Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/jiffies.h>
  4#include <linux/kernel.h>
  5#include <linux/ktime.h>
  6#include <linux/list.h>
  7#include <linux/math64.h>
  8#include <linux/sizes.h>
  9#include <linux/workqueue.h>
 10#include "ctree.h"
 11#include "block-group.h"
 12#include "discard.h"
 13#include "free-space-cache.h"
 14#include "fs.h"
 15
 16/*
 17 * This contains the logic to handle async discard.
 18 *
 19 * Async discard manages trimming of free space outside of transaction commit.
 20 * Discarding is done by managing the block_groups on a LRU list based on free
 21 * space recency.  Two passes are used to first prioritize discarding extents
 22 * and then allow for trimming in the bitmap the best opportunity to coalesce.
 23 * The block_groups are maintained on multiple lists to allow for multiple
 24 * passes with different discard filter requirements.  A delayed work item is
 25 * used to manage discarding with timeout determined by a max of the delay
 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of
 27 * BTRFS_DISCARD_MAX_DELAY.
 28 *
 29 * Note, this only keeps track of block_groups that are explicitly for data.
 30 * Mixed block_groups are not supported.
 31 *
 32 * The first list is special to manage discarding of fully free block groups.
 33 * This is necessary because we issue a final trim for a full free block group
 34 * after forgetting it.  When a block group becomes unused, instead of directly
 35 * being added to the unused_bgs list, we add it to this first list.  Then
 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs
 37 * list.
 38 *
 39 * The in-memory free space cache serves as the backing state for discard.
 40 * Consequently this means there is no persistence.  We opt to load all the
 41 * block groups in as not discarded, so the mount case degenerates to the
 42 * crashing case.
 43 *
 44 * As the free space cache uses bitmaps, there exists a tradeoff between
 45 * ease/efficiency for find_free_extent() and the accuracy of discard state.
 46 * Here we opt to let untrimmed regions merge with everything while only letting
 47 * trimmed regions merge with other trimmed regions.  This can cause
 48 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 49 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 50 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 51 * this resets the state and we will retry trimming the whole bitmap.  This is a
 52 * tradeoff between discard state accuracy and the cost of accounting.
 53 */
 54
 55/* This is an initial delay to give some chance for block reuse */
 56#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
 57#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
 58
 59/* Target completion latency of discarding all discardable extents */
 60#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
 61#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
 62#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
 63#define BTRFS_DISCARD_MAX_IOPS		(10U)
 64
 65/* Monotonically decreasing minimum length filters after index 0 */
 66static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
 67	0,
 68	BTRFS_ASYNC_DISCARD_MAX_FILTER,
 69	BTRFS_ASYNC_DISCARD_MIN_FILTER
 70};
 71
 72static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
 73					  struct btrfs_block_group *block_group)
 74{
 75	return &discard_ctl->discard_list[block_group->discard_index];
 76}
 77
 78static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 79				  struct btrfs_block_group *block_group)
 80{
 81	if (!btrfs_run_discard_work(discard_ctl))
 82		return;
 83
 84	if (list_empty(&block_group->discard_list) ||
 85	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
 86		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
 87			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
 88		block_group->discard_eligible_time = (ktime_get_ns() +
 89						      BTRFS_DISCARD_DELAY);
 90		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
 91	}
 92
 93	list_move_tail(&block_group->discard_list,
 94		       get_discard_list(discard_ctl, block_group));
 95}
 96
 97static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 98				struct btrfs_block_group *block_group)
 99{
100	if (!btrfs_is_block_group_data_only(block_group))
101		return;
102
103	spin_lock(&discard_ctl->lock);
104	__add_to_discard_list(discard_ctl, block_group);
105	spin_unlock(&discard_ctl->lock);
106}
107
108static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
109				       struct btrfs_block_group *block_group)
110{
111	spin_lock(&discard_ctl->lock);
112
113	if (!btrfs_run_discard_work(discard_ctl)) {
114		spin_unlock(&discard_ctl->lock);
115		return;
116	}
117
118	list_del_init(&block_group->discard_list);
119
120	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
121	block_group->discard_eligible_time = (ktime_get_ns() +
122					      BTRFS_DISCARD_UNUSED_DELAY);
123	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
124	list_add_tail(&block_group->discard_list,
125		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
126
127	spin_unlock(&discard_ctl->lock);
128}
129
130static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
131				     struct btrfs_block_group *block_group)
132{
133	bool running = false;
134
135	spin_lock(&discard_ctl->lock);
136
137	if (block_group == discard_ctl->block_group) {
138		running = true;
139		discard_ctl->block_group = NULL;
140	}
141
142	block_group->discard_eligible_time = 0;
143	list_del_init(&block_group->discard_list);
144
145	spin_unlock(&discard_ctl->lock);
146
147	return running;
148}
149
150/*
151 * Find block_group that's up next for discarding.
152 *
153 * @discard_ctl:  discard control
154 * @now:          current time
155 *
156 * Iterate over the discard lists to find the next block_group up for
157 * discarding checking the discard_eligible_time of block_group.
158 */
159static struct btrfs_block_group *find_next_block_group(
160					struct btrfs_discard_ctl *discard_ctl,
161					u64 now)
162{
163	struct btrfs_block_group *ret_block_group = NULL, *block_group;
164	int i;
165
166	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
167		struct list_head *discard_list = &discard_ctl->discard_list[i];
168
169		if (!list_empty(discard_list)) {
170			block_group = list_first_entry(discard_list,
171						       struct btrfs_block_group,
172						       discard_list);
173
174			if (!ret_block_group)
175				ret_block_group = block_group;
176
177			if (ret_block_group->discard_eligible_time < now)
178				break;
179
180			if (ret_block_group->discard_eligible_time >
181			    block_group->discard_eligible_time)
182				ret_block_group = block_group;
183		}
184	}
185
186	return ret_block_group;
187}
188
189/*
190 * Look up next block group and set it for use.
191 *
192 * @discard_ctl:   discard control
193 * @discard_state: the discard_state of the block_group after state management
194 * @discard_index: the discard_index of the block_group after state management
195 * @now:           time when discard was invoked, in ns
196 *
197 * Wrap find_next_block_group() and set the block_group to be in use.
198 * @discard_state's control flow is managed here.  Variables related to
199 * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
200 * and @discard_index are remembered as it may change while we're discarding,
201 * but we want the discard to execute in the context determined here.
202 */
203static struct btrfs_block_group *peek_discard_list(
204					struct btrfs_discard_ctl *discard_ctl,
205					enum btrfs_discard_state *discard_state,
206					int *discard_index, u64 now)
207{
208	struct btrfs_block_group *block_group;
 
209
210	spin_lock(&discard_ctl->lock);
211again:
212	block_group = find_next_block_group(discard_ctl, now);
213
214	if (block_group && now >= block_group->discard_eligible_time) {
215		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
216		    block_group->used != 0) {
217			if (btrfs_is_block_group_data_only(block_group))
218				__add_to_discard_list(discard_ctl, block_group);
219			else
220				list_del_init(&block_group->discard_list);
221			goto again;
222		}
223		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
224			block_group->discard_cursor = block_group->start;
225			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
226		}
227		discard_ctl->block_group = block_group;
228	}
229	if (block_group) {
230		*discard_state = block_group->discard_state;
231		*discard_index = block_group->discard_index;
 
 
232	}
 
233	spin_unlock(&discard_ctl->lock);
234
235	return block_group;
236}
237
238/*
239 * Update a block group's filters.
240 *
241 * @block_group:  block group of interest
242 * @bytes:        recently freed region size after coalescing
243 *
244 * Async discard maintains multiple lists with progressively smaller filters
245 * to prioritize discarding based on size.  Should a free space that matches
246 * a larger filter be returned to the free_space_cache, prioritize that discard
247 * by moving @block_group to the proper filter.
248 */
249void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
250				u64 bytes)
251{
252	struct btrfs_discard_ctl *discard_ctl;
253
254	if (!block_group ||
255	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
256		return;
257
258	discard_ctl = &block_group->fs_info->discard_ctl;
259
260	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
261	    bytes >= discard_minlen[block_group->discard_index - 1]) {
262		int i;
263
264		remove_from_discard_list(discard_ctl, block_group);
265
266		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
267		     i++) {
268			if (bytes >= discard_minlen[i]) {
269				block_group->discard_index = i;
270				add_to_discard_list(discard_ctl, block_group);
271				break;
272			}
273		}
274	}
275}
276
277/*
278 * Move a block group along the discard lists.
279 *
280 * @discard_ctl: discard control
281 * @block_group: block_group of interest
282 *
283 * Increment @block_group's discard_index.  If it falls of the list, let it be.
284 * Otherwise add it back to the appropriate list.
285 */
286static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
287				       struct btrfs_block_group *block_group)
288{
289	block_group->discard_index++;
290	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
291		block_group->discard_index = 1;
292		return;
293	}
294
295	add_to_discard_list(discard_ctl, block_group);
296}
297
298/*
299 * Remove a block_group from the discard lists.
300 *
301 * @discard_ctl: discard control
302 * @block_group: block_group of interest
303 *
304 * Remove @block_group from the discard lists.  If necessary, wait on the
305 * current work and then reschedule the delayed work.
306 */
307void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
308			       struct btrfs_block_group *block_group)
309{
310	if (remove_from_discard_list(discard_ctl, block_group)) {
311		cancel_delayed_work_sync(&discard_ctl->work);
312		btrfs_discard_schedule_work(discard_ctl, true);
313	}
314}
315
316/*
317 * Handles queuing the block_groups.
318 *
319 * @discard_ctl: discard control
320 * @block_group: block_group of interest
321 *
322 * Maintain the LRU order of the discard lists.
323 */
324void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
325			      struct btrfs_block_group *block_group)
326{
327	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
328		return;
329
330	if (block_group->used == 0)
331		add_to_discard_unused_list(discard_ctl, block_group);
332	else
333		add_to_discard_list(discard_ctl, block_group);
334
335	if (!delayed_work_pending(&discard_ctl->work))
336		btrfs_discard_schedule_work(discard_ctl, false);
337}
338
339static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
340					  u64 now, bool override)
 
 
 
 
 
 
 
 
 
341{
342	struct btrfs_block_group *block_group;
 
 
 
343
344	if (!btrfs_run_discard_work(discard_ctl))
345		return;
 
346	if (!override && delayed_work_pending(&discard_ctl->work))
347		return;
348
349	block_group = find_next_block_group(discard_ctl, now);
350	if (block_group) {
351		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
352		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
353
354		/*
355		 * A single delayed workqueue item is responsible for
356		 * discarding, so we can manage the bytes rate limit by keeping
357		 * track of the previous discard.
358		 */
359		if (kbps_limit && discard_ctl->prev_discard) {
360			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
361			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
362						  NSEC_PER_SEC, bps_limit);
363
364			delay = max(delay, bps_delay);
365		}
366
367		/*
368		 * This timeout is to hopefully prevent immediate discarding
369		 * in a recently allocated block group.
370		 */
371		if (now < block_group->discard_eligible_time) {
372			u64 bg_timeout = block_group->discard_eligible_time - now;
373
374			delay = max(delay, bg_timeout);
375		}
376
377		if (override && discard_ctl->prev_discard) {
378			u64 elapsed = now - discard_ctl->prev_discard_time;
379
380			if (delay > elapsed)
381				delay -= elapsed;
382			else
383				delay = 0;
384		}
385
386		mod_delayed_work(discard_ctl->discard_workers,
387				 &discard_ctl->work, nsecs_to_jiffies(delay));
388	}
389}
390
391/*
392 * Responsible for scheduling the discard work.
393 *
394 * @discard_ctl:  discard control
395 * @override:     override the current timer
396 *
397 * Discards are issued by a delayed workqueue item.  @override is used to
398 * update the current delay as the baseline delay interval is reevaluated on
399 * transaction commit.  This is also maxed with any other rate limit.
400 */
401void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
402				 bool override)
403{
404	const u64 now = ktime_get_ns();
405
406	spin_lock(&discard_ctl->lock);
407	__btrfs_discard_schedule_work(discard_ctl, now, override);
408	spin_unlock(&discard_ctl->lock);
409}
410
411/*
412 * Determine next step of a block_group.
413 *
414 * @discard_ctl: discard control
415 * @block_group: block_group of interest
416 *
417 * Determine the next step for a block group after it's finished going through
418 * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
419 * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
420 * appropriate filter list or let it fall off.
421 */
422static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
423				      struct btrfs_block_group *block_group)
424{
425	remove_from_discard_list(discard_ctl, block_group);
426
427	if (block_group->used == 0) {
428		if (btrfs_is_free_space_trimmed(block_group))
429			btrfs_mark_bg_unused(block_group);
430		else
431			add_to_discard_unused_list(discard_ctl, block_group);
432	} else {
433		btrfs_update_discard_index(discard_ctl, block_group);
434	}
435}
436
437/*
438 * Discard work queue callback
439 *
440 * @work: work
441 *
442 * Find the next block_group to start discarding and then discard a single
443 * region.  It does this in a two-pass fashion: first extents and second
444 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
445 */
446static void btrfs_discard_workfn(struct work_struct *work)
447{
448	struct btrfs_discard_ctl *discard_ctl;
449	struct btrfs_block_group *block_group;
450	enum btrfs_discard_state discard_state;
451	int discard_index = 0;
452	u64 trimmed = 0;
453	u64 minlen = 0;
454	u64 now = ktime_get_ns();
455
456	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
457
458	block_group = peek_discard_list(discard_ctl, &discard_state,
459					&discard_index, now);
460	if (!block_group || !btrfs_run_discard_work(discard_ctl))
461		return;
462	if (now < block_group->discard_eligible_time) {
463		btrfs_discard_schedule_work(discard_ctl, false);
464		return;
465	}
466
467	/* Perform discarding */
468	minlen = discard_minlen[discard_index];
469
470	if (discard_state == BTRFS_DISCARD_BITMAPS) {
471		u64 maxlen = 0;
472
473		/*
474		 * Use the previous levels minimum discard length as the max
475		 * length filter.  In the case something is added to make a
476		 * region go beyond the max filter, the entire bitmap is set
477		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
478		 */
479		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
480			maxlen = discard_minlen[discard_index - 1];
481
482		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
483				       block_group->discard_cursor,
484				       btrfs_block_group_end(block_group),
485				       minlen, maxlen, true);
486		discard_ctl->discard_bitmap_bytes += trimmed;
487	} else {
488		btrfs_trim_block_group_extents(block_group, &trimmed,
489				       block_group->discard_cursor,
490				       btrfs_block_group_end(block_group),
491				       minlen, true);
492		discard_ctl->discard_extent_bytes += trimmed;
493	}
494
 
 
495	/* Determine next steps for a block_group */
496	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
497		if (discard_state == BTRFS_DISCARD_BITMAPS) {
498			btrfs_finish_discard_pass(discard_ctl, block_group);
499		} else {
500			block_group->discard_cursor = block_group->start;
501			spin_lock(&discard_ctl->lock);
502			if (block_group->discard_state !=
503			    BTRFS_DISCARD_RESET_CURSOR)
504				block_group->discard_state =
505							BTRFS_DISCARD_BITMAPS;
506			spin_unlock(&discard_ctl->lock);
507		}
508	}
509
510	now = ktime_get_ns();
511	spin_lock(&discard_ctl->lock);
512	discard_ctl->prev_discard = trimmed;
513	discard_ctl->prev_discard_time = now;
514	discard_ctl->block_group = NULL;
515	__btrfs_discard_schedule_work(discard_ctl, now, false);
516	spin_unlock(&discard_ctl->lock);
 
 
517}
518
519/*
520 * Determine if async discard should be running.
521 *
522 * @discard_ctl: discard control
523 *
524 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
525 */
526bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
527{
528	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
529						     struct btrfs_fs_info,
530						     discard_ctl);
531
532	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
533		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
534}
535
536/*
537 * Recalculate the base delay.
538 *
539 * @discard_ctl: discard control
540 *
541 * Recalculate the base delay which is based off the total number of
542 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
543 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
544 */
545void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
546{
547	s32 discardable_extents;
548	s64 discardable_bytes;
549	u32 iops_limit;
550	unsigned long delay;
 
551
552	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
553	if (!discardable_extents)
554		return;
555
556	spin_lock(&discard_ctl->lock);
557
558	/*
559	 * The following is to fix a potential -1 discrepancy that we're not
560	 * sure how to reproduce. But given that this is the only place that
561	 * utilizes these numbers and this is only called by from
562	 * btrfs_finish_extent_commit() which is synchronized, we can correct
563	 * here.
564	 */
565	if (discardable_extents < 0)
566		atomic_add(-discardable_extents,
567			   &discard_ctl->discardable_extents);
568
569	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
570	if (discardable_bytes < 0)
571		atomic64_add(-discardable_bytes,
572			     &discard_ctl->discardable_bytes);
573
574	if (discardable_extents <= 0) {
575		spin_unlock(&discard_ctl->lock);
576		return;
577	}
578
579	iops_limit = READ_ONCE(discard_ctl->iops_limit);
580	if (iops_limit)
581		delay = MSEC_PER_SEC / iops_limit;
582	else
583		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
584
585	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
586		      BTRFS_DISCARD_MAX_DELAY_MSEC);
587	discard_ctl->delay_ms = delay;
588
589	spin_unlock(&discard_ctl->lock);
590}
591
592/*
593 * Propagate discard counters.
594 *
595 * @block_group: block_group of interest
 
596 *
597 * Propagate deltas of counters up to the discard_ctl.  It maintains a current
598 * counter and a previous counter passing the delta up to the global stat.
599 * Then the current counter value becomes the previous counter value.
600 */
601void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
 
602{
603	struct btrfs_free_space_ctl *ctl;
604	struct btrfs_discard_ctl *discard_ctl;
605	s32 extents_delta;
606	s64 bytes_delta;
607
608	if (!block_group ||
609	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
610	    !btrfs_is_block_group_data_only(block_group))
611		return;
612
613	ctl = block_group->free_space_ctl;
614	discard_ctl = &block_group->fs_info->discard_ctl;
615
616	lockdep_assert_held(&ctl->tree_lock);
617	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
618			ctl->discardable_extents[BTRFS_STAT_PREV];
619	if (extents_delta) {
620		atomic_add(extents_delta, &discard_ctl->discardable_extents);
621		ctl->discardable_extents[BTRFS_STAT_PREV] =
622			ctl->discardable_extents[BTRFS_STAT_CURR];
623	}
624
625	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
626		      ctl->discardable_bytes[BTRFS_STAT_PREV];
627	if (bytes_delta) {
628		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
629		ctl->discardable_bytes[BTRFS_STAT_PREV] =
630			ctl->discardable_bytes[BTRFS_STAT_CURR];
631	}
632}
633
634/*
635 * Punt unused_bgs list to discard lists.
636 *
637 * @fs_info: fs_info of interest
638 *
639 * The unused_bgs list needs to be punted to the discard lists because the
640 * order of operations is changed.  In the normal synchronous discard path, the
641 * block groups are trimmed via a single large trim in transaction commit.  This
642 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
643 * it must be done before going down the unused_bgs path.
644 */
645void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
646{
647	struct btrfs_block_group *block_group, *next;
648
649	spin_lock(&fs_info->unused_bgs_lock);
650	/* We enabled async discard, so punt all to the queue */
651	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
652				 bg_list) {
653		list_del_init(&block_group->bg_list);
654		btrfs_put_block_group(block_group);
655		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
656	}
657	spin_unlock(&fs_info->unused_bgs_lock);
658}
659
660/*
661 * Purge discard lists.
662 *
663 * @discard_ctl: discard control
664 *
665 * If we are disabling async discard, we may have intercepted block groups that
666 * are completely free and ready for the unused_bgs path.  As discarding will
667 * now happen in transaction commit or not at all, we can safely mark the
668 * corresponding block groups as unused and they will be sent on their merry
669 * way to the unused_bgs list.
670 */
671static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
672{
673	struct btrfs_block_group *block_group, *next;
674	int i;
675
676	spin_lock(&discard_ctl->lock);
677	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
678		list_for_each_entry_safe(block_group, next,
679					 &discard_ctl->discard_list[i],
680					 discard_list) {
681			list_del_init(&block_group->discard_list);
682			spin_unlock(&discard_ctl->lock);
683			if (block_group->used == 0)
684				btrfs_mark_bg_unused(block_group);
685			spin_lock(&discard_ctl->lock);
686		}
687	}
688	spin_unlock(&discard_ctl->lock);
689}
690
691void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
692{
693	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
694		btrfs_discard_cleanup(fs_info);
695		return;
696	}
697
698	btrfs_discard_punt_unused_bgs_list(fs_info);
699
700	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
701}
702
703void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
704{
705	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
706}
707
708void btrfs_discard_init(struct btrfs_fs_info *fs_info)
709{
710	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
711	int i;
712
713	spin_lock_init(&discard_ctl->lock);
714	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
715
716	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
717		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
718
719	discard_ctl->prev_discard = 0;
720	discard_ctl->prev_discard_time = 0;
721	atomic_set(&discard_ctl->discardable_extents, 0);
722	atomic64_set(&discard_ctl->discardable_bytes, 0);
723	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
724	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
725	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
726	discard_ctl->kbps_limit = 0;
727	discard_ctl->discard_extent_bytes = 0;
728	discard_ctl->discard_bitmap_bytes = 0;
729	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
730}
731
732void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
733{
734	btrfs_discard_stop(fs_info);
735	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
736	btrfs_discard_purge_list(&fs_info->discard_ctl);
737}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/jiffies.h>
  4#include <linux/kernel.h>
  5#include <linux/ktime.h>
  6#include <linux/list.h>
  7#include <linux/math64.h>
  8#include <linux/sizes.h>
  9#include <linux/workqueue.h>
 10#include "ctree.h"
 11#include "block-group.h"
 12#include "discard.h"
 13#include "free-space-cache.h"
 
 14
 15/*
 16 * This contains the logic to handle async discard.
 17 *
 18 * Async discard manages trimming of free space outside of transaction commit.
 19 * Discarding is done by managing the block_groups on a LRU list based on free
 20 * space recency.  Two passes are used to first prioritize discarding extents
 21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
 22 * The block_groups are maintained on multiple lists to allow for multiple
 23 * passes with different discard filter requirements.  A delayed work item is
 24 * used to manage discarding with timeout determined by a max of the delay
 25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
 26 * BTRFS_DISCARD_MAX_DELAY.
 27 *
 28 * Note, this only keeps track of block_groups that are explicitly for data.
 29 * Mixed block_groups are not supported.
 30 *
 31 * The first list is special to manage discarding of fully free block groups.
 32 * This is necessary because we issue a final trim for a full free block group
 33 * after forgetting it.  When a block group becomes unused, instead of directly
 34 * being added to the unused_bgs list, we add it to this first list.  Then
 35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
 36 * list.
 37 *
 38 * The in-memory free space cache serves as the backing state for discard.
 39 * Consequently this means there is no persistence.  We opt to load all the
 40 * block groups in as not discarded, so the mount case degenerates to the
 41 * crashing case.
 42 *
 43 * As the free space cache uses bitmaps, there exists a tradeoff between
 44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
 45 * Here we opt to let untrimmed regions merge with everything while only letting
 46 * trimmed regions merge with other trimmed regions.  This can cause
 47 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 48 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 49 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 50 * this resets the state and we will retry trimming the whole bitmap.  This is a
 51 * tradeoff between discard state accuracy and the cost of accounting.
 52 */
 53
 54/* This is an initial delay to give some chance for block reuse */
 55#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
 56#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
 57
 58/* Target completion latency of discarding all discardable extents */
 59#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
 60#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
 61#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
 62#define BTRFS_DISCARD_MAX_IOPS		(10U)
 63
 64/* Montonically decreasing minimum length filters after index 0 */
 65static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
 66	0,
 67	BTRFS_ASYNC_DISCARD_MAX_FILTER,
 68	BTRFS_ASYNC_DISCARD_MIN_FILTER
 69};
 70
 71static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
 72					  struct btrfs_block_group *block_group)
 73{
 74	return &discard_ctl->discard_list[block_group->discard_index];
 75}
 76
 77static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 78				  struct btrfs_block_group *block_group)
 79{
 80	if (!btrfs_run_discard_work(discard_ctl))
 81		return;
 82
 83	if (list_empty(&block_group->discard_list) ||
 84	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
 85		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
 86			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
 87		block_group->discard_eligible_time = (ktime_get_ns() +
 88						      BTRFS_DISCARD_DELAY);
 89		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
 90	}
 91
 92	list_move_tail(&block_group->discard_list,
 93		       get_discard_list(discard_ctl, block_group));
 94}
 95
 96static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 97				struct btrfs_block_group *block_group)
 98{
 99	if (!btrfs_is_block_group_data_only(block_group))
100		return;
101
102	spin_lock(&discard_ctl->lock);
103	__add_to_discard_list(discard_ctl, block_group);
104	spin_unlock(&discard_ctl->lock);
105}
106
107static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108				       struct btrfs_block_group *block_group)
109{
110	spin_lock(&discard_ctl->lock);
111
112	if (!btrfs_run_discard_work(discard_ctl)) {
113		spin_unlock(&discard_ctl->lock);
114		return;
115	}
116
117	list_del_init(&block_group->discard_list);
118
119	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120	block_group->discard_eligible_time = (ktime_get_ns() +
121					      BTRFS_DISCARD_UNUSED_DELAY);
122	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123	list_add_tail(&block_group->discard_list,
124		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125
126	spin_unlock(&discard_ctl->lock);
127}
128
129static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130				     struct btrfs_block_group *block_group)
131{
132	bool running = false;
133
134	spin_lock(&discard_ctl->lock);
135
136	if (block_group == discard_ctl->block_group) {
137		running = true;
138		discard_ctl->block_group = NULL;
139	}
140
141	block_group->discard_eligible_time = 0;
142	list_del_init(&block_group->discard_list);
143
144	spin_unlock(&discard_ctl->lock);
145
146	return running;
147}
148
149/**
150 * find_next_block_group - find block_group that's up next for discarding
151 * @discard_ctl: discard control
152 * @now: current time
 
153 *
154 * Iterate over the discard lists to find the next block_group up for
155 * discarding checking the discard_eligible_time of block_group.
156 */
157static struct btrfs_block_group *find_next_block_group(
158					struct btrfs_discard_ctl *discard_ctl,
159					u64 now)
160{
161	struct btrfs_block_group *ret_block_group = NULL, *block_group;
162	int i;
163
164	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165		struct list_head *discard_list = &discard_ctl->discard_list[i];
166
167		if (!list_empty(discard_list)) {
168			block_group = list_first_entry(discard_list,
169						       struct btrfs_block_group,
170						       discard_list);
171
172			if (!ret_block_group)
173				ret_block_group = block_group;
174
175			if (ret_block_group->discard_eligible_time < now)
176				break;
177
178			if (ret_block_group->discard_eligible_time >
179			    block_group->discard_eligible_time)
180				ret_block_group = block_group;
181		}
182	}
183
184	return ret_block_group;
185}
186
187/**
188 * peek_discard_list - wrap find_next_block_group()
189 * @discard_ctl: discard control
 
190 * @discard_state: the discard_state of the block_group after state management
191 * @discard_index: the discard_index of the block_group after state management
 
192 *
193 * This wraps find_next_block_group() and sets the block_group to be in use.
194 * discard_state's control flow is managed here.  Variables related to
195 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
196 * and @discard_index are remembered as it may change while we're discarding,
197 * but we want the discard to execute in the context determined here.
198 */
199static struct btrfs_block_group *peek_discard_list(
200					struct btrfs_discard_ctl *discard_ctl,
201					enum btrfs_discard_state *discard_state,
202					int *discard_index)
203{
204	struct btrfs_block_group *block_group;
205	const u64 now = ktime_get_ns();
206
207	spin_lock(&discard_ctl->lock);
208again:
209	block_group = find_next_block_group(discard_ctl, now);
210
211	if (block_group && now > block_group->discard_eligible_time) {
212		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
213		    block_group->used != 0) {
214			if (btrfs_is_block_group_data_only(block_group))
215				__add_to_discard_list(discard_ctl, block_group);
216			else
217				list_del_init(&block_group->discard_list);
218			goto again;
219		}
220		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
221			block_group->discard_cursor = block_group->start;
222			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
223		}
224		discard_ctl->block_group = block_group;
 
 
225		*discard_state = block_group->discard_state;
226		*discard_index = block_group->discard_index;
227	} else {
228		block_group = NULL;
229	}
230
231	spin_unlock(&discard_ctl->lock);
232
233	return block_group;
234}
235
236/**
237 * btrfs_discard_check_filter - updates a block groups filters
238 * @block_group: block group of interest
239 * @bytes: recently freed region size after coalescing
 
240 *
241 * Async discard maintains multiple lists with progressively smaller filters
242 * to prioritize discarding based on size.  Should a free space that matches
243 * a larger filter be returned to the free_space_cache, prioritize that discard
244 * by moving @block_group to the proper filter.
245 */
246void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
247				u64 bytes)
248{
249	struct btrfs_discard_ctl *discard_ctl;
250
251	if (!block_group ||
252	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
253		return;
254
255	discard_ctl = &block_group->fs_info->discard_ctl;
256
257	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
258	    bytes >= discard_minlen[block_group->discard_index - 1]) {
259		int i;
260
261		remove_from_discard_list(discard_ctl, block_group);
262
263		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
264		     i++) {
265			if (bytes >= discard_minlen[i]) {
266				block_group->discard_index = i;
267				add_to_discard_list(discard_ctl, block_group);
268				break;
269			}
270		}
271	}
272}
273
274/**
275 * btrfs_update_discard_index - moves a block group along the discard lists
 
276 * @discard_ctl: discard control
277 * @block_group: block_group of interest
278 *
279 * Increment @block_group's discard_index.  If it falls of the list, let it be.
280 * Otherwise add it back to the appropriate list.
281 */
282static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
283				       struct btrfs_block_group *block_group)
284{
285	block_group->discard_index++;
286	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
287		block_group->discard_index = 1;
288		return;
289	}
290
291	add_to_discard_list(discard_ctl, block_group);
292}
293
294/**
295 * btrfs_discard_cancel_work - remove a block_group from the discard lists
 
296 * @discard_ctl: discard control
297 * @block_group: block_group of interest
298 *
299 * This removes @block_group from the discard lists.  If necessary, it waits on
300 * the current work and then reschedules the delayed work.
301 */
302void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
303			       struct btrfs_block_group *block_group)
304{
305	if (remove_from_discard_list(discard_ctl, block_group)) {
306		cancel_delayed_work_sync(&discard_ctl->work);
307		btrfs_discard_schedule_work(discard_ctl, true);
308	}
309}
310
311/**
312 * btrfs_discard_queue_work - handles queuing the block_groups
 
313 * @discard_ctl: discard control
314 * @block_group: block_group of interest
315 *
316 * This maintains the LRU order of the discard lists.
317 */
318void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
319			      struct btrfs_block_group *block_group)
320{
321	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
322		return;
323
324	if (block_group->used == 0)
325		add_to_discard_unused_list(discard_ctl, block_group);
326	else
327		add_to_discard_list(discard_ctl, block_group);
328
329	if (!delayed_work_pending(&discard_ctl->work))
330		btrfs_discard_schedule_work(discard_ctl, false);
331}
332
333/**
334 * btrfs_discard_schedule_work - responsible for scheduling the discard work
335 * @discard_ctl: discard control
336 * @override: override the current timer
337 *
338 * Discards are issued by a delayed workqueue item.  @override is used to
339 * update the current delay as the baseline delay interval is reevaluated on
340 * transaction commit.  This is also maxed with any other rate limit.
341 */
342void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
343				 bool override)
344{
345	struct btrfs_block_group *block_group;
346	const u64 now = ktime_get_ns();
347
348	spin_lock(&discard_ctl->lock);
349
350	if (!btrfs_run_discard_work(discard_ctl))
351		goto out;
352
353	if (!override && delayed_work_pending(&discard_ctl->work))
354		goto out;
355
356	block_group = find_next_block_group(discard_ctl, now);
357	if (block_group) {
358		unsigned long delay = discard_ctl->delay;
359		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
360
361		/*
362		 * A single delayed workqueue item is responsible for
363		 * discarding, so we can manage the bytes rate limit by keeping
364		 * track of the previous discard.
365		 */
366		if (kbps_limit && discard_ctl->prev_discard) {
367			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
368			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
369						  MSEC_PER_SEC, bps_limit);
370
371			delay = max(delay, msecs_to_jiffies(bps_delay));
372		}
373
374		/*
375		 * This timeout is to hopefully prevent immediate discarding
376		 * in a recently allocated block group.
377		 */
378		if (now < block_group->discard_eligible_time) {
379			u64 bg_timeout = block_group->discard_eligible_time - now;
380
381			delay = max(delay, nsecs_to_jiffies(bg_timeout));
 
 
 
 
 
 
 
 
 
382		}
383
384		mod_delayed_work(discard_ctl->discard_workers,
385				 &discard_ctl->work, delay);
386	}
387out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
388	spin_unlock(&discard_ctl->lock);
389}
390
391/**
392 * btrfs_finish_discard_pass - determine next step of a block_group
 
393 * @discard_ctl: discard control
394 * @block_group: block_group of interest
395 *
396 * This determines the next step for a block group after it's finished going
397 * through a pass on a discard list.  If it is unused and fully trimmed, we can
398 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
399 * the appropriate filter list or let it fall off.
400 */
401static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
402				      struct btrfs_block_group *block_group)
403{
404	remove_from_discard_list(discard_ctl, block_group);
405
406	if (block_group->used == 0) {
407		if (btrfs_is_free_space_trimmed(block_group))
408			btrfs_mark_bg_unused(block_group);
409		else
410			add_to_discard_unused_list(discard_ctl, block_group);
411	} else {
412		btrfs_update_discard_index(discard_ctl, block_group);
413	}
414}
415
416/**
417 * btrfs_discard_workfn - discard work function
 
418 * @work: work
419 *
420 * This finds the next block_group to start discarding and then discards a
421 * single region.  It does this in a two-pass fashion: first extents and second
422 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
423 */
424static void btrfs_discard_workfn(struct work_struct *work)
425{
426	struct btrfs_discard_ctl *discard_ctl;
427	struct btrfs_block_group *block_group;
428	enum btrfs_discard_state discard_state;
429	int discard_index = 0;
430	u64 trimmed = 0;
431	u64 minlen = 0;
 
432
433	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
434
435	block_group = peek_discard_list(discard_ctl, &discard_state,
436					&discard_index);
437	if (!block_group || !btrfs_run_discard_work(discard_ctl))
438		return;
 
 
 
 
439
440	/* Perform discarding */
441	minlen = discard_minlen[discard_index];
442
443	if (discard_state == BTRFS_DISCARD_BITMAPS) {
444		u64 maxlen = 0;
445
446		/*
447		 * Use the previous levels minimum discard length as the max
448		 * length filter.  In the case something is added to make a
449		 * region go beyond the max filter, the entire bitmap is set
450		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
451		 */
452		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
453			maxlen = discard_minlen[discard_index - 1];
454
455		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
456				       block_group->discard_cursor,
457				       btrfs_block_group_end(block_group),
458				       minlen, maxlen, true);
459		discard_ctl->discard_bitmap_bytes += trimmed;
460	} else {
461		btrfs_trim_block_group_extents(block_group, &trimmed,
462				       block_group->discard_cursor,
463				       btrfs_block_group_end(block_group),
464				       minlen, true);
465		discard_ctl->discard_extent_bytes += trimmed;
466	}
467
468	discard_ctl->prev_discard = trimmed;
469
470	/* Determine next steps for a block_group */
471	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
472		if (discard_state == BTRFS_DISCARD_BITMAPS) {
473			btrfs_finish_discard_pass(discard_ctl, block_group);
474		} else {
475			block_group->discard_cursor = block_group->start;
476			spin_lock(&discard_ctl->lock);
477			if (block_group->discard_state !=
478			    BTRFS_DISCARD_RESET_CURSOR)
479				block_group->discard_state =
480							BTRFS_DISCARD_BITMAPS;
481			spin_unlock(&discard_ctl->lock);
482		}
483	}
484
 
485	spin_lock(&discard_ctl->lock);
 
 
486	discard_ctl->block_group = NULL;
 
487	spin_unlock(&discard_ctl->lock);
488
489	btrfs_discard_schedule_work(discard_ctl, false);
490}
491
492/**
493 * btrfs_run_discard_work - determines if async discard should be running
 
494 * @discard_ctl: discard control
495 *
496 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
497 */
498bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
499{
500	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
501						     struct btrfs_fs_info,
502						     discard_ctl);
503
504	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
505		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
506}
507
508/**
509 * btrfs_discard_calc_delay - recalculate the base delay
 
510 * @discard_ctl: discard control
511 *
512 * Recalculate the base delay which is based off the total number of
513 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
514 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
515 */
516void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
517{
518	s32 discardable_extents;
519	s64 discardable_bytes;
520	u32 iops_limit;
521	unsigned long delay;
522	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;
523
524	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
525	if (!discardable_extents)
526		return;
527
528	spin_lock(&discard_ctl->lock);
529
530	/*
531	 * The following is to fix a potential -1 discrepenancy that we're not
532	 * sure how to reproduce. But given that this is the only place that
533	 * utilizes these numbers and this is only called by from
534	 * btrfs_finish_extent_commit() which is synchronized, we can correct
535	 * here.
536	 */
537	if (discardable_extents < 0)
538		atomic_add(-discardable_extents,
539			   &discard_ctl->discardable_extents);
540
541	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
542	if (discardable_bytes < 0)
543		atomic64_add(-discardable_bytes,
544			     &discard_ctl->discardable_bytes);
545
546	if (discardable_extents <= 0) {
547		spin_unlock(&discard_ctl->lock);
548		return;
549	}
550
551	iops_limit = READ_ONCE(discard_ctl->iops_limit);
552	if (iops_limit)
553		lower_limit = max_t(unsigned long, lower_limit,
554				    MSEC_PER_SEC / iops_limit);
 
555
556	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
557	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
558	discard_ctl->delay = msecs_to_jiffies(delay);
559
560	spin_unlock(&discard_ctl->lock);
561}
562
563/**
564 * btrfs_discard_update_discardable - propagate discard counters
 
565 * @block_group: block_group of interest
566 * @ctl: free_space_ctl of @block_group
567 *
568 * This propagates deltas of counters up to the discard_ctl.  It maintains a
569 * current counter and a previous counter passing the delta up to the global
570 * stat.  Then the current counter value becomes the previous counter value.
571 */
572void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
573				      struct btrfs_free_space_ctl *ctl)
574{
 
575	struct btrfs_discard_ctl *discard_ctl;
576	s32 extents_delta;
577	s64 bytes_delta;
578
579	if (!block_group ||
580	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
581	    !btrfs_is_block_group_data_only(block_group))
582		return;
583
 
584	discard_ctl = &block_group->fs_info->discard_ctl;
585
 
586	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
587			ctl->discardable_extents[BTRFS_STAT_PREV];
588	if (extents_delta) {
589		atomic_add(extents_delta, &discard_ctl->discardable_extents);
590		ctl->discardable_extents[BTRFS_STAT_PREV] =
591			ctl->discardable_extents[BTRFS_STAT_CURR];
592	}
593
594	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
595		      ctl->discardable_bytes[BTRFS_STAT_PREV];
596	if (bytes_delta) {
597		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
598		ctl->discardable_bytes[BTRFS_STAT_PREV] =
599			ctl->discardable_bytes[BTRFS_STAT_CURR];
600	}
601}
602
603/**
604 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
 
605 * @fs_info: fs_info of interest
606 *
607 * The unused_bgs list needs to be punted to the discard lists because the
608 * order of operations is changed.  In the normal sychronous discard path, the
609 * block groups are trimmed via a single large trim in transaction commit.  This
610 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
611 * it must be done before going down the unused_bgs path.
612 */
613void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
614{
615	struct btrfs_block_group *block_group, *next;
616
617	spin_lock(&fs_info->unused_bgs_lock);
618	/* We enabled async discard, so punt all to the queue */
619	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
620				 bg_list) {
621		list_del_init(&block_group->bg_list);
622		btrfs_put_block_group(block_group);
623		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
624	}
625	spin_unlock(&fs_info->unused_bgs_lock);
626}
627
628/**
629 * btrfs_discard_purge_list - purge discard lists
 
630 * @discard_ctl: discard control
631 *
632 * If we are disabling async discard, we may have intercepted block groups that
633 * are completely free and ready for the unused_bgs path.  As discarding will
634 * now happen in transaction commit or not at all, we can safely mark the
635 * corresponding block groups as unused and they will be sent on their merry
636 * way to the unused_bgs list.
637 */
638static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
639{
640	struct btrfs_block_group *block_group, *next;
641	int i;
642
643	spin_lock(&discard_ctl->lock);
644	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
645		list_for_each_entry_safe(block_group, next,
646					 &discard_ctl->discard_list[i],
647					 discard_list) {
648			list_del_init(&block_group->discard_list);
649			spin_unlock(&discard_ctl->lock);
650			if (block_group->used == 0)
651				btrfs_mark_bg_unused(block_group);
652			spin_lock(&discard_ctl->lock);
653		}
654	}
655	spin_unlock(&discard_ctl->lock);
656}
657
658void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
659{
660	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
661		btrfs_discard_cleanup(fs_info);
662		return;
663	}
664
665	btrfs_discard_punt_unused_bgs_list(fs_info);
666
667	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
668}
669
670void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
671{
672	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
673}
674
675void btrfs_discard_init(struct btrfs_fs_info *fs_info)
676{
677	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
678	int i;
679
680	spin_lock_init(&discard_ctl->lock);
681	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
682
683	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
684		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
685
686	discard_ctl->prev_discard = 0;
 
687	atomic_set(&discard_ctl->discardable_extents, 0);
688	atomic64_set(&discard_ctl->discardable_bytes, 0);
689	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
690	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
691	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
692	discard_ctl->kbps_limit = 0;
693	discard_ctl->discard_extent_bytes = 0;
694	discard_ctl->discard_bitmap_bytes = 0;
695	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
696}
697
698void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
699{
700	btrfs_discard_stop(fs_info);
701	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
702	btrfs_discard_purge_list(&fs_info->discard_ctl);
703}