xfs_log_cover(struct xfs_mount *);
  87
  88/*
  89 * We need to make sure the buffer pointer returned is naturally aligned for the
  90 * biggest basic data type we put into it. We have already accounted for this
  91 * padding when sizing the buffer.
  92 *
  93 * However, this padding does not get written into the log, and hence we have to
  94 * track the space used by the log vectors separately to prevent log space hangs
  95 * due to inaccurate accounting (i.e. a leak) of the used log space through the
  96 * CIL context ticket.
  97 *
  98 * We also add space for the xlog_op_header that describes this region in the
  99 * log. This prepends the data region we return to the caller to copy their data
 100 * into, so do all the static initialisation of the ophdr now. Because the ophdr
 101 * is not 8 byte aligned, we have to be careful to ensure that we align the
 102 * start of the buffer such that the region we return to the call is 8 byte
 103 * aligned and packed against the tail of the ophdr.
 104 */
 105void *
 106xlog_prepare_iovec(
 107	struct xfs_log_vec	*lv,
 108	struct xfs_log_iovec	**vecp,
 109	uint			type)
 110{
 111	struct xfs_log_iovec	*vec = *vecp;
 112	struct xlog_op_header	*oph;
 113	uint32_t		len;
 114	void			*buf;
 115
 116	if (vec) {
 117		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
 118		vec++;
 119	} else {
 120		vec = &lv->lv_iovecp[0];
 121	}
 122
 123	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
 124	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
 125		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
 126					sizeof(struct xlog_op_header);
 127	}
 128
 129	vec->i_type = type;
 130	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
 131
 132	oph = vec->i_addr;
 133	oph->oh_clientid = XFS_TRANSACTION;
 134	oph->oh_res2 = 0;
 135	oph->oh_flags = 0;
 136
 137	buf = vec->i_addr + sizeof(struct xlog_op_header);
 138	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
 139
 140	*vecp = vec;
 141	return buf;
 142}
 143
 144static void
 145xlog_grant_sub_space(
 146	struct xlog		*log,
 147	atomic64_t		*head,
 148	int			bytes)
 149{
 150	int64_t	head_val = atomic64_read(head);
 151	int64_t new, old;
 152
 153	do {
 154		int	cycle, space;
 155
 156		xlog_crack_grant_head_val(head_val, &cycle, &space);
 157
 158		space -= bytes;
 159		if (space < 0) {
 160			space += log->l_logsize;
 161			cycle--;
 162		}
 163
 164		old = head_val;
 165		new = xlog_assign_grant_head_val(cycle, space);
 166		head_val = atomic64_cmpxchg(head, old, new);
 167	} while (head_val != old);
 168}
 169
 170static void
 171xlog_grant_add_space(
 172	struct xlog		*log,
 173	atomic64_t		*head,
 174	int			bytes)
 175{
 176	int64_t	head_val = atomic64_read(head);
 177	int64_t new, old;
 178
 179	do {
 180		int		tmp;
 181		int		cycle, space;
 182
 183		xlog_crack_grant_head_val(head_val, &cycle, &space);
 184
 185		tmp = log->l_logsize - space;
 186		if (tmp > bytes)
 187			space += bytes;
 188		else {
 189			space = bytes - tmp;
 190			cycle++;
 191		}
 192
 193		old = head_val;
 194		new = xlog_assign_grant_head_val(cycle, space);
 195		head_val = atomic64_cmpxchg(head, old, new);
 196	} while (head_val != old);
 197}
 198
 199STATIC void
 200xlog_grant_head_init(
 201	struct xlog_grant_head	*head)
 202{
 203	xlog_assign_grant_head(&head->grant, 1, 0);
 204	INIT_LIST_HEAD(&head->waiters);
 205	spin_lock_init(&head->lock);
 206}
 207
 208STATIC void
 209xlog_grant_head_wake_all(
 210	struct xlog_grant_head	*head)
 211{
 212	struct xlog_ticket	*tic;
 213
 214	spin_lock(&head->lock);
 215	list_for_each_entry(tic, &head->waiters, t_queue)
 216		wake_up_process(tic->t_task);
 217	spin_unlock(&head->lock);
 218}
 219
 220static inline int
 221xlog_ticket_reservation(
 222	struct xlog		*log,
 223	struct xlog_grant_head	*head,
 224	struct xlog_ticket	*tic)
 225{
 226	if (head == &log->l_write_head) {
 227		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 228		return tic->t_unit_res;
 
 
 
 
 
 229	}
 230
 231	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 232		return tic->t_unit_res * tic->t_cnt;
 233
 234	return tic->t_unit_res;
 235}
 236
 237STATIC bool
 238xlog_grant_head_wake(
 239	struct xlog		*log,
 240	struct xlog_grant_head	*head,
 241	int			*free_bytes)
 242{
 243	struct xlog_ticket	*tic;
 244	int			need_bytes;
 245	bool			woken_task = false;
 246
 247	list_for_each_entry(tic, &head->waiters, t_queue) {
 248
 249		/*
 250		 * There is a chance that the size of the CIL checkpoints in
 251		 * progress at the last AIL push target calculation resulted in
 252		 * limiting the target to the log head (l_last_sync_lsn) at the
 253		 * time. This may not reflect where the log head is now as the
 254		 * CIL checkpoints may have completed.
 255		 *
 256		 * Hence when we are woken here, it may be that the head of the
 257		 * log that has moved rather than the tail. As the tail didn't
 258		 * move, there still won't be space available for the
 259		 * reservation we require.  However, if the AIL has already
 260		 * pushed to the target defined by the old log head location, we
 261		 * will hang here waiting for something else to update the AIL
 262		 * push target.
 263		 *
 264		 * Therefore, if there isn't space to wake the first waiter on
 265		 * the grant head, we need to push the AIL again to ensure the
 266		 * target reflects both the current log tail and log head
 267		 * position before we wait for the tail to move again.
 268		 */
 269
 270		need_bytes = xlog_ticket_reservation(log, head, tic);
 271		if (*free_bytes < need_bytes) {
 272			if (!woken_task)
 273				xlog_grant_push_ail(log, need_bytes);
 274			return false;
 275		}
 276
 277		*free_bytes -= need_bytes;
 278		trace_xfs_log_grant_wake_up(log, tic);
 279		wake_up_process(tic->t_task);
 280		woken_task = true;
 281	}
 282
 283	return true;
 284}
 285
 286STATIC int
 287xlog_grant_head_wait(
 288	struct xlog		*log,
 289	struct xlog_grant_head	*head,
 290	struct xlog_ticket	*tic,
 291	int			need_bytes) __releases(&head->lock)
 292					    __acquires(&head->lock)
 293{
 294	list_add_tail(&tic->t_queue, &head->waiters);
 295
 296	do {
 297		if (xlog_is_shutdown(log))
 298			goto shutdown;
 299		xlog_grant_push_ail(log, need_bytes);
 300
 301		__set_current_state(TASK_UNINTERRUPTIBLE);
 302		spin_unlock(&head->lock);
 303
 304		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 305
 306		trace_xfs_log_grant_sleep(log, tic);
 307		schedule();
 308		trace_xfs_log_grant_wake(log, tic);
 309
 310		spin_lock(&head->lock);
 311		if (xlog_is_shutdown(log))
 312			goto shutdown;
 313	} while (xlog_space_left(log, &head->grant) < need_bytes);
 314
 315	list_del_init(&tic->t_queue);
 316	return 0;
 317shutdown:
 318	list_del_init(&tic->t_queue);
 319	return -EIO;
 320}
 321
 322/*
 323 * Atomically get the log space required for a log ticket.
 324 *
 325 * Once a ticket gets put onto head->waiters, it will only return after the
 326 * needed reservation is satisfied.
 327 *
 328 * This function is structured so that it has a lock free fast path. This is
 329 * necessary because every new transaction reservation will come through this
 330 * path. Hence any lock will be globally hot if we take it unconditionally on
 331 * every pass.
 332 *
 333 * As tickets are only ever moved on and off head->waiters under head->lock, we
 334 * only need to take that lock if we are going to add the ticket to the queue
 335 * and sleep. We can avoid taking the lock if the ticket was never added to
 336 * head->waiters because the t_queue list head will be empty and we hold the
 337 * only reference to it so it can safely be checked unlocked.
 338 */
 339STATIC int
 340xlog_grant_head_check(
 341	struct xlog		*log,
 342	struct xlog_grant_head	*head,
 343	struct xlog_ticket	*tic,
 344	int			*need_bytes)
 345{
 346	int			free_bytes;
 347	int			error = 0;
 348
 349	ASSERT(!xlog_in_recovery(log));
 350
 351	/*
 352	 * If there are other waiters on the queue then give them a chance at
 353	 * logspace before us.  Wake up the first waiters, if we do not wake
 354	 * up all the waiters then go to sleep waiting for more free space,
 355	 * otherwise try to get some space for this transaction.
 356	 */
 357	*need_bytes = xlog_ticket_reservation(log, head, tic);
 358	free_bytes = xlog_space_left(log, &head->grant);
 359	if (!list_empty_careful(&head->waiters)) {
 360		spin_lock(&head->lock);
 361		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 362		    free_bytes < *need_bytes) {
 363			error = xlog_grant_head_wait(log, head, tic,
 364						     *need_bytes);
 365		}
 366		spin_unlock(&head->lock);
 367	} else if (free_bytes < *need_bytes) {
 368		spin_lock(&head->lock);
 369		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 370		spin_unlock(&head->lock);
 371	}
 372
 373	return error;
 374}
 375
 376bool
 377xfs_log_writable(
 378	struct xfs_mount	*mp)
 379{
 380	/*
 381	 * Do not write to the log on norecovery mounts, if the data or log
 382	 * devices are read-only, or if the filesystem is shutdown. Read-only
 383	 * mounts allow internal writes for log recovery and unmount purposes,
 384	 * so don't restrict that case.
 385	 */
 386	if (xfs_has_norecovery(mp))
 387		return false;
 388	if (xfs_readonly_buftarg(mp->m_ddev_targp))
 389		return false;
 390	if (xfs_readonly_buftarg(mp->m_log->l_targ))
 391		return false;
 392	if (xlog_is_shutdown(mp->m_log))
 393		return false;
 394	return true;
 
 
 
 
 395}
 396
 397/*
 398 * Replenish the byte reservation required by moving the grant write head.
 399 */
 400int
 401xfs_log_regrant(
 402	struct xfs_mount	*mp,
 403	struct xlog_ticket	*tic)
 404{
 405	struct xlog		*log = mp->m_log;
 406	int			need_bytes;
 407	int			error = 0;
 408
 409	if (xlog_is_shutdown(log))
 410		return -EIO;
 411
 412	XFS_STATS_INC(mp, xs_try_logspace);
 413
 414	/*
 415	 * This is a new transaction on the ticket, so we need to change the
 416	 * transaction ID so that the next transaction has a different TID in
 417	 * the log. Just add one to the existing tid so that we can see chains
 418	 * of rolling transactions in the log easily.
 419	 */
 420	tic->t_tid++;
 421
 422	xlog_grant_push_ail(log, tic->t_unit_res);
 423
 424	tic->t_curr_res = tic->t_unit_res;
 
 
 425	if (tic->t_cnt > 0)
 426		return 0;
 427
 428	trace_xfs_log_regrant(log, tic);
 429
 430	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 431				      &need_bytes);
 432	if (error)
 433		goto out_error;
 434
 435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 436	trace_xfs_log_regrant_exit(log, tic);
 437	xlog_verify_grant_tail(log);
 438	return 0;
 439
 440out_error:
 441	/*
 442	 * If we are failing, make sure the ticket doesn't have any current
 443	 * reservations.  We don't want to add this back when the ticket/
 444	 * transaction gets cancelled.
 445	 */
 446	tic->t_curr_res = 0;
 447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 448	return error;
 449}
 450
 451/*
 452 * Reserve log space and return a ticket corresponding to the reservation.
 453 *
 454 * Each reservation is going to reserve extra space for a log record header.
 455 * When writes happen to the on-disk log, we don't subtract the length of the
 456 * log record header from any reservation.  By wasting space in each
 457 * reservation, we prevent over allocation problems.
 458 */
 459int
 460xfs_log_reserve(
 461	struct xfs_mount	*mp,
 462	int			unit_bytes,
 463	int			cnt,
 464	struct xlog_ticket	**ticp,
 
 465	bool			permanent)
 466{
 467	struct xlog		*log = mp->m_log;
 468	struct xlog_ticket	*tic;
 469	int			need_bytes;
 470	int			error = 0;
 471
 472	if (xlog_is_shutdown(log))
 
 
 473		return -EIO;
 474
 475	XFS_STATS_INC(mp, xs_try_logspace);
 476
 477	ASSERT(*ticp == NULL);
 478	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
 479	*ticp = tic;
 480
 481	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 482					    : tic->t_unit_res);
 483
 484	trace_xfs_log_reserve(log, tic);
 485
 486	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 487				      &need_bytes);
 488	if (error)
 489		goto out_error;
 490
 491	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 492	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 493	trace_xfs_log_reserve_exit(log, tic);
 494	xlog_verify_grant_tail(log);
 495	return 0;
 496
 497out_error:
 498	/*
 499	 * If we are failing, make sure the ticket doesn't have any current
 500	 * reservations.  We don't want to add this back when the ticket/
 501	 * transaction gets cancelled.
 502	 */
 503	tic->t_curr_res = 0;
 504	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 505	return error;
 506}
 507
 508/*
 509 * Run all the pending iclog callbacks and wake log force waiters and iclog
 510 * space waiters so they can process the newly set shutdown state. We really
 511 * don't care what order we process callbacks here because the log is shut down
 512 * and so state cannot change on disk anymore. However, we cannot wake waiters
 513 * until the callbacks have been processed because we may be in unmount and
 514 * we must ensure that all AIL operations the callbacks perform have completed
 515 * before we tear down the AIL.
 516 *
 517 * We avoid processing actively referenced iclogs so that we don't run callbacks
 518 * while the iclog owner might still be preparing the iclog for IO submssion.
 519 * These will be caught by xlog_state_iclog_release() and call this function
 520 * again to process any callbacks that may have been added to that iclog.
 521 */
 522static void
 523xlog_state_shutdown_callbacks(
 524	struct xlog		*log)
 525{
 526	struct xlog_in_core	*iclog;
 527	LIST_HEAD(cb_list);
 528
 529	iclog = log->l_iclog;
 530	do {
 531		if (atomic_read(&iclog->ic_refcnt)) {
 532			/* Reference holder will re-run iclog callbacks. */
 533			continue;
 534		}
 535		list_splice_init(&iclog->ic_callbacks, &cb_list);
 536		spin_unlock(&log->l_icloglock);
 537
 538		xlog_cil_process_committed(&cb_list);
 
 
 539
 540		spin_lock(&log->l_icloglock);
 541		wake_up_all(&iclog->ic_write_wait);
 542		wake_up_all(&iclog->ic_force_wait);
 543	} while ((iclog = iclog->ic_next) != log->l_iclog);
 
 
 544
 545	wake_up_all(&log->l_flush_wait);
 
 546}
 547
 548/*
 549 * Flush iclog to disk if this is the last reference to the given iclog and the
 550 * it is in the WANT_SYNC state.
 551 *
 552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
 553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
 554 * written to stable storage, and implies that a commit record is contained
 555 * within the iclog. We need to ensure that the log tail does not move beyond
 556 * the tail that the first commit record in the iclog ordered against, otherwise
 557 * correct recovery of that checkpoint becomes dependent on future operations
 558 * performed on this iclog.
 559 *
 560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
 561 * current tail into iclog. Once the iclog tail is set, future operations must
 562 * not modify it, otherwise they potentially violate ordering constraints for
 563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
 564 * the iclog will get zeroed on activation of the iclog after sync, so we
 565 * always capture the tail lsn on the iclog on the first NEED_FUA release
 566 * regardless of the number of active reference counts on this iclog.
 567 */
 568int
 569xlog_state_release_iclog(
 570	struct xlog		*log,
 571	struct xlog_in_core	*iclog,
 572	struct xlog_ticket	*ticket)
 573{
 574	xfs_lsn_t		tail_lsn;
 575	bool			last_ref;
 576
 577	lockdep_assert_held(&log->l_icloglock);
 578
 579	trace_xlog_iclog_release(iclog, _RET_IP_);
 580	/*
 581	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
 582	 * of the tail LSN into the iclog so we guarantee that the log tail does
 583	 * not move between the first time we know that the iclog needs to be
 584	 * made stable and when we eventually submit it.
 585	 */
 586	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 587	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
 588	    !iclog->ic_header.h_tail_lsn) {
 589		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 590		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 591	}
 592
 593	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
 594
 595	if (xlog_is_shutdown(log)) {
 596		/*
 597		 * If there are no more references to this iclog, process the
 598		 * pending iclog callbacks that were waiting on the release of
 599		 * this iclog.
 600		 */
 601		if (last_ref)
 602			xlog_state_shutdown_callbacks(log);
 603		return -EIO;
 
 
 
 
 
 
 604	}
 605
 606	if (!last_ref)
 607		return 0;
 608
 609	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
 610		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 611		return 0;
 612	}
 
 
 613
 614	iclog->ic_state = XLOG_STATE_SYNCING;
 615	xlog_verify_tail_lsn(log, iclog);
 616	trace_xlog_iclog_syncing(iclog, _RET_IP_);
 
 
 617
 618	spin_unlock(&log->l_icloglock);
 619	xlog_sync(log, iclog, ticket);
 620	spin_lock(&log->l_icloglock);
 621	return 0;
 622}
 623
 624/*
 625 * Mount a log filesystem
 626 *
 627 * mp		- ubiquitous xfs mount point structure
 628 * log_target	- buftarg of on-disk log device
 629 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 630 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 631 *
 632 * Return error or zero.
 633 */
 634int
 635xfs_log_mount(
 636	xfs_mount_t	*mp,
 637	xfs_buftarg_t	*log_target,
 638	xfs_daddr_t	blk_offset,
 639	int		num_bblks)
 640{
 641	struct xlog	*log;
 642	bool		fatal = xfs_has_crc(mp);
 643	int		error = 0;
 644	int		min_logfsbs;
 645
 646	if (!xfs_has_norecovery(mp)) {
 647		xfs_notice(mp, "Mounting V%d Filesystem %pU",
 648			   XFS_SB_VERSION_NUM(&mp->m_sb),
 649			   &mp->m_sb.sb_uuid);
 650	} else {
 651		xfs_notice(mp,
 652"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
 653			   XFS_SB_VERSION_NUM(&mp->m_sb),
 654			   &mp->m_sb.sb_uuid);
 655		ASSERT(xfs_is_readonly(mp));
 656	}
 657
 658	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 659	if (IS_ERR(log)) {
 660		error = PTR_ERR(log);
 661		goto out;
 662	}
 663	mp->m_log = log;
 664
 665	/*
 666	 * Validate the given log space and drop a critical message via syslog
 667	 * if the log size is too small that would lead to some unexpected
 668	 * situations in transaction log space reservation stage.
 669	 *
 670	 * Note: we can't just reject the mount if the validation fails.  This
 671	 * would mean that people would have to downgrade their kernel just to
 672	 * remedy the situation as there is no way to grow the log (short of
 673	 * black magic surgery with xfs_db).
 674	 *
 675	 * We can, however, reject mounts for CRC format filesystems, as the
 676	 * mkfs binary being used to make the filesystem should never create a
 677	 * filesystem with a log that is too small.
 678	 */
 679	min_logfsbs = xfs_log_calc_minimum_size(mp);
 680
 681	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 682		xfs_warn(mp,
 683		"Log size %d blocks too small, minimum size is %d blocks",
 684			 mp->m_sb.sb_logblocks, min_logfsbs);
 685		error = -EINVAL;
 686	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 687		xfs_warn(mp,
 688		"Log size %d blocks too large, maximum size is %lld blocks",
 689			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 690		error = -EINVAL;
 691	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 692		xfs_warn(mp,
 693		"log size %lld bytes too large, maximum size is %lld bytes",
 694			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 695			 XFS_MAX_LOG_BYTES);
 696		error = -EINVAL;
 697	} else if (mp->m_sb.sb_logsunit > 1 &&
 698		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 699		xfs_warn(mp,
 700		"log stripe unit %u bytes must be a multiple of block size",
 701			 mp->m_sb.sb_logsunit);
 702		error = -EINVAL;
 703		fatal = true;
 704	}
 705	if (error) {
 706		/*
 707		 * Log check errors are always fatal on v5; or whenever bad
 708		 * metadata leads to a crash.
 709		 */
 710		if (fatal) {
 711			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 712			ASSERT(0);
 713			goto out_free_log;
 714		}
 715		xfs_crit(mp, "Log size out of supported range.");
 716		xfs_crit(mp,
 717"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 718	}
 719
 720	/*
 721	 * Initialize the AIL now we have a log.
 722	 */
 723	error = xfs_trans_ail_init(mp);
 724	if (error) {
 725		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 726		goto out_free_log;
 727	}
 728	log->l_ailp = mp->m_ail;
 729
 730	/*
 731	 * skip log recovery on a norecovery mount.  pretend it all
 732	 * just worked.
 733	 */
 734	if (!xfs_has_norecovery(mp)) {
 735		/*
 736		 * log recovery ignores readonly state and so we need to clear
 737		 * mount-based read only state so it can write to disk.
 738		 */
 739		bool	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
 740						&mp->m_opstate);
 741		error = xlog_recover(log);
 742		if (readonly)
 743			set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 744		if (error) {
 745			xfs_warn(mp, "log mount/recovery failed: error %d",
 746				error);
 747			xlog_recover_cancel(log);
 748			goto out_destroy_ail;
 749		}
 750	}
 751
 752	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 753			       "log");
 754	if (error)
 755		goto out_destroy_ail;
 756
 757	/* Normal transactions can now occur */
 758	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
 759
 760	/*
 761	 * Now the log has been fully initialised and we know were our
 762	 * space grant counters are, we can initialise the permanent ticket
 763	 * needed for delayed logging to work.
 764	 */
 765	xlog_cil_init_post_recovery(log);
 766
 767	return 0;
 768
 769out_destroy_ail:
 770	xfs_trans_ail_destroy(mp);
 771out_free_log:
 772	xlog_dealloc_log(log);
 773out:
 774	return error;
 775}
 776
 777/*
 778 * Finish the recovery of the file system.  This is separate from the
 779 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 780 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 781 * here.
 782 *
 783 * If we finish recovery successfully, start the background log work. If we are
 784 * not doing recovery, then we have a RO filesystem and we don't need to start
 785 * it.
 786 */
 787int
 788xfs_log_mount_finish(
 789	struct xfs_mount	*mp)
 790{
 791	struct xlog		*log = mp->m_log;
 792	bool			readonly;
 793	int			error = 0;
 794
 795	if (xfs_has_norecovery(mp)) {
 796		ASSERT(xfs_is_readonly(mp));
 797		return 0;
 
 
 
 798	}
 799
 800	/*
 801	 * log recovery ignores readonly state and so we need to clear
 802	 * mount-based read only state so it can write to disk.
 803	 */
 804	readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 805
 806	/*
 807	 * During the second phase of log recovery, we need iget and
 808	 * iput to behave like they do for an active filesystem.
 809	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 810	 * of inodes before we're done replaying log items on those
 811	 * inodes.  Turn it off immediately after recovery finishes
 812	 * so that we don't leak the quota inodes if subsequent mount
 813	 * activities fail.
 814	 *
 815	 * We let all inodes involved in redo item processing end up on
 816	 * the LRU instead of being evicted immediately so that if we do
 817	 * something to an unlinked inode, the irele won't cause
 818	 * premature truncation and freeing of the inode, which results
 819	 * in log recovery failure.  We have to evict the unreferenced
 820	 * lru inodes after clearing SB_ACTIVE because we don't
 821	 * otherwise clean up the lru if there's a subsequent failure in
 822	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 823	 * else (e.g. quotacheck) references the inodes before the
 824	 * mount failure occurs.
 825	 */
 826	mp->m_super->s_flags |= SB_ACTIVE;
 827	xfs_log_work_queue(mp);
 828	if (xlog_recovery_needed(log))
 829		error = xlog_recover_finish(log);
 830	mp->m_super->s_flags &= ~SB_ACTIVE;
 831	evict_inodes(mp->m_super);
 832
 833	/*
 834	 * Drain the buffer LRU after log recovery. This is required for v4
 835	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 836	 * but we do it unconditionally to make sure we're always in a clean
 837	 * cache state after mount.
 838	 *
 839	 * Don't push in the error case because the AIL may have pending intents
 840	 * that aren't removed until recovery is cancelled.
 841	 */
 842	if (xlog_recovery_needed(log)) {
 843		if (!error) {
 844			xfs_log_force(mp, XFS_LOG_SYNC);
 845			xfs_ail_push_all_sync(mp->m_ail);
 846		}
 847		xfs_notice(mp, "Ending recovery (logdev: %s)",
 848				mp->m_logname ? mp->m_logname : "internal");
 849	} else {
 850		xfs_info(mp, "Ending clean mount");
 851	}
 852	xfs_buftarg_drain(mp->m_ddev_targp);
 853
 854	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
 855	if (readonly)
 856		set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
 857
 858	/* Make sure the log is dead if we're returning failure. */
 859	ASSERT(!error || xlog_is_shutdown(log));
 860
 861	return error;
 862}
 863
 864/*
 865 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 866 * the log.
 867 */
 868void
 869xfs_log_mount_cancel(
 870	struct xfs_mount	*mp)
 871{
 872	xlog_recover_cancel(mp->m_log);
 873	xfs_log_unmount(mp);
 874}
 875
 876/*
 877 * Flush out the iclog to disk ensuring that device caches are flushed and
 878 * the iclog hits stable storage before any completion waiters are woken.
 879 */
 880static inline int
 881xlog_force_iclog(
 882	struct xlog_in_core	*iclog)
 883{
 884	atomic_inc(&iclog->ic_refcnt);
 885	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
 886	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 887		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
 888	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
 889}
 890
 891/*
 892 * Cycle all the iclogbuf locks to make sure all log IO completion
 893 * is done before we tear down these buffers.
 894 */
 895static void
 896xlog_wait_iclog_completion(struct xlog *log)
 897{
 898	int		i;
 899	struct xlog_in_core	*iclog = log->l_iclog;
 900
 901	for (i = 0; i < log->l_iclog_bufs; i++) {
 902		down(&iclog->ic_sema);
 903		up(&iclog->ic_sema);
 904		iclog = iclog->ic_next;
 905	}
 906}
 907
 908/*
 909 * Wait for the iclog and all prior iclogs to be written disk as required by the
 910 * log force state machine. Waiting on ic_force_wait ensures iclog completions
 911 * have been ordered and callbacks run before we are woken here, hence
 912 * guaranteeing that all the iclogs up to this one are on stable storage.
 913 */
 914int
 915xlog_wait_on_iclog(
 916	struct xlog_in_core	*iclog)
 917		__releases(iclog->ic_log->l_icloglock)
 918{
 919	struct xlog		*log = iclog->ic_log;
 920
 921	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
 922	if (!xlog_is_shutdown(log) &&
 923	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 924	    iclog->ic_state != XLOG_STATE_DIRTY) {
 925		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 926		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 927	} else {
 928		spin_unlock(&log->l_icloglock);
 929	}
 930
 931	if (xlog_is_shutdown(log))
 932		return -EIO;
 933	return 0;
 934}
 935
 936/*
 937 * Write out an unmount record using the ticket provided. We have to account for
 938 * the data space used in the unmount ticket as this write is not done from a
 939 * transaction context that has already done the accounting for us.
 940 */
 941static int
 942xlog_write_unmount_record(
 943	struct xlog		*log,
 944	struct xlog_ticket	*ticket)
 
 
 945{
 946	struct  {
 947		struct xlog_op_header ophdr;
 948		struct xfs_unmount_log_format ulf;
 949	} unmount_rec = {
 950		.ophdr = {
 951			.oh_clientid = XFS_LOG,
 952			.oh_tid = cpu_to_be32(ticket->t_tid),
 953			.oh_flags = XLOG_UNMOUNT_TRANS,
 954		},
 955		.ulf = {
 956			.magic = XLOG_UNMOUNT_TYPE,
 957		},
 958	};
 959	struct xfs_log_iovec reg = {
 960		.i_addr = &unmount_rec,
 961		.i_len = sizeof(unmount_rec),
 962		.i_type = XLOG_REG_TYPE_UNMOUNT,
 963	};
 964	struct xfs_log_vec vec = {
 965		.lv_niovecs = 1,
 966		.lv_iovecp = &reg,
 967	};
 968	LIST_HEAD(lv_chain);
 969	list_add(&vec.lv_list, &lv_chain);
 970
 971	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
 972		      sizeof(struct xfs_unmount_log_format)) !=
 973							sizeof(unmount_rec));
 974
 975	/* account for space used by record data */
 976	ticket->t_curr_res -= sizeof(unmount_rec);
 977
 978	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
 979}
 980
 981/*
 982 * Mark the filesystem clean by writing an unmount record to the head of the
 983 * log.
 984 */
 985static void
 986xlog_unmount_write(
 987	struct xlog		*log)
 988{
 989	struct xfs_mount	*mp = log->l_mp;
 990	struct xlog_in_core	*iclog;
 991	struct xlog_ticket	*tic = NULL;
 
 
 992	int			error;
 993
 994	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
 995	if (error)
 996		goto out_err;
 997
 998	error = xlog_write_unmount_record(log, tic);
 999	/*
1000	 * At this point, we're umounting anyway, so there's no point in
1001	 * transitioning log state to shutdown. Just continue...
1002	 */
1003out_err:
1004	if (error)
1005		xfs_alert(mp, "%s: unmount record failed", __func__);
1006
1007	spin_lock(&log->l_icloglock);
1008	iclog = log->l_iclog;
1009	error = xlog_force_iclog(iclog);
 
 
 
 
 
 
1010	xlog_wait_on_iclog(iclog);
1011
1012	if (tic) {
1013		trace_xfs_log_umount_write(log, tic);
1014		xfs_log_ticket_ungrant(log, tic);
1015	}
1016}
1017
1018static void
1019xfs_log_unmount_verify_iclog(
1020	struct xlog		*log)
1021{
1022	struct xlog_in_core	*iclog = log->l_iclog;
1023
1024	do {
1025		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1026		ASSERT(iclog->ic_offset == 0);
1027	} while ((iclog = iclog->ic_next) != log->l_iclog);
1028}
1029
1030/*
1031 * Unmount record used to have a string "Unmount filesystem--" in the
1032 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1033 * We just write the magic number now since that particular field isn't
1034 * currently architecture converted and "Unmount" is a bit foo.
1035 * As far as I know, there weren't any dependencies on the old behaviour.
1036 */
1037static void
1038xfs_log_unmount_write(
1039	struct xfs_mount	*mp)
1040{
1041	struct xlog		*log = mp->m_log;
1042
1043	if (!xfs_log_writable(mp))
 
 
 
 
 
 
1044		return;
 
1045
1046	xfs_log_force(mp, XFS_LOG_SYNC);
1047
1048	if (xlog_is_shutdown(log))
1049		return;
1050
1051	/*
1052	 * If we think the summary counters are bad, avoid writing the unmount
1053	 * record to force log recovery at next mount, after which the summary
1054	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1055	 * more details.
1056	 */
1057	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1058			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1059		xfs_alert(mp, "%s: will fix summary counters at next mount",
1060				__func__);
1061		return;
1062	}
1063
1064	xfs_log_unmount_verify_iclog(log);
1065	xlog_unmount_write(log);
1066}
1067
1068/*
1069 * Empty the log for unmount/freeze.
1070 *
1071 * To do this, we first need to shut down the background log work so it is not
1072 * trying to cover the log as we clean up. We then need to unpin all objects in
1073 * the log so we can then flush them out. Once they have completed their IO and
1074 * run the callbacks removing themselves from the AIL, we can cover the log.
 
1075 */
1076int
1077xfs_log_quiesce(
1078	struct xfs_mount	*mp)
1079{
1080	/*
1081	 * Clear log incompat features since we're quiescing the log.  Report
1082	 * failures, though it's not fatal to have a higher log feature
1083	 * protection level than the log contents actually require.
1084	 */
1085	if (xfs_clear_incompat_log_features(mp)) {
1086		int error;
1087
1088		error = xfs_sync_sb(mp, false);
1089		if (error)
1090			xfs_warn(mp,
1091	"Failed to clear log incompat features on quiesce");
1092	}
1093
1094	cancel_delayed_work_sync(&mp->m_log->l_work);
1095	xfs_log_force(mp, XFS_LOG_SYNC);
1096
1097	/*
1098	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1099	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1100	 * xfs_buf_iowait() cannot be used because it was pushed with the
1101	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1102	 * the IO to complete.
1103	 */
1104	xfs_ail_push_all_sync(mp->m_ail);
1105	xfs_buftarg_wait(mp->m_ddev_targp);
1106	xfs_buf_lock(mp->m_sb_bp);
1107	xfs_buf_unlock(mp->m_sb_bp);
1108
1109	return xfs_log_cover(mp);
1110}
1111
1112void
1113xfs_log_clean(
1114	struct xfs_mount	*mp)
1115{
1116	xfs_log_quiesce(mp);
1117	xfs_log_unmount_write(mp);
1118}
1119
1120/*
1121 * Shut down and release the AIL and Log.
1122 *
1123 * During unmount, we need to ensure we flush all the dirty metadata objects
1124 * from the AIL so that the log is empty before we write the unmount record to
1125 * the log. Once this is done, we can tear down the AIL and the log.
1126 */
1127void
1128xfs_log_unmount(
1129	struct xfs_mount	*mp)
1130{
1131	xfs_log_clean(mp);
1132
1133	/*
1134	 * If shutdown has come from iclog IO context, the log
1135	 * cleaning will have been skipped and so we need to wait
1136	 * for the iclog to complete shutdown processing before we
1137	 * tear anything down.
1138	 */
1139	xlog_wait_iclog_completion(mp->m_log);
1140
1141	xfs_buftarg_drain(mp->m_ddev_targp);
1142
1143	xfs_trans_ail_destroy(mp);
1144
1145	xfs_sysfs_del(&mp->m_log->l_kobj);
1146
1147	xlog_dealloc_log(mp->m_log);
1148}
1149
1150void
1151xfs_log_item_init(
1152	struct xfs_mount	*mp,
1153	struct xfs_log_item	*item,
1154	int			type,
1155	const struct xfs_item_ops *ops)
1156{
1157	item->li_log = mp->m_log;
1158	item->li_ailp = mp->m_ail;
1159	item->li_type = type;
1160	item->li_ops = ops;
1161	item->li_lv = NULL;
1162
1163	INIT_LIST_HEAD(&item->li_ail);
1164	INIT_LIST_HEAD(&item->li_cil);
1165	INIT_LIST_HEAD(&item->li_bio_list);
1166	INIT_LIST_HEAD(&item->li_trans);
1167}
1168
1169/*
1170 * Wake up processes waiting for log space after we have moved the log tail.
1171 */
1172void
1173xfs_log_space_wake(
1174	struct xfs_mount	*mp)
1175{
1176	struct xlog		*log = mp->m_log;
1177	int			free_bytes;
1178
1179	if (xlog_is_shutdown(log))
1180		return;
1181
1182	if (!list_empty_careful(&log->l_write_head.waiters)) {
1183		ASSERT(!xlog_in_recovery(log));
1184
1185		spin_lock(&log->l_write_head.lock);
1186		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1187		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1188		spin_unlock(&log->l_write_head.lock);
1189	}
1190
1191	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1192		ASSERT(!xlog_in_recovery(log));
1193
1194		spin_lock(&log->l_reserve_head.lock);
1195		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1196		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1197		spin_unlock(&log->l_reserve_head.lock);
1198	}
1199}
1200
1201/*
1202 * Determine if we have a transaction that has gone to disk that needs to be
1203 * covered. To begin the transition to the idle state firstly the log needs to
1204 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1205 * we start attempting to cover the log.
1206 *
1207 * Only if we are then in a state where covering is needed, the caller is
1208 * informed that dummy transactions are required to move the log into the idle
1209 * state.
1210 *
1211 * If there are any items in the AIl or CIL, then we do not want to attempt to
1212 * cover the log as we may be in a situation where there isn't log space
1213 * available to run a dummy transaction and this can lead to deadlocks when the
1214 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1215 * there's no point in running a dummy transaction at this point because we
1216 * can't start trying to idle the log until both the CIL and AIL are empty.
1217 */
1218static bool
1219xfs_log_need_covered(
1220	struct xfs_mount	*mp)
1221{
1222	struct xlog		*log = mp->m_log;
1223	bool			needed = false;
 
 
 
1224
1225	if (!xlog_cil_empty(log))
1226		return false;
1227
1228	spin_lock(&log->l_icloglock);
1229	switch (log->l_covered_state) {
1230	case XLOG_STATE_COVER_DONE:
1231	case XLOG_STATE_COVER_DONE2:
1232	case XLOG_STATE_COVER_IDLE:
1233		break;
1234	case XLOG_STATE_COVER_NEED:
1235	case XLOG_STATE_COVER_NEED2:
1236		if (xfs_ail_min_lsn(log->l_ailp))
1237			break;
1238		if (!xlog_iclogs_empty(log))
1239			break;
1240
1241		needed = true;
1242		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1243			log->l_covered_state = XLOG_STATE_COVER_DONE;
1244		else
1245			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1246		break;
1247	default:
1248		needed = true;
1249		break;
1250	}
1251	spin_unlock(&log->l_icloglock);
1252	return needed;
1253}
1254
1255/*
1256 * Explicitly cover the log. This is similar to background log covering but
1257 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1258 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1259 * must all be empty.
1260 */
1261static int
1262xfs_log_cover(
1263	struct xfs_mount	*mp)
1264{
1265	int			error = 0;
1266	bool			need_covered;
1267
1268	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1269	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1270		xlog_is_shutdown(mp->m_log));
1271
1272	if (!xfs_log_writable(mp))
1273		return 0;
1274
1275	/*
1276	 * xfs_log_need_covered() is not idempotent because it progresses the
1277	 * state machine if the log requires covering. Therefore, we must call
1278	 * this function once and use the result until we've issued an sb sync.
1279	 * Do so first to make that abundantly clear.
1280	 *
1281	 * Fall into the covering sequence if the log needs covering or the
1282	 * mount has lazy superblock accounting to sync to disk. The sb sync
1283	 * used for covering accumulates the in-core counters, so covering
1284	 * handles this for us.
1285	 */
1286	need_covered = xfs_log_need_covered(mp);
1287	if (!need_covered && !xfs_has_lazysbcount(mp))
1288		return 0;
1289
1290	/*
1291	 * To cover the log, commit the superblock twice (at most) in
1292	 * independent checkpoints. The first serves as a reference for the
1293	 * tail pointer. The sync transaction and AIL push empties the AIL and
1294	 * updates the in-core tail to the LSN of the first checkpoint. The
1295	 * second commit updates the on-disk tail with the in-core LSN,
1296	 * covering the log. Push the AIL one more time to leave it empty, as
1297	 * we found it.
1298	 */
1299	do {
1300		error = xfs_sync_sb(mp, true);
1301		if (error)
1302			break;
1303		xfs_ail_push_all_sync(mp->m_ail);
1304	} while (xfs_log_need_covered(mp));
1305
1306	return error;
1307}
1308
1309/*
1310 * We may be holding the log iclog lock upon entering this routine.
1311 */
1312xfs_lsn_t
1313xlog_assign_tail_lsn_locked(
1314	struct xfs_mount	*mp)
1315{
1316	struct xlog		*log = mp->m_log;
1317	struct xfs_log_item	*lip;
1318	xfs_lsn_t		tail_lsn;
1319
1320	assert_spin_locked(&mp->m_ail->ail_lock);
1321
1322	/*
1323	 * To make sure we always have a valid LSN for the log tail we keep
1324	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1325	 * and use that when the AIL was empty.
1326	 */
1327	lip = xfs_ail_min(mp->m_ail);
1328	if (lip)
1329		tail_lsn = lip->li_lsn;
1330	else
1331		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1332	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1333	atomic64_set(&log->l_tail_lsn, tail_lsn);
1334	return tail_lsn;
1335}
1336
1337xfs_lsn_t
1338xlog_assign_tail_lsn(
1339	struct xfs_mount	*mp)
1340{
1341	xfs_lsn_t		tail_lsn;
1342
1343	spin_lock(&mp->m_ail->ail_lock);
1344	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1345	spin_unlock(&mp->m_ail->ail_lock);
1346
1347	return tail_lsn;
1348}
1349
1350/*
1351 * Return the space in the log between the tail and the head.  The head
1352 * is passed in the cycle/bytes formal parms.  In the special case where
1353 * the reserve head has wrapped passed the tail, this calculation is no
1354 * longer valid.  In this case, just return 0 which means there is no space
1355 * in the log.  This works for all places where this function is called
1356 * with the reserve head.  Of course, if the write head were to ever
1357 * wrap the tail, we should blow up.  Rather than catch this case here,
1358 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1359 *
1360 * If reservation head is behind the tail, we have a problem. Warn about it,
1361 * but then treat it as if the log is empty.
1362 *
1363 * If the log is shut down, the head and tail may be invalid or out of whack, so
1364 * shortcut invalidity asserts in this case so that we don't trigger them
1365 * falsely.
1366 */
1367STATIC int
1368xlog_space_left(
1369	struct xlog	*log,
1370	atomic64_t	*head)
1371{
 
1372	int		tail_bytes;
1373	int		tail_cycle;
1374	int		head_cycle;
1375	int		head_bytes;
1376
1377	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1378	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1379	tail_bytes = BBTOB(tail_bytes);
1380	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1381		return log->l_logsize - (head_bytes - tail_bytes);
1382	if (tail_cycle + 1 < head_cycle)
1383		return 0;
1384
1385	/* Ignore potential inconsistency when shutdown. */
1386	if (xlog_is_shutdown(log))
1387		return log->l_logsize;
1388
1389	if (tail_cycle < head_cycle) {
1390		ASSERT(tail_cycle == (head_cycle - 1));
1391		return tail_bytes - head_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	}
1393
1394	/*
1395	 * The reservation head is behind the tail. In this case we just want to
1396	 * return the size of the log as the amount of space left.
1397	 */
1398	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1399	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1400		  tail_cycle, tail_bytes);
1401	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1402		  head_cycle, head_bytes);
1403	ASSERT(0);
1404	return log->l_logsize;
1405}
1406
1407
1408static void
1409xlog_ioend_work(
1410	struct work_struct	*work)
1411{
1412	struct xlog_in_core     *iclog =
1413		container_of(work, struct xlog_in_core, ic_end_io_work);
1414	struct xlog		*log = iclog->ic_log;
1415	int			error;
1416
1417	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1418#ifdef DEBUG
1419	/* treat writes with injected CRC errors as failed */
1420	if (iclog->ic_fail_crc)
1421		error = -EIO;
1422#endif
1423
1424	/*
1425	 * Race to shutdown the filesystem if we see an error.
1426	 */
1427	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1428		xfs_alert(log->l_mp, "log I/O error %d", error);
1429		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1430	}
1431
1432	xlog_state_done_syncing(iclog);
1433	bio_uninit(&iclog->ic_bio);
1434
1435	/*
1436	 * Drop the lock to signal that we are done. Nothing references the
1437	 * iclog after this, so an unmount waiting on this lock can now tear it
1438	 * down safely. As such, it is unsafe to reference the iclog after the
1439	 * unlock as we could race with it being freed.
1440	 */
1441	up(&iclog->ic_sema);
1442}
1443
1444/*
1445 * Return size of each in-core log record buffer.
1446 *
1447 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1448 *
1449 * If the filesystem blocksize is too large, we may need to choose a
1450 * larger size since the directory code currently logs entire blocks.
1451 */
1452STATIC void
1453xlog_get_iclog_buffer_size(
1454	struct xfs_mount	*mp,
1455	struct xlog		*log)
1456{
1457	if (mp->m_logbufs <= 0)
1458		mp->m_logbufs = XLOG_MAX_ICLOGS;
1459	if (mp->m_logbsize <= 0)
1460		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1461
1462	log->l_iclog_bufs = mp->m_logbufs;
1463	log->l_iclog_size = mp->m_logbsize;
1464
1465	/*
1466	 * # headers = size / 32k - one header holds cycles from 32k of data.
1467	 */
1468	log->l_iclog_heads =
1469		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1470	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1471}
1472
1473void
1474xfs_log_work_queue(
1475	struct xfs_mount        *mp)
1476{
1477	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1478				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1479}
1480
1481/*
1482 * Clear the log incompat flags if we have the opportunity.
1483 *
1484 * This only happens if we're about to log the second dummy transaction as part
1485 * of covering the log and we can get the log incompat feature usage lock.
1486 */
1487static inline void
1488xlog_clear_incompat(
1489	struct xlog		*log)
1490{
1491	struct xfs_mount	*mp = log->l_mp;
1492
1493	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1494				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1495		return;
1496
1497	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1498		return;
1499
1500	if (!down_write_trylock(&log->l_incompat_users))
1501		return;
1502
1503	xfs_clear_incompat_log_features(mp);
1504	up_write(&log->l_incompat_users);
1505}
1506
1507/*
1508 * Every sync period we need to unpin all items in the AIL and push them to
1509 * disk. If there is nothing dirty, then we might need to cover the log to
1510 * indicate that the filesystem is idle.
1511 */
1512static void
1513xfs_log_worker(
1514	struct work_struct	*work)
1515{
1516	struct xlog		*log = container_of(to_delayed_work(work),
1517						struct xlog, l_work);
1518	struct xfs_mount	*mp = log->l_mp;
1519
1520	/* dgc: errors ignored - not fatal and nowhere to report them */
1521	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1522		/*
1523		 * Dump a transaction into the log that contains no real change.
1524		 * This is needed to stamp the current tail LSN into the log
1525		 * during the covering operation.
1526		 *
1527		 * We cannot use an inode here for this - that will push dirty
1528		 * state back up into the VFS and then periodic inode flushing
1529		 * will prevent log covering from making progress. Hence we
1530		 * synchronously log the superblock instead to ensure the
1531		 * superblock is immediately unpinned and can be written back.
1532		 */
1533		xlog_clear_incompat(log);
1534		xfs_sync_sb(mp, true);
1535	} else
1536		xfs_log_force(mp, 0);
1537
1538	/* start pushing all the metadata that is currently dirty */
1539	xfs_ail_push_all(mp->m_ail);
1540
1541	/* queue us up again */
1542	xfs_log_work_queue(mp);
1543}
1544
1545/*
1546 * This routine initializes some of the log structure for a given mount point.
1547 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1548 * some other stuff may be filled in too.
1549 */
1550STATIC struct xlog *
1551xlog_alloc_log(
1552	struct xfs_mount	*mp,
1553	struct xfs_buftarg	*log_target,
1554	xfs_daddr_t		blk_offset,
1555	int			num_bblks)
1556{
1557	struct xlog		*log;
1558	xlog_rec_header_t	*head;
1559	xlog_in_core_t		**iclogp;
1560	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1561	int			i;
1562	int			error = -ENOMEM;
1563	uint			log2_size = 0;
1564
1565	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1566	if (!log) {
1567		xfs_warn(mp, "Log allocation failed: No memory!");
1568		goto out;
1569	}
1570
1571	log->l_mp	   = mp;
1572	log->l_targ	   = log_target;
1573	log->l_logsize     = BBTOB(num_bblks);
1574	log->l_logBBstart  = blk_offset;
1575	log->l_logBBsize   = num_bblks;
1576	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1577	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1578	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1579
1580	log->l_prev_block  = -1;
1581	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1582	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1583	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1584	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1585
1586	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1587		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1588	else
1589		log->l_iclog_roundoff = BBSIZE;
1590
1591	xlog_grant_head_init(&log->l_reserve_head);
1592	xlog_grant_head_init(&log->l_write_head);
1593
1594	error = -EFSCORRUPTED;
1595	if (xfs_has_sector(mp)) {
1596	        log2_size = mp->m_sb.sb_logsectlog;
1597		if (log2_size < BBSHIFT) {
1598			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1599				log2_size, BBSHIFT);
1600			goto out_free_log;
1601		}
1602
1603	        log2_size -= BBSHIFT;
1604		if (log2_size > mp->m_sectbb_log) {
1605			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1606				log2_size, mp->m_sectbb_log);
1607			goto out_free_log;
1608		}
1609
1610		/* for larger sector sizes, must have v2 or external log */
1611		if (log2_size && log->l_logBBstart > 0 &&
1612			    !xfs_has_logv2(mp)) {
1613			xfs_warn(mp,
1614		"log sector size (0x%x) invalid for configuration.",
1615				log2_size);
1616			goto out_free_log;
1617		}
1618	}
1619	log->l_sectBBsize = 1 << log2_size;
1620
1621	init_rwsem(&log->l_incompat_users);
1622
1623	xlog_get_iclog_buffer_size(mp, log);
1624
1625	spin_lock_init(&log->l_icloglock);
1626	init_waitqueue_head(&log->l_flush_wait);
1627
1628	iclogp = &log->l_iclog;
1629	/*
1630	 * The amount of memory to allocate for the iclog structure is
1631	 * rather funky due to the way the structure is defined.  It is
1632	 * done this way so that we can use different sizes for machines
1633	 * with different amounts of memory.  See the definition of
1634	 * xlog_in_core_t in xfs_log_priv.h for details.
1635	 */
1636	ASSERT(log->l_iclog_size >= 4096);
1637	for (i = 0; i < log->l_iclog_bufs; i++) {
 
1638		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1639				sizeof(struct bio_vec);
1640
1641		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1642		if (!iclog)
1643			goto out_free_iclog;
1644
1645		*iclogp = iclog;
1646		iclog->ic_prev = prev_iclog;
1647		prev_iclog = iclog;
1648
1649		iclog->ic_data = kvzalloc(log->l_iclog_size,
1650				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1651		if (!iclog->ic_data)
1652			goto out_free_iclog;
 
 
 
1653		head = &iclog->ic_header;
1654		memset(head, 0, sizeof(xlog_rec_header_t));
1655		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1656		head->h_version = cpu_to_be32(
1657			xfs_has_logv2(log->l_mp) ? 2 : 1);
1658		head->h_size = cpu_to_be32(log->l_iclog_size);
1659		/* new fields */
1660		head->h_fmt = cpu_to_be32(XLOG_FMT);
1661		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1662
1663		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1664		iclog->ic_state = XLOG_STATE_ACTIVE;
1665		iclog->ic_log = log;
1666		atomic_set(&iclog->ic_refcnt, 0);
 
1667		INIT_LIST_HEAD(&iclog->ic_callbacks);
1668		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1669
1670		init_waitqueue_head(&iclog->ic_force_wait);
1671		init_waitqueue_head(&iclog->ic_write_wait);
1672		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1673		sema_init(&iclog->ic_sema, 1);
1674
1675		iclogp = &iclog->ic_next;
1676	}
1677	*iclogp = log->l_iclog;			/* complete ring */
1678	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1679
1680	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1681			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1682				    WQ_HIGHPRI),
1683			0, mp->m_super->s_id);
1684	if (!log->l_ioend_workqueue)
1685		goto out_free_iclog;
1686
1687	error = xlog_cil_init(log);
1688	if (error)
1689		goto out_destroy_workqueue;
1690	return log;
1691
1692out_destroy_workqueue:
1693	destroy_workqueue(log->l_ioend_workqueue);
1694out_free_iclog:
1695	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1696		prev_iclog = iclog->ic_next;
1697		kmem_free(iclog->ic_data);
1698		kmem_free(iclog);
1699		if (prev_iclog == log->l_iclog)
1700			break;
1701	}
1702out_free_log:
1703	kmem_free(log);
1704out:
1705	return ERR_PTR(error);
1706}	/* xlog_alloc_log */
1707
1708/*
1709 * Compute the LSN that we'd need to push the log tail towards in order to have
1710 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1711 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1712 * log free space already meets all three thresholds, this function returns
1713 * NULLCOMMITLSN.
1714 */
1715xfs_lsn_t
1716xlog_grant_push_threshold(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717	struct xlog	*log,
1718	int		need_bytes)
1719{
1720	xfs_lsn_t	threshold_lsn = 0;
1721	xfs_lsn_t	last_sync_lsn;
1722	int		free_blocks;
1723	int		free_bytes;
1724	int		threshold_block;
1725	int		threshold_cycle;
1726	int		free_threshold;
1727
1728	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1729
1730	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1731	free_blocks = BTOBBT(free_bytes);
1732
1733	/*
1734	 * Set the threshold for the minimum number of free blocks in the
1735	 * log to the maximum of what the caller needs, one quarter of the
1736	 * log, and 256 blocks.
1737	 */
1738	free_threshold = BTOBB(need_bytes);
1739	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1740	free_threshold = max(free_threshold, 256);
1741	if (free_blocks >= free_threshold)
1742		return NULLCOMMITLSN;
1743
1744	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1745						&threshold_block);
1746	threshold_block += free_threshold;
1747	if (threshold_block >= log->l_logBBsize) {
1748		threshold_block -= log->l_logBBsize;
1749		threshold_cycle += 1;
1750	}
1751	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1752					threshold_block);
1753	/*
1754	 * Don't pass in an lsn greater than the lsn of the last
1755	 * log record known to be on disk. Use a snapshot of the last sync lsn
1756	 * so that it doesn't change between the compare and the set.
1757	 */
1758	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1759	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1760		threshold_lsn = last_sync_lsn;
1761
1762	return threshold_lsn;
1763}
1764
1765/*
1766 * Push the tail of the log if we need to do so to maintain the free log space
1767 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1768 * policy which pushes on an lsn which is further along in the log once we
1769 * reach the high water mark.  In this manner, we would be creating a low water
1770 * mark.
1771 */
1772STATIC void
1773xlog_grant_push_ail(
1774	struct xlog	*log,
1775	int		need_bytes)
1776{
1777	xfs_lsn_t	threshold_lsn;
1778
1779	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1780	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1781		return;
1782
1783	/*
1784	 * Get the transaction layer to kick the dirty buffers out to
1785	 * disk asynchronously. No point in trying to do this if
1786	 * the filesystem is shutting down.
1787	 */
1788	xfs_ail_push(log->l_ailp, threshold_lsn);
 
1789}
1790
1791/*
1792 * Stamp cycle number in every block
1793 */
1794STATIC void
1795xlog_pack_data(
1796	struct xlog		*log,
1797	struct xlog_in_core	*iclog,
1798	int			roundoff)
1799{
1800	int			i, j, k;
1801	int			size = iclog->ic_offset + roundoff;
1802	__be32			cycle_lsn;
1803	char			*dp;
1804
1805	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1806
1807	dp = iclog->ic_datap;
1808	for (i = 0; i < BTOBB(size); i++) {
1809		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1810			break;
1811		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1812		*(__be32 *)dp = cycle_lsn;
1813		dp += BBSIZE;
1814	}
1815
1816	if (xfs_has_logv2(log->l_mp)) {
1817		xlog_in_core_2_t *xhdr = iclog->ic_data;
1818
1819		for ( ; i < BTOBB(size); i++) {
1820			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1821			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1822			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1823			*(__be32 *)dp = cycle_lsn;
1824			dp += BBSIZE;
1825		}
1826
1827		for (i = 1; i < log->l_iclog_heads; i++)
1828			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1829	}
1830}
1831
1832/*
1833 * Calculate the checksum for a log buffer.
1834 *
1835 * This is a little more complicated than it should be because the various
1836 * headers and the actual data are non-contiguous.
1837 */
1838__le32
1839xlog_cksum(
1840	struct xlog		*log,
1841	struct xlog_rec_header	*rhead,
1842	char			*dp,
1843	int			size)
1844{
1845	uint32_t		crc;
1846
1847	/* first generate the crc for the record header ... */
1848	crc = xfs_start_cksum_update((char *)rhead,
1849			      sizeof(struct xlog_rec_header),
1850			      offsetof(struct xlog_rec_header, h_crc));
1851
1852	/* ... then for additional cycle data for v2 logs ... */
1853	if (xfs_has_logv2(log->l_mp)) {
1854		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1855		int		i;
1856		int		xheads;
1857
1858		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
 
 
1859
1860		for (i = 1; i < xheads; i++) {
1861			crc = crc32c(crc, &xhdr[i].hic_xheader,
1862				     sizeof(struct xlog_rec_ext_header));
1863		}
1864	}
1865
1866	/* ... and finally for the payload */
1867	crc = crc32c(crc, dp, size);
1868
1869	return xfs_end_cksum(crc);
1870}
1871
1872static void
1873xlog_bio_end_io(
1874	struct bio		*bio)
1875{
1876	struct xlog_in_core	*iclog = bio->bi_private;
1877
1878	queue_work(iclog->ic_log->l_ioend_workqueue,
1879		   &iclog->ic_end_io_work);
1880}
1881
1882static int
1883xlog_map_iclog_data(
1884	struct bio		*bio,
1885	void			*data,
1886	size_t			count)
1887{
1888	do {
1889		struct page	*page = kmem_to_page(data);
1890		unsigned int	off = offset_in_page(data);
1891		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1892
1893		if (bio_add_page(bio, page, len, off) != len)
1894			return -EIO;
1895
1896		data += len;
1897		count -= len;
1898	} while (count);
1899
1900	return 0;
1901}
1902
1903STATIC void
1904xlog_write_iclog(
1905	struct xlog		*log,
1906	struct xlog_in_core	*iclog,
1907	uint64_t		bno,
1908	unsigned int		count)
 
1909{
1910	ASSERT(bno < log->l_logBBsize);
1911	trace_xlog_iclog_write(iclog, _RET_IP_);
1912
1913	/*
1914	 * We lock the iclogbufs here so that we can serialise against I/O
1915	 * completion during unmount.  We might be processing a shutdown
1916	 * triggered during unmount, and that can occur asynchronously to the
1917	 * unmount thread, and hence we need to ensure that completes before
1918	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1919	 * across the log IO to archieve that.
1920	 */
1921	down(&iclog->ic_sema);
1922	if (xlog_is_shutdown(log)) {
1923		/*
1924		 * It would seem logical to return EIO here, but we rely on
1925		 * the log state machine to propagate I/O errors instead of
1926		 * doing it here.  We kick of the state machine and unlock
1927		 * the buffer manually, the code needs to be kept in sync
1928		 * with the I/O completion path.
1929		 */
1930		xlog_state_done_syncing(iclog);
1931		up(&iclog->ic_sema);
1932		return;
1933	}
1934
 
 
 
 
 
 
1935	/*
1936	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1937	 * IOs coming immediately after this one. This prevents the block layer
1938	 * writeback throttle from throttling log writes behind background
1939	 * metadata writeback and causing priority inversions.
1940	 */
1941	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1942		 howmany(count, PAGE_SIZE),
1943		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1944	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1945	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1946	iclog->ic_bio.bi_private = iclog;
1947
1948	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1949		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1950		/*
1951		 * For external log devices, we also need to flush the data
1952		 * device cache first to ensure all metadata writeback covered
1953		 * by the LSN in this iclog is on stable storage. This is slow,
1954		 * but it *must* complete before we issue the external log IO.
1955		 *
1956		 * If the flush fails, we cannot conclude that past metadata
1957		 * writeback from the log succeeded.  Repeating the flush is
1958		 * not possible, hence we must shut down with log IO error to
1959		 * avoid shutdown re-entering this path and erroring out again.
1960		 */
1961		if (log->l_targ != log->l_mp->m_ddev_targp &&
1962		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) {
1963			xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1964			return;
1965		}
1966	}
1967	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1968		iclog->ic_bio.bi_opf |= REQ_FUA;
1969
1970	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1971
1972	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1973		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1974		return;
1975	}
1976	if (is_vmalloc_addr(iclog->ic_data))
1977		flush_kernel_vmap_range(iclog->ic_data, count);
1978
1979	/*
1980	 * If this log buffer would straddle the end of the log we will have
1981	 * to split it up into two bios, so that we can continue at the start.
1982	 */
1983	if (bno + BTOBB(count) > log->l_logBBsize) {
1984		struct bio *split;
1985
1986		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1987				  GFP_NOIO, &fs_bio_set);
1988		bio_chain(split, &iclog->ic_bio);
1989		submit_bio(split);
1990
1991		/* restart at logical offset zero for the remainder */
1992		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1993	}
1994
1995	submit_bio(&iclog->ic_bio);
1996}
1997
1998/*
1999 * We need to bump cycle number for the part of the iclog that is
2000 * written to the start of the log. Watch out for the header magic
2001 * number case, though.
2002 */
2003static void
2004xlog_split_iclog(
2005	struct xlog		*log,
2006	void			*data,
2007	uint64_t		bno,
2008	unsigned int		count)
2009{
2010	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
2011	unsigned int		i;
2012
2013	for (i = split_offset; i < count; i += BBSIZE) {
2014		uint32_t cycle = get_unaligned_be32(data + i);
2015
2016		if (++cycle == XLOG_HEADER_MAGIC_NUM)
2017			cycle++;
2018		put_unaligned_be32(cycle, data + i);
2019	}
2020}
2021
2022static int
2023xlog_calc_iclog_size(
2024	struct xlog		*log,
2025	struct xlog_in_core	*iclog,
2026	uint32_t		*roundoff)
2027{
2028	uint32_t		count_init, count;
 
 
 
 
2029
2030	/* Add for LR header */
2031	count_init = log->l_iclog_hsize + iclog->ic_offset;
2032	count = roundup(count_init, log->l_iclog_roundoff);
2033
2034	*roundoff = count - count_init;
 
 
 
 
 
 
2035
2036	ASSERT(count >= count_init);
2037	ASSERT(*roundoff < log->l_iclog_roundoff);
 
 
 
 
 
2038	return count;
2039}
2040
2041/*
2042 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2043 * fashion.  Previously, we should have moved the current iclog
2044 * ptr in the log to point to the next available iclog.  This allows further
2045 * write to continue while this code syncs out an iclog ready to go.
2046 * Before an in-core log can be written out, the data section must be scanned
2047 * to save away the 1st word of each BBSIZE block into the header.  We replace
2048 * it with the current cycle count.  Each BBSIZE block is tagged with the
2049 * cycle count because there in an implicit assumption that drives will
2050 * guarantee that entire 512 byte blocks get written at once.  In other words,
2051 * we can't have part of a 512 byte block written and part not written.  By
2052 * tagging each block, we will know which blocks are valid when recovering
2053 * after an unclean shutdown.
2054 *
2055 * This routine is single threaded on the iclog.  No other thread can be in
2056 * this routine with the same iclog.  Changing contents of iclog can there-
2057 * fore be done without grabbing the state machine lock.  Updating the global
2058 * log will require grabbing the lock though.
2059 *
2060 * The entire log manager uses a logical block numbering scheme.  Only
2061 * xlog_write_iclog knows about the fact that the log may not start with
2062 * block zero on a given device.
2063 */
2064STATIC void
2065xlog_sync(
2066	struct xlog		*log,
2067	struct xlog_in_core	*iclog,
2068	struct xlog_ticket	*ticket)
2069{
2070	unsigned int		count;		/* byte count of bwrite */
2071	unsigned int		roundoff;       /* roundoff to BB or stripe */
2072	uint64_t		bno;
2073	unsigned int		size;
 
2074
2075	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2076	trace_xlog_iclog_sync(iclog, _RET_IP_);
2077
2078	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2079
2080	/*
2081	 * If we have a ticket, account for the roundoff via the ticket
2082	 * reservation to avoid touching the hot grant heads needlessly.
2083	 * Otherwise, we have to move grant heads directly.
2084	 */
2085	if (ticket) {
2086		ticket->t_curr_res -= roundoff;
2087	} else {
2088		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2089		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2090	}
2091
2092	/* put cycle number in every block */
2093	xlog_pack_data(log, iclog, roundoff);
2094
2095	/* real byte length */
2096	size = iclog->ic_offset;
2097	if (xfs_has_logv2(log->l_mp))
2098		size += roundoff;
2099	iclog->ic_header.h_len = cpu_to_be32(size);
2100
2101	XFS_STATS_INC(log->l_mp, xs_log_writes);
2102	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2103
2104	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2105
2106	/* Do we need to split this write into 2 parts? */
2107	if (bno + BTOBB(count) > log->l_logBBsize)
2108		xlog_split_iclog(log, &iclog->ic_header, bno, count);
 
 
2109
2110	/* calculcate the checksum */
2111	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2112					    iclog->ic_datap, size);
2113	/*
2114	 * Intentionally corrupt the log record CRC based on the error injection
2115	 * frequency, if defined. This facilitates testing log recovery in the
2116	 * event of torn writes. Hence, set the IOABORT state to abort the log
2117	 * write on I/O completion and shutdown the fs. The subsequent mount
2118	 * detects the bad CRC and attempts to recover.
2119	 */
2120#ifdef DEBUG
2121	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2122		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2123		iclog->ic_fail_crc = true;
2124		xfs_warn(log->l_mp,
2125	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2126			 be64_to_cpu(iclog->ic_header.h_lsn));
2127	}
2128#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2129	xlog_verify_iclog(log, iclog, count);
2130	xlog_write_iclog(log, iclog, bno, count);
2131}
2132
2133/*
2134 * Deallocate a log structure
2135 */
2136STATIC void
2137xlog_dealloc_log(
2138	struct xlog	*log)
2139{
2140	xlog_in_core_t	*iclog, *next_iclog;
2141	int		i;
2142
 
 
2143	/*
2144	 * Destroy the CIL after waiting for iclog IO completion because an
2145	 * iclog EIO error will try to shut down the log, which accesses the
2146	 * CIL to wake up the waiters.
2147	 */
2148	xlog_cil_destroy(log);
 
 
 
 
 
2149
2150	iclog = log->l_iclog;
2151	for (i = 0; i < log->l_iclog_bufs; i++) {
2152		next_iclog = iclog->ic_next;
2153		kmem_free(iclog->ic_data);
2154		kmem_free(iclog);
2155		iclog = next_iclog;
2156	}
2157
2158	log->l_mp->m_log = NULL;
2159	destroy_workqueue(log->l_ioend_workqueue);
2160	kmem_free(log);
2161}
2162
2163/*
2164 * Update counters atomically now that memcpy is done.
2165 */
2166static inline void
2167xlog_state_finish_copy(
2168	struct xlog		*log,
2169	struct xlog_in_core	*iclog,
2170	int			record_cnt,
2171	int			copy_bytes)
2172{
2173	lockdep_assert_held(&log->l_icloglock);
2174
2175	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2176	iclog->ic_offset += copy_bytes;
2177}
2178
2179/*
2180 * print out info relating to regions written which consume
2181 * the reservation
2182 */
2183void
2184xlog_print_tic_res(
2185	struct xfs_mount	*mp,
2186	struct xlog_ticket	*ticket)
2187{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2188	xfs_warn(mp, "ticket reservation summary:");
2189	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2190	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2191	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2192	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2193}
2194
2195/*
2196 * Print a summary of the transaction.
2197 */
2198void
2199xlog_print_trans(
2200	struct xfs_trans	*tp)
2201{
2202	struct xfs_mount	*mp = tp->t_mountp;
2203	struct xfs_log_item	*lip;
2204
2205	/* dump core transaction and ticket info */
2206	xfs_warn(mp, "transaction summary:");
2207	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2208	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2209	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2210
2211	xlog_print_tic_res(mp, tp->t_ticket);
2212
2213	/* dump each log item */
2214	list_for_each_entry(lip, &tp->t_items, li_trans) {
2215		struct xfs_log_vec	*lv = lip->li_lv;
2216		struct xfs_log_iovec	*vec;
2217		int			i;
2218
2219		xfs_warn(mp, "log item: ");
2220		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2221		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2222		if (!lv)
2223			continue;
2224		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2225		xfs_warn(mp, "  size	= %d", lv->lv_size);
2226		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2227		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2228
2229		/* dump each iovec for the log item */
2230		vec = lv->lv_iovecp;
2231		for (i = 0; i < lv->lv_niovecs; i++) {
2232			int dumplen = min(vec->i_len, 32);
2233
2234			xfs_warn(mp, "  iovec[%d]", i);
2235			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2236			xfs_warn(mp, "    len	= %d", vec->i_len);
2237			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2238			xfs_hex_dump(vec->i_addr, dumplen);
2239
2240			vec++;
2241		}
2242	}
2243}
2244
2245static inline void
2246xlog_write_iovec(
2247	struct xlog_in_core	*iclog,
2248	uint32_t		*log_offset,
2249	void			*data,
2250	uint32_t		write_len,
2251	int			*bytes_left,
2252	uint32_t		*record_cnt,
2253	uint32_t		*data_cnt)
2254{
2255	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2256	ASSERT(*log_offset % sizeof(int32_t) == 0);
2257	ASSERT(write_len % sizeof(int32_t) == 0);
2258
2259	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2260	*log_offset += write_len;
2261	*bytes_left -= write_len;
2262	(*record_cnt)++;
2263	*data_cnt += write_len;
2264}
2265
2266/*
2267 * Write log vectors into a single iclog which is guaranteed by the caller
2268 * to have enough space to write the entire log vector into.
 
2269 */
2270static void
2271xlog_write_full(
2272	struct xfs_log_vec	*lv,
2273	struct xlog_ticket	*ticket,
2274	struct xlog_in_core	*iclog,
2275	uint32_t		*log_offset,
2276	uint32_t		*len,
2277	uint32_t		*record_cnt,
2278	uint32_t		*data_cnt)
2279{
2280	int			index;
 
 
 
2281
2282	ASSERT(*log_offset + *len <= iclog->ic_size ||
2283		iclog->ic_state == XLOG_STATE_WANT_SYNC);
 
 
2284
2285	/*
2286	 * Ordered log vectors have no regions to write so this
2287	 * loop will naturally skip them.
2288	 */
2289	for (index = 0; index < lv->lv_niovecs; index++) {
2290		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2291		struct xlog_op_header	*ophdr = reg->i_addr;
2292
2293		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2294		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2295				reg->i_len, len, record_cnt, data_cnt);
 
 
 
2296	}
 
 
 
 
 
2297}
2298
2299static int
2300xlog_write_get_more_iclog_space(
2301	struct xlog_ticket	*ticket,
2302	struct xlog_in_core	**iclogp,
2303	uint32_t		*log_offset,
2304	uint32_t		len,
2305	uint32_t		*record_cnt,
2306	uint32_t		*data_cnt)
2307{
2308	struct xlog_in_core	*iclog = *iclogp;
2309	struct xlog		*log = iclog->ic_log;
2310	int			error;
 
 
 
2311
2312	spin_lock(&log->l_icloglock);
2313	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2314	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2315	error = xlog_state_release_iclog(log, iclog, ticket);
2316	spin_unlock(&log->l_icloglock);
2317	if (error)
2318		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2319
2320	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2321					log_offset);
2322	if (error)
2323		return error;
2324	*record_cnt = 0;
2325	*data_cnt = 0;
2326	*iclogp = iclog;
2327	return 0;
2328}
2329
2330/*
2331 * Write log vectors into a single iclog which is smaller than the current chain
2332 * length. We write until we cannot fit a full record into the remaining space
2333 * and then stop. We return the log vector that is to be written that cannot
2334 * wholly fit in the iclog.
2335 */
2336static int
2337xlog_write_partial(
2338	struct xfs_log_vec	*lv,
2339	struct xlog_ticket	*ticket,
2340	struct xlog_in_core	**iclogp,
2341	uint32_t		*log_offset,
2342	uint32_t		*len,
2343	uint32_t		*record_cnt,
2344	uint32_t		*data_cnt)
2345{
2346	struct xlog_in_core	*iclog = *iclogp;
2347	struct xlog_op_header	*ophdr;
2348	int			index = 0;
2349	uint32_t		rlen;
2350	int			error;
2351
2352	/* walk the logvec, copying until we run out of space in the iclog */
2353	for (index = 0; index < lv->lv_niovecs; index++) {
2354		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2355		uint32_t		reg_offset = 0;
2356
2357		/*
2358		 * The first region of a continuation must have a non-zero
2359		 * length otherwise log recovery will just skip over it and
2360		 * start recovering from the next opheader it finds. Because we
2361		 * mark the next opheader as a continuation, recovery will then
2362		 * incorrectly add the continuation to the previous region and
2363		 * that breaks stuff.
2364		 *
2365		 * Hence if there isn't space for region data after the
2366		 * opheader, then we need to start afresh with a new iclog.
2367		 */
2368		if (iclog->ic_size - *log_offset <=
2369					sizeof(struct xlog_op_header)) {
2370			error = xlog_write_get_more_iclog_space(ticket,
2371					&iclog, log_offset, *len, record_cnt,
2372					data_cnt);
2373			if (error)
2374				return error;
2375		}
2376
2377		ophdr = reg->i_addr;
2378		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2379
2380		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2381		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2382		if (rlen != reg->i_len)
2383			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
 
 
 
 
 
 
 
 
2384
2385		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2386				rlen, len, record_cnt, data_cnt);
2387
2388		/* If we wrote the whole region, move to the next. */
2389		if (rlen == reg->i_len)
2390			continue;
 
 
 
 
 
 
 
 
 
 
2391
 
2392		/*
2393		 * We now have a partially written iovec, but it can span
2394		 * multiple iclogs so we loop here. First we release the iclog
2395		 * we currently have, then we get a new iclog and add a new
2396		 * opheader. Then we continue copying from where we were until
2397		 * we either complete the iovec or fill the iclog. If we
2398		 * complete the iovec, then we increment the index and go right
2399		 * back to the top of the outer loop. if we fill the iclog, we
2400		 * run the inner loop again.
2401		 *
2402		 * This is complicated by the tail of a region using all the
2403		 * space in an iclog and hence requiring us to release the iclog
2404		 * and get a new one before returning to the outer loop. We must
2405		 * always guarantee that we exit this inner loop with at least
2406		 * space for log transaction opheaders left in the current
2407		 * iclog, hence we cannot just terminate the loop at the end
2408		 * of the of the continuation. So we loop while there is no
2409		 * space left in the current iclog, and check for the end of the
2410		 * continuation after getting a new iclog.
2411		 */
2412		do {
2413			/*
2414			 * Ensure we include the continuation opheader in the
2415			 * space we need in the new iclog by adding that size
2416			 * to the length we require. This continuation opheader
2417			 * needs to be accounted to the ticket as the space it
2418			 * consumes hasn't been accounted to the lv we are
2419			 * writing.
2420			 */
2421			error = xlog_write_get_more_iclog_space(ticket,
2422					&iclog, log_offset,
2423					*len + sizeof(struct xlog_op_header),
2424					record_cnt, data_cnt);
2425			if (error)
2426				return error;
2427
2428			ophdr = iclog->ic_datap + *log_offset;
2429			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2430			ophdr->oh_clientid = XFS_TRANSACTION;
2431			ophdr->oh_res2 = 0;
2432			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2433
2434			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2435			*log_offset += sizeof(struct xlog_op_header);
2436			*data_cnt += sizeof(struct xlog_op_header);
2437
2438			/*
2439			 * If rlen fits in the iclog, then end the region
2440			 * continuation. Otherwise we're going around again.
2441			 */
2442			reg_offset += rlen;
2443			rlen = reg->i_len - reg_offset;
2444			if (rlen <= iclog->ic_size - *log_offset)
2445				ophdr->oh_flags |= XLOG_END_TRANS;
2446			else
2447				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2448
2449			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2450			ophdr->oh_len = cpu_to_be32(rlen);
2451
2452			xlog_write_iovec(iclog, log_offset,
2453					reg->i_addr + reg_offset,
2454					rlen, len, record_cnt, data_cnt);
 
 
 
2455
2456		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
 
 
 
 
 
 
 
 
 
2457	}
2458
2459	/*
2460	 * No more iovecs remain in this logvec so return the next log vec to
2461	 * the caller so it can go back to fast path copying.
2462	 */
2463	*iclogp = iclog;
2464	return 0;
 
 
 
 
 
2465}
2466
2467/*
2468 * Write some region out to in-core log
2469 *
2470 * This will be called when writing externally provided regions or when
2471 * writing out a commit record for a given transaction.
2472 *
2473 * General algorithm:
2474 *	1. Find total length of this write.  This may include adding to the
2475 *		lengths passed in.
2476 *	2. Check whether we violate the tickets reservation.
2477 *	3. While writing to this iclog
2478 *	    A. Reserve as much space in this iclog as can get
2479 *	    B. If this is first write, save away start lsn
2480 *	    C. While writing this region:
2481 *		1. If first write of transaction, write start record
2482 *		2. Write log operation header (header per region)
2483 *		3. Find out if we can fit entire region into this iclog
2484 *		4. Potentially, verify destination memcpy ptr
2485 *		5. Memcpy (partial) region
2486 *		6. If partial copy, release iclog; otherwise, continue
2487 *			copying more regions into current iclog
2488 *	4. Mark want sync bit (in simulation mode)
2489 *	5. Release iclog for potential flush to on-disk log.
2490 *
2491 * ERRORS:
2492 * 1.	Panic if reservation is overrun.  This should never happen since
2493 *	reservation amounts are generated internal to the filesystem.
2494 * NOTES:
2495 * 1. Tickets are single threaded data structures.
2496 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2497 *	syncing routine.  When a single log_write region needs to span
2498 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2499 *	on all log operation writes which don't contain the end of the
2500 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2501 *	operation which contains the end of the continued log_write region.
2502 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2503 *	we don't really know exactly how much space will be used.  As a result,
2504 *	we don't update ic_offset until the end when we know exactly how many
2505 *	bytes have been written out.
2506 */
2507int
2508xlog_write(
2509	struct xlog		*log,
2510	struct xfs_cil_ctx	*ctx,
2511	struct list_head	*lv_chain,
2512	struct xlog_ticket	*ticket,
2513	uint32_t		len)
2514
 
 
2515{
2516	struct xlog_in_core	*iclog = NULL;
2517	struct xfs_log_vec	*lv;
2518	uint32_t		record_cnt = 0;
2519	uint32_t		data_cnt = 0;
 
 
 
 
 
 
2520	int			error = 0;
2521	int			log_offset;
2522
 
 
 
 
 
 
 
2523	if (ticket->t_curr_res < 0) {
2524		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2525		     "ctx ticket reservation ran out. Need to up reservation");
2526		xlog_print_tic_res(log->l_mp, ticket);
2527		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2528	}
2529
2530	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2531					   &log_offset);
2532	if (error)
2533		return error;
 
2534
2535	ASSERT(log_offset <= iclog->ic_size - 1);
 
 
 
2536
2537	/*
2538	 * If we have a context pointer, pass it the first iclog we are
2539	 * writing to so it can record state needed for iclog write
2540	 * ordering.
2541	 */
2542	if (ctx)
2543		xlog_cil_set_ctx_write_state(ctx, iclog);
2544
2545	list_for_each_entry(lv, lv_chain, lv_list) {
2546		/*
2547		 * If the entire log vec does not fit in the iclog, punt it to
2548		 * the partial copy loop which can handle this case.
2549		 */
2550		if (lv->lv_niovecs &&
2551		    lv->lv_bytes > iclog->ic_size - log_offset) {
2552			error = xlog_write_partial(lv, ticket, &iclog,
2553					&log_offset, &len, &record_cnt,
2554					&data_cnt);
2555			if (error) {
2556				/*
2557				 * We have no iclog to release, so just return
2558				 * the error immediately.
2559				 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560				return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561			}
2562		} else {
2563			xlog_write_full(lv, ticket, iclog, &log_offset,
2564					 &len, &record_cnt, &data_cnt);
2565		}
2566	}
 
2567	ASSERT(len == 0);
2568
2569	/*
2570	 * We've already been guaranteed that the last writes will fit inside
2571	 * the current iclog, and hence it will already have the space used by
2572	 * those writes accounted to it. Hence we do not need to update the
2573	 * iclog with the number of bytes written here.
2574	 */
2575	spin_lock(&log->l_icloglock);
2576	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2577	error = xlog_state_release_iclog(log, iclog, ticket);
 
 
 
 
 
2578	spin_unlock(&log->l_icloglock);
2579
2580	return error;
2581}
2582
2583static void
2584xlog_state_activate_iclog(
2585	struct xlog_in_core	*iclog,
2586	int			*iclogs_changed)
2587{
2588	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2589	trace_xlog_iclog_activate(iclog, _RET_IP_);
2590
2591	/*
2592	 * If the number of ops in this iclog indicate it just contains the
2593	 * dummy transaction, we can change state into IDLE (the second time
2594	 * around). Otherwise we should change the state into NEED a dummy.
2595	 * We don't need to cover the dummy.
2596	 */
2597	if (*iclogs_changed == 0 &&
2598	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2599		*iclogs_changed = 1;
2600	} else {
2601		/*
2602		 * We have two dirty iclogs so start over.  This could also be
2603		 * num of ops indicating this is not the dummy going out.
2604		 */
2605		*iclogs_changed = 2;
2606	}
2607
2608	iclog->ic_state	= XLOG_STATE_ACTIVE;
2609	iclog->ic_offset = 0;
2610	iclog->ic_header.h_num_logops = 0;
2611	memset(iclog->ic_header.h_cycle_data, 0,
2612		sizeof(iclog->ic_header.h_cycle_data));
2613	iclog->ic_header.h_lsn = 0;
2614	iclog->ic_header.h_tail_lsn = 0;
2615}
2616
2617/*
2618 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2619 * ACTIVE after iclog I/O has completed.
2620 */
2621static void
2622xlog_state_activate_iclogs(
2623	struct xlog		*log,
2624	int			*iclogs_changed)
2625{
2626	struct xlog_in_core	*iclog = log->l_iclog;
2627
2628	do {
2629		if (iclog->ic_state == XLOG_STATE_DIRTY)
2630			xlog_state_activate_iclog(iclog, iclogs_changed);
2631		/*
2632		 * The ordering of marking iclogs ACTIVE must be maintained, so
2633		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2634		 */
2635		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2636			break;
2637	} while ((iclog = iclog->ic_next) != log->l_iclog);
2638}
2639
2640static int
2641xlog_covered_state(
2642	int			prev_state,
2643	int			iclogs_changed)
2644{
2645	/*
2646	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2647	 * wrote the first covering record (DONE). We go to IDLE if we just
2648	 * wrote the second covering record (DONE2) and remain in IDLE until a
2649	 * non-covering write occurs.
2650	 */
2651	switch (prev_state) {
2652	case XLOG_STATE_COVER_IDLE:
2653		if (iclogs_changed == 1)
2654			return XLOG_STATE_COVER_IDLE;
2655		fallthrough;
2656	case XLOG_STATE_COVER_NEED:
2657	case XLOG_STATE_COVER_NEED2:
2658		break;
2659	case XLOG_STATE_COVER_DONE:
2660		if (iclogs_changed == 1)
2661			return XLOG_STATE_COVER_NEED2;
2662		break;
2663	case XLOG_STATE_COVER_DONE2:
2664		if (iclogs_changed == 1)
2665			return XLOG_STATE_COVER_IDLE;
2666		break;
2667	default:
2668		ASSERT(0);
2669	}
2670
2671	return XLOG_STATE_COVER_NEED;
2672}
2673
2674STATIC void
2675xlog_state_clean_iclog(
2676	struct xlog		*log,
2677	struct xlog_in_core	*dirty_iclog)
2678{
2679	int			iclogs_changed = 0;
2680
2681	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2682
2683	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2684
2685	xlog_state_activate_iclogs(log, &iclogs_changed);
2686	wake_up_all(&dirty_iclog->ic_force_wait);
2687
2688	if (iclogs_changed) {
2689		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2690				iclogs_changed);
2691	}
2692}
2693
2694STATIC xfs_lsn_t
2695xlog_get_lowest_lsn(
2696	struct xlog		*log)
2697{
2698	struct xlog_in_core	*iclog = log->l_iclog;
2699	xfs_lsn_t		lowest_lsn = 0, lsn;
2700
2701	do {
2702		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2703		    iclog->ic_state == XLOG_STATE_DIRTY)
2704			continue;
2705
2706		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2707		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2708			lowest_lsn = lsn;
2709	} while ((iclog = iclog->ic_next) != log->l_iclog);
2710
2711	return lowest_lsn;
2712}
2713
2714/*
2715 * Completion of a iclog IO does not imply that a transaction has completed, as
2716 * transactions can be large enough to span many iclogs. We cannot change the
2717 * tail of the log half way through a transaction as this may be the only
2718 * transaction in the log and moving the tail to point to the middle of it
2719 * will prevent recovery from finding the start of the transaction. Hence we
2720 * should only update the last_sync_lsn if this iclog contains transaction
2721 * completion callbacks on it.
2722 *
2723 * We have to do this before we drop the icloglock to ensure we are the only one
2724 * that can update it.
2725 *
2726 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2727 * the reservation grant head pushing. This is due to the fact that the push
2728 * target is bound by the current last_sync_lsn value. Hence if we have a large
2729 * amount of log space bound up in this committing transaction then the
2730 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2731 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2732 * should push the AIL to ensure the push target (and hence the grant head) is
2733 * no longer bound by the old log head location and can move forwards and make
2734 * progress again.
2735 */
2736static void
2737xlog_state_set_callback(
2738	struct xlog		*log,
2739	struct xlog_in_core	*iclog,
2740	xfs_lsn_t		header_lsn)
2741{
2742	trace_xlog_iclog_callback(iclog, _RET_IP_);
2743	iclog->ic_state = XLOG_STATE_CALLBACK;
2744
2745	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2746			   header_lsn) <= 0);
2747
2748	if (list_empty_careful(&iclog->ic_callbacks))
2749		return;
2750
2751	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2752	xlog_grant_push_ail(log, 0);
2753}
2754
2755/*
2756 * Return true if we need to stop processing, false to continue to the next
2757 * iclog. The caller will need to run callbacks if the iclog is returned in the
2758 * XLOG_STATE_CALLBACK state.
2759 */
2760static bool
2761xlog_state_iodone_process_iclog(
2762	struct xlog		*log,
2763	struct xlog_in_core	*iclog)
 
2764{
2765	xfs_lsn_t		lowest_lsn;
2766	xfs_lsn_t		header_lsn;
2767
2768	switch (iclog->ic_state) {
2769	case XLOG_STATE_ACTIVE:
2770	case XLOG_STATE_DIRTY:
2771		/*
2772		 * Skip all iclogs in the ACTIVE & DIRTY states:
2773		 */
2774		return false;
 
 
 
 
 
 
 
 
 
2775	case XLOG_STATE_DONE_SYNC:
2776		/*
2777		 * Now that we have an iclog that is in the DONE_SYNC state, do
2778		 * one more check here to see if we have chased our tail around.
2779		 * If this is not the lowest lsn iclog, then we will leave it
2780		 * for another completion to process.
2781		 */
2782		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2783		lowest_lsn = xlog_get_lowest_lsn(log);
2784		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2785			return false;
2786		xlog_state_set_callback(log, iclog, header_lsn);
2787		return false;
2788	default:
2789		/*
2790		 * Can only perform callbacks in order.  Since this iclog is not
2791		 * in the DONE_SYNC state, we skip the rest and just try to
2792		 * clean up.
2793		 */
2794		return true;
2795	}
2796}
2797
2798/*
2799 * Loop over all the iclogs, running attached callbacks on them. Return true if
2800 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2801 * to handle transient shutdown state here at all because
2802 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2803 * cleanup of the callbacks.
 
 
2804 */
2805static bool
2806xlog_state_do_iclog_callbacks(
2807	struct xlog		*log)
 
2808		__releases(&log->l_icloglock)
2809		__acquires(&log->l_icloglock)
2810{
2811	struct xlog_in_core	*first_iclog = log->l_iclog;
2812	struct xlog_in_core	*iclog = first_iclog;
2813	bool			ran_callback = false;
2814
2815	do {
2816		LIST_HEAD(cb_list);
2817
2818		if (xlog_state_iodone_process_iclog(log, iclog))
2819			break;
2820		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2821			iclog = iclog->ic_next;
2822			continue;
2823		}
2824		list_splice_init(&iclog->ic_callbacks, &cb_list);
2825		spin_unlock(&log->l_icloglock);
2826
2827		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2828		xlog_cil_process_committed(&cb_list);
2829		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2830		ran_callback = true;
2831
2832		spin_lock(&log->l_icloglock);
2833		xlog_state_clean_iclog(log, iclog);
2834		iclog = iclog->ic_next;
2835	} while (iclog != first_iclog);
2836
2837	return ran_callback;
 
 
 
 
 
 
2838}
2839
2840
2841/*
2842 * Loop running iclog completion callbacks until there are no more iclogs in a
2843 * state that can run callbacks.
2844 */
2845STATIC void
2846xlog_state_do_callback(
2847	struct xlog		*log)
2848{
 
 
 
 
2849	int			flushcnt = 0;
2850	int			repeats = 0;
2851
2852	spin_lock(&log->l_icloglock);
2853	while (xlog_state_do_iclog_callbacks(log)) {
2854		if (xlog_is_shutdown(log))
2855			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856
2857		if (++repeats > 5000) {
2858			flushcnt += repeats;
2859			repeats = 0;
2860			xfs_warn(log->l_mp,
2861				"%s: possible infinite loop (%d iterations)",
2862				__func__, flushcnt);
2863		}
2864	}
2865
2866	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
 
2867		wake_up_all(&log->l_flush_wait);
2868
2869	spin_unlock(&log->l_icloglock);
2870}
2871
2872
2873/*
2874 * Finish transitioning this iclog to the dirty state.
2875 *
 
 
 
 
 
 
 
2876 * Callbacks could take time, so they are done outside the scope of the
2877 * global state machine log lock.
2878 */
2879STATIC void
2880xlog_state_done_syncing(
2881	struct xlog_in_core	*iclog)
2882{
2883	struct xlog		*log = iclog->ic_log;
2884
2885	spin_lock(&log->l_icloglock);
2886	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2887	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2888
2889	/*
2890	 * If we got an error, either on the first buffer, or in the case of
2891	 * split log writes, on the second, we shut down the file system and
2892	 * no iclogs should ever be attempted to be written to disk again.
2893	 */
2894	if (!xlog_is_shutdown(log)) {
2895		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2896		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2897	}
2898
2899	/*
2900	 * Someone could be sleeping prior to writing out the next
2901	 * iclog buffer, we wake them all, one will get to do the
2902	 * I/O, the others get to wait for the result.
2903	 */
2904	wake_up_all(&iclog->ic_write_wait);
2905	spin_unlock(&log->l_icloglock);
2906	xlog_state_do_callback(log);
2907}
2908
2909/*
2910 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2911 * sleep.  We wait on the flush queue on the head iclog as that should be
2912 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2913 * we will wait here and all new writes will sleep until a sync completes.
2914 *
2915 * The in-core logs are used in a circular fashion. They are not used
2916 * out-of-order even when an iclog past the head is free.
2917 *
2918 * return:
2919 *	* log_offset where xlog_write() can start writing into the in-core
2920 *		log's data space.
2921 *	* in-core log pointer to which xlog_write() should write.
2922 *	* boolean indicating this is a continued write to an in-core log.
2923 *		If this is the last write, then the in-core log's offset field
2924 *		needs to be incremented, depending on the amount of data which
2925 *		is copied.
2926 */
2927STATIC int
2928xlog_state_get_iclog_space(
2929	struct xlog		*log,
2930	int			len,
2931	struct xlog_in_core	**iclogp,
2932	struct xlog_ticket	*ticket,
 
2933	int			*logoffsetp)
2934{
2935	int		  log_offset;
2936	xlog_rec_header_t *head;
2937	xlog_in_core_t	  *iclog;
2938
2939restart:
2940	spin_lock(&log->l_icloglock);
2941	if (xlog_is_shutdown(log)) {
2942		spin_unlock(&log->l_icloglock);
2943		return -EIO;
2944	}
2945
2946	iclog = log->l_iclog;
2947	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2948		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2949
2950		/* Wait for log writes to have flushed */
2951		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2952		goto restart;
2953	}
2954
2955	head = &iclog->ic_header;
2956
2957	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2958	log_offset = iclog->ic_offset;
2959
2960	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2961
2962	/* On the 1st write to an iclog, figure out lsn.  This works
2963	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2964	 * committing to.  If the offset is set, that's how many blocks
2965	 * must be written.
2966	 */
2967	if (log_offset == 0) {
2968		ticket->t_curr_res -= log->l_iclog_hsize;
 
 
 
2969		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2970		head->h_lsn = cpu_to_be64(
2971			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2972		ASSERT(log->l_curr_block >= 0);
2973	}
2974
2975	/* If there is enough room to write everything, then do it.  Otherwise,
2976	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2977	 * bit is on, so this will get flushed out.  Don't update ic_offset
2978	 * until you know exactly how many bytes get copied.  Therefore, wait
2979	 * until later to update ic_offset.
2980	 *
2981	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2982	 * can fit into remaining data section.
2983	 */
2984	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2985		int		error = 0;
2986
2987		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2988
2989		/*
2990		 * If we are the only one writing to this iclog, sync it to
2991		 * disk.  We need to do an atomic compare and decrement here to
2992		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2993		 * xlog_state_release_iclog() when there is more than one
2994		 * reference to the iclog.
2995		 */
2996		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2997			error = xlog_state_release_iclog(log, iclog, ticket);
2998		spin_unlock(&log->l_icloglock);
2999		if (error)
3000			return error;
3001		goto restart;
3002	}
3003
3004	/* Do we have enough room to write the full amount in the remainder
3005	 * of this iclog?  Or must we continue a write on the next iclog and
3006	 * mark this iclog as completely taken?  In the case where we switch
3007	 * iclogs (to mark it taken), this particular iclog will release/sync
3008	 * to disk in xlog_write().
3009	 */
3010	if (len <= iclog->ic_size - iclog->ic_offset)
 
3011		iclog->ic_offset += len;
3012	else
 
3013		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
 
3014	*iclogp = iclog;
3015
3016	ASSERT(iclog->ic_offset <= iclog->ic_size);
3017	spin_unlock(&log->l_icloglock);
3018
3019	*logoffsetp = log_offset;
3020	return 0;
3021}
3022
3023/*
3024 * The first cnt-1 times a ticket goes through here we don't need to move the
3025 * grant write head because the permanent reservation has reserved cnt times the
3026 * unit amount.  Release part of current permanent unit reservation and reset
3027 * current reservation to be one units worth.  Also move grant reservation head
3028 * forward.
3029 */
3030void
3031xfs_log_ticket_regrant(
3032	struct xlog		*log,
3033	struct xlog_ticket	*ticket)
3034{
3035	trace_xfs_log_ticket_regrant(log, ticket);
3036
3037	if (ticket->t_cnt > 0)
3038		ticket->t_cnt--;
3039
3040	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3041					ticket->t_curr_res);
3042	xlog_grant_sub_space(log, &log->l_write_head.grant,
3043					ticket->t_curr_res);
3044	ticket->t_curr_res = ticket->t_unit_res;
 
3045
3046	trace_xfs_log_ticket_regrant_sub(log, ticket);
3047
3048	/* just return if we still have some of the pre-reserved space */
3049	if (!ticket->t_cnt) {
3050		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3051				     ticket->t_unit_res);
3052		trace_xfs_log_ticket_regrant_exit(log, ticket);
3053
3054		ticket->t_curr_res = ticket->t_unit_res;
 
3055	}
3056
3057	xfs_log_ticket_put(ticket);
3058}
3059
3060/*
3061 * Give back the space left from a reservation.
3062 *
3063 * All the information we need to make a correct determination of space left
3064 * is present.  For non-permanent reservations, things are quite easy.  The
3065 * count should have been decremented to zero.  We only need to deal with the
3066 * space remaining in the current reservation part of the ticket.  If the
3067 * ticket contains a permanent reservation, there may be left over space which
3068 * needs to be released.  A count of N means that N-1 refills of the current
3069 * reservation can be done before we need to ask for more space.  The first
3070 * one goes to fill up the first current reservation.  Once we run out of
3071 * space, the count will stay at zero and the only space remaining will be
3072 * in the current reservation field.
3073 */
3074void
3075xfs_log_ticket_ungrant(
3076	struct xlog		*log,
3077	struct xlog_ticket	*ticket)
3078{
3079	int			bytes;
3080
3081	trace_xfs_log_ticket_ungrant(log, ticket);
3082
3083	if (ticket->t_cnt > 0)
3084		ticket->t_cnt--;
3085
3086	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3087
3088	/*
3089	 * If this is a permanent reservation ticket, we may be able to free
3090	 * up more space based on the remaining count.
3091	 */
3092	bytes = ticket->t_curr_res;
3093	if (ticket->t_cnt > 0) {
3094		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3095		bytes += ticket->t_unit_res*ticket->t_cnt;
3096	}
3097
3098	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3099	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3100
3101	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3102
3103	xfs_log_space_wake(log->l_mp);
3104	xfs_log_ticket_put(ticket);
3105}
3106
3107/*
3108 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3109 * the current iclog pointer to the next iclog in the ring.
3110 */
3111void
3112xlog_state_switch_iclogs(
3113	struct xlog		*log,
3114	struct xlog_in_core	*iclog,
3115	int			eventual_size)
3116{
3117	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3118	assert_spin_locked(&log->l_icloglock);
3119	trace_xlog_iclog_switch(iclog, _RET_IP_);
3120
3121	if (!eventual_size)
3122		eventual_size = iclog->ic_offset;
3123	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3124	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3125	log->l_prev_block = log->l_curr_block;
3126	log->l_prev_cycle = log->l_curr_cycle;
3127
3128	/* roll log?: ic_offset changed later */
3129	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3130
3131	/* Round up to next log-sunit */
3132	if (log->l_iclog_roundoff > BBSIZE) {
3133		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
 
3134		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3135	}
3136
3137	if (log->l_curr_block >= log->l_logBBsize) {
3138		/*
3139		 * Rewind the current block before the cycle is bumped to make
3140		 * sure that the combined LSN never transiently moves forward
3141		 * when the log wraps to the next cycle. This is to support the
3142		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3143		 * other cases should acquire l_icloglock.
3144		 */
3145		log->l_curr_block -= log->l_logBBsize;
3146		ASSERT(log->l_curr_block >= 0);
3147		smp_wmb();
3148		log->l_curr_cycle++;
3149		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3150			log->l_curr_cycle++;
3151	}
3152	ASSERT(iclog == log->l_iclog);
3153	log->l_iclog = iclog->ic_next;
3154}
3155
3156/*
3157 * Force the iclog to disk and check if the iclog has been completed before
3158 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3159 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3160 * If completion has already occurred, tell the caller so that it can avoid an
3161 * unnecessary wait on the iclog.
3162 */
3163static int
3164xlog_force_and_check_iclog(
3165	struct xlog_in_core	*iclog,
3166	bool			*completed)
3167{
3168	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3169	int			error;
3170
3171	*completed = false;
3172	error = xlog_force_iclog(iclog);
3173	if (error)
3174		return error;
3175
3176	/*
3177	 * If the iclog has already been completed and reused the header LSN
3178	 * will have been rewritten by completion
3179	 */
3180	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3181		*completed = true;
3182	return 0;
3183}
3184
3185/*
3186 * Write out all data in the in-core log as of this exact moment in time.
3187 *
3188 * Data may be written to the in-core log during this call.  However,
3189 * we don't guarantee this data will be written out.  A change from past
3190 * implementation means this routine will *not* write out zero length LRs.
3191 *
3192 * Basically, we try and perform an intelligent scan of the in-core logs.
3193 * If we determine there is no flushable data, we just return.  There is no
3194 * flushable data if:
3195 *
3196 *	1. the current iclog is active and has no data; the previous iclog
3197 *		is in the active or dirty state.
3198 *	2. the current iclog is drity, and the previous iclog is in the
3199 *		active or dirty state.
3200 *
3201 * We may sleep if:
3202 *
3203 *	1. the current iclog is not in the active nor dirty state.
3204 *	2. the current iclog dirty, and the previous iclog is not in the
3205 *		active nor dirty state.
3206 *	3. the current iclog is active, and there is another thread writing
3207 *		to this particular iclog.
3208 *	4. a) the current iclog is active and has no other writers
3209 *	   b) when we return from flushing out this iclog, it is still
3210 *		not in the active nor dirty state.
3211 */
3212int
3213xfs_log_force(
3214	struct xfs_mount	*mp,
3215	uint			flags)
3216{
3217	struct xlog		*log = mp->m_log;
3218	struct xlog_in_core	*iclog;
 
3219
3220	XFS_STATS_INC(mp, xs_log_force);
3221	trace_xfs_log_force(mp, 0, _RET_IP_);
3222
3223	xlog_cil_force(log);
3224
3225	spin_lock(&log->l_icloglock);
3226	if (xlog_is_shutdown(log))
3227		goto out_error;
3228
3229	iclog = log->l_iclog;
3230	trace_xlog_iclog_force(iclog, _RET_IP_);
 
3231
3232	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3233	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3234	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3235		/*
3236		 * If the head is dirty or (active and empty), then we need to
3237		 * look at the previous iclog.
3238		 *
3239		 * If the previous iclog is active or dirty we are done.  There
3240		 * is nothing to sync out. Otherwise, we attach ourselves to the
3241		 * previous iclog and go to sleep.
3242		 */
3243		iclog = iclog->ic_prev;
3244	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3245		if (atomic_read(&iclog->ic_refcnt) == 0) {
3246			/* We have exclusive access to this iclog. */
3247			bool	completed;
3248
3249			if (xlog_force_and_check_iclog(iclog, &completed))
 
 
 
 
 
 
 
3250				goto out_error;
3251
3252			if (completed)
3253				goto out_unlock;
3254		} else {
3255			/*
3256			 * Someone else is still writing to this iclog, so we
3257			 * need to ensure that when they release the iclog it
3258			 * gets synced immediately as we may be waiting on it.
 
 
3259			 */
3260			xlog_state_switch_iclogs(log, iclog, 0);
3261		}
 
 
 
 
 
 
3262	}
3263
3264	/*
3265	 * The iclog we are about to wait on may contain the checkpoint pushed
3266	 * by the above xlog_cil_force() call, but it may not have been pushed
3267	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3268	 * are flushed when this iclog is written.
3269	 */
3270	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3271		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3272
3273	if (flags & XFS_LOG_SYNC)
3274		return xlog_wait_on_iclog(iclog);
3275out_unlock:
3276	spin_unlock(&log->l_icloglock);
3277	return 0;
3278out_error:
3279	spin_unlock(&log->l_icloglock);
3280	return -EIO;
3281}
3282
3283/*
3284 * Force the log to a specific LSN.
3285 *
3286 * If an iclog with that lsn can be found:
3287 *	If it is in the DIRTY state, just return.
3288 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3289 *		state and go to sleep or return.
3290 *	If it is in any other state, go to sleep or return.
3291 *
3292 * Synchronous forces are implemented with a wait queue.  All callers trying
3293 * to force a given lsn to disk must wait on the queue attached to the
3294 * specific in-core log.  When given in-core log finally completes its write
3295 * to disk, that thread will wake up all threads waiting on the queue.
3296 */
3297static int
3298xlog_force_lsn(
3299	struct xlog		*log,
3300	xfs_lsn_t		lsn,
3301	uint			flags,
3302	int			*log_flushed,
3303	bool			already_slept)
3304{
 
3305	struct xlog_in_core	*iclog;
3306	bool			completed;
3307
3308	spin_lock(&log->l_icloglock);
3309	if (xlog_is_shutdown(log))
 
3310		goto out_error;
3311
3312	iclog = log->l_iclog;
3313	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3314		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3315		iclog = iclog->ic_next;
3316		if (iclog == log->l_iclog)
3317			goto out_unlock;
3318	}
3319
3320	switch (iclog->ic_state) {
3321	case XLOG_STATE_ACTIVE:
3322		/*
3323		 * We sleep here if we haven't already slept (e.g. this is the
3324		 * first time we've looked at the correct iclog buf) and the
3325		 * buffer before us is going to be sync'ed.  The reason for this
3326		 * is that if we are doing sync transactions here, by waiting
3327		 * for the previous I/O to complete, we can allow a few more
3328		 * transactions into this iclog before we close it down.
3329		 *
3330		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3331		 * refcnt so we can release the log (which drops the ref count).
3332		 * The state switch keeps new transaction commits from using
3333		 * this buffer.  When the current commits finish writing into
3334		 * the buffer, the refcount will drop to zero and the buffer
3335		 * will go out then.
3336		 */
3337		if (!already_slept &&
3338		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3339		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
 
 
3340			xlog_wait(&iclog->ic_prev->ic_write_wait,
3341					&log->l_icloglock);
3342			return -EAGAIN;
3343		}
3344		if (xlog_force_and_check_iclog(iclog, &completed))
 
 
3345			goto out_error;
3346		if (log_flushed)
3347			*log_flushed = 1;
3348		if (completed)
3349			goto out_unlock;
3350		break;
3351	case XLOG_STATE_WANT_SYNC:
3352		/*
3353		 * This iclog may contain the checkpoint pushed by the
3354		 * xlog_cil_force_seq() call, but there are other writers still
3355		 * accessing it so it hasn't been pushed to disk yet. Like the
3356		 * ACTIVE case above, we need to make sure caches are flushed
3357		 * when this iclog is written.
3358		 */
3359		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3360		break;
3361	default:
3362		/*
3363		 * The entire checkpoint was written by the CIL force and is on
3364		 * its way to disk already. It will be stable when it
3365		 * completes, so we don't need to manipulate caches here at all.
3366		 * We just need to wait for completion if necessary.
3367		 */
3368		break;
3369	}
3370
3371	if (flags & XFS_LOG_SYNC)
3372		return xlog_wait_on_iclog(iclog);
3373out_unlock:
3374	spin_unlock(&log->l_icloglock);
3375	return 0;
3376out_error:
3377	spin_unlock(&log->l_icloglock);
3378	return -EIO;
3379}
3380
3381/*
3382 * Force the log to a specific checkpoint sequence.
 
 
 
 
 
 
3383 *
3384 * First force the CIL so that all the required changes have been flushed to the
3385 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3386 * the iclog that needs to be flushed to stable storage. If the caller needs
3387 * a synchronous log force, we will wait on the iclog with the LSN returned by
3388 * xlog_cil_force_seq() to be completed.
3389 */
3390int
3391xfs_log_force_seq(
3392	struct xfs_mount	*mp,
3393	xfs_csn_t		seq,
3394	uint			flags,
3395	int			*log_flushed)
3396{
3397	struct xlog		*log = mp->m_log;
3398	xfs_lsn_t		lsn;
3399	int			ret;
3400	ASSERT(seq != 0);
3401
3402	XFS_STATS_INC(mp, xs_log_force);
3403	trace_xfs_log_force(mp, seq, _RET_IP_);
3404
3405	lsn = xlog_cil_force_seq(log, seq);
3406	if (lsn == NULLCOMMITLSN)
3407		return 0;
3408
3409	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3410	if (ret == -EAGAIN) {
3411		XFS_STATS_INC(mp, xs_log_force_sleep);
3412		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3413	}
3414	return ret;
3415}
3416
3417/*
3418 * Free a used ticket when its refcount falls to zero.
3419 */
3420void
3421xfs_log_ticket_put(
3422	xlog_ticket_t	*ticket)
3423{
3424	ASSERT(atomic_read(&ticket->t_ref) > 0);
3425	if (atomic_dec_and_test(&ticket->t_ref))
3426		kmem_cache_free(xfs_log_ticket_cache, ticket);
3427}
3428
3429xlog_ticket_t *
3430xfs_log_ticket_get(
3431	xlog_ticket_t	*ticket)
3432{
3433	ASSERT(atomic_read(&ticket->t_ref) > 0);
3434	atomic_inc(&ticket->t_ref);
3435	return ticket;
3436}
3437
3438/*
3439 * Figure out the total log space unit (in bytes) that would be
3440 * required for a log ticket.
3441 */
3442static int
3443xlog_calc_unit_res(
3444	struct xlog		*log,
3445	int			unit_bytes,
3446	int			*niclogs)
3447{
 
3448	int			iclog_space;
3449	uint			num_headers;
3450
3451	/*
3452	 * Permanent reservations have up to 'cnt'-1 active log operations
3453	 * in the log.  A unit in this case is the amount of space for one
3454	 * of these log operations.  Normal reservations have a cnt of 1
3455	 * and their unit amount is the total amount of space required.
3456	 *
3457	 * The following lines of code account for non-transaction data
3458	 * which occupy space in the on-disk log.
3459	 *
3460	 * Normal form of a transaction is:
3461	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3462	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3463	 *
3464	 * We need to account for all the leadup data and trailer data
3465	 * around the transaction data.
3466	 * And then we need to account for the worst case in terms of using
3467	 * more space.
3468	 * The worst case will happen if:
3469	 * - the placement of the transaction happens to be such that the
3470	 *   roundoff is at its maximum
3471	 * - the transaction data is synced before the commit record is synced
3472	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3473	 *   Therefore the commit record is in its own Log Record.
3474	 *   This can happen as the commit record is called with its
3475	 *   own region to xlog_write().
3476	 *   This then means that in the worst case, roundoff can happen for
3477	 *   the commit-rec as well.
3478	 *   The commit-rec is smaller than padding in this scenario and so it is
3479	 *   not added separately.
3480	 */
3481
3482	/* for trans header */
3483	unit_bytes += sizeof(xlog_op_header_t);
3484	unit_bytes += sizeof(xfs_trans_header_t);
3485
3486	/* for start-rec */
3487	unit_bytes += sizeof(xlog_op_header_t);
3488
3489	/*
3490	 * for LR headers - the space for data in an iclog is the size minus
3491	 * the space used for the headers. If we use the iclog size, then we
3492	 * undercalculate the number of headers required.
3493	 *
3494	 * Furthermore - the addition of op headers for split-recs might
3495	 * increase the space required enough to require more log and op
3496	 * headers, so take that into account too.
3497	 *
3498	 * IMPORTANT: This reservation makes the assumption that if this
3499	 * transaction is the first in an iclog and hence has the LR headers
3500	 * accounted to it, then the remaining space in the iclog is
3501	 * exclusively for this transaction.  i.e. if the transaction is larger
3502	 * than the iclog, it will be the only thing in that iclog.
3503	 * Fundamentally, this means we must pass the entire log vector to
3504	 * xlog_write to guarantee this.
3505	 */
3506	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3507	num_headers = howmany(unit_bytes, iclog_space);
3508
3509	/* for split-recs - ophdrs added when data split over LRs */
3510	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3511
3512	/* add extra header reservations if we overrun */
3513	while (!num_headers ||
3514	       howmany(unit_bytes, iclog_space) > num_headers) {
3515		unit_bytes += sizeof(xlog_op_header_t);
3516		num_headers++;
3517	}
3518	unit_bytes += log->l_iclog_hsize * num_headers;
3519
3520	/* for commit-rec LR header - note: padding will subsume the ophdr */
3521	unit_bytes += log->l_iclog_hsize;
3522
3523	/* roundoff padding for transaction data and one for commit record */
3524	unit_bytes += 2 * log->l_iclog_roundoff;
 
 
 
 
 
 
3525
3526	if (niclogs)
3527		*niclogs = num_headers;
3528	return unit_bytes;
3529}
3530
3531int
3532xfs_log_calc_unit_res(
3533	struct xfs_mount	*mp,
3534	int			unit_bytes)
3535{
3536	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3537}
3538
3539/*
3540 * Allocate and initialise a new log ticket.
3541 */
3542struct xlog_ticket *
3543xlog_ticket_alloc(
3544	struct xlog		*log,
3545	int			unit_bytes,
3546	int			cnt,
 
3547	bool			permanent)
3548{
3549	struct xlog_ticket	*tic;
3550	int			unit_res;
3551
3552	tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3553
3554	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3555
3556	atomic_set(&tic->t_ref, 1);
3557	tic->t_task		= current;
3558	INIT_LIST_HEAD(&tic->t_queue);
3559	tic->t_unit_res		= unit_res;
3560	tic->t_curr_res		= unit_res;
3561	tic->t_cnt		= cnt;
3562	tic->t_ocnt		= cnt;
3563	tic->t_tid		= get_random_u32();
 
3564	if (permanent)
3565		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3566
 
 
3567	return tic;
3568}
3569
3570#if defined(DEBUG)
3571/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572 * Check to make sure the grant write head didn't just over lap the tail.  If
3573 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3574 * the cycles differ by exactly one and check the byte count.
3575 *
3576 * This check is run unlocked, so can give false positives. Rather than assert
3577 * on failures, use a warn-once flag and a panic tag to allow the admin to
3578 * determine if they want to panic the machine when such an error occurs. For
3579 * debug kernels this will have the same effect as using an assert but, unlinke
3580 * an assert, it can be turned off at runtime.
3581 */
3582STATIC void
3583xlog_verify_grant_tail(
3584	struct xlog	*log)
3585{
3586	int		tail_cycle, tail_blocks;
3587	int		cycle, space;
3588
3589	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3590	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3591	if (tail_cycle != cycle) {
3592		if (cycle - 1 != tail_cycle &&
3593		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3594			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3595				"%s: cycle - 1 != tail_cycle", __func__);
 
3596		}
3597
3598		if (space > BBTOB(tail_blocks) &&
3599		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3600			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3601				"%s: space > BBTOB(tail_blocks)", __func__);
 
3602		}
3603	}
3604}
3605
3606/* check if it will fit */
3607STATIC void
3608xlog_verify_tail_lsn(
3609	struct xlog		*log,
3610	struct xlog_in_core	*iclog)
 
3611{
3612	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3613	int		blocks;
3614
3615    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3616	blocks =
3617	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3618	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3619		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3620    } else {
3621	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3622
3623	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3624		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3625
3626	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3627	if (blocks < BTOBB(iclog->ic_offset) + 1)
3628		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3629    }
3630}
3631
3632/*
3633 * Perform a number of checks on the iclog before writing to disk.
3634 *
3635 * 1. Make sure the iclogs are still circular
3636 * 2. Make sure we have a good magic number
3637 * 3. Make sure we don't have magic numbers in the data
3638 * 4. Check fields of each log operation header for:
3639 *	A. Valid client identifier
3640 *	B. tid ptr value falls in valid ptr space (user space code)
3641 *	C. Length in log record header is correct according to the
3642 *		individual operation headers within record.
3643 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3644 *	log, check the preceding blocks of the physical log to make sure all
3645 *	the cycle numbers agree with the current cycle number.
3646 */
3647STATIC void
3648xlog_verify_iclog(
3649	struct xlog		*log,
3650	struct xlog_in_core	*iclog,
3651	int			count)
3652{
3653	xlog_op_header_t	*ophead;
3654	xlog_in_core_t		*icptr;
3655	xlog_in_core_2_t	*xhdr;
3656	void			*base_ptr, *ptr, *p;
3657	ptrdiff_t		field_offset;
3658	uint8_t			clientid;
3659	int			len, i, j, k, op_len;
3660	int			idx;
3661
3662	/* check validity of iclog pointers */
3663	spin_lock(&log->l_icloglock);
3664	icptr = log->l_iclog;
3665	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3666		ASSERT(icptr);
3667
3668	if (icptr != log->l_iclog)
3669		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3670	spin_unlock(&log->l_icloglock);
3671
3672	/* check log magic numbers */
3673	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3674		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3675
3676	base_ptr = ptr = &iclog->ic_header;
3677	p = &iclog->ic_header;
3678	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3679		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3680			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3681				__func__);
3682	}
3683
3684	/* check fields */
3685	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3686	base_ptr = ptr = iclog->ic_datap;
3687	ophead = ptr;
3688	xhdr = iclog->ic_data;
3689	for (i = 0; i < len; i++) {
3690		ophead = ptr;
3691
3692		/* clientid is only 1 byte */
3693		p = &ophead->oh_clientid;
3694		field_offset = p - base_ptr;
3695		if (field_offset & 0x1ff) {
3696			clientid = ophead->oh_clientid;
3697		} else {
3698			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3699			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3700				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3701				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3702				clientid = xlog_get_client_id(
3703					xhdr[j].hic_xheader.xh_cycle_data[k]);
3704			} else {
3705				clientid = xlog_get_client_id(
3706					iclog->ic_header.h_cycle_data[idx]);
3707			}
3708		}
3709		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3710			xfs_warn(log->l_mp,
3711				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3712				__func__, i, clientid, ophead,
3713				(unsigned long)field_offset);
3714		}
3715
3716		/* check length */
3717		p = &ophead->oh_len;
3718		field_offset = p - base_ptr;
3719		if (field_offset & 0x1ff) {
3720			op_len = be32_to_cpu(ophead->oh_len);
3721		} else {
3722			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
 
3723			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3724				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3725				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3726				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3727			} else {
3728				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3729			}
3730		}
3731		ptr += sizeof(xlog_op_header_t) + op_len;
3732	}
3733}
3734#endif
3735
3736/*
3737 * Perform a forced shutdown on the log.
3738 *
3739 * This can be called from low level log code to trigger a shutdown, or from the
3740 * high level mount shutdown code when the mount shuts down.
3741 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742 * Our main objectives here are to make sure that:
3743 *	a. if the shutdown was not due to a log IO error, flush the logs to
3744 *	   disk. Anything modified after this is ignored.
3745 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3746 *	   parties to find out. Nothing new gets queued after this is done.
3747 *	c. Tasks sleeping on log reservations, pinned objects and
3748 *	   other resources get woken up.
3749 *	d. The mount is also marked as shut down so that log triggered shutdowns
3750 *	   still behave the same as if they called xfs_forced_shutdown().
3751 *
3752 * Return true if the shutdown cause was a log IO error and we actually shut the
3753 * log down.
3754 */
3755bool
3756xlog_force_shutdown(
3757	struct xlog	*log,
3758	uint32_t	shutdown_flags)
3759{
3760	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
 
3761
3762	if (!log)
3763		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3764
3765	/*
3766	 * Flush all the completed transactions to disk before marking the log
3767	 * being shut down. We need to do this first as shutting down the log
3768	 * before the force will prevent the log force from flushing the iclogs
3769	 * to disk.
3770	 *
3771	 * When we are in recovery, there are no transactions to flush, and
3772	 * we don't want to touch the log because we don't want to perturb the
3773	 * current head/tail for future recovery attempts. Hence we need to
3774	 * avoid a log force in this case.
3775	 *
3776	 * If we are shutting down due to a log IO error, then we must avoid
3777	 * trying to write the log as that may just result in more IO errors and
3778	 * an endless shutdown/force loop.
3779	 */
3780	if (!log_error && !xlog_in_recovery(log))
3781		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3782
3783	/*
3784	 * Atomically set the shutdown state. If the shutdown state is already
3785	 * set, there someone else is performing the shutdown and so we are done
3786	 * here. This should never happen because we should only ever get called
3787	 * once by the first shutdown caller.
3788	 *
3789	 * Much of the log state machine transitions assume that shutdown state
3790	 * cannot change once they hold the log->l_icloglock. Hence we need to
3791	 * hold that lock here, even though we use the atomic test_and_set_bit()
3792	 * operation to set the shutdown state.
3793	 */
3794	spin_lock(&log->l_icloglock);
3795	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3796		spin_unlock(&log->l_icloglock);
3797		return false;
3798	}
3799	spin_unlock(&log->l_icloglock);
3800
3801	/*
3802	 * If this log shutdown also sets the mount shutdown state, issue a
3803	 * shutdown warning message.
3804	 */
3805	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3806		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3807"Filesystem has been shut down due to log error (0x%x).",
3808				shutdown_flags);
3809		xfs_alert(log->l_mp,
3810"Please unmount the filesystem and rectify the problem(s).");
3811		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3812			xfs_stack_trace();
3813	}
3814
3815	/*
3816	 * We don't want anybody waiting for log reservations after this. That
3817	 * means we have to wake up everybody queued up on reserveq as well as
3818	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3819	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3820	 * action is protected by the grant locks.
3821	 */
3822	xlog_grant_head_wake_all(&log->l_reserve_head);
3823	xlog_grant_head_wake_all(&log->l_write_head);
3824
3825	/*
3826	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3827	 * as if the log writes were completed. The abort handling in the log
3828	 * item committed callback functions will do this again under lock to
3829	 * avoid races.
3830	 */
3831	spin_lock(&log->l_cilp->xc_push_lock);
3832	wake_up_all(&log->l_cilp->xc_start_wait);
3833	wake_up_all(&log->l_cilp->xc_commit_wait);
3834	spin_unlock(&log->l_cilp->xc_push_lock);
 
3835
3836	spin_lock(&log->l_icloglock);
3837	xlog_state_shutdown_callbacks(log);
3838	spin_unlock(&log->l_icloglock);
3839
3840	wake_up_var(&log->l_opstate);
3841	return log_error;
3842}
3843
3844STATIC int
3845xlog_iclogs_empty(
3846	struct xlog	*log)
3847{
3848	xlog_in_core_t	*iclog;
3849
3850	iclog = log->l_iclog;
3851	do {
3852		/* endianness does not matter here, zero is zero in
3853		 * any language.
3854		 */
3855		if (iclog->ic_header.h_num_logops)
3856			return 0;
3857		iclog = iclog->ic_next;
3858	} while (iclog != log->l_iclog);
3859	return 1;
3860}
3861
3862/*
3863 * Verify that an LSN stamped into a piece of metadata is valid. This is
3864 * intended for use in read verifiers on v5 superblocks.
3865 */
3866bool
3867xfs_log_check_lsn(
3868	struct xfs_mount	*mp,
3869	xfs_lsn_t		lsn)
3870{
3871	struct xlog		*log = mp->m_log;
3872	bool			valid;
3873
3874	/*
3875	 * norecovery mode skips mount-time log processing and unconditionally
3876	 * resets the in-core LSN. We can't validate in this mode, but
3877	 * modifications are not allowed anyways so just return true.
3878	 */
3879	if (xfs_has_norecovery(mp))
3880		return true;
3881
3882	/*
3883	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3884	 * handled by recovery and thus safe to ignore here.
3885	 */
3886	if (lsn == NULLCOMMITLSN)
3887		return true;
3888
3889	valid = xlog_valid_lsn(mp->m_log, lsn);
3890
3891	/* warn the user about what's gone wrong before verifier failure */
3892	if (!valid) {
3893		spin_lock(&log->l_icloglock);
3894		xfs_warn(mp,
3895"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3896"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3897			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3898			 log->l_curr_cycle, log->l_curr_block);
3899		spin_unlock(&log->l_icloglock);
3900	}
3901
3902	return valid;
3903}
3904
3905/*
3906 * Notify the log that we're about to start using a feature that is protected
3907 * by a log incompat feature flag.  This will prevent log covering from
3908 * clearing those flags.
3909 */
3910void
3911xlog_use_incompat_feat(
3912	struct xlog		*log)
3913{
3914	down_read(&log->l_incompat_users);
3915}
3916
3917/* Notify the log that we've finished using log incompat features. */
3918void
3919xlog_drop_incompat_feat(
3920	struct xlog		*log)
3921{
3922	up_read(&log->l_incompat_users);
3923}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_errortag.h"
  14#include "xfs_error.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_log.h"
  18#include "xfs_log_priv.h"
  19#include "xfs_trace.h"
  20#include "xfs_sysfs.h"
  21#include "xfs_sb.h"
  22#include "xfs_health.h"
  23
  24kmem_zone_t	*xfs_log_ticket_zone;
  25
  26/* Local miscellaneous function prototypes */
  27STATIC struct xlog *
  28xlog_alloc_log(
  29	struct xfs_mount	*mp,
  30	struct xfs_buftarg	*log_target,
  31	xfs_daddr_t		blk_offset,
  32	int			num_bblks);
  33STATIC int
  34xlog_space_left(
  35	struct xlog		*log,
  36	atomic64_t		*head);
  37STATIC void
  38xlog_dealloc_log(
  39	struct xlog		*log);
  40
  41/* local state machine functions */
  42STATIC void xlog_state_done_syncing(
  43	struct xlog_in_core	*iclog);
 
 
  44STATIC int
  45xlog_state_get_iclog_space(
  46	struct xlog		*log,
  47	int			len,
  48	struct xlog_in_core	**iclog,
  49	struct xlog_ticket	*ticket,
  50	int			*continued_write,
  51	int			*logoffsetp);
  52STATIC void
  53xlog_state_switch_iclogs(
  54	struct xlog		*log,
  55	struct xlog_in_core	*iclog,
  56	int			eventual_size);
  57STATIC void
  58xlog_grant_push_ail(
  59	struct xlog		*log,
  60	int			need_bytes);
  61STATIC void
  62xlog_sync(
  63	struct xlog		*log,
  64	struct xlog_in_core	*iclog);
 
  65#if defined(DEBUG)
  66STATIC void
  67xlog_verify_dest_ptr(
  68	struct xlog		*log,
  69	void			*ptr);
  70STATIC void
  71xlog_verify_grant_tail(
  72	struct xlog *log);
  73STATIC void
  74xlog_verify_iclog(
  75	struct xlog		*log,
  76	struct xlog_in_core	*iclog,
  77	int			count);
  78STATIC void
  79xlog_verify_tail_lsn(
  80	struct xlog		*log,
  81	struct xlog_in_core	*iclog,
  82	xfs_lsn_t		tail_lsn);
  83#else
  84#define xlog_verify_dest_ptr(a,b)
  85#define xlog_verify_grant_tail(a)
  86#define xlog_verify_iclog(a,b,c)
  87#define xlog_verify_tail_lsn(a,b,c)
  88#endif
  89
  90STATIC int
  91xlog_iclogs_empty(
  92	struct xlog		*log);
  93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94static void
  95xlog_grant_sub_space(
  96	struct xlog		*log,
  97	atomic64_t		*head,
  98	int			bytes)
  99{
 100	int64_t	head_val = atomic64_read(head);
 101	int64_t new, old;
 102
 103	do {
 104		int	cycle, space;
 105
 106		xlog_crack_grant_head_val(head_val, &cycle, &space);
 107
 108		space -= bytes;
 109		if (space < 0) {
 110			space += log->l_logsize;
 111			cycle--;
 112		}
 113
 114		old = head_val;
 115		new = xlog_assign_grant_head_val(cycle, space);
 116		head_val = atomic64_cmpxchg(head, old, new);
 117	} while (head_val != old);
 118}
 119
 120static void
 121xlog_grant_add_space(
 122	struct xlog		*log,
 123	atomic64_t		*head,
 124	int			bytes)
 125{
 126	int64_t	head_val = atomic64_read(head);
 127	int64_t new, old;
 128
 129	do {
 130		int		tmp;
 131		int		cycle, space;
 132
 133		xlog_crack_grant_head_val(head_val, &cycle, &space);
 134
 135		tmp = log->l_logsize - space;
 136		if (tmp > bytes)
 137			space += bytes;
 138		else {
 139			space = bytes - tmp;
 140			cycle++;
 141		}
 142
 143		old = head_val;
 144		new = xlog_assign_grant_head_val(cycle, space);
 145		head_val = atomic64_cmpxchg(head, old, new);
 146	} while (head_val != old);
 147}
 148
 149STATIC void
 150xlog_grant_head_init(
 151	struct xlog_grant_head	*head)
 152{
 153	xlog_assign_grant_head(&head->grant, 1, 0);
 154	INIT_LIST_HEAD(&head->waiters);
 155	spin_lock_init(&head->lock);
 156}
 157
 158STATIC void
 159xlog_grant_head_wake_all(
 160	struct xlog_grant_head	*head)
 161{
 162	struct xlog_ticket	*tic;
 163
 164	spin_lock(&head->lock);
 165	list_for_each_entry(tic, &head->waiters, t_queue)
 166		wake_up_process(tic->t_task);
 167	spin_unlock(&head->lock);
 168}
 169
 170static inline int
 171xlog_ticket_reservation(
 172	struct xlog		*log,
 173	struct xlog_grant_head	*head,
 174	struct xlog_ticket	*tic)
 175{
 176	if (head == &log->l_write_head) {
 177		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 178		return tic->t_unit_res;
 179	} else {
 180		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 181			return tic->t_unit_res * tic->t_cnt;
 182		else
 183			return tic->t_unit_res;
 184	}
 
 
 
 
 
 185}
 186
 187STATIC bool
 188xlog_grant_head_wake(
 189	struct xlog		*log,
 190	struct xlog_grant_head	*head,
 191	int			*free_bytes)
 192{
 193	struct xlog_ticket	*tic;
 194	int			need_bytes;
 195	bool			woken_task = false;
 196
 197	list_for_each_entry(tic, &head->waiters, t_queue) {
 198
 199		/*
 200		 * There is a chance that the size of the CIL checkpoints in
 201		 * progress at the last AIL push target calculation resulted in
 202		 * limiting the target to the log head (l_last_sync_lsn) at the
 203		 * time. This may not reflect where the log head is now as the
 204		 * CIL checkpoints may have completed.
 205		 *
 206		 * Hence when we are woken here, it may be that the head of the
 207		 * log that has moved rather than the tail. As the tail didn't
 208		 * move, there still won't be space available for the
 209		 * reservation we require.  However, if the AIL has already
 210		 * pushed to the target defined by the old log head location, we
 211		 * will hang here waiting for something else to update the AIL
 212		 * push target.
 213		 *
 214		 * Therefore, if there isn't space to wake the first waiter on
 215		 * the grant head, we need to push the AIL again to ensure the
 216		 * target reflects both the current log tail and log head
 217		 * position before we wait for the tail to move again.
 218		 */
 219
 220		need_bytes = xlog_ticket_reservation(log, head, tic);
 221		if (*free_bytes < need_bytes) {
 222			if (!woken_task)
 223				xlog_grant_push_ail(log, need_bytes);
 224			return false;
 225		}
 226
 227		*free_bytes -= need_bytes;
 228		trace_xfs_log_grant_wake_up(log, tic);
 229		wake_up_process(tic->t_task);
 230		woken_task = true;
 231	}
 232
 233	return true;
 234}
 235
 236STATIC int
 237xlog_grant_head_wait(
 238	struct xlog		*log,
 239	struct xlog_grant_head	*head,
 240	struct xlog_ticket	*tic,
 241	int			need_bytes) __releases(&head->lock)
 242					    __acquires(&head->lock)
 243{
 244	list_add_tail(&tic->t_queue, &head->waiters);
 245
 246	do {
 247		if (XLOG_FORCED_SHUTDOWN(log))
 248			goto shutdown;
 249		xlog_grant_push_ail(log, need_bytes);
 250
 251		__set_current_state(TASK_UNINTERRUPTIBLE);
 252		spin_unlock(&head->lock);
 253
 254		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 255
 256		trace_xfs_log_grant_sleep(log, tic);
 257		schedule();
 258		trace_xfs_log_grant_wake(log, tic);
 259
 260		spin_lock(&head->lock);
 261		if (XLOG_FORCED_SHUTDOWN(log))
 262			goto shutdown;
 263	} while (xlog_space_left(log, &head->grant) < need_bytes);
 264
 265	list_del_init(&tic->t_queue);
 266	return 0;
 267shutdown:
 268	list_del_init(&tic->t_queue);
 269	return -EIO;
 270}
 271
 272/*
 273 * Atomically get the log space required for a log ticket.
 274 *
 275 * Once a ticket gets put onto head->waiters, it will only return after the
 276 * needed reservation is satisfied.
 277 *
 278 * This function is structured so that it has a lock free fast path. This is
 279 * necessary because every new transaction reservation will come through this
 280 * path. Hence any lock will be globally hot if we take it unconditionally on
 281 * every pass.
 282 *
 283 * As tickets are only ever moved on and off head->waiters under head->lock, we
 284 * only need to take that lock if we are going to add the ticket to the queue
 285 * and sleep. We can avoid taking the lock if the ticket was never added to
 286 * head->waiters because the t_queue list head will be empty and we hold the
 287 * only reference to it so it can safely be checked unlocked.
 288 */
 289STATIC int
 290xlog_grant_head_check(
 291	struct xlog		*log,
 292	struct xlog_grant_head	*head,
 293	struct xlog_ticket	*tic,
 294	int			*need_bytes)
 295{
 296	int			free_bytes;
 297	int			error = 0;
 298
 299	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 300
 301	/*
 302	 * If there are other waiters on the queue then give them a chance at
 303	 * logspace before us.  Wake up the first waiters, if we do not wake
 304	 * up all the waiters then go to sleep waiting for more free space,
 305	 * otherwise try to get some space for this transaction.
 306	 */
 307	*need_bytes = xlog_ticket_reservation(log, head, tic);
 308	free_bytes = xlog_space_left(log, &head->grant);
 309	if (!list_empty_careful(&head->waiters)) {
 310		spin_lock(&head->lock);
 311		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 312		    free_bytes < *need_bytes) {
 313			error = xlog_grant_head_wait(log, head, tic,
 314						     *need_bytes);
 315		}
 316		spin_unlock(&head->lock);
 317	} else if (free_bytes < *need_bytes) {
 318		spin_lock(&head->lock);
 319		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 320		spin_unlock(&head->lock);
 321	}
 322
 323	return error;
 324}
 325
 326static void
 327xlog_tic_reset_res(xlog_ticket_t *tic)
 
 328{
 329	tic->t_res_num = 0;
 330	tic->t_res_arr_sum = 0;
 331	tic->t_res_num_ophdrs = 0;
 332}
 333
 334static void
 335xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 336{
 337	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 338		/* add to overflow and start again */
 339		tic->t_res_o_flow += tic->t_res_arr_sum;
 340		tic->t_res_num = 0;
 341		tic->t_res_arr_sum = 0;
 342	}
 343
 344	tic->t_res_arr[tic->t_res_num].r_len = len;
 345	tic->t_res_arr[tic->t_res_num].r_type = type;
 346	tic->t_res_arr_sum += len;
 347	tic->t_res_num++;
 348}
 349
 350/*
 351 * Replenish the byte reservation required by moving the grant write head.
 352 */
 353int
 354xfs_log_regrant(
 355	struct xfs_mount	*mp,
 356	struct xlog_ticket	*tic)
 357{
 358	struct xlog		*log = mp->m_log;
 359	int			need_bytes;
 360	int			error = 0;
 361
 362	if (XLOG_FORCED_SHUTDOWN(log))
 363		return -EIO;
 364
 365	XFS_STATS_INC(mp, xs_try_logspace);
 366
 367	/*
 368	 * This is a new transaction on the ticket, so we need to change the
 369	 * transaction ID so that the next transaction has a different TID in
 370	 * the log. Just add one to the existing tid so that we can see chains
 371	 * of rolling transactions in the log easily.
 372	 */
 373	tic->t_tid++;
 374
 375	xlog_grant_push_ail(log, tic->t_unit_res);
 376
 377	tic->t_curr_res = tic->t_unit_res;
 378	xlog_tic_reset_res(tic);
 379
 380	if (tic->t_cnt > 0)
 381		return 0;
 382
 383	trace_xfs_log_regrant(log, tic);
 384
 385	error = xlog_grant_head_check(log, &log->l_write_head, tic,
 386				      &need_bytes);
 387	if (error)
 388		goto out_error;
 389
 390	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 391	trace_xfs_log_regrant_exit(log, tic);
 392	xlog_verify_grant_tail(log);
 393	return 0;
 394
 395out_error:
 396	/*
 397	 * If we are failing, make sure the ticket doesn't have any current
 398	 * reservations.  We don't want to add this back when the ticket/
 399	 * transaction gets cancelled.
 400	 */
 401	tic->t_curr_res = 0;
 402	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 403	return error;
 404}
 405
 406/*
 407 * Reserve log space and return a ticket corresponding to the reservation.
 408 *
 409 * Each reservation is going to reserve extra space for a log record header.
 410 * When writes happen to the on-disk log, we don't subtract the length of the
 411 * log record header from any reservation.  By wasting space in each
 412 * reservation, we prevent over allocation problems.
 413 */
 414int
 415xfs_log_reserve(
 416	struct xfs_mount	*mp,
 417	int		 	unit_bytes,
 418	int		 	cnt,
 419	struct xlog_ticket	**ticp,
 420	uint8_t		 	client,
 421	bool			permanent)
 422{
 423	struct xlog		*log = mp->m_log;
 424	struct xlog_ticket	*tic;
 425	int			need_bytes;
 426	int			error = 0;
 427
 428	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 429
 430	if (XLOG_FORCED_SHUTDOWN(log))
 431		return -EIO;
 432
 433	XFS_STATS_INC(mp, xs_try_logspace);
 434
 435	ASSERT(*ticp == NULL);
 436	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
 437	*ticp = tic;
 438
 439	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 440					    : tic->t_unit_res);
 441
 442	trace_xfs_log_reserve(log, tic);
 443
 444	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 445				      &need_bytes);
 446	if (error)
 447		goto out_error;
 448
 449	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 450	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 451	trace_xfs_log_reserve_exit(log, tic);
 452	xlog_verify_grant_tail(log);
 453	return 0;
 454
 455out_error:
 456	/*
 457	 * If we are failing, make sure the ticket doesn't have any current
 458	 * reservations.  We don't want to add this back when the ticket/
 459	 * transaction gets cancelled.
 460	 */
 461	tic->t_curr_res = 0;
 462	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
 463	return error;
 464}
 465
 466static bool
 467__xlog_state_release_iclog(
 468	struct xlog		*log,
 469	struct xlog_in_core	*iclog)
 
 
 
 
 
 
 
 
 
 
 
 
 
 470{
 471	lockdep_assert_held(&log->l_icloglock);
 
 
 
 
 
 
 
 
 
 
 472
 473	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
 474		/* update tail before writing to iclog */
 475		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
 476
 477		iclog->ic_state = XLOG_STATE_SYNCING;
 478		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
 479		xlog_verify_tail_lsn(log, iclog, tail_lsn);
 480		/* cycle incremented when incrementing curr_block */
 481		return true;
 482	}
 483
 484	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 485	return false;
 486}
 487
 488/*
 489 * Flush iclog to disk if this is the last reference to the given iclog and the
 490 * it is in the WANT_SYNC state.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491 */
 492static int
 493xlog_state_release_iclog(
 494	struct xlog		*log,
 495	struct xlog_in_core	*iclog)
 
 496{
 
 
 
 497	lockdep_assert_held(&log->l_icloglock);
 498
 499	if (iclog->ic_state == XLOG_STATE_IOERROR)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500		return -EIO;
 501
 502	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
 503	    __xlog_state_release_iclog(log, iclog)) {
 504		spin_unlock(&log->l_icloglock);
 505		xlog_sync(log, iclog);
 506		spin_lock(&log->l_icloglock);
 507	}
 508
 509	return 0;
 510}
 511
 512void
 513xfs_log_release_iclog(
 514	struct xlog_in_core	*iclog)
 515{
 516	struct xlog		*log = iclog->ic_log;
 517	bool			sync = false;
 518
 519	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
 520		if (iclog->ic_state != XLOG_STATE_IOERROR)
 521			sync = __xlog_state_release_iclog(log, iclog);
 522		spin_unlock(&log->l_icloglock);
 523	}
 524
 525	if (sync)
 526		xlog_sync(log, iclog);
 
 
 527}
 528
 529/*
 530 * Mount a log filesystem
 531 *
 532 * mp		- ubiquitous xfs mount point structure
 533 * log_target	- buftarg of on-disk log device
 534 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
 535 * num_bblocks	- Number of BBSIZE blocks in on-disk log
 536 *
 537 * Return error or zero.
 538 */
 539int
 540xfs_log_mount(
 541	xfs_mount_t	*mp,
 542	xfs_buftarg_t	*log_target,
 543	xfs_daddr_t	blk_offset,
 544	int		num_bblks)
 545{
 546	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
 
 547	int		error = 0;
 548	int		min_logfsbs;
 549
 550	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 551		xfs_notice(mp, "Mounting V%d Filesystem",
 552			   XFS_SB_VERSION_NUM(&mp->m_sb));
 
 553	} else {
 554		xfs_notice(mp,
 555"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 556			   XFS_SB_VERSION_NUM(&mp->m_sb));
 557		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 
 558	}
 559
 560	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 561	if (IS_ERR(mp->m_log)) {
 562		error = PTR_ERR(mp->m_log);
 563		goto out;
 564	}
 
 565
 566	/*
 567	 * Validate the given log space and drop a critical message via syslog
 568	 * if the log size is too small that would lead to some unexpected
 569	 * situations in transaction log space reservation stage.
 570	 *
 571	 * Note: we can't just reject the mount if the validation fails.  This
 572	 * would mean that people would have to downgrade their kernel just to
 573	 * remedy the situation as there is no way to grow the log (short of
 574	 * black magic surgery with xfs_db).
 575	 *
 576	 * We can, however, reject mounts for CRC format filesystems, as the
 577	 * mkfs binary being used to make the filesystem should never create a
 578	 * filesystem with a log that is too small.
 579	 */
 580	min_logfsbs = xfs_log_calc_minimum_size(mp);
 581
 582	if (mp->m_sb.sb_logblocks < min_logfsbs) {
 583		xfs_warn(mp,
 584		"Log size %d blocks too small, minimum size is %d blocks",
 585			 mp->m_sb.sb_logblocks, min_logfsbs);
 586		error = -EINVAL;
 587	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 588		xfs_warn(mp,
 589		"Log size %d blocks too large, maximum size is %lld blocks",
 590			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 591		error = -EINVAL;
 592	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 593		xfs_warn(mp,
 594		"log size %lld bytes too large, maximum size is %lld bytes",
 595			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 596			 XFS_MAX_LOG_BYTES);
 597		error = -EINVAL;
 598	} else if (mp->m_sb.sb_logsunit > 1 &&
 599		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
 600		xfs_warn(mp,
 601		"log stripe unit %u bytes must be a multiple of block size",
 602			 mp->m_sb.sb_logsunit);
 603		error = -EINVAL;
 604		fatal = true;
 605	}
 606	if (error) {
 607		/*
 608		 * Log check errors are always fatal on v5; or whenever bad
 609		 * metadata leads to a crash.
 610		 */
 611		if (fatal) {
 612			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 613			ASSERT(0);
 614			goto out_free_log;
 615		}
 616		xfs_crit(mp, "Log size out of supported range.");
 617		xfs_crit(mp,
 618"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 619	}
 620
 621	/*
 622	 * Initialize the AIL now we have a log.
 623	 */
 624	error = xfs_trans_ail_init(mp);
 625	if (error) {
 626		xfs_warn(mp, "AIL initialisation failed: error %d", error);
 627		goto out_free_log;
 628	}
 629	mp->m_log->l_ailp = mp->m_ail;
 630
 631	/*
 632	 * skip log recovery on a norecovery mount.  pretend it all
 633	 * just worked.
 634	 */
 635	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 636		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 637
 638		if (readonly)
 639			mp->m_flags &= ~XFS_MOUNT_RDONLY;
 640
 641		error = xlog_recover(mp->m_log);
 642
 643		if (readonly)
 644			mp->m_flags |= XFS_MOUNT_RDONLY;
 645		if (error) {
 646			xfs_warn(mp, "log mount/recovery failed: error %d",
 647				error);
 648			xlog_recover_cancel(mp->m_log);
 649			goto out_destroy_ail;
 650		}
 651	}
 652
 653	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 654			       "log");
 655	if (error)
 656		goto out_destroy_ail;
 657
 658	/* Normal transactions can now occur */
 659	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 660
 661	/*
 662	 * Now the log has been fully initialised and we know were our
 663	 * space grant counters are, we can initialise the permanent ticket
 664	 * needed for delayed logging to work.
 665	 */
 666	xlog_cil_init_post_recovery(mp->m_log);
 667
 668	return 0;
 669
 670out_destroy_ail:
 671	xfs_trans_ail_destroy(mp);
 672out_free_log:
 673	xlog_dealloc_log(mp->m_log);
 674out:
 675	return error;
 676}
 677
 678/*
 679 * Finish the recovery of the file system.  This is separate from the
 680 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 681 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 682 * here.
 683 *
 684 * If we finish recovery successfully, start the background log work. If we are
 685 * not doing recovery, then we have a RO filesystem and we don't need to start
 686 * it.
 687 */
 688int
 689xfs_log_mount_finish(
 690	struct xfs_mount	*mp)
 691{
 692	int	error = 0;
 693	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 694	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
 695
 696	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 697		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 698		return 0;
 699	} else if (readonly) {
 700		/* Allow unlinked processing to proceed */
 701		mp->m_flags &= ~XFS_MOUNT_RDONLY;
 702	}
 703
 704	/*
 
 
 
 
 
 
 705	 * During the second phase of log recovery, we need iget and
 706	 * iput to behave like they do for an active filesystem.
 707	 * xfs_fs_drop_inode needs to be able to prevent the deletion
 708	 * of inodes before we're done replaying log items on those
 709	 * inodes.  Turn it off immediately after recovery finishes
 710	 * so that we don't leak the quota inodes if subsequent mount
 711	 * activities fail.
 712	 *
 713	 * We let all inodes involved in redo item processing end up on
 714	 * the LRU instead of being evicted immediately so that if we do
 715	 * something to an unlinked inode, the irele won't cause
 716	 * premature truncation and freeing of the inode, which results
 717	 * in log recovery failure.  We have to evict the unreferenced
 718	 * lru inodes after clearing SB_ACTIVE because we don't
 719	 * otherwise clean up the lru if there's a subsequent failure in
 720	 * xfs_mountfs, which leads to us leaking the inodes if nothing
 721	 * else (e.g. quotacheck) references the inodes before the
 722	 * mount failure occurs.
 723	 */
 724	mp->m_super->s_flags |= SB_ACTIVE;
 725	error = xlog_recover_finish(mp->m_log);
 726	if (!error)
 727		xfs_log_work_queue(mp);
 728	mp->m_super->s_flags &= ~SB_ACTIVE;
 729	evict_inodes(mp->m_super);
 730
 731	/*
 732	 * Drain the buffer LRU after log recovery. This is required for v4
 733	 * filesystems to avoid leaving around buffers with NULL verifier ops,
 734	 * but we do it unconditionally to make sure we're always in a clean
 735	 * cache state after mount.
 736	 *
 737	 * Don't push in the error case because the AIL may have pending intents
 738	 * that aren't removed until recovery is cancelled.
 739	 */
 740	if (!error && recovered) {
 741		xfs_log_force(mp, XFS_LOG_SYNC);
 742		xfs_ail_push_all_sync(mp->m_ail);
 
 
 
 
 
 
 743	}
 744	xfs_wait_buftarg(mp->m_ddev_targp);
 745
 
 746	if (readonly)
 747		mp->m_flags |= XFS_MOUNT_RDONLY;
 
 
 
 748
 749	return error;
 750}
 751
 752/*
 753 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 754 * the log.
 755 */
 756void
 757xfs_log_mount_cancel(
 758	struct xfs_mount	*mp)
 759{
 760	xlog_recover_cancel(mp->m_log);
 761	xfs_log_unmount(mp);
 762}
 763
 764/*
 765 * Wait for the iclog to be written disk, or return an error if the log has been
 766 * shut down.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767 */
 768static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769xlog_wait_on_iclog(
 770	struct xlog_in_core	*iclog)
 771		__releases(iclog->ic_log->l_icloglock)
 772{
 773	struct xlog		*log = iclog->ic_log;
 774
 775	if (!XLOG_FORCED_SHUTDOWN(log) &&
 
 776	    iclog->ic_state != XLOG_STATE_ACTIVE &&
 777	    iclog->ic_state != XLOG_STATE_DIRTY) {
 778		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
 779		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
 780	} else {
 781		spin_unlock(&log->l_icloglock);
 782	}
 783
 784	if (XLOG_FORCED_SHUTDOWN(log))
 785		return -EIO;
 786	return 0;
 787}
 788
 789/*
 790 * Write out an unmount record using the ticket provided. We have to account for
 791 * the data space used in the unmount ticket as this write is not done from a
 792 * transaction context that has already done the accounting for us.
 793 */
 794static int
 795xlog_write_unmount_record(
 796	struct xlog		*log,
 797	struct xlog_ticket	*ticket,
 798	xfs_lsn_t		*lsn,
 799	uint			flags)
 800{
 801	struct xfs_unmount_log_format ulf = {
 802		.magic = XLOG_UNMOUNT_TYPE,
 
 
 
 
 
 
 
 
 
 
 803	};
 804	struct xfs_log_iovec reg = {
 805		.i_addr = &ulf,
 806		.i_len = sizeof(ulf),
 807		.i_type = XLOG_REG_TYPE_UNMOUNT,
 808	};
 809	struct xfs_log_vec vec = {
 810		.lv_niovecs = 1,
 811		.lv_iovecp = &reg,
 812	};
 
 
 
 
 
 
 813
 814	/* account for space used by record data */
 815	ticket->t_curr_res -= sizeof(ulf);
 816	return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
 
 817}
 818
 819/*
 820 * Mark the filesystem clean by writing an unmount record to the head of the
 821 * log.
 822 */
 823static void
 824xlog_unmount_write(
 825	struct xlog		*log)
 826{
 827	struct xfs_mount	*mp = log->l_mp;
 828	struct xlog_in_core	*iclog;
 829	struct xlog_ticket	*tic = NULL;
 830	xfs_lsn_t		lsn;
 831	uint			flags = XLOG_UNMOUNT_TRANS;
 832	int			error;
 833
 834	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 835	if (error)
 836		goto out_err;
 837
 838	error = xlog_write_unmount_record(log, tic, &lsn, flags);
 839	/*
 840	 * At this point, we're umounting anyway, so there's no point in
 841	 * transitioning log state to IOERROR. Just continue...
 842	 */
 843out_err:
 844	if (error)
 845		xfs_alert(mp, "%s: unmount record failed", __func__);
 846
 847	spin_lock(&log->l_icloglock);
 848	iclog = log->l_iclog;
 849	atomic_inc(&iclog->ic_refcnt);
 850	if (iclog->ic_state == XLOG_STATE_ACTIVE)
 851		xlog_state_switch_iclogs(log, iclog, 0);
 852	else
 853		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
 854		       iclog->ic_state == XLOG_STATE_IOERROR);
 855	error = xlog_state_release_iclog(log, iclog);
 856	xlog_wait_on_iclog(iclog);
 857
 858	if (tic) {
 859		trace_xfs_log_umount_write(log, tic);
 860		xfs_log_ticket_ungrant(log, tic);
 861	}
 862}
 863
 864static void
 865xfs_log_unmount_verify_iclog(
 866	struct xlog		*log)
 867{
 868	struct xlog_in_core	*iclog = log->l_iclog;
 869
 870	do {
 871		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
 872		ASSERT(iclog->ic_offset == 0);
 873	} while ((iclog = iclog->ic_next) != log->l_iclog);
 874}
 875
 876/*
 877 * Unmount record used to have a string "Unmount filesystem--" in the
 878 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 879 * We just write the magic number now since that particular field isn't
 880 * currently architecture converted and "Unmount" is a bit foo.
 881 * As far as I know, there weren't any dependencies on the old behaviour.
 882 */
 883static void
 884xfs_log_unmount_write(
 885	struct xfs_mount	*mp)
 886{
 887	struct xlog		*log = mp->m_log;
 888
 889	/*
 890	 * Don't write out unmount record on norecovery mounts or ro devices.
 891	 * Or, if we are doing a forced umount (typically because of IO errors).
 892	 */
 893	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
 894	    xfs_readonly_buftarg(log->l_targ)) {
 895		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 896		return;
 897	}
 898
 899	xfs_log_force(mp, XFS_LOG_SYNC);
 900
 901	if (XLOG_FORCED_SHUTDOWN(log))
 902		return;
 903
 904	/*
 905	 * If we think the summary counters are bad, avoid writing the unmount
 906	 * record to force log recovery at next mount, after which the summary
 907	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
 908	 * more details.
 909	 */
 910	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
 911			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
 912		xfs_alert(mp, "%s: will fix summary counters at next mount",
 913				__func__);
 914		return;
 915	}
 916
 917	xfs_log_unmount_verify_iclog(log);
 918	xlog_unmount_write(log);
 919}
 920
 921/*
 922 * Empty the log for unmount/freeze.
 923 *
 924 * To do this, we first need to shut down the background log work so it is not
 925 * trying to cover the log as we clean up. We then need to unpin all objects in
 926 * the log so we can then flush them out. Once they have completed their IO and
 927 * run the callbacks removing themselves from the AIL, we can write the unmount
 928 * record.
 929 */
 930void
 931xfs_log_quiesce(
 932	struct xfs_mount	*mp)
 933{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	cancel_delayed_work_sync(&mp->m_log->l_work);
 935	xfs_log_force(mp, XFS_LOG_SYNC);
 936
 937	/*
 938	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 939	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
 940	 * xfs_buf_iowait() cannot be used because it was pushed with the
 941	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 942	 * the IO to complete.
 943	 */
 944	xfs_ail_push_all_sync(mp->m_ail);
 945	xfs_wait_buftarg(mp->m_ddev_targp);
 946	xfs_buf_lock(mp->m_sb_bp);
 947	xfs_buf_unlock(mp->m_sb_bp);
 948
 
 
 
 
 
 
 
 
 949	xfs_log_unmount_write(mp);
 950}
 951
 952/*
 953 * Shut down and release the AIL and Log.
 954 *
 955 * During unmount, we need to ensure we flush all the dirty metadata objects
 956 * from the AIL so that the log is empty before we write the unmount record to
 957 * the log. Once this is done, we can tear down the AIL and the log.
 958 */
 959void
 960xfs_log_unmount(
 961	struct xfs_mount	*mp)
 962{
 963	xfs_log_quiesce(mp);
 
 
 
 
 
 
 
 
 
 
 964
 965	xfs_trans_ail_destroy(mp);
 966
 967	xfs_sysfs_del(&mp->m_log->l_kobj);
 968
 969	xlog_dealloc_log(mp->m_log);
 970}
 971
 972void
 973xfs_log_item_init(
 974	struct xfs_mount	*mp,
 975	struct xfs_log_item	*item,
 976	int			type,
 977	const struct xfs_item_ops *ops)
 978{
 979	item->li_mountp = mp;
 980	item->li_ailp = mp->m_ail;
 981	item->li_type = type;
 982	item->li_ops = ops;
 983	item->li_lv = NULL;
 984
 985	INIT_LIST_HEAD(&item->li_ail);
 986	INIT_LIST_HEAD(&item->li_cil);
 987	INIT_LIST_HEAD(&item->li_bio_list);
 988	INIT_LIST_HEAD(&item->li_trans);
 989}
 990
 991/*
 992 * Wake up processes waiting for log space after we have moved the log tail.
 993 */
 994void
 995xfs_log_space_wake(
 996	struct xfs_mount	*mp)
 997{
 998	struct xlog		*log = mp->m_log;
 999	int			free_bytes;
1000
1001	if (XLOG_FORCED_SHUTDOWN(log))
1002		return;
1003
1004	if (!list_empty_careful(&log->l_write_head.waiters)) {
1005		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1006
1007		spin_lock(&log->l_write_head.lock);
1008		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1009		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1010		spin_unlock(&log->l_write_head.lock);
1011	}
1012
1013	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1014		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1015
1016		spin_lock(&log->l_reserve_head.lock);
1017		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1018		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1019		spin_unlock(&log->l_reserve_head.lock);
1020	}
1021}
1022
1023/*
1024 * Determine if we have a transaction that has gone to disk that needs to be
1025 * covered. To begin the transition to the idle state firstly the log needs to
1026 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1027 * we start attempting to cover the log.
1028 *
1029 * Only if we are then in a state where covering is needed, the caller is
1030 * informed that dummy transactions are required to move the log into the idle
1031 * state.
1032 *
1033 * If there are any items in the AIl or CIL, then we do not want to attempt to
1034 * cover the log as we may be in a situation where there isn't log space
1035 * available to run a dummy transaction and this can lead to deadlocks when the
1036 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1037 * there's no point in running a dummy transaction at this point because we
1038 * can't start trying to idle the log until both the CIL and AIL are empty.
1039 */
1040static int
1041xfs_log_need_covered(xfs_mount_t *mp)
 
1042{
1043	struct xlog	*log = mp->m_log;
1044	int		needed = 0;
1045
1046	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1047		return 0;
1048
1049	if (!xlog_cil_empty(log))
1050		return 0;
1051
1052	spin_lock(&log->l_icloglock);
1053	switch (log->l_covered_state) {
1054	case XLOG_STATE_COVER_DONE:
1055	case XLOG_STATE_COVER_DONE2:
1056	case XLOG_STATE_COVER_IDLE:
1057		break;
1058	case XLOG_STATE_COVER_NEED:
1059	case XLOG_STATE_COVER_NEED2:
1060		if (xfs_ail_min_lsn(log->l_ailp))
1061			break;
1062		if (!xlog_iclogs_empty(log))
1063			break;
1064
1065		needed = 1;
1066		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1067			log->l_covered_state = XLOG_STATE_COVER_DONE;
1068		else
1069			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1070		break;
1071	default:
1072		needed = 1;
1073		break;
1074	}
1075	spin_unlock(&log->l_icloglock);
1076	return needed;
1077}
1078
1079/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080 * We may be holding the log iclog lock upon entering this routine.
1081 */
1082xfs_lsn_t
1083xlog_assign_tail_lsn_locked(
1084	struct xfs_mount	*mp)
1085{
1086	struct xlog		*log = mp->m_log;
1087	struct xfs_log_item	*lip;
1088	xfs_lsn_t		tail_lsn;
1089
1090	assert_spin_locked(&mp->m_ail->ail_lock);
1091
1092	/*
1093	 * To make sure we always have a valid LSN for the log tail we keep
1094	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1095	 * and use that when the AIL was empty.
1096	 */
1097	lip = xfs_ail_min(mp->m_ail);
1098	if (lip)
1099		tail_lsn = lip->li_lsn;
1100	else
1101		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1102	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1103	atomic64_set(&log->l_tail_lsn, tail_lsn);
1104	return tail_lsn;
1105}
1106
1107xfs_lsn_t
1108xlog_assign_tail_lsn(
1109	struct xfs_mount	*mp)
1110{
1111	xfs_lsn_t		tail_lsn;
1112
1113	spin_lock(&mp->m_ail->ail_lock);
1114	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1115	spin_unlock(&mp->m_ail->ail_lock);
1116
1117	return tail_lsn;
1118}
1119
1120/*
1121 * Return the space in the log between the tail and the head.  The head
1122 * is passed in the cycle/bytes formal parms.  In the special case where
1123 * the reserve head has wrapped passed the tail, this calculation is no
1124 * longer valid.  In this case, just return 0 which means there is no space
1125 * in the log.  This works for all places where this function is called
1126 * with the reserve head.  Of course, if the write head were to ever
1127 * wrap the tail, we should blow up.  Rather than catch this case here,
1128 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1129 *
1130 * This code also handles the case where the reservation head is behind
1131 * the tail.  The details of this case are described below, but the end
1132 * result is that we return the size of the log as the amount of space left.
 
 
 
1133 */
1134STATIC int
1135xlog_space_left(
1136	struct xlog	*log,
1137	atomic64_t	*head)
1138{
1139	int		free_bytes;
1140	int		tail_bytes;
1141	int		tail_cycle;
1142	int		head_cycle;
1143	int		head_bytes;
1144
1145	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1146	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1147	tail_bytes = BBTOB(tail_bytes);
1148	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1149		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1150	else if (tail_cycle + 1 < head_cycle)
1151		return 0;
1152	else if (tail_cycle < head_cycle) {
 
 
 
 
 
1153		ASSERT(tail_cycle == (head_cycle - 1));
1154		free_bytes = tail_bytes - head_bytes;
1155	} else {
1156		/*
1157		 * The reservation head is behind the tail.
1158		 * In this case we just want to return the size of the
1159		 * log as the amount of space left.
1160		 */
1161		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1162		xfs_alert(log->l_mp,
1163			  "  tail_cycle = %d, tail_bytes = %d",
1164			  tail_cycle, tail_bytes);
1165		xfs_alert(log->l_mp,
1166			  "  GH   cycle = %d, GH   bytes = %d",
1167			  head_cycle, head_bytes);
1168		ASSERT(0);
1169		free_bytes = log->l_logsize;
1170	}
1171	return free_bytes;
 
 
 
 
 
 
 
 
 
 
 
1172}
1173
1174
1175static void
1176xlog_ioend_work(
1177	struct work_struct	*work)
1178{
1179	struct xlog_in_core     *iclog =
1180		container_of(work, struct xlog_in_core, ic_end_io_work);
1181	struct xlog		*log = iclog->ic_log;
1182	int			error;
1183
1184	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1185#ifdef DEBUG
1186	/* treat writes with injected CRC errors as failed */
1187	if (iclog->ic_fail_crc)
1188		error = -EIO;
1189#endif
1190
1191	/*
1192	 * Race to shutdown the filesystem if we see an error.
1193	 */
1194	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1195		xfs_alert(log->l_mp, "log I/O error %d", error);
1196		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1197	}
1198
1199	xlog_state_done_syncing(iclog);
1200	bio_uninit(&iclog->ic_bio);
1201
1202	/*
1203	 * Drop the lock to signal that we are done. Nothing references the
1204	 * iclog after this, so an unmount waiting on this lock can now tear it
1205	 * down safely. As such, it is unsafe to reference the iclog after the
1206	 * unlock as we could race with it being freed.
1207	 */
1208	up(&iclog->ic_sema);
1209}
1210
1211/*
1212 * Return size of each in-core log record buffer.
1213 *
1214 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1215 *
1216 * If the filesystem blocksize is too large, we may need to choose a
1217 * larger size since the directory code currently logs entire blocks.
1218 */
1219STATIC void
1220xlog_get_iclog_buffer_size(
1221	struct xfs_mount	*mp,
1222	struct xlog		*log)
1223{
1224	if (mp->m_logbufs <= 0)
1225		mp->m_logbufs = XLOG_MAX_ICLOGS;
1226	if (mp->m_logbsize <= 0)
1227		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1228
1229	log->l_iclog_bufs = mp->m_logbufs;
1230	log->l_iclog_size = mp->m_logbsize;
1231
1232	/*
1233	 * # headers = size / 32k - one header holds cycles from 32k of data.
1234	 */
1235	log->l_iclog_heads =
1236		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1237	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1238}
1239
1240void
1241xfs_log_work_queue(
1242	struct xfs_mount        *mp)
1243{
1244	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1245				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1246}
1247
1248/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249 * Every sync period we need to unpin all items in the AIL and push them to
1250 * disk. If there is nothing dirty, then we might need to cover the log to
1251 * indicate that the filesystem is idle.
1252 */
1253static void
1254xfs_log_worker(
1255	struct work_struct	*work)
1256{
1257	struct xlog		*log = container_of(to_delayed_work(work),
1258						struct xlog, l_work);
1259	struct xfs_mount	*mp = log->l_mp;
1260
1261	/* dgc: errors ignored - not fatal and nowhere to report them */
1262	if (xfs_log_need_covered(mp)) {
1263		/*
1264		 * Dump a transaction into the log that contains no real change.
1265		 * This is needed to stamp the current tail LSN into the log
1266		 * during the covering operation.
1267		 *
1268		 * We cannot use an inode here for this - that will push dirty
1269		 * state back up into the VFS and then periodic inode flushing
1270		 * will prevent log covering from making progress. Hence we
1271		 * synchronously log the superblock instead to ensure the
1272		 * superblock is immediately unpinned and can be written back.
1273		 */
 
1274		xfs_sync_sb(mp, true);
1275	} else
1276		xfs_log_force(mp, 0);
1277
1278	/* start pushing all the metadata that is currently dirty */
1279	xfs_ail_push_all(mp->m_ail);
1280
1281	/* queue us up again */
1282	xfs_log_work_queue(mp);
1283}
1284
1285/*
1286 * This routine initializes some of the log structure for a given mount point.
1287 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1288 * some other stuff may be filled in too.
1289 */
1290STATIC struct xlog *
1291xlog_alloc_log(
1292	struct xfs_mount	*mp,
1293	struct xfs_buftarg	*log_target,
1294	xfs_daddr_t		blk_offset,
1295	int			num_bblks)
1296{
1297	struct xlog		*log;
1298	xlog_rec_header_t	*head;
1299	xlog_in_core_t		**iclogp;
1300	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1301	int			i;
1302	int			error = -ENOMEM;
1303	uint			log2_size = 0;
1304
1305	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1306	if (!log) {
1307		xfs_warn(mp, "Log allocation failed: No memory!");
1308		goto out;
1309	}
1310
1311	log->l_mp	   = mp;
1312	log->l_targ	   = log_target;
1313	log->l_logsize     = BBTOB(num_bblks);
1314	log->l_logBBstart  = blk_offset;
1315	log->l_logBBsize   = num_bblks;
1316	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1317	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1318	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1319
1320	log->l_prev_block  = -1;
1321	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1322	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1323	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1324	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1325
 
 
 
 
 
1326	xlog_grant_head_init(&log->l_reserve_head);
1327	xlog_grant_head_init(&log->l_write_head);
1328
1329	error = -EFSCORRUPTED;
1330	if (xfs_sb_version_hassector(&mp->m_sb)) {
1331	        log2_size = mp->m_sb.sb_logsectlog;
1332		if (log2_size < BBSHIFT) {
1333			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1334				log2_size, BBSHIFT);
1335			goto out_free_log;
1336		}
1337
1338	        log2_size -= BBSHIFT;
1339		if (log2_size > mp->m_sectbb_log) {
1340			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1341				log2_size, mp->m_sectbb_log);
1342			goto out_free_log;
1343		}
1344
1345		/* for larger sector sizes, must have v2 or external log */
1346		if (log2_size && log->l_logBBstart > 0 &&
1347			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1348			xfs_warn(mp,
1349		"log sector size (0x%x) invalid for configuration.",
1350				log2_size);
1351			goto out_free_log;
1352		}
1353	}
1354	log->l_sectBBsize = 1 << log2_size;
1355
 
 
1356	xlog_get_iclog_buffer_size(mp, log);
1357
1358	spin_lock_init(&log->l_icloglock);
1359	init_waitqueue_head(&log->l_flush_wait);
1360
1361	iclogp = &log->l_iclog;
1362	/*
1363	 * The amount of memory to allocate for the iclog structure is
1364	 * rather funky due to the way the structure is defined.  It is
1365	 * done this way so that we can use different sizes for machines
1366	 * with different amounts of memory.  See the definition of
1367	 * xlog_in_core_t in xfs_log_priv.h for details.
1368	 */
1369	ASSERT(log->l_iclog_size >= 4096);
1370	for (i = 0; i < log->l_iclog_bufs; i++) {
1371		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1372		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1373				sizeof(struct bio_vec);
1374
1375		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1376		if (!iclog)
1377			goto out_free_iclog;
1378
1379		*iclogp = iclog;
1380		iclog->ic_prev = prev_iclog;
1381		prev_iclog = iclog;
1382
1383		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1384						KM_MAYFAIL | KM_ZERO);
1385		if (!iclog->ic_data)
1386			goto out_free_iclog;
1387#ifdef DEBUG
1388		log->l_iclog_bak[i] = &iclog->ic_header;
1389#endif
1390		head = &iclog->ic_header;
1391		memset(head, 0, sizeof(xlog_rec_header_t));
1392		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1393		head->h_version = cpu_to_be32(
1394			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1395		head->h_size = cpu_to_be32(log->l_iclog_size);
1396		/* new fields */
1397		head->h_fmt = cpu_to_be32(XLOG_FMT);
1398		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1399
1400		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1401		iclog->ic_state = XLOG_STATE_ACTIVE;
1402		iclog->ic_log = log;
1403		atomic_set(&iclog->ic_refcnt, 0);
1404		spin_lock_init(&iclog->ic_callback_lock);
1405		INIT_LIST_HEAD(&iclog->ic_callbacks);
1406		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1407
1408		init_waitqueue_head(&iclog->ic_force_wait);
1409		init_waitqueue_head(&iclog->ic_write_wait);
1410		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1411		sema_init(&iclog->ic_sema, 1);
1412
1413		iclogp = &iclog->ic_next;
1414	}
1415	*iclogp = log->l_iclog;			/* complete ring */
1416	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1417
1418	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1419			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1420			mp->m_super->s_id);
 
1421	if (!log->l_ioend_workqueue)
1422		goto out_free_iclog;
1423
1424	error = xlog_cil_init(log);
1425	if (error)
1426		goto out_destroy_workqueue;
1427	return log;
1428
1429out_destroy_workqueue:
1430	destroy_workqueue(log->l_ioend_workqueue);
1431out_free_iclog:
1432	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1433		prev_iclog = iclog->ic_next;
1434		kmem_free(iclog->ic_data);
1435		kmem_free(iclog);
1436		if (prev_iclog == log->l_iclog)
1437			break;
1438	}
1439out_free_log:
1440	kmem_free(log);
1441out:
1442	return ERR_PTR(error);
1443}	/* xlog_alloc_log */
1444
1445/*
1446 * Write out the commit record of a transaction associated with the given
1447 * ticket to close off a running log write. Return the lsn of the commit record.
 
 
 
1448 */
1449int
1450xlog_commit_record(
1451	struct xlog		*log,
1452	struct xlog_ticket	*ticket,
1453	struct xlog_in_core	**iclog,
1454	xfs_lsn_t		*lsn)
1455{
1456	struct xfs_log_iovec reg = {
1457		.i_addr = NULL,
1458		.i_len = 0,
1459		.i_type = XLOG_REG_TYPE_COMMIT,
1460	};
1461	struct xfs_log_vec vec = {
1462		.lv_niovecs = 1,
1463		.lv_iovecp = &reg,
1464	};
1465	int	error;
1466
1467	if (XLOG_FORCED_SHUTDOWN(log))
1468		return -EIO;
1469
1470	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1471			   false);
1472	if (error)
1473		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1474	return error;
1475}
1476
1477/*
1478 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1479 * log space.  This code pushes on the lsn which would supposedly free up
1480 * the 25% which we want to leave free.  We may need to adopt a policy which
1481 * pushes on an lsn which is further along in the log once we reach the high
1482 * water mark.  In this manner, we would be creating a low water mark.
1483 */
1484STATIC void
1485xlog_grant_push_ail(
1486	struct xlog	*log,
1487	int		need_bytes)
1488{
1489	xfs_lsn_t	threshold_lsn = 0;
1490	xfs_lsn_t	last_sync_lsn;
1491	int		free_blocks;
1492	int		free_bytes;
1493	int		threshold_block;
1494	int		threshold_cycle;
1495	int		free_threshold;
1496
1497	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1498
1499	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1500	free_blocks = BTOBBT(free_bytes);
1501
1502	/*
1503	 * Set the threshold for the minimum number of free blocks in the
1504	 * log to the maximum of what the caller needs, one quarter of the
1505	 * log, and 256 blocks.
1506	 */
1507	free_threshold = BTOBB(need_bytes);
1508	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1509	free_threshold = max(free_threshold, 256);
1510	if (free_blocks >= free_threshold)
1511		return;
1512
1513	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1514						&threshold_block);
1515	threshold_block += free_threshold;
1516	if (threshold_block >= log->l_logBBsize) {
1517		threshold_block -= log->l_logBBsize;
1518		threshold_cycle += 1;
1519	}
1520	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1521					threshold_block);
1522	/*
1523	 * Don't pass in an lsn greater than the lsn of the last
1524	 * log record known to be on disk. Use a snapshot of the last sync lsn
1525	 * so that it doesn't change between the compare and the set.
1526	 */
1527	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1528	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1529		threshold_lsn = last_sync_lsn;
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	/*
1532	 * Get the transaction layer to kick the dirty buffers out to
1533	 * disk asynchronously. No point in trying to do this if
1534	 * the filesystem is shutting down.
1535	 */
1536	if (!XLOG_FORCED_SHUTDOWN(log))
1537		xfs_ail_push(log->l_ailp, threshold_lsn);
1538}
1539
1540/*
1541 * Stamp cycle number in every block
1542 */
1543STATIC void
1544xlog_pack_data(
1545	struct xlog		*log,
1546	struct xlog_in_core	*iclog,
1547	int			roundoff)
1548{
1549	int			i, j, k;
1550	int			size = iclog->ic_offset + roundoff;
1551	__be32			cycle_lsn;
1552	char			*dp;
1553
1554	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1555
1556	dp = iclog->ic_datap;
1557	for (i = 0; i < BTOBB(size); i++) {
1558		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1559			break;
1560		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1561		*(__be32 *)dp = cycle_lsn;
1562		dp += BBSIZE;
1563	}
1564
1565	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1566		xlog_in_core_2_t *xhdr = iclog->ic_data;
1567
1568		for ( ; i < BTOBB(size); i++) {
1569			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1570			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1571			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1572			*(__be32 *)dp = cycle_lsn;
1573			dp += BBSIZE;
1574		}
1575
1576		for (i = 1; i < log->l_iclog_heads; i++)
1577			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1578	}
1579}
1580
1581/*
1582 * Calculate the checksum for a log buffer.
1583 *
1584 * This is a little more complicated than it should be because the various
1585 * headers and the actual data are non-contiguous.
1586 */
1587__le32
1588xlog_cksum(
1589	struct xlog		*log,
1590	struct xlog_rec_header	*rhead,
1591	char			*dp,
1592	int			size)
1593{
1594	uint32_t		crc;
1595
1596	/* first generate the crc for the record header ... */
1597	crc = xfs_start_cksum_update((char *)rhead,
1598			      sizeof(struct xlog_rec_header),
1599			      offsetof(struct xlog_rec_header, h_crc));
1600
1601	/* ... then for additional cycle data for v2 logs ... */
1602	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1603		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1604		int		i;
1605		int		xheads;
1606
1607		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1608		if (size % XLOG_HEADER_CYCLE_SIZE)
1609			xheads++;
1610
1611		for (i = 1; i < xheads; i++) {
1612			crc = crc32c(crc, &xhdr[i].hic_xheader,
1613				     sizeof(struct xlog_rec_ext_header));
1614		}
1615	}
1616
1617	/* ... and finally for the payload */
1618	crc = crc32c(crc, dp, size);
1619
1620	return xfs_end_cksum(crc);
1621}
1622
1623static void
1624xlog_bio_end_io(
1625	struct bio		*bio)
1626{
1627	struct xlog_in_core	*iclog = bio->bi_private;
1628
1629	queue_work(iclog->ic_log->l_ioend_workqueue,
1630		   &iclog->ic_end_io_work);
1631}
1632
1633static int
1634xlog_map_iclog_data(
1635	struct bio		*bio,
1636	void			*data,
1637	size_t			count)
1638{
1639	do {
1640		struct page	*page = kmem_to_page(data);
1641		unsigned int	off = offset_in_page(data);
1642		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1643
1644		if (bio_add_page(bio, page, len, off) != len)
1645			return -EIO;
1646
1647		data += len;
1648		count -= len;
1649	} while (count);
1650
1651	return 0;
1652}
1653
1654STATIC void
1655xlog_write_iclog(
1656	struct xlog		*log,
1657	struct xlog_in_core	*iclog,
1658	uint64_t		bno,
1659	unsigned int		count,
1660	bool			need_flush)
1661{
1662	ASSERT(bno < log->l_logBBsize);
 
1663
1664	/*
1665	 * We lock the iclogbufs here so that we can serialise against I/O
1666	 * completion during unmount.  We might be processing a shutdown
1667	 * triggered during unmount, and that can occur asynchronously to the
1668	 * unmount thread, and hence we need to ensure that completes before
1669	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1670	 * across the log IO to archieve that.
1671	 */
1672	down(&iclog->ic_sema);
1673	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1674		/*
1675		 * It would seem logical to return EIO here, but we rely on
1676		 * the log state machine to propagate I/O errors instead of
1677		 * doing it here.  We kick of the state machine and unlock
1678		 * the buffer manually, the code needs to be kept in sync
1679		 * with the I/O completion path.
1680		 */
1681		xlog_state_done_syncing(iclog);
1682		up(&iclog->ic_sema);
1683		return;
1684	}
1685
1686	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1687	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1688	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1689	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1690	iclog->ic_bio.bi_private = iclog;
1691
1692	/*
1693	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1694	 * IOs coming immediately after this one. This prevents the block layer
1695	 * writeback throttle from throttling log writes behind background
1696	 * metadata writeback and causing priority inversions.
1697	 */
1698	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1699				REQ_IDLE | REQ_FUA;
1700	if (need_flush)
 
 
 
 
 
1701		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702
1703	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1704		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1705		return;
1706	}
1707	if (is_vmalloc_addr(iclog->ic_data))
1708		flush_kernel_vmap_range(iclog->ic_data, count);
1709
1710	/*
1711	 * If this log buffer would straddle the end of the log we will have
1712	 * to split it up into two bios, so that we can continue at the start.
1713	 */
1714	if (bno + BTOBB(count) > log->l_logBBsize) {
1715		struct bio *split;
1716
1717		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1718				  GFP_NOIO, &fs_bio_set);
1719		bio_chain(split, &iclog->ic_bio);
1720		submit_bio(split);
1721
1722		/* restart at logical offset zero for the remainder */
1723		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1724	}
1725
1726	submit_bio(&iclog->ic_bio);
1727}
1728
1729/*
1730 * We need to bump cycle number for the part of the iclog that is
1731 * written to the start of the log. Watch out for the header magic
1732 * number case, though.
1733 */
1734static void
1735xlog_split_iclog(
1736	struct xlog		*log,
1737	void			*data,
1738	uint64_t		bno,
1739	unsigned int		count)
1740{
1741	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1742	unsigned int		i;
1743
1744	for (i = split_offset; i < count; i += BBSIZE) {
1745		uint32_t cycle = get_unaligned_be32(data + i);
1746
1747		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1748			cycle++;
1749		put_unaligned_be32(cycle, data + i);
1750	}
1751}
1752
1753static int
1754xlog_calc_iclog_size(
1755	struct xlog		*log,
1756	struct xlog_in_core	*iclog,
1757	uint32_t		*roundoff)
1758{
1759	uint32_t		count_init, count;
1760	bool			use_lsunit;
1761
1762	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1763			log->l_mp->m_sb.sb_logsunit > 1;
1764
1765	/* Add for LR header */
1766	count_init = log->l_iclog_hsize + iclog->ic_offset;
 
1767
1768	/* Round out the log write size */
1769	if (use_lsunit) {
1770		/* we have a v2 stripe unit to use */
1771		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1772	} else {
1773		count = BBTOB(BTOBB(count_init));
1774	}
1775
1776	ASSERT(count >= count_init);
1777	*roundoff = count - count_init;
1778
1779	if (use_lsunit)
1780		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1781	else
1782		ASSERT(*roundoff < BBTOB(1));
1783	return count;
1784}
1785
1786/*
1787 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1788 * fashion.  Previously, we should have moved the current iclog
1789 * ptr in the log to point to the next available iclog.  This allows further
1790 * write to continue while this code syncs out an iclog ready to go.
1791 * Before an in-core log can be written out, the data section must be scanned
1792 * to save away the 1st word of each BBSIZE block into the header.  We replace
1793 * it with the current cycle count.  Each BBSIZE block is tagged with the
1794 * cycle count because there in an implicit assumption that drives will
1795 * guarantee that entire 512 byte blocks get written at once.  In other words,
1796 * we can't have part of a 512 byte block written and part not written.  By
1797 * tagging each block, we will know which blocks are valid when recovering
1798 * after an unclean shutdown.
1799 *
1800 * This routine is single threaded on the iclog.  No other thread can be in
1801 * this routine with the same iclog.  Changing contents of iclog can there-
1802 * fore be done without grabbing the state machine lock.  Updating the global
1803 * log will require grabbing the lock though.
1804 *
1805 * The entire log manager uses a logical block numbering scheme.  Only
1806 * xlog_write_iclog knows about the fact that the log may not start with
1807 * block zero on a given device.
1808 */
1809STATIC void
1810xlog_sync(
1811	struct xlog		*log,
1812	struct xlog_in_core	*iclog)
 
1813{
1814	unsigned int		count;		/* byte count of bwrite */
1815	unsigned int		roundoff;       /* roundoff to BB or stripe */
1816	uint64_t		bno;
1817	unsigned int		size;
1818	bool			need_flush = true, split = false;
1819
1820	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
1821
1822	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1823
1824	/* move grant heads by roundoff in sync */
1825	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1826	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
 
 
 
 
 
 
 
 
1827
1828	/* put cycle number in every block */
1829	xlog_pack_data(log, iclog, roundoff); 
1830
1831	/* real byte length */
1832	size = iclog->ic_offset;
1833	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1834		size += roundoff;
1835	iclog->ic_header.h_len = cpu_to_be32(size);
1836
1837	XFS_STATS_INC(log->l_mp, xs_log_writes);
1838	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1839
1840	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1841
1842	/* Do we need to split this write into 2 parts? */
1843	if (bno + BTOBB(count) > log->l_logBBsize) {
1844		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1845		split = true;
1846	}
1847
1848	/* calculcate the checksum */
1849	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1850					    iclog->ic_datap, size);
1851	/*
1852	 * Intentionally corrupt the log record CRC based on the error injection
1853	 * frequency, if defined. This facilitates testing log recovery in the
1854	 * event of torn writes. Hence, set the IOABORT state to abort the log
1855	 * write on I/O completion and shutdown the fs. The subsequent mount
1856	 * detects the bad CRC and attempts to recover.
1857	 */
1858#ifdef DEBUG
1859	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1860		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1861		iclog->ic_fail_crc = true;
1862		xfs_warn(log->l_mp,
1863	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1864			 be64_to_cpu(iclog->ic_header.h_lsn));
1865	}
1866#endif
1867
1868	/*
1869	 * Flush the data device before flushing the log to make sure all meta
1870	 * data written back from the AIL actually made it to disk before
1871	 * stamping the new log tail LSN into the log buffer.  For an external
1872	 * log we need to issue the flush explicitly, and unfortunately
1873	 * synchronously here; for an internal log we can simply use the block
1874	 * layer state machine for preflushes.
1875	 */
1876	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1877		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1878		need_flush = false;
1879	}
1880
1881	xlog_verify_iclog(log, iclog, count);
1882	xlog_write_iclog(log, iclog, bno, count, need_flush);
1883}
1884
1885/*
1886 * Deallocate a log structure
1887 */
1888STATIC void
1889xlog_dealloc_log(
1890	struct xlog	*log)
1891{
1892	xlog_in_core_t	*iclog, *next_iclog;
1893	int		i;
1894
1895	xlog_cil_destroy(log);
1896
1897	/*
1898	 * Cycle all the iclogbuf locks to make sure all log IO completion
1899	 * is done before we tear down these buffers.
 
1900	 */
1901	iclog = log->l_iclog;
1902	for (i = 0; i < log->l_iclog_bufs; i++) {
1903		down(&iclog->ic_sema);
1904		up(&iclog->ic_sema);
1905		iclog = iclog->ic_next;
1906	}
1907
1908	iclog = log->l_iclog;
1909	for (i = 0; i < log->l_iclog_bufs; i++) {
1910		next_iclog = iclog->ic_next;
1911		kmem_free(iclog->ic_data);
1912		kmem_free(iclog);
1913		iclog = next_iclog;
1914	}
1915
1916	log->l_mp->m_log = NULL;
1917	destroy_workqueue(log->l_ioend_workqueue);
1918	kmem_free(log);
1919}
1920
1921/*
1922 * Update counters atomically now that memcpy is done.
1923 */
1924static inline void
1925xlog_state_finish_copy(
1926	struct xlog		*log,
1927	struct xlog_in_core	*iclog,
1928	int			record_cnt,
1929	int			copy_bytes)
1930{
1931	lockdep_assert_held(&log->l_icloglock);
1932
1933	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1934	iclog->ic_offset += copy_bytes;
1935}
1936
1937/*
1938 * print out info relating to regions written which consume
1939 * the reservation
1940 */
1941void
1942xlog_print_tic_res(
1943	struct xfs_mount	*mp,
1944	struct xlog_ticket	*ticket)
1945{
1946	uint i;
1947	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1948
1949	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1950#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1951	static char *res_type_str[] = {
1952	    REG_TYPE_STR(BFORMAT, "bformat"),
1953	    REG_TYPE_STR(BCHUNK, "bchunk"),
1954	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1955	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1956	    REG_TYPE_STR(IFORMAT, "iformat"),
1957	    REG_TYPE_STR(ICORE, "icore"),
1958	    REG_TYPE_STR(IEXT, "iext"),
1959	    REG_TYPE_STR(IBROOT, "ibroot"),
1960	    REG_TYPE_STR(ILOCAL, "ilocal"),
1961	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1962	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1963	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1964	    REG_TYPE_STR(QFORMAT, "qformat"),
1965	    REG_TYPE_STR(DQUOT, "dquot"),
1966	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
1967	    REG_TYPE_STR(LRHEADER, "LR header"),
1968	    REG_TYPE_STR(UNMOUNT, "unmount"),
1969	    REG_TYPE_STR(COMMIT, "commit"),
1970	    REG_TYPE_STR(TRANSHDR, "trans header"),
1971	    REG_TYPE_STR(ICREATE, "inode create"),
1972	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
1973	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
1974	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
1975	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
1976	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
1977	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
1978	};
1979	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
1980#undef REG_TYPE_STR
1981
1982	xfs_warn(mp, "ticket reservation summary:");
1983	xfs_warn(mp, "  unit res    = %d bytes",
1984		 ticket->t_unit_res);
1985	xfs_warn(mp, "  current res = %d bytes",
1986		 ticket->t_curr_res);
1987	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
1988		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
1989	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
1990		 ticket->t_res_num_ophdrs, ophdr_spc);
1991	xfs_warn(mp, "  ophdr + reg = %u bytes",
1992		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
1993	xfs_warn(mp, "  num regions = %u",
1994		 ticket->t_res_num);
1995
1996	for (i = 0; i < ticket->t_res_num; i++) {
1997		uint r_type = ticket->t_res_arr[i].r_type;
1998		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
1999			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2000			    "bad-rtype" : res_type_str[r_type]),
2001			    ticket->t_res_arr[i].r_len);
2002	}
2003}
2004
2005/*
2006 * Print a summary of the transaction.
2007 */
2008void
2009xlog_print_trans(
2010	struct xfs_trans	*tp)
2011{
2012	struct xfs_mount	*mp = tp->t_mountp;
2013	struct xfs_log_item	*lip;
2014
2015	/* dump core transaction and ticket info */
2016	xfs_warn(mp, "transaction summary:");
2017	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2018	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2019	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2020
2021	xlog_print_tic_res(mp, tp->t_ticket);
2022
2023	/* dump each log item */
2024	list_for_each_entry(lip, &tp->t_items, li_trans) {
2025		struct xfs_log_vec	*lv = lip->li_lv;
2026		struct xfs_log_iovec	*vec;
2027		int			i;
2028
2029		xfs_warn(mp, "log item: ");
2030		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2031		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2032		if (!lv)
2033			continue;
2034		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2035		xfs_warn(mp, "  size	= %d", lv->lv_size);
2036		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2037		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2038
2039		/* dump each iovec for the log item */
2040		vec = lv->lv_iovecp;
2041		for (i = 0; i < lv->lv_niovecs; i++) {
2042			int dumplen = min(vec->i_len, 32);
2043
2044			xfs_warn(mp, "  iovec[%d]", i);
2045			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2046			xfs_warn(mp, "    len	= %d", vec->i_len);
2047			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2048			xfs_hex_dump(vec->i_addr, dumplen);
2049
2050			vec++;
2051		}
2052	}
2053}
2054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055/*
2056 * Calculate the potential space needed by the log vector.  We may need a start
2057 * record, and each region gets its own struct xlog_op_header and may need to be
2058 * double word aligned.
2059 */
2060static int
2061xlog_write_calc_vec_length(
 
2062	struct xlog_ticket	*ticket,
2063	struct xfs_log_vec	*log_vector,
2064	bool			need_start_rec)
 
 
 
2065{
2066	struct xfs_log_vec	*lv;
2067	int			headers = need_start_rec ? 1 : 0;
2068	int			len = 0;
2069	int			i;
2070
2071	for (lv = log_vector; lv; lv = lv->lv_next) {
2072		/* we don't write ordered log vectors */
2073		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2074			continue;
2075
2076		headers += lv->lv_niovecs;
 
 
 
 
 
 
2077
2078		for (i = 0; i < lv->lv_niovecs; i++) {
2079			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2080
2081			len += vecp->i_len;
2082			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2083		}
2084	}
2085
2086	ticket->t_res_num_ophdrs += headers;
2087	len += headers * sizeof(struct xlog_op_header);
2088
2089	return len;
2090}
2091
2092static void
2093xlog_write_start_rec(
2094	struct xlog_op_header	*ophdr,
2095	struct xlog_ticket	*ticket)
 
 
 
 
2096{
2097	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2098	ophdr->oh_clientid = ticket->t_clientid;
2099	ophdr->oh_len = 0;
2100	ophdr->oh_flags = XLOG_START_TRANS;
2101	ophdr->oh_res2 = 0;
2102}
2103
2104static xlog_op_header_t *
2105xlog_write_setup_ophdr(
2106	struct xlog		*log,
2107	struct xlog_op_header	*ophdr,
2108	struct xlog_ticket	*ticket,
2109	uint			flags)
2110{
2111	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2112	ophdr->oh_clientid = ticket->t_clientid;
2113	ophdr->oh_res2 = 0;
2114
2115	/* are we copying a commit or unmount record? */
2116	ophdr->oh_flags = flags;
2117
2118	/*
2119	 * We've seen logs corrupted with bad transaction client ids.  This
2120	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2121	 * and shut down the filesystem.
2122	 */
2123	switch (ophdr->oh_clientid)  {
2124	case XFS_TRANSACTION:
2125	case XFS_VOLUME:
2126	case XFS_LOG:
2127		break;
2128	default:
2129		xfs_warn(log->l_mp,
2130			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2131			ophdr->oh_clientid, ticket);
2132		return NULL;
2133	}
2134
2135	return ophdr;
 
 
 
 
 
 
 
2136}
2137
2138/*
2139 * Set up the parameters of the region copy into the log. This has
2140 * to handle region write split across multiple log buffers - this
2141 * state is kept external to this function so that this code can
2142 * be written in an obvious, self documenting manner.
2143 */
2144static int
2145xlog_write_setup_copy(
 
2146	struct xlog_ticket	*ticket,
2147	struct xlog_op_header	*ophdr,
2148	int			space_available,
2149	int			space_required,
2150	int			*copy_off,
2151	int			*copy_len,
2152	int			*last_was_partial_copy,
2153	int			*bytes_consumed)
2154{
2155	int			still_to_copy;
2156
2157	still_to_copy = space_required - *bytes_consumed;
2158	*copy_off = *bytes_consumed;
2159
2160	if (still_to_copy <= space_available) {
2161		/* write of region completes here */
2162		*copy_len = still_to_copy;
2163		ophdr->oh_len = cpu_to_be32(*copy_len);
2164		if (*last_was_partial_copy)
2165			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2166		*last_was_partial_copy = 0;
2167		*bytes_consumed = 0;
2168		return 0;
2169	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170
2171	/* partial write of region, needs extra log op header reservation */
2172	*copy_len = space_available;
2173	ophdr->oh_len = cpu_to_be32(*copy_len);
2174	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2175	if (*last_was_partial_copy)
2176		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2177	*bytes_consumed += *copy_len;
2178	(*last_was_partial_copy)++;
2179
2180	/* account for new log op header */
2181	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2182	ticket->t_res_num_ophdrs++;
2183
2184	return sizeof(struct xlog_op_header);
2185}
2186
2187static int
2188xlog_write_copy_finish(
2189	struct xlog		*log,
2190	struct xlog_in_core	*iclog,
2191	uint			flags,
2192	int			*record_cnt,
2193	int			*data_cnt,
2194	int			*partial_copy,
2195	int			*partial_copy_len,
2196	int			log_offset,
2197	struct xlog_in_core	**commit_iclog)
2198{
2199	int			error;
2200
2201	if (*partial_copy) {
2202		/*
2203		 * This iclog has already been marked WANT_SYNC by
2204		 * xlog_state_get_iclog_space.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		 */
2206		spin_lock(&log->l_icloglock);
2207		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2208		*record_cnt = 0;
2209		*data_cnt = 0;
2210		goto release_iclog;
2211	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2212
2213	*partial_copy = 0;
2214	*partial_copy_len = 0;
2215
2216	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2217		/* no more space in this iclog - push it. */
2218		spin_lock(&log->l_icloglock);
2219		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2220		*record_cnt = 0;
2221		*data_cnt = 0;
2222
2223		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2224			xlog_state_switch_iclogs(log, iclog, 0);
2225		else
2226			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2227			       iclog->ic_state == XLOG_STATE_IOERROR);
2228		if (!commit_iclog)
2229			goto release_iclog;
2230		spin_unlock(&log->l_icloglock);
2231		ASSERT(flags & XLOG_COMMIT_TRANS);
2232		*commit_iclog = iclog;
2233	}
2234
 
 
 
 
 
2235	return 0;
2236
2237release_iclog:
2238	error = xlog_state_release_iclog(log, iclog);
2239	spin_unlock(&log->l_icloglock);
2240	return error;
2241}
2242
2243/*
2244 * Write some region out to in-core log
2245 *
2246 * This will be called when writing externally provided regions or when
2247 * writing out a commit record for a given transaction.
2248 *
2249 * General algorithm:
2250 *	1. Find total length of this write.  This may include adding to the
2251 *		lengths passed in.
2252 *	2. Check whether we violate the tickets reservation.
2253 *	3. While writing to this iclog
2254 *	    A. Reserve as much space in this iclog as can get
2255 *	    B. If this is first write, save away start lsn
2256 *	    C. While writing this region:
2257 *		1. If first write of transaction, write start record
2258 *		2. Write log operation header (header per region)
2259 *		3. Find out if we can fit entire region into this iclog
2260 *		4. Potentially, verify destination memcpy ptr
2261 *		5. Memcpy (partial) region
2262 *		6. If partial copy, release iclog; otherwise, continue
2263 *			copying more regions into current iclog
2264 *	4. Mark want sync bit (in simulation mode)
2265 *	5. Release iclog for potential flush to on-disk log.
2266 *
2267 * ERRORS:
2268 * 1.	Panic if reservation is overrun.  This should never happen since
2269 *	reservation amounts are generated internal to the filesystem.
2270 * NOTES:
2271 * 1. Tickets are single threaded data structures.
2272 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2273 *	syncing routine.  When a single log_write region needs to span
2274 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2275 *	on all log operation writes which don't contain the end of the
2276 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2277 *	operation which contains the end of the continued log_write region.
2278 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2279 *	we don't really know exactly how much space will be used.  As a result,
2280 *	we don't update ic_offset until the end when we know exactly how many
2281 *	bytes have been written out.
2282 */
2283int
2284xlog_write(
2285	struct xlog		*log,
2286	struct xfs_log_vec	*log_vector,
 
2287	struct xlog_ticket	*ticket,
2288	xfs_lsn_t		*start_lsn,
2289	struct xlog_in_core	**commit_iclog,
2290	uint			flags,
2291	bool			need_start_rec)
2292{
2293	struct xlog_in_core	*iclog = NULL;
2294	struct xfs_log_vec	*lv = log_vector;
2295	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2296	int			index = 0;
2297	int			len;
2298	int			partial_copy = 0;
2299	int			partial_copy_len = 0;
2300	int			contwr = 0;
2301	int			record_cnt = 0;
2302	int			data_cnt = 0;
2303	int			error = 0;
 
2304
2305	/*
2306	 * If this is a commit or unmount transaction, we don't need a start
2307	 * record to be written.  We do, however, have to account for the
2308	 * commit or unmount header that gets written. Hence we always have
2309	 * to account for an extra xlog_op_header here.
2310	 */
2311	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2312	if (ticket->t_curr_res < 0) {
2313		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2314		     "ctx ticket reservation ran out. Need to up reservation");
2315		xlog_print_tic_res(log->l_mp, ticket);
2316		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2317	}
2318
2319	len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2320	*start_lsn = 0;
2321	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2322		void		*ptr;
2323		int		log_offset;
2324
2325		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2326						   &contwr, &log_offset);
2327		if (error)
2328			return error;
2329
2330		ASSERT(log_offset <= iclog->ic_size - 1);
2331		ptr = iclog->ic_datap + log_offset;
 
 
 
 
 
2332
2333		/* start_lsn is the first lsn written to. That's all we need. */
2334		if (!*start_lsn)
2335			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2336
2337		/*
2338		 * This loop writes out as many regions as can fit in the amount
2339		 * of space which was allocated by xlog_state_get_iclog_space().
2340		 */
2341		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2342			struct xfs_log_iovec	*reg;
2343			struct xlog_op_header	*ophdr;
2344			int			copy_len;
2345			int			copy_off;
2346			bool			ordered = false;
2347
2348			/* ordered log vectors have no regions to write */
2349			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2350				ASSERT(lv->lv_niovecs == 0);
2351				ordered = true;
2352				goto next_lv;
2353			}
2354
2355			reg = &vecp[index];
2356			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2357			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2358
2359			/*
2360			 * Before we start formatting log vectors, we need to
2361			 * write a start record. Only do this for the first
2362			 * iclog we write to.
2363			 */
2364			if (need_start_rec) {
2365				xlog_write_start_rec(ptr, ticket);
2366				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2367						sizeof(struct xlog_op_header));
2368			}
2369
2370			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2371			if (!ophdr)
2372				return -EIO;
2373
2374			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2375					   sizeof(struct xlog_op_header));
2376
2377			len += xlog_write_setup_copy(ticket, ophdr,
2378						     iclog->ic_size-log_offset,
2379						     reg->i_len,
2380						     &copy_off, &copy_len,
2381						     &partial_copy,
2382						     &partial_copy_len);
2383			xlog_verify_dest_ptr(log, ptr);
2384
2385			/*
2386			 * Copy region.
2387			 *
2388			 * Unmount records just log an opheader, so can have
2389			 * empty payloads with no data region to copy. Hence we
2390			 * only copy the payload if the vector says it has data
2391			 * to copy.
2392			 */
2393			ASSERT(copy_len >= 0);
2394			if (copy_len > 0) {
2395				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2396				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2397						   copy_len);
2398			}
2399			copy_len += sizeof(struct xlog_op_header);
2400			record_cnt++;
2401			if (need_start_rec) {
2402				copy_len += sizeof(struct xlog_op_header);
2403				record_cnt++;
2404				need_start_rec = false;
2405			}
2406			data_cnt += contwr ? copy_len : 0;
2407
2408			error = xlog_write_copy_finish(log, iclog, flags,
2409						       &record_cnt, &data_cnt,
2410						       &partial_copy,
2411						       &partial_copy_len,
2412						       log_offset,
2413						       commit_iclog);
2414			if (error)
2415				return error;
2416
2417			/*
2418			 * if we had a partial copy, we need to get more iclog
2419			 * space but we don't want to increment the region
2420			 * index because there is still more is this region to
2421			 * write.
2422			 *
2423			 * If we completed writing this region, and we flushed
2424			 * the iclog (indicated by resetting of the record
2425			 * count), then we also need to get more log space. If
2426			 * this was the last record, though, we are done and
2427			 * can just return.
2428			 */
2429			if (partial_copy)
2430				break;
2431
2432			if (++index == lv->lv_niovecs) {
2433next_lv:
2434				lv = lv->lv_next;
2435				index = 0;
2436				if (lv)
2437					vecp = lv->lv_iovecp;
2438			}
2439			if (record_cnt == 0 && !ordered) {
2440				if (!lv)
2441					return 0;
2442				break;
2443			}
 
 
 
2444		}
2445	}
2446
2447	ASSERT(len == 0);
2448
 
 
 
 
 
 
2449	spin_lock(&log->l_icloglock);
2450	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2451	if (commit_iclog) {
2452		ASSERT(flags & XLOG_COMMIT_TRANS);
2453		*commit_iclog = iclog;
2454	} else {
2455		error = xlog_state_release_iclog(log, iclog);
2456	}
2457	spin_unlock(&log->l_icloglock);
2458
2459	return error;
2460}
2461
2462static void
2463xlog_state_activate_iclog(
2464	struct xlog_in_core	*iclog,
2465	int			*iclogs_changed)
2466{
2467	ASSERT(list_empty_careful(&iclog->ic_callbacks));
 
2468
2469	/*
2470	 * If the number of ops in this iclog indicate it just contains the
2471	 * dummy transaction, we can change state into IDLE (the second time
2472	 * around). Otherwise we should change the state into NEED a dummy.
2473	 * We don't need to cover the dummy.
2474	 */
2475	if (*iclogs_changed == 0 &&
2476	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2477		*iclogs_changed = 1;
2478	} else {
2479		/*
2480		 * We have two dirty iclogs so start over.  This could also be
2481		 * num of ops indicating this is not the dummy going out.
2482		 */
2483		*iclogs_changed = 2;
2484	}
2485
2486	iclog->ic_state	= XLOG_STATE_ACTIVE;
2487	iclog->ic_offset = 0;
2488	iclog->ic_header.h_num_logops = 0;
2489	memset(iclog->ic_header.h_cycle_data, 0,
2490		sizeof(iclog->ic_header.h_cycle_data));
2491	iclog->ic_header.h_lsn = 0;
 
2492}
2493
2494/*
2495 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2496 * ACTIVE after iclog I/O has completed.
2497 */
2498static void
2499xlog_state_activate_iclogs(
2500	struct xlog		*log,
2501	int			*iclogs_changed)
2502{
2503	struct xlog_in_core	*iclog = log->l_iclog;
2504
2505	do {
2506		if (iclog->ic_state == XLOG_STATE_DIRTY)
2507			xlog_state_activate_iclog(iclog, iclogs_changed);
2508		/*
2509		 * The ordering of marking iclogs ACTIVE must be maintained, so
2510		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2511		 */
2512		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2513			break;
2514	} while ((iclog = iclog->ic_next) != log->l_iclog);
2515}
2516
2517static int
2518xlog_covered_state(
2519	int			prev_state,
2520	int			iclogs_changed)
2521{
2522	/*
2523	 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2524	 * are done writing the dummy record.  If we are done with the second
2525	 * dummy recored (DONE2), then we go to IDLE.
 
2526	 */
2527	switch (prev_state) {
2528	case XLOG_STATE_COVER_IDLE:
 
 
 
2529	case XLOG_STATE_COVER_NEED:
2530	case XLOG_STATE_COVER_NEED2:
2531		break;
2532	case XLOG_STATE_COVER_DONE:
2533		if (iclogs_changed == 1)
2534			return XLOG_STATE_COVER_NEED2;
2535		break;
2536	case XLOG_STATE_COVER_DONE2:
2537		if (iclogs_changed == 1)
2538			return XLOG_STATE_COVER_IDLE;
2539		break;
2540	default:
2541		ASSERT(0);
2542	}
2543
2544	return XLOG_STATE_COVER_NEED;
2545}
2546
2547STATIC void
2548xlog_state_clean_iclog(
2549	struct xlog		*log,
2550	struct xlog_in_core	*dirty_iclog)
2551{
2552	int			iclogs_changed = 0;
2553
 
 
2554	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2555
2556	xlog_state_activate_iclogs(log, &iclogs_changed);
2557	wake_up_all(&dirty_iclog->ic_force_wait);
2558
2559	if (iclogs_changed) {
2560		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2561				iclogs_changed);
2562	}
2563}
2564
2565STATIC xfs_lsn_t
2566xlog_get_lowest_lsn(
2567	struct xlog		*log)
2568{
2569	struct xlog_in_core	*iclog = log->l_iclog;
2570	xfs_lsn_t		lowest_lsn = 0, lsn;
2571
2572	do {
2573		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2574		    iclog->ic_state == XLOG_STATE_DIRTY)
2575			continue;
2576
2577		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2578		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2579			lowest_lsn = lsn;
2580	} while ((iclog = iclog->ic_next) != log->l_iclog);
2581
2582	return lowest_lsn;
2583}
2584
2585/*
2586 * Completion of a iclog IO does not imply that a transaction has completed, as
2587 * transactions can be large enough to span many iclogs. We cannot change the
2588 * tail of the log half way through a transaction as this may be the only
2589 * transaction in the log and moving the tail to point to the middle of it
2590 * will prevent recovery from finding the start of the transaction. Hence we
2591 * should only update the last_sync_lsn if this iclog contains transaction
2592 * completion callbacks on it.
2593 *
2594 * We have to do this before we drop the icloglock to ensure we are the only one
2595 * that can update it.
2596 *
2597 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2598 * the reservation grant head pushing. This is due to the fact that the push
2599 * target is bound by the current last_sync_lsn value. Hence if we have a large
2600 * amount of log space bound up in this committing transaction then the
2601 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2602 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2603 * should push the AIL to ensure the push target (and hence the grant head) is
2604 * no longer bound by the old log head location and can move forwards and make
2605 * progress again.
2606 */
2607static void
2608xlog_state_set_callback(
2609	struct xlog		*log,
2610	struct xlog_in_core	*iclog,
2611	xfs_lsn_t		header_lsn)
2612{
 
2613	iclog->ic_state = XLOG_STATE_CALLBACK;
2614
2615	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2616			   header_lsn) <= 0);
2617
2618	if (list_empty_careful(&iclog->ic_callbacks))
2619		return;
2620
2621	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2622	xlog_grant_push_ail(log, 0);
2623}
2624
2625/*
2626 * Return true if we need to stop processing, false to continue to the next
2627 * iclog. The caller will need to run callbacks if the iclog is returned in the
2628 * XLOG_STATE_CALLBACK state.
2629 */
2630static bool
2631xlog_state_iodone_process_iclog(
2632	struct xlog		*log,
2633	struct xlog_in_core	*iclog,
2634	bool			*ioerror)
2635{
2636	xfs_lsn_t		lowest_lsn;
2637	xfs_lsn_t		header_lsn;
2638
2639	switch (iclog->ic_state) {
2640	case XLOG_STATE_ACTIVE:
2641	case XLOG_STATE_DIRTY:
2642		/*
2643		 * Skip all iclogs in the ACTIVE & DIRTY states:
2644		 */
2645		return false;
2646	case XLOG_STATE_IOERROR:
2647		/*
2648		 * Between marking a filesystem SHUTDOWN and stopping the log,
2649		 * we do flush all iclogs to disk (if there wasn't a log I/O
2650		 * error). So, we do want things to go smoothly in case of just
2651		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2652		 */
2653		*ioerror = true;
2654		return false;
2655	case XLOG_STATE_DONE_SYNC:
2656		/*
2657		 * Now that we have an iclog that is in the DONE_SYNC state, do
2658		 * one more check here to see if we have chased our tail around.
2659		 * If this is not the lowest lsn iclog, then we will leave it
2660		 * for another completion to process.
2661		 */
2662		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2663		lowest_lsn = xlog_get_lowest_lsn(log);
2664		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2665			return false;
2666		xlog_state_set_callback(log, iclog, header_lsn);
2667		return false;
2668	default:
2669		/*
2670		 * Can only perform callbacks in order.  Since this iclog is not
2671		 * in the DONE_SYNC state, we skip the rest and just try to
2672		 * clean up.
2673		 */
2674		return true;
2675	}
2676}
2677
2678/*
2679 * Keep processing entries in the iclog callback list until we come around and
2680 * it is empty.  We need to atomically see that the list is empty and change the
2681 * state to DIRTY so that we don't miss any more callbacks being added.
2682 *
2683 * This function is called with the icloglock held and returns with it held. We
2684 * drop it while running callbacks, however, as holding it over thousands of
2685 * callbacks is unnecessary and causes excessive contention if we do.
2686 */
2687static void
2688xlog_state_do_iclog_callbacks(
2689	struct xlog		*log,
2690	struct xlog_in_core	*iclog)
2691		__releases(&log->l_icloglock)
2692		__acquires(&log->l_icloglock)
2693{
2694	spin_unlock(&log->l_icloglock);
2695	spin_lock(&iclog->ic_callback_lock);
2696	while (!list_empty(&iclog->ic_callbacks)) {
2697		LIST_HEAD(tmp);
 
 
 
 
 
 
 
 
 
 
 
2698
2699		list_splice_init(&iclog->ic_callbacks, &tmp);
 
 
 
2700
2701		spin_unlock(&iclog->ic_callback_lock);
2702		xlog_cil_process_committed(&tmp);
2703		spin_lock(&iclog->ic_callback_lock);
2704	}
2705
2706	/*
2707	 * Pick up the icloglock while still holding the callback lock so we
2708	 * serialise against anyone trying to add more callbacks to this iclog
2709	 * now we've finished processing.
2710	 */
2711	spin_lock(&log->l_icloglock);
2712	spin_unlock(&iclog->ic_callback_lock);
2713}
2714
 
 
 
 
 
2715STATIC void
2716xlog_state_do_callback(
2717	struct xlog		*log)
2718{
2719	struct xlog_in_core	*iclog;
2720	struct xlog_in_core	*first_iclog;
2721	bool			cycled_icloglock;
2722	bool			ioerror;
2723	int			flushcnt = 0;
2724	int			repeats = 0;
2725
2726	spin_lock(&log->l_icloglock);
2727	do {
2728		/*
2729		 * Scan all iclogs starting with the one pointed to by the
2730		 * log.  Reset this starting point each time the log is
2731		 * unlocked (during callbacks).
2732		 *
2733		 * Keep looping through iclogs until one full pass is made
2734		 * without running any callbacks.
2735		 */
2736		first_iclog = log->l_iclog;
2737		iclog = log->l_iclog;
2738		cycled_icloglock = false;
2739		ioerror = false;
2740		repeats++;
2741
2742		do {
2743			if (xlog_state_iodone_process_iclog(log, iclog,
2744							&ioerror))
2745				break;
2746
2747			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2748			    iclog->ic_state != XLOG_STATE_IOERROR) {
2749				iclog = iclog->ic_next;
2750				continue;
2751			}
2752
2753			/*
2754			 * Running callbacks will drop the icloglock which means
2755			 * we'll have to run at least one more complete loop.
2756			 */
2757			cycled_icloglock = true;
2758			xlog_state_do_iclog_callbacks(log, iclog);
2759			if (XLOG_FORCED_SHUTDOWN(log))
2760				wake_up_all(&iclog->ic_force_wait);
2761			else
2762				xlog_state_clean_iclog(log, iclog);
2763			iclog = iclog->ic_next;
2764		} while (first_iclog != iclog);
2765
2766		if (repeats > 5000) {
2767			flushcnt += repeats;
2768			repeats = 0;
2769			xfs_warn(log->l_mp,
2770				"%s: possible infinite loop (%d iterations)",
2771				__func__, flushcnt);
2772		}
2773	} while (!ioerror && cycled_icloglock);
2774
2775	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2776	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2777		wake_up_all(&log->l_flush_wait);
2778
2779	spin_unlock(&log->l_icloglock);
2780}
2781
2782
2783/*
2784 * Finish transitioning this iclog to the dirty state.
2785 *
2786 * Make sure that we completely execute this routine only when this is
2787 * the last call to the iclog.  There is a good chance that iclog flushes,
2788 * when we reach the end of the physical log, get turned into 2 separate
2789 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2790 * routine.  By using the reference count bwritecnt, we guarantee that only
2791 * the second completion goes through.
2792 *
2793 * Callbacks could take time, so they are done outside the scope of the
2794 * global state machine log lock.
2795 */
2796STATIC void
2797xlog_state_done_syncing(
2798	struct xlog_in_core	*iclog)
2799{
2800	struct xlog		*log = iclog->ic_log;
2801
2802	spin_lock(&log->l_icloglock);
2803	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
 
2804
2805	/*
2806	 * If we got an error, either on the first buffer, or in the case of
2807	 * split log writes, on the second, we shut down the file system and
2808	 * no iclogs should ever be attempted to be written to disk again.
2809	 */
2810	if (!XLOG_FORCED_SHUTDOWN(log)) {
2811		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2812		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2813	}
2814
2815	/*
2816	 * Someone could be sleeping prior to writing out the next
2817	 * iclog buffer, we wake them all, one will get to do the
2818	 * I/O, the others get to wait for the result.
2819	 */
2820	wake_up_all(&iclog->ic_write_wait);
2821	spin_unlock(&log->l_icloglock);
2822	xlog_state_do_callback(log);
2823}
2824
2825/*
2826 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2827 * sleep.  We wait on the flush queue on the head iclog as that should be
2828 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2829 * we will wait here and all new writes will sleep until a sync completes.
2830 *
2831 * The in-core logs are used in a circular fashion. They are not used
2832 * out-of-order even when an iclog past the head is free.
2833 *
2834 * return:
2835 *	* log_offset where xlog_write() can start writing into the in-core
2836 *		log's data space.
2837 *	* in-core log pointer to which xlog_write() should write.
2838 *	* boolean indicating this is a continued write to an in-core log.
2839 *		If this is the last write, then the in-core log's offset field
2840 *		needs to be incremented, depending on the amount of data which
2841 *		is copied.
2842 */
2843STATIC int
2844xlog_state_get_iclog_space(
2845	struct xlog		*log,
2846	int			len,
2847	struct xlog_in_core	**iclogp,
2848	struct xlog_ticket	*ticket,
2849	int			*continued_write,
2850	int			*logoffsetp)
2851{
2852	int		  log_offset;
2853	xlog_rec_header_t *head;
2854	xlog_in_core_t	  *iclog;
2855
2856restart:
2857	spin_lock(&log->l_icloglock);
2858	if (XLOG_FORCED_SHUTDOWN(log)) {
2859		spin_unlock(&log->l_icloglock);
2860		return -EIO;
2861	}
2862
2863	iclog = log->l_iclog;
2864	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2865		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2866
2867		/* Wait for log writes to have flushed */
2868		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2869		goto restart;
2870	}
2871
2872	head = &iclog->ic_header;
2873
2874	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2875	log_offset = iclog->ic_offset;
2876
 
 
2877	/* On the 1st write to an iclog, figure out lsn.  This works
2878	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2879	 * committing to.  If the offset is set, that's how many blocks
2880	 * must be written.
2881	 */
2882	if (log_offset == 0) {
2883		ticket->t_curr_res -= log->l_iclog_hsize;
2884		xlog_tic_add_region(ticket,
2885				    log->l_iclog_hsize,
2886				    XLOG_REG_TYPE_LRHEADER);
2887		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2888		head->h_lsn = cpu_to_be64(
2889			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2890		ASSERT(log->l_curr_block >= 0);
2891	}
2892
2893	/* If there is enough room to write everything, then do it.  Otherwise,
2894	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2895	 * bit is on, so this will get flushed out.  Don't update ic_offset
2896	 * until you know exactly how many bytes get copied.  Therefore, wait
2897	 * until later to update ic_offset.
2898	 *
2899	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2900	 * can fit into remaining data section.
2901	 */
2902	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2903		int		error = 0;
2904
2905		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2906
2907		/*
2908		 * If we are the only one writing to this iclog, sync it to
2909		 * disk.  We need to do an atomic compare and decrement here to
2910		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2911		 * xlog_state_release_iclog() when there is more than one
2912		 * reference to the iclog.
2913		 */
2914		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2915			error = xlog_state_release_iclog(log, iclog);
2916		spin_unlock(&log->l_icloglock);
2917		if (error)
2918			return error;
2919		goto restart;
2920	}
2921
2922	/* Do we have enough room to write the full amount in the remainder
2923	 * of this iclog?  Or must we continue a write on the next iclog and
2924	 * mark this iclog as completely taken?  In the case where we switch
2925	 * iclogs (to mark it taken), this particular iclog will release/sync
2926	 * to disk in xlog_write().
2927	 */
2928	if (len <= iclog->ic_size - iclog->ic_offset) {
2929		*continued_write = 0;
2930		iclog->ic_offset += len;
2931	} else {
2932		*continued_write = 1;
2933		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2934	}
2935	*iclogp = iclog;
2936
2937	ASSERT(iclog->ic_offset <= iclog->ic_size);
2938	spin_unlock(&log->l_icloglock);
2939
2940	*logoffsetp = log_offset;
2941	return 0;
2942}
2943
2944/*
2945 * The first cnt-1 times a ticket goes through here we don't need to move the
2946 * grant write head because the permanent reservation has reserved cnt times the
2947 * unit amount.  Release part of current permanent unit reservation and reset
2948 * current reservation to be one units worth.  Also move grant reservation head
2949 * forward.
2950 */
2951void
2952xfs_log_ticket_regrant(
2953	struct xlog		*log,
2954	struct xlog_ticket	*ticket)
2955{
2956	trace_xfs_log_ticket_regrant(log, ticket);
2957
2958	if (ticket->t_cnt > 0)
2959		ticket->t_cnt--;
2960
2961	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2962					ticket->t_curr_res);
2963	xlog_grant_sub_space(log, &log->l_write_head.grant,
2964					ticket->t_curr_res);
2965	ticket->t_curr_res = ticket->t_unit_res;
2966	xlog_tic_reset_res(ticket);
2967
2968	trace_xfs_log_ticket_regrant_sub(log, ticket);
2969
2970	/* just return if we still have some of the pre-reserved space */
2971	if (!ticket->t_cnt) {
2972		xlog_grant_add_space(log, &log->l_reserve_head.grant,
2973				     ticket->t_unit_res);
2974		trace_xfs_log_ticket_regrant_exit(log, ticket);
2975
2976		ticket->t_curr_res = ticket->t_unit_res;
2977		xlog_tic_reset_res(ticket);
2978	}
2979
2980	xfs_log_ticket_put(ticket);
2981}
2982
2983/*
2984 * Give back the space left from a reservation.
2985 *
2986 * All the information we need to make a correct determination of space left
2987 * is present.  For non-permanent reservations, things are quite easy.  The
2988 * count should have been decremented to zero.  We only need to deal with the
2989 * space remaining in the current reservation part of the ticket.  If the
2990 * ticket contains a permanent reservation, there may be left over space which
2991 * needs to be released.  A count of N means that N-1 refills of the current
2992 * reservation can be done before we need to ask for more space.  The first
2993 * one goes to fill up the first current reservation.  Once we run out of
2994 * space, the count will stay at zero and the only space remaining will be
2995 * in the current reservation field.
2996 */
2997void
2998xfs_log_ticket_ungrant(
2999	struct xlog		*log,
3000	struct xlog_ticket	*ticket)
3001{
3002	int			bytes;
3003
3004	trace_xfs_log_ticket_ungrant(log, ticket);
3005
3006	if (ticket->t_cnt > 0)
3007		ticket->t_cnt--;
3008
3009	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3010
3011	/*
3012	 * If this is a permanent reservation ticket, we may be able to free
3013	 * up more space based on the remaining count.
3014	 */
3015	bytes = ticket->t_curr_res;
3016	if (ticket->t_cnt > 0) {
3017		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3018		bytes += ticket->t_unit_res*ticket->t_cnt;
3019	}
3020
3021	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3022	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3023
3024	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3025
3026	xfs_log_space_wake(log->l_mp);
3027	xfs_log_ticket_put(ticket);
3028}
3029
3030/*
3031 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3032 * the current iclog pointer to the next iclog in the ring.
3033 */
3034STATIC void
3035xlog_state_switch_iclogs(
3036	struct xlog		*log,
3037	struct xlog_in_core	*iclog,
3038	int			eventual_size)
3039{
3040	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3041	assert_spin_locked(&log->l_icloglock);
 
3042
3043	if (!eventual_size)
3044		eventual_size = iclog->ic_offset;
3045	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3046	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3047	log->l_prev_block = log->l_curr_block;
3048	log->l_prev_cycle = log->l_curr_cycle;
3049
3050	/* roll log?: ic_offset changed later */
3051	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3052
3053	/* Round up to next log-sunit */
3054	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3055	    log->l_mp->m_sb.sb_logsunit > 1) {
3056		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3057		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3058	}
3059
3060	if (log->l_curr_block >= log->l_logBBsize) {
3061		/*
3062		 * Rewind the current block before the cycle is bumped to make
3063		 * sure that the combined LSN never transiently moves forward
3064		 * when the log wraps to the next cycle. This is to support the
3065		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3066		 * other cases should acquire l_icloglock.
3067		 */
3068		log->l_curr_block -= log->l_logBBsize;
3069		ASSERT(log->l_curr_block >= 0);
3070		smp_wmb();
3071		log->l_curr_cycle++;
3072		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3073			log->l_curr_cycle++;
3074	}
3075	ASSERT(iclog == log->l_iclog);
3076	log->l_iclog = iclog->ic_next;
3077}
3078
3079/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080 * Write out all data in the in-core log as of this exact moment in time.
3081 *
3082 * Data may be written to the in-core log during this call.  However,
3083 * we don't guarantee this data will be written out.  A change from past
3084 * implementation means this routine will *not* write out zero length LRs.
3085 *
3086 * Basically, we try and perform an intelligent scan of the in-core logs.
3087 * If we determine there is no flushable data, we just return.  There is no
3088 * flushable data if:
3089 *
3090 *	1. the current iclog is active and has no data; the previous iclog
3091 *		is in the active or dirty state.
3092 *	2. the current iclog is drity, and the previous iclog is in the
3093 *		active or dirty state.
3094 *
3095 * We may sleep if:
3096 *
3097 *	1. the current iclog is not in the active nor dirty state.
3098 *	2. the current iclog dirty, and the previous iclog is not in the
3099 *		active nor dirty state.
3100 *	3. the current iclog is active, and there is another thread writing
3101 *		to this particular iclog.
3102 *	4. a) the current iclog is active and has no other writers
3103 *	   b) when we return from flushing out this iclog, it is still
3104 *		not in the active nor dirty state.
3105 */
3106int
3107xfs_log_force(
3108	struct xfs_mount	*mp,
3109	uint			flags)
3110{
3111	struct xlog		*log = mp->m_log;
3112	struct xlog_in_core	*iclog;
3113	xfs_lsn_t		lsn;
3114
3115	XFS_STATS_INC(mp, xs_log_force);
3116	trace_xfs_log_force(mp, 0, _RET_IP_);
3117
3118	xlog_cil_force(log);
3119
3120	spin_lock(&log->l_icloglock);
 
 
 
3121	iclog = log->l_iclog;
3122	if (iclog->ic_state == XLOG_STATE_IOERROR)
3123		goto out_error;
3124
3125	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3126	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3127	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3128		/*
3129		 * If the head is dirty or (active and empty), then we need to
3130		 * look at the previous iclog.
3131		 *
3132		 * If the previous iclog is active or dirty we are done.  There
3133		 * is nothing to sync out. Otherwise, we attach ourselves to the
3134		 * previous iclog and go to sleep.
3135		 */
3136		iclog = iclog->ic_prev;
3137	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3138		if (atomic_read(&iclog->ic_refcnt) == 0) {
3139			/*
3140			 * We are the only one with access to this iclog.
3141			 *
3142			 * Flush it out now.  There should be a roundoff of zero
3143			 * to show that someone has already taken care of the
3144			 * roundoff from the previous sync.
3145			 */
3146			atomic_inc(&iclog->ic_refcnt);
3147			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3148			xlog_state_switch_iclogs(log, iclog, 0);
3149			if (xlog_state_release_iclog(log, iclog))
3150				goto out_error;
3151
3152			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3153				goto out_unlock;
3154		} else {
3155			/*
3156			 * Someone else is writing to this iclog.
3157			 *
3158			 * Use its call to flush out the data.  However, the
3159			 * other thread may not force out this LR, so we mark
3160			 * it WANT_SYNC.
3161			 */
3162			xlog_state_switch_iclogs(log, iclog, 0);
3163		}
3164	} else {
3165		/*
3166		 * If the head iclog is not active nor dirty, we just attach
3167		 * ourselves to the head and go to sleep if necessary.
3168		 */
3169		;
3170	}
3171
 
 
 
 
 
 
 
 
 
3172	if (flags & XFS_LOG_SYNC)
3173		return xlog_wait_on_iclog(iclog);
3174out_unlock:
3175	spin_unlock(&log->l_icloglock);
3176	return 0;
3177out_error:
3178	spin_unlock(&log->l_icloglock);
3179	return -EIO;
3180}
3181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3182static int
3183__xfs_log_force_lsn(
3184	struct xfs_mount	*mp,
3185	xfs_lsn_t		lsn,
3186	uint			flags,
3187	int			*log_flushed,
3188	bool			already_slept)
3189{
3190	struct xlog		*log = mp->m_log;
3191	struct xlog_in_core	*iclog;
 
3192
3193	spin_lock(&log->l_icloglock);
3194	iclog = log->l_iclog;
3195	if (iclog->ic_state == XLOG_STATE_IOERROR)
3196		goto out_error;
3197
 
3198	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
 
3199		iclog = iclog->ic_next;
3200		if (iclog == log->l_iclog)
3201			goto out_unlock;
3202	}
3203
3204	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
 
3205		/*
3206		 * We sleep here if we haven't already slept (e.g. this is the
3207		 * first time we've looked at the correct iclog buf) and the
3208		 * buffer before us is going to be sync'ed.  The reason for this
3209		 * is that if we are doing sync transactions here, by waiting
3210		 * for the previous I/O to complete, we can allow a few more
3211		 * transactions into this iclog before we close it down.
3212		 *
3213		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3214		 * refcnt so we can release the log (which drops the ref count).
3215		 * The state switch keeps new transaction commits from using
3216		 * this buffer.  When the current commits finish writing into
3217		 * the buffer, the refcount will drop to zero and the buffer
3218		 * will go out then.
3219		 */
3220		if (!already_slept &&
3221		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3222		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3223			XFS_STATS_INC(mp, xs_log_force_sleep);
3224
3225			xlog_wait(&iclog->ic_prev->ic_write_wait,
3226					&log->l_icloglock);
3227			return -EAGAIN;
3228		}
3229		atomic_inc(&iclog->ic_refcnt);
3230		xlog_state_switch_iclogs(log, iclog, 0);
3231		if (xlog_state_release_iclog(log, iclog))
3232			goto out_error;
3233		if (log_flushed)
3234			*log_flushed = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235	}
3236
3237	if (flags & XFS_LOG_SYNC)
3238		return xlog_wait_on_iclog(iclog);
3239out_unlock:
3240	spin_unlock(&log->l_icloglock);
3241	return 0;
3242out_error:
3243	spin_unlock(&log->l_icloglock);
3244	return -EIO;
3245}
3246
3247/*
3248 * Force the in-core log to disk for a specific LSN.
3249 *
3250 * Find in-core log with lsn.
3251 *	If it is in the DIRTY state, just return.
3252 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3253 *		state and go to sleep or return.
3254 *	If it is in any other state, go to sleep or return.
3255 *
3256 * Synchronous forces are implemented with a wait queue.  All callers trying
3257 * to force a given lsn to disk must wait on the queue attached to the
3258 * specific in-core log.  When given in-core log finally completes its write
3259 * to disk, that thread will wake up all threads waiting on the queue.
 
3260 */
3261int
3262xfs_log_force_lsn(
3263	struct xfs_mount	*mp,
3264	xfs_lsn_t		lsn,
3265	uint			flags,
3266	int			*log_flushed)
3267{
 
 
3268	int			ret;
3269	ASSERT(lsn != 0);
3270
3271	XFS_STATS_INC(mp, xs_log_force);
3272	trace_xfs_log_force(mp, lsn, _RET_IP_);
3273
3274	lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3275	if (lsn == NULLCOMMITLSN)
3276		return 0;
3277
3278	ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3279	if (ret == -EAGAIN)
3280		ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
 
 
3281	return ret;
3282}
3283
3284/*
3285 * Free a used ticket when its refcount falls to zero.
3286 */
3287void
3288xfs_log_ticket_put(
3289	xlog_ticket_t	*ticket)
3290{
3291	ASSERT(atomic_read(&ticket->t_ref) > 0);
3292	if (atomic_dec_and_test(&ticket->t_ref))
3293		kmem_cache_free(xfs_log_ticket_zone, ticket);
3294}
3295
3296xlog_ticket_t *
3297xfs_log_ticket_get(
3298	xlog_ticket_t	*ticket)
3299{
3300	ASSERT(atomic_read(&ticket->t_ref) > 0);
3301	atomic_inc(&ticket->t_ref);
3302	return ticket;
3303}
3304
3305/*
3306 * Figure out the total log space unit (in bytes) that would be
3307 * required for a log ticket.
3308 */
3309int
3310xfs_log_calc_unit_res(
3311	struct xfs_mount	*mp,
3312	int			unit_bytes)
 
3313{
3314	struct xlog		*log = mp->m_log;
3315	int			iclog_space;
3316	uint			num_headers;
3317
3318	/*
3319	 * Permanent reservations have up to 'cnt'-1 active log operations
3320	 * in the log.  A unit in this case is the amount of space for one
3321	 * of these log operations.  Normal reservations have a cnt of 1
3322	 * and their unit amount is the total amount of space required.
3323	 *
3324	 * The following lines of code account for non-transaction data
3325	 * which occupy space in the on-disk log.
3326	 *
3327	 * Normal form of a transaction is:
3328	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3329	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3330	 *
3331	 * We need to account for all the leadup data and trailer data
3332	 * around the transaction data.
3333	 * And then we need to account for the worst case in terms of using
3334	 * more space.
3335	 * The worst case will happen if:
3336	 * - the placement of the transaction happens to be such that the
3337	 *   roundoff is at its maximum
3338	 * - the transaction data is synced before the commit record is synced
3339	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3340	 *   Therefore the commit record is in its own Log Record.
3341	 *   This can happen as the commit record is called with its
3342	 *   own region to xlog_write().
3343	 *   This then means that in the worst case, roundoff can happen for
3344	 *   the commit-rec as well.
3345	 *   The commit-rec is smaller than padding in this scenario and so it is
3346	 *   not added separately.
3347	 */
3348
3349	/* for trans header */
3350	unit_bytes += sizeof(xlog_op_header_t);
3351	unit_bytes += sizeof(xfs_trans_header_t);
3352
3353	/* for start-rec */
3354	unit_bytes += sizeof(xlog_op_header_t);
3355
3356	/*
3357	 * for LR headers - the space for data in an iclog is the size minus
3358	 * the space used for the headers. If we use the iclog size, then we
3359	 * undercalculate the number of headers required.
3360	 *
3361	 * Furthermore - the addition of op headers for split-recs might
3362	 * increase the space required enough to require more log and op
3363	 * headers, so take that into account too.
3364	 *
3365	 * IMPORTANT: This reservation makes the assumption that if this
3366	 * transaction is the first in an iclog and hence has the LR headers
3367	 * accounted to it, then the remaining space in the iclog is
3368	 * exclusively for this transaction.  i.e. if the transaction is larger
3369	 * than the iclog, it will be the only thing in that iclog.
3370	 * Fundamentally, this means we must pass the entire log vector to
3371	 * xlog_write to guarantee this.
3372	 */
3373	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3374	num_headers = howmany(unit_bytes, iclog_space);
3375
3376	/* for split-recs - ophdrs added when data split over LRs */
3377	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3378
3379	/* add extra header reservations if we overrun */
3380	while (!num_headers ||
3381	       howmany(unit_bytes, iclog_space) > num_headers) {
3382		unit_bytes += sizeof(xlog_op_header_t);
3383		num_headers++;
3384	}
3385	unit_bytes += log->l_iclog_hsize * num_headers;
3386
3387	/* for commit-rec LR header - note: padding will subsume the ophdr */
3388	unit_bytes += log->l_iclog_hsize;
3389
3390	/* for roundoff padding for transaction data and one for commit record */
3391	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3392		/* log su roundoff */
3393		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3394	} else {
3395		/* BB roundoff */
3396		unit_bytes += 2 * BBSIZE;
3397        }
3398
 
 
3399	return unit_bytes;
3400}
3401
 
 
 
 
 
 
 
 
3402/*
3403 * Allocate and initialise a new log ticket.
3404 */
3405struct xlog_ticket *
3406xlog_ticket_alloc(
3407	struct xlog		*log,
3408	int			unit_bytes,
3409	int			cnt,
3410	char			client,
3411	bool			permanent)
3412{
3413	struct xlog_ticket	*tic;
3414	int			unit_res;
3415
3416	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3417
3418	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3419
3420	atomic_set(&tic->t_ref, 1);
3421	tic->t_task		= current;
3422	INIT_LIST_HEAD(&tic->t_queue);
3423	tic->t_unit_res		= unit_res;
3424	tic->t_curr_res		= unit_res;
3425	tic->t_cnt		= cnt;
3426	tic->t_ocnt		= cnt;
3427	tic->t_tid		= prandom_u32();
3428	tic->t_clientid		= client;
3429	if (permanent)
3430		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3431
3432	xlog_tic_reset_res(tic);
3433
3434	return tic;
3435}
3436
3437#if defined(DEBUG)
3438/*
3439 * Make sure that the destination ptr is within the valid data region of
3440 * one of the iclogs.  This uses backup pointers stored in a different
3441 * part of the log in case we trash the log structure.
3442 */
3443STATIC void
3444xlog_verify_dest_ptr(
3445	struct xlog	*log,
3446	void		*ptr)
3447{
3448	int i;
3449	int good_ptr = 0;
3450
3451	for (i = 0; i < log->l_iclog_bufs; i++) {
3452		if (ptr >= log->l_iclog_bak[i] &&
3453		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3454			good_ptr++;
3455	}
3456
3457	if (!good_ptr)
3458		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3459}
3460
3461/*
3462 * Check to make sure the grant write head didn't just over lap the tail.  If
3463 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3464 * the cycles differ by exactly one and check the byte count.
3465 *
3466 * This check is run unlocked, so can give false positives. Rather than assert
3467 * on failures, use a warn-once flag and a panic tag to allow the admin to
3468 * determine if they want to panic the machine when such an error occurs. For
3469 * debug kernels this will have the same effect as using an assert but, unlinke
3470 * an assert, it can be turned off at runtime.
3471 */
3472STATIC void
3473xlog_verify_grant_tail(
3474	struct xlog	*log)
3475{
3476	int		tail_cycle, tail_blocks;
3477	int		cycle, space;
3478
3479	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3480	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3481	if (tail_cycle != cycle) {
3482		if (cycle - 1 != tail_cycle &&
3483		    !(log->l_flags & XLOG_TAIL_WARN)) {
3484			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3485				"%s: cycle - 1 != tail_cycle", __func__);
3486			log->l_flags |= XLOG_TAIL_WARN;
3487		}
3488
3489		if (space > BBTOB(tail_blocks) &&
3490		    !(log->l_flags & XLOG_TAIL_WARN)) {
3491			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3492				"%s: space > BBTOB(tail_blocks)", __func__);
3493			log->l_flags |= XLOG_TAIL_WARN;
3494		}
3495	}
3496}
3497
3498/* check if it will fit */
3499STATIC void
3500xlog_verify_tail_lsn(
3501	struct xlog		*log,
3502	struct xlog_in_core	*iclog,
3503	xfs_lsn_t		tail_lsn)
3504{
3505    int blocks;
 
3506
3507    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3508	blocks =
3509	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3510	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3511		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3512    } else {
3513	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3514
3515	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3516		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3517
3518	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3519	if (blocks < BTOBB(iclog->ic_offset) + 1)
3520		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3521    }
3522}
3523
3524/*
3525 * Perform a number of checks on the iclog before writing to disk.
3526 *
3527 * 1. Make sure the iclogs are still circular
3528 * 2. Make sure we have a good magic number
3529 * 3. Make sure we don't have magic numbers in the data
3530 * 4. Check fields of each log operation header for:
3531 *	A. Valid client identifier
3532 *	B. tid ptr value falls in valid ptr space (user space code)
3533 *	C. Length in log record header is correct according to the
3534 *		individual operation headers within record.
3535 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3536 *	log, check the preceding blocks of the physical log to make sure all
3537 *	the cycle numbers agree with the current cycle number.
3538 */
3539STATIC void
3540xlog_verify_iclog(
3541	struct xlog		*log,
3542	struct xlog_in_core	*iclog,
3543	int			count)
3544{
3545	xlog_op_header_t	*ophead;
3546	xlog_in_core_t		*icptr;
3547	xlog_in_core_2_t	*xhdr;
3548	void			*base_ptr, *ptr, *p;
3549	ptrdiff_t		field_offset;
3550	uint8_t			clientid;
3551	int			len, i, j, k, op_len;
3552	int			idx;
3553
3554	/* check validity of iclog pointers */
3555	spin_lock(&log->l_icloglock);
3556	icptr = log->l_iclog;
3557	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3558		ASSERT(icptr);
3559
3560	if (icptr != log->l_iclog)
3561		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3562	spin_unlock(&log->l_icloglock);
3563
3564	/* check log magic numbers */
3565	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3566		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3567
3568	base_ptr = ptr = &iclog->ic_header;
3569	p = &iclog->ic_header;
3570	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3571		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3572			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3573				__func__);
3574	}
3575
3576	/* check fields */
3577	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3578	base_ptr = ptr = iclog->ic_datap;
3579	ophead = ptr;
3580	xhdr = iclog->ic_data;
3581	for (i = 0; i < len; i++) {
3582		ophead = ptr;
3583
3584		/* clientid is only 1 byte */
3585		p = &ophead->oh_clientid;
3586		field_offset = p - base_ptr;
3587		if (field_offset & 0x1ff) {
3588			clientid = ophead->oh_clientid;
3589		} else {
3590			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3591			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3592				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3593				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3594				clientid = xlog_get_client_id(
3595					xhdr[j].hic_xheader.xh_cycle_data[k]);
3596			} else {
3597				clientid = xlog_get_client_id(
3598					iclog->ic_header.h_cycle_data[idx]);
3599			}
3600		}
3601		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3602			xfs_warn(log->l_mp,
3603				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3604				__func__, clientid, ophead,
3605				(unsigned long)field_offset);
 
3606
3607		/* check length */
3608		p = &ophead->oh_len;
3609		field_offset = p - base_ptr;
3610		if (field_offset & 0x1ff) {
3611			op_len = be32_to_cpu(ophead->oh_len);
3612		} else {
3613			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3614				    (uintptr_t)iclog->ic_datap);
3615			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3616				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3617				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3618				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3619			} else {
3620				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3621			}
3622		}
3623		ptr += sizeof(xlog_op_header_t) + op_len;
3624	}
3625}
3626#endif
3627
3628/*
3629 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3630 */
3631STATIC int
3632xlog_state_ioerror(
3633	struct xlog	*log)
3634{
3635	xlog_in_core_t	*iclog, *ic;
3636
3637	iclog = log->l_iclog;
3638	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3639		/*
3640		 * Mark all the incore logs IOERROR.
3641		 * From now on, no log flushes will result.
3642		 */
3643		ic = iclog;
3644		do {
3645			ic->ic_state = XLOG_STATE_IOERROR;
3646			ic = ic->ic_next;
3647		} while (ic != iclog);
3648		return 0;
3649	}
3650	/*
3651	 * Return non-zero, if state transition has already happened.
3652	 */
3653	return 1;
3654}
3655
3656/*
3657 * This is called from xfs_force_shutdown, when we're forcibly
3658 * shutting down the filesystem, typically because of an IO error.
3659 * Our main objectives here are to make sure that:
3660 *	a. if !logerror, flush the logs to disk. Anything modified
3661 *	   after this is ignored.
3662 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3663 *	   parties to find out, 'atomically'.
3664 *	c. those who're sleeping on log reservations, pinned objects and
3665 *	    other resources get woken up, and be told the bad news.
3666 *	d. nothing new gets queued up after (b) and (c) are done.
3667 *
3668 * Note: for the !logerror case we need to flush the regions held in memory out
3669 * to disk first. This needs to be done before the log is marked as shutdown,
3670 * otherwise the iclog writes will fail.
3671 */
3672int
3673xfs_log_force_umount(
3674	struct xfs_mount	*mp,
3675	int			logerror)
3676{
3677	struct xlog	*log;
3678	int		retval;
3679
3680	log = mp->m_log;
3681
3682	/*
3683	 * If this happens during log recovery, don't worry about
3684	 * locking; the log isn't open for business yet.
3685	 */
3686	if (!log ||
3687	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3688		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3689		if (mp->m_sb_bp)
3690			mp->m_sb_bp->b_flags |= XBF_DONE;
3691		return 0;
3692	}
3693
3694	/*
3695	 * Somebody could've already done the hard work for us.
3696	 * No need to get locks for this.
3697	 */
3698	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3699		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3700		return 1;
3701	}
3702
3703	/*
3704	 * Flush all the completed transactions to disk before marking the log
3705	 * being shut down. We need to do it in this order to ensure that
3706	 * completed operations are safely on disk before we shut down, and that
3707	 * we don't have to issue any buffer IO after the shutdown flags are set
3708	 * to guarantee this.
3709	 */
3710	if (!logerror)
3711		xfs_log_force(mp, XFS_LOG_SYNC);
 
 
 
 
 
 
 
 
3712
3713	/*
3714	 * mark the filesystem and the as in a shutdown state and wake
3715	 * everybody up to tell them the bad news.
 
 
 
 
 
 
 
3716	 */
3717	spin_lock(&log->l_icloglock);
3718	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3719	if (mp->m_sb_bp)
3720		mp->m_sb_bp->b_flags |= XBF_DONE;
 
 
3721
3722	/*
3723	 * Mark the log and the iclogs with IO error flags to prevent any
3724	 * further log IO from being issued or completed.
3725	 */
3726	log->l_flags |= XLOG_IO_ERROR;
3727	retval = xlog_state_ioerror(log);
3728	spin_unlock(&log->l_icloglock);
 
 
 
 
 
 
3729
3730	/*
3731	 * We don't want anybody waiting for log reservations after this. That
3732	 * means we have to wake up everybody queued up on reserveq as well as
3733	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3734	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3735	 * action is protected by the grant locks.
3736	 */
3737	xlog_grant_head_wake_all(&log->l_reserve_head);
3738	xlog_grant_head_wake_all(&log->l_write_head);
3739
3740	/*
3741	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3742	 * as if the log writes were completed. The abort handling in the log
3743	 * item committed callback functions will do this again under lock to
3744	 * avoid races.
3745	 */
3746	spin_lock(&log->l_cilp->xc_push_lock);
 
3747	wake_up_all(&log->l_cilp->xc_commit_wait);
3748	spin_unlock(&log->l_cilp->xc_push_lock);
3749	xlog_state_do_callback(log);
3750
3751	/* return non-zero if log IOERROR transition had already happened */
3752	return retval;
 
 
 
 
3753}
3754
3755STATIC int
3756xlog_iclogs_empty(
3757	struct xlog	*log)
3758{
3759	xlog_in_core_t	*iclog;
3760
3761	iclog = log->l_iclog;
3762	do {
3763		/* endianness does not matter here, zero is zero in
3764		 * any language.
3765		 */
3766		if (iclog->ic_header.h_num_logops)
3767			return 0;
3768		iclog = iclog->ic_next;
3769	} while (iclog != log->l_iclog);
3770	return 1;
3771}
3772
3773/*
3774 * Verify that an LSN stamped into a piece of metadata is valid. This is
3775 * intended for use in read verifiers on v5 superblocks.
3776 */
3777bool
3778xfs_log_check_lsn(
3779	struct xfs_mount	*mp,
3780	xfs_lsn_t		lsn)
3781{
3782	struct xlog		*log = mp->m_log;
3783	bool			valid;
3784
3785	/*
3786	 * norecovery mode skips mount-time log processing and unconditionally
3787	 * resets the in-core LSN. We can't validate in this mode, but
3788	 * modifications are not allowed anyways so just return true.
3789	 */
3790	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3791		return true;
3792
3793	/*
3794	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3795	 * handled by recovery and thus safe to ignore here.
3796	 */
3797	if (lsn == NULLCOMMITLSN)
3798		return true;
3799
3800	valid = xlog_valid_lsn(mp->m_log, lsn);
3801
3802	/* warn the user about what's gone wrong before verifier failure */
3803	if (!valid) {
3804		spin_lock(&log->l_icloglock);
3805		xfs_warn(mp,
3806"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3807"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3808			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3809			 log->l_curr_cycle, log->l_curr_block);
3810		spin_unlock(&log->l_icloglock);
3811	}
3812
3813	return valid;
3814}
3815
3816bool
3817xfs_log_in_recovery(
3818	struct xfs_mount	*mp)
 
 
 
 
 
3819{
3820	struct xlog		*log = mp->m_log;
 
3821
3822	return log->l_flags & XLOG_ACTIVE_RECOVERY;
 
 
 
 
 
3823}