Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_acl.h"
  15#include "xfs_quota.h"
  16#include "xfs_da_format.h"
  17#include "xfs_da_btree.h"
  18#include "xfs_attr.h"
  19#include "xfs_trans.h"
  20#include "xfs_trace.h"
  21#include "xfs_icache.h"
  22#include "xfs_symlink.h"
  23#include "xfs_dir2.h"
  24#include "xfs_iomap.h"
  25#include "xfs_error.h"
  26#include "xfs_ioctl.h"
  27#include "xfs_xattr.h"
  28
  29#include <linux/posix_acl.h>
  30#include <linux/security.h>
  31#include <linux/iversion.h>
  32#include <linux/fiemap.h>
  33
  34/*
  35 * Directories have different lock order w.r.t. mmap_lock compared to regular
  36 * files. This is due to readdir potentially triggering page faults on a user
  37 * buffer inside filldir(), and this happens with the ilock on the directory
  38 * held. For regular files, the lock order is the other way around - the
  39 * mmap_lock is taken during the page fault, and then we lock the ilock to do
  40 * block mapping. Hence we need a different class for the directory ilock so
  41 * that lockdep can tell them apart.
  42 */
  43static struct lock_class_key xfs_nondir_ilock_class;
  44static struct lock_class_key xfs_dir_ilock_class;
  45
  46static int
  47xfs_initxattrs(
  48	struct inode		*inode,
  49	const struct xattr	*xattr_array,
  50	void			*fs_info)
  51{
  52	const struct xattr	*xattr;
  53	struct xfs_inode	*ip = XFS_I(inode);
  54	int			error = 0;
  55
  56	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
  57		struct xfs_da_args	args = {
  58			.dp		= ip,
  59			.attr_filter	= XFS_ATTR_SECURE,
  60			.name		= xattr->name,
  61			.namelen	= strlen(xattr->name),
  62			.value		= xattr->value,
  63			.valuelen	= xattr->value_len,
  64		};
  65		error = xfs_attr_change(&args);
  66		if (error < 0)
  67			break;
  68	}
  69	return error;
  70}
  71
  72/*
  73 * Hook in SELinux.  This is not quite correct yet, what we really need
  74 * here (as we do for default ACLs) is a mechanism by which creation of
  75 * these attrs can be journalled at inode creation time (along with the
  76 * inode, of course, such that log replay can't cause these to be lost).
  77 */
  78int
  79xfs_inode_init_security(
 
  80	struct inode	*inode,
  81	struct inode	*dir,
  82	const struct qstr *qstr)
  83{
  84	return security_inode_init_security(inode, dir, qstr,
  85					     &xfs_initxattrs, NULL);
  86}
  87
  88static void
  89xfs_dentry_to_name(
  90	struct xfs_name	*namep,
  91	struct dentry	*dentry)
  92{
  93	namep->name = dentry->d_name.name;
  94	namep->len = dentry->d_name.len;
  95	namep->type = XFS_DIR3_FT_UNKNOWN;
  96}
  97
  98static int
  99xfs_dentry_mode_to_name(
 100	struct xfs_name	*namep,
 101	struct dentry	*dentry,
 102	int		mode)
 103{
 104	namep->name = dentry->d_name.name;
 105	namep->len = dentry->d_name.len;
 106	namep->type = xfs_mode_to_ftype(mode);
 107
 108	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
 109		return -EFSCORRUPTED;
 110
 111	return 0;
 112}
 113
 114STATIC void
 115xfs_cleanup_inode(
 116	struct inode	*dir,
 117	struct inode	*inode,
 118	struct dentry	*dentry)
 119{
 120	struct xfs_name	teardown;
 121
 122	/* Oh, the horror.
 123	 * If we can't add the ACL or we fail in
 124	 * xfs_inode_init_security we must back out.
 125	 * ENOSPC can hit here, among other things.
 126	 */
 127	xfs_dentry_to_name(&teardown, dentry);
 128
 129	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
 130}
 131
 132/*
 133 * Check to see if we are likely to need an extended attribute to be added to
 134 * the inode we are about to allocate. This allows the attribute fork to be
 135 * created during the inode allocation, reducing the number of transactions we
 136 * need to do in this fast path.
 137 *
 138 * The security checks are optimistic, but not guaranteed. The two LSMs that
 139 * require xattrs to be added here (selinux and smack) are also the only two
 140 * LSMs that add a sb->s_security structure to the superblock. Hence if security
 141 * is enabled and sb->s_security is set, we have a pretty good idea that we are
 142 * going to be asked to add a security xattr immediately after allocating the
 143 * xfs inode and instantiating the VFS inode.
 144 */
 145static inline bool
 146xfs_create_need_xattr(
 147	struct inode	*dir,
 148	struct posix_acl *default_acl,
 149	struct posix_acl *acl)
 150{
 151	if (acl)
 152		return true;
 153	if (default_acl)
 154		return true;
 155#if IS_ENABLED(CONFIG_SECURITY)
 156	if (dir->i_sb->s_security)
 157		return true;
 158#endif
 159	return false;
 160}
 161
 162
 163STATIC int
 164xfs_generic_create(
 165	struct user_namespace	*mnt_userns,
 166	struct inode	*dir,
 167	struct dentry	*dentry,
 168	umode_t		mode,
 169	dev_t		rdev,
 170	struct file	*tmpfile)	/* unnamed file */
 171{
 172	struct inode	*inode;
 173	struct xfs_inode *ip = NULL;
 174	struct posix_acl *default_acl, *acl;
 175	struct xfs_name	name;
 176	int		error;
 177
 178	/*
 179	 * Irix uses Missed'em'V split, but doesn't want to see
 180	 * the upper 5 bits of (14bit) major.
 181	 */
 182	if (S_ISCHR(mode) || S_ISBLK(mode)) {
 183		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
 184			return -EINVAL;
 185	} else {
 186		rdev = 0;
 187	}
 188
 189	error = posix_acl_create(dir, &mode, &default_acl, &acl);
 190	if (error)
 191		return error;
 192
 193	/* Verify mode is valid also for tmpfile case */
 194	error = xfs_dentry_mode_to_name(&name, dentry, mode);
 195	if (unlikely(error))
 196		goto out_free_acl;
 197
 198	if (!tmpfile) {
 199		error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
 200				xfs_create_need_xattr(dir, default_acl, acl),
 201				&ip);
 202	} else {
 203		error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
 204	}
 205	if (unlikely(error))
 206		goto out_free_acl;
 207
 208	inode = VFS_I(ip);
 209
 210	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
 211	if (unlikely(error))
 212		goto out_cleanup_inode;
 213
 
 214	if (default_acl) {
 215		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
 216		if (error)
 217			goto out_cleanup_inode;
 218	}
 219	if (acl) {
 220		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
 221		if (error)
 222			goto out_cleanup_inode;
 223	}
 
 224
 225	xfs_setup_iops(ip);
 226
 227	if (tmpfile) {
 228		/*
 229		 * The VFS requires that any inode fed to d_tmpfile must have
 230		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
 231		 * However, we created the temp file with nlink == 0 because
 232		 * we're not allowed to put an inode with nlink > 0 on the
 233		 * unlinked list.  Therefore we have to set nlink to 1 so that
 234		 * d_tmpfile can immediately set it back to zero.
 235		 */
 236		set_nlink(inode, 1);
 237		d_tmpfile(tmpfile, inode);
 238	} else
 239		d_instantiate(dentry, inode);
 240
 241	xfs_finish_inode_setup(ip);
 242
 243 out_free_acl:
 244	posix_acl_release(default_acl);
 245	posix_acl_release(acl);
 
 
 246	return error;
 247
 248 out_cleanup_inode:
 249	xfs_finish_inode_setup(ip);
 250	if (!tmpfile)
 251		xfs_cleanup_inode(dir, inode, dentry);
 252	xfs_irele(ip);
 253	goto out_free_acl;
 254}
 255
 256STATIC int
 257xfs_vn_mknod(
 258	struct user_namespace	*mnt_userns,
 259	struct inode		*dir,
 260	struct dentry		*dentry,
 261	umode_t			mode,
 262	dev_t			rdev)
 263{
 264	return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, NULL);
 265}
 266
 267STATIC int
 268xfs_vn_create(
 269	struct user_namespace	*mnt_userns,
 270	struct inode		*dir,
 271	struct dentry		*dentry,
 272	umode_t			mode,
 273	bool			flags)
 274{
 275	return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, NULL);
 276}
 277
 278STATIC int
 279xfs_vn_mkdir(
 280	struct user_namespace	*mnt_userns,
 281	struct inode		*dir,
 282	struct dentry		*dentry,
 283	umode_t			mode)
 284{
 285	return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
 286				  NULL);
 287}
 288
 289STATIC struct dentry *
 290xfs_vn_lookup(
 291	struct inode	*dir,
 292	struct dentry	*dentry,
 293	unsigned int flags)
 294{
 295	struct inode *inode;
 296	struct xfs_inode *cip;
 297	struct xfs_name	name;
 298	int		error;
 299
 300	if (dentry->d_name.len >= MAXNAMELEN)
 301		return ERR_PTR(-ENAMETOOLONG);
 302
 303	xfs_dentry_to_name(&name, dentry);
 304	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
 305	if (likely(!error))
 306		inode = VFS_I(cip);
 307	else if (likely(error == -ENOENT))
 308		inode = NULL;
 309	else
 310		inode = ERR_PTR(error);
 311	return d_splice_alias(inode, dentry);
 312}
 313
 314STATIC struct dentry *
 315xfs_vn_ci_lookup(
 316	struct inode	*dir,
 317	struct dentry	*dentry,
 318	unsigned int flags)
 319{
 320	struct xfs_inode *ip;
 321	struct xfs_name	xname;
 322	struct xfs_name ci_name;
 323	struct qstr	dname;
 324	int		error;
 325
 326	if (dentry->d_name.len >= MAXNAMELEN)
 327		return ERR_PTR(-ENAMETOOLONG);
 328
 329	xfs_dentry_to_name(&xname, dentry);
 330	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
 331	if (unlikely(error)) {
 332		if (unlikely(error != -ENOENT))
 333			return ERR_PTR(error);
 334		/*
 335		 * call d_add(dentry, NULL) here when d_drop_negative_children
 336		 * is called in xfs_vn_mknod (ie. allow negative dentries
 337		 * with CI filesystems).
 338		 */
 339		return NULL;
 340	}
 341
 342	/* if exact match, just splice and exit */
 343	if (!ci_name.name)
 344		return d_splice_alias(VFS_I(ip), dentry);
 345
 346	/* else case-insensitive match... */
 347	dname.name = ci_name.name;
 348	dname.len = ci_name.len;
 349	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
 350	kmem_free(ci_name.name);
 351	return dentry;
 352}
 353
 354STATIC int
 355xfs_vn_link(
 356	struct dentry	*old_dentry,
 357	struct inode	*dir,
 358	struct dentry	*dentry)
 359{
 360	struct inode	*inode = d_inode(old_dentry);
 361	struct xfs_name	name;
 362	int		error;
 363
 364	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
 365	if (unlikely(error))
 366		return error;
 367
 368	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
 369	if (unlikely(error))
 370		return error;
 371
 372	ihold(inode);
 373	d_instantiate(dentry, inode);
 374	return 0;
 375}
 376
 377STATIC int
 378xfs_vn_unlink(
 379	struct inode	*dir,
 380	struct dentry	*dentry)
 381{
 382	struct xfs_name	name;
 383	int		error;
 384
 385	xfs_dentry_to_name(&name, dentry);
 386
 387	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
 388	if (error)
 389		return error;
 390
 391	/*
 392	 * With unlink, the VFS makes the dentry "negative": no inode,
 393	 * but still hashed. This is incompatible with case-insensitive
 394	 * mode, so invalidate (unhash) the dentry in CI-mode.
 395	 */
 396	if (xfs_has_asciici(XFS_M(dir->i_sb)))
 397		d_invalidate(dentry);
 398	return 0;
 399}
 400
 401STATIC int
 402xfs_vn_symlink(
 403	struct user_namespace	*mnt_userns,
 404	struct inode		*dir,
 405	struct dentry		*dentry,
 406	const char		*symname)
 407{
 408	struct inode	*inode;
 409	struct xfs_inode *cip = NULL;
 410	struct xfs_name	name;
 411	int		error;
 412	umode_t		mode;
 413
 414	mode = S_IFLNK |
 415		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
 416	error = xfs_dentry_mode_to_name(&name, dentry, mode);
 417	if (unlikely(error))
 418		goto out;
 419
 420	error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
 421	if (unlikely(error))
 422		goto out;
 423
 424	inode = VFS_I(cip);
 425
 426	error = xfs_inode_init_security(inode, dir, &dentry->d_name);
 427	if (unlikely(error))
 428		goto out_cleanup_inode;
 429
 430	xfs_setup_iops(cip);
 431
 432	d_instantiate(dentry, inode);
 433	xfs_finish_inode_setup(cip);
 434	return 0;
 435
 436 out_cleanup_inode:
 437	xfs_finish_inode_setup(cip);
 438	xfs_cleanup_inode(dir, inode, dentry);
 439	xfs_irele(cip);
 440 out:
 441	return error;
 442}
 443
 444STATIC int
 445xfs_vn_rename(
 446	struct user_namespace	*mnt_userns,
 447	struct inode		*odir,
 448	struct dentry		*odentry,
 449	struct inode		*ndir,
 450	struct dentry		*ndentry,
 451	unsigned int		flags)
 452{
 453	struct inode	*new_inode = d_inode(ndentry);
 454	int		omode = 0;
 455	int		error;
 456	struct xfs_name	oname;
 457	struct xfs_name	nname;
 458
 459	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
 460		return -EINVAL;
 461
 462	/* if we are exchanging files, we need to set i_mode of both files */
 463	if (flags & RENAME_EXCHANGE)
 464		omode = d_inode(ndentry)->i_mode;
 465
 466	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
 467	if (omode && unlikely(error))
 468		return error;
 469
 470	error = xfs_dentry_mode_to_name(&nname, ndentry,
 471					d_inode(odentry)->i_mode);
 472	if (unlikely(error))
 473		return error;
 474
 475	return xfs_rename(mnt_userns, XFS_I(odir), &oname,
 476			  XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
 477			  new_inode ? XFS_I(new_inode) : NULL, flags);
 478}
 479
 480/*
 481 * careful here - this function can get called recursively, so
 482 * we need to be very careful about how much stack we use.
 483 * uio is kmalloced for this reason...
 484 */
 485STATIC const char *
 486xfs_vn_get_link(
 487	struct dentry		*dentry,
 488	struct inode		*inode,
 489	struct delayed_call	*done)
 490{
 491	char			*link;
 492	int			error = -ENOMEM;
 493
 494	if (!dentry)
 495		return ERR_PTR(-ECHILD);
 496
 497	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
 498	if (!link)
 499		goto out_err;
 500
 501	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
 502	if (unlikely(error))
 503		goto out_kfree;
 504
 505	set_delayed_call(done, kfree_link, link);
 506	return link;
 507
 508 out_kfree:
 509	kfree(link);
 510 out_err:
 511	return ERR_PTR(error);
 512}
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514static uint32_t
 515xfs_stat_blksize(
 516	struct xfs_inode	*ip)
 517{
 518	struct xfs_mount	*mp = ip->i_mount;
 519
 520	/*
 521	 * If the file blocks are being allocated from a realtime volume, then
 522	 * always return the realtime extent size.
 523	 */
 524	if (XFS_IS_REALTIME_INODE(ip))
 525		return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
 526
 527	/*
 528	 * Allow large block sizes to be reported to userspace programs if the
 529	 * "largeio" mount option is used.
 530	 *
 531	 * If compatibility mode is specified, simply return the basic unit of
 532	 * caching so that we don't get inefficient read/modify/write I/O from
 533	 * user apps. Otherwise....
 534	 *
 535	 * If the underlying volume is a stripe, then return the stripe width in
 536	 * bytes as the recommended I/O size. It is not a stripe and we've set a
 537	 * default buffered I/O size, return that, otherwise return the compat
 538	 * default.
 539	 */
 540	if (xfs_has_large_iosize(mp)) {
 541		if (mp->m_swidth)
 542			return XFS_FSB_TO_B(mp, mp->m_swidth);
 543		if (xfs_has_allocsize(mp))
 544			return 1U << mp->m_allocsize_log;
 545	}
 546
 547	return PAGE_SIZE;
 548}
 549
 550STATIC int
 551xfs_vn_getattr(
 552	struct user_namespace	*mnt_userns,
 553	const struct path	*path,
 554	struct kstat		*stat,
 555	u32			request_mask,
 556	unsigned int		query_flags)
 557{
 558	struct inode		*inode = d_inode(path->dentry);
 559	struct xfs_inode	*ip = XFS_I(inode);
 560	struct xfs_mount	*mp = ip->i_mount;
 561	vfsuid_t		vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
 562	vfsgid_t		vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
 563
 564	trace_xfs_getattr(ip);
 565
 566	if (xfs_is_shutdown(mp))
 567		return -EIO;
 568
 569	stat->size = XFS_ISIZE(ip);
 570	stat->dev = inode->i_sb->s_dev;
 571	stat->mode = inode->i_mode;
 572	stat->nlink = inode->i_nlink;
 573	stat->uid = vfsuid_into_kuid(vfsuid);
 574	stat->gid = vfsgid_into_kgid(vfsgid);
 575	stat->ino = ip->i_ino;
 576	stat->atime = inode->i_atime;
 577	stat->mtime = inode->i_mtime;
 578	stat->ctime = inode->i_ctime;
 579	stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
 
 580
 581	if (xfs_has_v3inodes(mp)) {
 582		if (request_mask & STATX_BTIME) {
 583			stat->result_mask |= STATX_BTIME;
 584			stat->btime = ip->i_crtime;
 585		}
 586	}
 587
 588	/*
 589	 * Note: If you add another clause to set an attribute flag, please
 590	 * update attributes_mask below.
 591	 */
 592	if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 593		stat->attributes |= STATX_ATTR_IMMUTABLE;
 594	if (ip->i_diflags & XFS_DIFLAG_APPEND)
 595		stat->attributes |= STATX_ATTR_APPEND;
 596	if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 597		stat->attributes |= STATX_ATTR_NODUMP;
 598
 599	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
 600				  STATX_ATTR_APPEND |
 601				  STATX_ATTR_NODUMP);
 602
 603	switch (inode->i_mode & S_IFMT) {
 604	case S_IFBLK:
 605	case S_IFCHR:
 606		stat->blksize = BLKDEV_IOSIZE;
 607		stat->rdev = inode->i_rdev;
 608		break;
 609	case S_IFREG:
 610		if (request_mask & STATX_DIOALIGN) {
 611			struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
 612			struct block_device	*bdev = target->bt_bdev;
 613
 614			stat->result_mask |= STATX_DIOALIGN;
 615			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
 616			stat->dio_offset_align = bdev_logical_block_size(bdev);
 617		}
 618		fallthrough;
 619	default:
 620		stat->blksize = xfs_stat_blksize(ip);
 621		stat->rdev = 0;
 622		break;
 623	}
 624
 625	return 0;
 626}
 627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628static int
 629xfs_vn_change_ok(
 630	struct user_namespace	*mnt_userns,
 631	struct dentry		*dentry,
 632	struct iattr		*iattr)
 633{
 634	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
 635
 636	if (xfs_is_readonly(mp))
 637		return -EROFS;
 638
 639	if (xfs_is_shutdown(mp))
 640		return -EIO;
 641
 642	return setattr_prepare(mnt_userns, dentry, iattr);
 643}
 644
 645/*
 646 * Set non-size attributes of an inode.
 647 *
 648 * Caution: The caller of this function is responsible for calling
 649 * setattr_prepare() or otherwise verifying the change is fine.
 650 */
 651static int
 652xfs_setattr_nonsize(
 653	struct user_namespace	*mnt_userns,
 654	struct dentry		*dentry,
 655	struct xfs_inode	*ip,
 656	struct iattr		*iattr)
 
 657{
 658	xfs_mount_t		*mp = ip->i_mount;
 659	struct inode		*inode = VFS_I(ip);
 660	int			mask = iattr->ia_valid;
 661	xfs_trans_t		*tp;
 662	int			error;
 663	kuid_t			uid = GLOBAL_ROOT_UID;
 664	kgid_t			gid = GLOBAL_ROOT_GID;
 665	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
 666	struct xfs_dquot	*old_udqp = NULL, *old_gdqp = NULL;
 667
 668	ASSERT((mask & ATTR_SIZE) == 0);
 669
 670	/*
 671	 * If disk quotas is on, we make sure that the dquots do exist on disk,
 672	 * before we start any other transactions. Trying to do this later
 673	 * is messy. We don't care to take a readlock to look at the ids
 674	 * in inode here, because we can't hold it across the trans_reserve.
 675	 * If the IDs do change before we take the ilock, we're covered
 676	 * because the i_*dquot fields will get updated anyway.
 677	 */
 678	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
 679		uint	qflags = 0;
 680
 681		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
 682			uid = from_vfsuid(mnt_userns, i_user_ns(inode),
 683					  iattr->ia_vfsuid);
 684			qflags |= XFS_QMOPT_UQUOTA;
 685		} else {
 686			uid = inode->i_uid;
 687		}
 688		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
 689			gid = from_vfsgid(mnt_userns, i_user_ns(inode),
 690					  iattr->ia_vfsgid);
 691			qflags |= XFS_QMOPT_GQUOTA;
 692		}  else {
 693			gid = inode->i_gid;
 694		}
 695
 696		/*
 697		 * We take a reference when we initialize udqp and gdqp,
 698		 * so it is important that we never blindly double trip on
 699		 * the same variable. See xfs_create() for an example.
 700		 */
 701		ASSERT(udqp == NULL);
 702		ASSERT(gdqp == NULL);
 703		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
 704					   qflags, &udqp, &gdqp, NULL);
 705		if (error)
 706			return error;
 707	}
 708
 709	error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
 710			has_capability_noaudit(current, CAP_FOWNER), &tp);
 711	if (error)
 712		goto out_dqrele;
 713
 
 
 
 714	/*
 715	 * Register quota modifications in the transaction.  Must be the owner
 716	 * or privileged.  These IDs could have changed since we last looked at
 717	 * them.  But, we're assured that if the ownership did change while we
 718	 * didn't have the inode locked, inode's dquot(s) would have changed
 719	 * also.
 720	 */
 721	if (XFS_IS_UQUOTA_ON(mp) &&
 722	    i_uid_needs_update(mnt_userns, iattr, inode)) {
 723		ASSERT(udqp);
 724		old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
 725	}
 726	if (XFS_IS_GQUOTA_ON(mp) &&
 727	    i_gid_needs_update(mnt_userns, iattr, inode)) {
 728		ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
 729		ASSERT(gdqp);
 730		old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	}
 732
 733	setattr_copy(mnt_userns, inode, iattr);
 
 
 
 
 734	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 735
 736	XFS_STATS_INC(mp, xs_ig_attrchg);
 737
 738	if (xfs_has_wsync(mp))
 739		xfs_trans_set_sync(tp);
 740	error = xfs_trans_commit(tp);
 741
 
 
 742	/*
 743	 * Release any dquot(s) the inode had kept before chown.
 744	 */
 745	xfs_qm_dqrele(old_udqp);
 746	xfs_qm_dqrele(old_gdqp);
 747	xfs_qm_dqrele(udqp);
 748	xfs_qm_dqrele(gdqp);
 749
 750	if (error)
 751		return error;
 752
 753	/*
 754	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
 755	 * 	     update.  We could avoid this with linked transactions
 756	 * 	     and passing down the transaction pointer all the way
 757	 *	     to attr_set.  No previous user of the generic
 758	 * 	     Posix ACL code seems to care about this issue either.
 759	 */
 760	if (mask & ATTR_MODE) {
 761		error = posix_acl_chmod(mnt_userns, dentry, inode->i_mode);
 762		if (error)
 763			return error;
 764	}
 765
 766	return 0;
 767
 
 
 
 768out_dqrele:
 769	xfs_qm_dqrele(udqp);
 770	xfs_qm_dqrele(gdqp);
 771	return error;
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774/*
 775 * Truncate file.  Must have write permission and not be a directory.
 776 *
 777 * Caution: The caller of this function is responsible for calling
 778 * setattr_prepare() or otherwise verifying the change is fine.
 779 */
 780STATIC int
 781xfs_setattr_size(
 782	struct user_namespace	*mnt_userns,
 783	struct dentry		*dentry,
 784	struct xfs_inode	*ip,
 785	struct iattr		*iattr)
 786{
 787	struct xfs_mount	*mp = ip->i_mount;
 788	struct inode		*inode = VFS_I(ip);
 789	xfs_off_t		oldsize, newsize;
 790	struct xfs_trans	*tp;
 791	int			error;
 792	uint			lock_flags = 0;
 793	bool			did_zeroing = false;
 794
 795	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 796	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
 797	ASSERT(S_ISREG(inode->i_mode));
 798	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
 799		ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
 800
 801	oldsize = inode->i_size;
 802	newsize = iattr->ia_size;
 803
 804	/*
 805	 * Short circuit the truncate case for zero length files.
 806	 */
 807	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
 808		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
 809			return 0;
 810
 811		/*
 812		 * Use the regular setattr path to update the timestamps.
 813		 */
 814		iattr->ia_valid &= ~ATTR_SIZE;
 815		return xfs_setattr_nonsize(mnt_userns, dentry, ip, iattr);
 816	}
 817
 818	/*
 819	 * Make sure that the dquots are attached to the inode.
 820	 */
 821	error = xfs_qm_dqattach(ip);
 822	if (error)
 823		return error;
 824
 825	/*
 826	 * Wait for all direct I/O to complete.
 827	 */
 828	inode_dio_wait(inode);
 829
 830	/*
 831	 * File data changes must be complete before we start the transaction to
 832	 * modify the inode.  This needs to be done before joining the inode to
 833	 * the transaction because the inode cannot be unlocked once it is a
 834	 * part of the transaction.
 835	 *
 836	 * Start with zeroing any data beyond EOF that we may expose on file
 837	 * extension, or zeroing out the rest of the block on a downward
 838	 * truncate.
 839	 */
 840	if (newsize > oldsize) {
 841		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
 842		error = xfs_zero_range(ip, oldsize, newsize - oldsize,
 843				&did_zeroing);
 844	} else {
 845		/*
 846		 * iomap won't detect a dirty page over an unwritten block (or a
 847		 * cow block over a hole) and subsequently skips zeroing the
 848		 * newly post-EOF portion of the page. Flush the new EOF to
 849		 * convert the block before the pagecache truncate.
 850		 */
 851		error = filemap_write_and_wait_range(inode->i_mapping, newsize,
 852						     newsize);
 853		if (error)
 854			return error;
 855		error = xfs_truncate_page(ip, newsize, &did_zeroing);
 856	}
 857
 858	if (error)
 859		return error;
 860
 861	/*
 862	 * We've already locked out new page faults, so now we can safely remove
 863	 * pages from the page cache knowing they won't get refaulted until we
 864	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
 865	 * complete. The truncate_setsize() call also cleans partial EOF page
 866	 * PTEs on extending truncates and hence ensures sub-page block size
 867	 * filesystems are correctly handled, too.
 868	 *
 869	 * We have to do all the page cache truncate work outside the
 870	 * transaction context as the "lock" order is page lock->log space
 871	 * reservation as defined by extent allocation in the writeback path.
 872	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
 873	 * having already truncated the in-memory version of the file (i.e. made
 874	 * user visible changes). There's not much we can do about this, except
 875	 * to hope that the caller sees ENOMEM and retries the truncate
 876	 * operation.
 877	 *
 878	 * And we update in-core i_size and truncate page cache beyond newsize
 879	 * before writeback the [i_disk_size, newsize] range, so we're
 880	 * guaranteed not to write stale data past the new EOF on truncate down.
 881	 */
 882	truncate_setsize(inode, newsize);
 883
 884	/*
 885	 * We are going to log the inode size change in this transaction so
 886	 * any previous writes that are beyond the on disk EOF and the new
 887	 * EOF that have not been written out need to be written here.  If we
 888	 * do not write the data out, we expose ourselves to the null files
 889	 * problem. Note that this includes any block zeroing we did above;
 890	 * otherwise those blocks may not be zeroed after a crash.
 891	 */
 892	if (did_zeroing ||
 893	    (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
 894		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 895						ip->i_disk_size, newsize - 1);
 896		if (error)
 897			return error;
 898	}
 899
 900	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 901	if (error)
 902		return error;
 903
 904	lock_flags |= XFS_ILOCK_EXCL;
 905	xfs_ilock(ip, XFS_ILOCK_EXCL);
 906	xfs_trans_ijoin(tp, ip, 0);
 907
 908	/*
 909	 * Only change the c/mtime if we are changing the size or we are
 910	 * explicitly asked to change it.  This handles the semantic difference
 911	 * between truncate() and ftruncate() as implemented in the VFS.
 912	 *
 913	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
 914	 * special case where we need to update the times despite not having
 915	 * these flags set.  For all other operations the VFS set these flags
 916	 * explicitly if it wants a timestamp update.
 917	 */
 918	if (newsize != oldsize &&
 919	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
 920		iattr->ia_ctime = iattr->ia_mtime =
 921			current_time(inode);
 922		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
 923	}
 924
 925	/*
 926	 * The first thing we do is set the size to new_size permanently on
 927	 * disk.  This way we don't have to worry about anyone ever being able
 928	 * to look at the data being freed even in the face of a crash.
 929	 * What we're getting around here is the case where we free a block, it
 930	 * is allocated to another file, it is written to, and then we crash.
 931	 * If the new data gets written to the file but the log buffers
 932	 * containing the free and reallocation don't, then we'd end up with
 933	 * garbage in the blocks being freed.  As long as we make the new size
 934	 * permanent before actually freeing any blocks it doesn't matter if
 935	 * they get written to.
 936	 */
 937	ip->i_disk_size = newsize;
 938	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 939
 940	if (newsize <= oldsize) {
 941		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
 942		if (error)
 943			goto out_trans_cancel;
 944
 945		/*
 946		 * Truncated "down", so we're removing references to old data
 947		 * here - if we delay flushing for a long time, we expose
 948		 * ourselves unduly to the notorious NULL files problem.  So,
 949		 * we mark this inode and flush it when the file is closed,
 950		 * and do not wait the usual (long) time for writeout.
 951		 */
 952		xfs_iflags_set(ip, XFS_ITRUNCATED);
 953
 954		/* A truncate down always removes post-EOF blocks. */
 955		xfs_inode_clear_eofblocks_tag(ip);
 956	}
 957
 958	ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
 959	setattr_copy(mnt_userns, inode, iattr);
 
 
 
 960	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 961
 962	XFS_STATS_INC(mp, xs_ig_attrchg);
 963
 964	if (xfs_has_wsync(mp))
 965		xfs_trans_set_sync(tp);
 966
 967	error = xfs_trans_commit(tp);
 968out_unlock:
 969	if (lock_flags)
 970		xfs_iunlock(ip, lock_flags);
 971	return error;
 972
 973out_trans_cancel:
 974	xfs_trans_cancel(tp);
 975	goto out_unlock;
 976}
 977
 978int
 979xfs_vn_setattr_size(
 980	struct user_namespace	*mnt_userns,
 981	struct dentry		*dentry,
 982	struct iattr		*iattr)
 983{
 984	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
 985	int error;
 986
 987	trace_xfs_setattr(ip);
 988
 989	error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
 990	if (error)
 991		return error;
 992	return xfs_setattr_size(mnt_userns, dentry, ip, iattr);
 993}
 994
 995STATIC int
 996xfs_vn_setattr(
 997	struct user_namespace	*mnt_userns,
 998	struct dentry		*dentry,
 999	struct iattr		*iattr)
1000{
1001	struct inode		*inode = d_inode(dentry);
1002	struct xfs_inode	*ip = XFS_I(inode);
1003	int			error;
1004
1005	if (iattr->ia_valid & ATTR_SIZE) {
 
 
1006		uint			iolock;
1007
1008		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1009		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1010
1011		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1012		if (error) {
1013			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1014			return error;
1015		}
1016
1017		error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1018		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1019	} else {
1020		trace_xfs_setattr(ip);
1021
1022		error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1023		if (!error)
1024			error = xfs_setattr_nonsize(mnt_userns, dentry, ip, iattr);
1025	}
1026
1027	return error;
1028}
1029
1030STATIC int
1031xfs_vn_update_time(
1032	struct inode		*inode,
1033	struct timespec64	*now,
1034	int			flags)
1035{
1036	struct xfs_inode	*ip = XFS_I(inode);
1037	struct xfs_mount	*mp = ip->i_mount;
1038	int			log_flags = XFS_ILOG_TIMESTAMP;
1039	struct xfs_trans	*tp;
1040	int			error;
1041
1042	trace_xfs_update_time(ip);
1043
1044	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1045		if (!((flags & S_VERSION) &&
1046		      inode_maybe_inc_iversion(inode, false)))
1047			return generic_update_time(inode, now, flags);
1048
1049		/* Capture the iversion update that just occurred */
1050		log_flags |= XFS_ILOG_CORE;
1051	}
1052
1053	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1054	if (error)
1055		return error;
1056
1057	xfs_ilock(ip, XFS_ILOCK_EXCL);
1058	if (flags & S_CTIME)
1059		inode->i_ctime = *now;
1060	if (flags & S_MTIME)
1061		inode->i_mtime = *now;
1062	if (flags & S_ATIME)
1063		inode->i_atime = *now;
1064
1065	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1066	xfs_trans_log_inode(tp, ip, log_flags);
1067	return xfs_trans_commit(tp);
1068}
1069
1070STATIC int
1071xfs_vn_fiemap(
1072	struct inode		*inode,
1073	struct fiemap_extent_info *fieinfo,
1074	u64			start,
1075	u64			length)
1076{
1077	int			error;
1078
1079	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1080	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1081		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1082		error = iomap_fiemap(inode, fieinfo, start, length,
1083				&xfs_xattr_iomap_ops);
1084	} else {
1085		error = iomap_fiemap(inode, fieinfo, start, length,
1086				&xfs_read_iomap_ops);
1087	}
1088	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1089
1090	return error;
1091}
1092
1093STATIC int
1094xfs_vn_tmpfile(
1095	struct user_namespace	*mnt_userns,
1096	struct inode		*dir,
1097	struct file		*file,
1098	umode_t			mode)
1099{
1100	int err = xfs_generic_create(mnt_userns, dir, file->f_path.dentry, mode, 0, file);
1101
1102	return finish_open_simple(file, err);
1103}
1104
1105static const struct inode_operations xfs_inode_operations = {
1106	.get_inode_acl		= xfs_get_acl,
1107	.set_acl		= xfs_set_acl,
1108	.getattr		= xfs_vn_getattr,
1109	.setattr		= xfs_vn_setattr,
1110	.listxattr		= xfs_vn_listxattr,
1111	.fiemap			= xfs_vn_fiemap,
1112	.update_time		= xfs_vn_update_time,
1113	.fileattr_get		= xfs_fileattr_get,
1114	.fileattr_set		= xfs_fileattr_set,
1115};
1116
1117static const struct inode_operations xfs_dir_inode_operations = {
1118	.create			= xfs_vn_create,
1119	.lookup			= xfs_vn_lookup,
1120	.link			= xfs_vn_link,
1121	.unlink			= xfs_vn_unlink,
1122	.symlink		= xfs_vn_symlink,
1123	.mkdir			= xfs_vn_mkdir,
1124	/*
1125	 * Yes, XFS uses the same method for rmdir and unlink.
1126	 *
1127	 * There are some subtile differences deeper in the code,
1128	 * but we use S_ISDIR to check for those.
1129	 */
1130	.rmdir			= xfs_vn_unlink,
1131	.mknod			= xfs_vn_mknod,
1132	.rename			= xfs_vn_rename,
1133	.get_inode_acl		= xfs_get_acl,
1134	.set_acl		= xfs_set_acl,
1135	.getattr		= xfs_vn_getattr,
1136	.setattr		= xfs_vn_setattr,
1137	.listxattr		= xfs_vn_listxattr,
1138	.update_time		= xfs_vn_update_time,
1139	.tmpfile		= xfs_vn_tmpfile,
1140	.fileattr_get		= xfs_fileattr_get,
1141	.fileattr_set		= xfs_fileattr_set,
1142};
1143
1144static const struct inode_operations xfs_dir_ci_inode_operations = {
1145	.create			= xfs_vn_create,
1146	.lookup			= xfs_vn_ci_lookup,
1147	.link			= xfs_vn_link,
1148	.unlink			= xfs_vn_unlink,
1149	.symlink		= xfs_vn_symlink,
1150	.mkdir			= xfs_vn_mkdir,
1151	/*
1152	 * Yes, XFS uses the same method for rmdir and unlink.
1153	 *
1154	 * There are some subtile differences deeper in the code,
1155	 * but we use S_ISDIR to check for those.
1156	 */
1157	.rmdir			= xfs_vn_unlink,
1158	.mknod			= xfs_vn_mknod,
1159	.rename			= xfs_vn_rename,
1160	.get_inode_acl		= xfs_get_acl,
1161	.set_acl		= xfs_set_acl,
1162	.getattr		= xfs_vn_getattr,
1163	.setattr		= xfs_vn_setattr,
1164	.listxattr		= xfs_vn_listxattr,
1165	.update_time		= xfs_vn_update_time,
1166	.tmpfile		= xfs_vn_tmpfile,
1167	.fileattr_get		= xfs_fileattr_get,
1168	.fileattr_set		= xfs_fileattr_set,
1169};
1170
1171static const struct inode_operations xfs_symlink_inode_operations = {
1172	.get_link		= xfs_vn_get_link,
1173	.getattr		= xfs_vn_getattr,
1174	.setattr		= xfs_vn_setattr,
1175	.listxattr		= xfs_vn_listxattr,
1176	.update_time		= xfs_vn_update_time,
1177};
1178
 
 
 
 
 
 
 
 
1179/* Figure out if this file actually supports DAX. */
1180static bool
1181xfs_inode_supports_dax(
1182	struct xfs_inode	*ip)
1183{
1184	struct xfs_mount	*mp = ip->i_mount;
1185
1186	/* Only supported on regular files. */
1187	if (!S_ISREG(VFS_I(ip)->i_mode))
1188		return false;
1189
 
 
 
 
1190	/* Block size must match page size */
1191	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1192		return false;
1193
1194	/* Device has to support DAX too. */
1195	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1196}
1197
1198static bool
1199xfs_inode_should_enable_dax(
1200	struct xfs_inode *ip)
1201{
1202	if (!IS_ENABLED(CONFIG_FS_DAX))
1203		return false;
1204	if (xfs_has_dax_never(ip->i_mount))
1205		return false;
1206	if (!xfs_inode_supports_dax(ip))
1207		return false;
1208	if (xfs_has_dax_always(ip->i_mount))
1209		return true;
1210	if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1211		return true;
1212	return false;
1213}
1214
1215void
1216xfs_diflags_to_iflags(
1217	struct xfs_inode	*ip,
1218	bool init)
1219{
1220	struct inode            *inode = VFS_I(ip);
1221	unsigned int            xflags = xfs_ip2xflags(ip);
1222	unsigned int            flags = 0;
1223
1224	ASSERT(!(IS_DAX(inode) && init));
1225
1226	if (xflags & FS_XFLAG_IMMUTABLE)
1227		flags |= S_IMMUTABLE;
1228	if (xflags & FS_XFLAG_APPEND)
1229		flags |= S_APPEND;
1230	if (xflags & FS_XFLAG_SYNC)
1231		flags |= S_SYNC;
1232	if (xflags & FS_XFLAG_NOATIME)
1233		flags |= S_NOATIME;
1234	if (init && xfs_inode_should_enable_dax(ip))
1235		flags |= S_DAX;
1236
1237	/*
1238	 * S_DAX can only be set during inode initialization and is never set by
1239	 * the VFS, so we cannot mask off S_DAX in i_flags.
1240	 */
1241	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1242	inode->i_flags |= flags;
1243}
1244
1245/*
1246 * Initialize the Linux inode.
1247 *
1248 * When reading existing inodes from disk this is called directly from xfs_iget,
1249 * when creating a new inode it is called from xfs_init_new_inode after setting
1250 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1251 * leave it up to the caller to deal with unlocking the inode appropriately.
1252 */
1253void
1254xfs_setup_inode(
1255	struct xfs_inode	*ip)
1256{
1257	struct inode		*inode = &ip->i_vnode;
1258	gfp_t			gfp_mask;
1259
1260	inode->i_ino = ip->i_ino;
1261	inode->i_state |= I_NEW;
1262
1263	inode_sb_list_add(inode);
1264	/* make the inode look hashed for the writeback code */
1265	inode_fake_hash(inode);
1266
1267	i_size_write(inode, ip->i_disk_size);
1268	xfs_diflags_to_iflags(ip, true);
1269
1270	if (S_ISDIR(inode->i_mode)) {
1271		/*
1272		 * We set the i_rwsem class here to avoid potential races with
1273		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1274		 * after a filehandle lookup has already found the inode in
1275		 * cache before it has been unlocked via unlock_new_inode().
1276		 */
1277		lockdep_set_class(&inode->i_rwsem,
1278				  &inode->i_sb->s_type->i_mutex_dir_key);
1279		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1280	} else {
1281		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1282	}
1283
1284	/*
1285	 * Ensure all page cache allocations are done from GFP_NOFS context to
1286	 * prevent direct reclaim recursion back into the filesystem and blowing
1287	 * stacks or deadlocking.
1288	 */
1289	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1290	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1291
1292	/*
1293	 * If there is no attribute fork no ACL can exist on this inode,
1294	 * and it can't have any file capabilities attached to it either.
1295	 */
1296	if (!xfs_inode_has_attr_fork(ip)) {
1297		inode_has_no_xattr(inode);
1298		cache_no_acl(inode);
1299	}
1300}
1301
1302void
1303xfs_setup_iops(
1304	struct xfs_inode	*ip)
1305{
1306	struct inode		*inode = &ip->i_vnode;
1307
1308	switch (inode->i_mode & S_IFMT) {
1309	case S_IFREG:
1310		inode->i_op = &xfs_inode_operations;
1311		inode->i_fop = &xfs_file_operations;
1312		if (IS_DAX(inode))
1313			inode->i_mapping->a_ops = &xfs_dax_aops;
1314		else
1315			inode->i_mapping->a_ops = &xfs_address_space_operations;
1316		break;
1317	case S_IFDIR:
1318		if (xfs_has_asciici(XFS_M(inode->i_sb)))
1319			inode->i_op = &xfs_dir_ci_inode_operations;
1320		else
1321			inode->i_op = &xfs_dir_inode_operations;
1322		inode->i_fop = &xfs_dir_file_operations;
1323		break;
1324	case S_IFLNK:
1325		inode->i_op = &xfs_symlink_inode_operations;
 
 
 
1326		break;
1327	default:
1328		inode->i_op = &xfs_inode_operations;
1329		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1330		break;
1331	}
1332}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_acl.h"
  15#include "xfs_quota.h"
 
 
  16#include "xfs_attr.h"
  17#include "xfs_trans.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_symlink.h"
  21#include "xfs_dir2.h"
  22#include "xfs_iomap.h"
  23#include "xfs_error.h"
 
 
  24
  25#include <linux/posix_acl.h>
  26#include <linux/security.h>
  27#include <linux/iversion.h>
  28#include <linux/fiemap.h>
  29
  30/*
  31 * Directories have different lock order w.r.t. mmap_lock compared to regular
  32 * files. This is due to readdir potentially triggering page faults on a user
  33 * buffer inside filldir(), and this happens with the ilock on the directory
  34 * held. For regular files, the lock order is the other way around - the
  35 * mmap_lock is taken during the page fault, and then we lock the ilock to do
  36 * block mapping. Hence we need a different class for the directory ilock so
  37 * that lockdep can tell them apart.
  38 */
  39static struct lock_class_key xfs_nondir_ilock_class;
  40static struct lock_class_key xfs_dir_ilock_class;
  41
  42static int
  43xfs_initxattrs(
  44	struct inode		*inode,
  45	const struct xattr	*xattr_array,
  46	void			*fs_info)
  47{
  48	const struct xattr	*xattr;
  49	struct xfs_inode	*ip = XFS_I(inode);
  50	int			error = 0;
  51
  52	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
  53		struct xfs_da_args	args = {
  54			.dp		= ip,
  55			.attr_filter	= XFS_ATTR_SECURE,
  56			.name		= xattr->name,
  57			.namelen	= strlen(xattr->name),
  58			.value		= xattr->value,
  59			.valuelen	= xattr->value_len,
  60		};
  61		error = xfs_attr_set(&args);
  62		if (error < 0)
  63			break;
  64	}
  65	return error;
  66}
  67
  68/*
  69 * Hook in SELinux.  This is not quite correct yet, what we really need
  70 * here (as we do for default ACLs) is a mechanism by which creation of
  71 * these attrs can be journalled at inode creation time (along with the
  72 * inode, of course, such that log replay can't cause these to be lost).
  73 */
  74
  75STATIC int
  76xfs_init_security(
  77	struct inode	*inode,
  78	struct inode	*dir,
  79	const struct qstr *qstr)
  80{
  81	return security_inode_init_security(inode, dir, qstr,
  82					     &xfs_initxattrs, NULL);
  83}
  84
  85static void
  86xfs_dentry_to_name(
  87	struct xfs_name	*namep,
  88	struct dentry	*dentry)
  89{
  90	namep->name = dentry->d_name.name;
  91	namep->len = dentry->d_name.len;
  92	namep->type = XFS_DIR3_FT_UNKNOWN;
  93}
  94
  95static int
  96xfs_dentry_mode_to_name(
  97	struct xfs_name	*namep,
  98	struct dentry	*dentry,
  99	int		mode)
 100{
 101	namep->name = dentry->d_name.name;
 102	namep->len = dentry->d_name.len;
 103	namep->type = xfs_mode_to_ftype(mode);
 104
 105	if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
 106		return -EFSCORRUPTED;
 107
 108	return 0;
 109}
 110
 111STATIC void
 112xfs_cleanup_inode(
 113	struct inode	*dir,
 114	struct inode	*inode,
 115	struct dentry	*dentry)
 116{
 117	struct xfs_name	teardown;
 118
 119	/* Oh, the horror.
 120	 * If we can't add the ACL or we fail in
 121	 * xfs_init_security we must back out.
 122	 * ENOSPC can hit here, among other things.
 123	 */
 124	xfs_dentry_to_name(&teardown, dentry);
 125
 126	xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
 127}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129STATIC int
 130xfs_generic_create(
 
 131	struct inode	*dir,
 132	struct dentry	*dentry,
 133	umode_t		mode,
 134	dev_t		rdev,
 135	bool		tmpfile)	/* unnamed file */
 136{
 137	struct inode	*inode;
 138	struct xfs_inode *ip = NULL;
 139	struct posix_acl *default_acl, *acl;
 140	struct xfs_name	name;
 141	int		error;
 142
 143	/*
 144	 * Irix uses Missed'em'V split, but doesn't want to see
 145	 * the upper 5 bits of (14bit) major.
 146	 */
 147	if (S_ISCHR(mode) || S_ISBLK(mode)) {
 148		if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
 149			return -EINVAL;
 150	} else {
 151		rdev = 0;
 152	}
 153
 154	error = posix_acl_create(dir, &mode, &default_acl, &acl);
 155	if (error)
 156		return error;
 157
 158	/* Verify mode is valid also for tmpfile case */
 159	error = xfs_dentry_mode_to_name(&name, dentry, mode);
 160	if (unlikely(error))
 161		goto out_free_acl;
 162
 163	if (!tmpfile) {
 164		error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
 
 
 165	} else {
 166		error = xfs_create_tmpfile(XFS_I(dir), mode, &ip);
 167	}
 168	if (unlikely(error))
 169		goto out_free_acl;
 170
 171	inode = VFS_I(ip);
 172
 173	error = xfs_init_security(inode, dir, &dentry->d_name);
 174	if (unlikely(error))
 175		goto out_cleanup_inode;
 176
 177#ifdef CONFIG_XFS_POSIX_ACL
 178	if (default_acl) {
 179		error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
 180		if (error)
 181			goto out_cleanup_inode;
 182	}
 183	if (acl) {
 184		error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
 185		if (error)
 186			goto out_cleanup_inode;
 187	}
 188#endif
 189
 190	xfs_setup_iops(ip);
 191
 192	if (tmpfile) {
 193		/*
 194		 * The VFS requires that any inode fed to d_tmpfile must have
 195		 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
 196		 * However, we created the temp file with nlink == 0 because
 197		 * we're not allowed to put an inode with nlink > 0 on the
 198		 * unlinked list.  Therefore we have to set nlink to 1 so that
 199		 * d_tmpfile can immediately set it back to zero.
 200		 */
 201		set_nlink(inode, 1);
 202		d_tmpfile(dentry, inode);
 203	} else
 204		d_instantiate(dentry, inode);
 205
 206	xfs_finish_inode_setup(ip);
 207
 208 out_free_acl:
 209	if (default_acl)
 210		posix_acl_release(default_acl);
 211	if (acl)
 212		posix_acl_release(acl);
 213	return error;
 214
 215 out_cleanup_inode:
 216	xfs_finish_inode_setup(ip);
 217	if (!tmpfile)
 218		xfs_cleanup_inode(dir, inode, dentry);
 219	xfs_irele(ip);
 220	goto out_free_acl;
 221}
 222
 223STATIC int
 224xfs_vn_mknod(
 225	struct inode	*dir,
 226	struct dentry	*dentry,
 227	umode_t		mode,
 228	dev_t		rdev)
 
 229{
 230	return xfs_generic_create(dir, dentry, mode, rdev, false);
 231}
 232
 233STATIC int
 234xfs_vn_create(
 235	struct inode	*dir,
 236	struct dentry	*dentry,
 237	umode_t		mode,
 238	bool		flags)
 
 239{
 240	return xfs_vn_mknod(dir, dentry, mode, 0);
 241}
 242
 243STATIC int
 244xfs_vn_mkdir(
 245	struct inode	*dir,
 246	struct dentry	*dentry,
 247	umode_t		mode)
 
 248{
 249	return xfs_vn_mknod(dir, dentry, mode|S_IFDIR, 0);
 
 250}
 251
 252STATIC struct dentry *
 253xfs_vn_lookup(
 254	struct inode	*dir,
 255	struct dentry	*dentry,
 256	unsigned int flags)
 257{
 258	struct inode *inode;
 259	struct xfs_inode *cip;
 260	struct xfs_name	name;
 261	int		error;
 262
 263	if (dentry->d_name.len >= MAXNAMELEN)
 264		return ERR_PTR(-ENAMETOOLONG);
 265
 266	xfs_dentry_to_name(&name, dentry);
 267	error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
 268	if (likely(!error))
 269		inode = VFS_I(cip);
 270	else if (likely(error == -ENOENT))
 271		inode = NULL;
 272	else
 273		inode = ERR_PTR(error);
 274	return d_splice_alias(inode, dentry);
 275}
 276
 277STATIC struct dentry *
 278xfs_vn_ci_lookup(
 279	struct inode	*dir,
 280	struct dentry	*dentry,
 281	unsigned int flags)
 282{
 283	struct xfs_inode *ip;
 284	struct xfs_name	xname;
 285	struct xfs_name ci_name;
 286	struct qstr	dname;
 287	int		error;
 288
 289	if (dentry->d_name.len >= MAXNAMELEN)
 290		return ERR_PTR(-ENAMETOOLONG);
 291
 292	xfs_dentry_to_name(&xname, dentry);
 293	error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
 294	if (unlikely(error)) {
 295		if (unlikely(error != -ENOENT))
 296			return ERR_PTR(error);
 297		/*
 298		 * call d_add(dentry, NULL) here when d_drop_negative_children
 299		 * is called in xfs_vn_mknod (ie. allow negative dentries
 300		 * with CI filesystems).
 301		 */
 302		return NULL;
 303	}
 304
 305	/* if exact match, just splice and exit */
 306	if (!ci_name.name)
 307		return d_splice_alias(VFS_I(ip), dentry);
 308
 309	/* else case-insensitive match... */
 310	dname.name = ci_name.name;
 311	dname.len = ci_name.len;
 312	dentry = d_add_ci(dentry, VFS_I(ip), &dname);
 313	kmem_free(ci_name.name);
 314	return dentry;
 315}
 316
 317STATIC int
 318xfs_vn_link(
 319	struct dentry	*old_dentry,
 320	struct inode	*dir,
 321	struct dentry	*dentry)
 322{
 323	struct inode	*inode = d_inode(old_dentry);
 324	struct xfs_name	name;
 325	int		error;
 326
 327	error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
 328	if (unlikely(error))
 329		return error;
 330
 331	error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
 332	if (unlikely(error))
 333		return error;
 334
 335	ihold(inode);
 336	d_instantiate(dentry, inode);
 337	return 0;
 338}
 339
 340STATIC int
 341xfs_vn_unlink(
 342	struct inode	*dir,
 343	struct dentry	*dentry)
 344{
 345	struct xfs_name	name;
 346	int		error;
 347
 348	xfs_dentry_to_name(&name, dentry);
 349
 350	error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
 351	if (error)
 352		return error;
 353
 354	/*
 355	 * With unlink, the VFS makes the dentry "negative": no inode,
 356	 * but still hashed. This is incompatible with case-insensitive
 357	 * mode, so invalidate (unhash) the dentry in CI-mode.
 358	 */
 359	if (xfs_sb_version_hasasciici(&XFS_M(dir->i_sb)->m_sb))
 360		d_invalidate(dentry);
 361	return 0;
 362}
 363
 364STATIC int
 365xfs_vn_symlink(
 366	struct inode	*dir,
 367	struct dentry	*dentry,
 368	const char	*symname)
 
 369{
 370	struct inode	*inode;
 371	struct xfs_inode *cip = NULL;
 372	struct xfs_name	name;
 373	int		error;
 374	umode_t		mode;
 375
 376	mode = S_IFLNK |
 377		(irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
 378	error = xfs_dentry_mode_to_name(&name, dentry, mode);
 379	if (unlikely(error))
 380		goto out;
 381
 382	error = xfs_symlink(XFS_I(dir), &name, symname, mode, &cip);
 383	if (unlikely(error))
 384		goto out;
 385
 386	inode = VFS_I(cip);
 387
 388	error = xfs_init_security(inode, dir, &dentry->d_name);
 389	if (unlikely(error))
 390		goto out_cleanup_inode;
 391
 392	xfs_setup_iops(cip);
 393
 394	d_instantiate(dentry, inode);
 395	xfs_finish_inode_setup(cip);
 396	return 0;
 397
 398 out_cleanup_inode:
 399	xfs_finish_inode_setup(cip);
 400	xfs_cleanup_inode(dir, inode, dentry);
 401	xfs_irele(cip);
 402 out:
 403	return error;
 404}
 405
 406STATIC int
 407xfs_vn_rename(
 408	struct inode	*odir,
 409	struct dentry	*odentry,
 410	struct inode	*ndir,
 411	struct dentry	*ndentry,
 412	unsigned int	flags)
 
 413{
 414	struct inode	*new_inode = d_inode(ndentry);
 415	int		omode = 0;
 416	int		error;
 417	struct xfs_name	oname;
 418	struct xfs_name	nname;
 419
 420	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
 421		return -EINVAL;
 422
 423	/* if we are exchanging files, we need to set i_mode of both files */
 424	if (flags & RENAME_EXCHANGE)
 425		omode = d_inode(ndentry)->i_mode;
 426
 427	error = xfs_dentry_mode_to_name(&oname, odentry, omode);
 428	if (omode && unlikely(error))
 429		return error;
 430
 431	error = xfs_dentry_mode_to_name(&nname, ndentry,
 432					d_inode(odentry)->i_mode);
 433	if (unlikely(error))
 434		return error;
 435
 436	return xfs_rename(XFS_I(odir), &oname, XFS_I(d_inode(odentry)),
 437			  XFS_I(ndir), &nname,
 438			  new_inode ? XFS_I(new_inode) : NULL, flags);
 439}
 440
 441/*
 442 * careful here - this function can get called recursively, so
 443 * we need to be very careful about how much stack we use.
 444 * uio is kmalloced for this reason...
 445 */
 446STATIC const char *
 447xfs_vn_get_link(
 448	struct dentry		*dentry,
 449	struct inode		*inode,
 450	struct delayed_call	*done)
 451{
 452	char			*link;
 453	int			error = -ENOMEM;
 454
 455	if (!dentry)
 456		return ERR_PTR(-ECHILD);
 457
 458	link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
 459	if (!link)
 460		goto out_err;
 461
 462	error = xfs_readlink(XFS_I(d_inode(dentry)), link);
 463	if (unlikely(error))
 464		goto out_kfree;
 465
 466	set_delayed_call(done, kfree_link, link);
 467	return link;
 468
 469 out_kfree:
 470	kfree(link);
 471 out_err:
 472	return ERR_PTR(error);
 473}
 474
 475STATIC const char *
 476xfs_vn_get_link_inline(
 477	struct dentry		*dentry,
 478	struct inode		*inode,
 479	struct delayed_call	*done)
 480{
 481	struct xfs_inode	*ip = XFS_I(inode);
 482	char			*link;
 483
 484	ASSERT(ip->i_df.if_flags & XFS_IFINLINE);
 485
 486	/*
 487	 * The VFS crashes on a NULL pointer, so return -EFSCORRUPTED if
 488	 * if_data is junk.
 489	 */
 490	link = ip->i_df.if_u1.if_data;
 491	if (XFS_IS_CORRUPT(ip->i_mount, !link))
 492		return ERR_PTR(-EFSCORRUPTED);
 493	return link;
 494}
 495
 496static uint32_t
 497xfs_stat_blksize(
 498	struct xfs_inode	*ip)
 499{
 500	struct xfs_mount	*mp = ip->i_mount;
 501
 502	/*
 503	 * If the file blocks are being allocated from a realtime volume, then
 504	 * always return the realtime extent size.
 505	 */
 506	if (XFS_IS_REALTIME_INODE(ip))
 507		return xfs_get_extsz_hint(ip) << mp->m_sb.sb_blocklog;
 508
 509	/*
 510	 * Allow large block sizes to be reported to userspace programs if the
 511	 * "largeio" mount option is used.
 512	 *
 513	 * If compatibility mode is specified, simply return the basic unit of
 514	 * caching so that we don't get inefficient read/modify/write I/O from
 515	 * user apps. Otherwise....
 516	 *
 517	 * If the underlying volume is a stripe, then return the stripe width in
 518	 * bytes as the recommended I/O size. It is not a stripe and we've set a
 519	 * default buffered I/O size, return that, otherwise return the compat
 520	 * default.
 521	 */
 522	if (mp->m_flags & XFS_MOUNT_LARGEIO) {
 523		if (mp->m_swidth)
 524			return mp->m_swidth << mp->m_sb.sb_blocklog;
 525		if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
 526			return 1U << mp->m_allocsize_log;
 527	}
 528
 529	return PAGE_SIZE;
 530}
 531
 532STATIC int
 533xfs_vn_getattr(
 
 534	const struct path	*path,
 535	struct kstat		*stat,
 536	u32			request_mask,
 537	unsigned int		query_flags)
 538{
 539	struct inode		*inode = d_inode(path->dentry);
 540	struct xfs_inode	*ip = XFS_I(inode);
 541	struct xfs_mount	*mp = ip->i_mount;
 
 
 542
 543	trace_xfs_getattr(ip);
 544
 545	if (XFS_FORCED_SHUTDOWN(mp))
 546		return -EIO;
 547
 548	stat->size = XFS_ISIZE(ip);
 549	stat->dev = inode->i_sb->s_dev;
 550	stat->mode = inode->i_mode;
 551	stat->nlink = inode->i_nlink;
 552	stat->uid = inode->i_uid;
 553	stat->gid = inode->i_gid;
 554	stat->ino = ip->i_ino;
 555	stat->atime = inode->i_atime;
 556	stat->mtime = inode->i_mtime;
 557	stat->ctime = inode->i_ctime;
 558	stat->blocks =
 559		XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
 560
 561	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 562		if (request_mask & STATX_BTIME) {
 563			stat->result_mask |= STATX_BTIME;
 564			stat->btime = ip->i_d.di_crtime;
 565		}
 566	}
 567
 568	/*
 569	 * Note: If you add another clause to set an attribute flag, please
 570	 * update attributes_mask below.
 571	 */
 572	if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
 573		stat->attributes |= STATX_ATTR_IMMUTABLE;
 574	if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
 575		stat->attributes |= STATX_ATTR_APPEND;
 576	if (ip->i_d.di_flags & XFS_DIFLAG_NODUMP)
 577		stat->attributes |= STATX_ATTR_NODUMP;
 578
 579	stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
 580				  STATX_ATTR_APPEND |
 581				  STATX_ATTR_NODUMP);
 582
 583	switch (inode->i_mode & S_IFMT) {
 584	case S_IFBLK:
 585	case S_IFCHR:
 586		stat->blksize = BLKDEV_IOSIZE;
 587		stat->rdev = inode->i_rdev;
 588		break;
 
 
 
 
 
 
 
 
 
 
 589	default:
 590		stat->blksize = xfs_stat_blksize(ip);
 591		stat->rdev = 0;
 592		break;
 593	}
 594
 595	return 0;
 596}
 597
 598static void
 599xfs_setattr_mode(
 600	struct xfs_inode	*ip,
 601	struct iattr		*iattr)
 602{
 603	struct inode		*inode = VFS_I(ip);
 604	umode_t			mode = iattr->ia_mode;
 605
 606	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 607
 608	inode->i_mode &= S_IFMT;
 609	inode->i_mode |= mode & ~S_IFMT;
 610}
 611
 612void
 613xfs_setattr_time(
 614	struct xfs_inode	*ip,
 615	struct iattr		*iattr)
 616{
 617	struct inode		*inode = VFS_I(ip);
 618
 619	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 620
 621	if (iattr->ia_valid & ATTR_ATIME)
 622		inode->i_atime = iattr->ia_atime;
 623	if (iattr->ia_valid & ATTR_CTIME)
 624		inode->i_ctime = iattr->ia_ctime;
 625	if (iattr->ia_valid & ATTR_MTIME)
 626		inode->i_mtime = iattr->ia_mtime;
 627}
 628
 629static int
 630xfs_vn_change_ok(
 631	struct dentry	*dentry,
 632	struct iattr	*iattr)
 
 633{
 634	struct xfs_mount	*mp = XFS_I(d_inode(dentry))->i_mount;
 635
 636	if (mp->m_flags & XFS_MOUNT_RDONLY)
 637		return -EROFS;
 638
 639	if (XFS_FORCED_SHUTDOWN(mp))
 640		return -EIO;
 641
 642	return setattr_prepare(dentry, iattr);
 643}
 644
 645/*
 646 * Set non-size attributes of an inode.
 647 *
 648 * Caution: The caller of this function is responsible for calling
 649 * setattr_prepare() or otherwise verifying the change is fine.
 650 */
 651int
 652xfs_setattr_nonsize(
 
 
 653	struct xfs_inode	*ip,
 654	struct iattr		*iattr,
 655	int			flags)
 656{
 657	xfs_mount_t		*mp = ip->i_mount;
 658	struct inode		*inode = VFS_I(ip);
 659	int			mask = iattr->ia_valid;
 660	xfs_trans_t		*tp;
 661	int			error;
 662	kuid_t			uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID;
 663	kgid_t			gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID;
 664	struct xfs_dquot	*udqp = NULL, *gdqp = NULL;
 665	struct xfs_dquot	*olddquot1 = NULL, *olddquot2 = NULL;
 666
 667	ASSERT((mask & ATTR_SIZE) == 0);
 668
 669	/*
 670	 * If disk quotas is on, we make sure that the dquots do exist on disk,
 671	 * before we start any other transactions. Trying to do this later
 672	 * is messy. We don't care to take a readlock to look at the ids
 673	 * in inode here, because we can't hold it across the trans_reserve.
 674	 * If the IDs do change before we take the ilock, we're covered
 675	 * because the i_*dquot fields will get updated anyway.
 676	 */
 677	if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
 678		uint	qflags = 0;
 679
 680		if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
 681			uid = iattr->ia_uid;
 
 682			qflags |= XFS_QMOPT_UQUOTA;
 683		} else {
 684			uid = inode->i_uid;
 685		}
 686		if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
 687			gid = iattr->ia_gid;
 
 688			qflags |= XFS_QMOPT_GQUOTA;
 689		}  else {
 690			gid = inode->i_gid;
 691		}
 692
 693		/*
 694		 * We take a reference when we initialize udqp and gdqp,
 695		 * so it is important that we never blindly double trip on
 696		 * the same variable. See xfs_create() for an example.
 697		 */
 698		ASSERT(udqp == NULL);
 699		ASSERT(gdqp == NULL);
 700		error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_d.di_projid,
 701					   qflags, &udqp, &gdqp, NULL);
 702		if (error)
 703			return error;
 704	}
 705
 706	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 
 707	if (error)
 708		goto out_dqrele;
 709
 710	xfs_ilock(ip, XFS_ILOCK_EXCL);
 711	xfs_trans_ijoin(tp, ip, 0);
 712
 713	/*
 714	 * Change file ownership.  Must be the owner or privileged.
 715	 */
 716	if (mask & (ATTR_UID|ATTR_GID)) {
 717		/*
 718		 * These IDs could have changed since we last looked at them.
 719		 * But, we're assured that if the ownership did change
 720		 * while we didn't have the inode locked, inode's dquot(s)
 721		 * would have changed also.
 722		 */
 723		iuid = inode->i_uid;
 724		igid = inode->i_gid;
 725		gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
 726		uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
 727
 728		/*
 729		 * Do a quota reservation only if uid/gid is actually
 730		 * going to change.
 731		 */
 732		if (XFS_IS_QUOTA_RUNNING(mp) &&
 733		    ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) ||
 734		     (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) {
 735			ASSERT(tp);
 736			error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
 737						NULL, capable(CAP_FOWNER) ?
 738						XFS_QMOPT_FORCE_RES : 0);
 739			if (error)	/* out of quota */
 740				goto out_cancel;
 741		}
 742
 743		/*
 744		 * CAP_FSETID overrides the following restrictions:
 745		 *
 746		 * The set-user-ID and set-group-ID bits of a file will be
 747		 * cleared upon successful return from chown()
 748		 */
 749		if ((inode->i_mode & (S_ISUID|S_ISGID)) &&
 750		    !capable(CAP_FSETID))
 751			inode->i_mode &= ~(S_ISUID|S_ISGID);
 752
 753		/*
 754		 * Change the ownerships and register quota modifications
 755		 * in the transaction.
 756		 */
 757		if (!uid_eq(iuid, uid)) {
 758			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
 759				ASSERT(mask & ATTR_UID);
 760				ASSERT(udqp);
 761				olddquot1 = xfs_qm_vop_chown(tp, ip,
 762							&ip->i_udquot, udqp);
 763			}
 764			inode->i_uid = uid;
 765		}
 766		if (!gid_eq(igid, gid)) {
 767			if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
 768				ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) ||
 769				       !XFS_IS_PQUOTA_ON(mp));
 770				ASSERT(mask & ATTR_GID);
 771				ASSERT(gdqp);
 772				olddquot2 = xfs_qm_vop_chown(tp, ip,
 773							&ip->i_gdquot, gdqp);
 774			}
 775			inode->i_gid = gid;
 776		}
 777	}
 778
 779	if (mask & ATTR_MODE)
 780		xfs_setattr_mode(ip, iattr);
 781	if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
 782		xfs_setattr_time(ip, iattr);
 783
 784	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 785
 786	XFS_STATS_INC(mp, xs_ig_attrchg);
 787
 788	if (mp->m_flags & XFS_MOUNT_WSYNC)
 789		xfs_trans_set_sync(tp);
 790	error = xfs_trans_commit(tp);
 791
 792	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 793
 794	/*
 795	 * Release any dquot(s) the inode had kept before chown.
 796	 */
 797	xfs_qm_dqrele(olddquot1);
 798	xfs_qm_dqrele(olddquot2);
 799	xfs_qm_dqrele(udqp);
 800	xfs_qm_dqrele(gdqp);
 801
 802	if (error)
 803		return error;
 804
 805	/*
 806	 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
 807	 * 	     update.  We could avoid this with linked transactions
 808	 * 	     and passing down the transaction pointer all the way
 809	 *	     to attr_set.  No previous user of the generic
 810	 * 	     Posix ACL code seems to care about this issue either.
 811	 */
 812	if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) {
 813		error = posix_acl_chmod(inode, inode->i_mode);
 814		if (error)
 815			return error;
 816	}
 817
 818	return 0;
 819
 820out_cancel:
 821	xfs_trans_cancel(tp);
 822	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 823out_dqrele:
 824	xfs_qm_dqrele(udqp);
 825	xfs_qm_dqrele(gdqp);
 826	return error;
 827}
 828
 829int
 830xfs_vn_setattr_nonsize(
 831	struct dentry		*dentry,
 832	struct iattr		*iattr)
 833{
 834	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
 835	int error;
 836
 837	trace_xfs_setattr(ip);
 838
 839	error = xfs_vn_change_ok(dentry, iattr);
 840	if (error)
 841		return error;
 842	return xfs_setattr_nonsize(ip, iattr, 0);
 843}
 844
 845/*
 846 * Truncate file.  Must have write permission and not be a directory.
 847 *
 848 * Caution: The caller of this function is responsible for calling
 849 * setattr_prepare() or otherwise verifying the change is fine.
 850 */
 851STATIC int
 852xfs_setattr_size(
 
 
 853	struct xfs_inode	*ip,
 854	struct iattr		*iattr)
 855{
 856	struct xfs_mount	*mp = ip->i_mount;
 857	struct inode		*inode = VFS_I(ip);
 858	xfs_off_t		oldsize, newsize;
 859	struct xfs_trans	*tp;
 860	int			error;
 861	uint			lock_flags = 0;
 862	bool			did_zeroing = false;
 863
 864	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 865	ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
 866	ASSERT(S_ISREG(inode->i_mode));
 867	ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
 868		ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0);
 869
 870	oldsize = inode->i_size;
 871	newsize = iattr->ia_size;
 872
 873	/*
 874	 * Short circuit the truncate case for zero length files.
 875	 */
 876	if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
 877		if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
 878			return 0;
 879
 880		/*
 881		 * Use the regular setattr path to update the timestamps.
 882		 */
 883		iattr->ia_valid &= ~ATTR_SIZE;
 884		return xfs_setattr_nonsize(ip, iattr, 0);
 885	}
 886
 887	/*
 888	 * Make sure that the dquots are attached to the inode.
 889	 */
 890	error = xfs_qm_dqattach(ip);
 891	if (error)
 892		return error;
 893
 894	/*
 895	 * Wait for all direct I/O to complete.
 896	 */
 897	inode_dio_wait(inode);
 898
 899	/*
 900	 * File data changes must be complete before we start the transaction to
 901	 * modify the inode.  This needs to be done before joining the inode to
 902	 * the transaction because the inode cannot be unlocked once it is a
 903	 * part of the transaction.
 904	 *
 905	 * Start with zeroing any data beyond EOF that we may expose on file
 906	 * extension, or zeroing out the rest of the block on a downward
 907	 * truncate.
 908	 */
 909	if (newsize > oldsize) {
 910		trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
 911		error = iomap_zero_range(inode, oldsize, newsize - oldsize,
 912				&did_zeroing, &xfs_buffered_write_iomap_ops);
 913	} else {
 914		error = iomap_truncate_page(inode, newsize, &did_zeroing,
 915				&xfs_buffered_write_iomap_ops);
 
 
 
 
 
 
 
 
 
 916	}
 917
 918	if (error)
 919		return error;
 920
 921	/*
 922	 * We've already locked out new page faults, so now we can safely remove
 923	 * pages from the page cache knowing they won't get refaulted until we
 924	 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
 925	 * complete. The truncate_setsize() call also cleans partial EOF page
 926	 * PTEs on extending truncates and hence ensures sub-page block size
 927	 * filesystems are correctly handled, too.
 928	 *
 929	 * We have to do all the page cache truncate work outside the
 930	 * transaction context as the "lock" order is page lock->log space
 931	 * reservation as defined by extent allocation in the writeback path.
 932	 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
 933	 * having already truncated the in-memory version of the file (i.e. made
 934	 * user visible changes). There's not much we can do about this, except
 935	 * to hope that the caller sees ENOMEM and retries the truncate
 936	 * operation.
 937	 *
 938	 * And we update in-core i_size and truncate page cache beyond newsize
 939	 * before writeback the [di_size, newsize] range, so we're guaranteed
 940	 * not to write stale data past the new EOF on truncate down.
 941	 */
 942	truncate_setsize(inode, newsize);
 943
 944	/*
 945	 * We are going to log the inode size change in this transaction so
 946	 * any previous writes that are beyond the on disk EOF and the new
 947	 * EOF that have not been written out need to be written here.  If we
 948	 * do not write the data out, we expose ourselves to the null files
 949	 * problem. Note that this includes any block zeroing we did above;
 950	 * otherwise those blocks may not be zeroed after a crash.
 951	 */
 952	if (did_zeroing ||
 953	    (newsize > ip->i_d.di_size && oldsize != ip->i_d.di_size)) {
 954		error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 955						ip->i_d.di_size, newsize - 1);
 956		if (error)
 957			return error;
 958	}
 959
 960	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 961	if (error)
 962		return error;
 963
 964	lock_flags |= XFS_ILOCK_EXCL;
 965	xfs_ilock(ip, XFS_ILOCK_EXCL);
 966	xfs_trans_ijoin(tp, ip, 0);
 967
 968	/*
 969	 * Only change the c/mtime if we are changing the size or we are
 970	 * explicitly asked to change it.  This handles the semantic difference
 971	 * between truncate() and ftruncate() as implemented in the VFS.
 972	 *
 973	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
 974	 * special case where we need to update the times despite not having
 975	 * these flags set.  For all other operations the VFS set these flags
 976	 * explicitly if it wants a timestamp update.
 977	 */
 978	if (newsize != oldsize &&
 979	    !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
 980		iattr->ia_ctime = iattr->ia_mtime =
 981			current_time(inode);
 982		iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
 983	}
 984
 985	/*
 986	 * The first thing we do is set the size to new_size permanently on
 987	 * disk.  This way we don't have to worry about anyone ever being able
 988	 * to look at the data being freed even in the face of a crash.
 989	 * What we're getting around here is the case where we free a block, it
 990	 * is allocated to another file, it is written to, and then we crash.
 991	 * If the new data gets written to the file but the log buffers
 992	 * containing the free and reallocation don't, then we'd end up with
 993	 * garbage in the blocks being freed.  As long as we make the new size
 994	 * permanent before actually freeing any blocks it doesn't matter if
 995	 * they get written to.
 996	 */
 997	ip->i_d.di_size = newsize;
 998	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 999
1000	if (newsize <= oldsize) {
1001		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
1002		if (error)
1003			goto out_trans_cancel;
1004
1005		/*
1006		 * Truncated "down", so we're removing references to old data
1007		 * here - if we delay flushing for a long time, we expose
1008		 * ourselves unduly to the notorious NULL files problem.  So,
1009		 * we mark this inode and flush it when the file is closed,
1010		 * and do not wait the usual (long) time for writeout.
1011		 */
1012		xfs_iflags_set(ip, XFS_ITRUNCATED);
1013
1014		/* A truncate down always removes post-EOF blocks. */
1015		xfs_inode_clear_eofblocks_tag(ip);
1016	}
1017
1018	if (iattr->ia_valid & ATTR_MODE)
1019		xfs_setattr_mode(ip, iattr);
1020	if (iattr->ia_valid & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
1021		xfs_setattr_time(ip, iattr);
1022
1023	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1024
1025	XFS_STATS_INC(mp, xs_ig_attrchg);
1026
1027	if (mp->m_flags & XFS_MOUNT_WSYNC)
1028		xfs_trans_set_sync(tp);
1029
1030	error = xfs_trans_commit(tp);
1031out_unlock:
1032	if (lock_flags)
1033		xfs_iunlock(ip, lock_flags);
1034	return error;
1035
1036out_trans_cancel:
1037	xfs_trans_cancel(tp);
1038	goto out_unlock;
1039}
1040
1041int
1042xfs_vn_setattr_size(
 
1043	struct dentry		*dentry,
1044	struct iattr		*iattr)
1045{
1046	struct xfs_inode	*ip = XFS_I(d_inode(dentry));
1047	int error;
1048
1049	trace_xfs_setattr(ip);
1050
1051	error = xfs_vn_change_ok(dentry, iattr);
1052	if (error)
1053		return error;
1054	return xfs_setattr_size(ip, iattr);
1055}
1056
1057STATIC int
1058xfs_vn_setattr(
 
1059	struct dentry		*dentry,
1060	struct iattr		*iattr)
1061{
 
 
1062	int			error;
1063
1064	if (iattr->ia_valid & ATTR_SIZE) {
1065		struct inode		*inode = d_inode(dentry);
1066		struct xfs_inode	*ip = XFS_I(inode);
1067		uint			iolock;
1068
1069		xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1070		iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1071
1072		error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
1073		if (error) {
1074			xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1075			return error;
1076		}
1077
1078		error = xfs_vn_setattr_size(dentry, iattr);
1079		xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1080	} else {
1081		error = xfs_vn_setattr_nonsize(dentry, iattr);
 
 
 
 
1082	}
1083
1084	return error;
1085}
1086
1087STATIC int
1088xfs_vn_update_time(
1089	struct inode		*inode,
1090	struct timespec64	*now,
1091	int			flags)
1092{
1093	struct xfs_inode	*ip = XFS_I(inode);
1094	struct xfs_mount	*mp = ip->i_mount;
1095	int			log_flags = XFS_ILOG_TIMESTAMP;
1096	struct xfs_trans	*tp;
1097	int			error;
1098
1099	trace_xfs_update_time(ip);
1100
1101	if (inode->i_sb->s_flags & SB_LAZYTIME) {
1102		if (!((flags & S_VERSION) &&
1103		      inode_maybe_inc_iversion(inode, false)))
1104			return generic_update_time(inode, now, flags);
1105
1106		/* Capture the iversion update that just occurred */
1107		log_flags |= XFS_ILOG_CORE;
1108	}
1109
1110	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1111	if (error)
1112		return error;
1113
1114	xfs_ilock(ip, XFS_ILOCK_EXCL);
1115	if (flags & S_CTIME)
1116		inode->i_ctime = *now;
1117	if (flags & S_MTIME)
1118		inode->i_mtime = *now;
1119	if (flags & S_ATIME)
1120		inode->i_atime = *now;
1121
1122	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1123	xfs_trans_log_inode(tp, ip, log_flags);
1124	return xfs_trans_commit(tp);
1125}
1126
1127STATIC int
1128xfs_vn_fiemap(
1129	struct inode		*inode,
1130	struct fiemap_extent_info *fieinfo,
1131	u64			start,
1132	u64			length)
1133{
1134	int			error;
1135
1136	xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1137	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1138		fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1139		error = iomap_fiemap(inode, fieinfo, start, length,
1140				&xfs_xattr_iomap_ops);
1141	} else {
1142		error = iomap_fiemap(inode, fieinfo, start, length,
1143				&xfs_read_iomap_ops);
1144	}
1145	xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1146
1147	return error;
1148}
1149
1150STATIC int
1151xfs_vn_tmpfile(
1152	struct inode	*dir,
1153	struct dentry	*dentry,
1154	umode_t		mode)
 
1155{
1156	return xfs_generic_create(dir, dentry, mode, 0, true);
 
 
1157}
1158
1159static const struct inode_operations xfs_inode_operations = {
1160	.get_acl		= xfs_get_acl,
1161	.set_acl		= xfs_set_acl,
1162	.getattr		= xfs_vn_getattr,
1163	.setattr		= xfs_vn_setattr,
1164	.listxattr		= xfs_vn_listxattr,
1165	.fiemap			= xfs_vn_fiemap,
1166	.update_time		= xfs_vn_update_time,
 
 
1167};
1168
1169static const struct inode_operations xfs_dir_inode_operations = {
1170	.create			= xfs_vn_create,
1171	.lookup			= xfs_vn_lookup,
1172	.link			= xfs_vn_link,
1173	.unlink			= xfs_vn_unlink,
1174	.symlink		= xfs_vn_symlink,
1175	.mkdir			= xfs_vn_mkdir,
1176	/*
1177	 * Yes, XFS uses the same method for rmdir and unlink.
1178	 *
1179	 * There are some subtile differences deeper in the code,
1180	 * but we use S_ISDIR to check for those.
1181	 */
1182	.rmdir			= xfs_vn_unlink,
1183	.mknod			= xfs_vn_mknod,
1184	.rename			= xfs_vn_rename,
1185	.get_acl		= xfs_get_acl,
1186	.set_acl		= xfs_set_acl,
1187	.getattr		= xfs_vn_getattr,
1188	.setattr		= xfs_vn_setattr,
1189	.listxattr		= xfs_vn_listxattr,
1190	.update_time		= xfs_vn_update_time,
1191	.tmpfile		= xfs_vn_tmpfile,
 
 
1192};
1193
1194static const struct inode_operations xfs_dir_ci_inode_operations = {
1195	.create			= xfs_vn_create,
1196	.lookup			= xfs_vn_ci_lookup,
1197	.link			= xfs_vn_link,
1198	.unlink			= xfs_vn_unlink,
1199	.symlink		= xfs_vn_symlink,
1200	.mkdir			= xfs_vn_mkdir,
1201	/*
1202	 * Yes, XFS uses the same method for rmdir and unlink.
1203	 *
1204	 * There are some subtile differences deeper in the code,
1205	 * but we use S_ISDIR to check for those.
1206	 */
1207	.rmdir			= xfs_vn_unlink,
1208	.mknod			= xfs_vn_mknod,
1209	.rename			= xfs_vn_rename,
1210	.get_acl		= xfs_get_acl,
1211	.set_acl		= xfs_set_acl,
1212	.getattr		= xfs_vn_getattr,
1213	.setattr		= xfs_vn_setattr,
1214	.listxattr		= xfs_vn_listxattr,
1215	.update_time		= xfs_vn_update_time,
1216	.tmpfile		= xfs_vn_tmpfile,
 
 
1217};
1218
1219static const struct inode_operations xfs_symlink_inode_operations = {
1220	.get_link		= xfs_vn_get_link,
1221	.getattr		= xfs_vn_getattr,
1222	.setattr		= xfs_vn_setattr,
1223	.listxattr		= xfs_vn_listxattr,
1224	.update_time		= xfs_vn_update_time,
1225};
1226
1227static const struct inode_operations xfs_inline_symlink_inode_operations = {
1228	.get_link		= xfs_vn_get_link_inline,
1229	.getattr		= xfs_vn_getattr,
1230	.setattr		= xfs_vn_setattr,
1231	.listxattr		= xfs_vn_listxattr,
1232	.update_time		= xfs_vn_update_time,
1233};
1234
1235/* Figure out if this file actually supports DAX. */
1236static bool
1237xfs_inode_supports_dax(
1238	struct xfs_inode	*ip)
1239{
1240	struct xfs_mount	*mp = ip->i_mount;
1241
1242	/* Only supported on regular files. */
1243	if (!S_ISREG(VFS_I(ip)->i_mode))
1244		return false;
1245
1246	/* Only supported on non-reflinked files. */
1247	if (xfs_is_reflink_inode(ip))
1248		return false;
1249
1250	/* Block size must match page size */
1251	if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1252		return false;
1253
1254	/* Device has to support DAX too. */
1255	return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1256}
1257
1258static bool
1259xfs_inode_should_enable_dax(
1260	struct xfs_inode *ip)
1261{
1262	if (!IS_ENABLED(CONFIG_FS_DAX))
1263		return false;
1264	if (ip->i_mount->m_flags & XFS_MOUNT_DAX_NEVER)
1265		return false;
1266	if (!xfs_inode_supports_dax(ip))
1267		return false;
1268	if (ip->i_mount->m_flags & XFS_MOUNT_DAX_ALWAYS)
1269		return true;
1270	if (ip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
1271		return true;
1272	return false;
1273}
1274
1275void
1276xfs_diflags_to_iflags(
1277	struct xfs_inode	*ip,
1278	bool init)
1279{
1280	struct inode            *inode = VFS_I(ip);
1281	unsigned int            xflags = xfs_ip2xflags(ip);
1282	unsigned int            flags = 0;
1283
1284	ASSERT(!(IS_DAX(inode) && init));
1285
1286	if (xflags & FS_XFLAG_IMMUTABLE)
1287		flags |= S_IMMUTABLE;
1288	if (xflags & FS_XFLAG_APPEND)
1289		flags |= S_APPEND;
1290	if (xflags & FS_XFLAG_SYNC)
1291		flags |= S_SYNC;
1292	if (xflags & FS_XFLAG_NOATIME)
1293		flags |= S_NOATIME;
1294	if (init && xfs_inode_should_enable_dax(ip))
1295		flags |= S_DAX;
1296
1297	/*
1298	 * S_DAX can only be set during inode initialization and is never set by
1299	 * the VFS, so we cannot mask off S_DAX in i_flags.
1300	 */
1301	inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1302	inode->i_flags |= flags;
1303}
1304
1305/*
1306 * Initialize the Linux inode.
1307 *
1308 * When reading existing inodes from disk this is called directly from xfs_iget,
1309 * when creating a new inode it is called from xfs_ialloc after setting up the
1310 * inode. These callers have different criteria for clearing XFS_INEW, so leave
1311 * it up to the caller to deal with unlocking the inode appropriately.
1312 */
1313void
1314xfs_setup_inode(
1315	struct xfs_inode	*ip)
1316{
1317	struct inode		*inode = &ip->i_vnode;
1318	gfp_t			gfp_mask;
1319
1320	inode->i_ino = ip->i_ino;
1321	inode->i_state = I_NEW;
1322
1323	inode_sb_list_add(inode);
1324	/* make the inode look hashed for the writeback code */
1325	inode_fake_hash(inode);
1326
1327	i_size_write(inode, ip->i_d.di_size);
1328	xfs_diflags_to_iflags(ip, true);
1329
1330	if (S_ISDIR(inode->i_mode)) {
1331		/*
1332		 * We set the i_rwsem class here to avoid potential races with
1333		 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1334		 * after a filehandle lookup has already found the inode in
1335		 * cache before it has been unlocked via unlock_new_inode().
1336		 */
1337		lockdep_set_class(&inode->i_rwsem,
1338				  &inode->i_sb->s_type->i_mutex_dir_key);
1339		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1340	} else {
1341		lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1342	}
1343
1344	/*
1345	 * Ensure all page cache allocations are done from GFP_NOFS context to
1346	 * prevent direct reclaim recursion back into the filesystem and blowing
1347	 * stacks or deadlocking.
1348	 */
1349	gfp_mask = mapping_gfp_mask(inode->i_mapping);
1350	mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1351
1352	/*
1353	 * If there is no attribute fork no ACL can exist on this inode,
1354	 * and it can't have any file capabilities attached to it either.
1355	 */
1356	if (!XFS_IFORK_Q(ip)) {
1357		inode_has_no_xattr(inode);
1358		cache_no_acl(inode);
1359	}
1360}
1361
1362void
1363xfs_setup_iops(
1364	struct xfs_inode	*ip)
1365{
1366	struct inode		*inode = &ip->i_vnode;
1367
1368	switch (inode->i_mode & S_IFMT) {
1369	case S_IFREG:
1370		inode->i_op = &xfs_inode_operations;
1371		inode->i_fop = &xfs_file_operations;
1372		if (IS_DAX(inode))
1373			inode->i_mapping->a_ops = &xfs_dax_aops;
1374		else
1375			inode->i_mapping->a_ops = &xfs_address_space_operations;
1376		break;
1377	case S_IFDIR:
1378		if (xfs_sb_version_hasasciici(&XFS_M(inode->i_sb)->m_sb))
1379			inode->i_op = &xfs_dir_ci_inode_operations;
1380		else
1381			inode->i_op = &xfs_dir_inode_operations;
1382		inode->i_fop = &xfs_dir_file_operations;
1383		break;
1384	case S_IFLNK:
1385		if (ip->i_df.if_flags & XFS_IFINLINE)
1386			inode->i_op = &xfs_inline_symlink_inode_operations;
1387		else
1388			inode->i_op = &xfs_symlink_inode_operations;
1389		break;
1390	default:
1391		inode->i_op = &xfs_inode_operations;
1392		init_special_inode(inode, inode->i_mode, inode->i_rdev);
1393		break;
1394	}
1395}