Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/backing-dev.h>
9#include <linux/slab.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/netfs.h>
15#include "internal.h"
16
17static int afs_writepages_region(struct address_space *mapping,
18 struct writeback_control *wbc,
19 loff_t start, loff_t end, loff_t *_next,
20 bool max_one_loop);
21
22static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len,
23 loff_t i_size, bool caching);
24
25#ifdef CONFIG_AFS_FSCACHE
26/*
27 * Mark a page as having been made dirty and thus needing writeback. We also
28 * need to pin the cache object to write back to.
29 */
30bool afs_dirty_folio(struct address_space *mapping, struct folio *folio)
31{
32 return fscache_dirty_folio(mapping, folio,
33 afs_vnode_cache(AFS_FS_I(mapping->host)));
34}
35static void afs_folio_start_fscache(bool caching, struct folio *folio)
36{
37 if (caching)
38 folio_start_fscache(folio);
39}
40#else
41static void afs_folio_start_fscache(bool caching, struct folio *folio)
42{
43}
44#endif
45
46/*
47 * Flush out a conflicting write. This may extend the write to the surrounding
48 * pages if also dirty and contiguous to the conflicting region..
49 */
50static int afs_flush_conflicting_write(struct address_space *mapping,
51 struct folio *folio)
52{
53 struct writeback_control wbc = {
54 .sync_mode = WB_SYNC_ALL,
55 .nr_to_write = LONG_MAX,
56 .range_start = folio_pos(folio),
57 .range_end = LLONG_MAX,
58 };
59 loff_t next;
60
61 return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX,
62 &next, true);
63}
64
65/*
66 * prepare to perform part of a write to a page
67 */
68int afs_write_begin(struct file *file, struct address_space *mapping,
69 loff_t pos, unsigned len,
70 struct page **_page, void **fsdata)
71{
72 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
73 struct folio *folio;
74 unsigned long priv;
75 unsigned f, from;
76 unsigned t, to;
77 pgoff_t index;
78 int ret;
79
80 _enter("{%llx:%llu},%llx,%x",
81 vnode->fid.vid, vnode->fid.vnode, pos, len);
82
83 /* Prefetch area to be written into the cache if we're caching this
84 * file. We need to do this before we get a lock on the page in case
85 * there's more than one writer competing for the same cache block.
86 */
87 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata);
88 if (ret < 0)
89 return ret;
90
91 index = folio_index(folio);
92 from = pos - index * PAGE_SIZE;
93 to = from + len;
94
95try_again:
96 /* See if this page is already partially written in a way that we can
97 * merge the new write with.
98 */
99 if (folio_test_private(folio)) {
100 priv = (unsigned long)folio_get_private(folio);
101 f = afs_folio_dirty_from(folio, priv);
102 t = afs_folio_dirty_to(folio, priv);
103 ASSERTCMP(f, <=, t);
104
105 if (folio_test_writeback(folio)) {
106 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio);
107 folio_unlock(folio);
108 goto wait_for_writeback;
109 }
110 /* If the file is being filled locally, allow inter-write
111 * spaces to be merged into writes. If it's not, only write
112 * back what the user gives us.
113 */
114 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
115 (to < f || from > t))
116 goto flush_conflicting_write;
117 }
118
119 *_page = folio_file_page(folio, pos / PAGE_SIZE);
120 _leave(" = 0");
121 return 0;
122
123 /* The previous write and this write aren't adjacent or overlapping, so
124 * flush the page out.
125 */
126flush_conflicting_write:
127 trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio);
128 folio_unlock(folio);
129
130 ret = afs_flush_conflicting_write(mapping, folio);
131 if (ret < 0)
132 goto error;
133
134wait_for_writeback:
135 ret = folio_wait_writeback_killable(folio);
136 if (ret < 0)
137 goto error;
138
139 ret = folio_lock_killable(folio);
140 if (ret < 0)
141 goto error;
142 goto try_again;
143
144error:
145 folio_put(folio);
146 _leave(" = %d", ret);
147 return ret;
148}
149
150/*
151 * finalise part of a write to a page
152 */
153int afs_write_end(struct file *file, struct address_space *mapping,
154 loff_t pos, unsigned len, unsigned copied,
155 struct page *subpage, void *fsdata)
156{
157 struct folio *folio = page_folio(subpage);
158 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
159 unsigned long priv;
160 unsigned int f, from = offset_in_folio(folio, pos);
161 unsigned int t, to = from + copied;
162 loff_t i_size, write_end_pos;
163
164 _enter("{%llx:%llu},{%lx}",
165 vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
166
167 if (!folio_test_uptodate(folio)) {
168 if (copied < len) {
169 copied = 0;
170 goto out;
171 }
172
173 folio_mark_uptodate(folio);
174 }
175
176 if (copied == 0)
177 goto out;
178
179 write_end_pos = pos + copied;
180
181 i_size = i_size_read(&vnode->netfs.inode);
182 if (write_end_pos > i_size) {
183 write_seqlock(&vnode->cb_lock);
184 i_size = i_size_read(&vnode->netfs.inode);
185 if (write_end_pos > i_size)
186 afs_set_i_size(vnode, write_end_pos);
187 write_sequnlock(&vnode->cb_lock);
188 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos);
189 }
190
191 if (folio_test_private(folio)) {
192 priv = (unsigned long)folio_get_private(folio);
193 f = afs_folio_dirty_from(folio, priv);
194 t = afs_folio_dirty_to(folio, priv);
195 if (from < f)
196 f = from;
197 if (to > t)
198 t = to;
199 priv = afs_folio_dirty(folio, f, t);
200 folio_change_private(folio, (void *)priv);
201 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio);
202 } else {
203 priv = afs_folio_dirty(folio, from, to);
204 folio_attach_private(folio, (void *)priv);
205 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio);
206 }
207
208 if (folio_mark_dirty(folio))
209 _debug("dirtied %lx", folio_index(folio));
210
211out:
212 folio_unlock(folio);
213 folio_put(folio);
214 return copied;
215}
216
217/*
218 * kill all the pages in the given range
219 */
220static void afs_kill_pages(struct address_space *mapping,
221 loff_t start, loff_t len)
222{
223 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
224 struct folio *folio;
225 pgoff_t index = start / PAGE_SIZE;
226 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
227
228 _enter("{%llx:%llu},%llx @%llx",
229 vnode->fid.vid, vnode->fid.vnode, len, start);
230
231 do {
232 _debug("kill %lx (to %lx)", index, last);
233
234 folio = filemap_get_folio(mapping, index);
235 if (!folio) {
236 next = index + 1;
237 continue;
238 }
239
240 next = folio_next_index(folio);
241
242 folio_clear_uptodate(folio);
243 folio_end_writeback(folio);
244 folio_lock(folio);
245 generic_error_remove_page(mapping, &folio->page);
246 folio_unlock(folio);
247 folio_put(folio);
248
249 } while (index = next, index <= last);
250
251 _leave("");
252}
253
254/*
255 * Redirty all the pages in a given range.
256 */
257static void afs_redirty_pages(struct writeback_control *wbc,
258 struct address_space *mapping,
259 loff_t start, loff_t len)
260{
261 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
262 struct folio *folio;
263 pgoff_t index = start / PAGE_SIZE;
264 pgoff_t last = (start + len - 1) / PAGE_SIZE, next;
265
266 _enter("{%llx:%llu},%llx @%llx",
267 vnode->fid.vid, vnode->fid.vnode, len, start);
268
269 do {
270 _debug("redirty %llx @%llx", len, start);
271
272 folio = filemap_get_folio(mapping, index);
273 if (!folio) {
274 next = index + 1;
275 continue;
276 }
277
278 next = index + folio_nr_pages(folio);
279 folio_redirty_for_writepage(wbc, folio);
280 folio_end_writeback(folio);
281 folio_put(folio);
282 } while (index = next, index <= last);
283
284 _leave("");
285}
286
287/*
288 * completion of write to server
289 */
290static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
291{
292 struct address_space *mapping = vnode->netfs.inode.i_mapping;
293 struct folio *folio;
294 pgoff_t end;
295
296 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
297
298 _enter("{%llx:%llu},{%x @%llx}",
299 vnode->fid.vid, vnode->fid.vnode, len, start);
300
301 rcu_read_lock();
302
303 end = (start + len - 1) / PAGE_SIZE;
304 xas_for_each(&xas, folio, end) {
305 if (!folio_test_writeback(folio)) {
306 kdebug("bad %x @%llx page %lx %lx",
307 len, start, folio_index(folio), end);
308 ASSERT(folio_test_writeback(folio));
309 }
310
311 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio);
312 folio_detach_private(folio);
313 folio_end_writeback(folio);
314 }
315
316 rcu_read_unlock();
317
318 afs_prune_wb_keys(vnode);
319 _leave("");
320}
321
322/*
323 * Find a key to use for the writeback. We cached the keys used to author the
324 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
325 * and we need to start from there if it's set.
326 */
327static int afs_get_writeback_key(struct afs_vnode *vnode,
328 struct afs_wb_key **_wbk)
329{
330 struct afs_wb_key *wbk = NULL;
331 struct list_head *p;
332 int ret = -ENOKEY, ret2;
333
334 spin_lock(&vnode->wb_lock);
335 if (*_wbk)
336 p = (*_wbk)->vnode_link.next;
337 else
338 p = vnode->wb_keys.next;
339
340 while (p != &vnode->wb_keys) {
341 wbk = list_entry(p, struct afs_wb_key, vnode_link);
342 _debug("wbk %u", key_serial(wbk->key));
343 ret2 = key_validate(wbk->key);
344 if (ret2 == 0) {
345 refcount_inc(&wbk->usage);
346 _debug("USE WB KEY %u", key_serial(wbk->key));
347 break;
348 }
349
350 wbk = NULL;
351 if (ret == -ENOKEY)
352 ret = ret2;
353 p = p->next;
354 }
355
356 spin_unlock(&vnode->wb_lock);
357 if (*_wbk)
358 afs_put_wb_key(*_wbk);
359 *_wbk = wbk;
360 return 0;
361}
362
363static void afs_store_data_success(struct afs_operation *op)
364{
365 struct afs_vnode *vnode = op->file[0].vnode;
366
367 op->ctime = op->file[0].scb.status.mtime_client;
368 afs_vnode_commit_status(op, &op->file[0]);
369 if (op->error == 0) {
370 if (!op->store.laundering)
371 afs_pages_written_back(vnode, op->store.pos, op->store.size);
372 afs_stat_v(vnode, n_stores);
373 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
374 }
375}
376
377static const struct afs_operation_ops afs_store_data_operation = {
378 .issue_afs_rpc = afs_fs_store_data,
379 .issue_yfs_rpc = yfs_fs_store_data,
380 .success = afs_store_data_success,
381};
382
383/*
384 * write to a file
385 */
386static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
387 bool laundering)
388{
389 struct afs_operation *op;
390 struct afs_wb_key *wbk = NULL;
391 loff_t size = iov_iter_count(iter);
392 int ret = -ENOKEY;
393
394 _enter("%s{%llx:%llu.%u},%llx,%llx",
395 vnode->volume->name,
396 vnode->fid.vid,
397 vnode->fid.vnode,
398 vnode->fid.unique,
399 size, pos);
400
401 ret = afs_get_writeback_key(vnode, &wbk);
402 if (ret) {
403 _leave(" = %d [no keys]", ret);
404 return ret;
405 }
406
407 op = afs_alloc_operation(wbk->key, vnode->volume);
408 if (IS_ERR(op)) {
409 afs_put_wb_key(wbk);
410 return -ENOMEM;
411 }
412
413 afs_op_set_vnode(op, 0, vnode);
414 op->file[0].dv_delta = 1;
415 op->file[0].modification = true;
416 op->store.write_iter = iter;
417 op->store.pos = pos;
418 op->store.size = size;
419 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size);
420 op->store.laundering = laundering;
421 op->mtime = vnode->netfs.inode.i_mtime;
422 op->flags |= AFS_OPERATION_UNINTR;
423 op->ops = &afs_store_data_operation;
424
425try_next_key:
426 afs_begin_vnode_operation(op);
427 afs_wait_for_operation(op);
428
429 switch (op->error) {
430 case -EACCES:
431 case -EPERM:
432 case -ENOKEY:
433 case -EKEYEXPIRED:
434 case -EKEYREJECTED:
435 case -EKEYREVOKED:
436 _debug("next");
437
438 ret = afs_get_writeback_key(vnode, &wbk);
439 if (ret == 0) {
440 key_put(op->key);
441 op->key = key_get(wbk->key);
442 goto try_next_key;
443 }
444 break;
445 }
446
447 afs_put_wb_key(wbk);
448 _leave(" = %d", op->error);
449 return afs_put_operation(op);
450}
451
452/*
453 * Extend the region to be written back to include subsequent contiguously
454 * dirty pages if possible, but don't sleep while doing so.
455 *
456 * If this page holds new content, then we can include filler zeros in the
457 * writeback.
458 */
459static void afs_extend_writeback(struct address_space *mapping,
460 struct afs_vnode *vnode,
461 long *_count,
462 loff_t start,
463 loff_t max_len,
464 bool new_content,
465 bool caching,
466 unsigned int *_len)
467{
468 struct pagevec pvec;
469 struct folio *folio;
470 unsigned long priv;
471 unsigned int psize, filler = 0;
472 unsigned int f, t;
473 loff_t len = *_len;
474 pgoff_t index = (start + len) / PAGE_SIZE;
475 bool stop = true;
476 unsigned int i;
477
478 XA_STATE(xas, &mapping->i_pages, index);
479 pagevec_init(&pvec);
480
481 do {
482 /* Firstly, we gather up a batch of contiguous dirty pages
483 * under the RCU read lock - but we can't clear the dirty flags
484 * there if any of those pages are mapped.
485 */
486 rcu_read_lock();
487
488 xas_for_each(&xas, folio, ULONG_MAX) {
489 stop = true;
490 if (xas_retry(&xas, folio))
491 continue;
492 if (xa_is_value(folio))
493 break;
494 if (folio_index(folio) != index)
495 break;
496
497 if (!folio_try_get_rcu(folio)) {
498 xas_reset(&xas);
499 continue;
500 }
501
502 /* Has the page moved or been split? */
503 if (unlikely(folio != xas_reload(&xas))) {
504 folio_put(folio);
505 break;
506 }
507
508 if (!folio_trylock(folio)) {
509 folio_put(folio);
510 break;
511 }
512 if (!folio_test_dirty(folio) ||
513 folio_test_writeback(folio) ||
514 folio_test_fscache(folio)) {
515 folio_unlock(folio);
516 folio_put(folio);
517 break;
518 }
519
520 psize = folio_size(folio);
521 priv = (unsigned long)folio_get_private(folio);
522 f = afs_folio_dirty_from(folio, priv);
523 t = afs_folio_dirty_to(folio, priv);
524 if (f != 0 && !new_content) {
525 folio_unlock(folio);
526 folio_put(folio);
527 break;
528 }
529
530 len += filler + t;
531 filler = psize - t;
532 if (len >= max_len || *_count <= 0)
533 stop = true;
534 else if (t == psize || new_content)
535 stop = false;
536
537 index += folio_nr_pages(folio);
538 if (!pagevec_add(&pvec, &folio->page))
539 break;
540 if (stop)
541 break;
542 }
543
544 if (!stop)
545 xas_pause(&xas);
546 rcu_read_unlock();
547
548 /* Now, if we obtained any pages, we can shift them to being
549 * writable and mark them for caching.
550 */
551 if (!pagevec_count(&pvec))
552 break;
553
554 for (i = 0; i < pagevec_count(&pvec); i++) {
555 folio = page_folio(pvec.pages[i]);
556 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio);
557
558 if (!folio_clear_dirty_for_io(folio))
559 BUG();
560 if (folio_start_writeback(folio))
561 BUG();
562 afs_folio_start_fscache(caching, folio);
563
564 *_count -= folio_nr_pages(folio);
565 folio_unlock(folio);
566 }
567
568 pagevec_release(&pvec);
569 cond_resched();
570 } while (!stop);
571
572 *_len = len;
573}
574
575/*
576 * Synchronously write back the locked page and any subsequent non-locked dirty
577 * pages.
578 */
579static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping,
580 struct writeback_control *wbc,
581 struct folio *folio,
582 loff_t start, loff_t end)
583{
584 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
585 struct iov_iter iter;
586 unsigned long priv;
587 unsigned int offset, to, len, max_len;
588 loff_t i_size = i_size_read(&vnode->netfs.inode);
589 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
590 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode));
591 long count = wbc->nr_to_write;
592 int ret;
593
594 _enter(",%lx,%llx-%llx", folio_index(folio), start, end);
595
596 if (folio_start_writeback(folio))
597 BUG();
598 afs_folio_start_fscache(caching, folio);
599
600 count -= folio_nr_pages(folio);
601
602 /* Find all consecutive lockable dirty pages that have contiguous
603 * written regions, stopping when we find a page that is not
604 * immediately lockable, is not dirty or is missing, or we reach the
605 * end of the range.
606 */
607 priv = (unsigned long)folio_get_private(folio);
608 offset = afs_folio_dirty_from(folio, priv);
609 to = afs_folio_dirty_to(folio, priv);
610 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio);
611
612 len = to - offset;
613 start += offset;
614 if (start < i_size) {
615 /* Trim the write to the EOF; the extra data is ignored. Also
616 * put an upper limit on the size of a single storedata op.
617 */
618 max_len = 65536 * 4096;
619 max_len = min_t(unsigned long long, max_len, end - start + 1);
620 max_len = min_t(unsigned long long, max_len, i_size - start);
621
622 if (len < max_len &&
623 (to == folio_size(folio) || new_content))
624 afs_extend_writeback(mapping, vnode, &count,
625 start, max_len, new_content,
626 caching, &len);
627 len = min_t(loff_t, len, max_len);
628 }
629
630 /* We now have a contiguous set of dirty pages, each with writeback
631 * set; the first page is still locked at this point, but all the rest
632 * have been unlocked.
633 */
634 folio_unlock(folio);
635
636 if (start < i_size) {
637 _debug("write back %x @%llx [%llx]", len, start, i_size);
638
639 /* Speculatively write to the cache. We have to fix this up
640 * later if the store fails.
641 */
642 afs_write_to_cache(vnode, start, len, i_size, caching);
643
644 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len);
645 ret = afs_store_data(vnode, &iter, start, false);
646 } else {
647 _debug("write discard %x @%llx [%llx]", len, start, i_size);
648
649 /* The dirty region was entirely beyond the EOF. */
650 fscache_clear_page_bits(mapping, start, len, caching);
651 afs_pages_written_back(vnode, start, len);
652 ret = 0;
653 }
654
655 switch (ret) {
656 case 0:
657 wbc->nr_to_write = count;
658 ret = len;
659 break;
660
661 default:
662 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
663 fallthrough;
664 case -EACCES:
665 case -EPERM:
666 case -ENOKEY:
667 case -EKEYEXPIRED:
668 case -EKEYREJECTED:
669 case -EKEYREVOKED:
670 case -ENETRESET:
671 afs_redirty_pages(wbc, mapping, start, len);
672 mapping_set_error(mapping, ret);
673 break;
674
675 case -EDQUOT:
676 case -ENOSPC:
677 afs_redirty_pages(wbc, mapping, start, len);
678 mapping_set_error(mapping, -ENOSPC);
679 break;
680
681 case -EROFS:
682 case -EIO:
683 case -EREMOTEIO:
684 case -EFBIG:
685 case -ENOENT:
686 case -ENOMEDIUM:
687 case -ENXIO:
688 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
689 afs_kill_pages(mapping, start, len);
690 mapping_set_error(mapping, ret);
691 break;
692 }
693
694 _leave(" = %d", ret);
695 return ret;
696}
697
698/*
699 * write a region of pages back to the server
700 */
701static int afs_writepages_region(struct address_space *mapping,
702 struct writeback_control *wbc,
703 loff_t start, loff_t end, loff_t *_next,
704 bool max_one_loop)
705{
706 struct folio *folio;
707 struct page *head_page;
708 ssize_t ret;
709 int n, skips = 0;
710
711 _enter("%llx,%llx,", start, end);
712
713 do {
714 pgoff_t index = start / PAGE_SIZE;
715
716 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
717 PAGECACHE_TAG_DIRTY, 1, &head_page);
718 if (!n)
719 break;
720
721 folio = page_folio(head_page);
722 start = folio_pos(folio); /* May regress with THPs */
723
724 _debug("wback %lx", folio_index(folio));
725
726 /* At this point we hold neither the i_pages lock nor the
727 * page lock: the page may be truncated or invalidated
728 * (changing page->mapping to NULL), or even swizzled
729 * back from swapper_space to tmpfs file mapping
730 */
731 if (wbc->sync_mode != WB_SYNC_NONE) {
732 ret = folio_lock_killable(folio);
733 if (ret < 0) {
734 folio_put(folio);
735 return ret;
736 }
737 } else {
738 if (!folio_trylock(folio)) {
739 folio_put(folio);
740 return 0;
741 }
742 }
743
744 if (folio_mapping(folio) != mapping ||
745 !folio_test_dirty(folio)) {
746 start += folio_size(folio);
747 folio_unlock(folio);
748 folio_put(folio);
749 continue;
750 }
751
752 if (folio_test_writeback(folio) ||
753 folio_test_fscache(folio)) {
754 folio_unlock(folio);
755 if (wbc->sync_mode != WB_SYNC_NONE) {
756 folio_wait_writeback(folio);
757#ifdef CONFIG_AFS_FSCACHE
758 folio_wait_fscache(folio);
759#endif
760 } else {
761 start += folio_size(folio);
762 }
763 folio_put(folio);
764 if (wbc->sync_mode == WB_SYNC_NONE) {
765 if (skips >= 5 || need_resched())
766 break;
767 skips++;
768 }
769 continue;
770 }
771
772 if (!folio_clear_dirty_for_io(folio))
773 BUG();
774 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end);
775 folio_put(folio);
776 if (ret < 0) {
777 _leave(" = %zd", ret);
778 return ret;
779 }
780
781 start += ret;
782
783 if (max_one_loop)
784 break;
785
786 cond_resched();
787 } while (wbc->nr_to_write > 0);
788
789 *_next = start;
790 _leave(" = 0 [%llx]", *_next);
791 return 0;
792}
793
794/*
795 * write some of the pending data back to the server
796 */
797int afs_writepages(struct address_space *mapping,
798 struct writeback_control *wbc)
799{
800 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
801 loff_t start, next;
802 int ret;
803
804 _enter("");
805
806 /* We have to be careful as we can end up racing with setattr()
807 * truncating the pagecache since the caller doesn't take a lock here
808 * to prevent it.
809 */
810 if (wbc->sync_mode == WB_SYNC_ALL)
811 down_read(&vnode->validate_lock);
812 else if (!down_read_trylock(&vnode->validate_lock))
813 return 0;
814
815 if (wbc->range_cyclic) {
816 start = mapping->writeback_index * PAGE_SIZE;
817 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX,
818 &next, false);
819 if (ret == 0) {
820 mapping->writeback_index = next / PAGE_SIZE;
821 if (start > 0 && wbc->nr_to_write > 0) {
822 ret = afs_writepages_region(mapping, wbc, 0,
823 start, &next, false);
824 if (ret == 0)
825 mapping->writeback_index =
826 next / PAGE_SIZE;
827 }
828 }
829 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
830 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX,
831 &next, false);
832 if (wbc->nr_to_write > 0 && ret == 0)
833 mapping->writeback_index = next / PAGE_SIZE;
834 } else {
835 ret = afs_writepages_region(mapping, wbc,
836 wbc->range_start, wbc->range_end,
837 &next, false);
838 }
839
840 up_read(&vnode->validate_lock);
841 _leave(" = %d", ret);
842 return ret;
843}
844
845/*
846 * write to an AFS file
847 */
848ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
849{
850 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
851 struct afs_file *af = iocb->ki_filp->private_data;
852 ssize_t result;
853 size_t count = iov_iter_count(from);
854
855 _enter("{%llx:%llu},{%zu},",
856 vnode->fid.vid, vnode->fid.vnode, count);
857
858 if (IS_SWAPFILE(&vnode->netfs.inode)) {
859 printk(KERN_INFO
860 "AFS: Attempt to write to active swap file!\n");
861 return -EBUSY;
862 }
863
864 if (!count)
865 return 0;
866
867 result = afs_validate(vnode, af->key);
868 if (result < 0)
869 return result;
870
871 result = generic_file_write_iter(iocb, from);
872
873 _leave(" = %zd", result);
874 return result;
875}
876
877/*
878 * flush any dirty pages for this process, and check for write errors.
879 * - the return status from this call provides a reliable indication of
880 * whether any write errors occurred for this process.
881 */
882int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
883{
884 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
885 struct afs_file *af = file->private_data;
886 int ret;
887
888 _enter("{%llx:%llu},{n=%pD},%d",
889 vnode->fid.vid, vnode->fid.vnode, file,
890 datasync);
891
892 ret = afs_validate(vnode, af->key);
893 if (ret < 0)
894 return ret;
895
896 return file_write_and_wait_range(file, start, end);
897}
898
899/*
900 * notification that a previously read-only page is about to become writable
901 * - if it returns an error, the caller will deliver a bus error signal
902 */
903vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
904{
905 struct folio *folio = page_folio(vmf->page);
906 struct file *file = vmf->vma->vm_file;
907 struct inode *inode = file_inode(file);
908 struct afs_vnode *vnode = AFS_FS_I(inode);
909 struct afs_file *af = file->private_data;
910 unsigned long priv;
911 vm_fault_t ret = VM_FAULT_RETRY;
912
913 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio));
914
915 afs_validate(vnode, af->key);
916
917 sb_start_pagefault(inode->i_sb);
918
919 /* Wait for the page to be written to the cache before we allow it to
920 * be modified. We then assume the entire page will need writing back.
921 */
922#ifdef CONFIG_AFS_FSCACHE
923 if (folio_test_fscache(folio) &&
924 folio_wait_fscache_killable(folio) < 0)
925 goto out;
926#endif
927
928 if (folio_wait_writeback_killable(folio))
929 goto out;
930
931 if (folio_lock_killable(folio) < 0)
932 goto out;
933
934 /* We mustn't change folio->private until writeback is complete as that
935 * details the portion of the page we need to write back and we might
936 * need to redirty the page if there's a problem.
937 */
938 if (folio_wait_writeback_killable(folio) < 0) {
939 folio_unlock(folio);
940 goto out;
941 }
942
943 priv = afs_folio_dirty(folio, 0, folio_size(folio));
944 priv = afs_folio_dirty_mmapped(priv);
945 if (folio_test_private(folio)) {
946 folio_change_private(folio, (void *)priv);
947 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio);
948 } else {
949 folio_attach_private(folio, (void *)priv);
950 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio);
951 }
952 file_update_time(file);
953
954 ret = VM_FAULT_LOCKED;
955out:
956 sb_end_pagefault(inode->i_sb);
957 return ret;
958}
959
960/*
961 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
962 */
963void afs_prune_wb_keys(struct afs_vnode *vnode)
964{
965 LIST_HEAD(graveyard);
966 struct afs_wb_key *wbk, *tmp;
967
968 /* Discard unused keys */
969 spin_lock(&vnode->wb_lock);
970
971 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
972 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
973 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
974 if (refcount_read(&wbk->usage) == 1)
975 list_move(&wbk->vnode_link, &graveyard);
976 }
977 }
978
979 spin_unlock(&vnode->wb_lock);
980
981 while (!list_empty(&graveyard)) {
982 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
983 list_del(&wbk->vnode_link);
984 afs_put_wb_key(wbk);
985 }
986}
987
988/*
989 * Clean up a page during invalidation.
990 */
991int afs_launder_folio(struct folio *folio)
992{
993 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
994 struct iov_iter iter;
995 struct bio_vec bv[1];
996 unsigned long priv;
997 unsigned int f, t;
998 int ret = 0;
999
1000 _enter("{%lx}", folio->index);
1001
1002 priv = (unsigned long)folio_get_private(folio);
1003 if (folio_clear_dirty_for_io(folio)) {
1004 f = 0;
1005 t = folio_size(folio);
1006 if (folio_test_private(folio)) {
1007 f = afs_folio_dirty_from(folio, priv);
1008 t = afs_folio_dirty_to(folio, priv);
1009 }
1010
1011 bv[0].bv_page = &folio->page;
1012 bv[0].bv_offset = f;
1013 bv[0].bv_len = t - f;
1014 iov_iter_bvec(&iter, ITER_SOURCE, bv, 1, bv[0].bv_len);
1015
1016 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio);
1017 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true);
1018 }
1019
1020 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio);
1021 folio_detach_private(folio);
1022 folio_wait_fscache(folio);
1023 return ret;
1024}
1025
1026/*
1027 * Deal with the completion of writing the data to the cache.
1028 */
1029static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error,
1030 bool was_async)
1031{
1032 struct afs_vnode *vnode = priv;
1033
1034 if (IS_ERR_VALUE(transferred_or_error) &&
1035 transferred_or_error != -ENOBUFS)
1036 afs_invalidate_cache(vnode, 0);
1037}
1038
1039/*
1040 * Save the write to the cache also.
1041 */
1042static void afs_write_to_cache(struct afs_vnode *vnode,
1043 loff_t start, size_t len, loff_t i_size,
1044 bool caching)
1045{
1046 fscache_write_to_cache(afs_vnode_cache(vnode),
1047 vnode->netfs.inode.i_mapping, start, len, i_size,
1048 afs_write_to_cache_done, vnode, caching);
1049}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* handling of writes to regular files and writing back to the server
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#include <linux/backing-dev.h>
9#include <linux/slab.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include "internal.h"
15
16/*
17 * mark a page as having been made dirty and thus needing writeback
18 */
19int afs_set_page_dirty(struct page *page)
20{
21 _enter("");
22 return __set_page_dirty_nobuffers(page);
23}
24
25/*
26 * partly or wholly fill a page that's under preparation for writing
27 */
28static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 loff_t pos, unsigned int len, struct page *page)
30{
31 struct afs_read *req;
32 size_t p;
33 void *data;
34 int ret;
35
36 _enter(",,%llu", (unsigned long long)pos);
37
38 if (pos >= vnode->vfs_inode.i_size) {
39 p = pos & ~PAGE_MASK;
40 ASSERTCMP(p + len, <=, PAGE_SIZE);
41 data = kmap(page);
42 memset(data + p, 0, len);
43 kunmap(page);
44 return 0;
45 }
46
47 req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 if (!req)
49 return -ENOMEM;
50
51 refcount_set(&req->usage, 1);
52 req->pos = pos;
53 req->len = len;
54 req->nr_pages = 1;
55 req->pages = req->array;
56 req->pages[0] = page;
57 get_page(page);
58
59 ret = afs_fetch_data(vnode, key, req);
60 afs_put_read(req);
61 if (ret < 0) {
62 if (ret == -ENOENT) {
63 _debug("got NOENT from server"
64 " - marking file deleted and stale");
65 set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 ret = -ESTALE;
67 }
68 }
69
70 _leave(" = %d", ret);
71 return ret;
72}
73
74/*
75 * prepare to perform part of a write to a page
76 */
77int afs_write_begin(struct file *file, struct address_space *mapping,
78 loff_t pos, unsigned len, unsigned flags,
79 struct page **pagep, void **fsdata)
80{
81 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 struct page *page;
83 struct key *key = afs_file_key(file);
84 unsigned long priv;
85 unsigned f, from = pos & (PAGE_SIZE - 1);
86 unsigned t, to = from + len;
87 pgoff_t index = pos >> PAGE_SHIFT;
88 int ret;
89
90 _enter("{%llx:%llu},{%lx},%u,%u",
91 vnode->fid.vid, vnode->fid.vnode, index, from, to);
92
93 /* We want to store information about how much of a page is altered in
94 * page->private.
95 */
96 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
97
98 page = grab_cache_page_write_begin(mapping, index, flags);
99 if (!page)
100 return -ENOMEM;
101
102 if (!PageUptodate(page) && len != PAGE_SIZE) {
103 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 if (ret < 0) {
105 unlock_page(page);
106 put_page(page);
107 _leave(" = %d [prep]", ret);
108 return ret;
109 }
110 SetPageUptodate(page);
111 }
112
113 /* page won't leak in error case: it eventually gets cleaned off LRU */
114 *pagep = page;
115
116try_again:
117 /* See if this page is already partially written in a way that we can
118 * merge the new write with.
119 */
120 t = f = 0;
121 if (PagePrivate(page)) {
122 priv = page_private(page);
123 f = priv & AFS_PRIV_MAX;
124 t = priv >> AFS_PRIV_SHIFT;
125 ASSERTCMP(f, <=, t);
126 }
127
128 if (f != t) {
129 if (PageWriteback(page)) {
130 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
131 page->index, priv);
132 goto flush_conflicting_write;
133 }
134 /* If the file is being filled locally, allow inter-write
135 * spaces to be merged into writes. If it's not, only write
136 * back what the user gives us.
137 */
138 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
139 (to < f || from > t))
140 goto flush_conflicting_write;
141 if (from < f)
142 f = from;
143 if (to > t)
144 t = to;
145 } else {
146 f = from;
147 t = to;
148 }
149
150 priv = (unsigned long)t << AFS_PRIV_SHIFT;
151 priv |= f;
152 trace_afs_page_dirty(vnode, tracepoint_string("begin"),
153 page->index, priv);
154 SetPagePrivate(page);
155 set_page_private(page, priv);
156 _leave(" = 0");
157 return 0;
158
159 /* The previous write and this write aren't adjacent or overlapping, so
160 * flush the page out.
161 */
162flush_conflicting_write:
163 _debug("flush conflict");
164 ret = write_one_page(page);
165 if (ret < 0) {
166 _leave(" = %d", ret);
167 return ret;
168 }
169
170 ret = lock_page_killable(page);
171 if (ret < 0) {
172 _leave(" = %d", ret);
173 return ret;
174 }
175 goto try_again;
176}
177
178/*
179 * finalise part of a write to a page
180 */
181int afs_write_end(struct file *file, struct address_space *mapping,
182 loff_t pos, unsigned len, unsigned copied,
183 struct page *page, void *fsdata)
184{
185 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
186 struct key *key = afs_file_key(file);
187 loff_t i_size, maybe_i_size;
188 int ret;
189
190 _enter("{%llx:%llu},{%lx}",
191 vnode->fid.vid, vnode->fid.vnode, page->index);
192
193 maybe_i_size = pos + copied;
194
195 i_size = i_size_read(&vnode->vfs_inode);
196 if (maybe_i_size > i_size) {
197 write_seqlock(&vnode->cb_lock);
198 i_size = i_size_read(&vnode->vfs_inode);
199 if (maybe_i_size > i_size)
200 i_size_write(&vnode->vfs_inode, maybe_i_size);
201 write_sequnlock(&vnode->cb_lock);
202 }
203
204 if (!PageUptodate(page)) {
205 if (copied < len) {
206 /* Try and load any missing data from the server. The
207 * unmarshalling routine will take care of clearing any
208 * bits that are beyond the EOF.
209 */
210 ret = afs_fill_page(vnode, key, pos + copied,
211 len - copied, page);
212 if (ret < 0)
213 goto out;
214 }
215 SetPageUptodate(page);
216 }
217
218 set_page_dirty(page);
219 if (PageDirty(page))
220 _debug("dirtied");
221 ret = copied;
222
223out:
224 unlock_page(page);
225 put_page(page);
226 return ret;
227}
228
229/*
230 * kill all the pages in the given range
231 */
232static void afs_kill_pages(struct address_space *mapping,
233 pgoff_t first, pgoff_t last)
234{
235 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
236 struct pagevec pv;
237 unsigned count, loop;
238
239 _enter("{%llx:%llu},%lx-%lx",
240 vnode->fid.vid, vnode->fid.vnode, first, last);
241
242 pagevec_init(&pv);
243
244 do {
245 _debug("kill %lx-%lx", first, last);
246
247 count = last - first + 1;
248 if (count > PAGEVEC_SIZE)
249 count = PAGEVEC_SIZE;
250 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
251 ASSERTCMP(pv.nr, ==, count);
252
253 for (loop = 0; loop < count; loop++) {
254 struct page *page = pv.pages[loop];
255 ClearPageUptodate(page);
256 SetPageError(page);
257 end_page_writeback(page);
258 if (page->index >= first)
259 first = page->index + 1;
260 lock_page(page);
261 generic_error_remove_page(mapping, page);
262 unlock_page(page);
263 }
264
265 __pagevec_release(&pv);
266 } while (first <= last);
267
268 _leave("");
269}
270
271/*
272 * Redirty all the pages in a given range.
273 */
274static void afs_redirty_pages(struct writeback_control *wbc,
275 struct address_space *mapping,
276 pgoff_t first, pgoff_t last)
277{
278 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
279 struct pagevec pv;
280 unsigned count, loop;
281
282 _enter("{%llx:%llu},%lx-%lx",
283 vnode->fid.vid, vnode->fid.vnode, first, last);
284
285 pagevec_init(&pv);
286
287 do {
288 _debug("redirty %lx-%lx", first, last);
289
290 count = last - first + 1;
291 if (count > PAGEVEC_SIZE)
292 count = PAGEVEC_SIZE;
293 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
294 ASSERTCMP(pv.nr, ==, count);
295
296 for (loop = 0; loop < count; loop++) {
297 struct page *page = pv.pages[loop];
298
299 redirty_page_for_writepage(wbc, page);
300 end_page_writeback(page);
301 if (page->index >= first)
302 first = page->index + 1;
303 }
304
305 __pagevec_release(&pv);
306 } while (first <= last);
307
308 _leave("");
309}
310
311/*
312 * completion of write to server
313 */
314static void afs_pages_written_back(struct afs_vnode *vnode,
315 pgoff_t first, pgoff_t last)
316{
317 struct pagevec pv;
318 unsigned long priv;
319 unsigned count, loop;
320
321 _enter("{%llx:%llu},{%lx-%lx}",
322 vnode->fid.vid, vnode->fid.vnode, first, last);
323
324 pagevec_init(&pv);
325
326 do {
327 _debug("done %lx-%lx", first, last);
328
329 count = last - first + 1;
330 if (count > PAGEVEC_SIZE)
331 count = PAGEVEC_SIZE;
332 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
333 first, count, pv.pages);
334 ASSERTCMP(pv.nr, ==, count);
335
336 for (loop = 0; loop < count; loop++) {
337 priv = page_private(pv.pages[loop]);
338 trace_afs_page_dirty(vnode, tracepoint_string("clear"),
339 pv.pages[loop]->index, priv);
340 set_page_private(pv.pages[loop], 0);
341 end_page_writeback(pv.pages[loop]);
342 }
343 first += count;
344 __pagevec_release(&pv);
345 } while (first <= last);
346
347 afs_prune_wb_keys(vnode);
348 _leave("");
349}
350
351/*
352 * Find a key to use for the writeback. We cached the keys used to author the
353 * writes on the vnode. *_wbk will contain the last writeback key used or NULL
354 * and we need to start from there if it's set.
355 */
356static int afs_get_writeback_key(struct afs_vnode *vnode,
357 struct afs_wb_key **_wbk)
358{
359 struct afs_wb_key *wbk = NULL;
360 struct list_head *p;
361 int ret = -ENOKEY, ret2;
362
363 spin_lock(&vnode->wb_lock);
364 if (*_wbk)
365 p = (*_wbk)->vnode_link.next;
366 else
367 p = vnode->wb_keys.next;
368
369 while (p != &vnode->wb_keys) {
370 wbk = list_entry(p, struct afs_wb_key, vnode_link);
371 _debug("wbk %u", key_serial(wbk->key));
372 ret2 = key_validate(wbk->key);
373 if (ret2 == 0) {
374 refcount_inc(&wbk->usage);
375 _debug("USE WB KEY %u", key_serial(wbk->key));
376 break;
377 }
378
379 wbk = NULL;
380 if (ret == -ENOKEY)
381 ret = ret2;
382 p = p->next;
383 }
384
385 spin_unlock(&vnode->wb_lock);
386 if (*_wbk)
387 afs_put_wb_key(*_wbk);
388 *_wbk = wbk;
389 return 0;
390}
391
392static void afs_store_data_success(struct afs_operation *op)
393{
394 struct afs_vnode *vnode = op->file[0].vnode;
395
396 op->ctime = op->file[0].scb.status.mtime_client;
397 afs_vnode_commit_status(op, &op->file[0]);
398 if (op->error == 0) {
399 afs_pages_written_back(vnode, op->store.first, op->store.last);
400 afs_stat_v(vnode, n_stores);
401 atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
402 (op->store.first * PAGE_SIZE + op->store.first_offset),
403 &afs_v2net(vnode)->n_store_bytes);
404 }
405}
406
407static const struct afs_operation_ops afs_store_data_operation = {
408 .issue_afs_rpc = afs_fs_store_data,
409 .issue_yfs_rpc = yfs_fs_store_data,
410 .success = afs_store_data_success,
411};
412
413/*
414 * write to a file
415 */
416static int afs_store_data(struct address_space *mapping,
417 pgoff_t first, pgoff_t last,
418 unsigned offset, unsigned to)
419{
420 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
421 struct afs_operation *op;
422 struct afs_wb_key *wbk = NULL;
423 int ret;
424
425 _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
426 vnode->volume->name,
427 vnode->fid.vid,
428 vnode->fid.vnode,
429 vnode->fid.unique,
430 first, last, offset, to);
431
432 ret = afs_get_writeback_key(vnode, &wbk);
433 if (ret) {
434 _leave(" = %d [no keys]", ret);
435 return ret;
436 }
437
438 op = afs_alloc_operation(wbk->key, vnode->volume);
439 if (IS_ERR(op)) {
440 afs_put_wb_key(wbk);
441 return -ENOMEM;
442 }
443
444 afs_op_set_vnode(op, 0, vnode);
445 op->file[0].dv_delta = 1;
446 op->store.mapping = mapping;
447 op->store.first = first;
448 op->store.last = last;
449 op->store.first_offset = offset;
450 op->store.last_to = to;
451 op->mtime = vnode->vfs_inode.i_mtime;
452 op->flags |= AFS_OPERATION_UNINTR;
453 op->ops = &afs_store_data_operation;
454
455try_next_key:
456 afs_begin_vnode_operation(op);
457 afs_wait_for_operation(op);
458
459 switch (op->error) {
460 case -EACCES:
461 case -EPERM:
462 case -ENOKEY:
463 case -EKEYEXPIRED:
464 case -EKEYREJECTED:
465 case -EKEYREVOKED:
466 _debug("next");
467
468 ret = afs_get_writeback_key(vnode, &wbk);
469 if (ret == 0) {
470 key_put(op->key);
471 op->key = key_get(wbk->key);
472 goto try_next_key;
473 }
474 break;
475 }
476
477 afs_put_wb_key(wbk);
478 _leave(" = %d", op->error);
479 return afs_put_operation(op);
480}
481
482/*
483 * Synchronously write back the locked page and any subsequent non-locked dirty
484 * pages.
485 */
486static int afs_write_back_from_locked_page(struct address_space *mapping,
487 struct writeback_control *wbc,
488 struct page *primary_page,
489 pgoff_t final_page)
490{
491 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
492 struct page *pages[8], *page;
493 unsigned long count, priv;
494 unsigned n, offset, to, f, t;
495 pgoff_t start, first, last;
496 loff_t i_size, end;
497 int loop, ret;
498
499 _enter(",%lx", primary_page->index);
500
501 count = 1;
502 if (test_set_page_writeback(primary_page))
503 BUG();
504
505 /* Find all consecutive lockable dirty pages that have contiguous
506 * written regions, stopping when we find a page that is not
507 * immediately lockable, is not dirty or is missing, or we reach the
508 * end of the range.
509 */
510 start = primary_page->index;
511 priv = page_private(primary_page);
512 offset = priv & AFS_PRIV_MAX;
513 to = priv >> AFS_PRIV_SHIFT;
514 trace_afs_page_dirty(vnode, tracepoint_string("store"),
515 primary_page->index, priv);
516
517 WARN_ON(offset == to);
518 if (offset == to)
519 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
520 primary_page->index, priv);
521
522 if (start >= final_page ||
523 (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
524 goto no_more;
525
526 start++;
527 do {
528 _debug("more %lx [%lx]", start, count);
529 n = final_page - start + 1;
530 if (n > ARRAY_SIZE(pages))
531 n = ARRAY_SIZE(pages);
532 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
533 _debug("fgpc %u", n);
534 if (n == 0)
535 goto no_more;
536 if (pages[0]->index != start) {
537 do {
538 put_page(pages[--n]);
539 } while (n > 0);
540 goto no_more;
541 }
542
543 for (loop = 0; loop < n; loop++) {
544 page = pages[loop];
545 if (to != PAGE_SIZE &&
546 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
547 break;
548 if (page->index > final_page)
549 break;
550 if (!trylock_page(page))
551 break;
552 if (!PageDirty(page) || PageWriteback(page)) {
553 unlock_page(page);
554 break;
555 }
556
557 priv = page_private(page);
558 f = priv & AFS_PRIV_MAX;
559 t = priv >> AFS_PRIV_SHIFT;
560 if (f != 0 &&
561 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
562 unlock_page(page);
563 break;
564 }
565 to = t;
566
567 trace_afs_page_dirty(vnode, tracepoint_string("store+"),
568 page->index, priv);
569
570 if (!clear_page_dirty_for_io(page))
571 BUG();
572 if (test_set_page_writeback(page))
573 BUG();
574 unlock_page(page);
575 put_page(page);
576 }
577 count += loop;
578 if (loop < n) {
579 for (; loop < n; loop++)
580 put_page(pages[loop]);
581 goto no_more;
582 }
583
584 start += loop;
585 } while (start <= final_page && count < 65536);
586
587no_more:
588 /* We now have a contiguous set of dirty pages, each with writeback
589 * set; the first page is still locked at this point, but all the rest
590 * have been unlocked.
591 */
592 unlock_page(primary_page);
593
594 first = primary_page->index;
595 last = first + count - 1;
596
597 end = (loff_t)last * PAGE_SIZE + to;
598 i_size = i_size_read(&vnode->vfs_inode);
599
600 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
601 if (end > i_size)
602 to = i_size & ~PAGE_MASK;
603
604 ret = afs_store_data(mapping, first, last, offset, to);
605 switch (ret) {
606 case 0:
607 ret = count;
608 break;
609
610 default:
611 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
612 fallthrough;
613 case -EACCES:
614 case -EPERM:
615 case -ENOKEY:
616 case -EKEYEXPIRED:
617 case -EKEYREJECTED:
618 case -EKEYREVOKED:
619 afs_redirty_pages(wbc, mapping, first, last);
620 mapping_set_error(mapping, ret);
621 break;
622
623 case -EDQUOT:
624 case -ENOSPC:
625 afs_redirty_pages(wbc, mapping, first, last);
626 mapping_set_error(mapping, -ENOSPC);
627 break;
628
629 case -EROFS:
630 case -EIO:
631 case -EREMOTEIO:
632 case -EFBIG:
633 case -ENOENT:
634 case -ENOMEDIUM:
635 case -ENXIO:
636 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
637 afs_kill_pages(mapping, first, last);
638 mapping_set_error(mapping, ret);
639 break;
640 }
641
642 _leave(" = %d", ret);
643 return ret;
644}
645
646/*
647 * write a page back to the server
648 * - the caller locked the page for us
649 */
650int afs_writepage(struct page *page, struct writeback_control *wbc)
651{
652 int ret;
653
654 _enter("{%lx},", page->index);
655
656 ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
657 wbc->range_end >> PAGE_SHIFT);
658 if (ret < 0) {
659 _leave(" = %d", ret);
660 return 0;
661 }
662
663 wbc->nr_to_write -= ret;
664
665 _leave(" = 0");
666 return 0;
667}
668
669/*
670 * write a region of pages back to the server
671 */
672static int afs_writepages_region(struct address_space *mapping,
673 struct writeback_control *wbc,
674 pgoff_t index, pgoff_t end, pgoff_t *_next)
675{
676 struct page *page;
677 int ret, n;
678
679 _enter(",,%lx,%lx,", index, end);
680
681 do {
682 n = find_get_pages_range_tag(mapping, &index, end,
683 PAGECACHE_TAG_DIRTY, 1, &page);
684 if (!n)
685 break;
686
687 _debug("wback %lx", page->index);
688
689 /*
690 * at this point we hold neither the i_pages lock nor the
691 * page lock: the page may be truncated or invalidated
692 * (changing page->mapping to NULL), or even swizzled
693 * back from swapper_space to tmpfs file mapping
694 */
695 ret = lock_page_killable(page);
696 if (ret < 0) {
697 put_page(page);
698 _leave(" = %d", ret);
699 return ret;
700 }
701
702 if (page->mapping != mapping || !PageDirty(page)) {
703 unlock_page(page);
704 put_page(page);
705 continue;
706 }
707
708 if (PageWriteback(page)) {
709 unlock_page(page);
710 if (wbc->sync_mode != WB_SYNC_NONE)
711 wait_on_page_writeback(page);
712 put_page(page);
713 continue;
714 }
715
716 if (!clear_page_dirty_for_io(page))
717 BUG();
718 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
719 put_page(page);
720 if (ret < 0) {
721 _leave(" = %d", ret);
722 return ret;
723 }
724
725 wbc->nr_to_write -= ret;
726
727 cond_resched();
728 } while (index < end && wbc->nr_to_write > 0);
729
730 *_next = index;
731 _leave(" = 0 [%lx]", *_next);
732 return 0;
733}
734
735/*
736 * write some of the pending data back to the server
737 */
738int afs_writepages(struct address_space *mapping,
739 struct writeback_control *wbc)
740{
741 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
742 pgoff_t start, end, next;
743 int ret;
744
745 _enter("");
746
747 /* We have to be careful as we can end up racing with setattr()
748 * truncating the pagecache since the caller doesn't take a lock here
749 * to prevent it.
750 */
751 if (wbc->sync_mode == WB_SYNC_ALL)
752 down_read(&vnode->validate_lock);
753 else if (!down_read_trylock(&vnode->validate_lock))
754 return 0;
755
756 if (wbc->range_cyclic) {
757 start = mapping->writeback_index;
758 end = -1;
759 ret = afs_writepages_region(mapping, wbc, start, end, &next);
760 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
761 ret = afs_writepages_region(mapping, wbc, 0, start,
762 &next);
763 mapping->writeback_index = next;
764 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
765 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
766 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
767 if (wbc->nr_to_write > 0)
768 mapping->writeback_index = next;
769 } else {
770 start = wbc->range_start >> PAGE_SHIFT;
771 end = wbc->range_end >> PAGE_SHIFT;
772 ret = afs_writepages_region(mapping, wbc, start, end, &next);
773 }
774
775 up_read(&vnode->validate_lock);
776 _leave(" = %d", ret);
777 return ret;
778}
779
780/*
781 * write to an AFS file
782 */
783ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
784{
785 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
786 ssize_t result;
787 size_t count = iov_iter_count(from);
788
789 _enter("{%llx:%llu},{%zu},",
790 vnode->fid.vid, vnode->fid.vnode, count);
791
792 if (IS_SWAPFILE(&vnode->vfs_inode)) {
793 printk(KERN_INFO
794 "AFS: Attempt to write to active swap file!\n");
795 return -EBUSY;
796 }
797
798 if (!count)
799 return 0;
800
801 result = generic_file_write_iter(iocb, from);
802
803 _leave(" = %zd", result);
804 return result;
805}
806
807/*
808 * flush any dirty pages for this process, and check for write errors.
809 * - the return status from this call provides a reliable indication of
810 * whether any write errors occurred for this process.
811 */
812int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
813{
814 struct inode *inode = file_inode(file);
815 struct afs_vnode *vnode = AFS_FS_I(inode);
816
817 _enter("{%llx:%llu},{n=%pD},%d",
818 vnode->fid.vid, vnode->fid.vnode, file,
819 datasync);
820
821 return file_write_and_wait_range(file, start, end);
822}
823
824/*
825 * notification that a previously read-only page is about to become writable
826 * - if it returns an error, the caller will deliver a bus error signal
827 */
828vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
829{
830 struct file *file = vmf->vma->vm_file;
831 struct inode *inode = file_inode(file);
832 struct afs_vnode *vnode = AFS_FS_I(inode);
833 unsigned long priv;
834
835 _enter("{{%llx:%llu}},{%lx}",
836 vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
837
838 sb_start_pagefault(inode->i_sb);
839
840 /* Wait for the page to be written to the cache before we allow it to
841 * be modified. We then assume the entire page will need writing back.
842 */
843#ifdef CONFIG_AFS_FSCACHE
844 fscache_wait_on_page_write(vnode->cache, vmf->page);
845#endif
846
847 if (PageWriteback(vmf->page) &&
848 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
849 return VM_FAULT_RETRY;
850
851 if (lock_page_killable(vmf->page) < 0)
852 return VM_FAULT_RETRY;
853
854 /* We mustn't change page->private until writeback is complete as that
855 * details the portion of the page we need to write back and we might
856 * need to redirty the page if there's a problem.
857 */
858 wait_on_page_writeback(vmf->page);
859
860 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
861 priv |= 0; /* From */
862 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
863 vmf->page->index, priv);
864 SetPagePrivate(vmf->page);
865 set_page_private(vmf->page, priv);
866 file_update_time(file);
867
868 sb_end_pagefault(inode->i_sb);
869 return VM_FAULT_LOCKED;
870}
871
872/*
873 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
874 */
875void afs_prune_wb_keys(struct afs_vnode *vnode)
876{
877 LIST_HEAD(graveyard);
878 struct afs_wb_key *wbk, *tmp;
879
880 /* Discard unused keys */
881 spin_lock(&vnode->wb_lock);
882
883 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
884 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
885 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
886 if (refcount_read(&wbk->usage) == 1)
887 list_move(&wbk->vnode_link, &graveyard);
888 }
889 }
890
891 spin_unlock(&vnode->wb_lock);
892
893 while (!list_empty(&graveyard)) {
894 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
895 list_del(&wbk->vnode_link);
896 afs_put_wb_key(wbk);
897 }
898}
899
900/*
901 * Clean up a page during invalidation.
902 */
903int afs_launder_page(struct page *page)
904{
905 struct address_space *mapping = page->mapping;
906 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
907 unsigned long priv;
908 unsigned int f, t;
909 int ret = 0;
910
911 _enter("{%lx}", page->index);
912
913 priv = page_private(page);
914 if (clear_page_dirty_for_io(page)) {
915 f = 0;
916 t = PAGE_SIZE;
917 if (PagePrivate(page)) {
918 f = priv & AFS_PRIV_MAX;
919 t = priv >> AFS_PRIV_SHIFT;
920 }
921
922 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
923 page->index, priv);
924 ret = afs_store_data(mapping, page->index, page->index, t, f);
925 }
926
927 trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
928 page->index, priv);
929 set_page_private(page, 0);
930 ClearPagePrivate(page);
931
932#ifdef CONFIG_AFS_FSCACHE
933 if (PageFsCache(page)) {
934 fscache_wait_on_page_write(vnode->cache, page);
935 fscache_uncache_page(vnode->cache, page);
936 }
937#endif
938 return ret;
939}