Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/debugfs.h>
  17#include <linux/delay.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_device.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
  30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
  31#include <linux/of_irq.h>
  32#include <linux/spi/spi.h>
  33
  34/* SPI register offsets */
  35#define BCM2835_SPI_CS			0x00
  36#define BCM2835_SPI_FIFO		0x04
  37#define BCM2835_SPI_CLK			0x08
  38#define BCM2835_SPI_DLEN		0x0c
  39#define BCM2835_SPI_LTOH		0x10
  40#define BCM2835_SPI_DC			0x14
  41
  42/* Bitfields in CS */
  43#define BCM2835_SPI_CS_LEN_LONG		0x02000000
  44#define BCM2835_SPI_CS_DMA_LEN		0x01000000
  45#define BCM2835_SPI_CS_CSPOL2		0x00800000
  46#define BCM2835_SPI_CS_CSPOL1		0x00400000
  47#define BCM2835_SPI_CS_CSPOL0		0x00200000
  48#define BCM2835_SPI_CS_RXF		0x00100000
  49#define BCM2835_SPI_CS_RXR		0x00080000
  50#define BCM2835_SPI_CS_TXD		0x00040000
  51#define BCM2835_SPI_CS_RXD		0x00020000
  52#define BCM2835_SPI_CS_DONE		0x00010000
  53#define BCM2835_SPI_CS_LEN		0x00002000
  54#define BCM2835_SPI_CS_REN		0x00001000
  55#define BCM2835_SPI_CS_ADCS		0x00000800
  56#define BCM2835_SPI_CS_INTR		0x00000400
  57#define BCM2835_SPI_CS_INTD		0x00000200
  58#define BCM2835_SPI_CS_DMAEN		0x00000100
  59#define BCM2835_SPI_CS_TA		0x00000080
  60#define BCM2835_SPI_CS_CSPOL		0x00000040
  61#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
  62#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
  63#define BCM2835_SPI_CS_CPOL		0x00000008
  64#define BCM2835_SPI_CS_CPHA		0x00000004
  65#define BCM2835_SPI_CS_CS_10		0x00000002
  66#define BCM2835_SPI_CS_CS_01		0x00000001
  67
  68#define BCM2835_SPI_FIFO_SIZE		64
  69#define BCM2835_SPI_FIFO_SIZE_3_4	48
  70#define BCM2835_SPI_DMA_MIN_LENGTH	96
 
  71#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  72				| SPI_NO_CS | SPI_3WIRE)
  73
  74#define DRV_NAME	"spi-bcm2835"
  75
  76/* define polling limits */
  77static unsigned int polling_limit_us = 30;
  78module_param(polling_limit_us, uint, 0664);
  79MODULE_PARM_DESC(polling_limit_us,
  80		 "time in us to run a transfer in polling mode\n");
  81
  82/**
  83 * struct bcm2835_spi - BCM2835 SPI controller
  84 * @regs: base address of register map
  85 * @clk: core clock, divided to calculate serial clock
  86 * @clk_hz: core clock cached speed
  87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  88 * @tfr: SPI transfer currently processed
  89 * @ctlr: SPI controller reverse lookup
  90 * @tx_buf: pointer whence next transmitted byte is read
  91 * @rx_buf: pointer where next received byte is written
  92 * @tx_len: remaining bytes to transmit
  93 * @rx_len: remaining bytes to receive
  94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  95 *	length is not a multiple of 4 (to overcome hardware limitation)
  96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
  97 *	length is not a multiple of 4 (to overcome hardware limitation)
  98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
 
 
  99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 100 *      unloading the module
 101 * @count_transfer_polling: count of how often polling mode is used
 102 * @count_transfer_irq: count of how often interrupt mode is used
 103 * @count_transfer_irq_after_polling: count of how often we fall back to
 104 *      interrupt mode after starting in polling mode.
 105 *      These are counted as well in @count_transfer_polling and
 106 *      @count_transfer_irq
 107 * @count_transfer_dma: count how often dma mode is used
 108 * @slv: SPI slave currently selected
 109 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 110 * @tx_dma_active: whether a TX DMA descriptor is in progress
 111 * @rx_dma_active: whether a RX DMA descriptor is in progress
 112 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 114 *	(cyclically copies from zero page to TX FIFO)
 115 * @fill_tx_addr: bus address of zero page
 
 
 
 
 
 116 */
 117struct bcm2835_spi {
 118	void __iomem *regs;
 119	struct clk *clk;
 120	unsigned long clk_hz;
 121	int irq;
 122	struct spi_transfer *tfr;
 123	struct spi_controller *ctlr;
 124	const u8 *tx_buf;
 125	u8 *rx_buf;
 126	int tx_len;
 127	int rx_len;
 128	int tx_prologue;
 129	int rx_prologue;
 130	unsigned int tx_spillover;
 
 131
 132	struct dentry *debugfs_dir;
 133	u64 count_transfer_polling;
 134	u64 count_transfer_irq;
 135	u64 count_transfer_irq_after_polling;
 136	u64 count_transfer_dma;
 137
 138	struct bcm2835_spidev *slv;
 139	unsigned int tx_dma_active;
 140	unsigned int rx_dma_active;
 141	struct dma_async_tx_descriptor *fill_tx_desc;
 142	dma_addr_t fill_tx_addr;
 143};
 144
 145/**
 146 * struct bcm2835_spidev - BCM2835 SPI slave
 147 * @prepare_cs: precalculated CS register value for ->prepare_message()
 148 *	(uses slave-specific clock polarity and phase settings)
 149 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 150 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 151 * @clear_rx_addr: bus address of @clear_rx_cs
 152 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 153 *	(uses slave-specific clock polarity and phase settings)
 154 */
 155struct bcm2835_spidev {
 156	u32 prepare_cs;
 157	struct dma_async_tx_descriptor *clear_rx_desc;
 158	dma_addr_t clear_rx_addr;
 159	u32 clear_rx_cs ____cacheline_aligned;
 160};
 161
 162#if defined(CONFIG_DEBUG_FS)
 163static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 164				   const char *dname)
 165{
 166	char name[64];
 167	struct dentry *dir;
 168
 169	/* get full name */
 170	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 171
 172	/* the base directory */
 173	dir = debugfs_create_dir(name, NULL);
 174	bs->debugfs_dir = dir;
 175
 176	/* the counters */
 177	debugfs_create_u64("count_transfer_polling", 0444, dir,
 178			   &bs->count_transfer_polling);
 179	debugfs_create_u64("count_transfer_irq", 0444, dir,
 180			   &bs->count_transfer_irq);
 181	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 182			   &bs->count_transfer_irq_after_polling);
 183	debugfs_create_u64("count_transfer_dma", 0444, dir,
 184			   &bs->count_transfer_dma);
 185}
 186
 187static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 188{
 189	debugfs_remove_recursive(bs->debugfs_dir);
 190	bs->debugfs_dir = NULL;
 191}
 192#else
 193static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 194				   const char *dname)
 195{
 196}
 197
 198static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 199{
 200}
 201#endif /* CONFIG_DEBUG_FS */
 202
 203static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
 204{
 205	return readl(bs->regs + reg);
 206}
 207
 208static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
 209{
 210	writel(val, bs->regs + reg);
 211}
 212
 213static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 214{
 215	u8 byte;
 216
 217	while ((bs->rx_len) &&
 218	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 219		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 220		if (bs->rx_buf)
 221			*bs->rx_buf++ = byte;
 222		bs->rx_len--;
 223	}
 224}
 225
 226static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 227{
 228	u8 byte;
 229
 230	while ((bs->tx_len) &&
 231	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 232		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 233		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 234		bs->tx_len--;
 235	}
 236}
 237
 238/**
 239 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 240 * @bs: BCM2835 SPI controller
 241 * @count: bytes to read from RX FIFO
 242 *
 243 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 244 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 245 * in the CS register is set (such that a read from the FIFO register receives
 246 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 247 */
 248static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 249{
 250	u32 val;
 251	int len;
 252
 253	bs->rx_len -= count;
 254
 255	do {
 256		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 257		len = min(count, 4);
 258		memcpy(bs->rx_buf, &val, len);
 259		bs->rx_buf += len;
 260		count -= 4;
 261	} while (count > 0);
 262}
 263
 264/**
 265 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 266 * @bs: BCM2835 SPI controller
 267 * @count: bytes to write to TX FIFO
 268 *
 269 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 270 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 271 * in the CS register is set (such that a write to the FIFO register transmits
 272 * 32-bit instead of just 8-bit).
 273 */
 274static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 275{
 276	u32 val;
 277	int len;
 278
 279	bs->tx_len -= count;
 280
 281	do {
 282		if (bs->tx_buf) {
 283			len = min(count, 4);
 284			memcpy(&val, bs->tx_buf, len);
 285			bs->tx_buf += len;
 286		} else {
 287			val = 0;
 288		}
 289		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 290		count -= 4;
 291	} while (count > 0);
 292}
 293
 294/**
 295 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 296 * @bs: BCM2835 SPI controller
 297 *
 298 * The caller must ensure that the RX FIFO can accommodate as many bytes
 299 * as have been written to the TX FIFO:  Transmission is halted once the
 300 * RX FIFO is full, causing this function to spin forever.
 301 */
 302static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 303{
 304	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 305		cpu_relax();
 306}
 307
 308/**
 309 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 310 * @bs: BCM2835 SPI controller
 311 * @count: bytes available for reading in RX FIFO
 312 */
 313static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 314{
 315	u8 val;
 316
 317	count = min(count, bs->rx_len);
 318	bs->rx_len -= count;
 319
 320	do {
 321		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 322		if (bs->rx_buf)
 323			*bs->rx_buf++ = val;
 324	} while (--count);
 325}
 326
 327/**
 328 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 329 * @bs: BCM2835 SPI controller
 330 * @count: bytes available for writing in TX FIFO
 331 */
 332static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 333{
 334	u8 val;
 335
 336	count = min(count, bs->tx_len);
 337	bs->tx_len -= count;
 338
 339	do {
 340		val = bs->tx_buf ? *bs->tx_buf++ : 0;
 341		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 342	} while (--count);
 343}
 344
 345static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
 346{
 347	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 348
 349	/* Disable SPI interrupts and transfer */
 350	cs &= ~(BCM2835_SPI_CS_INTR |
 351		BCM2835_SPI_CS_INTD |
 352		BCM2835_SPI_CS_DMAEN |
 353		BCM2835_SPI_CS_TA);
 354	/*
 355	 * Transmission sometimes breaks unless the DONE bit is written at the
 356	 * end of every transfer.  The spec says it's a RO bit.  Either the
 357	 * spec is wrong and the bit is actually of type RW1C, or it's a
 358	 * hardware erratum.
 359	 */
 360	cs |= BCM2835_SPI_CS_DONE;
 361	/* and reset RX/TX FIFOS */
 362	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 363
 364	/* and reset the SPI_HW */
 365	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 366	/* as well as DLEN */
 367	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 368}
 369
 370static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 371{
 372	struct bcm2835_spi *bs = dev_id;
 373	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 374
 375	/* Bail out early if interrupts are not enabled */
 376	if (!(cs & BCM2835_SPI_CS_INTR))
 377		return IRQ_NONE;
 378
 379	/*
 380	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
 381	 * or if RXR is set (RX FIFO >= ¾ full).
 382	 */
 383	if (cs & BCM2835_SPI_CS_RXF)
 384		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 385	else if (cs & BCM2835_SPI_CS_RXR)
 386		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 387
 388	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 389		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 390
 391	/* Read as many bytes as possible from FIFO */
 392	bcm2835_rd_fifo(bs);
 393	/* Write as many bytes as possible to FIFO */
 394	bcm2835_wr_fifo(bs);
 395
 396	if (!bs->rx_len) {
 397		/* Transfer complete - reset SPI HW */
 398		bcm2835_spi_reset_hw(bs);
 399		/* wake up the framework */
 400		spi_finalize_current_transfer(bs->ctlr);
 401	}
 402
 403	return IRQ_HANDLED;
 404}
 405
 406static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 407					struct spi_device *spi,
 408					struct spi_transfer *tfr,
 409					u32 cs, bool fifo_empty)
 410{
 411	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 412
 413	/* update usage statistics */
 414	bs->count_transfer_irq++;
 415
 416	/*
 417	 * Enable HW block, but with interrupts still disabled.
 418	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 419	 */
 420	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 421
 422	/* fill TX FIFO as much as possible */
 423	if (fifo_empty)
 424		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 425	bcm2835_wr_fifo(bs);
 426
 427	/* enable interrupts */
 428	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 429	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 430
 431	/* signal that we need to wait for completion */
 432	return 1;
 433}
 434
 435/**
 436 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 437 * @ctlr: SPI master controller
 438 * @tfr: SPI transfer
 439 * @bs: BCM2835 SPI controller
 440 * @cs: CS register
 441 *
 442 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 443 * Only the final write access is permitted to transmit less than 4 bytes, the
 444 * SPI controller deduces its intended size from the DLEN register.
 445 *
 446 * If a TX or RX sglist contains multiple entries, one per page, and the first
 447 * entry starts in the middle of a page, that first entry's length may not be
 448 * a multiple of 4.  Subsequent entries are fine because they span an entire
 449 * page, hence do have a length that's a multiple of 4.
 450 *
 451 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 452 * because they are contiguous in physical memory and therefore not split on
 453 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 454 * buffers.
 455 *
 456 * The DMA engine is incapable of combining sglist entries into a continuous
 457 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 458 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 459 * entry is rounded up by throwing away received bytes.
 460 *
 461 * Overcome this limitation by transferring the first few bytes without DMA:
 462 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 463 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 464 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 465 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 466 *
 467 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 468 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 469 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 470 * if the length of the first is *exactly* 1.
 471 *
 472 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 473 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 474 *
 475 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 476 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 477 * the width but also garbles the FIFO's contents.  The prologue must therefore
 478 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 479 * pick up the residue in the RX FIFO in ungarbled form.
 480 */
 481static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 482					  struct spi_transfer *tfr,
 483					  struct bcm2835_spi *bs,
 484					  u32 cs)
 485{
 486	int tx_remaining;
 487
 488	bs->tfr		 = tfr;
 489	bs->tx_prologue  = 0;
 490	bs->rx_prologue  = 0;
 491	bs->tx_spillover = false;
 492
 493	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 494		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 495
 496	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 497		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 498
 499		if (bs->rx_prologue > bs->tx_prologue) {
 500			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 501				bs->tx_prologue  = bs->rx_prologue;
 502			} else {
 503				bs->tx_prologue += 4;
 504				bs->tx_spillover =
 505					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 506			}
 507		}
 508	}
 509
 510	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 511	if (!bs->tx_prologue)
 512		return;
 513
 514	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
 515	if (bs->rx_prologue) {
 516		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 517		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 518						  | BCM2835_SPI_CS_DMAEN);
 519		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 520		bcm2835_wait_tx_fifo_empty(bs);
 521		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 522		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 523						  | BCM2835_SPI_CS_CLEAR_TX
 524						  | BCM2835_SPI_CS_DONE);
 525
 526		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 527					   sg_dma_address(&tfr->rx_sg.sgl[0]),
 528					   bs->rx_prologue, DMA_FROM_DEVICE);
 529
 530		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 531		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 532	}
 533
 534	if (!bs->tx_buf)
 535		return;
 536
 537	/*
 538	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
 539	 * Also adjust second entry if prologue spills over to it.
 540	 */
 541	tx_remaining = bs->tx_prologue - bs->rx_prologue;
 542	if (tx_remaining) {
 543		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 544		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 545						  | BCM2835_SPI_CS_DMAEN);
 546		bcm2835_wr_fifo_count(bs, tx_remaining);
 547		bcm2835_wait_tx_fifo_empty(bs);
 548		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 549						  | BCM2835_SPI_CS_DONE);
 550	}
 551
 552	if (likely(!bs->tx_spillover)) {
 553		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 554		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 555	} else {
 556		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 557		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 558		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 559	}
 560}
 561
 562/**
 563 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 564 * @bs: BCM2835 SPI controller
 565 *
 566 * Undo changes which were made to an SPI transfer's sglist when transmitting
 567 * the prologue.  This is necessary to ensure the same memory ranges are
 568 * unmapped that were originally mapped.
 569 */
 570static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 571{
 572	struct spi_transfer *tfr = bs->tfr;
 573
 574	if (!bs->tx_prologue)
 575		return;
 576
 577	if (bs->rx_prologue) {
 578		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 579		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 580	}
 581
 582	if (!bs->tx_buf)
 583		goto out;
 584
 585	if (likely(!bs->tx_spillover)) {
 586		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 587		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 588	} else {
 589		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 590		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 591		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 592	}
 593out:
 594	bs->tx_prologue = 0;
 595}
 596
 597/**
 598 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 599 * @data: SPI master controller
 600 *
 601 * Used for bidirectional and RX-only transfers.
 602 */
 603static void bcm2835_spi_dma_rx_done(void *data)
 604{
 605	struct spi_controller *ctlr = data;
 606	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 607
 608	/* terminate tx-dma as we do not have an irq for it
 609	 * because when the rx dma will terminate and this callback
 610	 * is called the tx-dma must have finished - can't get to this
 611	 * situation otherwise...
 612	 */
 613	dmaengine_terminate_async(ctlr->dma_tx);
 614	bs->tx_dma_active = false;
 615	bs->rx_dma_active = false;
 616	bcm2835_spi_undo_prologue(bs);
 617
 618	/* reset fifo and HW */
 619	bcm2835_spi_reset_hw(bs);
 620
 621	/* and mark as completed */;
 622	spi_finalize_current_transfer(ctlr);
 623}
 624
 625/**
 626 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 627 * @data: SPI master controller
 628 *
 629 * Used for TX-only transfers.
 630 */
 631static void bcm2835_spi_dma_tx_done(void *data)
 632{
 633	struct spi_controller *ctlr = data;
 634	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 635
 636	/* busy-wait for TX FIFO to empty */
 637	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 638		bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
 
 639
 640	bs->tx_dma_active = false;
 641	smp_wmb();
 642
 643	/*
 644	 * In case of a very short transfer, RX DMA may not have been
 645	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 646	 * to terminate it immediately after issuing.
 647	 */
 648	if (cmpxchg(&bs->rx_dma_active, true, false))
 649		dmaengine_terminate_async(ctlr->dma_rx);
 650
 651	bcm2835_spi_undo_prologue(bs);
 652	bcm2835_spi_reset_hw(bs);
 653	spi_finalize_current_transfer(ctlr);
 654}
 655
 656/**
 657 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 658 * @ctlr: SPI master controller
 
 659 * @tfr: SPI transfer
 660 * @bs: BCM2835 SPI controller
 661 * @slv: BCM2835 SPI slave
 662 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 663 *
 664 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 665 * Return 0 on success or a negative error number.
 666 */
 667static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 
 668				  struct spi_transfer *tfr,
 669				  struct bcm2835_spi *bs,
 670				  struct bcm2835_spidev *slv,
 671				  bool is_tx)
 672{
 673	struct dma_chan *chan;
 674	struct scatterlist *sgl;
 675	unsigned int nents;
 676	enum dma_transfer_direction dir;
 677	unsigned long flags;
 678
 679	struct dma_async_tx_descriptor *desc;
 680	dma_cookie_t cookie;
 681
 682	if (is_tx) {
 683		dir   = DMA_MEM_TO_DEV;
 684		chan  = ctlr->dma_tx;
 685		nents = tfr->tx_sg.nents;
 686		sgl   = tfr->tx_sg.sgl;
 687		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 688	} else {
 689		dir   = DMA_DEV_TO_MEM;
 690		chan  = ctlr->dma_rx;
 691		nents = tfr->rx_sg.nents;
 692		sgl   = tfr->rx_sg.sgl;
 693		flags = DMA_PREP_INTERRUPT;
 694	}
 695	/* prepare the channel */
 696	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 697	if (!desc)
 698		return -EINVAL;
 699
 700	/*
 701	 * Completion is signaled by the RX channel for bidirectional and
 702	 * RX-only transfers; else by the TX channel for TX-only transfers.
 703	 */
 704	if (!is_tx) {
 705		desc->callback = bcm2835_spi_dma_rx_done;
 706		desc->callback_param = ctlr;
 707	} else if (!tfr->rx_buf) {
 708		desc->callback = bcm2835_spi_dma_tx_done;
 709		desc->callback_param = ctlr;
 710		bs->slv = slv;
 711	}
 712
 713	/* submit it to DMA-engine */
 714	cookie = dmaengine_submit(desc);
 715
 716	return dma_submit_error(cookie);
 717}
 718
 719/**
 720 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 721 * @ctlr: SPI master controller
 
 722 * @tfr: SPI transfer
 723 * @slv: BCM2835 SPI slave
 724 * @cs: CS register
 725 *
 726 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 727 * the TX and RX DMA channel to copy between memory and FIFO register.
 728 *
 729 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 730 * memory is pointless.  However not reading the RX FIFO isn't an option either
 731 * because transmission is halted once it's full.  As a workaround, cyclically
 732 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 733 *
 734 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 735 * this is called only once, on slave registration.  A DMA descriptor to write
 736 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 737 * when performing a TX-only transfer is to submit this descriptor to the RX
 738 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 739 * generate any interrupts while running.  It must be terminated once the
 740 * TX DMA channel is done.
 741 *
 742 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 743 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 744 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 745 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 746 * reduction in bus traffic and thus energy consumption is achieved.
 747 *
 748 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 749 * copying from the zero page.  The DMA descriptor to do this is preallocated
 750 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 751 * done and can then be reused.
 752 *
 753 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 754 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 755 * of copying them from memory.  This reduces traffic on the memory bus.  The
 756 * feature is not available on so-called "lite" channels, but normally TX DMA
 757 * is backed by a full-featured channel.
 758 *
 759 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 760 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 761 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 762 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 763 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 764 * performed at the end of an RX-only transfer.
 765 */
 766static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 
 767					struct spi_transfer *tfr,
 768					struct bcm2835_spidev *slv,
 769					u32 cs)
 770{
 771	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 772	dma_cookie_t cookie;
 773	int ret;
 774
 775	/* update usage statistics */
 776	bs->count_transfer_dma++;
 777
 778	/*
 779	 * Transfer first few bytes without DMA if length of first TX or RX
 780	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
 781	 */
 782	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 783
 784	/* setup tx-DMA */
 785	if (bs->tx_buf) {
 786		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
 787	} else {
 788		cookie = dmaengine_submit(bs->fill_tx_desc);
 789		ret = dma_submit_error(cookie);
 790	}
 791	if (ret)
 792		goto err_reset_hw;
 793
 794	/* set the DMA length */
 795	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 796
 797	/* start the HW */
 798	bcm2835_wr(bs, BCM2835_SPI_CS,
 799		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 800
 801	bs->tx_dma_active = true;
 802	smp_wmb();
 803
 804	/* start TX early */
 805	dma_async_issue_pending(ctlr->dma_tx);
 806
 807	/* setup rx-DMA late - to run transfers while
 808	 * mapping of the rx buffers still takes place
 809	 * this saves 10us or more.
 810	 */
 811	if (bs->rx_buf) {
 812		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
 813	} else {
 814		cookie = dmaengine_submit(slv->clear_rx_desc);
 815		ret = dma_submit_error(cookie);
 816	}
 817	if (ret) {
 818		/* need to reset on errors */
 819		dmaengine_terminate_sync(ctlr->dma_tx);
 820		bs->tx_dma_active = false;
 821		goto err_reset_hw;
 822	}
 823
 824	/* start rx dma late */
 825	dma_async_issue_pending(ctlr->dma_rx);
 826	bs->rx_dma_active = true;
 827	smp_mb();
 828
 829	/*
 830	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 831	 * may run before RX DMA is issued.  Terminate RX DMA if so.
 832	 */
 833	if (!bs->rx_buf && !bs->tx_dma_active &&
 834	    cmpxchg(&bs->rx_dma_active, true, false)) {
 835		dmaengine_terminate_async(ctlr->dma_rx);
 836		bcm2835_spi_reset_hw(bs);
 837	}
 838
 839	/* wait for wakeup in framework */
 840	return 1;
 841
 842err_reset_hw:
 843	bcm2835_spi_reset_hw(bs);
 844	bcm2835_spi_undo_prologue(bs);
 845	return ret;
 846}
 847
 848static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 849				struct spi_device *spi,
 850				struct spi_transfer *tfr)
 851{
 852	/* we start DMA efforts only on bigger transfers */
 853	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 854		return false;
 855
 856	/* return OK */
 857	return true;
 858}
 859
 860static void bcm2835_dma_release(struct spi_controller *ctlr,
 861				struct bcm2835_spi *bs)
 862{
 
 
 863	if (ctlr->dma_tx) {
 864		dmaengine_terminate_sync(ctlr->dma_tx);
 865
 866		if (bs->fill_tx_desc)
 867			dmaengine_desc_free(bs->fill_tx_desc);
 868
 869		if (bs->fill_tx_addr)
 870			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 871					     bs->fill_tx_addr, sizeof(u32),
 872					     DMA_TO_DEVICE,
 873					     DMA_ATTR_SKIP_CPU_SYNC);
 874
 875		dma_release_channel(ctlr->dma_tx);
 876		ctlr->dma_tx = NULL;
 877	}
 878
 879	if (ctlr->dma_rx) {
 880		dmaengine_terminate_sync(ctlr->dma_rx);
 
 
 
 
 
 
 
 
 
 
 
 881		dma_release_channel(ctlr->dma_rx);
 882		ctlr->dma_rx = NULL;
 883	}
 884}
 885
 886static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 887			    struct bcm2835_spi *bs)
 888{
 889	struct dma_slave_config slave_config;
 890	const __be32 *addr;
 891	dma_addr_t dma_reg_base;
 892	int ret;
 893
 894	/* base address in dma-space */
 895	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 896	if (!addr) {
 897		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 898		/* Fall back to interrupt mode */
 899		return 0;
 900	}
 901	dma_reg_base = be32_to_cpup(addr);
 902
 903	/* get tx/rx dma */
 904	ctlr->dma_tx = dma_request_chan(dev, "tx");
 905	if (IS_ERR(ctlr->dma_tx)) {
 906		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
 907		ret = PTR_ERR(ctlr->dma_tx);
 908		ctlr->dma_tx = NULL;
 909		goto err;
 910	}
 911	ctlr->dma_rx = dma_request_chan(dev, "rx");
 912	if (IS_ERR(ctlr->dma_rx)) {
 913		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
 914		ret = PTR_ERR(ctlr->dma_rx);
 915		ctlr->dma_rx = NULL;
 916		goto err_release;
 917	}
 918
 919	/*
 920	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 921	 * or, in case of an RX-only transfer, cyclically copies from the zero
 922	 * page to the FIFO using a preallocated, reusable descriptor.
 923	 */
 924	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 925	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 926
 927	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 928	if (ret)
 929		goto err_config;
 930
 931	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 932					      ZERO_PAGE(0), 0, sizeof(u32),
 933					      DMA_TO_DEVICE,
 934					      DMA_ATTR_SKIP_CPU_SYNC);
 935	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 936		dev_err(dev, "cannot map zero page - not using DMA mode\n");
 937		bs->fill_tx_addr = 0;
 938		ret = -ENOMEM;
 939		goto err_release;
 940	}
 941
 942	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 943						     bs->fill_tx_addr,
 944						     sizeof(u32), 0,
 945						     DMA_MEM_TO_DEV, 0);
 946	if (!bs->fill_tx_desc) {
 947		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 948		ret = -ENOMEM;
 949		goto err_release;
 950	}
 951
 952	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 953	if (ret) {
 954		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 955		goto err_release;
 956	}
 957
 958	/*
 959	 * The RX DMA channel is used bidirectionally:  It either reads the
 960	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 961	 * precalculated value to the CS register to clear the RX FIFO.
 962	 */
 963	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 964	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 965	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 966	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 967
 968	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 969	if (ret)
 970		goto err_config;
 971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972	/* all went well, so set can_dma */
 973	ctlr->can_dma = bcm2835_spi_can_dma;
 974
 975	return 0;
 976
 977err_config:
 978	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
 979		ret);
 980err_release:
 981	bcm2835_dma_release(ctlr, bs);
 982err:
 983	/*
 984	 * Only report error for deferred probing, otherwise fall back to
 985	 * interrupt mode
 986	 */
 987	if (ret != -EPROBE_DEFER)
 988		ret = 0;
 989
 990	return ret;
 991}
 992
 993static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
 994					 struct spi_device *spi,
 995					 struct spi_transfer *tfr,
 996					 u32 cs)
 997{
 998	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 999	unsigned long timeout;
1000
1001	/* update usage statistics */
1002	bs->count_transfer_polling++;
1003
1004	/* enable HW block without interrupts */
1005	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1006
1007	/* fill in the fifo before timeout calculations
1008	 * if we are interrupted here, then the data is
1009	 * getting transferred by the HW while we are interrupted
1010	 */
1011	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1012
1013	/* set the timeout to at least 2 jiffies */
1014	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1015
1016	/* loop until finished the transfer */
1017	while (bs->rx_len) {
1018		/* fill in tx fifo with remaining data */
1019		bcm2835_wr_fifo(bs);
1020
1021		/* read from fifo as much as possible */
1022		bcm2835_rd_fifo(bs);
1023
1024		/* if there is still data pending to read
1025		 * then check the timeout
1026		 */
1027		if (bs->rx_len && time_after(jiffies, timeout)) {
1028			dev_dbg_ratelimited(&spi->dev,
1029					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1030					    jiffies - timeout,
1031					    bs->tx_len, bs->rx_len);
1032			/* fall back to interrupt mode */
1033
1034			/* update usage statistics */
1035			bs->count_transfer_irq_after_polling++;
1036
1037			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1038							    tfr, cs, false);
1039		}
1040	}
1041
1042	/* Transfer complete - reset SPI HW */
1043	bcm2835_spi_reset_hw(bs);
1044	/* and return without waiting for completion */
1045	return 0;
1046}
1047
1048static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1049				    struct spi_device *spi,
1050				    struct spi_transfer *tfr)
1051{
1052	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1053	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1054	unsigned long spi_hz, cdiv;
1055	unsigned long hz_per_byte, byte_limit;
1056	u32 cs = slv->prepare_cs;
1057
1058	/* set clock */
1059	spi_hz = tfr->speed_hz;
 
1060
1061	if (spi_hz >= bs->clk_hz / 2) {
1062		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1063	} else if (spi_hz) {
1064		/* CDIV must be a multiple of two */
1065		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1066		cdiv += (cdiv % 2);
1067
1068		if (cdiv >= 65536)
1069			cdiv = 0; /* 0 is the slowest we can go */
1070	} else {
1071		cdiv = 0; /* 0 is the slowest we can go */
1072	}
1073	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1074	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1075
1076	/* handle all the 3-wire mode */
1077	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1078		cs |= BCM2835_SPI_CS_REN;
1079
1080	/* set transmit buffers and length */
1081	bs->tx_buf = tfr->tx_buf;
1082	bs->rx_buf = tfr->rx_buf;
1083	bs->tx_len = tfr->len;
1084	bs->rx_len = tfr->len;
1085
1086	/* Calculate the estimated time in us the transfer runs.  Note that
1087	 * there is 1 idle clocks cycles after each byte getting transferred
1088	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1089	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1090	 * per 300,000 Hz of bus clock.
1091	 */
1092	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1093	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1094
1095	/* run in polling mode for short transfers */
1096	if (tfr->len < byte_limit)
1097		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1098
1099	/* run in dma mode if conditions are right
1100	 * Note that unlike poll or interrupt mode DMA mode does not have
1101	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1102	 */
1103	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1104		return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
1105
1106	/* run in interrupt-mode */
1107	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1108}
1109
1110static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1111				       struct spi_message *msg)
1112{
1113	struct spi_device *spi = msg->spi;
1114	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1115	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1116	int ret;
1117
1118	if (ctlr->can_dma) {
1119		/*
1120		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1121		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1122		 * aligned) if the limit is exceeded.
1123		 */
1124		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1125						  GFP_KERNEL | GFP_DMA);
1126		if (ret)
1127			return ret;
1128	}
1129
1130	/*
1131	 * Set up clock polarity before spi_transfer_one_message() asserts
1132	 * chip select to avoid a gratuitous clock signal edge.
1133	 */
1134	bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
1135
1136	return 0;
1137}
1138
1139static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1140				   struct spi_message *msg)
1141{
1142	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1143
1144	/* if an error occurred and we have an active dma, then terminate */
1145	if (ctlr->dma_tx) {
1146		dmaengine_terminate_sync(ctlr->dma_tx);
1147		bs->tx_dma_active = false;
1148	}
1149	if (ctlr->dma_rx) {
1150		dmaengine_terminate_sync(ctlr->dma_rx);
1151		bs->rx_dma_active = false;
1152	}
1153	bcm2835_spi_undo_prologue(bs);
1154
1155	/* and reset */
1156	bcm2835_spi_reset_hw(bs);
1157}
1158
1159static int chip_match_name(struct gpio_chip *chip, void *data)
1160{
1161	return !strcmp(chip->label, data);
1162}
1163
1164static void bcm2835_spi_cleanup(struct spi_device *spi)
1165{
1166	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1167	struct spi_controller *ctlr = spi->controller;
1168
1169	if (slv->clear_rx_desc)
1170		dmaengine_desc_free(slv->clear_rx_desc);
1171
1172	if (slv->clear_rx_addr)
1173		dma_unmap_single(ctlr->dma_rx->device->dev,
1174				 slv->clear_rx_addr,
1175				 sizeof(u32),
1176				 DMA_TO_DEVICE);
1177
1178	kfree(slv);
1179}
1180
1181static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1182				 struct spi_device *spi,
1183				 struct bcm2835_spi *bs,
1184				 struct bcm2835_spidev *slv)
1185{
1186	int ret;
1187
1188	if (!ctlr->dma_rx)
1189		return 0;
1190
1191	slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1192					    &slv->clear_rx_cs,
1193					    sizeof(u32),
1194					    DMA_TO_DEVICE);
1195	if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
1196		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1197		slv->clear_rx_addr = 0;
1198		return -ENOMEM;
1199	}
1200
1201	slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1202						       slv->clear_rx_addr,
1203						       sizeof(u32), 0,
1204						       DMA_MEM_TO_DEV, 0);
1205	if (!slv->clear_rx_desc) {
1206		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1207		return -ENOMEM;
1208	}
1209
1210	ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
1211	if (ret) {
1212		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1213		return ret;
1214	}
1215
1216	return 0;
1217}
1218
1219static int bcm2835_spi_setup(struct spi_device *spi)
1220{
1221	struct spi_controller *ctlr = spi->controller;
1222	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1223	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1224	struct gpio_chip *chip;
1225	int ret;
1226	u32 cs;
1227
1228	if (!slv) {
1229		slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
1230			      GFP_KERNEL);
1231		if (!slv)
1232			return -ENOMEM;
1233
1234		spi_set_ctldata(spi, slv);
1235
1236		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
1237		if (ret)
1238			goto err_cleanup;
1239	}
1240
1241	/*
1242	 * Precalculate SPI slave's CS register value for ->prepare_message():
1243	 * The driver always uses software-controlled GPIO chip select, hence
1244	 * set the hardware-controlled native chip select to an invalid value
1245	 * to prevent it from interfering.
1246	 */
1247	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1248	if (spi->mode & SPI_CPOL)
1249		cs |= BCM2835_SPI_CS_CPOL;
1250	if (spi->mode & SPI_CPHA)
1251		cs |= BCM2835_SPI_CS_CPHA;
1252	slv->prepare_cs = cs;
1253
1254	/*
1255	 * Precalculate SPI slave's CS register value to clear RX FIFO
1256	 * in case of a TX-only DMA transfer.
1257	 */
1258	if (ctlr->dma_rx) {
1259		slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1260					BCM2835_SPI_CS_DMAEN |
1261					BCM2835_SPI_CS_CLEAR_RX;
 
1262		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1263					   slv->clear_rx_addr,
1264					   sizeof(u32),
1265					   DMA_TO_DEVICE);
1266	}
1267
1268	/*
1269	 * sanity checking the native-chipselects
1270	 */
1271	if (spi->mode & SPI_NO_CS)
1272		return 0;
1273	/*
1274	 * The SPI core has successfully requested the CS GPIO line from the
1275	 * device tree, so we are done.
1276	 */
1277	if (spi->cs_gpiod)
1278		return 0;
1279	if (spi->chip_select > 1) {
1280		/* error in the case of native CS requested with CS > 1
1281		 * officially there is a CS2, but it is not documented
1282		 * which GPIO is connected with that...
1283		 */
1284		dev_err(&spi->dev,
1285			"setup: only two native chip-selects are supported\n");
1286		ret = -EINVAL;
1287		goto err_cleanup;
1288	}
1289
1290	/*
1291	 * Translate native CS to GPIO
1292	 *
1293	 * FIXME: poking around in the gpiolib internals like this is
1294	 * not very good practice. Find a way to locate the real problem
1295	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1296	 * sometimes not assigned correctly? Erroneous device trees?
1297	 */
1298
1299	/* get the gpio chip for the base */
1300	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1301	if (!chip)
1302		return 0;
1303
 
 
 
 
 
 
 
 
 
 
 
 
1304	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1305						  DRV_NAME,
1306						  GPIO_LOOKUP_FLAGS_DEFAULT,
1307						  GPIOD_OUT_LOW);
1308	if (IS_ERR(spi->cs_gpiod)) {
1309		ret = PTR_ERR(spi->cs_gpiod);
1310		goto err_cleanup;
1311	}
1312
1313	/* and set up the "mode" and level */
1314	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1315		 spi->chip_select);
1316
1317	return 0;
1318
1319err_cleanup:
1320	bcm2835_spi_cleanup(spi);
1321	return ret;
1322}
1323
1324static int bcm2835_spi_probe(struct platform_device *pdev)
1325{
1326	struct spi_controller *ctlr;
1327	struct bcm2835_spi *bs;
1328	int err;
1329
1330	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
 
1331	if (!ctlr)
1332		return -ENOMEM;
1333
1334	platform_set_drvdata(pdev, ctlr);
1335
1336	ctlr->use_gpio_descriptors = true;
1337	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1338	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1339	ctlr->num_chipselect = 3;
1340	ctlr->setup = bcm2835_spi_setup;
1341	ctlr->cleanup = bcm2835_spi_cleanup;
1342	ctlr->transfer_one = bcm2835_spi_transfer_one;
1343	ctlr->handle_err = bcm2835_spi_handle_err;
1344	ctlr->prepare_message = bcm2835_spi_prepare_message;
1345	ctlr->dev.of_node = pdev->dev.of_node;
1346
1347	bs = spi_controller_get_devdata(ctlr);
1348	bs->ctlr = ctlr;
1349
1350	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1351	if (IS_ERR(bs->regs))
1352		return PTR_ERR(bs->regs);
 
 
1353
1354	bs->clk = devm_clk_get(&pdev->dev, NULL);
1355	if (IS_ERR(bs->clk))
1356		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1357				     "could not get clk\n");
1358
1359	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
 
 
 
1360
1361	bs->irq = platform_get_irq(pdev, 0);
1362	if (bs->irq <= 0)
1363		return bs->irq ? bs->irq : -ENODEV;
 
 
1364
1365	clk_prepare_enable(bs->clk);
1366	bs->clk_hz = clk_get_rate(bs->clk);
1367
1368	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1369	if (err)
1370		goto out_clk_disable;
1371
1372	/* initialise the hardware with the default polarities */
1373	bcm2835_wr(bs, BCM2835_SPI_CS,
1374		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1375
1376	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
1377			       IRQF_SHARED, dev_name(&pdev->dev), bs);
1378	if (err) {
1379		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1380		goto out_dma_release;
1381	}
1382
1383	err = spi_register_controller(ctlr);
1384	if (err) {
1385		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1386			err);
1387		goto out_dma_release;
1388	}
1389
1390	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1391
1392	return 0;
1393
1394out_dma_release:
1395	bcm2835_dma_release(ctlr, bs);
1396out_clk_disable:
1397	clk_disable_unprepare(bs->clk);
 
 
1398	return err;
1399}
1400
1401static int bcm2835_spi_remove(struct platform_device *pdev)
1402{
1403	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1404	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1405
1406	bcm2835_debugfs_remove(bs);
1407
1408	spi_unregister_controller(ctlr);
1409
1410	bcm2835_dma_release(ctlr, bs);
1411
1412	/* Clear FIFOs, and disable the HW block */
1413	bcm2835_wr(bs, BCM2835_SPI_CS,
1414		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1415
1416	clk_disable_unprepare(bs->clk);
1417
1418	return 0;
1419}
1420
1421static void bcm2835_spi_shutdown(struct platform_device *pdev)
1422{
1423	int ret;
1424
1425	ret = bcm2835_spi_remove(pdev);
1426	if (ret)
1427		dev_err(&pdev->dev, "failed to shutdown\n");
1428}
1429
1430static const struct of_device_id bcm2835_spi_match[] = {
1431	{ .compatible = "brcm,bcm2835-spi", },
1432	{}
1433};
1434MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1435
1436static struct platform_driver bcm2835_spi_driver = {
1437	.driver		= {
1438		.name		= DRV_NAME,
1439		.of_match_table	= bcm2835_spi_match,
1440	},
1441	.probe		= bcm2835_spi_probe,
1442	.remove		= bcm2835_spi_remove,
1443	.shutdown	= bcm2835_spi_shutdown,
1444};
1445module_platform_driver(bcm2835_spi_driver);
1446
1447MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1448MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1449MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for Broadcom BCM2835 SPI Controllers
   4 *
   5 * Copyright (C) 2012 Chris Boot
   6 * Copyright (C) 2013 Stephen Warren
   7 * Copyright (C) 2015 Martin Sperl
   8 *
   9 * This driver is inspired by:
  10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
  11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/completion.h>
  16#include <linux/debugfs.h>
  17#include <linux/delay.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/interrupt.h>
  22#include <linux/io.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_device.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/gpio/machine.h> /* FIXME: using chip internals */
  30#include <linux/gpio/driver.h> /* FIXME: using chip internals */
  31#include <linux/of_irq.h>
  32#include <linux/spi/spi.h>
  33
  34/* SPI register offsets */
  35#define BCM2835_SPI_CS			0x00
  36#define BCM2835_SPI_FIFO		0x04
  37#define BCM2835_SPI_CLK			0x08
  38#define BCM2835_SPI_DLEN		0x0c
  39#define BCM2835_SPI_LTOH		0x10
  40#define BCM2835_SPI_DC			0x14
  41
  42/* Bitfields in CS */
  43#define BCM2835_SPI_CS_LEN_LONG		0x02000000
  44#define BCM2835_SPI_CS_DMA_LEN		0x01000000
  45#define BCM2835_SPI_CS_CSPOL2		0x00800000
  46#define BCM2835_SPI_CS_CSPOL1		0x00400000
  47#define BCM2835_SPI_CS_CSPOL0		0x00200000
  48#define BCM2835_SPI_CS_RXF		0x00100000
  49#define BCM2835_SPI_CS_RXR		0x00080000
  50#define BCM2835_SPI_CS_TXD		0x00040000
  51#define BCM2835_SPI_CS_RXD		0x00020000
  52#define BCM2835_SPI_CS_DONE		0x00010000
  53#define BCM2835_SPI_CS_LEN		0x00002000
  54#define BCM2835_SPI_CS_REN		0x00001000
  55#define BCM2835_SPI_CS_ADCS		0x00000800
  56#define BCM2835_SPI_CS_INTR		0x00000400
  57#define BCM2835_SPI_CS_INTD		0x00000200
  58#define BCM2835_SPI_CS_DMAEN		0x00000100
  59#define BCM2835_SPI_CS_TA		0x00000080
  60#define BCM2835_SPI_CS_CSPOL		0x00000040
  61#define BCM2835_SPI_CS_CLEAR_RX		0x00000020
  62#define BCM2835_SPI_CS_CLEAR_TX		0x00000010
  63#define BCM2835_SPI_CS_CPOL		0x00000008
  64#define BCM2835_SPI_CS_CPHA		0x00000004
  65#define BCM2835_SPI_CS_CS_10		0x00000002
  66#define BCM2835_SPI_CS_CS_01		0x00000001
  67
  68#define BCM2835_SPI_FIFO_SIZE		64
  69#define BCM2835_SPI_FIFO_SIZE_3_4	48
  70#define BCM2835_SPI_DMA_MIN_LENGTH	96
  71#define BCM2835_SPI_NUM_CS		4   /* raise as necessary */
  72#define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
  73				| SPI_NO_CS | SPI_3WIRE)
  74
  75#define DRV_NAME	"spi-bcm2835"
  76
  77/* define polling limits */
  78static unsigned int polling_limit_us = 30;
  79module_param(polling_limit_us, uint, 0664);
  80MODULE_PARM_DESC(polling_limit_us,
  81		 "time in us to run a transfer in polling mode\n");
  82
  83/**
  84 * struct bcm2835_spi - BCM2835 SPI controller
  85 * @regs: base address of register map
  86 * @clk: core clock, divided to calculate serial clock
 
  87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
  88 * @tfr: SPI transfer currently processed
  89 * @ctlr: SPI controller reverse lookup
  90 * @tx_buf: pointer whence next transmitted byte is read
  91 * @rx_buf: pointer where next received byte is written
  92 * @tx_len: remaining bytes to transmit
  93 * @rx_len: remaining bytes to receive
  94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
  95 *	length is not a multiple of 4 (to overcome hardware limitation)
  96 * @rx_prologue: bytes received without DMA if first RX sglist entry's
  97 *	length is not a multiple of 4 (to overcome hardware limitation)
  98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
  99 * @prepare_cs: precalculated CS register value for ->prepare_message()
 100 *	(uses slave-specific clock polarity and phase settings)
 101 * @debugfs_dir: the debugfs directory - neede to remove debugfs when
 102 *      unloading the module
 103 * @count_transfer_polling: count of how often polling mode is used
 104 * @count_transfer_irq: count of how often interrupt mode is used
 105 * @count_transfer_irq_after_polling: count of how often we fall back to
 106 *      interrupt mode after starting in polling mode.
 107 *      These are counted as well in @count_transfer_polling and
 108 *      @count_transfer_irq
 109 * @count_transfer_dma: count how often dma mode is used
 110 * @chip_select: SPI slave currently selected
 111 *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
 112 * @tx_dma_active: whether a TX DMA descriptor is in progress
 113 * @rx_dma_active: whether a RX DMA descriptor is in progress
 114 *	(used by bcm2835_spi_dma_tx_done() to handle a race)
 115 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
 116 *	(cyclically copies from zero page to TX FIFO)
 117 * @fill_tx_addr: bus address of zero page
 118 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
 119 *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
 120 * @clear_rx_addr: bus address of @clear_rx_cs
 121 * @clear_rx_cs: precalculated CS register value to clear RX FIFO
 122 *	(uses slave-specific clock polarity and phase settings)
 123 */
 124struct bcm2835_spi {
 125	void __iomem *regs;
 126	struct clk *clk;
 
 127	int irq;
 128	struct spi_transfer *tfr;
 129	struct spi_controller *ctlr;
 130	const u8 *tx_buf;
 131	u8 *rx_buf;
 132	int tx_len;
 133	int rx_len;
 134	int tx_prologue;
 135	int rx_prologue;
 136	unsigned int tx_spillover;
 137	u32 prepare_cs[BCM2835_SPI_NUM_CS];
 138
 139	struct dentry *debugfs_dir;
 140	u64 count_transfer_polling;
 141	u64 count_transfer_irq;
 142	u64 count_transfer_irq_after_polling;
 143	u64 count_transfer_dma;
 144
 145	u8 chip_select;
 146	unsigned int tx_dma_active;
 147	unsigned int rx_dma_active;
 148	struct dma_async_tx_descriptor *fill_tx_desc;
 149	dma_addr_t fill_tx_addr;
 150	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151	dma_addr_t clear_rx_addr;
 152	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
 153};
 154
 155#if defined(CONFIG_DEBUG_FS)
 156static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 157				   const char *dname)
 158{
 159	char name[64];
 160	struct dentry *dir;
 161
 162	/* get full name */
 163	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
 164
 165	/* the base directory */
 166	dir = debugfs_create_dir(name, NULL);
 167	bs->debugfs_dir = dir;
 168
 169	/* the counters */
 170	debugfs_create_u64("count_transfer_polling", 0444, dir,
 171			   &bs->count_transfer_polling);
 172	debugfs_create_u64("count_transfer_irq", 0444, dir,
 173			   &bs->count_transfer_irq);
 174	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
 175			   &bs->count_transfer_irq_after_polling);
 176	debugfs_create_u64("count_transfer_dma", 0444, dir,
 177			   &bs->count_transfer_dma);
 178}
 179
 180static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 181{
 182	debugfs_remove_recursive(bs->debugfs_dir);
 183	bs->debugfs_dir = NULL;
 184}
 185#else
 186static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
 187				   const char *dname)
 188{
 189}
 190
 191static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
 192{
 193}
 194#endif /* CONFIG_DEBUG_FS */
 195
 196static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
 197{
 198	return readl(bs->regs + reg);
 199}
 200
 201static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
 202{
 203	writel(val, bs->regs + reg);
 204}
 205
 206static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
 207{
 208	u8 byte;
 209
 210	while ((bs->rx_len) &&
 211	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
 212		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 213		if (bs->rx_buf)
 214			*bs->rx_buf++ = byte;
 215		bs->rx_len--;
 216	}
 217}
 218
 219static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
 220{
 221	u8 byte;
 222
 223	while ((bs->tx_len) &&
 224	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
 225		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
 226		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
 227		bs->tx_len--;
 228	}
 229}
 230
 231/**
 232 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
 233 * @bs: BCM2835 SPI controller
 234 * @count: bytes to read from RX FIFO
 235 *
 236 * The caller must ensure that @bs->rx_len is greater than or equal to @count,
 237 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
 238 * in the CS register is set (such that a read from the FIFO register receives
 239 * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
 240 */
 241static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
 242{
 243	u32 val;
 244	int len;
 245
 246	bs->rx_len -= count;
 247
 248	do {
 249		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 250		len = min(count, 4);
 251		memcpy(bs->rx_buf, &val, len);
 252		bs->rx_buf += len;
 253		count -= 4;
 254	} while (count > 0);
 255}
 256
 257/**
 258 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
 259 * @bs: BCM2835 SPI controller
 260 * @count: bytes to write to TX FIFO
 261 *
 262 * The caller must ensure that @bs->tx_len is greater than or equal to @count,
 263 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
 264 * in the CS register is set (such that a write to the FIFO register transmits
 265 * 32-bit instead of just 8-bit).
 266 */
 267static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
 268{
 269	u32 val;
 270	int len;
 271
 272	bs->tx_len -= count;
 273
 274	do {
 275		if (bs->tx_buf) {
 276			len = min(count, 4);
 277			memcpy(&val, bs->tx_buf, len);
 278			bs->tx_buf += len;
 279		} else {
 280			val = 0;
 281		}
 282		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 283		count -= 4;
 284	} while (count > 0);
 285}
 286
 287/**
 288 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
 289 * @bs: BCM2835 SPI controller
 290 *
 291 * The caller must ensure that the RX FIFO can accommodate as many bytes
 292 * as have been written to the TX FIFO:  Transmission is halted once the
 293 * RX FIFO is full, causing this function to spin forever.
 294 */
 295static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
 296{
 297	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 298		cpu_relax();
 299}
 300
 301/**
 302 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
 303 * @bs: BCM2835 SPI controller
 304 * @count: bytes available for reading in RX FIFO
 305 */
 306static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
 307{
 308	u8 val;
 309
 310	count = min(count, bs->rx_len);
 311	bs->rx_len -= count;
 312
 313	do {
 314		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
 315		if (bs->rx_buf)
 316			*bs->rx_buf++ = val;
 317	} while (--count);
 318}
 319
 320/**
 321 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
 322 * @bs: BCM2835 SPI controller
 323 * @count: bytes available for writing in TX FIFO
 324 */
 325static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
 326{
 327	u8 val;
 328
 329	count = min(count, bs->tx_len);
 330	bs->tx_len -= count;
 331
 332	do {
 333		val = bs->tx_buf ? *bs->tx_buf++ : 0;
 334		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
 335	} while (--count);
 336}
 337
 338static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
 339{
 340	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 341
 342	/* Disable SPI interrupts and transfer */
 343	cs &= ~(BCM2835_SPI_CS_INTR |
 344		BCM2835_SPI_CS_INTD |
 345		BCM2835_SPI_CS_DMAEN |
 346		BCM2835_SPI_CS_TA);
 347	/*
 348	 * Transmission sometimes breaks unless the DONE bit is written at the
 349	 * end of every transfer.  The spec says it's a RO bit.  Either the
 350	 * spec is wrong and the bit is actually of type RW1C, or it's a
 351	 * hardware erratum.
 352	 */
 353	cs |= BCM2835_SPI_CS_DONE;
 354	/* and reset RX/TX FIFOS */
 355	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
 356
 357	/* and reset the SPI_HW */
 358	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 359	/* as well as DLEN */
 360	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
 361}
 362
 363static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
 364{
 365	struct bcm2835_spi *bs = dev_id;
 366	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
 367
 
 
 
 
 368	/*
 369	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
 370	 * or if RXR is set (RX FIFO >= ¾ full).
 371	 */
 372	if (cs & BCM2835_SPI_CS_RXF)
 373		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 374	else if (cs & BCM2835_SPI_CS_RXR)
 375		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
 376
 377	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
 378		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 379
 380	/* Read as many bytes as possible from FIFO */
 381	bcm2835_rd_fifo(bs);
 382	/* Write as many bytes as possible to FIFO */
 383	bcm2835_wr_fifo(bs);
 384
 385	if (!bs->rx_len) {
 386		/* Transfer complete - reset SPI HW */
 387		bcm2835_spi_reset_hw(bs);
 388		/* wake up the framework */
 389		complete(&bs->ctlr->xfer_completion);
 390	}
 391
 392	return IRQ_HANDLED;
 393}
 394
 395static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
 396					struct spi_device *spi,
 397					struct spi_transfer *tfr,
 398					u32 cs, bool fifo_empty)
 399{
 400	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 401
 402	/* update usage statistics */
 403	bs->count_transfer_irq++;
 404
 405	/*
 406	 * Enable HW block, but with interrupts still disabled.
 407	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
 408	 */
 409	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
 410
 411	/* fill TX FIFO as much as possible */
 412	if (fifo_empty)
 413		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
 414	bcm2835_wr_fifo(bs);
 415
 416	/* enable interrupts */
 417	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
 418	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
 419
 420	/* signal that we need to wait for completion */
 421	return 1;
 422}
 423
 424/**
 425 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
 426 * @ctlr: SPI master controller
 427 * @tfr: SPI transfer
 428 * @bs: BCM2835 SPI controller
 429 * @cs: CS register
 430 *
 431 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
 432 * Only the final write access is permitted to transmit less than 4 bytes, the
 433 * SPI controller deduces its intended size from the DLEN register.
 434 *
 435 * If a TX or RX sglist contains multiple entries, one per page, and the first
 436 * entry starts in the middle of a page, that first entry's length may not be
 437 * a multiple of 4.  Subsequent entries are fine because they span an entire
 438 * page, hence do have a length that's a multiple of 4.
 439 *
 440 * This cannot happen with kmalloc'ed buffers (which is what most clients use)
 441 * because they are contiguous in physical memory and therefore not split on
 442 * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
 443 * buffers.
 444 *
 445 * The DMA engine is incapable of combining sglist entries into a continuous
 446 * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
 447 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
 448 * entry is rounded up by throwing away received bytes.
 449 *
 450 * Overcome this limitation by transferring the first few bytes without DMA:
 451 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
 452 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
 453 * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
 454 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
 455 *
 456 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
 457 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
 458 * Caution, the additional 4 bytes spill over to the second TX sglist entry
 459 * if the length of the first is *exactly* 1.
 460 *
 461 * At most 6 bytes are written and at most 3 bytes read.  Do we know the
 462 * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
 463 *
 464 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
 465 * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
 466 * the width but also garbles the FIFO's contents.  The prologue must therefore
 467 * be transmitted in 32-bit width to ensure that the following DMA transfer can
 468 * pick up the residue in the RX FIFO in ungarbled form.
 469 */
 470static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
 471					  struct spi_transfer *tfr,
 472					  struct bcm2835_spi *bs,
 473					  u32 cs)
 474{
 475	int tx_remaining;
 476
 477	bs->tfr		 = tfr;
 478	bs->tx_prologue  = 0;
 479	bs->rx_prologue  = 0;
 480	bs->tx_spillover = false;
 481
 482	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
 483		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
 484
 485	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
 486		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
 487
 488		if (bs->rx_prologue > bs->tx_prologue) {
 489			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
 490				bs->tx_prologue  = bs->rx_prologue;
 491			} else {
 492				bs->tx_prologue += 4;
 493				bs->tx_spillover =
 494					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
 495			}
 496		}
 497	}
 498
 499	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
 500	if (!bs->tx_prologue)
 501		return;
 502
 503	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
 504	if (bs->rx_prologue) {
 505		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
 506		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 507						  | BCM2835_SPI_CS_DMAEN);
 508		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
 509		bcm2835_wait_tx_fifo_empty(bs);
 510		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
 511		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
 512						  | BCM2835_SPI_CS_CLEAR_TX
 513						  | BCM2835_SPI_CS_DONE);
 514
 515		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
 516					   sg_dma_address(&tfr->rx_sg.sgl[0]),
 517					   bs->rx_prologue, DMA_FROM_DEVICE);
 518
 519		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
 520		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
 521	}
 522
 523	if (!bs->tx_buf)
 524		return;
 525
 526	/*
 527	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
 528	 * Also adjust second entry if prologue spills over to it.
 529	 */
 530	tx_remaining = bs->tx_prologue - bs->rx_prologue;
 531	if (tx_remaining) {
 532		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
 533		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
 534						  | BCM2835_SPI_CS_DMAEN);
 535		bcm2835_wr_fifo_count(bs, tx_remaining);
 536		bcm2835_wait_tx_fifo_empty(bs);
 537		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
 538						  | BCM2835_SPI_CS_DONE);
 539	}
 540
 541	if (likely(!bs->tx_spillover)) {
 542		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
 543		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
 544	} else {
 545		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
 546		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
 547		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
 548	}
 549}
 550
 551/**
 552 * bcm2835_spi_undo_prologue() - reconstruct original sglist state
 553 * @bs: BCM2835 SPI controller
 554 *
 555 * Undo changes which were made to an SPI transfer's sglist when transmitting
 556 * the prologue.  This is necessary to ensure the same memory ranges are
 557 * unmapped that were originally mapped.
 558 */
 559static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
 560{
 561	struct spi_transfer *tfr = bs->tfr;
 562
 563	if (!bs->tx_prologue)
 564		return;
 565
 566	if (bs->rx_prologue) {
 567		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
 568		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
 569	}
 570
 571	if (!bs->tx_buf)
 572		goto out;
 573
 574	if (likely(!bs->tx_spillover)) {
 575		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
 576		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
 577	} else {
 578		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
 579		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
 580		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
 581	}
 582out:
 583	bs->tx_prologue = 0;
 584}
 585
 586/**
 587 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
 588 * @data: SPI master controller
 589 *
 590 * Used for bidirectional and RX-only transfers.
 591 */
 592static void bcm2835_spi_dma_rx_done(void *data)
 593{
 594	struct spi_controller *ctlr = data;
 595	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 596
 597	/* terminate tx-dma as we do not have an irq for it
 598	 * because when the rx dma will terminate and this callback
 599	 * is called the tx-dma must have finished - can't get to this
 600	 * situation otherwise...
 601	 */
 602	dmaengine_terminate_async(ctlr->dma_tx);
 603	bs->tx_dma_active = false;
 604	bs->rx_dma_active = false;
 605	bcm2835_spi_undo_prologue(bs);
 606
 607	/* reset fifo and HW */
 608	bcm2835_spi_reset_hw(bs);
 609
 610	/* and mark as completed */;
 611	complete(&ctlr->xfer_completion);
 612}
 613
 614/**
 615 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
 616 * @data: SPI master controller
 617 *
 618 * Used for TX-only transfers.
 619 */
 620static void bcm2835_spi_dma_tx_done(void *data)
 621{
 622	struct spi_controller *ctlr = data;
 623	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 624
 625	/* busy-wait for TX FIFO to empty */
 626	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
 627		bcm2835_wr(bs, BCM2835_SPI_CS,
 628			   bs->clear_rx_cs[bs->chip_select]);
 629
 630	bs->tx_dma_active = false;
 631	smp_wmb();
 632
 633	/*
 634	 * In case of a very short transfer, RX DMA may not have been
 635	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
 636	 * to terminate it immediately after issuing.
 637	 */
 638	if (cmpxchg(&bs->rx_dma_active, true, false))
 639		dmaengine_terminate_async(ctlr->dma_rx);
 640
 641	bcm2835_spi_undo_prologue(bs);
 642	bcm2835_spi_reset_hw(bs);
 643	complete(&ctlr->xfer_completion);
 644}
 645
 646/**
 647 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
 648 * @ctlr: SPI master controller
 649 * @spi: SPI slave
 650 * @tfr: SPI transfer
 651 * @bs: BCM2835 SPI controller
 
 652 * @is_tx: whether to submit DMA descriptor for TX or RX sglist
 653 *
 654 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
 655 * Return 0 on success or a negative error number.
 656 */
 657static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
 658				  struct spi_device *spi,
 659				  struct spi_transfer *tfr,
 660				  struct bcm2835_spi *bs,
 
 661				  bool is_tx)
 662{
 663	struct dma_chan *chan;
 664	struct scatterlist *sgl;
 665	unsigned int nents;
 666	enum dma_transfer_direction dir;
 667	unsigned long flags;
 668
 669	struct dma_async_tx_descriptor *desc;
 670	dma_cookie_t cookie;
 671
 672	if (is_tx) {
 673		dir   = DMA_MEM_TO_DEV;
 674		chan  = ctlr->dma_tx;
 675		nents = tfr->tx_sg.nents;
 676		sgl   = tfr->tx_sg.sgl;
 677		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
 678	} else {
 679		dir   = DMA_DEV_TO_MEM;
 680		chan  = ctlr->dma_rx;
 681		nents = tfr->rx_sg.nents;
 682		sgl   = tfr->rx_sg.sgl;
 683		flags = DMA_PREP_INTERRUPT;
 684	}
 685	/* prepare the channel */
 686	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
 687	if (!desc)
 688		return -EINVAL;
 689
 690	/*
 691	 * Completion is signaled by the RX channel for bidirectional and
 692	 * RX-only transfers; else by the TX channel for TX-only transfers.
 693	 */
 694	if (!is_tx) {
 695		desc->callback = bcm2835_spi_dma_rx_done;
 696		desc->callback_param = ctlr;
 697	} else if (!tfr->rx_buf) {
 698		desc->callback = bcm2835_spi_dma_tx_done;
 699		desc->callback_param = ctlr;
 700		bs->chip_select = spi->chip_select;
 701	}
 702
 703	/* submit it to DMA-engine */
 704	cookie = dmaengine_submit(desc);
 705
 706	return dma_submit_error(cookie);
 707}
 708
 709/**
 710 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
 711 * @ctlr: SPI master controller
 712 * @spi: SPI slave
 713 * @tfr: SPI transfer
 
 714 * @cs: CS register
 715 *
 716 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
 717 * the TX and RX DMA channel to copy between memory and FIFO register.
 718 *
 719 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
 720 * memory is pointless.  However not reading the RX FIFO isn't an option either
 721 * because transmission is halted once it's full.  As a workaround, cyclically
 722 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
 723 *
 724 * The CS register value is precalculated in bcm2835_spi_setup().  Normally
 725 * this is called only once, on slave registration.  A DMA descriptor to write
 726 * this value is preallocated in bcm2835_dma_init().  All that's left to do
 727 * when performing a TX-only transfer is to submit this descriptor to the RX
 728 * DMA channel.  Latency is thereby minimized.  The descriptor does not
 729 * generate any interrupts while running.  It must be terminated once the
 730 * TX DMA channel is done.
 731 *
 732 * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
 733 * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
 734 * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
 735 * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
 736 * reduction in bus traffic and thus energy consumption is achieved.
 737 *
 738 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
 739 * copying from the zero page.  The DMA descriptor to do this is preallocated
 740 * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
 741 * done and can then be reused.
 742 *
 743 * The BCM2835 DMA driver autodetects when a transaction copies from the zero
 744 * page and utilizes the DMA controller's ability to synthesize zeroes instead
 745 * of copying them from memory.  This reduces traffic on the memory bus.  The
 746 * feature is not available on so-called "lite" channels, but normally TX DMA
 747 * is backed by a full-featured channel.
 748 *
 749 * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
 750 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
 751 * has been counted down to zero (hardware erratum).  Thus, when the transfer
 752 * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
 753 * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
 754 * performed at the end of an RX-only transfer.
 755 */
 756static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
 757					struct spi_device *spi,
 758					struct spi_transfer *tfr,
 
 759					u32 cs)
 760{
 761	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 762	dma_cookie_t cookie;
 763	int ret;
 764
 765	/* update usage statistics */
 766	bs->count_transfer_dma++;
 767
 768	/*
 769	 * Transfer first few bytes without DMA if length of first TX or RX
 770	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
 771	 */
 772	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
 773
 774	/* setup tx-DMA */
 775	if (bs->tx_buf) {
 776		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
 777	} else {
 778		cookie = dmaengine_submit(bs->fill_tx_desc);
 779		ret = dma_submit_error(cookie);
 780	}
 781	if (ret)
 782		goto err_reset_hw;
 783
 784	/* set the DMA length */
 785	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
 786
 787	/* start the HW */
 788	bcm2835_wr(bs, BCM2835_SPI_CS,
 789		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
 790
 791	bs->tx_dma_active = true;
 792	smp_wmb();
 793
 794	/* start TX early */
 795	dma_async_issue_pending(ctlr->dma_tx);
 796
 797	/* setup rx-DMA late - to run transfers while
 798	 * mapping of the rx buffers still takes place
 799	 * this saves 10us or more.
 800	 */
 801	if (bs->rx_buf) {
 802		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
 803	} else {
 804		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
 805		ret = dma_submit_error(cookie);
 806	}
 807	if (ret) {
 808		/* need to reset on errors */
 809		dmaengine_terminate_sync(ctlr->dma_tx);
 810		bs->tx_dma_active = false;
 811		goto err_reset_hw;
 812	}
 813
 814	/* start rx dma late */
 815	dma_async_issue_pending(ctlr->dma_rx);
 816	bs->rx_dma_active = true;
 817	smp_mb();
 818
 819	/*
 820	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
 821	 * may run before RX DMA is issued.  Terminate RX DMA if so.
 822	 */
 823	if (!bs->rx_buf && !bs->tx_dma_active &&
 824	    cmpxchg(&bs->rx_dma_active, true, false)) {
 825		dmaengine_terminate_async(ctlr->dma_rx);
 826		bcm2835_spi_reset_hw(bs);
 827	}
 828
 829	/* wait for wakeup in framework */
 830	return 1;
 831
 832err_reset_hw:
 833	bcm2835_spi_reset_hw(bs);
 834	bcm2835_spi_undo_prologue(bs);
 835	return ret;
 836}
 837
 838static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
 839				struct spi_device *spi,
 840				struct spi_transfer *tfr)
 841{
 842	/* we start DMA efforts only on bigger transfers */
 843	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
 844		return false;
 845
 846	/* return OK */
 847	return true;
 848}
 849
 850static void bcm2835_dma_release(struct spi_controller *ctlr,
 851				struct bcm2835_spi *bs)
 852{
 853	int i;
 854
 855	if (ctlr->dma_tx) {
 856		dmaengine_terminate_sync(ctlr->dma_tx);
 857
 858		if (bs->fill_tx_desc)
 859			dmaengine_desc_free(bs->fill_tx_desc);
 860
 861		if (bs->fill_tx_addr)
 862			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
 863					     bs->fill_tx_addr, sizeof(u32),
 864					     DMA_TO_DEVICE,
 865					     DMA_ATTR_SKIP_CPU_SYNC);
 866
 867		dma_release_channel(ctlr->dma_tx);
 868		ctlr->dma_tx = NULL;
 869	}
 870
 871	if (ctlr->dma_rx) {
 872		dmaengine_terminate_sync(ctlr->dma_rx);
 873
 874		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
 875			if (bs->clear_rx_desc[i])
 876				dmaengine_desc_free(bs->clear_rx_desc[i]);
 877
 878		if (bs->clear_rx_addr)
 879			dma_unmap_single(ctlr->dma_rx->device->dev,
 880					 bs->clear_rx_addr,
 881					 sizeof(bs->clear_rx_cs),
 882					 DMA_TO_DEVICE);
 883
 884		dma_release_channel(ctlr->dma_rx);
 885		ctlr->dma_rx = NULL;
 886	}
 887}
 888
 889static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
 890			    struct bcm2835_spi *bs)
 891{
 892	struct dma_slave_config slave_config;
 893	const __be32 *addr;
 894	dma_addr_t dma_reg_base;
 895	int ret, i;
 896
 897	/* base address in dma-space */
 898	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
 899	if (!addr) {
 900		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
 901		/* Fall back to interrupt mode */
 902		return 0;
 903	}
 904	dma_reg_base = be32_to_cpup(addr);
 905
 906	/* get tx/rx dma */
 907	ctlr->dma_tx = dma_request_chan(dev, "tx");
 908	if (IS_ERR(ctlr->dma_tx)) {
 909		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
 910		ret = PTR_ERR(ctlr->dma_tx);
 911		ctlr->dma_tx = NULL;
 912		goto err;
 913	}
 914	ctlr->dma_rx = dma_request_chan(dev, "rx");
 915	if (IS_ERR(ctlr->dma_rx)) {
 916		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
 917		ret = PTR_ERR(ctlr->dma_rx);
 918		ctlr->dma_rx = NULL;
 919		goto err_release;
 920	}
 921
 922	/*
 923	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
 924	 * or, in case of an RX-only transfer, cyclically copies from the zero
 925	 * page to the FIFO using a preallocated, reusable descriptor.
 926	 */
 927	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 928	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 929
 930	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
 931	if (ret)
 932		goto err_config;
 933
 934	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
 935					      ZERO_PAGE(0), 0, sizeof(u32),
 936					      DMA_TO_DEVICE,
 937					      DMA_ATTR_SKIP_CPU_SYNC);
 938	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
 939		dev_err(dev, "cannot map zero page - not using DMA mode\n");
 940		bs->fill_tx_addr = 0;
 941		ret = -ENOMEM;
 942		goto err_release;
 943	}
 944
 945	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
 946						     bs->fill_tx_addr,
 947						     sizeof(u32), 0,
 948						     DMA_MEM_TO_DEV, 0);
 949	if (!bs->fill_tx_desc) {
 950		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
 951		ret = -ENOMEM;
 952		goto err_release;
 953	}
 954
 955	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
 956	if (ret) {
 957		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
 958		goto err_release;
 959	}
 960
 961	/*
 962	 * The RX DMA channel is used bidirectionally:  It either reads the
 963	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
 964	 * precalculated value to the CS register to clear the RX FIFO.
 965	 */
 966	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
 967	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 968	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
 969	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 970
 971	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
 972	if (ret)
 973		goto err_config;
 974
 975	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
 976					   bs->clear_rx_cs,
 977					   sizeof(bs->clear_rx_cs),
 978					   DMA_TO_DEVICE);
 979	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
 980		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
 981		bs->clear_rx_addr = 0;
 982		ret = -ENOMEM;
 983		goto err_release;
 984	}
 985
 986	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
 987		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
 988					   bs->clear_rx_addr + i * sizeof(u32),
 989					   sizeof(u32), 0,
 990					   DMA_MEM_TO_DEV, 0);
 991		if (!bs->clear_rx_desc[i]) {
 992			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
 993			ret = -ENOMEM;
 994			goto err_release;
 995		}
 996
 997		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
 998		if (ret) {
 999			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
1000			goto err_release;
1001		}
1002	}
1003
1004	/* all went well, so set can_dma */
1005	ctlr->can_dma = bcm2835_spi_can_dma;
1006
1007	return 0;
1008
1009err_config:
1010	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1011		ret);
1012err_release:
1013	bcm2835_dma_release(ctlr, bs);
1014err:
1015	/*
1016	 * Only report error for deferred probing, otherwise fall back to
1017	 * interrupt mode
1018	 */
1019	if (ret != -EPROBE_DEFER)
1020		ret = 0;
1021
1022	return ret;
1023}
1024
1025static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1026					 struct spi_device *spi,
1027					 struct spi_transfer *tfr,
1028					 u32 cs)
1029{
1030	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1031	unsigned long timeout;
1032
1033	/* update usage statistics */
1034	bs->count_transfer_polling++;
1035
1036	/* enable HW block without interrupts */
1037	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1038
1039	/* fill in the fifo before timeout calculations
1040	 * if we are interrupted here, then the data is
1041	 * getting transferred by the HW while we are interrupted
1042	 */
1043	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1044
1045	/* set the timeout to at least 2 jiffies */
1046	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1047
1048	/* loop until finished the transfer */
1049	while (bs->rx_len) {
1050		/* fill in tx fifo with remaining data */
1051		bcm2835_wr_fifo(bs);
1052
1053		/* read from fifo as much as possible */
1054		bcm2835_rd_fifo(bs);
1055
1056		/* if there is still data pending to read
1057		 * then check the timeout
1058		 */
1059		if (bs->rx_len && time_after(jiffies, timeout)) {
1060			dev_dbg_ratelimited(&spi->dev,
1061					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1062					    jiffies - timeout,
1063					    bs->tx_len, bs->rx_len);
1064			/* fall back to interrupt mode */
1065
1066			/* update usage statistics */
1067			bs->count_transfer_irq_after_polling++;
1068
1069			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1070							    tfr, cs, false);
1071		}
1072	}
1073
1074	/* Transfer complete - reset SPI HW */
1075	bcm2835_spi_reset_hw(bs);
1076	/* and return without waiting for completion */
1077	return 0;
1078}
1079
1080static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1081				    struct spi_device *spi,
1082				    struct spi_transfer *tfr)
1083{
1084	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1085	unsigned long spi_hz, clk_hz, cdiv;
 
1086	unsigned long hz_per_byte, byte_limit;
1087	u32 cs = bs->prepare_cs[spi->chip_select];
1088
1089	/* set clock */
1090	spi_hz = tfr->speed_hz;
1091	clk_hz = clk_get_rate(bs->clk);
1092
1093	if (spi_hz >= clk_hz / 2) {
1094		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1095	} else if (spi_hz) {
1096		/* CDIV must be a multiple of two */
1097		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1098		cdiv += (cdiv % 2);
1099
1100		if (cdiv >= 65536)
1101			cdiv = 0; /* 0 is the slowest we can go */
1102	} else {
1103		cdiv = 0; /* 0 is the slowest we can go */
1104	}
1105	tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1106	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1107
1108	/* handle all the 3-wire mode */
1109	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1110		cs |= BCM2835_SPI_CS_REN;
1111
1112	/* set transmit buffers and length */
1113	bs->tx_buf = tfr->tx_buf;
1114	bs->rx_buf = tfr->rx_buf;
1115	bs->tx_len = tfr->len;
1116	bs->rx_len = tfr->len;
1117
1118	/* Calculate the estimated time in us the transfer runs.  Note that
1119	 * there is 1 idle clocks cycles after each byte getting transferred
1120	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1121	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1122	 * per 300,000 Hz of bus clock.
1123	 */
1124	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1125	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1126
1127	/* run in polling mode for short transfers */
1128	if (tfr->len < byte_limit)
1129		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1130
1131	/* run in dma mode if conditions are right
1132	 * Note that unlike poll or interrupt mode DMA mode does not have
1133	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1134	 */
1135	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1136		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1137
1138	/* run in interrupt-mode */
1139	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1140}
1141
1142static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1143				       struct spi_message *msg)
1144{
1145	struct spi_device *spi = msg->spi;
1146	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 
1147	int ret;
1148
1149	if (ctlr->can_dma) {
1150		/*
1151		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1152		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1153		 * aligned) if the limit is exceeded.
1154		 */
1155		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1156						  GFP_KERNEL | GFP_DMA);
1157		if (ret)
1158			return ret;
1159	}
1160
1161	/*
1162	 * Set up clock polarity before spi_transfer_one_message() asserts
1163	 * chip select to avoid a gratuitous clock signal edge.
1164	 */
1165	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1166
1167	return 0;
1168}
1169
1170static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1171				   struct spi_message *msg)
1172{
1173	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1174
1175	/* if an error occurred and we have an active dma, then terminate */
1176	dmaengine_terminate_sync(ctlr->dma_tx);
1177	bs->tx_dma_active = false;
1178	dmaengine_terminate_sync(ctlr->dma_rx);
1179	bs->rx_dma_active = false;
 
 
 
 
1180	bcm2835_spi_undo_prologue(bs);
1181
1182	/* and reset */
1183	bcm2835_spi_reset_hw(bs);
1184}
1185
1186static int chip_match_name(struct gpio_chip *chip, void *data)
1187{
1188	return !strcmp(chip->label, data);
1189}
1190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191static int bcm2835_spi_setup(struct spi_device *spi)
1192{
1193	struct spi_controller *ctlr = spi->controller;
1194	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
 
1195	struct gpio_chip *chip;
1196	enum gpio_lookup_flags lflags;
1197	u32 cs;
1198
 
 
 
 
 
 
 
 
 
 
 
 
 
1199	/*
1200	 * Precalculate SPI slave's CS register value for ->prepare_message():
1201	 * The driver always uses software-controlled GPIO chip select, hence
1202	 * set the hardware-controlled native chip select to an invalid value
1203	 * to prevent it from interfering.
1204	 */
1205	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1206	if (spi->mode & SPI_CPOL)
1207		cs |= BCM2835_SPI_CS_CPOL;
1208	if (spi->mode & SPI_CPHA)
1209		cs |= BCM2835_SPI_CS_CPHA;
1210	bs->prepare_cs[spi->chip_select] = cs;
1211
1212	/*
1213	 * Precalculate SPI slave's CS register value to clear RX FIFO
1214	 * in case of a TX-only DMA transfer.
1215	 */
1216	if (ctlr->dma_rx) {
1217		bs->clear_rx_cs[spi->chip_select] = cs |
1218						    BCM2835_SPI_CS_TA |
1219						    BCM2835_SPI_CS_DMAEN |
1220						    BCM2835_SPI_CS_CLEAR_RX;
1221		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1222					   bs->clear_rx_addr,
1223					   sizeof(bs->clear_rx_cs),
1224					   DMA_TO_DEVICE);
1225	}
1226
1227	/*
1228	 * sanity checking the native-chipselects
1229	 */
1230	if (spi->mode & SPI_NO_CS)
1231		return 0;
1232	/*
1233	 * The SPI core has successfully requested the CS GPIO line from the
1234	 * device tree, so we are done.
1235	 */
1236	if (spi->cs_gpiod)
1237		return 0;
1238	if (spi->chip_select > 1) {
1239		/* error in the case of native CS requested with CS > 1
1240		 * officially there is a CS2, but it is not documented
1241		 * which GPIO is connected with that...
1242		 */
1243		dev_err(&spi->dev,
1244			"setup: only two native chip-selects are supported\n");
1245		return -EINVAL;
 
1246	}
1247
1248	/*
1249	 * Translate native CS to GPIO
1250	 *
1251	 * FIXME: poking around in the gpiolib internals like this is
1252	 * not very good practice. Find a way to locate the real problem
1253	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1254	 * sometimes not assigned correctly? Erroneous device trees?
1255	 */
1256
1257	/* get the gpio chip for the base */
1258	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1259	if (!chip)
1260		return 0;
1261
1262	/*
1263	 * Retrieve the corresponding GPIO line used for CS.
1264	 * The inversion semantics will be handled by the GPIO core
1265	 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
1266	 * the correct flag for inversion semantics. The SPI_CS_HIGH
1267	 * on spi->mode cannot be checked for polarity in this case
1268	 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1269	 */
1270	if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1271		lflags = GPIO_ACTIVE_HIGH;
1272	else
1273		lflags = GPIO_ACTIVE_LOW;
1274	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1275						  DRV_NAME,
1276						  lflags,
1277						  GPIOD_OUT_LOW);
1278	if (IS_ERR(spi->cs_gpiod))
1279		return PTR_ERR(spi->cs_gpiod);
 
 
1280
1281	/* and set up the "mode" and level */
1282	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1283		 spi->chip_select);
1284
1285	return 0;
 
 
 
 
1286}
1287
1288static int bcm2835_spi_probe(struct platform_device *pdev)
1289{
1290	struct spi_controller *ctlr;
1291	struct bcm2835_spi *bs;
1292	int err;
1293
1294	ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1295						  dma_get_cache_alignment()));
1296	if (!ctlr)
1297		return -ENOMEM;
1298
1299	platform_set_drvdata(pdev, ctlr);
1300
1301	ctlr->use_gpio_descriptors = true;
1302	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1303	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1304	ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1305	ctlr->setup = bcm2835_spi_setup;
 
1306	ctlr->transfer_one = bcm2835_spi_transfer_one;
1307	ctlr->handle_err = bcm2835_spi_handle_err;
1308	ctlr->prepare_message = bcm2835_spi_prepare_message;
1309	ctlr->dev.of_node = pdev->dev.of_node;
1310
1311	bs = spi_controller_get_devdata(ctlr);
1312	bs->ctlr = ctlr;
1313
1314	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1315	if (IS_ERR(bs->regs)) {
1316		err = PTR_ERR(bs->regs);
1317		goto out_controller_put;
1318	}
1319
1320	bs->clk = devm_clk_get(&pdev->dev, NULL);
1321	if (IS_ERR(bs->clk)) {
1322		err = PTR_ERR(bs->clk);
1323		if (err == -EPROBE_DEFER)
1324			dev_dbg(&pdev->dev, "could not get clk: %d\n", err);
1325		else
1326			dev_err(&pdev->dev, "could not get clk: %d\n", err);
1327		goto out_controller_put;
1328	}
1329
1330	bs->irq = platform_get_irq(pdev, 0);
1331	if (bs->irq <= 0) {
1332		err = bs->irq ? bs->irq : -ENODEV;
1333		goto out_controller_put;
1334	}
1335
1336	clk_prepare_enable(bs->clk);
 
1337
1338	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1339	if (err)
1340		goto out_clk_disable;
1341
1342	/* initialise the hardware with the default polarities */
1343	bcm2835_wr(bs, BCM2835_SPI_CS,
1344		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1345
1346	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1347			       dev_name(&pdev->dev), bs);
1348	if (err) {
1349		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1350		goto out_dma_release;
1351	}
1352
1353	err = spi_register_controller(ctlr);
1354	if (err) {
1355		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1356			err);
1357		goto out_dma_release;
1358	}
1359
1360	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1361
1362	return 0;
1363
1364out_dma_release:
1365	bcm2835_dma_release(ctlr, bs);
1366out_clk_disable:
1367	clk_disable_unprepare(bs->clk);
1368out_controller_put:
1369	spi_controller_put(ctlr);
1370	return err;
1371}
1372
1373static int bcm2835_spi_remove(struct platform_device *pdev)
1374{
1375	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1376	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1377
1378	bcm2835_debugfs_remove(bs);
1379
1380	spi_unregister_controller(ctlr);
1381
1382	bcm2835_dma_release(ctlr, bs);
1383
1384	/* Clear FIFOs, and disable the HW block */
1385	bcm2835_wr(bs, BCM2835_SPI_CS,
1386		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1387
1388	clk_disable_unprepare(bs->clk);
1389
1390	return 0;
1391}
1392
1393static void bcm2835_spi_shutdown(struct platform_device *pdev)
1394{
1395	int ret;
1396
1397	ret = bcm2835_spi_remove(pdev);
1398	if (ret)
1399		dev_err(&pdev->dev, "failed to shutdown\n");
1400}
1401
1402static const struct of_device_id bcm2835_spi_match[] = {
1403	{ .compatible = "brcm,bcm2835-spi", },
1404	{}
1405};
1406MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1407
1408static struct platform_driver bcm2835_spi_driver = {
1409	.driver		= {
1410		.name		= DRV_NAME,
1411		.of_match_table	= bcm2835_spi_match,
1412	},
1413	.probe		= bcm2835_spi_probe,
1414	.remove		= bcm2835_spi_remove,
1415	.shutdown	= bcm2835_spi_shutdown,
1416};
1417module_platform_driver(bcm2835_spi_driver);
1418
1419MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1420MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1421MODULE_LICENSE("GPL");