Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/acpi.h>
9#include <linux/pci.h> /* for scatterlist macros */
10#include <linux/usb.h>
11#include <linux/module.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/timer.h>
15#include <linux/ctype.h>
16#include <linux/nls.h>
17#include <linux/device.h>
18#include <linux/scatterlist.h>
19#include <linux/usb/cdc.h>
20#include <linux/usb/quirks.h>
21#include <linux/usb/hcd.h> /* for usbcore internals */
22#include <linux/usb/of.h>
23#include <asm/byteorder.h>
24
25#include "usb.h"
26
27static void cancel_async_set_config(struct usb_device *udev);
28
29struct api_context {
30 struct completion done;
31 int status;
32};
33
34static void usb_api_blocking_completion(struct urb *urb)
35{
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40}
41
42
43/*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
49static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50{
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82}
83
84/*-------------------------------------------------------------------*/
85/* returns status (negative) or length (positive) */
86static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90{
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107}
108
109/**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: task context, might sleep.
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
136int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139{
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162}
163EXPORT_SYMBOL_GPL(usb_control_msg);
164
165/**
166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
167 * @dev: pointer to the usb device to send the message to
168 * @endpoint: endpoint to send the message to
169 * @request: USB message request value
170 * @requesttype: USB message request type value
171 * @value: USB message value
172 * @index: USB message index value
173 * @driver_data: pointer to the data to send
174 * @size: length in bytes of the data to send
175 * @timeout: time in msecs to wait for the message to complete before timing
176 * out (if 0 the wait is forever)
177 * @memflags: the flags for memory allocation for buffers
178 *
179 * Context: !in_interrupt ()
180 *
181 * This function sends a control message to a specified endpoint that is not
182 * expected to fill in a response (i.e. a "send message") and waits for the
183 * message to complete, or timeout.
184 *
185 * Do not use this function from within an interrupt context. If you need
186 * an asynchronous message, or need to send a message from within interrupt
187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
188 * make sure your disconnect() method can wait for it to complete. Since you
189 * don't have a handle on the URB used, you can't cancel the request.
190 *
191 * The data pointer can be made to a reference on the stack, or anywhere else,
192 * as it will not be modified at all. This does not have the restriction that
193 * usb_control_msg() has where the data pointer must be to dynamically allocated
194 * memory (i.e. memory that can be successfully DMAed to a device).
195 *
196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
197 */
198int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
199 __u8 requesttype, __u16 value, __u16 index,
200 const void *driver_data, __u16 size, int timeout,
201 gfp_t memflags)
202{
203 unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
204 int ret;
205 u8 *data = NULL;
206
207 if (size) {
208 data = kmemdup(driver_data, size, memflags);
209 if (!data)
210 return -ENOMEM;
211 }
212
213 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
214 data, size, timeout);
215 kfree(data);
216
217 if (ret < 0)
218 return ret;
219
220 return 0;
221}
222EXPORT_SYMBOL_GPL(usb_control_msg_send);
223
224/**
225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
226 * @dev: pointer to the usb device to send the message to
227 * @endpoint: endpoint to send the message to
228 * @request: USB message request value
229 * @requesttype: USB message request type value
230 * @value: USB message value
231 * @index: USB message index value
232 * @driver_data: pointer to the data to be filled in by the message
233 * @size: length in bytes of the data to be received
234 * @timeout: time in msecs to wait for the message to complete before timing
235 * out (if 0 the wait is forever)
236 * @memflags: the flags for memory allocation for buffers
237 *
238 * Context: !in_interrupt ()
239 *
240 * This function sends a control message to a specified endpoint that is
241 * expected to fill in a response (i.e. a "receive message") and waits for the
242 * message to complete, or timeout.
243 *
244 * Do not use this function from within an interrupt context. If you need
245 * an asynchronous message, or need to send a message from within interrupt
246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
247 * make sure your disconnect() method can wait for it to complete. Since you
248 * don't have a handle on the URB used, you can't cancel the request.
249 *
250 * The data pointer can be made to a reference on the stack, or anywhere else
251 * that can be successfully written to. This function does not have the
252 * restriction that usb_control_msg() has where the data pointer must be to
253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
254 * device).
255 *
256 * The "whole" message must be properly received from the device in order for
257 * this function to be successful. If a device returns less than the expected
258 * amount of data, then the function will fail. Do not use this for messages
259 * where a variable amount of data might be returned.
260 *
261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
262 */
263int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
264 __u8 requesttype, __u16 value, __u16 index,
265 void *driver_data, __u16 size, int timeout,
266 gfp_t memflags)
267{
268 unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
269 int ret;
270 u8 *data;
271
272 if (!size || !driver_data)
273 return -EINVAL;
274
275 data = kmalloc(size, memflags);
276 if (!data)
277 return -ENOMEM;
278
279 ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
280 data, size, timeout);
281
282 if (ret < 0)
283 goto exit;
284
285 if (ret == size) {
286 memcpy(driver_data, data, size);
287 ret = 0;
288 } else {
289 ret = -EREMOTEIO;
290 }
291
292exit:
293 kfree(data);
294 return ret;
295}
296EXPORT_SYMBOL_GPL(usb_control_msg_recv);
297
298/**
299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
300 * @usb_dev: pointer to the usb device to send the message to
301 * @pipe: endpoint "pipe" to send the message to
302 * @data: pointer to the data to send
303 * @len: length in bytes of the data to send
304 * @actual_length: pointer to a location to put the actual length transferred
305 * in bytes
306 * @timeout: time in msecs to wait for the message to complete before
307 * timing out (if 0 the wait is forever)
308 *
309 * Context: task context, might sleep.
310 *
311 * This function sends a simple interrupt message to a specified endpoint and
312 * waits for the message to complete, or timeout.
313 *
314 * Don't use this function from within an interrupt context. If you need
315 * an asynchronous message, or need to send a message from within interrupt
316 * context, use usb_submit_urb() If a thread in your driver uses this call,
317 * make sure your disconnect() method can wait for it to complete. Since you
318 * don't have a handle on the URB used, you can't cancel the request.
319 *
320 * Return:
321 * If successful, 0. Otherwise a negative error number. The number of actual
322 * bytes transferred will be stored in the @actual_length parameter.
323 */
324int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
325 void *data, int len, int *actual_length, int timeout)
326{
327 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
328}
329EXPORT_SYMBOL_GPL(usb_interrupt_msg);
330
331/**
332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
333 * @usb_dev: pointer to the usb device to send the message to
334 * @pipe: endpoint "pipe" to send the message to
335 * @data: pointer to the data to send
336 * @len: length in bytes of the data to send
337 * @actual_length: pointer to a location to put the actual length transferred
338 * in bytes
339 * @timeout: time in msecs to wait for the message to complete before
340 * timing out (if 0 the wait is forever)
341 *
342 * Context: task context, might sleep.
343 *
344 * This function sends a simple bulk message to a specified endpoint
345 * and waits for the message to complete, or timeout.
346 *
347 * Don't use this function from within an interrupt context. If you need
348 * an asynchronous message, or need to send a message from within interrupt
349 * context, use usb_submit_urb() If a thread in your driver uses this call,
350 * make sure your disconnect() method can wait for it to complete. Since you
351 * don't have a handle on the URB used, you can't cancel the request.
352 *
353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
354 * users are forced to abuse this routine by using it to submit URBs for
355 * interrupt endpoints. We will take the liberty of creating an interrupt URB
356 * (with the default interval) if the target is an interrupt endpoint.
357 *
358 * Return:
359 * If successful, 0. Otherwise a negative error number. The number of actual
360 * bytes transferred will be stored in the @actual_length parameter.
361 *
362 */
363int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
364 void *data, int len, int *actual_length, int timeout)
365{
366 struct urb *urb;
367 struct usb_host_endpoint *ep;
368
369 ep = usb_pipe_endpoint(usb_dev, pipe);
370 if (!ep || len < 0)
371 return -EINVAL;
372
373 urb = usb_alloc_urb(0, GFP_KERNEL);
374 if (!urb)
375 return -ENOMEM;
376
377 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
378 USB_ENDPOINT_XFER_INT) {
379 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
380 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
381 usb_api_blocking_completion, NULL,
382 ep->desc.bInterval);
383 } else
384 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
385 usb_api_blocking_completion, NULL);
386
387 return usb_start_wait_urb(urb, timeout, actual_length);
388}
389EXPORT_SYMBOL_GPL(usb_bulk_msg);
390
391/*-------------------------------------------------------------------*/
392
393static void sg_clean(struct usb_sg_request *io)
394{
395 if (io->urbs) {
396 while (io->entries--)
397 usb_free_urb(io->urbs[io->entries]);
398 kfree(io->urbs);
399 io->urbs = NULL;
400 }
401 io->dev = NULL;
402}
403
404static void sg_complete(struct urb *urb)
405{
406 unsigned long flags;
407 struct usb_sg_request *io = urb->context;
408 int status = urb->status;
409
410 spin_lock_irqsave(&io->lock, flags);
411
412 /* In 2.5 we require hcds' endpoint queues not to progress after fault
413 * reports, until the completion callback (this!) returns. That lets
414 * device driver code (like this routine) unlink queued urbs first,
415 * if it needs to, since the HC won't work on them at all. So it's
416 * not possible for page N+1 to overwrite page N, and so on.
417 *
418 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
419 * complete before the HCD can get requests away from hardware,
420 * though never during cleanup after a hard fault.
421 */
422 if (io->status
423 && (io->status != -ECONNRESET
424 || status != -ECONNRESET)
425 && urb->actual_length) {
426 dev_err(io->dev->bus->controller,
427 "dev %s ep%d%s scatterlist error %d/%d\n",
428 io->dev->devpath,
429 usb_endpoint_num(&urb->ep->desc),
430 usb_urb_dir_in(urb) ? "in" : "out",
431 status, io->status);
432 /* BUG (); */
433 }
434
435 if (io->status == 0 && status && status != -ECONNRESET) {
436 int i, found, retval;
437
438 io->status = status;
439
440 /* the previous urbs, and this one, completed already.
441 * unlink pending urbs so they won't rx/tx bad data.
442 * careful: unlink can sometimes be synchronous...
443 */
444 spin_unlock_irqrestore(&io->lock, flags);
445 for (i = 0, found = 0; i < io->entries; i++) {
446 if (!io->urbs[i])
447 continue;
448 if (found) {
449 usb_block_urb(io->urbs[i]);
450 retval = usb_unlink_urb(io->urbs[i]);
451 if (retval != -EINPROGRESS &&
452 retval != -ENODEV &&
453 retval != -EBUSY &&
454 retval != -EIDRM)
455 dev_err(&io->dev->dev,
456 "%s, unlink --> %d\n",
457 __func__, retval);
458 } else if (urb == io->urbs[i])
459 found = 1;
460 }
461 spin_lock_irqsave(&io->lock, flags);
462 }
463
464 /* on the last completion, signal usb_sg_wait() */
465 io->bytes += urb->actual_length;
466 io->count--;
467 if (!io->count)
468 complete(&io->complete);
469
470 spin_unlock_irqrestore(&io->lock, flags);
471}
472
473
474/**
475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
476 * @io: request block being initialized. until usb_sg_wait() returns,
477 * treat this as a pointer to an opaque block of memory,
478 * @dev: the usb device that will send or receive the data
479 * @pipe: endpoint "pipe" used to transfer the data
480 * @period: polling rate for interrupt endpoints, in frames or
481 * (for high speed endpoints) microframes; ignored for bulk
482 * @sg: scatterlist entries
483 * @nents: how many entries in the scatterlist
484 * @length: how many bytes to send from the scatterlist, or zero to
485 * send every byte identified in the list.
486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
487 *
488 * This initializes a scatter/gather request, allocating resources such as
489 * I/O mappings and urb memory (except maybe memory used by USB controller
490 * drivers).
491 *
492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
493 * complete (or to be canceled) and then cleans up all resources allocated by
494 * usb_sg_init().
495 *
496 * The request may be canceled with usb_sg_cancel(), either before or after
497 * usb_sg_wait() is called.
498 *
499 * Return: Zero for success, else a negative errno value.
500 */
501int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
502 unsigned pipe, unsigned period, struct scatterlist *sg,
503 int nents, size_t length, gfp_t mem_flags)
504{
505 int i;
506 int urb_flags;
507 int use_sg;
508
509 if (!io || !dev || !sg
510 || usb_pipecontrol(pipe)
511 || usb_pipeisoc(pipe)
512 || nents <= 0)
513 return -EINVAL;
514
515 spin_lock_init(&io->lock);
516 io->dev = dev;
517 io->pipe = pipe;
518
519 if (dev->bus->sg_tablesize > 0) {
520 use_sg = true;
521 io->entries = 1;
522 } else {
523 use_sg = false;
524 io->entries = nents;
525 }
526
527 /* initialize all the urbs we'll use */
528 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
529 if (!io->urbs)
530 goto nomem;
531
532 urb_flags = URB_NO_INTERRUPT;
533 if (usb_pipein(pipe))
534 urb_flags |= URB_SHORT_NOT_OK;
535
536 for_each_sg(sg, sg, io->entries, i) {
537 struct urb *urb;
538 unsigned len;
539
540 urb = usb_alloc_urb(0, mem_flags);
541 if (!urb) {
542 io->entries = i;
543 goto nomem;
544 }
545 io->urbs[i] = urb;
546
547 urb->dev = NULL;
548 urb->pipe = pipe;
549 urb->interval = period;
550 urb->transfer_flags = urb_flags;
551 urb->complete = sg_complete;
552 urb->context = io;
553 urb->sg = sg;
554
555 if (use_sg) {
556 /* There is no single transfer buffer */
557 urb->transfer_buffer = NULL;
558 urb->num_sgs = nents;
559
560 /* A length of zero means transfer the whole sg list */
561 len = length;
562 if (len == 0) {
563 struct scatterlist *sg2;
564 int j;
565
566 for_each_sg(sg, sg2, nents, j)
567 len += sg2->length;
568 }
569 } else {
570 /*
571 * Some systems can't use DMA; they use PIO instead.
572 * For their sakes, transfer_buffer is set whenever
573 * possible.
574 */
575 if (!PageHighMem(sg_page(sg)))
576 urb->transfer_buffer = sg_virt(sg);
577 else
578 urb->transfer_buffer = NULL;
579
580 len = sg->length;
581 if (length) {
582 len = min_t(size_t, len, length);
583 length -= len;
584 if (length == 0)
585 io->entries = i + 1;
586 }
587 }
588 urb->transfer_buffer_length = len;
589 }
590 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
591
592 /* transaction state */
593 io->count = io->entries;
594 io->status = 0;
595 io->bytes = 0;
596 init_completion(&io->complete);
597 return 0;
598
599nomem:
600 sg_clean(io);
601 return -ENOMEM;
602}
603EXPORT_SYMBOL_GPL(usb_sg_init);
604
605/**
606 * usb_sg_wait - synchronously execute scatter/gather request
607 * @io: request block handle, as initialized with usb_sg_init().
608 * some fields become accessible when this call returns.
609 *
610 * Context: task context, might sleep.
611 *
612 * This function blocks until the specified I/O operation completes. It
613 * leverages the grouping of the related I/O requests to get good transfer
614 * rates, by queueing the requests. At higher speeds, such queuing can
615 * significantly improve USB throughput.
616 *
617 * There are three kinds of completion for this function.
618 *
619 * (1) success, where io->status is zero. The number of io->bytes
620 * transferred is as requested.
621 * (2) error, where io->status is a negative errno value. The number
622 * of io->bytes transferred before the error is usually less
623 * than requested, and can be nonzero.
624 * (3) cancellation, a type of error with status -ECONNRESET that
625 * is initiated by usb_sg_cancel().
626 *
627 * When this function returns, all memory allocated through usb_sg_init() or
628 * this call will have been freed. The request block parameter may still be
629 * passed to usb_sg_cancel(), or it may be freed. It could also be
630 * reinitialized and then reused.
631 *
632 * Data Transfer Rates:
633 *
634 * Bulk transfers are valid for full or high speed endpoints.
635 * The best full speed data rate is 19 packets of 64 bytes each
636 * per frame, or 1216 bytes per millisecond.
637 * The best high speed data rate is 13 packets of 512 bytes each
638 * per microframe, or 52 KBytes per millisecond.
639 *
640 * The reason to use interrupt transfers through this API would most likely
641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
642 * could be transferred. That capability is less useful for low or full
643 * speed interrupt endpoints, which allow at most one packet per millisecond,
644 * of at most 8 or 64 bytes (respectively).
645 *
646 * It is not necessary to call this function to reserve bandwidth for devices
647 * under an xHCI host controller, as the bandwidth is reserved when the
648 * configuration or interface alt setting is selected.
649 */
650void usb_sg_wait(struct usb_sg_request *io)
651{
652 int i;
653 int entries = io->entries;
654
655 /* queue the urbs. */
656 spin_lock_irq(&io->lock);
657 i = 0;
658 while (i < entries && !io->status) {
659 int retval;
660
661 io->urbs[i]->dev = io->dev;
662 spin_unlock_irq(&io->lock);
663
664 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
665
666 switch (retval) {
667 /* maybe we retrying will recover */
668 case -ENXIO: /* hc didn't queue this one */
669 case -EAGAIN:
670 case -ENOMEM:
671 retval = 0;
672 yield();
673 break;
674
675 /* no error? continue immediately.
676 *
677 * NOTE: to work better with UHCI (4K I/O buffer may
678 * need 3K of TDs) it may be good to limit how many
679 * URBs are queued at once; N milliseconds?
680 */
681 case 0:
682 ++i;
683 cpu_relax();
684 break;
685
686 /* fail any uncompleted urbs */
687 default:
688 io->urbs[i]->status = retval;
689 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
690 __func__, retval);
691 usb_sg_cancel(io);
692 }
693 spin_lock_irq(&io->lock);
694 if (retval && (io->status == 0 || io->status == -ECONNRESET))
695 io->status = retval;
696 }
697 io->count -= entries - i;
698 if (io->count == 0)
699 complete(&io->complete);
700 spin_unlock_irq(&io->lock);
701
702 /* OK, yes, this could be packaged as non-blocking.
703 * So could the submit loop above ... but it's easier to
704 * solve neither problem than to solve both!
705 */
706 wait_for_completion(&io->complete);
707
708 sg_clean(io);
709}
710EXPORT_SYMBOL_GPL(usb_sg_wait);
711
712/**
713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
714 * @io: request block, initialized with usb_sg_init()
715 *
716 * This stops a request after it has been started by usb_sg_wait().
717 * It can also prevents one initialized by usb_sg_init() from starting,
718 * so that call just frees resources allocated to the request.
719 */
720void usb_sg_cancel(struct usb_sg_request *io)
721{
722 unsigned long flags;
723 int i, retval;
724
725 spin_lock_irqsave(&io->lock, flags);
726 if (io->status || io->count == 0) {
727 spin_unlock_irqrestore(&io->lock, flags);
728 return;
729 }
730 /* shut everything down */
731 io->status = -ECONNRESET;
732 io->count++; /* Keep the request alive until we're done */
733 spin_unlock_irqrestore(&io->lock, flags);
734
735 for (i = io->entries - 1; i >= 0; --i) {
736 usb_block_urb(io->urbs[i]);
737
738 retval = usb_unlink_urb(io->urbs[i]);
739 if (retval != -EINPROGRESS
740 && retval != -ENODEV
741 && retval != -EBUSY
742 && retval != -EIDRM)
743 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
744 __func__, retval);
745 }
746
747 spin_lock_irqsave(&io->lock, flags);
748 io->count--;
749 if (!io->count)
750 complete(&io->complete);
751 spin_unlock_irqrestore(&io->lock, flags);
752}
753EXPORT_SYMBOL_GPL(usb_sg_cancel);
754
755/*-------------------------------------------------------------------*/
756
757/**
758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
759 * @dev: the device whose descriptor is being retrieved
760 * @type: the descriptor type (USB_DT_*)
761 * @index: the number of the descriptor
762 * @buf: where to put the descriptor
763 * @size: how big is "buf"?
764 *
765 * Context: task context, might sleep.
766 *
767 * Gets a USB descriptor. Convenience functions exist to simplify
768 * getting some types of descriptors. Use
769 * usb_get_string() or usb_string() for USB_DT_STRING.
770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
771 * are part of the device structure.
772 * In addition to a number of USB-standard descriptors, some
773 * devices also use class-specific or vendor-specific descriptors.
774 *
775 * This call is synchronous, and may not be used in an interrupt context.
776 *
777 * Return: The number of bytes received on success, or else the status code
778 * returned by the underlying usb_control_msg() call.
779 */
780int usb_get_descriptor(struct usb_device *dev, unsigned char type,
781 unsigned char index, void *buf, int size)
782{
783 int i;
784 int result;
785
786 if (size <= 0) /* No point in asking for no data */
787 return -EINVAL;
788
789 memset(buf, 0, size); /* Make sure we parse really received data */
790
791 for (i = 0; i < 3; ++i) {
792 /* retry on length 0 or error; some devices are flakey */
793 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
794 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
795 (type << 8) + index, 0, buf, size,
796 USB_CTRL_GET_TIMEOUT);
797 if (result <= 0 && result != -ETIMEDOUT)
798 continue;
799 if (result > 1 && ((u8 *)buf)[1] != type) {
800 result = -ENODATA;
801 continue;
802 }
803 break;
804 }
805 return result;
806}
807EXPORT_SYMBOL_GPL(usb_get_descriptor);
808
809/**
810 * usb_get_string - gets a string descriptor
811 * @dev: the device whose string descriptor is being retrieved
812 * @langid: code for language chosen (from string descriptor zero)
813 * @index: the number of the descriptor
814 * @buf: where to put the string
815 * @size: how big is "buf"?
816 *
817 * Context: task context, might sleep.
818 *
819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
820 * in little-endian byte order).
821 * The usb_string() function will often be a convenient way to turn
822 * these strings into kernel-printable form.
823 *
824 * Strings may be referenced in device, configuration, interface, or other
825 * descriptors, and could also be used in vendor-specific ways.
826 *
827 * This call is synchronous, and may not be used in an interrupt context.
828 *
829 * Return: The number of bytes received on success, or else the status code
830 * returned by the underlying usb_control_msg() call.
831 */
832static int usb_get_string(struct usb_device *dev, unsigned short langid,
833 unsigned char index, void *buf, int size)
834{
835 int i;
836 int result;
837
838 if (size <= 0) /* No point in asking for no data */
839 return -EINVAL;
840
841 for (i = 0; i < 3; ++i) {
842 /* retry on length 0 or stall; some devices are flakey */
843 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
845 (USB_DT_STRING << 8) + index, langid, buf, size,
846 USB_CTRL_GET_TIMEOUT);
847 if (result == 0 || result == -EPIPE)
848 continue;
849 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
850 result = -ENODATA;
851 continue;
852 }
853 break;
854 }
855 return result;
856}
857
858static void usb_try_string_workarounds(unsigned char *buf, int *length)
859{
860 int newlength, oldlength = *length;
861
862 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
863 if (!isprint(buf[newlength]) || buf[newlength + 1])
864 break;
865
866 if (newlength > 2) {
867 buf[0] = newlength;
868 *length = newlength;
869 }
870}
871
872static int usb_string_sub(struct usb_device *dev, unsigned int langid,
873 unsigned int index, unsigned char *buf)
874{
875 int rc;
876
877 /* Try to read the string descriptor by asking for the maximum
878 * possible number of bytes */
879 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
880 rc = -EIO;
881 else
882 rc = usb_get_string(dev, langid, index, buf, 255);
883
884 /* If that failed try to read the descriptor length, then
885 * ask for just that many bytes */
886 if (rc < 2) {
887 rc = usb_get_string(dev, langid, index, buf, 2);
888 if (rc == 2)
889 rc = usb_get_string(dev, langid, index, buf, buf[0]);
890 }
891
892 if (rc >= 2) {
893 if (!buf[0] && !buf[1])
894 usb_try_string_workarounds(buf, &rc);
895
896 /* There might be extra junk at the end of the descriptor */
897 if (buf[0] < rc)
898 rc = buf[0];
899
900 rc = rc - (rc & 1); /* force a multiple of two */
901 }
902
903 if (rc < 2)
904 rc = (rc < 0 ? rc : -EINVAL);
905
906 return rc;
907}
908
909static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
910{
911 int err;
912
913 if (dev->have_langid)
914 return 0;
915
916 if (dev->string_langid < 0)
917 return -EPIPE;
918
919 err = usb_string_sub(dev, 0, 0, tbuf);
920
921 /* If the string was reported but is malformed, default to english
922 * (0x0409) */
923 if (err == -ENODATA || (err > 0 && err < 4)) {
924 dev->string_langid = 0x0409;
925 dev->have_langid = 1;
926 dev_err(&dev->dev,
927 "language id specifier not provided by device, defaulting to English\n");
928 return 0;
929 }
930
931 /* In case of all other errors, we assume the device is not able to
932 * deal with strings at all. Set string_langid to -1 in order to
933 * prevent any string to be retrieved from the device */
934 if (err < 0) {
935 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
936 err);
937 dev->string_langid = -1;
938 return -EPIPE;
939 }
940
941 /* always use the first langid listed */
942 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
943 dev->have_langid = 1;
944 dev_dbg(&dev->dev, "default language 0x%04x\n",
945 dev->string_langid);
946 return 0;
947}
948
949/**
950 * usb_string - returns UTF-8 version of a string descriptor
951 * @dev: the device whose string descriptor is being retrieved
952 * @index: the number of the descriptor
953 * @buf: where to put the string
954 * @size: how big is "buf"?
955 *
956 * Context: task context, might sleep.
957 *
958 * This converts the UTF-16LE encoded strings returned by devices, from
959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
960 * that are more usable in most kernel contexts. Note that this function
961 * chooses strings in the first language supported by the device.
962 *
963 * This call is synchronous, and may not be used in an interrupt context.
964 *
965 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
966 */
967int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
968{
969 unsigned char *tbuf;
970 int err;
971
972 if (dev->state == USB_STATE_SUSPENDED)
973 return -EHOSTUNREACH;
974 if (size <= 0 || !buf)
975 return -EINVAL;
976 buf[0] = 0;
977 if (index <= 0 || index >= 256)
978 return -EINVAL;
979 tbuf = kmalloc(256, GFP_NOIO);
980 if (!tbuf)
981 return -ENOMEM;
982
983 err = usb_get_langid(dev, tbuf);
984 if (err < 0)
985 goto errout;
986
987 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
988 if (err < 0)
989 goto errout;
990
991 size--; /* leave room for trailing NULL char in output buffer */
992 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
993 UTF16_LITTLE_ENDIAN, buf, size);
994 buf[err] = 0;
995
996 if (tbuf[1] != USB_DT_STRING)
997 dev_dbg(&dev->dev,
998 "wrong descriptor type %02x for string %d (\"%s\")\n",
999 tbuf[1], index, buf);
1000
1001 errout:
1002 kfree(tbuf);
1003 return err;
1004}
1005EXPORT_SYMBOL_GPL(usb_string);
1006
1007/* one UTF-8-encoded 16-bit character has at most three bytes */
1008#define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009
1010/**
1011 * usb_cache_string - read a string descriptor and cache it for later use
1012 * @udev: the device whose string descriptor is being read
1013 * @index: the descriptor index
1014 *
1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016 * or %NULL if the index is 0 or the string could not be read.
1017 */
1018char *usb_cache_string(struct usb_device *udev, int index)
1019{
1020 char *buf;
1021 char *smallbuf = NULL;
1022 int len;
1023
1024 if (index <= 0)
1025 return NULL;
1026
1027 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028 if (buf) {
1029 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030 if (len > 0) {
1031 smallbuf = kmalloc(++len, GFP_NOIO);
1032 if (!smallbuf)
1033 return buf;
1034 memcpy(smallbuf, buf, len);
1035 }
1036 kfree(buf);
1037 }
1038 return smallbuf;
1039}
1040EXPORT_SYMBOL_GPL(usb_cache_string);
1041
1042/*
1043 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1044 * @dev: the device whose device descriptor is being updated
1045 * @size: how much of the descriptor to read
1046 *
1047 * Context: task context, might sleep.
1048 *
1049 * Updates the copy of the device descriptor stored in the device structure,
1050 * which dedicates space for this purpose.
1051 *
1052 * Not exported, only for use by the core. If drivers really want to read
1053 * the device descriptor directly, they can call usb_get_descriptor() with
1054 * type = USB_DT_DEVICE and index = 0.
1055 *
1056 * This call is synchronous, and may not be used in an interrupt context.
1057 *
1058 * Return: The number of bytes received on success, or else the status code
1059 * returned by the underlying usb_control_msg() call.
1060 */
1061int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1062{
1063 struct usb_device_descriptor *desc;
1064 int ret;
1065
1066 if (size > sizeof(*desc))
1067 return -EINVAL;
1068 desc = kmalloc(sizeof(*desc), GFP_NOIO);
1069 if (!desc)
1070 return -ENOMEM;
1071
1072 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1073 if (ret >= 0)
1074 memcpy(&dev->descriptor, desc, size);
1075 kfree(desc);
1076 return ret;
1077}
1078
1079/*
1080 * usb_set_isoch_delay - informs the device of the packet transmit delay
1081 * @dev: the device whose delay is to be informed
1082 * Context: task context, might sleep
1083 *
1084 * Since this is an optional request, we don't bother if it fails.
1085 */
1086int usb_set_isoch_delay(struct usb_device *dev)
1087{
1088 /* skip hub devices */
1089 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1090 return 0;
1091
1092 /* skip non-SS/non-SSP devices */
1093 if (dev->speed < USB_SPEED_SUPER)
1094 return 0;
1095
1096 return usb_control_msg_send(dev, 0,
1097 USB_REQ_SET_ISOCH_DELAY,
1098 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1099 dev->hub_delay, 0, NULL, 0,
1100 USB_CTRL_SET_TIMEOUT,
1101 GFP_NOIO);
1102}
1103
1104/**
1105 * usb_get_status - issues a GET_STATUS call
1106 * @dev: the device whose status is being checked
1107 * @recip: USB_RECIP_*; for device, interface, or endpoint
1108 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1109 * @target: zero (for device), else interface or endpoint number
1110 * @data: pointer to two bytes of bitmap data
1111 *
1112 * Context: task context, might sleep.
1113 *
1114 * Returns device, interface, or endpoint status. Normally only of
1115 * interest to see if the device is self powered, or has enabled the
1116 * remote wakeup facility; or whether a bulk or interrupt endpoint
1117 * is halted ("stalled").
1118 *
1119 * Bits in these status bitmaps are set using the SET_FEATURE request,
1120 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
1121 * function should be used to clear halt ("stall") status.
1122 *
1123 * This call is synchronous, and may not be used in an interrupt context.
1124 *
1125 * Returns 0 and the status value in *@data (in host byte order) on success,
1126 * or else the status code from the underlying usb_control_msg() call.
1127 */
1128int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1129 void *data)
1130{
1131 int ret;
1132 void *status;
1133 int length;
1134
1135 switch (type) {
1136 case USB_STATUS_TYPE_STANDARD:
1137 length = 2;
1138 break;
1139 case USB_STATUS_TYPE_PTM:
1140 if (recip != USB_RECIP_DEVICE)
1141 return -EINVAL;
1142
1143 length = 4;
1144 break;
1145 default:
1146 return -EINVAL;
1147 }
1148
1149 status = kmalloc(length, GFP_KERNEL);
1150 if (!status)
1151 return -ENOMEM;
1152
1153 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1154 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1155 target, status, length, USB_CTRL_GET_TIMEOUT);
1156
1157 switch (ret) {
1158 case 4:
1159 if (type != USB_STATUS_TYPE_PTM) {
1160 ret = -EIO;
1161 break;
1162 }
1163
1164 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1165 ret = 0;
1166 break;
1167 case 2:
1168 if (type != USB_STATUS_TYPE_STANDARD) {
1169 ret = -EIO;
1170 break;
1171 }
1172
1173 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1174 ret = 0;
1175 break;
1176 default:
1177 ret = -EIO;
1178 }
1179
1180 kfree(status);
1181 return ret;
1182}
1183EXPORT_SYMBOL_GPL(usb_get_status);
1184
1185/**
1186 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1187 * @dev: device whose endpoint is halted
1188 * @pipe: endpoint "pipe" being cleared
1189 *
1190 * Context: task context, might sleep.
1191 *
1192 * This is used to clear halt conditions for bulk and interrupt endpoints,
1193 * as reported by URB completion status. Endpoints that are halted are
1194 * sometimes referred to as being "stalled". Such endpoints are unable
1195 * to transmit or receive data until the halt status is cleared. Any URBs
1196 * queued for such an endpoint should normally be unlinked by the driver
1197 * before clearing the halt condition, as described in sections 5.7.5
1198 * and 5.8.5 of the USB 2.0 spec.
1199 *
1200 * Note that control and isochronous endpoints don't halt, although control
1201 * endpoints report "protocol stall" (for unsupported requests) using the
1202 * same status code used to report a true stall.
1203 *
1204 * This call is synchronous, and may not be used in an interrupt context.
1205 *
1206 * Return: Zero on success, or else the status code returned by the
1207 * underlying usb_control_msg() call.
1208 */
1209int usb_clear_halt(struct usb_device *dev, int pipe)
1210{
1211 int result;
1212 int endp = usb_pipeendpoint(pipe);
1213
1214 if (usb_pipein(pipe))
1215 endp |= USB_DIR_IN;
1216
1217 /* we don't care if it wasn't halted first. in fact some devices
1218 * (like some ibmcam model 1 units) seem to expect hosts to make
1219 * this request for iso endpoints, which can't halt!
1220 */
1221 result = usb_control_msg_send(dev, 0,
1222 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1223 USB_ENDPOINT_HALT, endp, NULL, 0,
1224 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1225
1226 /* don't un-halt or force to DATA0 except on success */
1227 if (result)
1228 return result;
1229
1230 /* NOTE: seems like Microsoft and Apple don't bother verifying
1231 * the clear "took", so some devices could lock up if you check...
1232 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1233 *
1234 * NOTE: make sure the logic here doesn't diverge much from
1235 * the copy in usb-storage, for as long as we need two copies.
1236 */
1237
1238 usb_reset_endpoint(dev, endp);
1239
1240 return 0;
1241}
1242EXPORT_SYMBOL_GPL(usb_clear_halt);
1243
1244static int create_intf_ep_devs(struct usb_interface *intf)
1245{
1246 struct usb_device *udev = interface_to_usbdev(intf);
1247 struct usb_host_interface *alt = intf->cur_altsetting;
1248 int i;
1249
1250 if (intf->ep_devs_created || intf->unregistering)
1251 return 0;
1252
1253 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1254 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1255 intf->ep_devs_created = 1;
1256 return 0;
1257}
1258
1259static void remove_intf_ep_devs(struct usb_interface *intf)
1260{
1261 struct usb_host_interface *alt = intf->cur_altsetting;
1262 int i;
1263
1264 if (!intf->ep_devs_created)
1265 return;
1266
1267 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1268 usb_remove_ep_devs(&alt->endpoint[i]);
1269 intf->ep_devs_created = 0;
1270}
1271
1272/**
1273 * usb_disable_endpoint -- Disable an endpoint by address
1274 * @dev: the device whose endpoint is being disabled
1275 * @epaddr: the endpoint's address. Endpoint number for output,
1276 * endpoint number + USB_DIR_IN for input
1277 * @reset_hardware: flag to erase any endpoint state stored in the
1278 * controller hardware
1279 *
1280 * Disables the endpoint for URB submission and nukes all pending URBs.
1281 * If @reset_hardware is set then also deallocates hcd/hardware state
1282 * for the endpoint.
1283 */
1284void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1285 bool reset_hardware)
1286{
1287 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1288 struct usb_host_endpoint *ep;
1289
1290 if (!dev)
1291 return;
1292
1293 if (usb_endpoint_out(epaddr)) {
1294 ep = dev->ep_out[epnum];
1295 if (reset_hardware && epnum != 0)
1296 dev->ep_out[epnum] = NULL;
1297 } else {
1298 ep = dev->ep_in[epnum];
1299 if (reset_hardware && epnum != 0)
1300 dev->ep_in[epnum] = NULL;
1301 }
1302 if (ep) {
1303 ep->enabled = 0;
1304 usb_hcd_flush_endpoint(dev, ep);
1305 if (reset_hardware)
1306 usb_hcd_disable_endpoint(dev, ep);
1307 }
1308}
1309
1310/**
1311 * usb_reset_endpoint - Reset an endpoint's state.
1312 * @dev: the device whose endpoint is to be reset
1313 * @epaddr: the endpoint's address. Endpoint number for output,
1314 * endpoint number + USB_DIR_IN for input
1315 *
1316 * Resets any host-side endpoint state such as the toggle bit,
1317 * sequence number or current window.
1318 */
1319void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1320{
1321 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1322 struct usb_host_endpoint *ep;
1323
1324 if (usb_endpoint_out(epaddr))
1325 ep = dev->ep_out[epnum];
1326 else
1327 ep = dev->ep_in[epnum];
1328 if (ep)
1329 usb_hcd_reset_endpoint(dev, ep);
1330}
1331EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1332
1333
1334/**
1335 * usb_disable_interface -- Disable all endpoints for an interface
1336 * @dev: the device whose interface is being disabled
1337 * @intf: pointer to the interface descriptor
1338 * @reset_hardware: flag to erase any endpoint state stored in the
1339 * controller hardware
1340 *
1341 * Disables all the endpoints for the interface's current altsetting.
1342 */
1343void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1344 bool reset_hardware)
1345{
1346 struct usb_host_interface *alt = intf->cur_altsetting;
1347 int i;
1348
1349 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1350 usb_disable_endpoint(dev,
1351 alt->endpoint[i].desc.bEndpointAddress,
1352 reset_hardware);
1353 }
1354}
1355
1356/*
1357 * usb_disable_device_endpoints -- Disable all endpoints for a device
1358 * @dev: the device whose endpoints are being disabled
1359 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1360 */
1361static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1362{
1363 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1364 int i;
1365
1366 if (hcd->driver->check_bandwidth) {
1367 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1368 for (i = skip_ep0; i < 16; ++i) {
1369 usb_disable_endpoint(dev, i, false);
1370 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1371 }
1372 /* Remove endpoints from the host controller internal state */
1373 mutex_lock(hcd->bandwidth_mutex);
1374 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1375 mutex_unlock(hcd->bandwidth_mutex);
1376 }
1377 /* Second pass: remove endpoint pointers */
1378 for (i = skip_ep0; i < 16; ++i) {
1379 usb_disable_endpoint(dev, i, true);
1380 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1381 }
1382}
1383
1384/**
1385 * usb_disable_device - Disable all the endpoints for a USB device
1386 * @dev: the device whose endpoints are being disabled
1387 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1388 *
1389 * Disables all the device's endpoints, potentially including endpoint 0.
1390 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1391 * pending urbs) and usbcore state for the interfaces, so that usbcore
1392 * must usb_set_configuration() before any interfaces could be used.
1393 */
1394void usb_disable_device(struct usb_device *dev, int skip_ep0)
1395{
1396 int i;
1397
1398 /* getting rid of interfaces will disconnect
1399 * any drivers bound to them (a key side effect)
1400 */
1401 if (dev->actconfig) {
1402 /*
1403 * FIXME: In order to avoid self-deadlock involving the
1404 * bandwidth_mutex, we have to mark all the interfaces
1405 * before unregistering any of them.
1406 */
1407 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1408 dev->actconfig->interface[i]->unregistering = 1;
1409
1410 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1411 struct usb_interface *interface;
1412
1413 /* remove this interface if it has been registered */
1414 interface = dev->actconfig->interface[i];
1415 if (!device_is_registered(&interface->dev))
1416 continue;
1417 dev_dbg(&dev->dev, "unregistering interface %s\n",
1418 dev_name(&interface->dev));
1419 remove_intf_ep_devs(interface);
1420 device_del(&interface->dev);
1421 }
1422
1423 /* Now that the interfaces are unbound, nobody should
1424 * try to access them.
1425 */
1426 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1427 put_device(&dev->actconfig->interface[i]->dev);
1428 dev->actconfig->interface[i] = NULL;
1429 }
1430
1431 usb_disable_usb2_hardware_lpm(dev);
1432 usb_unlocked_disable_lpm(dev);
1433 usb_disable_ltm(dev);
1434
1435 dev->actconfig = NULL;
1436 if (dev->state == USB_STATE_CONFIGURED)
1437 usb_set_device_state(dev, USB_STATE_ADDRESS);
1438 }
1439
1440 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1441 skip_ep0 ? "non-ep0" : "all");
1442
1443 usb_disable_device_endpoints(dev, skip_ep0);
1444}
1445
1446/**
1447 * usb_enable_endpoint - Enable an endpoint for USB communications
1448 * @dev: the device whose interface is being enabled
1449 * @ep: the endpoint
1450 * @reset_ep: flag to reset the endpoint state
1451 *
1452 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1453 * For control endpoints, both the input and output sides are handled.
1454 */
1455void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1456 bool reset_ep)
1457{
1458 int epnum = usb_endpoint_num(&ep->desc);
1459 int is_out = usb_endpoint_dir_out(&ep->desc);
1460 int is_control = usb_endpoint_xfer_control(&ep->desc);
1461
1462 if (reset_ep)
1463 usb_hcd_reset_endpoint(dev, ep);
1464 if (is_out || is_control)
1465 dev->ep_out[epnum] = ep;
1466 if (!is_out || is_control)
1467 dev->ep_in[epnum] = ep;
1468 ep->enabled = 1;
1469}
1470
1471/**
1472 * usb_enable_interface - Enable all the endpoints for an interface
1473 * @dev: the device whose interface is being enabled
1474 * @intf: pointer to the interface descriptor
1475 * @reset_eps: flag to reset the endpoints' state
1476 *
1477 * Enables all the endpoints for the interface's current altsetting.
1478 */
1479void usb_enable_interface(struct usb_device *dev,
1480 struct usb_interface *intf, bool reset_eps)
1481{
1482 struct usb_host_interface *alt = intf->cur_altsetting;
1483 int i;
1484
1485 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1486 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1487}
1488
1489/**
1490 * usb_set_interface - Makes a particular alternate setting be current
1491 * @dev: the device whose interface is being updated
1492 * @interface: the interface being updated
1493 * @alternate: the setting being chosen.
1494 *
1495 * Context: task context, might sleep.
1496 *
1497 * This is used to enable data transfers on interfaces that may not
1498 * be enabled by default. Not all devices support such configurability.
1499 * Only the driver bound to an interface may change its setting.
1500 *
1501 * Within any given configuration, each interface may have several
1502 * alternative settings. These are often used to control levels of
1503 * bandwidth consumption. For example, the default setting for a high
1504 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1505 * while interrupt transfers of up to 3KBytes per microframe are legal.
1506 * Also, isochronous endpoints may never be part of an
1507 * interface's default setting. To access such bandwidth, alternate
1508 * interface settings must be made current.
1509 *
1510 * Note that in the Linux USB subsystem, bandwidth associated with
1511 * an endpoint in a given alternate setting is not reserved until an URB
1512 * is submitted that needs that bandwidth. Some other operating systems
1513 * allocate bandwidth early, when a configuration is chosen.
1514 *
1515 * xHCI reserves bandwidth and configures the alternate setting in
1516 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1517 * may be disabled. Drivers cannot rely on any particular alternate
1518 * setting being in effect after a failure.
1519 *
1520 * This call is synchronous, and may not be used in an interrupt context.
1521 * Also, drivers must not change altsettings while urbs are scheduled for
1522 * endpoints in that interface; all such urbs must first be completed
1523 * (perhaps forced by unlinking).
1524 *
1525 * Return: Zero on success, or else the status code returned by the
1526 * underlying usb_control_msg() call.
1527 */
1528int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1529{
1530 struct usb_interface *iface;
1531 struct usb_host_interface *alt;
1532 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1533 int i, ret, manual = 0;
1534 unsigned int epaddr;
1535 unsigned int pipe;
1536
1537 if (dev->state == USB_STATE_SUSPENDED)
1538 return -EHOSTUNREACH;
1539
1540 iface = usb_ifnum_to_if(dev, interface);
1541 if (!iface) {
1542 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1543 interface);
1544 return -EINVAL;
1545 }
1546 if (iface->unregistering)
1547 return -ENODEV;
1548
1549 alt = usb_altnum_to_altsetting(iface, alternate);
1550 if (!alt) {
1551 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1552 alternate);
1553 return -EINVAL;
1554 }
1555 /*
1556 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1557 * including freeing dropped endpoint ring buffers.
1558 * Make sure the interface endpoints are flushed before that
1559 */
1560 usb_disable_interface(dev, iface, false);
1561
1562 /* Make sure we have enough bandwidth for this alternate interface.
1563 * Remove the current alt setting and add the new alt setting.
1564 */
1565 mutex_lock(hcd->bandwidth_mutex);
1566 /* Disable LPM, and re-enable it once the new alt setting is installed,
1567 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1568 */
1569 if (usb_disable_lpm(dev)) {
1570 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1571 mutex_unlock(hcd->bandwidth_mutex);
1572 return -ENOMEM;
1573 }
1574 /* Changing alt-setting also frees any allocated streams */
1575 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1576 iface->cur_altsetting->endpoint[i].streams = 0;
1577
1578 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1579 if (ret < 0) {
1580 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1581 alternate);
1582 usb_enable_lpm(dev);
1583 mutex_unlock(hcd->bandwidth_mutex);
1584 return ret;
1585 }
1586
1587 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1588 ret = -EPIPE;
1589 else
1590 ret = usb_control_msg_send(dev, 0,
1591 USB_REQ_SET_INTERFACE,
1592 USB_RECIP_INTERFACE, alternate,
1593 interface, NULL, 0, 5000,
1594 GFP_NOIO);
1595
1596 /* 9.4.10 says devices don't need this and are free to STALL the
1597 * request if the interface only has one alternate setting.
1598 */
1599 if (ret == -EPIPE && iface->num_altsetting == 1) {
1600 dev_dbg(&dev->dev,
1601 "manual set_interface for iface %d, alt %d\n",
1602 interface, alternate);
1603 manual = 1;
1604 } else if (ret) {
1605 /* Re-instate the old alt setting */
1606 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1607 usb_enable_lpm(dev);
1608 mutex_unlock(hcd->bandwidth_mutex);
1609 return ret;
1610 }
1611 mutex_unlock(hcd->bandwidth_mutex);
1612
1613 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1614 * when they implement async or easily-killable versions of this or
1615 * other "should-be-internal" functions (like clear_halt).
1616 * should hcd+usbcore postprocess control requests?
1617 */
1618
1619 /* prevent submissions using previous endpoint settings */
1620 if (iface->cur_altsetting != alt) {
1621 remove_intf_ep_devs(iface);
1622 usb_remove_sysfs_intf_files(iface);
1623 }
1624 usb_disable_interface(dev, iface, true);
1625
1626 iface->cur_altsetting = alt;
1627
1628 /* Now that the interface is installed, re-enable LPM. */
1629 usb_unlocked_enable_lpm(dev);
1630
1631 /* If the interface only has one altsetting and the device didn't
1632 * accept the request, we attempt to carry out the equivalent action
1633 * by manually clearing the HALT feature for each endpoint in the
1634 * new altsetting.
1635 */
1636 if (manual) {
1637 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1638 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1639 pipe = __create_pipe(dev,
1640 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1641 (usb_endpoint_out(epaddr) ?
1642 USB_DIR_OUT : USB_DIR_IN);
1643
1644 usb_clear_halt(dev, pipe);
1645 }
1646 }
1647
1648 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1649 *
1650 * Note:
1651 * Despite EP0 is always present in all interfaces/AS, the list of
1652 * endpoints from the descriptor does not contain EP0. Due to its
1653 * omnipresence one might expect EP0 being considered "affected" by
1654 * any SetInterface request and hence assume toggles need to be reset.
1655 * However, EP0 toggles are re-synced for every individual transfer
1656 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1657 * (Likewise, EP0 never "halts" on well designed devices.)
1658 */
1659 usb_enable_interface(dev, iface, true);
1660 if (device_is_registered(&iface->dev)) {
1661 usb_create_sysfs_intf_files(iface);
1662 create_intf_ep_devs(iface);
1663 }
1664 return 0;
1665}
1666EXPORT_SYMBOL_GPL(usb_set_interface);
1667
1668/**
1669 * usb_reset_configuration - lightweight device reset
1670 * @dev: the device whose configuration is being reset
1671 *
1672 * This issues a standard SET_CONFIGURATION request to the device using
1673 * the current configuration. The effect is to reset most USB-related
1674 * state in the device, including interface altsettings (reset to zero),
1675 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1676 * endpoints). Other usbcore state is unchanged, including bindings of
1677 * usb device drivers to interfaces.
1678 *
1679 * Because this affects multiple interfaces, avoid using this with composite
1680 * (multi-interface) devices. Instead, the driver for each interface may
1681 * use usb_set_interface() on the interfaces it claims. Be careful though;
1682 * some devices don't support the SET_INTERFACE request, and others won't
1683 * reset all the interface state (notably endpoint state). Resetting the whole
1684 * configuration would affect other drivers' interfaces.
1685 *
1686 * The caller must own the device lock.
1687 *
1688 * Return: Zero on success, else a negative error code.
1689 *
1690 * If this routine fails the device will probably be in an unusable state
1691 * with endpoints disabled, and interfaces only partially enabled.
1692 */
1693int usb_reset_configuration(struct usb_device *dev)
1694{
1695 int i, retval;
1696 struct usb_host_config *config;
1697 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1698
1699 if (dev->state == USB_STATE_SUSPENDED)
1700 return -EHOSTUNREACH;
1701
1702 /* caller must have locked the device and must own
1703 * the usb bus readlock (so driver bindings are stable);
1704 * calls during probe() are fine
1705 */
1706
1707 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1708
1709 config = dev->actconfig;
1710 retval = 0;
1711 mutex_lock(hcd->bandwidth_mutex);
1712 /* Disable LPM, and re-enable it once the configuration is reset, so
1713 * that the xHCI driver can recalculate the U1/U2 timeouts.
1714 */
1715 if (usb_disable_lpm(dev)) {
1716 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1717 mutex_unlock(hcd->bandwidth_mutex);
1718 return -ENOMEM;
1719 }
1720
1721 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1722 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1723 if (retval < 0) {
1724 usb_enable_lpm(dev);
1725 mutex_unlock(hcd->bandwidth_mutex);
1726 return retval;
1727 }
1728 retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1729 config->desc.bConfigurationValue, 0,
1730 NULL, 0, USB_CTRL_SET_TIMEOUT,
1731 GFP_NOIO);
1732 if (retval) {
1733 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1734 usb_enable_lpm(dev);
1735 mutex_unlock(hcd->bandwidth_mutex);
1736 return retval;
1737 }
1738 mutex_unlock(hcd->bandwidth_mutex);
1739
1740 /* re-init hc/hcd interface/endpoint state */
1741 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1742 struct usb_interface *intf = config->interface[i];
1743 struct usb_host_interface *alt;
1744
1745 alt = usb_altnum_to_altsetting(intf, 0);
1746
1747 /* No altsetting 0? We'll assume the first altsetting.
1748 * We could use a GetInterface call, but if a device is
1749 * so non-compliant that it doesn't have altsetting 0
1750 * then I wouldn't trust its reply anyway.
1751 */
1752 if (!alt)
1753 alt = &intf->altsetting[0];
1754
1755 if (alt != intf->cur_altsetting) {
1756 remove_intf_ep_devs(intf);
1757 usb_remove_sysfs_intf_files(intf);
1758 }
1759 intf->cur_altsetting = alt;
1760 usb_enable_interface(dev, intf, true);
1761 if (device_is_registered(&intf->dev)) {
1762 usb_create_sysfs_intf_files(intf);
1763 create_intf_ep_devs(intf);
1764 }
1765 }
1766 /* Now that the interfaces are installed, re-enable LPM. */
1767 usb_unlocked_enable_lpm(dev);
1768 return 0;
1769}
1770EXPORT_SYMBOL_GPL(usb_reset_configuration);
1771
1772static void usb_release_interface(struct device *dev)
1773{
1774 struct usb_interface *intf = to_usb_interface(dev);
1775 struct usb_interface_cache *intfc =
1776 altsetting_to_usb_interface_cache(intf->altsetting);
1777
1778 kref_put(&intfc->ref, usb_release_interface_cache);
1779 usb_put_dev(interface_to_usbdev(intf));
1780 of_node_put(dev->of_node);
1781 kfree(intf);
1782}
1783
1784/*
1785 * usb_deauthorize_interface - deauthorize an USB interface
1786 *
1787 * @intf: USB interface structure
1788 */
1789void usb_deauthorize_interface(struct usb_interface *intf)
1790{
1791 struct device *dev = &intf->dev;
1792
1793 device_lock(dev->parent);
1794
1795 if (intf->authorized) {
1796 device_lock(dev);
1797 intf->authorized = 0;
1798 device_unlock(dev);
1799
1800 usb_forced_unbind_intf(intf);
1801 }
1802
1803 device_unlock(dev->parent);
1804}
1805
1806/*
1807 * usb_authorize_interface - authorize an USB interface
1808 *
1809 * @intf: USB interface structure
1810 */
1811void usb_authorize_interface(struct usb_interface *intf)
1812{
1813 struct device *dev = &intf->dev;
1814
1815 if (!intf->authorized) {
1816 device_lock(dev);
1817 intf->authorized = 1; /* authorize interface */
1818 device_unlock(dev);
1819 }
1820}
1821
1822static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1823{
1824 struct usb_device *usb_dev;
1825 struct usb_interface *intf;
1826 struct usb_host_interface *alt;
1827
1828 intf = to_usb_interface(dev);
1829 usb_dev = interface_to_usbdev(intf);
1830 alt = intf->cur_altsetting;
1831
1832 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1833 alt->desc.bInterfaceClass,
1834 alt->desc.bInterfaceSubClass,
1835 alt->desc.bInterfaceProtocol))
1836 return -ENOMEM;
1837
1838 if (add_uevent_var(env,
1839 "MODALIAS=usb:"
1840 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1841 le16_to_cpu(usb_dev->descriptor.idVendor),
1842 le16_to_cpu(usb_dev->descriptor.idProduct),
1843 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1844 usb_dev->descriptor.bDeviceClass,
1845 usb_dev->descriptor.bDeviceSubClass,
1846 usb_dev->descriptor.bDeviceProtocol,
1847 alt->desc.bInterfaceClass,
1848 alt->desc.bInterfaceSubClass,
1849 alt->desc.bInterfaceProtocol,
1850 alt->desc.bInterfaceNumber))
1851 return -ENOMEM;
1852
1853 return 0;
1854}
1855
1856struct device_type usb_if_device_type = {
1857 .name = "usb_interface",
1858 .release = usb_release_interface,
1859 .uevent = usb_if_uevent,
1860};
1861
1862static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1863 struct usb_host_config *config,
1864 u8 inum)
1865{
1866 struct usb_interface_assoc_descriptor *retval = NULL;
1867 struct usb_interface_assoc_descriptor *intf_assoc;
1868 int first_intf;
1869 int last_intf;
1870 int i;
1871
1872 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1873 intf_assoc = config->intf_assoc[i];
1874 if (intf_assoc->bInterfaceCount == 0)
1875 continue;
1876
1877 first_intf = intf_assoc->bFirstInterface;
1878 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1879 if (inum >= first_intf && inum <= last_intf) {
1880 if (!retval)
1881 retval = intf_assoc;
1882 else
1883 dev_err(&dev->dev, "Interface #%d referenced"
1884 " by multiple IADs\n", inum);
1885 }
1886 }
1887
1888 return retval;
1889}
1890
1891
1892/*
1893 * Internal function to queue a device reset
1894 * See usb_queue_reset_device() for more details
1895 */
1896static void __usb_queue_reset_device(struct work_struct *ws)
1897{
1898 int rc;
1899 struct usb_interface *iface =
1900 container_of(ws, struct usb_interface, reset_ws);
1901 struct usb_device *udev = interface_to_usbdev(iface);
1902
1903 rc = usb_lock_device_for_reset(udev, iface);
1904 if (rc >= 0) {
1905 usb_reset_device(udev);
1906 usb_unlock_device(udev);
1907 }
1908 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1909}
1910
1911
1912/*
1913 * usb_set_configuration - Makes a particular device setting be current
1914 * @dev: the device whose configuration is being updated
1915 * @configuration: the configuration being chosen.
1916 *
1917 * Context: task context, might sleep. Caller holds device lock.
1918 *
1919 * This is used to enable non-default device modes. Not all devices
1920 * use this kind of configurability; many devices only have one
1921 * configuration.
1922 *
1923 * @configuration is the value of the configuration to be installed.
1924 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1925 * must be non-zero; a value of zero indicates that the device in
1926 * unconfigured. However some devices erroneously use 0 as one of their
1927 * configuration values. To help manage such devices, this routine will
1928 * accept @configuration = -1 as indicating the device should be put in
1929 * an unconfigured state.
1930 *
1931 * USB device configurations may affect Linux interoperability,
1932 * power consumption and the functionality available. For example,
1933 * the default configuration is limited to using 100mA of bus power,
1934 * so that when certain device functionality requires more power,
1935 * and the device is bus powered, that functionality should be in some
1936 * non-default device configuration. Other device modes may also be
1937 * reflected as configuration options, such as whether two ISDN
1938 * channels are available independently; and choosing between open
1939 * standard device protocols (like CDC) or proprietary ones.
1940 *
1941 * Note that a non-authorized device (dev->authorized == 0) will only
1942 * be put in unconfigured mode.
1943 *
1944 * Note that USB has an additional level of device configurability,
1945 * associated with interfaces. That configurability is accessed using
1946 * usb_set_interface().
1947 *
1948 * This call is synchronous. The calling context must be able to sleep,
1949 * must own the device lock, and must not hold the driver model's USB
1950 * bus mutex; usb interface driver probe() methods cannot use this routine.
1951 *
1952 * Returns zero on success, or else the status code returned by the
1953 * underlying call that failed. On successful completion, each interface
1954 * in the original device configuration has been destroyed, and each one
1955 * in the new configuration has been probed by all relevant usb device
1956 * drivers currently known to the kernel.
1957 */
1958int usb_set_configuration(struct usb_device *dev, int configuration)
1959{
1960 int i, ret;
1961 struct usb_host_config *cp = NULL;
1962 struct usb_interface **new_interfaces = NULL;
1963 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1964 int n, nintf;
1965
1966 if (dev->authorized == 0 || configuration == -1)
1967 configuration = 0;
1968 else {
1969 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1970 if (dev->config[i].desc.bConfigurationValue ==
1971 configuration) {
1972 cp = &dev->config[i];
1973 break;
1974 }
1975 }
1976 }
1977 if ((!cp && configuration != 0))
1978 return -EINVAL;
1979
1980 /* The USB spec says configuration 0 means unconfigured.
1981 * But if a device includes a configuration numbered 0,
1982 * we will accept it as a correctly configured state.
1983 * Use -1 if you really want to unconfigure the device.
1984 */
1985 if (cp && configuration == 0)
1986 dev_warn(&dev->dev, "config 0 descriptor??\n");
1987
1988 /* Allocate memory for new interfaces before doing anything else,
1989 * so that if we run out then nothing will have changed. */
1990 n = nintf = 0;
1991 if (cp) {
1992 nintf = cp->desc.bNumInterfaces;
1993 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1994 GFP_NOIO);
1995 if (!new_interfaces)
1996 return -ENOMEM;
1997
1998 for (; n < nintf; ++n) {
1999 new_interfaces[n] = kzalloc(
2000 sizeof(struct usb_interface),
2001 GFP_NOIO);
2002 if (!new_interfaces[n]) {
2003 ret = -ENOMEM;
2004free_interfaces:
2005 while (--n >= 0)
2006 kfree(new_interfaces[n]);
2007 kfree(new_interfaces);
2008 return ret;
2009 }
2010 }
2011
2012 i = dev->bus_mA - usb_get_max_power(dev, cp);
2013 if (i < 0)
2014 dev_warn(&dev->dev, "new config #%d exceeds power "
2015 "limit by %dmA\n",
2016 configuration, -i);
2017 }
2018
2019 /* Wake up the device so we can send it the Set-Config request */
2020 ret = usb_autoresume_device(dev);
2021 if (ret)
2022 goto free_interfaces;
2023
2024 /* if it's already configured, clear out old state first.
2025 * getting rid of old interfaces means unbinding their drivers.
2026 */
2027 if (dev->state != USB_STATE_ADDRESS)
2028 usb_disable_device(dev, 1); /* Skip ep0 */
2029
2030 /* Get rid of pending async Set-Config requests for this device */
2031 cancel_async_set_config(dev);
2032
2033 /* Make sure we have bandwidth (and available HCD resources) for this
2034 * configuration. Remove endpoints from the schedule if we're dropping
2035 * this configuration to set configuration 0. After this point, the
2036 * host controller will not allow submissions to dropped endpoints. If
2037 * this call fails, the device state is unchanged.
2038 */
2039 mutex_lock(hcd->bandwidth_mutex);
2040 /* Disable LPM, and re-enable it once the new configuration is
2041 * installed, so that the xHCI driver can recalculate the U1/U2
2042 * timeouts.
2043 */
2044 if (dev->actconfig && usb_disable_lpm(dev)) {
2045 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2046 mutex_unlock(hcd->bandwidth_mutex);
2047 ret = -ENOMEM;
2048 goto free_interfaces;
2049 }
2050 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2051 if (ret < 0) {
2052 if (dev->actconfig)
2053 usb_enable_lpm(dev);
2054 mutex_unlock(hcd->bandwidth_mutex);
2055 usb_autosuspend_device(dev);
2056 goto free_interfaces;
2057 }
2058
2059 /*
2060 * Initialize the new interface structures and the
2061 * hc/hcd/usbcore interface/endpoint state.
2062 */
2063 for (i = 0; i < nintf; ++i) {
2064 struct usb_interface_cache *intfc;
2065 struct usb_interface *intf;
2066 struct usb_host_interface *alt;
2067 u8 ifnum;
2068
2069 cp->interface[i] = intf = new_interfaces[i];
2070 intfc = cp->intf_cache[i];
2071 intf->altsetting = intfc->altsetting;
2072 intf->num_altsetting = intfc->num_altsetting;
2073 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2074 kref_get(&intfc->ref);
2075
2076 alt = usb_altnum_to_altsetting(intf, 0);
2077
2078 /* No altsetting 0? We'll assume the first altsetting.
2079 * We could use a GetInterface call, but if a device is
2080 * so non-compliant that it doesn't have altsetting 0
2081 * then I wouldn't trust its reply anyway.
2082 */
2083 if (!alt)
2084 alt = &intf->altsetting[0];
2085
2086 ifnum = alt->desc.bInterfaceNumber;
2087 intf->intf_assoc = find_iad(dev, cp, ifnum);
2088 intf->cur_altsetting = alt;
2089 usb_enable_interface(dev, intf, true);
2090 intf->dev.parent = &dev->dev;
2091 if (usb_of_has_combined_node(dev)) {
2092 device_set_of_node_from_dev(&intf->dev, &dev->dev);
2093 } else {
2094 intf->dev.of_node = usb_of_get_interface_node(dev,
2095 configuration, ifnum);
2096 }
2097 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2098 intf->dev.driver = NULL;
2099 intf->dev.bus = &usb_bus_type;
2100 intf->dev.type = &usb_if_device_type;
2101 intf->dev.groups = usb_interface_groups;
2102 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2103 intf->minor = -1;
2104 device_initialize(&intf->dev);
2105 pm_runtime_no_callbacks(&intf->dev);
2106 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2107 dev->devpath, configuration, ifnum);
2108 usb_get_dev(dev);
2109 }
2110 kfree(new_interfaces);
2111
2112 ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2113 configuration, 0, NULL, 0,
2114 USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2115 if (ret && cp) {
2116 /*
2117 * All the old state is gone, so what else can we do?
2118 * The device is probably useless now anyway.
2119 */
2120 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2121 for (i = 0; i < nintf; ++i) {
2122 usb_disable_interface(dev, cp->interface[i], true);
2123 put_device(&cp->interface[i]->dev);
2124 cp->interface[i] = NULL;
2125 }
2126 cp = NULL;
2127 }
2128
2129 dev->actconfig = cp;
2130 mutex_unlock(hcd->bandwidth_mutex);
2131
2132 if (!cp) {
2133 usb_set_device_state(dev, USB_STATE_ADDRESS);
2134
2135 /* Leave LPM disabled while the device is unconfigured. */
2136 usb_autosuspend_device(dev);
2137 return ret;
2138 }
2139 usb_set_device_state(dev, USB_STATE_CONFIGURED);
2140
2141 if (cp->string == NULL &&
2142 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2143 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2144
2145 /* Now that the interfaces are installed, re-enable LPM. */
2146 usb_unlocked_enable_lpm(dev);
2147 /* Enable LTM if it was turned off by usb_disable_device. */
2148 usb_enable_ltm(dev);
2149
2150 /* Now that all the interfaces are set up, register them
2151 * to trigger binding of drivers to interfaces. probe()
2152 * routines may install different altsettings and may
2153 * claim() any interfaces not yet bound. Many class drivers
2154 * need that: CDC, audio, video, etc.
2155 */
2156 for (i = 0; i < nintf; ++i) {
2157 struct usb_interface *intf = cp->interface[i];
2158
2159 if (intf->dev.of_node &&
2160 !of_device_is_available(intf->dev.of_node)) {
2161 dev_info(&dev->dev, "skipping disabled interface %d\n",
2162 intf->cur_altsetting->desc.bInterfaceNumber);
2163 continue;
2164 }
2165
2166 dev_dbg(&dev->dev,
2167 "adding %s (config #%d, interface %d)\n",
2168 dev_name(&intf->dev), configuration,
2169 intf->cur_altsetting->desc.bInterfaceNumber);
2170 device_enable_async_suspend(&intf->dev);
2171 ret = device_add(&intf->dev);
2172 if (ret != 0) {
2173 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2174 dev_name(&intf->dev), ret);
2175 continue;
2176 }
2177 create_intf_ep_devs(intf);
2178 }
2179
2180 usb_autosuspend_device(dev);
2181 return 0;
2182}
2183EXPORT_SYMBOL_GPL(usb_set_configuration);
2184
2185static LIST_HEAD(set_config_list);
2186static DEFINE_SPINLOCK(set_config_lock);
2187
2188struct set_config_request {
2189 struct usb_device *udev;
2190 int config;
2191 struct work_struct work;
2192 struct list_head node;
2193};
2194
2195/* Worker routine for usb_driver_set_configuration() */
2196static void driver_set_config_work(struct work_struct *work)
2197{
2198 struct set_config_request *req =
2199 container_of(work, struct set_config_request, work);
2200 struct usb_device *udev = req->udev;
2201
2202 usb_lock_device(udev);
2203 spin_lock(&set_config_lock);
2204 list_del(&req->node);
2205 spin_unlock(&set_config_lock);
2206
2207 if (req->config >= -1) /* Is req still valid? */
2208 usb_set_configuration(udev, req->config);
2209 usb_unlock_device(udev);
2210 usb_put_dev(udev);
2211 kfree(req);
2212}
2213
2214/* Cancel pending Set-Config requests for a device whose configuration
2215 * was just changed
2216 */
2217static void cancel_async_set_config(struct usb_device *udev)
2218{
2219 struct set_config_request *req;
2220
2221 spin_lock(&set_config_lock);
2222 list_for_each_entry(req, &set_config_list, node) {
2223 if (req->udev == udev)
2224 req->config = -999; /* Mark as cancelled */
2225 }
2226 spin_unlock(&set_config_lock);
2227}
2228
2229/**
2230 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2231 * @udev: the device whose configuration is being updated
2232 * @config: the configuration being chosen.
2233 * Context: In process context, must be able to sleep
2234 *
2235 * Device interface drivers are not allowed to change device configurations.
2236 * This is because changing configurations will destroy the interface the
2237 * driver is bound to and create new ones; it would be like a floppy-disk
2238 * driver telling the computer to replace the floppy-disk drive with a
2239 * tape drive!
2240 *
2241 * Still, in certain specialized circumstances the need may arise. This
2242 * routine gets around the normal restrictions by using a work thread to
2243 * submit the change-config request.
2244 *
2245 * Return: 0 if the request was successfully queued, error code otherwise.
2246 * The caller has no way to know whether the queued request will eventually
2247 * succeed.
2248 */
2249int usb_driver_set_configuration(struct usb_device *udev, int config)
2250{
2251 struct set_config_request *req;
2252
2253 req = kmalloc(sizeof(*req), GFP_KERNEL);
2254 if (!req)
2255 return -ENOMEM;
2256 req->udev = udev;
2257 req->config = config;
2258 INIT_WORK(&req->work, driver_set_config_work);
2259
2260 spin_lock(&set_config_lock);
2261 list_add(&req->node, &set_config_list);
2262 spin_unlock(&set_config_lock);
2263
2264 usb_get_dev(udev);
2265 schedule_work(&req->work);
2266 return 0;
2267}
2268EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2269
2270/**
2271 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2272 * @hdr: the place to put the results of the parsing
2273 * @intf: the interface for which parsing is requested
2274 * @buffer: pointer to the extra headers to be parsed
2275 * @buflen: length of the extra headers
2276 *
2277 * This evaluates the extra headers present in CDC devices which
2278 * bind the interfaces for data and control and provide details
2279 * about the capabilities of the device.
2280 *
2281 * Return: number of descriptors parsed or -EINVAL
2282 * if the header is contradictory beyond salvage
2283 */
2284
2285int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2286 struct usb_interface *intf,
2287 u8 *buffer,
2288 int buflen)
2289{
2290 /* duplicates are ignored */
2291 struct usb_cdc_union_desc *union_header = NULL;
2292
2293 /* duplicates are not tolerated */
2294 struct usb_cdc_header_desc *header = NULL;
2295 struct usb_cdc_ether_desc *ether = NULL;
2296 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2297 struct usb_cdc_mdlm_desc *desc = NULL;
2298
2299 unsigned int elength;
2300 int cnt = 0;
2301
2302 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2303 hdr->phonet_magic_present = false;
2304 while (buflen > 0) {
2305 elength = buffer[0];
2306 if (!elength) {
2307 dev_err(&intf->dev, "skipping garbage byte\n");
2308 elength = 1;
2309 goto next_desc;
2310 }
2311 if ((buflen < elength) || (elength < 3)) {
2312 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2313 break;
2314 }
2315 if (buffer[1] != USB_DT_CS_INTERFACE) {
2316 dev_err(&intf->dev, "skipping garbage\n");
2317 goto next_desc;
2318 }
2319
2320 switch (buffer[2]) {
2321 case USB_CDC_UNION_TYPE: /* we've found it */
2322 if (elength < sizeof(struct usb_cdc_union_desc))
2323 goto next_desc;
2324 if (union_header) {
2325 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2326 goto next_desc;
2327 }
2328 union_header = (struct usb_cdc_union_desc *)buffer;
2329 break;
2330 case USB_CDC_COUNTRY_TYPE:
2331 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2332 goto next_desc;
2333 hdr->usb_cdc_country_functional_desc =
2334 (struct usb_cdc_country_functional_desc *)buffer;
2335 break;
2336 case USB_CDC_HEADER_TYPE:
2337 if (elength != sizeof(struct usb_cdc_header_desc))
2338 goto next_desc;
2339 if (header)
2340 return -EINVAL;
2341 header = (struct usb_cdc_header_desc *)buffer;
2342 break;
2343 case USB_CDC_ACM_TYPE:
2344 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2345 goto next_desc;
2346 hdr->usb_cdc_acm_descriptor =
2347 (struct usb_cdc_acm_descriptor *)buffer;
2348 break;
2349 case USB_CDC_ETHERNET_TYPE:
2350 if (elength != sizeof(struct usb_cdc_ether_desc))
2351 goto next_desc;
2352 if (ether)
2353 return -EINVAL;
2354 ether = (struct usb_cdc_ether_desc *)buffer;
2355 break;
2356 case USB_CDC_CALL_MANAGEMENT_TYPE:
2357 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2358 goto next_desc;
2359 hdr->usb_cdc_call_mgmt_descriptor =
2360 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2361 break;
2362 case USB_CDC_DMM_TYPE:
2363 if (elength < sizeof(struct usb_cdc_dmm_desc))
2364 goto next_desc;
2365 hdr->usb_cdc_dmm_desc =
2366 (struct usb_cdc_dmm_desc *)buffer;
2367 break;
2368 case USB_CDC_MDLM_TYPE:
2369 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2370 goto next_desc;
2371 if (desc)
2372 return -EINVAL;
2373 desc = (struct usb_cdc_mdlm_desc *)buffer;
2374 break;
2375 case USB_CDC_MDLM_DETAIL_TYPE:
2376 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2377 goto next_desc;
2378 if (detail)
2379 return -EINVAL;
2380 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2381 break;
2382 case USB_CDC_NCM_TYPE:
2383 if (elength < sizeof(struct usb_cdc_ncm_desc))
2384 goto next_desc;
2385 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2386 break;
2387 case USB_CDC_MBIM_TYPE:
2388 if (elength < sizeof(struct usb_cdc_mbim_desc))
2389 goto next_desc;
2390
2391 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2392 break;
2393 case USB_CDC_MBIM_EXTENDED_TYPE:
2394 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2395 break;
2396 hdr->usb_cdc_mbim_extended_desc =
2397 (struct usb_cdc_mbim_extended_desc *)buffer;
2398 break;
2399 case CDC_PHONET_MAGIC_NUMBER:
2400 hdr->phonet_magic_present = true;
2401 break;
2402 default:
2403 /*
2404 * there are LOTS more CDC descriptors that
2405 * could legitimately be found here.
2406 */
2407 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2408 buffer[2], elength);
2409 goto next_desc;
2410 }
2411 cnt++;
2412next_desc:
2413 buflen -= elength;
2414 buffer += elength;
2415 }
2416 hdr->usb_cdc_union_desc = union_header;
2417 hdr->usb_cdc_header_desc = header;
2418 hdr->usb_cdc_mdlm_detail_desc = detail;
2419 hdr->usb_cdc_mdlm_desc = desc;
2420 hdr->usb_cdc_ether_desc = ether;
2421 return cnt;
2422}
2423
2424EXPORT_SYMBOL(cdc_parse_cdc_header);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/acpi.h>
9#include <linux/pci.h> /* for scatterlist macros */
10#include <linux/usb.h>
11#include <linux/module.h>
12#include <linux/slab.h>
13#include <linux/mm.h>
14#include <linux/timer.h>
15#include <linux/ctype.h>
16#include <linux/nls.h>
17#include <linux/device.h>
18#include <linux/scatterlist.h>
19#include <linux/usb/cdc.h>
20#include <linux/usb/quirks.h>
21#include <linux/usb/hcd.h> /* for usbcore internals */
22#include <linux/usb/of.h>
23#include <asm/byteorder.h>
24
25#include "usb.h"
26
27static void cancel_async_set_config(struct usb_device *udev);
28
29struct api_context {
30 struct completion done;
31 int status;
32};
33
34static void usb_api_blocking_completion(struct urb *urb)
35{
36 struct api_context *ctx = urb->context;
37
38 ctx->status = urb->status;
39 complete(&ctx->done);
40}
41
42
43/*
44 * Starts urb and waits for completion or timeout. Note that this call
45 * is NOT interruptible. Many device driver i/o requests should be
46 * interruptible and therefore these drivers should implement their
47 * own interruptible routines.
48 */
49static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
50{
51 struct api_context ctx;
52 unsigned long expire;
53 int retval;
54
55 init_completion(&ctx.done);
56 urb->context = &ctx;
57 urb->actual_length = 0;
58 retval = usb_submit_urb(urb, GFP_NOIO);
59 if (unlikely(retval))
60 goto out;
61
62 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
63 if (!wait_for_completion_timeout(&ctx.done, expire)) {
64 usb_kill_urb(urb);
65 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
66
67 dev_dbg(&urb->dev->dev,
68 "%s timed out on ep%d%s len=%u/%u\n",
69 current->comm,
70 usb_endpoint_num(&urb->ep->desc),
71 usb_urb_dir_in(urb) ? "in" : "out",
72 urb->actual_length,
73 urb->transfer_buffer_length);
74 } else
75 retval = ctx.status;
76out:
77 if (actual_length)
78 *actual_length = urb->actual_length;
79
80 usb_free_urb(urb);
81 return retval;
82}
83
84/*-------------------------------------------------------------------*/
85/* returns status (negative) or length (positive) */
86static int usb_internal_control_msg(struct usb_device *usb_dev,
87 unsigned int pipe,
88 struct usb_ctrlrequest *cmd,
89 void *data, int len, int timeout)
90{
91 struct urb *urb;
92 int retv;
93 int length;
94
95 urb = usb_alloc_urb(0, GFP_NOIO);
96 if (!urb)
97 return -ENOMEM;
98
99 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
100 len, usb_api_blocking_completion, NULL);
101
102 retv = usb_start_wait_urb(urb, timeout, &length);
103 if (retv < 0)
104 return retv;
105 else
106 return length;
107}
108
109/**
110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
111 * @dev: pointer to the usb device to send the message to
112 * @pipe: endpoint "pipe" to send the message to
113 * @request: USB message request value
114 * @requesttype: USB message request type value
115 * @value: USB message value
116 * @index: USB message index value
117 * @data: pointer to the data to send
118 * @size: length in bytes of the data to send
119 * @timeout: time in msecs to wait for the message to complete before timing
120 * out (if 0 the wait is forever)
121 *
122 * Context: !in_interrupt ()
123 *
124 * This function sends a simple control message to a specified endpoint and
125 * waits for the message to complete, or timeout.
126 *
127 * Don't use this function from within an interrupt context. If you need
128 * an asynchronous message, or need to send a message from within interrupt
129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
130 * make sure your disconnect() method can wait for it to complete. Since you
131 * don't have a handle on the URB used, you can't cancel the request.
132 *
133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
134 * error number.
135 */
136int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
137 __u8 requesttype, __u16 value, __u16 index, void *data,
138 __u16 size, int timeout)
139{
140 struct usb_ctrlrequest *dr;
141 int ret;
142
143 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
144 if (!dr)
145 return -ENOMEM;
146
147 dr->bRequestType = requesttype;
148 dr->bRequest = request;
149 dr->wValue = cpu_to_le16(value);
150 dr->wIndex = cpu_to_le16(index);
151 dr->wLength = cpu_to_le16(size);
152
153 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
154
155 /* Linger a bit, prior to the next control message. */
156 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
157 msleep(200);
158
159 kfree(dr);
160
161 return ret;
162}
163EXPORT_SYMBOL_GPL(usb_control_msg);
164
165/**
166 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
167 * @usb_dev: pointer to the usb device to send the message to
168 * @pipe: endpoint "pipe" to send the message to
169 * @data: pointer to the data to send
170 * @len: length in bytes of the data to send
171 * @actual_length: pointer to a location to put the actual length transferred
172 * in bytes
173 * @timeout: time in msecs to wait for the message to complete before
174 * timing out (if 0 the wait is forever)
175 *
176 * Context: !in_interrupt ()
177 *
178 * This function sends a simple interrupt message to a specified endpoint and
179 * waits for the message to complete, or timeout.
180 *
181 * Don't use this function from within an interrupt context. If you need
182 * an asynchronous message, or need to send a message from within interrupt
183 * context, use usb_submit_urb() If a thread in your driver uses this call,
184 * make sure your disconnect() method can wait for it to complete. Since you
185 * don't have a handle on the URB used, you can't cancel the request.
186 *
187 * Return:
188 * If successful, 0. Otherwise a negative error number. The number of actual
189 * bytes transferred will be stored in the @actual_length parameter.
190 */
191int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
192 void *data, int len, int *actual_length, int timeout)
193{
194 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
195}
196EXPORT_SYMBOL_GPL(usb_interrupt_msg);
197
198/**
199 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
200 * @usb_dev: pointer to the usb device to send the message to
201 * @pipe: endpoint "pipe" to send the message to
202 * @data: pointer to the data to send
203 * @len: length in bytes of the data to send
204 * @actual_length: pointer to a location to put the actual length transferred
205 * in bytes
206 * @timeout: time in msecs to wait for the message to complete before
207 * timing out (if 0 the wait is forever)
208 *
209 * Context: !in_interrupt ()
210 *
211 * This function sends a simple bulk message to a specified endpoint
212 * and waits for the message to complete, or timeout.
213 *
214 * Don't use this function from within an interrupt context. If you need
215 * an asynchronous message, or need to send a message from within interrupt
216 * context, use usb_submit_urb() If a thread in your driver uses this call,
217 * make sure your disconnect() method can wait for it to complete. Since you
218 * don't have a handle on the URB used, you can't cancel the request.
219 *
220 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
221 * users are forced to abuse this routine by using it to submit URBs for
222 * interrupt endpoints. We will take the liberty of creating an interrupt URB
223 * (with the default interval) if the target is an interrupt endpoint.
224 *
225 * Return:
226 * If successful, 0. Otherwise a negative error number. The number of actual
227 * bytes transferred will be stored in the @actual_length parameter.
228 *
229 */
230int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
231 void *data, int len, int *actual_length, int timeout)
232{
233 struct urb *urb;
234 struct usb_host_endpoint *ep;
235
236 ep = usb_pipe_endpoint(usb_dev, pipe);
237 if (!ep || len < 0)
238 return -EINVAL;
239
240 urb = usb_alloc_urb(0, GFP_KERNEL);
241 if (!urb)
242 return -ENOMEM;
243
244 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
245 USB_ENDPOINT_XFER_INT) {
246 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
247 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
248 usb_api_blocking_completion, NULL,
249 ep->desc.bInterval);
250 } else
251 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
252 usb_api_blocking_completion, NULL);
253
254 return usb_start_wait_urb(urb, timeout, actual_length);
255}
256EXPORT_SYMBOL_GPL(usb_bulk_msg);
257
258/*-------------------------------------------------------------------*/
259
260static void sg_clean(struct usb_sg_request *io)
261{
262 if (io->urbs) {
263 while (io->entries--)
264 usb_free_urb(io->urbs[io->entries]);
265 kfree(io->urbs);
266 io->urbs = NULL;
267 }
268 io->dev = NULL;
269}
270
271static void sg_complete(struct urb *urb)
272{
273 unsigned long flags;
274 struct usb_sg_request *io = urb->context;
275 int status = urb->status;
276
277 spin_lock_irqsave(&io->lock, flags);
278
279 /* In 2.5 we require hcds' endpoint queues not to progress after fault
280 * reports, until the completion callback (this!) returns. That lets
281 * device driver code (like this routine) unlink queued urbs first,
282 * if it needs to, since the HC won't work on them at all. So it's
283 * not possible for page N+1 to overwrite page N, and so on.
284 *
285 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
286 * complete before the HCD can get requests away from hardware,
287 * though never during cleanup after a hard fault.
288 */
289 if (io->status
290 && (io->status != -ECONNRESET
291 || status != -ECONNRESET)
292 && urb->actual_length) {
293 dev_err(io->dev->bus->controller,
294 "dev %s ep%d%s scatterlist error %d/%d\n",
295 io->dev->devpath,
296 usb_endpoint_num(&urb->ep->desc),
297 usb_urb_dir_in(urb) ? "in" : "out",
298 status, io->status);
299 /* BUG (); */
300 }
301
302 if (io->status == 0 && status && status != -ECONNRESET) {
303 int i, found, retval;
304
305 io->status = status;
306
307 /* the previous urbs, and this one, completed already.
308 * unlink pending urbs so they won't rx/tx bad data.
309 * careful: unlink can sometimes be synchronous...
310 */
311 spin_unlock_irqrestore(&io->lock, flags);
312 for (i = 0, found = 0; i < io->entries; i++) {
313 if (!io->urbs[i])
314 continue;
315 if (found) {
316 usb_block_urb(io->urbs[i]);
317 retval = usb_unlink_urb(io->urbs[i]);
318 if (retval != -EINPROGRESS &&
319 retval != -ENODEV &&
320 retval != -EBUSY &&
321 retval != -EIDRM)
322 dev_err(&io->dev->dev,
323 "%s, unlink --> %d\n",
324 __func__, retval);
325 } else if (urb == io->urbs[i])
326 found = 1;
327 }
328 spin_lock_irqsave(&io->lock, flags);
329 }
330
331 /* on the last completion, signal usb_sg_wait() */
332 io->bytes += urb->actual_length;
333 io->count--;
334 if (!io->count)
335 complete(&io->complete);
336
337 spin_unlock_irqrestore(&io->lock, flags);
338}
339
340
341/**
342 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
343 * @io: request block being initialized. until usb_sg_wait() returns,
344 * treat this as a pointer to an opaque block of memory,
345 * @dev: the usb device that will send or receive the data
346 * @pipe: endpoint "pipe" used to transfer the data
347 * @period: polling rate for interrupt endpoints, in frames or
348 * (for high speed endpoints) microframes; ignored for bulk
349 * @sg: scatterlist entries
350 * @nents: how many entries in the scatterlist
351 * @length: how many bytes to send from the scatterlist, or zero to
352 * send every byte identified in the list.
353 * @mem_flags: SLAB_* flags affecting memory allocations in this call
354 *
355 * This initializes a scatter/gather request, allocating resources such as
356 * I/O mappings and urb memory (except maybe memory used by USB controller
357 * drivers).
358 *
359 * The request must be issued using usb_sg_wait(), which waits for the I/O to
360 * complete (or to be canceled) and then cleans up all resources allocated by
361 * usb_sg_init().
362 *
363 * The request may be canceled with usb_sg_cancel(), either before or after
364 * usb_sg_wait() is called.
365 *
366 * Return: Zero for success, else a negative errno value.
367 */
368int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
369 unsigned pipe, unsigned period, struct scatterlist *sg,
370 int nents, size_t length, gfp_t mem_flags)
371{
372 int i;
373 int urb_flags;
374 int use_sg;
375
376 if (!io || !dev || !sg
377 || usb_pipecontrol(pipe)
378 || usb_pipeisoc(pipe)
379 || nents <= 0)
380 return -EINVAL;
381
382 spin_lock_init(&io->lock);
383 io->dev = dev;
384 io->pipe = pipe;
385
386 if (dev->bus->sg_tablesize > 0) {
387 use_sg = true;
388 io->entries = 1;
389 } else {
390 use_sg = false;
391 io->entries = nents;
392 }
393
394 /* initialize all the urbs we'll use */
395 io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
396 if (!io->urbs)
397 goto nomem;
398
399 urb_flags = URB_NO_INTERRUPT;
400 if (usb_pipein(pipe))
401 urb_flags |= URB_SHORT_NOT_OK;
402
403 for_each_sg(sg, sg, io->entries, i) {
404 struct urb *urb;
405 unsigned len;
406
407 urb = usb_alloc_urb(0, mem_flags);
408 if (!urb) {
409 io->entries = i;
410 goto nomem;
411 }
412 io->urbs[i] = urb;
413
414 urb->dev = NULL;
415 urb->pipe = pipe;
416 urb->interval = period;
417 urb->transfer_flags = urb_flags;
418 urb->complete = sg_complete;
419 urb->context = io;
420 urb->sg = sg;
421
422 if (use_sg) {
423 /* There is no single transfer buffer */
424 urb->transfer_buffer = NULL;
425 urb->num_sgs = nents;
426
427 /* A length of zero means transfer the whole sg list */
428 len = length;
429 if (len == 0) {
430 struct scatterlist *sg2;
431 int j;
432
433 for_each_sg(sg, sg2, nents, j)
434 len += sg2->length;
435 }
436 } else {
437 /*
438 * Some systems can't use DMA; they use PIO instead.
439 * For their sakes, transfer_buffer is set whenever
440 * possible.
441 */
442 if (!PageHighMem(sg_page(sg)))
443 urb->transfer_buffer = sg_virt(sg);
444 else
445 urb->transfer_buffer = NULL;
446
447 len = sg->length;
448 if (length) {
449 len = min_t(size_t, len, length);
450 length -= len;
451 if (length == 0)
452 io->entries = i + 1;
453 }
454 }
455 urb->transfer_buffer_length = len;
456 }
457 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458
459 /* transaction state */
460 io->count = io->entries;
461 io->status = 0;
462 io->bytes = 0;
463 init_completion(&io->complete);
464 return 0;
465
466nomem:
467 sg_clean(io);
468 return -ENOMEM;
469}
470EXPORT_SYMBOL_GPL(usb_sg_init);
471
472/**
473 * usb_sg_wait - synchronously execute scatter/gather request
474 * @io: request block handle, as initialized with usb_sg_init().
475 * some fields become accessible when this call returns.
476 * Context: !in_interrupt ()
477 *
478 * This function blocks until the specified I/O operation completes. It
479 * leverages the grouping of the related I/O requests to get good transfer
480 * rates, by queueing the requests. At higher speeds, such queuing can
481 * significantly improve USB throughput.
482 *
483 * There are three kinds of completion for this function.
484 *
485 * (1) success, where io->status is zero. The number of io->bytes
486 * transferred is as requested.
487 * (2) error, where io->status is a negative errno value. The number
488 * of io->bytes transferred before the error is usually less
489 * than requested, and can be nonzero.
490 * (3) cancellation, a type of error with status -ECONNRESET that
491 * is initiated by usb_sg_cancel().
492 *
493 * When this function returns, all memory allocated through usb_sg_init() or
494 * this call will have been freed. The request block parameter may still be
495 * passed to usb_sg_cancel(), or it may be freed. It could also be
496 * reinitialized and then reused.
497 *
498 * Data Transfer Rates:
499 *
500 * Bulk transfers are valid for full or high speed endpoints.
501 * The best full speed data rate is 19 packets of 64 bytes each
502 * per frame, or 1216 bytes per millisecond.
503 * The best high speed data rate is 13 packets of 512 bytes each
504 * per microframe, or 52 KBytes per millisecond.
505 *
506 * The reason to use interrupt transfers through this API would most likely
507 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
508 * could be transferred. That capability is less useful for low or full
509 * speed interrupt endpoints, which allow at most one packet per millisecond,
510 * of at most 8 or 64 bytes (respectively).
511 *
512 * It is not necessary to call this function to reserve bandwidth for devices
513 * under an xHCI host controller, as the bandwidth is reserved when the
514 * configuration or interface alt setting is selected.
515 */
516void usb_sg_wait(struct usb_sg_request *io)
517{
518 int i;
519 int entries = io->entries;
520
521 /* queue the urbs. */
522 spin_lock_irq(&io->lock);
523 i = 0;
524 while (i < entries && !io->status) {
525 int retval;
526
527 io->urbs[i]->dev = io->dev;
528 spin_unlock_irq(&io->lock);
529
530 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
531
532 switch (retval) {
533 /* maybe we retrying will recover */
534 case -ENXIO: /* hc didn't queue this one */
535 case -EAGAIN:
536 case -ENOMEM:
537 retval = 0;
538 yield();
539 break;
540
541 /* no error? continue immediately.
542 *
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
546 */
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
551
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->status = retval;
555 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
556 __func__, retval);
557 usb_sg_cancel(io);
558 }
559 spin_lock_irq(&io->lock);
560 if (retval && (io->status == 0 || io->status == -ECONNRESET))
561 io->status = retval;
562 }
563 io->count -= entries - i;
564 if (io->count == 0)
565 complete(&io->complete);
566 spin_unlock_irq(&io->lock);
567
568 /* OK, yes, this could be packaged as non-blocking.
569 * So could the submit loop above ... but it's easier to
570 * solve neither problem than to solve both!
571 */
572 wait_for_completion(&io->complete);
573
574 sg_clean(io);
575}
576EXPORT_SYMBOL_GPL(usb_sg_wait);
577
578/**
579 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
580 * @io: request block, initialized with usb_sg_init()
581 *
582 * This stops a request after it has been started by usb_sg_wait().
583 * It can also prevents one initialized by usb_sg_init() from starting,
584 * so that call just frees resources allocated to the request.
585 */
586void usb_sg_cancel(struct usb_sg_request *io)
587{
588 unsigned long flags;
589 int i, retval;
590
591 spin_lock_irqsave(&io->lock, flags);
592 if (io->status || io->count == 0) {
593 spin_unlock_irqrestore(&io->lock, flags);
594 return;
595 }
596 /* shut everything down */
597 io->status = -ECONNRESET;
598 io->count++; /* Keep the request alive until we're done */
599 spin_unlock_irqrestore(&io->lock, flags);
600
601 for (i = io->entries - 1; i >= 0; --i) {
602 usb_block_urb(io->urbs[i]);
603
604 retval = usb_unlink_urb(io->urbs[i]);
605 if (retval != -EINPROGRESS
606 && retval != -ENODEV
607 && retval != -EBUSY
608 && retval != -EIDRM)
609 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
610 __func__, retval);
611 }
612
613 spin_lock_irqsave(&io->lock, flags);
614 io->count--;
615 if (!io->count)
616 complete(&io->complete);
617 spin_unlock_irqrestore(&io->lock, flags);
618}
619EXPORT_SYMBOL_GPL(usb_sg_cancel);
620
621/*-------------------------------------------------------------------*/
622
623/**
624 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
625 * @dev: the device whose descriptor is being retrieved
626 * @type: the descriptor type (USB_DT_*)
627 * @index: the number of the descriptor
628 * @buf: where to put the descriptor
629 * @size: how big is "buf"?
630 * Context: !in_interrupt ()
631 *
632 * Gets a USB descriptor. Convenience functions exist to simplify
633 * getting some types of descriptors. Use
634 * usb_get_string() or usb_string() for USB_DT_STRING.
635 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
636 * are part of the device structure.
637 * In addition to a number of USB-standard descriptors, some
638 * devices also use class-specific or vendor-specific descriptors.
639 *
640 * This call is synchronous, and may not be used in an interrupt context.
641 *
642 * Return: The number of bytes received on success, or else the status code
643 * returned by the underlying usb_control_msg() call.
644 */
645int usb_get_descriptor(struct usb_device *dev, unsigned char type,
646 unsigned char index, void *buf, int size)
647{
648 int i;
649 int result;
650
651 memset(buf, 0, size); /* Make sure we parse really received data */
652
653 for (i = 0; i < 3; ++i) {
654 /* retry on length 0 or error; some devices are flakey */
655 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
656 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
657 (type << 8) + index, 0, buf, size,
658 USB_CTRL_GET_TIMEOUT);
659 if (result <= 0 && result != -ETIMEDOUT)
660 continue;
661 if (result > 1 && ((u8 *)buf)[1] != type) {
662 result = -ENODATA;
663 continue;
664 }
665 break;
666 }
667 return result;
668}
669EXPORT_SYMBOL_GPL(usb_get_descriptor);
670
671/**
672 * usb_get_string - gets a string descriptor
673 * @dev: the device whose string descriptor is being retrieved
674 * @langid: code for language chosen (from string descriptor zero)
675 * @index: the number of the descriptor
676 * @buf: where to put the string
677 * @size: how big is "buf"?
678 * Context: !in_interrupt ()
679 *
680 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
681 * in little-endian byte order).
682 * The usb_string() function will often be a convenient way to turn
683 * these strings into kernel-printable form.
684 *
685 * Strings may be referenced in device, configuration, interface, or other
686 * descriptors, and could also be used in vendor-specific ways.
687 *
688 * This call is synchronous, and may not be used in an interrupt context.
689 *
690 * Return: The number of bytes received on success, or else the status code
691 * returned by the underlying usb_control_msg() call.
692 */
693static int usb_get_string(struct usb_device *dev, unsigned short langid,
694 unsigned char index, void *buf, int size)
695{
696 int i;
697 int result;
698
699 for (i = 0; i < 3; ++i) {
700 /* retry on length 0 or stall; some devices are flakey */
701 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
702 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
703 (USB_DT_STRING << 8) + index, langid, buf, size,
704 USB_CTRL_GET_TIMEOUT);
705 if (result == 0 || result == -EPIPE)
706 continue;
707 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
708 result = -ENODATA;
709 continue;
710 }
711 break;
712 }
713 return result;
714}
715
716static void usb_try_string_workarounds(unsigned char *buf, int *length)
717{
718 int newlength, oldlength = *length;
719
720 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
721 if (!isprint(buf[newlength]) || buf[newlength + 1])
722 break;
723
724 if (newlength > 2) {
725 buf[0] = newlength;
726 *length = newlength;
727 }
728}
729
730static int usb_string_sub(struct usb_device *dev, unsigned int langid,
731 unsigned int index, unsigned char *buf)
732{
733 int rc;
734
735 /* Try to read the string descriptor by asking for the maximum
736 * possible number of bytes */
737 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
738 rc = -EIO;
739 else
740 rc = usb_get_string(dev, langid, index, buf, 255);
741
742 /* If that failed try to read the descriptor length, then
743 * ask for just that many bytes */
744 if (rc < 2) {
745 rc = usb_get_string(dev, langid, index, buf, 2);
746 if (rc == 2)
747 rc = usb_get_string(dev, langid, index, buf, buf[0]);
748 }
749
750 if (rc >= 2) {
751 if (!buf[0] && !buf[1])
752 usb_try_string_workarounds(buf, &rc);
753
754 /* There might be extra junk at the end of the descriptor */
755 if (buf[0] < rc)
756 rc = buf[0];
757
758 rc = rc - (rc & 1); /* force a multiple of two */
759 }
760
761 if (rc < 2)
762 rc = (rc < 0 ? rc : -EINVAL);
763
764 return rc;
765}
766
767static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
768{
769 int err;
770
771 if (dev->have_langid)
772 return 0;
773
774 if (dev->string_langid < 0)
775 return -EPIPE;
776
777 err = usb_string_sub(dev, 0, 0, tbuf);
778
779 /* If the string was reported but is malformed, default to english
780 * (0x0409) */
781 if (err == -ENODATA || (err > 0 && err < 4)) {
782 dev->string_langid = 0x0409;
783 dev->have_langid = 1;
784 dev_err(&dev->dev,
785 "language id specifier not provided by device, defaulting to English\n");
786 return 0;
787 }
788
789 /* In case of all other errors, we assume the device is not able to
790 * deal with strings at all. Set string_langid to -1 in order to
791 * prevent any string to be retrieved from the device */
792 if (err < 0) {
793 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
794 err);
795 dev->string_langid = -1;
796 return -EPIPE;
797 }
798
799 /* always use the first langid listed */
800 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
801 dev->have_langid = 1;
802 dev_dbg(&dev->dev, "default language 0x%04x\n",
803 dev->string_langid);
804 return 0;
805}
806
807/**
808 * usb_string - returns UTF-8 version of a string descriptor
809 * @dev: the device whose string descriptor is being retrieved
810 * @index: the number of the descriptor
811 * @buf: where to put the string
812 * @size: how big is "buf"?
813 * Context: !in_interrupt ()
814 *
815 * This converts the UTF-16LE encoded strings returned by devices, from
816 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
817 * that are more usable in most kernel contexts. Note that this function
818 * chooses strings in the first language supported by the device.
819 *
820 * This call is synchronous, and may not be used in an interrupt context.
821 *
822 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
823 */
824int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
825{
826 unsigned char *tbuf;
827 int err;
828
829 if (dev->state == USB_STATE_SUSPENDED)
830 return -EHOSTUNREACH;
831 if (size <= 0 || !buf)
832 return -EINVAL;
833 buf[0] = 0;
834 if (index <= 0 || index >= 256)
835 return -EINVAL;
836 tbuf = kmalloc(256, GFP_NOIO);
837 if (!tbuf)
838 return -ENOMEM;
839
840 err = usb_get_langid(dev, tbuf);
841 if (err < 0)
842 goto errout;
843
844 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
845 if (err < 0)
846 goto errout;
847
848 size--; /* leave room for trailing NULL char in output buffer */
849 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
850 UTF16_LITTLE_ENDIAN, buf, size);
851 buf[err] = 0;
852
853 if (tbuf[1] != USB_DT_STRING)
854 dev_dbg(&dev->dev,
855 "wrong descriptor type %02x for string %d (\"%s\")\n",
856 tbuf[1], index, buf);
857
858 errout:
859 kfree(tbuf);
860 return err;
861}
862EXPORT_SYMBOL_GPL(usb_string);
863
864/* one UTF-8-encoded 16-bit character has at most three bytes */
865#define MAX_USB_STRING_SIZE (127 * 3 + 1)
866
867/**
868 * usb_cache_string - read a string descriptor and cache it for later use
869 * @udev: the device whose string descriptor is being read
870 * @index: the descriptor index
871 *
872 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
873 * or %NULL if the index is 0 or the string could not be read.
874 */
875char *usb_cache_string(struct usb_device *udev, int index)
876{
877 char *buf;
878 char *smallbuf = NULL;
879 int len;
880
881 if (index <= 0)
882 return NULL;
883
884 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
885 if (buf) {
886 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
887 if (len > 0) {
888 smallbuf = kmalloc(++len, GFP_NOIO);
889 if (!smallbuf)
890 return buf;
891 memcpy(smallbuf, buf, len);
892 }
893 kfree(buf);
894 }
895 return smallbuf;
896}
897
898/*
899 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
900 * @dev: the device whose device descriptor is being updated
901 * @size: how much of the descriptor to read
902 * Context: !in_interrupt ()
903 *
904 * Updates the copy of the device descriptor stored in the device structure,
905 * which dedicates space for this purpose.
906 *
907 * Not exported, only for use by the core. If drivers really want to read
908 * the device descriptor directly, they can call usb_get_descriptor() with
909 * type = USB_DT_DEVICE and index = 0.
910 *
911 * This call is synchronous, and may not be used in an interrupt context.
912 *
913 * Return: The number of bytes received on success, or else the status code
914 * returned by the underlying usb_control_msg() call.
915 */
916int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
917{
918 struct usb_device_descriptor *desc;
919 int ret;
920
921 if (size > sizeof(*desc))
922 return -EINVAL;
923 desc = kmalloc(sizeof(*desc), GFP_NOIO);
924 if (!desc)
925 return -ENOMEM;
926
927 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
928 if (ret >= 0)
929 memcpy(&dev->descriptor, desc, size);
930 kfree(desc);
931 return ret;
932}
933
934/*
935 * usb_set_isoch_delay - informs the device of the packet transmit delay
936 * @dev: the device whose delay is to be informed
937 * Context: !in_interrupt()
938 *
939 * Since this is an optional request, we don't bother if it fails.
940 */
941int usb_set_isoch_delay(struct usb_device *dev)
942{
943 /* skip hub devices */
944 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
945 return 0;
946
947 /* skip non-SS/non-SSP devices */
948 if (dev->speed < USB_SPEED_SUPER)
949 return 0;
950
951 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
952 USB_REQ_SET_ISOCH_DELAY,
953 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
954 dev->hub_delay, 0, NULL, 0,
955 USB_CTRL_SET_TIMEOUT);
956}
957
958/**
959 * usb_get_status - issues a GET_STATUS call
960 * @dev: the device whose status is being checked
961 * @recip: USB_RECIP_*; for device, interface, or endpoint
962 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
963 * @target: zero (for device), else interface or endpoint number
964 * @data: pointer to two bytes of bitmap data
965 * Context: !in_interrupt ()
966 *
967 * Returns device, interface, or endpoint status. Normally only of
968 * interest to see if the device is self powered, or has enabled the
969 * remote wakeup facility; or whether a bulk or interrupt endpoint
970 * is halted ("stalled").
971 *
972 * Bits in these status bitmaps are set using the SET_FEATURE request,
973 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
974 * function should be used to clear halt ("stall") status.
975 *
976 * This call is synchronous, and may not be used in an interrupt context.
977 *
978 * Returns 0 and the status value in *@data (in host byte order) on success,
979 * or else the status code from the underlying usb_control_msg() call.
980 */
981int usb_get_status(struct usb_device *dev, int recip, int type, int target,
982 void *data)
983{
984 int ret;
985 void *status;
986 int length;
987
988 switch (type) {
989 case USB_STATUS_TYPE_STANDARD:
990 length = 2;
991 break;
992 case USB_STATUS_TYPE_PTM:
993 if (recip != USB_RECIP_DEVICE)
994 return -EINVAL;
995
996 length = 4;
997 break;
998 default:
999 return -EINVAL;
1000 }
1001
1002 status = kmalloc(length, GFP_KERNEL);
1003 if (!status)
1004 return -ENOMEM;
1005
1006 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1007 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1008 target, status, length, USB_CTRL_GET_TIMEOUT);
1009
1010 switch (ret) {
1011 case 4:
1012 if (type != USB_STATUS_TYPE_PTM) {
1013 ret = -EIO;
1014 break;
1015 }
1016
1017 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1018 ret = 0;
1019 break;
1020 case 2:
1021 if (type != USB_STATUS_TYPE_STANDARD) {
1022 ret = -EIO;
1023 break;
1024 }
1025
1026 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1027 ret = 0;
1028 break;
1029 default:
1030 ret = -EIO;
1031 }
1032
1033 kfree(status);
1034 return ret;
1035}
1036EXPORT_SYMBOL_GPL(usb_get_status);
1037
1038/**
1039 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1040 * @dev: device whose endpoint is halted
1041 * @pipe: endpoint "pipe" being cleared
1042 * Context: !in_interrupt ()
1043 *
1044 * This is used to clear halt conditions for bulk and interrupt endpoints,
1045 * as reported by URB completion status. Endpoints that are halted are
1046 * sometimes referred to as being "stalled". Such endpoints are unable
1047 * to transmit or receive data until the halt status is cleared. Any URBs
1048 * queued for such an endpoint should normally be unlinked by the driver
1049 * before clearing the halt condition, as described in sections 5.7.5
1050 * and 5.8.5 of the USB 2.0 spec.
1051 *
1052 * Note that control and isochronous endpoints don't halt, although control
1053 * endpoints report "protocol stall" (for unsupported requests) using the
1054 * same status code used to report a true stall.
1055 *
1056 * This call is synchronous, and may not be used in an interrupt context.
1057 *
1058 * Return: Zero on success, or else the status code returned by the
1059 * underlying usb_control_msg() call.
1060 */
1061int usb_clear_halt(struct usb_device *dev, int pipe)
1062{
1063 int result;
1064 int endp = usb_pipeendpoint(pipe);
1065
1066 if (usb_pipein(pipe))
1067 endp |= USB_DIR_IN;
1068
1069 /* we don't care if it wasn't halted first. in fact some devices
1070 * (like some ibmcam model 1 units) seem to expect hosts to make
1071 * this request for iso endpoints, which can't halt!
1072 */
1073 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1074 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1075 USB_ENDPOINT_HALT, endp, NULL, 0,
1076 USB_CTRL_SET_TIMEOUT);
1077
1078 /* don't un-halt or force to DATA0 except on success */
1079 if (result < 0)
1080 return result;
1081
1082 /* NOTE: seems like Microsoft and Apple don't bother verifying
1083 * the clear "took", so some devices could lock up if you check...
1084 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1085 *
1086 * NOTE: make sure the logic here doesn't diverge much from
1087 * the copy in usb-storage, for as long as we need two copies.
1088 */
1089
1090 usb_reset_endpoint(dev, endp);
1091
1092 return 0;
1093}
1094EXPORT_SYMBOL_GPL(usb_clear_halt);
1095
1096static int create_intf_ep_devs(struct usb_interface *intf)
1097{
1098 struct usb_device *udev = interface_to_usbdev(intf);
1099 struct usb_host_interface *alt = intf->cur_altsetting;
1100 int i;
1101
1102 if (intf->ep_devs_created || intf->unregistering)
1103 return 0;
1104
1105 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1106 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1107 intf->ep_devs_created = 1;
1108 return 0;
1109}
1110
1111static void remove_intf_ep_devs(struct usb_interface *intf)
1112{
1113 struct usb_host_interface *alt = intf->cur_altsetting;
1114 int i;
1115
1116 if (!intf->ep_devs_created)
1117 return;
1118
1119 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1120 usb_remove_ep_devs(&alt->endpoint[i]);
1121 intf->ep_devs_created = 0;
1122}
1123
1124/**
1125 * usb_disable_endpoint -- Disable an endpoint by address
1126 * @dev: the device whose endpoint is being disabled
1127 * @epaddr: the endpoint's address. Endpoint number for output,
1128 * endpoint number + USB_DIR_IN for input
1129 * @reset_hardware: flag to erase any endpoint state stored in the
1130 * controller hardware
1131 *
1132 * Disables the endpoint for URB submission and nukes all pending URBs.
1133 * If @reset_hardware is set then also deallocates hcd/hardware state
1134 * for the endpoint.
1135 */
1136void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1137 bool reset_hardware)
1138{
1139 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1140 struct usb_host_endpoint *ep;
1141
1142 if (!dev)
1143 return;
1144
1145 if (usb_endpoint_out(epaddr)) {
1146 ep = dev->ep_out[epnum];
1147 if (reset_hardware && epnum != 0)
1148 dev->ep_out[epnum] = NULL;
1149 } else {
1150 ep = dev->ep_in[epnum];
1151 if (reset_hardware && epnum != 0)
1152 dev->ep_in[epnum] = NULL;
1153 }
1154 if (ep) {
1155 ep->enabled = 0;
1156 usb_hcd_flush_endpoint(dev, ep);
1157 if (reset_hardware)
1158 usb_hcd_disable_endpoint(dev, ep);
1159 }
1160}
1161
1162/**
1163 * usb_reset_endpoint - Reset an endpoint's state.
1164 * @dev: the device whose endpoint is to be reset
1165 * @epaddr: the endpoint's address. Endpoint number for output,
1166 * endpoint number + USB_DIR_IN for input
1167 *
1168 * Resets any host-side endpoint state such as the toggle bit,
1169 * sequence number or current window.
1170 */
1171void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1172{
1173 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1174 struct usb_host_endpoint *ep;
1175
1176 if (usb_endpoint_out(epaddr))
1177 ep = dev->ep_out[epnum];
1178 else
1179 ep = dev->ep_in[epnum];
1180 if (ep)
1181 usb_hcd_reset_endpoint(dev, ep);
1182}
1183EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1184
1185
1186/**
1187 * usb_disable_interface -- Disable all endpoints for an interface
1188 * @dev: the device whose interface is being disabled
1189 * @intf: pointer to the interface descriptor
1190 * @reset_hardware: flag to erase any endpoint state stored in the
1191 * controller hardware
1192 *
1193 * Disables all the endpoints for the interface's current altsetting.
1194 */
1195void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1196 bool reset_hardware)
1197{
1198 struct usb_host_interface *alt = intf->cur_altsetting;
1199 int i;
1200
1201 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1202 usb_disable_endpoint(dev,
1203 alt->endpoint[i].desc.bEndpointAddress,
1204 reset_hardware);
1205 }
1206}
1207
1208/*
1209 * usb_disable_device_endpoints -- Disable all endpoints for a device
1210 * @dev: the device whose endpoints are being disabled
1211 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1212 */
1213static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1214{
1215 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1216 int i;
1217
1218 if (hcd->driver->check_bandwidth) {
1219 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1220 for (i = skip_ep0; i < 16; ++i) {
1221 usb_disable_endpoint(dev, i, false);
1222 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1223 }
1224 /* Remove endpoints from the host controller internal state */
1225 mutex_lock(hcd->bandwidth_mutex);
1226 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1227 mutex_unlock(hcd->bandwidth_mutex);
1228 }
1229 /* Second pass: remove endpoint pointers */
1230 for (i = skip_ep0; i < 16; ++i) {
1231 usb_disable_endpoint(dev, i, true);
1232 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1233 }
1234}
1235
1236/**
1237 * usb_disable_device - Disable all the endpoints for a USB device
1238 * @dev: the device whose endpoints are being disabled
1239 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1240 *
1241 * Disables all the device's endpoints, potentially including endpoint 0.
1242 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1243 * pending urbs) and usbcore state for the interfaces, so that usbcore
1244 * must usb_set_configuration() before any interfaces could be used.
1245 */
1246void usb_disable_device(struct usb_device *dev, int skip_ep0)
1247{
1248 int i;
1249
1250 /* getting rid of interfaces will disconnect
1251 * any drivers bound to them (a key side effect)
1252 */
1253 if (dev->actconfig) {
1254 /*
1255 * FIXME: In order to avoid self-deadlock involving the
1256 * bandwidth_mutex, we have to mark all the interfaces
1257 * before unregistering any of them.
1258 */
1259 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1260 dev->actconfig->interface[i]->unregistering = 1;
1261
1262 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1263 struct usb_interface *interface;
1264
1265 /* remove this interface if it has been registered */
1266 interface = dev->actconfig->interface[i];
1267 if (!device_is_registered(&interface->dev))
1268 continue;
1269 dev_dbg(&dev->dev, "unregistering interface %s\n",
1270 dev_name(&interface->dev));
1271 remove_intf_ep_devs(interface);
1272 device_del(&interface->dev);
1273 }
1274
1275 /* Now that the interfaces are unbound, nobody should
1276 * try to access them.
1277 */
1278 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1279 put_device(&dev->actconfig->interface[i]->dev);
1280 dev->actconfig->interface[i] = NULL;
1281 }
1282
1283 usb_disable_usb2_hardware_lpm(dev);
1284 usb_unlocked_disable_lpm(dev);
1285 usb_disable_ltm(dev);
1286
1287 dev->actconfig = NULL;
1288 if (dev->state == USB_STATE_CONFIGURED)
1289 usb_set_device_state(dev, USB_STATE_ADDRESS);
1290 }
1291
1292 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1293 skip_ep0 ? "non-ep0" : "all");
1294
1295 usb_disable_device_endpoints(dev, skip_ep0);
1296}
1297
1298/**
1299 * usb_enable_endpoint - Enable an endpoint for USB communications
1300 * @dev: the device whose interface is being enabled
1301 * @ep: the endpoint
1302 * @reset_ep: flag to reset the endpoint state
1303 *
1304 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1305 * For control endpoints, both the input and output sides are handled.
1306 */
1307void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1308 bool reset_ep)
1309{
1310 int epnum = usb_endpoint_num(&ep->desc);
1311 int is_out = usb_endpoint_dir_out(&ep->desc);
1312 int is_control = usb_endpoint_xfer_control(&ep->desc);
1313
1314 if (reset_ep)
1315 usb_hcd_reset_endpoint(dev, ep);
1316 if (is_out || is_control)
1317 dev->ep_out[epnum] = ep;
1318 if (!is_out || is_control)
1319 dev->ep_in[epnum] = ep;
1320 ep->enabled = 1;
1321}
1322
1323/**
1324 * usb_enable_interface - Enable all the endpoints for an interface
1325 * @dev: the device whose interface is being enabled
1326 * @intf: pointer to the interface descriptor
1327 * @reset_eps: flag to reset the endpoints' state
1328 *
1329 * Enables all the endpoints for the interface's current altsetting.
1330 */
1331void usb_enable_interface(struct usb_device *dev,
1332 struct usb_interface *intf, bool reset_eps)
1333{
1334 struct usb_host_interface *alt = intf->cur_altsetting;
1335 int i;
1336
1337 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1338 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1339}
1340
1341/**
1342 * usb_set_interface - Makes a particular alternate setting be current
1343 * @dev: the device whose interface is being updated
1344 * @interface: the interface being updated
1345 * @alternate: the setting being chosen.
1346 * Context: !in_interrupt ()
1347 *
1348 * This is used to enable data transfers on interfaces that may not
1349 * be enabled by default. Not all devices support such configurability.
1350 * Only the driver bound to an interface may change its setting.
1351 *
1352 * Within any given configuration, each interface may have several
1353 * alternative settings. These are often used to control levels of
1354 * bandwidth consumption. For example, the default setting for a high
1355 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1356 * while interrupt transfers of up to 3KBytes per microframe are legal.
1357 * Also, isochronous endpoints may never be part of an
1358 * interface's default setting. To access such bandwidth, alternate
1359 * interface settings must be made current.
1360 *
1361 * Note that in the Linux USB subsystem, bandwidth associated with
1362 * an endpoint in a given alternate setting is not reserved until an URB
1363 * is submitted that needs that bandwidth. Some other operating systems
1364 * allocate bandwidth early, when a configuration is chosen.
1365 *
1366 * xHCI reserves bandwidth and configures the alternate setting in
1367 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1368 * may be disabled. Drivers cannot rely on any particular alternate
1369 * setting being in effect after a failure.
1370 *
1371 * This call is synchronous, and may not be used in an interrupt context.
1372 * Also, drivers must not change altsettings while urbs are scheduled for
1373 * endpoints in that interface; all such urbs must first be completed
1374 * (perhaps forced by unlinking).
1375 *
1376 * Return: Zero on success, or else the status code returned by the
1377 * underlying usb_control_msg() call.
1378 */
1379int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1380{
1381 struct usb_interface *iface;
1382 struct usb_host_interface *alt;
1383 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1384 int i, ret, manual = 0;
1385 unsigned int epaddr;
1386 unsigned int pipe;
1387
1388 if (dev->state == USB_STATE_SUSPENDED)
1389 return -EHOSTUNREACH;
1390
1391 iface = usb_ifnum_to_if(dev, interface);
1392 if (!iface) {
1393 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1394 interface);
1395 return -EINVAL;
1396 }
1397 if (iface->unregistering)
1398 return -ENODEV;
1399
1400 alt = usb_altnum_to_altsetting(iface, alternate);
1401 if (!alt) {
1402 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1403 alternate);
1404 return -EINVAL;
1405 }
1406 /*
1407 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1408 * including freeing dropped endpoint ring buffers.
1409 * Make sure the interface endpoints are flushed before that
1410 */
1411 usb_disable_interface(dev, iface, false);
1412
1413 /* Make sure we have enough bandwidth for this alternate interface.
1414 * Remove the current alt setting and add the new alt setting.
1415 */
1416 mutex_lock(hcd->bandwidth_mutex);
1417 /* Disable LPM, and re-enable it once the new alt setting is installed,
1418 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1419 */
1420 if (usb_disable_lpm(dev)) {
1421 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1422 mutex_unlock(hcd->bandwidth_mutex);
1423 return -ENOMEM;
1424 }
1425 /* Changing alt-setting also frees any allocated streams */
1426 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1427 iface->cur_altsetting->endpoint[i].streams = 0;
1428
1429 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1430 if (ret < 0) {
1431 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1432 alternate);
1433 usb_enable_lpm(dev);
1434 mutex_unlock(hcd->bandwidth_mutex);
1435 return ret;
1436 }
1437
1438 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1439 ret = -EPIPE;
1440 else
1441 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1442 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1443 alternate, interface, NULL, 0, 5000);
1444
1445 /* 9.4.10 says devices don't need this and are free to STALL the
1446 * request if the interface only has one alternate setting.
1447 */
1448 if (ret == -EPIPE && iface->num_altsetting == 1) {
1449 dev_dbg(&dev->dev,
1450 "manual set_interface for iface %d, alt %d\n",
1451 interface, alternate);
1452 manual = 1;
1453 } else if (ret < 0) {
1454 /* Re-instate the old alt setting */
1455 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1456 usb_enable_lpm(dev);
1457 mutex_unlock(hcd->bandwidth_mutex);
1458 return ret;
1459 }
1460 mutex_unlock(hcd->bandwidth_mutex);
1461
1462 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1463 * when they implement async or easily-killable versions of this or
1464 * other "should-be-internal" functions (like clear_halt).
1465 * should hcd+usbcore postprocess control requests?
1466 */
1467
1468 /* prevent submissions using previous endpoint settings */
1469 if (iface->cur_altsetting != alt) {
1470 remove_intf_ep_devs(iface);
1471 usb_remove_sysfs_intf_files(iface);
1472 }
1473 usb_disable_interface(dev, iface, true);
1474
1475 iface->cur_altsetting = alt;
1476
1477 /* Now that the interface is installed, re-enable LPM. */
1478 usb_unlocked_enable_lpm(dev);
1479
1480 /* If the interface only has one altsetting and the device didn't
1481 * accept the request, we attempt to carry out the equivalent action
1482 * by manually clearing the HALT feature for each endpoint in the
1483 * new altsetting.
1484 */
1485 if (manual) {
1486 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1487 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1488 pipe = __create_pipe(dev,
1489 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1490 (usb_endpoint_out(epaddr) ?
1491 USB_DIR_OUT : USB_DIR_IN);
1492
1493 usb_clear_halt(dev, pipe);
1494 }
1495 }
1496
1497 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1498 *
1499 * Note:
1500 * Despite EP0 is always present in all interfaces/AS, the list of
1501 * endpoints from the descriptor does not contain EP0. Due to its
1502 * omnipresence one might expect EP0 being considered "affected" by
1503 * any SetInterface request and hence assume toggles need to be reset.
1504 * However, EP0 toggles are re-synced for every individual transfer
1505 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1506 * (Likewise, EP0 never "halts" on well designed devices.)
1507 */
1508 usb_enable_interface(dev, iface, true);
1509 if (device_is_registered(&iface->dev)) {
1510 usb_create_sysfs_intf_files(iface);
1511 create_intf_ep_devs(iface);
1512 }
1513 return 0;
1514}
1515EXPORT_SYMBOL_GPL(usb_set_interface);
1516
1517/**
1518 * usb_reset_configuration - lightweight device reset
1519 * @dev: the device whose configuration is being reset
1520 *
1521 * This issues a standard SET_CONFIGURATION request to the device using
1522 * the current configuration. The effect is to reset most USB-related
1523 * state in the device, including interface altsettings (reset to zero),
1524 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1525 * endpoints). Other usbcore state is unchanged, including bindings of
1526 * usb device drivers to interfaces.
1527 *
1528 * Because this affects multiple interfaces, avoid using this with composite
1529 * (multi-interface) devices. Instead, the driver for each interface may
1530 * use usb_set_interface() on the interfaces it claims. Be careful though;
1531 * some devices don't support the SET_INTERFACE request, and others won't
1532 * reset all the interface state (notably endpoint state). Resetting the whole
1533 * configuration would affect other drivers' interfaces.
1534 *
1535 * The caller must own the device lock.
1536 *
1537 * Return: Zero on success, else a negative error code.
1538 *
1539 * If this routine fails the device will probably be in an unusable state
1540 * with endpoints disabled, and interfaces only partially enabled.
1541 */
1542int usb_reset_configuration(struct usb_device *dev)
1543{
1544 int i, retval;
1545 struct usb_host_config *config;
1546 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1547
1548 if (dev->state == USB_STATE_SUSPENDED)
1549 return -EHOSTUNREACH;
1550
1551 /* caller must have locked the device and must own
1552 * the usb bus readlock (so driver bindings are stable);
1553 * calls during probe() are fine
1554 */
1555
1556 usb_disable_device_endpoints(dev, 1); /* skip ep0*/
1557
1558 config = dev->actconfig;
1559 retval = 0;
1560 mutex_lock(hcd->bandwidth_mutex);
1561 /* Disable LPM, and re-enable it once the configuration is reset, so
1562 * that the xHCI driver can recalculate the U1/U2 timeouts.
1563 */
1564 if (usb_disable_lpm(dev)) {
1565 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1566 mutex_unlock(hcd->bandwidth_mutex);
1567 return -ENOMEM;
1568 }
1569
1570 /* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1571 retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
1572 if (retval < 0) {
1573 usb_enable_lpm(dev);
1574 mutex_unlock(hcd->bandwidth_mutex);
1575 return retval;
1576 }
1577 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1578 USB_REQ_SET_CONFIGURATION, 0,
1579 config->desc.bConfigurationValue, 0,
1580 NULL, 0, USB_CTRL_SET_TIMEOUT);
1581 if (retval < 0) {
1582 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1583 usb_enable_lpm(dev);
1584 mutex_unlock(hcd->bandwidth_mutex);
1585 return retval;
1586 }
1587 mutex_unlock(hcd->bandwidth_mutex);
1588
1589 /* re-init hc/hcd interface/endpoint state */
1590 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1591 struct usb_interface *intf = config->interface[i];
1592 struct usb_host_interface *alt;
1593
1594 alt = usb_altnum_to_altsetting(intf, 0);
1595
1596 /* No altsetting 0? We'll assume the first altsetting.
1597 * We could use a GetInterface call, but if a device is
1598 * so non-compliant that it doesn't have altsetting 0
1599 * then I wouldn't trust its reply anyway.
1600 */
1601 if (!alt)
1602 alt = &intf->altsetting[0];
1603
1604 if (alt != intf->cur_altsetting) {
1605 remove_intf_ep_devs(intf);
1606 usb_remove_sysfs_intf_files(intf);
1607 }
1608 intf->cur_altsetting = alt;
1609 usb_enable_interface(dev, intf, true);
1610 if (device_is_registered(&intf->dev)) {
1611 usb_create_sysfs_intf_files(intf);
1612 create_intf_ep_devs(intf);
1613 }
1614 }
1615 /* Now that the interfaces are installed, re-enable LPM. */
1616 usb_unlocked_enable_lpm(dev);
1617 return 0;
1618}
1619EXPORT_SYMBOL_GPL(usb_reset_configuration);
1620
1621static void usb_release_interface(struct device *dev)
1622{
1623 struct usb_interface *intf = to_usb_interface(dev);
1624 struct usb_interface_cache *intfc =
1625 altsetting_to_usb_interface_cache(intf->altsetting);
1626
1627 kref_put(&intfc->ref, usb_release_interface_cache);
1628 usb_put_dev(interface_to_usbdev(intf));
1629 of_node_put(dev->of_node);
1630 kfree(intf);
1631}
1632
1633/*
1634 * usb_deauthorize_interface - deauthorize an USB interface
1635 *
1636 * @intf: USB interface structure
1637 */
1638void usb_deauthorize_interface(struct usb_interface *intf)
1639{
1640 struct device *dev = &intf->dev;
1641
1642 device_lock(dev->parent);
1643
1644 if (intf->authorized) {
1645 device_lock(dev);
1646 intf->authorized = 0;
1647 device_unlock(dev);
1648
1649 usb_forced_unbind_intf(intf);
1650 }
1651
1652 device_unlock(dev->parent);
1653}
1654
1655/*
1656 * usb_authorize_interface - authorize an USB interface
1657 *
1658 * @intf: USB interface structure
1659 */
1660void usb_authorize_interface(struct usb_interface *intf)
1661{
1662 struct device *dev = &intf->dev;
1663
1664 if (!intf->authorized) {
1665 device_lock(dev);
1666 intf->authorized = 1; /* authorize interface */
1667 device_unlock(dev);
1668 }
1669}
1670
1671static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1672{
1673 struct usb_device *usb_dev;
1674 struct usb_interface *intf;
1675 struct usb_host_interface *alt;
1676
1677 intf = to_usb_interface(dev);
1678 usb_dev = interface_to_usbdev(intf);
1679 alt = intf->cur_altsetting;
1680
1681 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1682 alt->desc.bInterfaceClass,
1683 alt->desc.bInterfaceSubClass,
1684 alt->desc.bInterfaceProtocol))
1685 return -ENOMEM;
1686
1687 if (add_uevent_var(env,
1688 "MODALIAS=usb:"
1689 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1690 le16_to_cpu(usb_dev->descriptor.idVendor),
1691 le16_to_cpu(usb_dev->descriptor.idProduct),
1692 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1693 usb_dev->descriptor.bDeviceClass,
1694 usb_dev->descriptor.bDeviceSubClass,
1695 usb_dev->descriptor.bDeviceProtocol,
1696 alt->desc.bInterfaceClass,
1697 alt->desc.bInterfaceSubClass,
1698 alt->desc.bInterfaceProtocol,
1699 alt->desc.bInterfaceNumber))
1700 return -ENOMEM;
1701
1702 return 0;
1703}
1704
1705struct device_type usb_if_device_type = {
1706 .name = "usb_interface",
1707 .release = usb_release_interface,
1708 .uevent = usb_if_uevent,
1709};
1710
1711static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1712 struct usb_host_config *config,
1713 u8 inum)
1714{
1715 struct usb_interface_assoc_descriptor *retval = NULL;
1716 struct usb_interface_assoc_descriptor *intf_assoc;
1717 int first_intf;
1718 int last_intf;
1719 int i;
1720
1721 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1722 intf_assoc = config->intf_assoc[i];
1723 if (intf_assoc->bInterfaceCount == 0)
1724 continue;
1725
1726 first_intf = intf_assoc->bFirstInterface;
1727 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1728 if (inum >= first_intf && inum <= last_intf) {
1729 if (!retval)
1730 retval = intf_assoc;
1731 else
1732 dev_err(&dev->dev, "Interface #%d referenced"
1733 " by multiple IADs\n", inum);
1734 }
1735 }
1736
1737 return retval;
1738}
1739
1740
1741/*
1742 * Internal function to queue a device reset
1743 * See usb_queue_reset_device() for more details
1744 */
1745static void __usb_queue_reset_device(struct work_struct *ws)
1746{
1747 int rc;
1748 struct usb_interface *iface =
1749 container_of(ws, struct usb_interface, reset_ws);
1750 struct usb_device *udev = interface_to_usbdev(iface);
1751
1752 rc = usb_lock_device_for_reset(udev, iface);
1753 if (rc >= 0) {
1754 usb_reset_device(udev);
1755 usb_unlock_device(udev);
1756 }
1757 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1758}
1759
1760
1761/*
1762 * usb_set_configuration - Makes a particular device setting be current
1763 * @dev: the device whose configuration is being updated
1764 * @configuration: the configuration being chosen.
1765 * Context: !in_interrupt(), caller owns the device lock
1766 *
1767 * This is used to enable non-default device modes. Not all devices
1768 * use this kind of configurability; many devices only have one
1769 * configuration.
1770 *
1771 * @configuration is the value of the configuration to be installed.
1772 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1773 * must be non-zero; a value of zero indicates that the device in
1774 * unconfigured. However some devices erroneously use 0 as one of their
1775 * configuration values. To help manage such devices, this routine will
1776 * accept @configuration = -1 as indicating the device should be put in
1777 * an unconfigured state.
1778 *
1779 * USB device configurations may affect Linux interoperability,
1780 * power consumption and the functionality available. For example,
1781 * the default configuration is limited to using 100mA of bus power,
1782 * so that when certain device functionality requires more power,
1783 * and the device is bus powered, that functionality should be in some
1784 * non-default device configuration. Other device modes may also be
1785 * reflected as configuration options, such as whether two ISDN
1786 * channels are available independently; and choosing between open
1787 * standard device protocols (like CDC) or proprietary ones.
1788 *
1789 * Note that a non-authorized device (dev->authorized == 0) will only
1790 * be put in unconfigured mode.
1791 *
1792 * Note that USB has an additional level of device configurability,
1793 * associated with interfaces. That configurability is accessed using
1794 * usb_set_interface().
1795 *
1796 * This call is synchronous. The calling context must be able to sleep,
1797 * must own the device lock, and must not hold the driver model's USB
1798 * bus mutex; usb interface driver probe() methods cannot use this routine.
1799 *
1800 * Returns zero on success, or else the status code returned by the
1801 * underlying call that failed. On successful completion, each interface
1802 * in the original device configuration has been destroyed, and each one
1803 * in the new configuration has been probed by all relevant usb device
1804 * drivers currently known to the kernel.
1805 */
1806int usb_set_configuration(struct usb_device *dev, int configuration)
1807{
1808 int i, ret;
1809 struct usb_host_config *cp = NULL;
1810 struct usb_interface **new_interfaces = NULL;
1811 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1812 int n, nintf;
1813
1814 if (dev->authorized == 0 || configuration == -1)
1815 configuration = 0;
1816 else {
1817 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1818 if (dev->config[i].desc.bConfigurationValue ==
1819 configuration) {
1820 cp = &dev->config[i];
1821 break;
1822 }
1823 }
1824 }
1825 if ((!cp && configuration != 0))
1826 return -EINVAL;
1827
1828 /* The USB spec says configuration 0 means unconfigured.
1829 * But if a device includes a configuration numbered 0,
1830 * we will accept it as a correctly configured state.
1831 * Use -1 if you really want to unconfigure the device.
1832 */
1833 if (cp && configuration == 0)
1834 dev_warn(&dev->dev, "config 0 descriptor??\n");
1835
1836 /* Allocate memory for new interfaces before doing anything else,
1837 * so that if we run out then nothing will have changed. */
1838 n = nintf = 0;
1839 if (cp) {
1840 nintf = cp->desc.bNumInterfaces;
1841 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1842 GFP_NOIO);
1843 if (!new_interfaces)
1844 return -ENOMEM;
1845
1846 for (; n < nintf; ++n) {
1847 new_interfaces[n] = kzalloc(
1848 sizeof(struct usb_interface),
1849 GFP_NOIO);
1850 if (!new_interfaces[n]) {
1851 ret = -ENOMEM;
1852free_interfaces:
1853 while (--n >= 0)
1854 kfree(new_interfaces[n]);
1855 kfree(new_interfaces);
1856 return ret;
1857 }
1858 }
1859
1860 i = dev->bus_mA - usb_get_max_power(dev, cp);
1861 if (i < 0)
1862 dev_warn(&dev->dev, "new config #%d exceeds power "
1863 "limit by %dmA\n",
1864 configuration, -i);
1865 }
1866
1867 /* Wake up the device so we can send it the Set-Config request */
1868 ret = usb_autoresume_device(dev);
1869 if (ret)
1870 goto free_interfaces;
1871
1872 /* if it's already configured, clear out old state first.
1873 * getting rid of old interfaces means unbinding their drivers.
1874 */
1875 if (dev->state != USB_STATE_ADDRESS)
1876 usb_disable_device(dev, 1); /* Skip ep0 */
1877
1878 /* Get rid of pending async Set-Config requests for this device */
1879 cancel_async_set_config(dev);
1880
1881 /* Make sure we have bandwidth (and available HCD resources) for this
1882 * configuration. Remove endpoints from the schedule if we're dropping
1883 * this configuration to set configuration 0. After this point, the
1884 * host controller will not allow submissions to dropped endpoints. If
1885 * this call fails, the device state is unchanged.
1886 */
1887 mutex_lock(hcd->bandwidth_mutex);
1888 /* Disable LPM, and re-enable it once the new configuration is
1889 * installed, so that the xHCI driver can recalculate the U1/U2
1890 * timeouts.
1891 */
1892 if (dev->actconfig && usb_disable_lpm(dev)) {
1893 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1894 mutex_unlock(hcd->bandwidth_mutex);
1895 ret = -ENOMEM;
1896 goto free_interfaces;
1897 }
1898 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1899 if (ret < 0) {
1900 if (dev->actconfig)
1901 usb_enable_lpm(dev);
1902 mutex_unlock(hcd->bandwidth_mutex);
1903 usb_autosuspend_device(dev);
1904 goto free_interfaces;
1905 }
1906
1907 /*
1908 * Initialize the new interface structures and the
1909 * hc/hcd/usbcore interface/endpoint state.
1910 */
1911 for (i = 0; i < nintf; ++i) {
1912 struct usb_interface_cache *intfc;
1913 struct usb_interface *intf;
1914 struct usb_host_interface *alt;
1915 u8 ifnum;
1916
1917 cp->interface[i] = intf = new_interfaces[i];
1918 intfc = cp->intf_cache[i];
1919 intf->altsetting = intfc->altsetting;
1920 intf->num_altsetting = intfc->num_altsetting;
1921 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1922 kref_get(&intfc->ref);
1923
1924 alt = usb_altnum_to_altsetting(intf, 0);
1925
1926 /* No altsetting 0? We'll assume the first altsetting.
1927 * We could use a GetInterface call, but if a device is
1928 * so non-compliant that it doesn't have altsetting 0
1929 * then I wouldn't trust its reply anyway.
1930 */
1931 if (!alt)
1932 alt = &intf->altsetting[0];
1933
1934 ifnum = alt->desc.bInterfaceNumber;
1935 intf->intf_assoc = find_iad(dev, cp, ifnum);
1936 intf->cur_altsetting = alt;
1937 usb_enable_interface(dev, intf, true);
1938 intf->dev.parent = &dev->dev;
1939 if (usb_of_has_combined_node(dev)) {
1940 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1941 } else {
1942 intf->dev.of_node = usb_of_get_interface_node(dev,
1943 configuration, ifnum);
1944 }
1945 ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
1946 intf->dev.driver = NULL;
1947 intf->dev.bus = &usb_bus_type;
1948 intf->dev.type = &usb_if_device_type;
1949 intf->dev.groups = usb_interface_groups;
1950 /*
1951 * Please refer to usb_alloc_dev() to see why we set
1952 * dma_mask and dma_pfn_offset.
1953 */
1954 intf->dev.dma_mask = dev->dev.dma_mask;
1955 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1956 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1957 intf->minor = -1;
1958 device_initialize(&intf->dev);
1959 pm_runtime_no_callbacks(&intf->dev);
1960 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1961 dev->devpath, configuration, ifnum);
1962 usb_get_dev(dev);
1963 }
1964 kfree(new_interfaces);
1965
1966 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1967 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1968 NULL, 0, USB_CTRL_SET_TIMEOUT);
1969 if (ret < 0 && cp) {
1970 /*
1971 * All the old state is gone, so what else can we do?
1972 * The device is probably useless now anyway.
1973 */
1974 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1975 for (i = 0; i < nintf; ++i) {
1976 usb_disable_interface(dev, cp->interface[i], true);
1977 put_device(&cp->interface[i]->dev);
1978 cp->interface[i] = NULL;
1979 }
1980 cp = NULL;
1981 }
1982
1983 dev->actconfig = cp;
1984 mutex_unlock(hcd->bandwidth_mutex);
1985
1986 if (!cp) {
1987 usb_set_device_state(dev, USB_STATE_ADDRESS);
1988
1989 /* Leave LPM disabled while the device is unconfigured. */
1990 usb_autosuspend_device(dev);
1991 return ret;
1992 }
1993 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1994
1995 if (cp->string == NULL &&
1996 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1997 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1998
1999 /* Now that the interfaces are installed, re-enable LPM. */
2000 usb_unlocked_enable_lpm(dev);
2001 /* Enable LTM if it was turned off by usb_disable_device. */
2002 usb_enable_ltm(dev);
2003
2004 /* Now that all the interfaces are set up, register them
2005 * to trigger binding of drivers to interfaces. probe()
2006 * routines may install different altsettings and may
2007 * claim() any interfaces not yet bound. Many class drivers
2008 * need that: CDC, audio, video, etc.
2009 */
2010 for (i = 0; i < nintf; ++i) {
2011 struct usb_interface *intf = cp->interface[i];
2012
2013 if (intf->dev.of_node &&
2014 !of_device_is_available(intf->dev.of_node)) {
2015 dev_info(&dev->dev, "skipping disabled interface %d\n",
2016 intf->cur_altsetting->desc.bInterfaceNumber);
2017 continue;
2018 }
2019
2020 dev_dbg(&dev->dev,
2021 "adding %s (config #%d, interface %d)\n",
2022 dev_name(&intf->dev), configuration,
2023 intf->cur_altsetting->desc.bInterfaceNumber);
2024 device_enable_async_suspend(&intf->dev);
2025 ret = device_add(&intf->dev);
2026 if (ret != 0) {
2027 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2028 dev_name(&intf->dev), ret);
2029 continue;
2030 }
2031 create_intf_ep_devs(intf);
2032 }
2033
2034 usb_autosuspend_device(dev);
2035 return 0;
2036}
2037EXPORT_SYMBOL_GPL(usb_set_configuration);
2038
2039static LIST_HEAD(set_config_list);
2040static DEFINE_SPINLOCK(set_config_lock);
2041
2042struct set_config_request {
2043 struct usb_device *udev;
2044 int config;
2045 struct work_struct work;
2046 struct list_head node;
2047};
2048
2049/* Worker routine for usb_driver_set_configuration() */
2050static void driver_set_config_work(struct work_struct *work)
2051{
2052 struct set_config_request *req =
2053 container_of(work, struct set_config_request, work);
2054 struct usb_device *udev = req->udev;
2055
2056 usb_lock_device(udev);
2057 spin_lock(&set_config_lock);
2058 list_del(&req->node);
2059 spin_unlock(&set_config_lock);
2060
2061 if (req->config >= -1) /* Is req still valid? */
2062 usb_set_configuration(udev, req->config);
2063 usb_unlock_device(udev);
2064 usb_put_dev(udev);
2065 kfree(req);
2066}
2067
2068/* Cancel pending Set-Config requests for a device whose configuration
2069 * was just changed
2070 */
2071static void cancel_async_set_config(struct usb_device *udev)
2072{
2073 struct set_config_request *req;
2074
2075 spin_lock(&set_config_lock);
2076 list_for_each_entry(req, &set_config_list, node) {
2077 if (req->udev == udev)
2078 req->config = -999; /* Mark as cancelled */
2079 }
2080 spin_unlock(&set_config_lock);
2081}
2082
2083/**
2084 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2085 * @udev: the device whose configuration is being updated
2086 * @config: the configuration being chosen.
2087 * Context: In process context, must be able to sleep
2088 *
2089 * Device interface drivers are not allowed to change device configurations.
2090 * This is because changing configurations will destroy the interface the
2091 * driver is bound to and create new ones; it would be like a floppy-disk
2092 * driver telling the computer to replace the floppy-disk drive with a
2093 * tape drive!
2094 *
2095 * Still, in certain specialized circumstances the need may arise. This
2096 * routine gets around the normal restrictions by using a work thread to
2097 * submit the change-config request.
2098 *
2099 * Return: 0 if the request was successfully queued, error code otherwise.
2100 * The caller has no way to know whether the queued request will eventually
2101 * succeed.
2102 */
2103int usb_driver_set_configuration(struct usb_device *udev, int config)
2104{
2105 struct set_config_request *req;
2106
2107 req = kmalloc(sizeof(*req), GFP_KERNEL);
2108 if (!req)
2109 return -ENOMEM;
2110 req->udev = udev;
2111 req->config = config;
2112 INIT_WORK(&req->work, driver_set_config_work);
2113
2114 spin_lock(&set_config_lock);
2115 list_add(&req->node, &set_config_list);
2116 spin_unlock(&set_config_lock);
2117
2118 usb_get_dev(udev);
2119 schedule_work(&req->work);
2120 return 0;
2121}
2122EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2123
2124/**
2125 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2126 * @hdr: the place to put the results of the parsing
2127 * @intf: the interface for which parsing is requested
2128 * @buffer: pointer to the extra headers to be parsed
2129 * @buflen: length of the extra headers
2130 *
2131 * This evaluates the extra headers present in CDC devices which
2132 * bind the interfaces for data and control and provide details
2133 * about the capabilities of the device.
2134 *
2135 * Return: number of descriptors parsed or -EINVAL
2136 * if the header is contradictory beyond salvage
2137 */
2138
2139int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2140 struct usb_interface *intf,
2141 u8 *buffer,
2142 int buflen)
2143{
2144 /* duplicates are ignored */
2145 struct usb_cdc_union_desc *union_header = NULL;
2146
2147 /* duplicates are not tolerated */
2148 struct usb_cdc_header_desc *header = NULL;
2149 struct usb_cdc_ether_desc *ether = NULL;
2150 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2151 struct usb_cdc_mdlm_desc *desc = NULL;
2152
2153 unsigned int elength;
2154 int cnt = 0;
2155
2156 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2157 hdr->phonet_magic_present = false;
2158 while (buflen > 0) {
2159 elength = buffer[0];
2160 if (!elength) {
2161 dev_err(&intf->dev, "skipping garbage byte\n");
2162 elength = 1;
2163 goto next_desc;
2164 }
2165 if ((buflen < elength) || (elength < 3)) {
2166 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2167 break;
2168 }
2169 if (buffer[1] != USB_DT_CS_INTERFACE) {
2170 dev_err(&intf->dev, "skipping garbage\n");
2171 goto next_desc;
2172 }
2173
2174 switch (buffer[2]) {
2175 case USB_CDC_UNION_TYPE: /* we've found it */
2176 if (elength < sizeof(struct usb_cdc_union_desc))
2177 goto next_desc;
2178 if (union_header) {
2179 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2180 goto next_desc;
2181 }
2182 union_header = (struct usb_cdc_union_desc *)buffer;
2183 break;
2184 case USB_CDC_COUNTRY_TYPE:
2185 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2186 goto next_desc;
2187 hdr->usb_cdc_country_functional_desc =
2188 (struct usb_cdc_country_functional_desc *)buffer;
2189 break;
2190 case USB_CDC_HEADER_TYPE:
2191 if (elength != sizeof(struct usb_cdc_header_desc))
2192 goto next_desc;
2193 if (header)
2194 return -EINVAL;
2195 header = (struct usb_cdc_header_desc *)buffer;
2196 break;
2197 case USB_CDC_ACM_TYPE:
2198 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2199 goto next_desc;
2200 hdr->usb_cdc_acm_descriptor =
2201 (struct usb_cdc_acm_descriptor *)buffer;
2202 break;
2203 case USB_CDC_ETHERNET_TYPE:
2204 if (elength != sizeof(struct usb_cdc_ether_desc))
2205 goto next_desc;
2206 if (ether)
2207 return -EINVAL;
2208 ether = (struct usb_cdc_ether_desc *)buffer;
2209 break;
2210 case USB_CDC_CALL_MANAGEMENT_TYPE:
2211 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2212 goto next_desc;
2213 hdr->usb_cdc_call_mgmt_descriptor =
2214 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2215 break;
2216 case USB_CDC_DMM_TYPE:
2217 if (elength < sizeof(struct usb_cdc_dmm_desc))
2218 goto next_desc;
2219 hdr->usb_cdc_dmm_desc =
2220 (struct usb_cdc_dmm_desc *)buffer;
2221 break;
2222 case USB_CDC_MDLM_TYPE:
2223 if (elength < sizeof(struct usb_cdc_mdlm_desc))
2224 goto next_desc;
2225 if (desc)
2226 return -EINVAL;
2227 desc = (struct usb_cdc_mdlm_desc *)buffer;
2228 break;
2229 case USB_CDC_MDLM_DETAIL_TYPE:
2230 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2231 goto next_desc;
2232 if (detail)
2233 return -EINVAL;
2234 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2235 break;
2236 case USB_CDC_NCM_TYPE:
2237 if (elength < sizeof(struct usb_cdc_ncm_desc))
2238 goto next_desc;
2239 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2240 break;
2241 case USB_CDC_MBIM_TYPE:
2242 if (elength < sizeof(struct usb_cdc_mbim_desc))
2243 goto next_desc;
2244
2245 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2246 break;
2247 case USB_CDC_MBIM_EXTENDED_TYPE:
2248 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2249 break;
2250 hdr->usb_cdc_mbim_extended_desc =
2251 (struct usb_cdc_mbim_extended_desc *)buffer;
2252 break;
2253 case CDC_PHONET_MAGIC_NUMBER:
2254 hdr->phonet_magic_present = true;
2255 break;
2256 default:
2257 /*
2258 * there are LOTS more CDC descriptors that
2259 * could legitimately be found here.
2260 */
2261 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2262 buffer[2], elength);
2263 goto next_desc;
2264 }
2265 cnt++;
2266next_desc:
2267 buflen -= elength;
2268 buffer += elength;
2269 }
2270 hdr->usb_cdc_union_desc = union_header;
2271 hdr->usb_cdc_header_desc = header;
2272 hdr->usb_cdc_mdlm_detail_desc = detail;
2273 hdr->usb_cdc_mdlm_desc = desc;
2274 hdr->usb_cdc_ether_desc = ether;
2275 return cnt;
2276}
2277
2278EXPORT_SYMBOL(cdc_parse_cdc_header);