Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Adjunct processor matrix VFIO device driver callbacks.
4 *
5 * Copyright IBM Corp. 2018
6 *
7 * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8 * Halil Pasic <pasic@linux.ibm.com>
9 * Pierre Morel <pmorel@linux.ibm.com>
10 */
11#include <linux/string.h>
12#include <linux/vfio.h>
13#include <linux/device.h>
14#include <linux/list.h>
15#include <linux/ctype.h>
16#include <linux/bitops.h>
17#include <linux/kvm_host.h>
18#include <linux/module.h>
19#include <linux/uuid.h>
20#include <asm/kvm.h>
21#include <asm/zcrypt.h>
22
23#include "vfio_ap_private.h"
24#include "vfio_ap_debug.h"
25
26#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
27#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
28
29#define AP_QUEUE_ASSIGNED "assigned"
30#define AP_QUEUE_UNASSIGNED "unassigned"
31#define AP_QUEUE_IN_USE "in use"
32
33static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable);
34static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
35static const struct vfio_device_ops vfio_ap_matrix_dev_ops;
36static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q, unsigned int retry);
37
38/**
39 * get_update_locks_for_kvm: Acquire the locks required to dynamically update a
40 * KVM guest's APCB in the proper order.
41 *
42 * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
43 *
44 * The proper locking order is:
45 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
46 * guest's APCB.
47 * 2. kvm->lock: required to update a guest's APCB
48 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev
49 *
50 * Note: If @kvm is NULL, the KVM lock will not be taken.
51 */
52static inline void get_update_locks_for_kvm(struct kvm *kvm)
53{
54 mutex_lock(&matrix_dev->guests_lock);
55 if (kvm)
56 mutex_lock(&kvm->lock);
57 mutex_lock(&matrix_dev->mdevs_lock);
58}
59
60/**
61 * release_update_locks_for_kvm: Release the locks used to dynamically update a
62 * KVM guest's APCB in the proper order.
63 *
64 * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB.
65 *
66 * The proper unlocking order is:
67 * 1. matrix_dev->mdevs_lock
68 * 2. kvm->lock
69 * 3. matrix_dev->guests_lock
70 *
71 * Note: If @kvm is NULL, the KVM lock will not be released.
72 */
73static inline void release_update_locks_for_kvm(struct kvm *kvm)
74{
75 mutex_unlock(&matrix_dev->mdevs_lock);
76 if (kvm)
77 mutex_unlock(&kvm->lock);
78 mutex_unlock(&matrix_dev->guests_lock);
79}
80
81/**
82 * get_update_locks_for_mdev: Acquire the locks required to dynamically update a
83 * KVM guest's APCB in the proper order.
84 *
85 * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
86 * configuration data to use to update a KVM guest's APCB.
87 *
88 * The proper locking order is:
89 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
90 * guest's APCB.
91 * 2. matrix_mdev->kvm->lock: required to update a guest's APCB
92 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev
93 *
94 * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
95 * lock will not be taken.
96 */
97static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
98{
99 mutex_lock(&matrix_dev->guests_lock);
100 if (matrix_mdev && matrix_mdev->kvm)
101 mutex_lock(&matrix_mdev->kvm->lock);
102 mutex_lock(&matrix_dev->mdevs_lock);
103}
104
105/**
106 * release_update_locks_for_mdev: Release the locks used to dynamically update a
107 * KVM guest's APCB in the proper order.
108 *
109 * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP
110 * configuration data to use to update a KVM guest's APCB.
111 *
112 * The proper unlocking order is:
113 * 1. matrix_dev->mdevs_lock
114 * 2. matrix_mdev->kvm->lock
115 * 3. matrix_dev->guests_lock
116 *
117 * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM
118 * lock will not be released.
119 */
120static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev)
121{
122 mutex_unlock(&matrix_dev->mdevs_lock);
123 if (matrix_mdev && matrix_mdev->kvm)
124 mutex_unlock(&matrix_mdev->kvm->lock);
125 mutex_unlock(&matrix_dev->guests_lock);
126}
127
128/**
129 * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and
130 * acquire the locks required to update the APCB of
131 * the KVM guest to which the mdev is attached.
132 *
133 * @apqn: the APQN of a queue device.
134 *
135 * The proper locking order is:
136 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM
137 * guest's APCB.
138 * 2. matrix_mdev->kvm->lock: required to update a guest's APCB
139 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev
140 *
141 * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock
142 * will not be taken.
143 *
144 * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn
145 * is not assigned to an ap_matrix_mdev.
146 */
147static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn)
148{
149 struct ap_matrix_mdev *matrix_mdev;
150
151 mutex_lock(&matrix_dev->guests_lock);
152
153 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
154 if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) &&
155 test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) {
156 if (matrix_mdev->kvm)
157 mutex_lock(&matrix_mdev->kvm->lock);
158
159 mutex_lock(&matrix_dev->mdevs_lock);
160
161 return matrix_mdev;
162 }
163 }
164
165 mutex_lock(&matrix_dev->mdevs_lock);
166
167 return NULL;
168}
169
170/**
171 * get_update_locks_for_queue: get the locks required to update the APCB of the
172 * KVM guest to which the matrix mdev linked to a
173 * vfio_ap_queue object is attached.
174 *
175 * @q: a pointer to a vfio_ap_queue object.
176 *
177 * The proper locking order is:
178 * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a
179 * KVM guest's APCB.
180 * 2. q->matrix_mdev->kvm->lock: required to update a guest's APCB
181 * 3. matrix_dev->mdevs_lock: required to access data stored in matrix_mdev
182 *
183 * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock
184 * will not be taken.
185 */
186static inline void get_update_locks_for_queue(struct vfio_ap_queue *q)
187{
188 mutex_lock(&matrix_dev->guests_lock);
189 if (q->matrix_mdev && q->matrix_mdev->kvm)
190 mutex_lock(&q->matrix_mdev->kvm->lock);
191 mutex_lock(&matrix_dev->mdevs_lock);
192}
193
194/**
195 * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a
196 * hash table of queues assigned to a matrix mdev
197 * @matrix_mdev: the matrix mdev
198 * @apqn: The APQN of a queue device
199 *
200 * Return: the pointer to the vfio_ap_queue struct representing the queue or
201 * NULL if the queue is not assigned to @matrix_mdev
202 */
203static struct vfio_ap_queue *vfio_ap_mdev_get_queue(
204 struct ap_matrix_mdev *matrix_mdev,
205 int apqn)
206{
207 struct vfio_ap_queue *q;
208
209 hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode,
210 apqn) {
211 if (q && q->apqn == apqn)
212 return q;
213 }
214
215 return NULL;
216}
217
218/**
219 * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries
220 * @apqn: The AP Queue number
221 *
222 * Checks the IRQ bit for the status of this APQN using ap_tapq.
223 * Returns if the ap_tapq function succeeded and the bit is clear.
224 * Returns if ap_tapq function failed with invalid, deconfigured or
225 * checkstopped AP.
226 * Otherwise retries up to 5 times after waiting 20ms.
227 */
228static void vfio_ap_wait_for_irqclear(int apqn)
229{
230 struct ap_queue_status status;
231 int retry = 5;
232
233 do {
234 status = ap_tapq(apqn, NULL);
235 switch (status.response_code) {
236 case AP_RESPONSE_NORMAL:
237 case AP_RESPONSE_RESET_IN_PROGRESS:
238 if (!status.irq_enabled)
239 return;
240 fallthrough;
241 case AP_RESPONSE_BUSY:
242 msleep(20);
243 break;
244 case AP_RESPONSE_Q_NOT_AVAIL:
245 case AP_RESPONSE_DECONFIGURED:
246 case AP_RESPONSE_CHECKSTOPPED:
247 default:
248 WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
249 status.response_code, apqn);
250 return;
251 }
252 } while (--retry);
253
254 WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
255 __func__, status.response_code, apqn);
256}
257
258/**
259 * vfio_ap_free_aqic_resources - free vfio_ap_queue resources
260 * @q: The vfio_ap_queue
261 *
262 * Unregisters the ISC in the GIB when the saved ISC not invalid.
263 * Unpins the guest's page holding the NIB when it exists.
264 * Resets the saved_iova and saved_isc to invalid values.
265 */
266static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
267{
268 if (!q)
269 return;
270 if (q->saved_isc != VFIO_AP_ISC_INVALID &&
271 !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
272 kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
273 q->saved_isc = VFIO_AP_ISC_INVALID;
274 }
275 if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) {
276 vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1);
277 q->saved_iova = 0;
278 }
279}
280
281/**
282 * vfio_ap_irq_disable - disables and clears an ap_queue interrupt
283 * @q: The vfio_ap_queue
284 *
285 * Uses ap_aqic to disable the interruption and in case of success, reset
286 * in progress or IRQ disable command already proceeded: calls
287 * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
288 * and calls vfio_ap_free_aqic_resources() to free the resources associated
289 * with the AP interrupt handling.
290 *
291 * In the case the AP is busy, or a reset is in progress,
292 * retries after 20ms, up to 5 times.
293 *
294 * Returns if ap_aqic function failed with invalid, deconfigured or
295 * checkstopped AP.
296 *
297 * Return: &struct ap_queue_status
298 */
299static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
300{
301 struct ap_qirq_ctrl aqic_gisa = {};
302 struct ap_queue_status status;
303 int retries = 5;
304
305 do {
306 status = ap_aqic(q->apqn, aqic_gisa, 0);
307 switch (status.response_code) {
308 case AP_RESPONSE_OTHERWISE_CHANGED:
309 case AP_RESPONSE_NORMAL:
310 vfio_ap_wait_for_irqclear(q->apqn);
311 goto end_free;
312 case AP_RESPONSE_RESET_IN_PROGRESS:
313 case AP_RESPONSE_BUSY:
314 msleep(20);
315 break;
316 case AP_RESPONSE_Q_NOT_AVAIL:
317 case AP_RESPONSE_DECONFIGURED:
318 case AP_RESPONSE_CHECKSTOPPED:
319 case AP_RESPONSE_INVALID_ADDRESS:
320 default:
321 /* All cases in default means AP not operational */
322 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
323 status.response_code);
324 goto end_free;
325 }
326 } while (retries--);
327
328 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
329 status.response_code);
330end_free:
331 vfio_ap_free_aqic_resources(q);
332 return status;
333}
334
335/**
336 * vfio_ap_validate_nib - validate a notification indicator byte (nib) address.
337 *
338 * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction.
339 * @nib: the location for storing the nib address.
340 *
341 * When the PQAP(AQIC) instruction is executed, general register 2 contains the
342 * address of the notification indicator byte (nib) used for IRQ notification.
343 * This function parses and validates the nib from gr2.
344 *
345 * Return: returns zero if the nib address is a valid; otherwise, returns
346 * -EINVAL.
347 */
348static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib)
349{
350 *nib = vcpu->run->s.regs.gprs[2];
351
352 if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT)))
353 return -EINVAL;
354
355 return 0;
356}
357
358/**
359 * vfio_ap_irq_enable - Enable Interruption for a APQN
360 *
361 * @q: the vfio_ap_queue holding AQIC parameters
362 * @isc: the guest ISC to register with the GIB interface
363 * @vcpu: the vcpu object containing the registers specifying the parameters
364 * passed to the PQAP(AQIC) instruction.
365 *
366 * Pin the NIB saved in *q
367 * Register the guest ISC to GIB interface and retrieve the
368 * host ISC to issue the host side PQAP/AQIC
369 *
370 * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
371 * vfio_pin_pages failed.
372 *
373 * Otherwise return the ap_queue_status returned by the ap_aqic(),
374 * all retry handling will be done by the guest.
375 *
376 * Return: &struct ap_queue_status
377 */
378static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
379 int isc,
380 struct kvm_vcpu *vcpu)
381{
382 struct ap_qirq_ctrl aqic_gisa = {};
383 struct ap_queue_status status = {};
384 struct kvm_s390_gisa *gisa;
385 struct page *h_page;
386 int nisc;
387 struct kvm *kvm;
388 phys_addr_t h_nib;
389 dma_addr_t nib;
390 int ret;
391
392 /* Verify that the notification indicator byte address is valid */
393 if (vfio_ap_validate_nib(vcpu, &nib)) {
394 VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n",
395 __func__, &nib, q->apqn);
396
397 status.response_code = AP_RESPONSE_INVALID_ADDRESS;
398 return status;
399 }
400
401 ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1,
402 IOMMU_READ | IOMMU_WRITE, &h_page);
403 switch (ret) {
404 case 1:
405 break;
406 default:
407 VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d,"
408 "nib=%pad, apqn=%#04x\n",
409 __func__, ret, &nib, q->apqn);
410
411 status.response_code = AP_RESPONSE_INVALID_ADDRESS;
412 return status;
413 }
414
415 kvm = q->matrix_mdev->kvm;
416 gisa = kvm->arch.gisa_int.origin;
417
418 h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK);
419 aqic_gisa.gisc = isc;
420
421 nisc = kvm_s390_gisc_register(kvm, isc);
422 if (nisc < 0) {
423 VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n",
424 __func__, nisc, isc, q->apqn);
425
426 status.response_code = AP_RESPONSE_INVALID_GISA;
427 return status;
428 }
429
430 aqic_gisa.isc = nisc;
431 aqic_gisa.ir = 1;
432 aqic_gisa.gisa = virt_to_phys(gisa) >> 4;
433
434 status = ap_aqic(q->apqn, aqic_gisa, h_nib);
435 switch (status.response_code) {
436 case AP_RESPONSE_NORMAL:
437 /* See if we did clear older IRQ configuration */
438 vfio_ap_free_aqic_resources(q);
439 q->saved_iova = nib;
440 q->saved_isc = isc;
441 break;
442 case AP_RESPONSE_OTHERWISE_CHANGED:
443 /* We could not modify IRQ setings: clear new configuration */
444 vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1);
445 kvm_s390_gisc_unregister(kvm, isc);
446 break;
447 default:
448 pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
449 status.response_code);
450 vfio_ap_irq_disable(q);
451 break;
452 }
453
454 if (status.response_code != AP_RESPONSE_NORMAL) {
455 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: "
456 "zone=%#x, ir=%#x, gisc=%#x, f=%#x,"
457 "gisa=%#x, isc=%#x, apqn=%#04x\n",
458 __func__, status.response_code,
459 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc,
460 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc,
461 q->apqn);
462 }
463
464 return status;
465}
466
467/**
468 * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array
469 * of big endian elements that can be passed by
470 * value to an s390dbf sprintf event function to
471 * format a UUID string.
472 *
473 * @guid: the object containing the little endian guid
474 * @uuid: a six-element array of long values that can be passed by value as
475 * arguments for a formatting string specifying a UUID.
476 *
477 * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf
478 * event functions if the memory for the passed string is available as long as
479 * the debug feature exists. Since a mediated device can be removed at any
480 * time, it's name can not be used because %s passes the reference to the string
481 * in memory and the reference will go stale once the device is removed .
482 *
483 * The s390dbf string formatting function allows a maximum of 9 arguments for a
484 * message to be displayed in the 'sprintf' view. In order to use the bytes
485 * comprising the mediated device's UUID to display the mediated device name,
486 * they will have to be converted into an array whose elements can be passed by
487 * value to sprintf. For example:
488 *
489 * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 }
490 * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804
491 * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 }
492 * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx"
493 */
494static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid)
495{
496 /*
497 * The input guid is ordered in little endian, so it needs to be
498 * reordered for displaying a UUID as a string. This specifies the
499 * guid indices in proper order.
500 */
501 uuid[0] = le32_to_cpup((__le32 *)guid);
502 uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]);
503 uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]);
504 uuid[3] = *((__u16 *)&guid->b[8]);
505 uuid[4] = *((__u16 *)&guid->b[10]);
506 uuid[5] = *((__u32 *)&guid->b[12]);
507}
508
509/**
510 * handle_pqap - PQAP instruction callback
511 *
512 * @vcpu: The vcpu on which we received the PQAP instruction
513 *
514 * Get the general register contents to initialize internal variables.
515 * REG[0]: APQN
516 * REG[1]: IR and ISC
517 * REG[2]: NIB
518 *
519 * Response.status may be set to following Response Code:
520 * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
521 * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
522 * - AP_RESPONSE_NORMAL (0) : in case of successs
523 * Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
524 * We take the matrix_dev lock to ensure serialization on queues and
525 * mediated device access.
526 *
527 * Return: 0 if we could handle the request inside KVM.
528 * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
529 */
530static int handle_pqap(struct kvm_vcpu *vcpu)
531{
532 uint64_t status;
533 uint16_t apqn;
534 unsigned long uuid[6];
535 struct vfio_ap_queue *q;
536 struct ap_queue_status qstatus = {
537 .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
538 struct ap_matrix_mdev *matrix_mdev;
539
540 apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
541
542 /* If we do not use the AIV facility just go to userland */
543 if (!(vcpu->arch.sie_block->eca & ECA_AIV)) {
544 VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n",
545 __func__, apqn, vcpu->arch.sie_block->eca);
546
547 return -EOPNOTSUPP;
548 }
549
550 mutex_lock(&matrix_dev->mdevs_lock);
551
552 if (!vcpu->kvm->arch.crypto.pqap_hook) {
553 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n",
554 __func__, apqn);
555
556 goto out_unlock;
557 }
558
559 matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
560 struct ap_matrix_mdev, pqap_hook);
561
562 /* If the there is no guest using the mdev, there is nothing to do */
563 if (!matrix_mdev->kvm) {
564 vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid);
565 VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n",
566 __func__, uuid[0], uuid[1], uuid[2],
567 uuid[3], uuid[4], uuid[5], apqn);
568 goto out_unlock;
569 }
570
571 q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
572 if (!q) {
573 VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n",
574 __func__, AP_QID_CARD(apqn),
575 AP_QID_QUEUE(apqn));
576 goto out_unlock;
577 }
578
579 status = vcpu->run->s.regs.gprs[1];
580
581 /* If IR bit(16) is set we enable the interrupt */
582 if ((status >> (63 - 16)) & 0x01)
583 qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu);
584 else
585 qstatus = vfio_ap_irq_disable(q);
586
587out_unlock:
588 memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
589 vcpu->run->s.regs.gprs[1] >>= 32;
590 mutex_unlock(&matrix_dev->mdevs_lock);
591 return 0;
592}
593
594static void vfio_ap_matrix_init(struct ap_config_info *info,
595 struct ap_matrix *matrix)
596{
597 matrix->apm_max = info->apxa ? info->Na : 63;
598 matrix->aqm_max = info->apxa ? info->Nd : 15;
599 matrix->adm_max = info->apxa ? info->Nd : 15;
600}
601
602static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev)
603{
604 if (matrix_mdev->kvm)
605 kvm_arch_crypto_set_masks(matrix_mdev->kvm,
606 matrix_mdev->shadow_apcb.apm,
607 matrix_mdev->shadow_apcb.aqm,
608 matrix_mdev->shadow_apcb.adm);
609}
610
611static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev)
612{
613 DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS);
614
615 bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS);
616 bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm,
617 (unsigned long *)matrix_dev->info.adm, AP_DOMAINS);
618
619 return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm,
620 AP_DOMAINS);
621}
622
623/*
624 * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev
625 * to ensure no queue devices are passed through to
626 * the guest that are not bound to the vfio_ap
627 * device driver.
628 *
629 * @matrix_mdev: the matrix mdev whose matrix is to be filtered.
630 *
631 * Note: If an APQN referencing a queue device that is not bound to the vfio_ap
632 * driver, its APID will be filtered from the guest's APCB. The matrix
633 * structure precludes filtering an individual APQN, so its APID will be
634 * filtered.
635 *
636 * Return: a boolean value indicating whether the KVM guest's APCB was changed
637 * by the filtering or not.
638 */
639static bool vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm,
640 struct ap_matrix_mdev *matrix_mdev)
641{
642 unsigned long apid, apqi, apqn;
643 DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES);
644 DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS);
645 struct vfio_ap_queue *q;
646
647 bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES);
648 bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS);
649 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
650
651 /*
652 * Copy the adapters, domains and control domains to the shadow_apcb
653 * from the matrix mdev, but only those that are assigned to the host's
654 * AP configuration.
655 */
656 bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm,
657 (unsigned long *)matrix_dev->info.apm, AP_DEVICES);
658 bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm,
659 (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS);
660
661 for_each_set_bit_inv(apid, apm, AP_DEVICES) {
662 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
663 /*
664 * If the APQN is not bound to the vfio_ap device
665 * driver, then we can't assign it to the guest's
666 * AP configuration. The AP architecture won't
667 * allow filtering of a single APQN, so let's filter
668 * the APID since an adapter represents a physical
669 * hardware device.
670 */
671 apqn = AP_MKQID(apid, apqi);
672 q = vfio_ap_mdev_get_queue(matrix_mdev, apqn);
673 if (!q || q->reset_rc) {
674 clear_bit_inv(apid,
675 matrix_mdev->shadow_apcb.apm);
676 break;
677 }
678 }
679 }
680
681 return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm,
682 AP_DEVICES) ||
683 !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm,
684 AP_DOMAINS);
685}
686
687static int vfio_ap_mdev_init_dev(struct vfio_device *vdev)
688{
689 struct ap_matrix_mdev *matrix_mdev =
690 container_of(vdev, struct ap_matrix_mdev, vdev);
691
692 matrix_mdev->mdev = to_mdev_device(vdev->dev);
693 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
694 matrix_mdev->pqap_hook = handle_pqap;
695 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb);
696 hash_init(matrix_mdev->qtable.queues);
697
698 return 0;
699}
700
701static int vfio_ap_mdev_probe(struct mdev_device *mdev)
702{
703 struct ap_matrix_mdev *matrix_mdev;
704 int ret;
705
706 matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev,
707 &vfio_ap_matrix_dev_ops);
708 if (IS_ERR(matrix_mdev))
709 return PTR_ERR(matrix_mdev);
710
711 ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev);
712 if (ret)
713 goto err_put_vdev;
714 dev_set_drvdata(&mdev->dev, matrix_mdev);
715 mutex_lock(&matrix_dev->mdevs_lock);
716 list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
717 mutex_unlock(&matrix_dev->mdevs_lock);
718 return 0;
719
720err_put_vdev:
721 vfio_put_device(&matrix_mdev->vdev);
722 return ret;
723}
724
725static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev,
726 struct vfio_ap_queue *q)
727{
728 if (q) {
729 q->matrix_mdev = matrix_mdev;
730 hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn);
731 }
732}
733
734static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn)
735{
736 struct vfio_ap_queue *q;
737
738 q = vfio_ap_find_queue(apqn);
739 vfio_ap_mdev_link_queue(matrix_mdev, q);
740}
741
742static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q)
743{
744 hash_del(&q->mdev_qnode);
745}
746
747static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q)
748{
749 q->matrix_mdev = NULL;
750}
751
752static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev)
753{
754 struct vfio_ap_queue *q;
755 unsigned long apid, apqi;
756
757 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
758 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
759 AP_DOMAINS) {
760 q = vfio_ap_mdev_get_queue(matrix_mdev,
761 AP_MKQID(apid, apqi));
762 if (q)
763 q->matrix_mdev = NULL;
764 }
765 }
766}
767
768static void vfio_ap_mdev_remove(struct mdev_device *mdev)
769{
770 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev);
771
772 vfio_unregister_group_dev(&matrix_mdev->vdev);
773
774 mutex_lock(&matrix_dev->guests_lock);
775 mutex_lock(&matrix_dev->mdevs_lock);
776 vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
777 vfio_ap_mdev_unlink_fr_queues(matrix_mdev);
778 list_del(&matrix_mdev->node);
779 mutex_unlock(&matrix_dev->mdevs_lock);
780 mutex_unlock(&matrix_dev->guests_lock);
781 vfio_put_device(&matrix_mdev->vdev);
782}
783
784#define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \
785 "already assigned to %s"
786
787static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev,
788 unsigned long *apm,
789 unsigned long *aqm)
790{
791 unsigned long apid, apqi;
792 const struct device *dev = mdev_dev(matrix_mdev->mdev);
793 const char *mdev_name = dev_name(dev);
794
795 for_each_set_bit_inv(apid, apm, AP_DEVICES)
796 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS)
797 dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name);
798}
799
800/**
801 * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs
802 *
803 * @mdev_apm: mask indicating the APIDs of the APQNs to be verified
804 * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified
805 *
806 * Verifies that each APQN derived from the Cartesian product of a bitmap of
807 * AP adapter IDs and AP queue indexes is not configured for any matrix
808 * mediated device. AP queue sharing is not allowed.
809 *
810 * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE.
811 */
812static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm,
813 unsigned long *mdev_aqm)
814{
815 struct ap_matrix_mdev *matrix_mdev;
816 DECLARE_BITMAP(apm, AP_DEVICES);
817 DECLARE_BITMAP(aqm, AP_DOMAINS);
818
819 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
820 /*
821 * If the input apm and aqm are fields of the matrix_mdev
822 * object, then move on to the next matrix_mdev.
823 */
824 if (mdev_apm == matrix_mdev->matrix.apm &&
825 mdev_aqm == matrix_mdev->matrix.aqm)
826 continue;
827
828 memset(apm, 0, sizeof(apm));
829 memset(aqm, 0, sizeof(aqm));
830
831 /*
832 * We work on full longs, as we can only exclude the leftover
833 * bits in non-inverse order. The leftover is all zeros.
834 */
835 if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm,
836 AP_DEVICES))
837 continue;
838
839 if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm,
840 AP_DOMAINS))
841 continue;
842
843 vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm);
844
845 return -EADDRINUSE;
846 }
847
848 return 0;
849}
850
851/**
852 * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are
853 * not reserved for the default zcrypt driver and
854 * are not assigned to another mdev.
855 *
856 * @matrix_mdev: the mdev to which the APQNs being validated are assigned.
857 *
858 * Return: One of the following values:
859 * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function,
860 * most likely -EBUSY indicating the ap_perms_mutex lock is already held.
861 * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the
862 * zcrypt default driver.
863 * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev
864 * o A zero indicating validation succeeded.
865 */
866static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev)
867{
868 if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm,
869 matrix_mdev->matrix.aqm))
870 return -EADDRNOTAVAIL;
871
872 return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm,
873 matrix_mdev->matrix.aqm);
874}
875
876static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev,
877 unsigned long apid)
878{
879 unsigned long apqi;
880
881 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS)
882 vfio_ap_mdev_link_apqn(matrix_mdev,
883 AP_MKQID(apid, apqi));
884}
885
886/**
887 * assign_adapter_store - parses the APID from @buf and sets the
888 * corresponding bit in the mediated matrix device's APM
889 *
890 * @dev: the matrix device
891 * @attr: the mediated matrix device's assign_adapter attribute
892 * @buf: a buffer containing the AP adapter number (APID) to
893 * be assigned
894 * @count: the number of bytes in @buf
895 *
896 * Return: the number of bytes processed if the APID is valid; otherwise,
897 * returns one of the following errors:
898 *
899 * 1. -EINVAL
900 * The APID is not a valid number
901 *
902 * 2. -ENODEV
903 * The APID exceeds the maximum value configured for the system
904 *
905 * 3. -EADDRNOTAVAIL
906 * An APQN derived from the cross product of the APID being assigned
907 * and the APQIs previously assigned is not bound to the vfio_ap device
908 * driver; or, if no APQIs have yet been assigned, the APID is not
909 * contained in an APQN bound to the vfio_ap device driver.
910 *
911 * 4. -EADDRINUSE
912 * An APQN derived from the cross product of the APID being assigned
913 * and the APQIs previously assigned is being used by another mediated
914 * matrix device
915 *
916 * 5. -EAGAIN
917 * A lock required to validate the mdev's AP configuration could not
918 * be obtained.
919 */
920static ssize_t assign_adapter_store(struct device *dev,
921 struct device_attribute *attr,
922 const char *buf, size_t count)
923{
924 int ret;
925 unsigned long apid;
926 DECLARE_BITMAP(apm_delta, AP_DEVICES);
927 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
928
929 mutex_lock(&ap_perms_mutex);
930 get_update_locks_for_mdev(matrix_mdev);
931
932 ret = kstrtoul(buf, 0, &apid);
933 if (ret)
934 goto done;
935
936 if (apid > matrix_mdev->matrix.apm_max) {
937 ret = -ENODEV;
938 goto done;
939 }
940
941 if (test_bit_inv(apid, matrix_mdev->matrix.apm)) {
942 ret = count;
943 goto done;
944 }
945
946 set_bit_inv(apid, matrix_mdev->matrix.apm);
947
948 ret = vfio_ap_mdev_validate_masks(matrix_mdev);
949 if (ret) {
950 clear_bit_inv(apid, matrix_mdev->matrix.apm);
951 goto done;
952 }
953
954 vfio_ap_mdev_link_adapter(matrix_mdev, apid);
955 memset(apm_delta, 0, sizeof(apm_delta));
956 set_bit_inv(apid, apm_delta);
957
958 if (vfio_ap_mdev_filter_matrix(apm_delta,
959 matrix_mdev->matrix.aqm, matrix_mdev))
960 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
961
962 ret = count;
963done:
964 release_update_locks_for_mdev(matrix_mdev);
965 mutex_unlock(&ap_perms_mutex);
966
967 return ret;
968}
969static DEVICE_ATTR_WO(assign_adapter);
970
971static struct vfio_ap_queue
972*vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev,
973 unsigned long apid, unsigned long apqi)
974{
975 struct vfio_ap_queue *q = NULL;
976
977 q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi));
978 /* If the queue is assigned to the matrix mdev, unlink it. */
979 if (q)
980 vfio_ap_unlink_queue_fr_mdev(q);
981
982 return q;
983}
984
985/**
986 * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned
987 * adapter from the matrix mdev to which the
988 * adapter was assigned.
989 * @matrix_mdev: the matrix mediated device to which the adapter was assigned.
990 * @apid: the APID of the unassigned adapter.
991 * @qtable: table for storing queues associated with unassigned adapter.
992 */
993static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev,
994 unsigned long apid,
995 struct ap_queue_table *qtable)
996{
997 unsigned long apqi;
998 struct vfio_ap_queue *q;
999
1000 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) {
1001 q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1002
1003 if (q && qtable) {
1004 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1005 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1006 hash_add(qtable->queues, &q->mdev_qnode,
1007 q->apqn);
1008 }
1009 }
1010}
1011
1012static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev,
1013 unsigned long apid)
1014{
1015 int loop_cursor;
1016 struct vfio_ap_queue *q;
1017 struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1018
1019 hash_init(qtable->queues);
1020 vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, qtable);
1021
1022 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) {
1023 clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
1024 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1025 }
1026
1027 vfio_ap_mdev_reset_queues(qtable);
1028
1029 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1030 vfio_ap_unlink_mdev_fr_queue(q);
1031 hash_del(&q->mdev_qnode);
1032 }
1033
1034 kfree(qtable);
1035}
1036
1037/**
1038 * unassign_adapter_store - parses the APID from @buf and clears the
1039 * corresponding bit in the mediated matrix device's APM
1040 *
1041 * @dev: the matrix device
1042 * @attr: the mediated matrix device's unassign_adapter attribute
1043 * @buf: a buffer containing the adapter number (APID) to be unassigned
1044 * @count: the number of bytes in @buf
1045 *
1046 * Return: the number of bytes processed if the APID is valid; otherwise,
1047 * returns one of the following errors:
1048 * -EINVAL if the APID is not a number
1049 * -ENODEV if the APID it exceeds the maximum value configured for the
1050 * system
1051 */
1052static ssize_t unassign_adapter_store(struct device *dev,
1053 struct device_attribute *attr,
1054 const char *buf, size_t count)
1055{
1056 int ret;
1057 unsigned long apid;
1058 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1059
1060 get_update_locks_for_mdev(matrix_mdev);
1061
1062 ret = kstrtoul(buf, 0, &apid);
1063 if (ret)
1064 goto done;
1065
1066 if (apid > matrix_mdev->matrix.apm_max) {
1067 ret = -ENODEV;
1068 goto done;
1069 }
1070
1071 if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) {
1072 ret = count;
1073 goto done;
1074 }
1075
1076 clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
1077 vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid);
1078 ret = count;
1079done:
1080 release_update_locks_for_mdev(matrix_mdev);
1081 return ret;
1082}
1083static DEVICE_ATTR_WO(unassign_adapter);
1084
1085static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev,
1086 unsigned long apqi)
1087{
1088 unsigned long apid;
1089
1090 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES)
1091 vfio_ap_mdev_link_apqn(matrix_mdev,
1092 AP_MKQID(apid, apqi));
1093}
1094
1095/**
1096 * assign_domain_store - parses the APQI from @buf and sets the
1097 * corresponding bit in the mediated matrix device's AQM
1098 *
1099 * @dev: the matrix device
1100 * @attr: the mediated matrix device's assign_domain attribute
1101 * @buf: a buffer containing the AP queue index (APQI) of the domain to
1102 * be assigned
1103 * @count: the number of bytes in @buf
1104 *
1105 * Return: the number of bytes processed if the APQI is valid; otherwise returns
1106 * one of the following errors:
1107 *
1108 * 1. -EINVAL
1109 * The APQI is not a valid number
1110 *
1111 * 2. -ENODEV
1112 * The APQI exceeds the maximum value configured for the system
1113 *
1114 * 3. -EADDRNOTAVAIL
1115 * An APQN derived from the cross product of the APQI being assigned
1116 * and the APIDs previously assigned is not bound to the vfio_ap device
1117 * driver; or, if no APIDs have yet been assigned, the APQI is not
1118 * contained in an APQN bound to the vfio_ap device driver.
1119 *
1120 * 4. -EADDRINUSE
1121 * An APQN derived from the cross product of the APQI being assigned
1122 * and the APIDs previously assigned is being used by another mediated
1123 * matrix device
1124 *
1125 * 5. -EAGAIN
1126 * The lock required to validate the mdev's AP configuration could not
1127 * be obtained.
1128 */
1129static ssize_t assign_domain_store(struct device *dev,
1130 struct device_attribute *attr,
1131 const char *buf, size_t count)
1132{
1133 int ret;
1134 unsigned long apqi;
1135 DECLARE_BITMAP(aqm_delta, AP_DOMAINS);
1136 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1137
1138 mutex_lock(&ap_perms_mutex);
1139 get_update_locks_for_mdev(matrix_mdev);
1140
1141 ret = kstrtoul(buf, 0, &apqi);
1142 if (ret)
1143 goto done;
1144
1145 if (apqi > matrix_mdev->matrix.aqm_max) {
1146 ret = -ENODEV;
1147 goto done;
1148 }
1149
1150 if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1151 ret = count;
1152 goto done;
1153 }
1154
1155 set_bit_inv(apqi, matrix_mdev->matrix.aqm);
1156
1157 ret = vfio_ap_mdev_validate_masks(matrix_mdev);
1158 if (ret) {
1159 clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
1160 goto done;
1161 }
1162
1163 vfio_ap_mdev_link_domain(matrix_mdev, apqi);
1164 memset(aqm_delta, 0, sizeof(aqm_delta));
1165 set_bit_inv(apqi, aqm_delta);
1166
1167 if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta,
1168 matrix_mdev))
1169 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1170
1171 ret = count;
1172done:
1173 release_update_locks_for_mdev(matrix_mdev);
1174 mutex_unlock(&ap_perms_mutex);
1175
1176 return ret;
1177}
1178static DEVICE_ATTR_WO(assign_domain);
1179
1180static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev,
1181 unsigned long apqi,
1182 struct ap_queue_table *qtable)
1183{
1184 unsigned long apid;
1185 struct vfio_ap_queue *q;
1186
1187 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) {
1188 q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi);
1189
1190 if (q && qtable) {
1191 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1192 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm))
1193 hash_add(qtable->queues, &q->mdev_qnode,
1194 q->apqn);
1195 }
1196 }
1197}
1198
1199static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev,
1200 unsigned long apqi)
1201{
1202 int loop_cursor;
1203 struct vfio_ap_queue *q;
1204 struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL);
1205
1206 hash_init(qtable->queues);
1207 vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, qtable);
1208
1209 if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
1210 clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm);
1211 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1212 }
1213
1214 vfio_ap_mdev_reset_queues(qtable);
1215
1216 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1217 vfio_ap_unlink_mdev_fr_queue(q);
1218 hash_del(&q->mdev_qnode);
1219 }
1220
1221 kfree(qtable);
1222}
1223
1224/**
1225 * unassign_domain_store - parses the APQI from @buf and clears the
1226 * corresponding bit in the mediated matrix device's AQM
1227 *
1228 * @dev: the matrix device
1229 * @attr: the mediated matrix device's unassign_domain attribute
1230 * @buf: a buffer containing the AP queue index (APQI) of the domain to
1231 * be unassigned
1232 * @count: the number of bytes in @buf
1233 *
1234 * Return: the number of bytes processed if the APQI is valid; otherwise,
1235 * returns one of the following errors:
1236 * -EINVAL if the APQI is not a number
1237 * -ENODEV if the APQI exceeds the maximum value configured for the system
1238 */
1239static ssize_t unassign_domain_store(struct device *dev,
1240 struct device_attribute *attr,
1241 const char *buf, size_t count)
1242{
1243 int ret;
1244 unsigned long apqi;
1245 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1246
1247 get_update_locks_for_mdev(matrix_mdev);
1248
1249 ret = kstrtoul(buf, 0, &apqi);
1250 if (ret)
1251 goto done;
1252
1253 if (apqi > matrix_mdev->matrix.aqm_max) {
1254 ret = -ENODEV;
1255 goto done;
1256 }
1257
1258 if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) {
1259 ret = count;
1260 goto done;
1261 }
1262
1263 clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
1264 vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi);
1265 ret = count;
1266
1267done:
1268 release_update_locks_for_mdev(matrix_mdev);
1269 return ret;
1270}
1271static DEVICE_ATTR_WO(unassign_domain);
1272
1273/**
1274 * assign_control_domain_store - parses the domain ID from @buf and sets
1275 * the corresponding bit in the mediated matrix device's ADM
1276 *
1277 * @dev: the matrix device
1278 * @attr: the mediated matrix device's assign_control_domain attribute
1279 * @buf: a buffer containing the domain ID to be assigned
1280 * @count: the number of bytes in @buf
1281 *
1282 * Return: the number of bytes processed if the domain ID is valid; otherwise,
1283 * returns one of the following errors:
1284 * -EINVAL if the ID is not a number
1285 * -ENODEV if the ID exceeds the maximum value configured for the system
1286 */
1287static ssize_t assign_control_domain_store(struct device *dev,
1288 struct device_attribute *attr,
1289 const char *buf, size_t count)
1290{
1291 int ret;
1292 unsigned long id;
1293 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1294
1295 get_update_locks_for_mdev(matrix_mdev);
1296
1297 ret = kstrtoul(buf, 0, &id);
1298 if (ret)
1299 goto done;
1300
1301 if (id > matrix_mdev->matrix.adm_max) {
1302 ret = -ENODEV;
1303 goto done;
1304 }
1305
1306 if (test_bit_inv(id, matrix_mdev->matrix.adm)) {
1307 ret = count;
1308 goto done;
1309 }
1310
1311 /* Set the bit in the ADM (bitmask) corresponding to the AP control
1312 * domain number (id). The bits in the mask, from most significant to
1313 * least significant, correspond to IDs 0 up to the one less than the
1314 * number of control domains that can be assigned.
1315 */
1316 set_bit_inv(id, matrix_mdev->matrix.adm);
1317 if (vfio_ap_mdev_filter_cdoms(matrix_mdev))
1318 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1319
1320 ret = count;
1321done:
1322 release_update_locks_for_mdev(matrix_mdev);
1323 return ret;
1324}
1325static DEVICE_ATTR_WO(assign_control_domain);
1326
1327/**
1328 * unassign_control_domain_store - parses the domain ID from @buf and
1329 * clears the corresponding bit in the mediated matrix device's ADM
1330 *
1331 * @dev: the matrix device
1332 * @attr: the mediated matrix device's unassign_control_domain attribute
1333 * @buf: a buffer containing the domain ID to be unassigned
1334 * @count: the number of bytes in @buf
1335 *
1336 * Return: the number of bytes processed if the domain ID is valid; otherwise,
1337 * returns one of the following errors:
1338 * -EINVAL if the ID is not a number
1339 * -ENODEV if the ID exceeds the maximum value configured for the system
1340 */
1341static ssize_t unassign_control_domain_store(struct device *dev,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1344{
1345 int ret;
1346 unsigned long domid;
1347 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1348
1349 get_update_locks_for_mdev(matrix_mdev);
1350
1351 ret = kstrtoul(buf, 0, &domid);
1352 if (ret)
1353 goto done;
1354
1355 if (domid > matrix_mdev->matrix.adm_max) {
1356 ret = -ENODEV;
1357 goto done;
1358 }
1359
1360 if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) {
1361 ret = count;
1362 goto done;
1363 }
1364
1365 clear_bit_inv(domid, matrix_mdev->matrix.adm);
1366
1367 if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) {
1368 clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm);
1369 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1370 }
1371
1372 ret = count;
1373done:
1374 release_update_locks_for_mdev(matrix_mdev);
1375 return ret;
1376}
1377static DEVICE_ATTR_WO(unassign_control_domain);
1378
1379static ssize_t control_domains_show(struct device *dev,
1380 struct device_attribute *dev_attr,
1381 char *buf)
1382{
1383 unsigned long id;
1384 int nchars = 0;
1385 int n;
1386 char *bufpos = buf;
1387 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1388 unsigned long max_domid = matrix_mdev->matrix.adm_max;
1389
1390 mutex_lock(&matrix_dev->mdevs_lock);
1391 for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1392 n = sprintf(bufpos, "%04lx\n", id);
1393 bufpos += n;
1394 nchars += n;
1395 }
1396 mutex_unlock(&matrix_dev->mdevs_lock);
1397
1398 return nchars;
1399}
1400static DEVICE_ATTR_RO(control_domains);
1401
1402static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf)
1403{
1404 char *bufpos = buf;
1405 unsigned long apid;
1406 unsigned long apqi;
1407 unsigned long apid1;
1408 unsigned long apqi1;
1409 unsigned long napm_bits = matrix->apm_max + 1;
1410 unsigned long naqm_bits = matrix->aqm_max + 1;
1411 int nchars = 0;
1412 int n;
1413
1414 apid1 = find_first_bit_inv(matrix->apm, napm_bits);
1415 apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits);
1416
1417 if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1418 for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1419 for_each_set_bit_inv(apqi, matrix->aqm,
1420 naqm_bits) {
1421 n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1422 apqi);
1423 bufpos += n;
1424 nchars += n;
1425 }
1426 }
1427 } else if (apid1 < napm_bits) {
1428 for_each_set_bit_inv(apid, matrix->apm, napm_bits) {
1429 n = sprintf(bufpos, "%02lx.\n", apid);
1430 bufpos += n;
1431 nchars += n;
1432 }
1433 } else if (apqi1 < naqm_bits) {
1434 for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) {
1435 n = sprintf(bufpos, ".%04lx\n", apqi);
1436 bufpos += n;
1437 nchars += n;
1438 }
1439 }
1440
1441 return nchars;
1442}
1443
1444static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1445 char *buf)
1446{
1447 ssize_t nchars;
1448 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1449
1450 mutex_lock(&matrix_dev->mdevs_lock);
1451 nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf);
1452 mutex_unlock(&matrix_dev->mdevs_lock);
1453
1454 return nchars;
1455}
1456static DEVICE_ATTR_RO(matrix);
1457
1458static ssize_t guest_matrix_show(struct device *dev,
1459 struct device_attribute *attr, char *buf)
1460{
1461 ssize_t nchars;
1462 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev);
1463
1464 mutex_lock(&matrix_dev->mdevs_lock);
1465 nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf);
1466 mutex_unlock(&matrix_dev->mdevs_lock);
1467
1468 return nchars;
1469}
1470static DEVICE_ATTR_RO(guest_matrix);
1471
1472static struct attribute *vfio_ap_mdev_attrs[] = {
1473 &dev_attr_assign_adapter.attr,
1474 &dev_attr_unassign_adapter.attr,
1475 &dev_attr_assign_domain.attr,
1476 &dev_attr_unassign_domain.attr,
1477 &dev_attr_assign_control_domain.attr,
1478 &dev_attr_unassign_control_domain.attr,
1479 &dev_attr_control_domains.attr,
1480 &dev_attr_matrix.attr,
1481 &dev_attr_guest_matrix.attr,
1482 NULL,
1483};
1484
1485static struct attribute_group vfio_ap_mdev_attr_group = {
1486 .attrs = vfio_ap_mdev_attrs
1487};
1488
1489static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1490 &vfio_ap_mdev_attr_group,
1491 NULL
1492};
1493
1494/**
1495 * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed
1496 * to manage AP resources for the guest whose state is represented by @kvm
1497 *
1498 * @matrix_mdev: a mediated matrix device
1499 * @kvm: reference to KVM instance
1500 *
1501 * Return: 0 if no other mediated matrix device has a reference to @kvm;
1502 * otherwise, returns an -EPERM.
1503 */
1504static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1505 struct kvm *kvm)
1506{
1507 struct ap_matrix_mdev *m;
1508
1509 if (kvm->arch.crypto.crycbd) {
1510 down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1511 kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1512 up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1513
1514 get_update_locks_for_kvm(kvm);
1515
1516 list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1517 if (m != matrix_mdev && m->kvm == kvm) {
1518 release_update_locks_for_kvm(kvm);
1519 return -EPERM;
1520 }
1521 }
1522
1523 kvm_get_kvm(kvm);
1524 matrix_mdev->kvm = kvm;
1525 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1526
1527 release_update_locks_for_kvm(kvm);
1528 }
1529
1530 return 0;
1531}
1532
1533static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length)
1534{
1535 struct ap_queue_table *qtable = &matrix_mdev->qtable;
1536 struct vfio_ap_queue *q;
1537 int loop_cursor;
1538
1539 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1540 if (q->saved_iova >= iova && q->saved_iova < iova + length)
1541 vfio_ap_irq_disable(q);
1542 }
1543}
1544
1545static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova,
1546 u64 length)
1547{
1548 struct ap_matrix_mdev *matrix_mdev =
1549 container_of(vdev, struct ap_matrix_mdev, vdev);
1550
1551 mutex_lock(&matrix_dev->mdevs_lock);
1552
1553 unmap_iova(matrix_mdev, iova, length);
1554
1555 mutex_unlock(&matrix_dev->mdevs_lock);
1556}
1557
1558/**
1559 * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed
1560 * by @matrix_mdev.
1561 *
1562 * @matrix_mdev: a matrix mediated device
1563 */
1564static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1565{
1566 struct kvm *kvm = matrix_mdev->kvm;
1567
1568 if (kvm && kvm->arch.crypto.crycbd) {
1569 down_write(&kvm->arch.crypto.pqap_hook_rwsem);
1570 kvm->arch.crypto.pqap_hook = NULL;
1571 up_write(&kvm->arch.crypto.pqap_hook_rwsem);
1572
1573 get_update_locks_for_kvm(kvm);
1574
1575 kvm_arch_crypto_clear_masks(kvm);
1576 vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1577 kvm_put_kvm(kvm);
1578 matrix_mdev->kvm = NULL;
1579
1580 release_update_locks_for_kvm(kvm);
1581 }
1582}
1583
1584static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1585{
1586 struct ap_queue *queue;
1587 struct vfio_ap_queue *q = NULL;
1588
1589 queue = ap_get_qdev(apqn);
1590 if (!queue)
1591 return NULL;
1592
1593 if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver)
1594 q = dev_get_drvdata(&queue->ap_dev.device);
1595
1596 put_device(&queue->ap_dev.device);
1597
1598 return q;
1599}
1600
1601static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
1602 unsigned int retry)
1603{
1604 struct ap_queue_status status;
1605 int ret;
1606 int retry2 = 2;
1607
1608 if (!q)
1609 return 0;
1610retry_zapq:
1611 status = ap_zapq(q->apqn);
1612 q->reset_rc = status.response_code;
1613 switch (status.response_code) {
1614 case AP_RESPONSE_NORMAL:
1615 ret = 0;
1616 break;
1617 case AP_RESPONSE_RESET_IN_PROGRESS:
1618 if (retry--) {
1619 msleep(20);
1620 goto retry_zapq;
1621 }
1622 ret = -EBUSY;
1623 break;
1624 case AP_RESPONSE_Q_NOT_AVAIL:
1625 case AP_RESPONSE_DECONFIGURED:
1626 case AP_RESPONSE_CHECKSTOPPED:
1627 WARN_ONCE(status.irq_enabled,
1628 "PQAP/ZAPQ for %02x.%04x failed with rc=%u while IRQ enabled",
1629 AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn),
1630 status.response_code);
1631 ret = -EBUSY;
1632 goto free_resources;
1633 default:
1634 /* things are really broken, give up */
1635 WARN(true,
1636 "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n",
1637 AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn),
1638 status.response_code);
1639 return -EIO;
1640 }
1641
1642 /* wait for the reset to take effect */
1643 while (retry2--) {
1644 if (status.queue_empty && !status.irq_enabled)
1645 break;
1646 msleep(20);
1647 status = ap_tapq(q->apqn, NULL);
1648 }
1649 WARN_ONCE(retry2 <= 0, "unable to verify reset of queue %02x.%04x",
1650 AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn));
1651
1652free_resources:
1653 vfio_ap_free_aqic_resources(q);
1654
1655 return ret;
1656}
1657
1658static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable)
1659{
1660 int ret, loop_cursor, rc = 0;
1661 struct vfio_ap_queue *q;
1662
1663 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) {
1664 ret = vfio_ap_mdev_reset_queue(q, 1);
1665 /*
1666 * Regardless whether a queue turns out to be busy, or
1667 * is not operational, we need to continue resetting
1668 * the remaining queues.
1669 */
1670 if (ret)
1671 rc = ret;
1672 }
1673
1674 return rc;
1675}
1676
1677static int vfio_ap_mdev_open_device(struct vfio_device *vdev)
1678{
1679 struct ap_matrix_mdev *matrix_mdev =
1680 container_of(vdev, struct ap_matrix_mdev, vdev);
1681
1682 if (!vdev->kvm)
1683 return -EINVAL;
1684
1685 return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm);
1686}
1687
1688static void vfio_ap_mdev_close_device(struct vfio_device *vdev)
1689{
1690 struct ap_matrix_mdev *matrix_mdev =
1691 container_of(vdev, struct ap_matrix_mdev, vdev);
1692
1693 vfio_ap_mdev_unset_kvm(matrix_mdev);
1694}
1695
1696static int vfio_ap_mdev_get_device_info(unsigned long arg)
1697{
1698 unsigned long minsz;
1699 struct vfio_device_info info;
1700
1701 minsz = offsetofend(struct vfio_device_info, num_irqs);
1702
1703 if (copy_from_user(&info, (void __user *)arg, minsz))
1704 return -EFAULT;
1705
1706 if (info.argsz < minsz)
1707 return -EINVAL;
1708
1709 info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1710 info.num_regions = 0;
1711 info.num_irqs = 0;
1712
1713 return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1714}
1715
1716static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev,
1717 unsigned int cmd, unsigned long arg)
1718{
1719 struct ap_matrix_mdev *matrix_mdev =
1720 container_of(vdev, struct ap_matrix_mdev, vdev);
1721 int ret;
1722
1723 mutex_lock(&matrix_dev->mdevs_lock);
1724 switch (cmd) {
1725 case VFIO_DEVICE_GET_INFO:
1726 ret = vfio_ap_mdev_get_device_info(arg);
1727 break;
1728 case VFIO_DEVICE_RESET:
1729 ret = vfio_ap_mdev_reset_queues(&matrix_mdev->qtable);
1730 break;
1731 default:
1732 ret = -EOPNOTSUPP;
1733 break;
1734 }
1735 mutex_unlock(&matrix_dev->mdevs_lock);
1736
1737 return ret;
1738}
1739
1740static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q)
1741{
1742 struct ap_matrix_mdev *matrix_mdev;
1743 unsigned long apid = AP_QID_CARD(q->apqn);
1744 unsigned long apqi = AP_QID_QUEUE(q->apqn);
1745
1746 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
1747 if (test_bit_inv(apid, matrix_mdev->matrix.apm) &&
1748 test_bit_inv(apqi, matrix_mdev->matrix.aqm))
1749 return matrix_mdev;
1750 }
1751
1752 return NULL;
1753}
1754
1755static ssize_t status_show(struct device *dev,
1756 struct device_attribute *attr,
1757 char *buf)
1758{
1759 ssize_t nchars = 0;
1760 struct vfio_ap_queue *q;
1761 struct ap_matrix_mdev *matrix_mdev;
1762 struct ap_device *apdev = to_ap_dev(dev);
1763
1764 mutex_lock(&matrix_dev->mdevs_lock);
1765 q = dev_get_drvdata(&apdev->device);
1766 matrix_mdev = vfio_ap_mdev_for_queue(q);
1767
1768 if (matrix_mdev) {
1769 if (matrix_mdev->kvm)
1770 nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1771 AP_QUEUE_IN_USE);
1772 else
1773 nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1774 AP_QUEUE_ASSIGNED);
1775 } else {
1776 nchars = scnprintf(buf, PAGE_SIZE, "%s\n",
1777 AP_QUEUE_UNASSIGNED);
1778 }
1779
1780 mutex_unlock(&matrix_dev->mdevs_lock);
1781
1782 return nchars;
1783}
1784
1785static DEVICE_ATTR_RO(status);
1786
1787static struct attribute *vfio_queue_attrs[] = {
1788 &dev_attr_status.attr,
1789 NULL,
1790};
1791
1792static const struct attribute_group vfio_queue_attr_group = {
1793 .attrs = vfio_queue_attrs,
1794};
1795
1796static const struct vfio_device_ops vfio_ap_matrix_dev_ops = {
1797 .init = vfio_ap_mdev_init_dev,
1798 .open_device = vfio_ap_mdev_open_device,
1799 .close_device = vfio_ap_mdev_close_device,
1800 .ioctl = vfio_ap_mdev_ioctl,
1801 .dma_unmap = vfio_ap_mdev_dma_unmap,
1802 .bind_iommufd = vfio_iommufd_emulated_bind,
1803 .unbind_iommufd = vfio_iommufd_emulated_unbind,
1804 .attach_ioas = vfio_iommufd_emulated_attach_ioas,
1805};
1806
1807static struct mdev_driver vfio_ap_matrix_driver = {
1808 .device_api = VFIO_DEVICE_API_AP_STRING,
1809 .max_instances = MAX_ZDEV_ENTRIES_EXT,
1810 .driver = {
1811 .name = "vfio_ap_mdev",
1812 .owner = THIS_MODULE,
1813 .mod_name = KBUILD_MODNAME,
1814 .dev_groups = vfio_ap_mdev_attr_groups,
1815 },
1816 .probe = vfio_ap_mdev_probe,
1817 .remove = vfio_ap_mdev_remove,
1818};
1819
1820int vfio_ap_mdev_register(void)
1821{
1822 int ret;
1823
1824 ret = mdev_register_driver(&vfio_ap_matrix_driver);
1825 if (ret)
1826 return ret;
1827
1828 matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT;
1829 matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT;
1830 matrix_dev->mdev_types[0] = &matrix_dev->mdev_type;
1831 ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device,
1832 &vfio_ap_matrix_driver,
1833 matrix_dev->mdev_types, 1);
1834 if (ret)
1835 goto err_driver;
1836 return 0;
1837
1838err_driver:
1839 mdev_unregister_driver(&vfio_ap_matrix_driver);
1840 return ret;
1841}
1842
1843void vfio_ap_mdev_unregister(void)
1844{
1845 mdev_unregister_parent(&matrix_dev->parent);
1846 mdev_unregister_driver(&vfio_ap_matrix_driver);
1847}
1848
1849int vfio_ap_mdev_probe_queue(struct ap_device *apdev)
1850{
1851 int ret;
1852 struct vfio_ap_queue *q;
1853 struct ap_matrix_mdev *matrix_mdev;
1854
1855 ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group);
1856 if (ret)
1857 return ret;
1858
1859 q = kzalloc(sizeof(*q), GFP_KERNEL);
1860 if (!q)
1861 return -ENOMEM;
1862
1863 q->apqn = to_ap_queue(&apdev->device)->qid;
1864 q->saved_isc = VFIO_AP_ISC_INVALID;
1865 matrix_mdev = get_update_locks_by_apqn(q->apqn);
1866
1867 if (matrix_mdev) {
1868 vfio_ap_mdev_link_queue(matrix_mdev, q);
1869
1870 if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm,
1871 matrix_mdev->matrix.aqm,
1872 matrix_mdev))
1873 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1874 }
1875 dev_set_drvdata(&apdev->device, q);
1876 release_update_locks_for_mdev(matrix_mdev);
1877
1878 return 0;
1879}
1880
1881void vfio_ap_mdev_remove_queue(struct ap_device *apdev)
1882{
1883 unsigned long apid, apqi;
1884 struct vfio_ap_queue *q;
1885 struct ap_matrix_mdev *matrix_mdev;
1886
1887 sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group);
1888 q = dev_get_drvdata(&apdev->device);
1889 get_update_locks_for_queue(q);
1890 matrix_mdev = q->matrix_mdev;
1891
1892 if (matrix_mdev) {
1893 vfio_ap_unlink_queue_fr_mdev(q);
1894
1895 apid = AP_QID_CARD(q->apqn);
1896 apqi = AP_QID_QUEUE(q->apqn);
1897
1898 /*
1899 * If the queue is assigned to the guest's APCB, then remove
1900 * the adapter's APID from the APCB and hot it into the guest.
1901 */
1902 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) &&
1903 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) {
1904 clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm);
1905 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1906 }
1907 }
1908
1909 vfio_ap_mdev_reset_queue(q, 1);
1910 dev_set_drvdata(&apdev->device, NULL);
1911 kfree(q);
1912 release_update_locks_for_mdev(matrix_mdev);
1913}
1914
1915/**
1916 * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is
1917 * assigned to a mediated device under the control
1918 * of the vfio_ap device driver.
1919 *
1920 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check.
1921 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check.
1922 *
1923 * Return:
1924 * * -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are
1925 * assigned to a mediated device under the control of the vfio_ap
1926 * device driver.
1927 * * Otherwise, return 0.
1928 */
1929int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm)
1930{
1931 int ret;
1932
1933 mutex_lock(&matrix_dev->guests_lock);
1934 mutex_lock(&matrix_dev->mdevs_lock);
1935 ret = vfio_ap_mdev_verify_no_sharing(apm, aqm);
1936 mutex_unlock(&matrix_dev->mdevs_lock);
1937 mutex_unlock(&matrix_dev->guests_lock);
1938
1939 return ret;
1940}
1941
1942/**
1943 * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control
1944 * domains that have been removed from the host's
1945 * AP configuration from a guest.
1946 *
1947 * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest.
1948 * @aprem: the adapters that have been removed from the host's AP configuration
1949 * @aqrem: the domains that have been removed from the host's AP configuration
1950 * @cdrem: the control domains that have been removed from the host's AP
1951 * configuration.
1952 */
1953static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev,
1954 unsigned long *aprem,
1955 unsigned long *aqrem,
1956 unsigned long *cdrem)
1957{
1958 int do_hotplug = 0;
1959
1960 if (!bitmap_empty(aprem, AP_DEVICES)) {
1961 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm,
1962 matrix_mdev->shadow_apcb.apm,
1963 aprem, AP_DEVICES);
1964 }
1965
1966 if (!bitmap_empty(aqrem, AP_DOMAINS)) {
1967 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm,
1968 matrix_mdev->shadow_apcb.aqm,
1969 aqrem, AP_DEVICES);
1970 }
1971
1972 if (!bitmap_empty(cdrem, AP_DOMAINS))
1973 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm,
1974 matrix_mdev->shadow_apcb.adm,
1975 cdrem, AP_DOMAINS);
1976
1977 if (do_hotplug)
1978 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
1979}
1980
1981/**
1982 * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters,
1983 * domains and control domains that have been removed
1984 * from the host AP configuration and unplugs them
1985 * from those guests.
1986 *
1987 * @ap_remove: bitmap specifying which adapters have been removed from the host
1988 * config.
1989 * @aq_remove: bitmap specifying which domains have been removed from the host
1990 * config.
1991 * @cd_remove: bitmap specifying which control domains have been removed from
1992 * the host config.
1993 */
1994static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove,
1995 unsigned long *aq_remove,
1996 unsigned long *cd_remove)
1997{
1998 struct ap_matrix_mdev *matrix_mdev;
1999 DECLARE_BITMAP(aprem, AP_DEVICES);
2000 DECLARE_BITMAP(aqrem, AP_DOMAINS);
2001 DECLARE_BITMAP(cdrem, AP_DOMAINS);
2002 int do_remove = 0;
2003
2004 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2005 mutex_lock(&matrix_mdev->kvm->lock);
2006 mutex_lock(&matrix_dev->mdevs_lock);
2007
2008 do_remove |= bitmap_and(aprem, ap_remove,
2009 matrix_mdev->matrix.apm,
2010 AP_DEVICES);
2011 do_remove |= bitmap_and(aqrem, aq_remove,
2012 matrix_mdev->matrix.aqm,
2013 AP_DOMAINS);
2014 do_remove |= bitmap_andnot(cdrem, cd_remove,
2015 matrix_mdev->matrix.adm,
2016 AP_DOMAINS);
2017
2018 if (do_remove)
2019 vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem,
2020 cdrem);
2021
2022 mutex_unlock(&matrix_dev->mdevs_lock);
2023 mutex_unlock(&matrix_mdev->kvm->lock);
2024 }
2025}
2026
2027/**
2028 * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and
2029 * control domains from the host AP configuration
2030 * by unplugging them from the guests that are
2031 * using them.
2032 * @cur_config_info: the current host AP configuration information
2033 * @prev_config_info: the previous host AP configuration information
2034 */
2035static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info,
2036 struct ap_config_info *prev_config_info)
2037{
2038 int do_remove;
2039 DECLARE_BITMAP(aprem, AP_DEVICES);
2040 DECLARE_BITMAP(aqrem, AP_DOMAINS);
2041 DECLARE_BITMAP(cdrem, AP_DOMAINS);
2042
2043 do_remove = bitmap_andnot(aprem,
2044 (unsigned long *)prev_config_info->apm,
2045 (unsigned long *)cur_config_info->apm,
2046 AP_DEVICES);
2047 do_remove |= bitmap_andnot(aqrem,
2048 (unsigned long *)prev_config_info->aqm,
2049 (unsigned long *)cur_config_info->aqm,
2050 AP_DEVICES);
2051 do_remove |= bitmap_andnot(cdrem,
2052 (unsigned long *)prev_config_info->adm,
2053 (unsigned long *)cur_config_info->adm,
2054 AP_DEVICES);
2055
2056 if (do_remove)
2057 vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem);
2058}
2059
2060/**
2061 * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that
2062 * are older than AP type 10 (CEX4).
2063 * @apm: a bitmap of the APIDs to examine
2064 * @aqm: a bitmap of the APQIs of the queues to query for the AP type.
2065 */
2066static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm)
2067{
2068 bool apid_cleared;
2069 struct ap_queue_status status;
2070 unsigned long apid, apqi, info;
2071 int qtype, qtype_mask = 0xff000000;
2072
2073 for_each_set_bit_inv(apid, apm, AP_DEVICES) {
2074 apid_cleared = false;
2075
2076 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) {
2077 status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info);
2078 switch (status.response_code) {
2079 /*
2080 * According to the architecture in each case
2081 * below, the queue's info should be filled.
2082 */
2083 case AP_RESPONSE_NORMAL:
2084 case AP_RESPONSE_RESET_IN_PROGRESS:
2085 case AP_RESPONSE_DECONFIGURED:
2086 case AP_RESPONSE_CHECKSTOPPED:
2087 case AP_RESPONSE_BUSY:
2088 qtype = info & qtype_mask;
2089
2090 /*
2091 * The vfio_ap device driver only
2092 * supports CEX4 and newer adapters, so
2093 * remove the APID if the adapter is
2094 * older than a CEX4.
2095 */
2096 if (qtype < AP_DEVICE_TYPE_CEX4) {
2097 clear_bit_inv(apid, apm);
2098 apid_cleared = true;
2099 }
2100
2101 break;
2102
2103 default:
2104 /*
2105 * If we don't know the adapter type,
2106 * clear its APID since it can't be
2107 * determined whether the vfio_ap
2108 * device driver supports it.
2109 */
2110 clear_bit_inv(apid, apm);
2111 apid_cleared = true;
2112 break;
2113 }
2114
2115 /*
2116 * If we've already cleared the APID from the apm, there
2117 * is no need to continue examining the remainin AP
2118 * queues to determine the type of the adapter.
2119 */
2120 if (apid_cleared)
2121 continue;
2122 }
2123 }
2124}
2125
2126/**
2127 * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and
2128 * control domains that have been added to the host's
2129 * AP configuration for each matrix mdev to which they
2130 * are assigned.
2131 *
2132 * @apm_add: a bitmap specifying the adapters that have been added to the AP
2133 * configuration.
2134 * @aqm_add: a bitmap specifying the domains that have been added to the AP
2135 * configuration.
2136 * @adm_add: a bitmap specifying the control domains that have been added to the
2137 * AP configuration.
2138 */
2139static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add,
2140 unsigned long *adm_add)
2141{
2142 struct ap_matrix_mdev *matrix_mdev;
2143
2144 if (list_empty(&matrix_dev->mdev_list))
2145 return;
2146
2147 vfio_ap_filter_apid_by_qtype(apm_add, aqm_add);
2148
2149 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2150 bitmap_and(matrix_mdev->apm_add,
2151 matrix_mdev->matrix.apm, apm_add, AP_DEVICES);
2152 bitmap_and(matrix_mdev->aqm_add,
2153 matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS);
2154 bitmap_and(matrix_mdev->adm_add,
2155 matrix_mdev->matrix.adm, adm_add, AP_DEVICES);
2156 }
2157}
2158
2159/**
2160 * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and
2161 * control domains to the host AP configuration
2162 * by updating the bitmaps that specify what adapters,
2163 * domains and control domains have been added so they
2164 * can be hot plugged into the guest when the AP bus
2165 * scan completes (see vfio_ap_on_scan_complete
2166 * function).
2167 * @cur_config_info: the current AP configuration information
2168 * @prev_config_info: the previous AP configuration information
2169 */
2170static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info,
2171 struct ap_config_info *prev_config_info)
2172{
2173 bool do_add;
2174 DECLARE_BITMAP(apm_add, AP_DEVICES);
2175 DECLARE_BITMAP(aqm_add, AP_DOMAINS);
2176 DECLARE_BITMAP(adm_add, AP_DOMAINS);
2177
2178 do_add = bitmap_andnot(apm_add,
2179 (unsigned long *)cur_config_info->apm,
2180 (unsigned long *)prev_config_info->apm,
2181 AP_DEVICES);
2182 do_add |= bitmap_andnot(aqm_add,
2183 (unsigned long *)cur_config_info->aqm,
2184 (unsigned long *)prev_config_info->aqm,
2185 AP_DOMAINS);
2186 do_add |= bitmap_andnot(adm_add,
2187 (unsigned long *)cur_config_info->adm,
2188 (unsigned long *)prev_config_info->adm,
2189 AP_DOMAINS);
2190
2191 if (do_add)
2192 vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add);
2193}
2194
2195/**
2196 * vfio_ap_on_cfg_changed - handles notification of changes to the host AP
2197 * configuration.
2198 *
2199 * @cur_cfg_info: the current host AP configuration
2200 * @prev_cfg_info: the previous host AP configuration
2201 */
2202void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info,
2203 struct ap_config_info *prev_cfg_info)
2204{
2205 if (!cur_cfg_info || !prev_cfg_info)
2206 return;
2207
2208 mutex_lock(&matrix_dev->guests_lock);
2209
2210 vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info);
2211 vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info);
2212 memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info));
2213
2214 mutex_unlock(&matrix_dev->guests_lock);
2215}
2216
2217static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev)
2218{
2219 bool do_hotplug = false;
2220 int filter_domains = 0;
2221 int filter_adapters = 0;
2222 DECLARE_BITMAP(apm, AP_DEVICES);
2223 DECLARE_BITMAP(aqm, AP_DOMAINS);
2224
2225 mutex_lock(&matrix_mdev->kvm->lock);
2226 mutex_lock(&matrix_dev->mdevs_lock);
2227
2228 filter_adapters = bitmap_and(apm, matrix_mdev->matrix.apm,
2229 matrix_mdev->apm_add, AP_DEVICES);
2230 filter_domains = bitmap_and(aqm, matrix_mdev->matrix.aqm,
2231 matrix_mdev->aqm_add, AP_DOMAINS);
2232
2233 if (filter_adapters && filter_domains)
2234 do_hotplug |= vfio_ap_mdev_filter_matrix(apm, aqm, matrix_mdev);
2235 else if (filter_adapters)
2236 do_hotplug |=
2237 vfio_ap_mdev_filter_matrix(apm,
2238 matrix_mdev->shadow_apcb.aqm,
2239 matrix_mdev);
2240 else
2241 do_hotplug |=
2242 vfio_ap_mdev_filter_matrix(matrix_mdev->shadow_apcb.apm,
2243 aqm, matrix_mdev);
2244
2245 if (bitmap_intersects(matrix_mdev->matrix.adm, matrix_mdev->adm_add,
2246 AP_DOMAINS))
2247 do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev);
2248
2249 if (do_hotplug)
2250 vfio_ap_mdev_update_guest_apcb(matrix_mdev);
2251
2252 mutex_unlock(&matrix_dev->mdevs_lock);
2253 mutex_unlock(&matrix_mdev->kvm->lock);
2254}
2255
2256void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info,
2257 struct ap_config_info *old_config_info)
2258{
2259 struct ap_matrix_mdev *matrix_mdev;
2260
2261 mutex_lock(&matrix_dev->guests_lock);
2262
2263 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) {
2264 if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) &&
2265 bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) &&
2266 bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS))
2267 continue;
2268
2269 vfio_ap_mdev_hot_plug_cfg(matrix_mdev);
2270 bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES);
2271 bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS);
2272 bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS);
2273 }
2274
2275 mutex_unlock(&matrix_dev->guests_lock);
2276}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Adjunct processor matrix VFIO device driver callbacks.
4 *
5 * Copyright IBM Corp. 2018
6 *
7 * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8 * Halil Pasic <pasic@linux.ibm.com>
9 * Pierre Morel <pmorel@linux.ibm.com>
10 */
11#include <linux/string.h>
12#include <linux/vfio.h>
13#include <linux/device.h>
14#include <linux/list.h>
15#include <linux/ctype.h>
16#include <linux/bitops.h>
17#include <linux/kvm_host.h>
18#include <linux/module.h>
19#include <asm/kvm.h>
20#include <asm/zcrypt.h>
21
22#include "vfio_ap_private.h"
23
24#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
25#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
26
27static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev);
28
29static int match_apqn(struct device *dev, const void *data)
30{
31 struct vfio_ap_queue *q = dev_get_drvdata(dev);
32
33 return (q->apqn == *(int *)(data)) ? 1 : 0;
34}
35
36/**
37 * vfio_ap_get_queue: Retrieve a queue with a specific APQN from a list
38 * @matrix_mdev: the associated mediated matrix
39 * @apqn: The queue APQN
40 *
41 * Retrieve a queue with a specific APQN from the list of the
42 * devices of the vfio_ap_drv.
43 * Verify that the APID and the APQI are set in the matrix.
44 *
45 * Returns the pointer to the associated vfio_ap_queue
46 */
47static struct vfio_ap_queue *vfio_ap_get_queue(
48 struct ap_matrix_mdev *matrix_mdev,
49 int apqn)
50{
51 struct vfio_ap_queue *q;
52 struct device *dev;
53
54 if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm))
55 return NULL;
56 if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm))
57 return NULL;
58
59 dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
60 &apqn, match_apqn);
61 if (!dev)
62 return NULL;
63 q = dev_get_drvdata(dev);
64 q->matrix_mdev = matrix_mdev;
65 put_device(dev);
66
67 return q;
68}
69
70/**
71 * vfio_ap_wait_for_irqclear
72 * @apqn: The AP Queue number
73 *
74 * Checks the IRQ bit for the status of this APQN using ap_tapq.
75 * Returns if the ap_tapq function succeeded and the bit is clear.
76 * Returns if ap_tapq function failed with invalid, deconfigured or
77 * checkstopped AP.
78 * Otherwise retries up to 5 times after waiting 20ms.
79 *
80 */
81static void vfio_ap_wait_for_irqclear(int apqn)
82{
83 struct ap_queue_status status;
84 int retry = 5;
85
86 do {
87 status = ap_tapq(apqn, NULL);
88 switch (status.response_code) {
89 case AP_RESPONSE_NORMAL:
90 case AP_RESPONSE_RESET_IN_PROGRESS:
91 if (!status.irq_enabled)
92 return;
93 fallthrough;
94 case AP_RESPONSE_BUSY:
95 msleep(20);
96 break;
97 case AP_RESPONSE_Q_NOT_AVAIL:
98 case AP_RESPONSE_DECONFIGURED:
99 case AP_RESPONSE_CHECKSTOPPED:
100 default:
101 WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
102 status.response_code, apqn);
103 return;
104 }
105 } while (--retry);
106
107 WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
108 __func__, status.response_code, apqn);
109}
110
111/**
112 * vfio_ap_free_aqic_resources
113 * @q: The vfio_ap_queue
114 *
115 * Unregisters the ISC in the GIB when the saved ISC not invalid.
116 * Unpin the guest's page holding the NIB when it exist.
117 * Reset the saved_pfn and saved_isc to invalid values.
118 *
119 */
120static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
121{
122 if (q->saved_isc != VFIO_AP_ISC_INVALID && q->matrix_mdev)
123 kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
124 if (q->saved_pfn && q->matrix_mdev)
125 vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev),
126 &q->saved_pfn, 1);
127 q->saved_pfn = 0;
128 q->saved_isc = VFIO_AP_ISC_INVALID;
129}
130
131/**
132 * vfio_ap_irq_disable
133 * @q: The vfio_ap_queue
134 *
135 * Uses ap_aqic to disable the interruption and in case of success, reset
136 * in progress or IRQ disable command already proceeded: calls
137 * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
138 * and calls vfio_ap_free_aqic_resources() to free the resources associated
139 * with the AP interrupt handling.
140 *
141 * In the case the AP is busy, or a reset is in progress,
142 * retries after 20ms, up to 5 times.
143 *
144 * Returns if ap_aqic function failed with invalid, deconfigured or
145 * checkstopped AP.
146 */
147struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
148{
149 struct ap_qirq_ctrl aqic_gisa = {};
150 struct ap_queue_status status;
151 int retries = 5;
152
153 do {
154 status = ap_aqic(q->apqn, aqic_gisa, NULL);
155 switch (status.response_code) {
156 case AP_RESPONSE_OTHERWISE_CHANGED:
157 case AP_RESPONSE_NORMAL:
158 vfio_ap_wait_for_irqclear(q->apqn);
159 goto end_free;
160 case AP_RESPONSE_RESET_IN_PROGRESS:
161 case AP_RESPONSE_BUSY:
162 msleep(20);
163 break;
164 case AP_RESPONSE_Q_NOT_AVAIL:
165 case AP_RESPONSE_DECONFIGURED:
166 case AP_RESPONSE_CHECKSTOPPED:
167 case AP_RESPONSE_INVALID_ADDRESS:
168 default:
169 /* All cases in default means AP not operational */
170 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
171 status.response_code);
172 goto end_free;
173 }
174 } while (retries--);
175
176 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
177 status.response_code);
178end_free:
179 vfio_ap_free_aqic_resources(q);
180 q->matrix_mdev = NULL;
181 return status;
182}
183
184/**
185 * vfio_ap_setirq: Enable Interruption for a APQN
186 *
187 * @dev: the device associated with the ap_queue
188 * @q: the vfio_ap_queue holding AQIC parameters
189 *
190 * Pin the NIB saved in *q
191 * Register the guest ISC to GIB interface and retrieve the
192 * host ISC to issue the host side PQAP/AQIC
193 *
194 * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
195 * vfio_pin_pages failed.
196 *
197 * Otherwise return the ap_queue_status returned by the ap_aqic(),
198 * all retry handling will be done by the guest.
199 */
200static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
201 int isc,
202 unsigned long nib)
203{
204 struct ap_qirq_ctrl aqic_gisa = {};
205 struct ap_queue_status status = {};
206 struct kvm_s390_gisa *gisa;
207 struct kvm *kvm;
208 unsigned long h_nib, g_pfn, h_pfn;
209 int ret;
210
211 g_pfn = nib >> PAGE_SHIFT;
212 ret = vfio_pin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1,
213 IOMMU_READ | IOMMU_WRITE, &h_pfn);
214 switch (ret) {
215 case 1:
216 break;
217 default:
218 status.response_code = AP_RESPONSE_INVALID_ADDRESS;
219 return status;
220 }
221
222 kvm = q->matrix_mdev->kvm;
223 gisa = kvm->arch.gisa_int.origin;
224
225 h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
226 aqic_gisa.gisc = isc;
227 aqic_gisa.isc = kvm_s390_gisc_register(kvm, isc);
228 aqic_gisa.ir = 1;
229 aqic_gisa.gisa = (uint64_t)gisa >> 4;
230
231 status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
232 switch (status.response_code) {
233 case AP_RESPONSE_NORMAL:
234 /* See if we did clear older IRQ configuration */
235 vfio_ap_free_aqic_resources(q);
236 q->saved_pfn = g_pfn;
237 q->saved_isc = isc;
238 break;
239 case AP_RESPONSE_OTHERWISE_CHANGED:
240 /* We could not modify IRQ setings: clear new configuration */
241 vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1);
242 kvm_s390_gisc_unregister(kvm, isc);
243 break;
244 default:
245 pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
246 status.response_code);
247 vfio_ap_irq_disable(q);
248 break;
249 }
250
251 return status;
252}
253
254/**
255 * handle_pqap: PQAP instruction callback
256 *
257 * @vcpu: The vcpu on which we received the PQAP instruction
258 *
259 * Get the general register contents to initialize internal variables.
260 * REG[0]: APQN
261 * REG[1]: IR and ISC
262 * REG[2]: NIB
263 *
264 * Response.status may be set to following Response Code:
265 * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
266 * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
267 * - AP_RESPONSE_NORMAL (0) : in case of successs
268 * Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
269 * We take the matrix_dev lock to ensure serialization on queues and
270 * mediated device access.
271 *
272 * Return 0 if we could handle the request inside KVM.
273 * otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
274 */
275static int handle_pqap(struct kvm_vcpu *vcpu)
276{
277 uint64_t status;
278 uint16_t apqn;
279 struct vfio_ap_queue *q;
280 struct ap_queue_status qstatus = {
281 .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
282 struct ap_matrix_mdev *matrix_mdev;
283
284 /* If we do not use the AIV facility just go to userland */
285 if (!(vcpu->arch.sie_block->eca & ECA_AIV))
286 return -EOPNOTSUPP;
287
288 apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
289 mutex_lock(&matrix_dev->lock);
290
291 if (!vcpu->kvm->arch.crypto.pqap_hook)
292 goto out_unlock;
293 matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
294 struct ap_matrix_mdev, pqap_hook);
295
296 q = vfio_ap_get_queue(matrix_mdev, apqn);
297 if (!q)
298 goto out_unlock;
299
300 status = vcpu->run->s.regs.gprs[1];
301
302 /* If IR bit(16) is set we enable the interrupt */
303 if ((status >> (63 - 16)) & 0x01)
304 qstatus = vfio_ap_irq_enable(q, status & 0x07,
305 vcpu->run->s.regs.gprs[2]);
306 else
307 qstatus = vfio_ap_irq_disable(q);
308
309out_unlock:
310 memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
311 vcpu->run->s.regs.gprs[1] >>= 32;
312 mutex_unlock(&matrix_dev->lock);
313 return 0;
314}
315
316static void vfio_ap_matrix_init(struct ap_config_info *info,
317 struct ap_matrix *matrix)
318{
319 matrix->apm_max = info->apxa ? info->Na : 63;
320 matrix->aqm_max = info->apxa ? info->Nd : 15;
321 matrix->adm_max = info->apxa ? info->Nd : 15;
322}
323
324static int vfio_ap_mdev_create(struct kobject *kobj, struct mdev_device *mdev)
325{
326 struct ap_matrix_mdev *matrix_mdev;
327
328 if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
329 return -EPERM;
330
331 matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
332 if (!matrix_mdev) {
333 atomic_inc(&matrix_dev->available_instances);
334 return -ENOMEM;
335 }
336
337 matrix_mdev->mdev = mdev;
338 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
339 mdev_set_drvdata(mdev, matrix_mdev);
340 matrix_mdev->pqap_hook.hook = handle_pqap;
341 matrix_mdev->pqap_hook.owner = THIS_MODULE;
342 mutex_lock(&matrix_dev->lock);
343 list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
344 mutex_unlock(&matrix_dev->lock);
345
346 return 0;
347}
348
349static int vfio_ap_mdev_remove(struct mdev_device *mdev)
350{
351 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
352
353 if (matrix_mdev->kvm)
354 return -EBUSY;
355
356 mutex_lock(&matrix_dev->lock);
357 vfio_ap_mdev_reset_queues(mdev);
358 list_del(&matrix_mdev->node);
359 mutex_unlock(&matrix_dev->lock);
360
361 kfree(matrix_mdev);
362 mdev_set_drvdata(mdev, NULL);
363 atomic_inc(&matrix_dev->available_instances);
364
365 return 0;
366}
367
368static ssize_t name_show(struct kobject *kobj, struct device *dev, char *buf)
369{
370 return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
371}
372
373static MDEV_TYPE_ATTR_RO(name);
374
375static ssize_t available_instances_show(struct kobject *kobj,
376 struct device *dev, char *buf)
377{
378 return sprintf(buf, "%d\n",
379 atomic_read(&matrix_dev->available_instances));
380}
381
382static MDEV_TYPE_ATTR_RO(available_instances);
383
384static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
385 char *buf)
386{
387 return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
388}
389
390static MDEV_TYPE_ATTR_RO(device_api);
391
392static struct attribute *vfio_ap_mdev_type_attrs[] = {
393 &mdev_type_attr_name.attr,
394 &mdev_type_attr_device_api.attr,
395 &mdev_type_attr_available_instances.attr,
396 NULL,
397};
398
399static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
400 .name = VFIO_AP_MDEV_TYPE_HWVIRT,
401 .attrs = vfio_ap_mdev_type_attrs,
402};
403
404static struct attribute_group *vfio_ap_mdev_type_groups[] = {
405 &vfio_ap_mdev_hwvirt_type_group,
406 NULL,
407};
408
409struct vfio_ap_queue_reserved {
410 unsigned long *apid;
411 unsigned long *apqi;
412 bool reserved;
413};
414
415/**
416 * vfio_ap_has_queue
417 *
418 * @dev: an AP queue device
419 * @data: a struct vfio_ap_queue_reserved reference
420 *
421 * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
422 * apid or apqi specified in @data:
423 *
424 * - If @data contains both an apid and apqi value, then @data will be flagged
425 * as reserved if the APID and APQI fields for the AP queue device matches
426 *
427 * - If @data contains only an apid value, @data will be flagged as
428 * reserved if the APID field in the AP queue device matches
429 *
430 * - If @data contains only an apqi value, @data will be flagged as
431 * reserved if the APQI field in the AP queue device matches
432 *
433 * Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
434 * @data does not contain either an apid or apqi.
435 */
436static int vfio_ap_has_queue(struct device *dev, void *data)
437{
438 struct vfio_ap_queue_reserved *qres = data;
439 struct ap_queue *ap_queue = to_ap_queue(dev);
440 ap_qid_t qid;
441 unsigned long id;
442
443 if (qres->apid && qres->apqi) {
444 qid = AP_MKQID(*qres->apid, *qres->apqi);
445 if (qid == ap_queue->qid)
446 qres->reserved = true;
447 } else if (qres->apid && !qres->apqi) {
448 id = AP_QID_CARD(ap_queue->qid);
449 if (id == *qres->apid)
450 qres->reserved = true;
451 } else if (!qres->apid && qres->apqi) {
452 id = AP_QID_QUEUE(ap_queue->qid);
453 if (id == *qres->apqi)
454 qres->reserved = true;
455 } else {
456 return -EINVAL;
457 }
458
459 return 0;
460}
461
462/**
463 * vfio_ap_verify_queue_reserved
464 *
465 * @matrix_dev: a mediated matrix device
466 * @apid: an AP adapter ID
467 * @apqi: an AP queue index
468 *
469 * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
470 * driver according to the following rules:
471 *
472 * - If both @apid and @apqi are not NULL, then there must be an AP queue
473 * device bound to the vfio_ap driver with the APQN identified by @apid and
474 * @apqi
475 *
476 * - If only @apid is not NULL, then there must be an AP queue device bound
477 * to the vfio_ap driver with an APQN containing @apid
478 *
479 * - If only @apqi is not NULL, then there must be an AP queue device bound
480 * to the vfio_ap driver with an APQN containing @apqi
481 *
482 * Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
483 */
484static int vfio_ap_verify_queue_reserved(unsigned long *apid,
485 unsigned long *apqi)
486{
487 int ret;
488 struct vfio_ap_queue_reserved qres;
489
490 qres.apid = apid;
491 qres.apqi = apqi;
492 qres.reserved = false;
493
494 ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
495 &qres, vfio_ap_has_queue);
496 if (ret)
497 return ret;
498
499 if (qres.reserved)
500 return 0;
501
502 return -EADDRNOTAVAIL;
503}
504
505static int
506vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
507 unsigned long apid)
508{
509 int ret;
510 unsigned long apqi;
511 unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
512
513 if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
514 return vfio_ap_verify_queue_reserved(&apid, NULL);
515
516 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
517 ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
518 if (ret)
519 return ret;
520 }
521
522 return 0;
523}
524
525/**
526 * vfio_ap_mdev_verify_no_sharing
527 *
528 * Verifies that the APQNs derived from the cross product of the AP adapter IDs
529 * and AP queue indexes comprising the AP matrix are not configured for another
530 * mediated device. AP queue sharing is not allowed.
531 *
532 * @matrix_mdev: the mediated matrix device
533 *
534 * Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
535 */
536static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
537{
538 struct ap_matrix_mdev *lstdev;
539 DECLARE_BITMAP(apm, AP_DEVICES);
540 DECLARE_BITMAP(aqm, AP_DOMAINS);
541
542 list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
543 if (matrix_mdev == lstdev)
544 continue;
545
546 memset(apm, 0, sizeof(apm));
547 memset(aqm, 0, sizeof(aqm));
548
549 /*
550 * We work on full longs, as we can only exclude the leftover
551 * bits in non-inverse order. The leftover is all zeros.
552 */
553 if (!bitmap_and(apm, matrix_mdev->matrix.apm,
554 lstdev->matrix.apm, AP_DEVICES))
555 continue;
556
557 if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
558 lstdev->matrix.aqm, AP_DOMAINS))
559 continue;
560
561 return -EADDRINUSE;
562 }
563
564 return 0;
565}
566
567/**
568 * assign_adapter_store
569 *
570 * @dev: the matrix device
571 * @attr: the mediated matrix device's assign_adapter attribute
572 * @buf: a buffer containing the AP adapter number (APID) to
573 * be assigned
574 * @count: the number of bytes in @buf
575 *
576 * Parses the APID from @buf and sets the corresponding bit in the mediated
577 * matrix device's APM.
578 *
579 * Returns the number of bytes processed if the APID is valid; otherwise,
580 * returns one of the following errors:
581 *
582 * 1. -EINVAL
583 * The APID is not a valid number
584 *
585 * 2. -ENODEV
586 * The APID exceeds the maximum value configured for the system
587 *
588 * 3. -EADDRNOTAVAIL
589 * An APQN derived from the cross product of the APID being assigned
590 * and the APQIs previously assigned is not bound to the vfio_ap device
591 * driver; or, if no APQIs have yet been assigned, the APID is not
592 * contained in an APQN bound to the vfio_ap device driver.
593 *
594 * 4. -EADDRINUSE
595 * An APQN derived from the cross product of the APID being assigned
596 * and the APQIs previously assigned is being used by another mediated
597 * matrix device
598 */
599static ssize_t assign_adapter_store(struct device *dev,
600 struct device_attribute *attr,
601 const char *buf, size_t count)
602{
603 int ret;
604 unsigned long apid;
605 struct mdev_device *mdev = mdev_from_dev(dev);
606 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
607
608 /* If the guest is running, disallow assignment of adapter */
609 if (matrix_mdev->kvm)
610 return -EBUSY;
611
612 ret = kstrtoul(buf, 0, &apid);
613 if (ret)
614 return ret;
615
616 if (apid > matrix_mdev->matrix.apm_max)
617 return -ENODEV;
618
619 /*
620 * Set the bit in the AP mask (APM) corresponding to the AP adapter
621 * number (APID). The bits in the mask, from most significant to least
622 * significant bit, correspond to APIDs 0-255.
623 */
624 mutex_lock(&matrix_dev->lock);
625
626 ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
627 if (ret)
628 goto done;
629
630 set_bit_inv(apid, matrix_mdev->matrix.apm);
631
632 ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
633 if (ret)
634 goto share_err;
635
636 ret = count;
637 goto done;
638
639share_err:
640 clear_bit_inv(apid, matrix_mdev->matrix.apm);
641done:
642 mutex_unlock(&matrix_dev->lock);
643
644 return ret;
645}
646static DEVICE_ATTR_WO(assign_adapter);
647
648/**
649 * unassign_adapter_store
650 *
651 * @dev: the matrix device
652 * @attr: the mediated matrix device's unassign_adapter attribute
653 * @buf: a buffer containing the adapter number (APID) to be unassigned
654 * @count: the number of bytes in @buf
655 *
656 * Parses the APID from @buf and clears the corresponding bit in the mediated
657 * matrix device's APM.
658 *
659 * Returns the number of bytes processed if the APID is valid; otherwise,
660 * returns one of the following errors:
661 * -EINVAL if the APID is not a number
662 * -ENODEV if the APID it exceeds the maximum value configured for the
663 * system
664 */
665static ssize_t unassign_adapter_store(struct device *dev,
666 struct device_attribute *attr,
667 const char *buf, size_t count)
668{
669 int ret;
670 unsigned long apid;
671 struct mdev_device *mdev = mdev_from_dev(dev);
672 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
673
674 /* If the guest is running, disallow un-assignment of adapter */
675 if (matrix_mdev->kvm)
676 return -EBUSY;
677
678 ret = kstrtoul(buf, 0, &apid);
679 if (ret)
680 return ret;
681
682 if (apid > matrix_mdev->matrix.apm_max)
683 return -ENODEV;
684
685 mutex_lock(&matrix_dev->lock);
686 clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
687 mutex_unlock(&matrix_dev->lock);
688
689 return count;
690}
691static DEVICE_ATTR_WO(unassign_adapter);
692
693static int
694vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
695 unsigned long apqi)
696{
697 int ret;
698 unsigned long apid;
699 unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
700
701 if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
702 return vfio_ap_verify_queue_reserved(NULL, &apqi);
703
704 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
705 ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
706 if (ret)
707 return ret;
708 }
709
710 return 0;
711}
712
713/**
714 * assign_domain_store
715 *
716 * @dev: the matrix device
717 * @attr: the mediated matrix device's assign_domain attribute
718 * @buf: a buffer containing the AP queue index (APQI) of the domain to
719 * be assigned
720 * @count: the number of bytes in @buf
721 *
722 * Parses the APQI from @buf and sets the corresponding bit in the mediated
723 * matrix device's AQM.
724 *
725 * Returns the number of bytes processed if the APQI is valid; otherwise returns
726 * one of the following errors:
727 *
728 * 1. -EINVAL
729 * The APQI is not a valid number
730 *
731 * 2. -ENODEV
732 * The APQI exceeds the maximum value configured for the system
733 *
734 * 3. -EADDRNOTAVAIL
735 * An APQN derived from the cross product of the APQI being assigned
736 * and the APIDs previously assigned is not bound to the vfio_ap device
737 * driver; or, if no APIDs have yet been assigned, the APQI is not
738 * contained in an APQN bound to the vfio_ap device driver.
739 *
740 * 4. -EADDRINUSE
741 * An APQN derived from the cross product of the APQI being assigned
742 * and the APIDs previously assigned is being used by another mediated
743 * matrix device
744 */
745static ssize_t assign_domain_store(struct device *dev,
746 struct device_attribute *attr,
747 const char *buf, size_t count)
748{
749 int ret;
750 unsigned long apqi;
751 struct mdev_device *mdev = mdev_from_dev(dev);
752 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
753 unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
754
755 /* If the guest is running, disallow assignment of domain */
756 if (matrix_mdev->kvm)
757 return -EBUSY;
758
759 ret = kstrtoul(buf, 0, &apqi);
760 if (ret)
761 return ret;
762 if (apqi > max_apqi)
763 return -ENODEV;
764
765 mutex_lock(&matrix_dev->lock);
766
767 ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
768 if (ret)
769 goto done;
770
771 set_bit_inv(apqi, matrix_mdev->matrix.aqm);
772
773 ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
774 if (ret)
775 goto share_err;
776
777 ret = count;
778 goto done;
779
780share_err:
781 clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
782done:
783 mutex_unlock(&matrix_dev->lock);
784
785 return ret;
786}
787static DEVICE_ATTR_WO(assign_domain);
788
789
790/**
791 * unassign_domain_store
792 *
793 * @dev: the matrix device
794 * @attr: the mediated matrix device's unassign_domain attribute
795 * @buf: a buffer containing the AP queue index (APQI) of the domain to
796 * be unassigned
797 * @count: the number of bytes in @buf
798 *
799 * Parses the APQI from @buf and clears the corresponding bit in the
800 * mediated matrix device's AQM.
801 *
802 * Returns the number of bytes processed if the APQI is valid; otherwise,
803 * returns one of the following errors:
804 * -EINVAL if the APQI is not a number
805 * -ENODEV if the APQI exceeds the maximum value configured for the system
806 */
807static ssize_t unassign_domain_store(struct device *dev,
808 struct device_attribute *attr,
809 const char *buf, size_t count)
810{
811 int ret;
812 unsigned long apqi;
813 struct mdev_device *mdev = mdev_from_dev(dev);
814 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
815
816 /* If the guest is running, disallow un-assignment of domain */
817 if (matrix_mdev->kvm)
818 return -EBUSY;
819
820 ret = kstrtoul(buf, 0, &apqi);
821 if (ret)
822 return ret;
823
824 if (apqi > matrix_mdev->matrix.aqm_max)
825 return -ENODEV;
826
827 mutex_lock(&matrix_dev->lock);
828 clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
829 mutex_unlock(&matrix_dev->lock);
830
831 return count;
832}
833static DEVICE_ATTR_WO(unassign_domain);
834
835/**
836 * assign_control_domain_store
837 *
838 * @dev: the matrix device
839 * @attr: the mediated matrix device's assign_control_domain attribute
840 * @buf: a buffer containing the domain ID to be assigned
841 * @count: the number of bytes in @buf
842 *
843 * Parses the domain ID from @buf and sets the corresponding bit in the mediated
844 * matrix device's ADM.
845 *
846 * Returns the number of bytes processed if the domain ID is valid; otherwise,
847 * returns one of the following errors:
848 * -EINVAL if the ID is not a number
849 * -ENODEV if the ID exceeds the maximum value configured for the system
850 */
851static ssize_t assign_control_domain_store(struct device *dev,
852 struct device_attribute *attr,
853 const char *buf, size_t count)
854{
855 int ret;
856 unsigned long id;
857 struct mdev_device *mdev = mdev_from_dev(dev);
858 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
859
860 /* If the guest is running, disallow assignment of control domain */
861 if (matrix_mdev->kvm)
862 return -EBUSY;
863
864 ret = kstrtoul(buf, 0, &id);
865 if (ret)
866 return ret;
867
868 if (id > matrix_mdev->matrix.adm_max)
869 return -ENODEV;
870
871 /* Set the bit in the ADM (bitmask) corresponding to the AP control
872 * domain number (id). The bits in the mask, from most significant to
873 * least significant, correspond to IDs 0 up to the one less than the
874 * number of control domains that can be assigned.
875 */
876 mutex_lock(&matrix_dev->lock);
877 set_bit_inv(id, matrix_mdev->matrix.adm);
878 mutex_unlock(&matrix_dev->lock);
879
880 return count;
881}
882static DEVICE_ATTR_WO(assign_control_domain);
883
884/**
885 * unassign_control_domain_store
886 *
887 * @dev: the matrix device
888 * @attr: the mediated matrix device's unassign_control_domain attribute
889 * @buf: a buffer containing the domain ID to be unassigned
890 * @count: the number of bytes in @buf
891 *
892 * Parses the domain ID from @buf and clears the corresponding bit in the
893 * mediated matrix device's ADM.
894 *
895 * Returns the number of bytes processed if the domain ID is valid; otherwise,
896 * returns one of the following errors:
897 * -EINVAL if the ID is not a number
898 * -ENODEV if the ID exceeds the maximum value configured for the system
899 */
900static ssize_t unassign_control_domain_store(struct device *dev,
901 struct device_attribute *attr,
902 const char *buf, size_t count)
903{
904 int ret;
905 unsigned long domid;
906 struct mdev_device *mdev = mdev_from_dev(dev);
907 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
908 unsigned long max_domid = matrix_mdev->matrix.adm_max;
909
910 /* If the guest is running, disallow un-assignment of control domain */
911 if (matrix_mdev->kvm)
912 return -EBUSY;
913
914 ret = kstrtoul(buf, 0, &domid);
915 if (ret)
916 return ret;
917 if (domid > max_domid)
918 return -ENODEV;
919
920 mutex_lock(&matrix_dev->lock);
921 clear_bit_inv(domid, matrix_mdev->matrix.adm);
922 mutex_unlock(&matrix_dev->lock);
923
924 return count;
925}
926static DEVICE_ATTR_WO(unassign_control_domain);
927
928static ssize_t control_domains_show(struct device *dev,
929 struct device_attribute *dev_attr,
930 char *buf)
931{
932 unsigned long id;
933 int nchars = 0;
934 int n;
935 char *bufpos = buf;
936 struct mdev_device *mdev = mdev_from_dev(dev);
937 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
938 unsigned long max_domid = matrix_mdev->matrix.adm_max;
939
940 mutex_lock(&matrix_dev->lock);
941 for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
942 n = sprintf(bufpos, "%04lx\n", id);
943 bufpos += n;
944 nchars += n;
945 }
946 mutex_unlock(&matrix_dev->lock);
947
948 return nchars;
949}
950static DEVICE_ATTR_RO(control_domains);
951
952static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
953 char *buf)
954{
955 struct mdev_device *mdev = mdev_from_dev(dev);
956 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
957 char *bufpos = buf;
958 unsigned long apid;
959 unsigned long apqi;
960 unsigned long apid1;
961 unsigned long apqi1;
962 unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
963 unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
964 int nchars = 0;
965 int n;
966
967 apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
968 apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
969
970 mutex_lock(&matrix_dev->lock);
971
972 if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
973 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
974 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
975 naqm_bits) {
976 n = sprintf(bufpos, "%02lx.%04lx\n", apid,
977 apqi);
978 bufpos += n;
979 nchars += n;
980 }
981 }
982 } else if (apid1 < napm_bits) {
983 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
984 n = sprintf(bufpos, "%02lx.\n", apid);
985 bufpos += n;
986 nchars += n;
987 }
988 } else if (apqi1 < naqm_bits) {
989 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
990 n = sprintf(bufpos, ".%04lx\n", apqi);
991 bufpos += n;
992 nchars += n;
993 }
994 }
995
996 mutex_unlock(&matrix_dev->lock);
997
998 return nchars;
999}
1000static DEVICE_ATTR_RO(matrix);
1001
1002static struct attribute *vfio_ap_mdev_attrs[] = {
1003 &dev_attr_assign_adapter.attr,
1004 &dev_attr_unassign_adapter.attr,
1005 &dev_attr_assign_domain.attr,
1006 &dev_attr_unassign_domain.attr,
1007 &dev_attr_assign_control_domain.attr,
1008 &dev_attr_unassign_control_domain.attr,
1009 &dev_attr_control_domains.attr,
1010 &dev_attr_matrix.attr,
1011 NULL,
1012};
1013
1014static struct attribute_group vfio_ap_mdev_attr_group = {
1015 .attrs = vfio_ap_mdev_attrs
1016};
1017
1018static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1019 &vfio_ap_mdev_attr_group,
1020 NULL
1021};
1022
1023/**
1024 * vfio_ap_mdev_set_kvm
1025 *
1026 * @matrix_mdev: a mediated matrix device
1027 * @kvm: reference to KVM instance
1028 *
1029 * Verifies no other mediated matrix device has @kvm and sets a reference to
1030 * it in @matrix_mdev->kvm.
1031 *
1032 * Return 0 if no other mediated matrix device has a reference to @kvm;
1033 * otherwise, returns an -EPERM.
1034 */
1035static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1036 struct kvm *kvm)
1037{
1038 struct ap_matrix_mdev *m;
1039
1040 mutex_lock(&matrix_dev->lock);
1041
1042 list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1043 if ((m != matrix_mdev) && (m->kvm == kvm)) {
1044 mutex_unlock(&matrix_dev->lock);
1045 return -EPERM;
1046 }
1047 }
1048
1049 matrix_mdev->kvm = kvm;
1050 kvm_get_kvm(kvm);
1051 kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1052 mutex_unlock(&matrix_dev->lock);
1053
1054 return 0;
1055}
1056
1057/*
1058 * vfio_ap_mdev_iommu_notifier: IOMMU notifier callback
1059 *
1060 * @nb: The notifier block
1061 * @action: Action to be taken
1062 * @data: data associated with the request
1063 *
1064 * For an UNMAP request, unpin the guest IOVA (the NIB guest address we
1065 * pinned before). Other requests are ignored.
1066 *
1067 */
1068static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
1069 unsigned long action, void *data)
1070{
1071 struct ap_matrix_mdev *matrix_mdev;
1072
1073 matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
1074
1075 if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
1076 struct vfio_iommu_type1_dma_unmap *unmap = data;
1077 unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
1078
1079 vfio_unpin_pages(mdev_dev(matrix_mdev->mdev), &g_pfn, 1);
1080 return NOTIFY_OK;
1081 }
1082
1083 return NOTIFY_DONE;
1084}
1085
1086static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
1087 unsigned long action, void *data)
1088{
1089 int ret;
1090 struct ap_matrix_mdev *matrix_mdev;
1091
1092 if (action != VFIO_GROUP_NOTIFY_SET_KVM)
1093 return NOTIFY_OK;
1094
1095 matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
1096
1097 if (!data) {
1098 matrix_mdev->kvm = NULL;
1099 return NOTIFY_OK;
1100 }
1101
1102 ret = vfio_ap_mdev_set_kvm(matrix_mdev, data);
1103 if (ret)
1104 return NOTIFY_DONE;
1105
1106 /* If there is no CRYCB pointer, then we can't copy the masks */
1107 if (!matrix_mdev->kvm->arch.crypto.crycbd)
1108 return NOTIFY_DONE;
1109
1110 kvm_arch_crypto_set_masks(matrix_mdev->kvm, matrix_mdev->matrix.apm,
1111 matrix_mdev->matrix.aqm,
1112 matrix_mdev->matrix.adm);
1113
1114 return NOTIFY_OK;
1115}
1116
1117static void vfio_ap_irq_disable_apqn(int apqn)
1118{
1119 struct device *dev;
1120 struct vfio_ap_queue *q;
1121
1122 dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
1123 &apqn, match_apqn);
1124 if (dev) {
1125 q = dev_get_drvdata(dev);
1126 vfio_ap_irq_disable(q);
1127 put_device(dev);
1128 }
1129}
1130
1131int vfio_ap_mdev_reset_queue(unsigned int apid, unsigned int apqi,
1132 unsigned int retry)
1133{
1134 struct ap_queue_status status;
1135 int retry2 = 2;
1136 int apqn = AP_MKQID(apid, apqi);
1137
1138 do {
1139 status = ap_zapq(apqn);
1140 switch (status.response_code) {
1141 case AP_RESPONSE_NORMAL:
1142 while (!status.queue_empty && retry2--) {
1143 msleep(20);
1144 status = ap_tapq(apqn, NULL);
1145 }
1146 WARN_ON_ONCE(retry2 <= 0);
1147 return 0;
1148 case AP_RESPONSE_RESET_IN_PROGRESS:
1149 case AP_RESPONSE_BUSY:
1150 msleep(20);
1151 break;
1152 default:
1153 /* things are really broken, give up */
1154 return -EIO;
1155 }
1156 } while (retry--);
1157
1158 return -EBUSY;
1159}
1160
1161static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
1162{
1163 int ret;
1164 int rc = 0;
1165 unsigned long apid, apqi;
1166 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1167
1168 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
1169 matrix_mdev->matrix.apm_max + 1) {
1170 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1171 matrix_mdev->matrix.aqm_max + 1) {
1172 ret = vfio_ap_mdev_reset_queue(apid, apqi, 1);
1173 /*
1174 * Regardless whether a queue turns out to be busy, or
1175 * is not operational, we need to continue resetting
1176 * the remaining queues.
1177 */
1178 if (ret)
1179 rc = ret;
1180 vfio_ap_irq_disable_apqn(AP_MKQID(apid, apqi));
1181 }
1182 }
1183
1184 return rc;
1185}
1186
1187static int vfio_ap_mdev_open(struct mdev_device *mdev)
1188{
1189 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1190 unsigned long events;
1191 int ret;
1192
1193
1194 if (!try_module_get(THIS_MODULE))
1195 return -ENODEV;
1196
1197 matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
1198 events = VFIO_GROUP_NOTIFY_SET_KVM;
1199
1200 ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1201 &events, &matrix_mdev->group_notifier);
1202 if (ret) {
1203 module_put(THIS_MODULE);
1204 return ret;
1205 }
1206
1207 matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
1208 events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1209 ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1210 &events, &matrix_mdev->iommu_notifier);
1211 if (!ret)
1212 return ret;
1213
1214 vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1215 &matrix_mdev->group_notifier);
1216 module_put(THIS_MODULE);
1217 return ret;
1218}
1219
1220static void vfio_ap_mdev_release(struct mdev_device *mdev)
1221{
1222 struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1223
1224 mutex_lock(&matrix_dev->lock);
1225 if (matrix_mdev->kvm) {
1226 kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
1227 matrix_mdev->kvm->arch.crypto.pqap_hook = NULL;
1228 vfio_ap_mdev_reset_queues(mdev);
1229 kvm_put_kvm(matrix_mdev->kvm);
1230 matrix_mdev->kvm = NULL;
1231 }
1232 mutex_unlock(&matrix_dev->lock);
1233
1234 vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1235 &matrix_mdev->iommu_notifier);
1236 vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1237 &matrix_mdev->group_notifier);
1238 module_put(THIS_MODULE);
1239}
1240
1241static int vfio_ap_mdev_get_device_info(unsigned long arg)
1242{
1243 unsigned long minsz;
1244 struct vfio_device_info info;
1245
1246 minsz = offsetofend(struct vfio_device_info, num_irqs);
1247
1248 if (copy_from_user(&info, (void __user *)arg, minsz))
1249 return -EFAULT;
1250
1251 if (info.argsz < minsz)
1252 return -EINVAL;
1253
1254 info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1255 info.num_regions = 0;
1256 info.num_irqs = 0;
1257
1258 return copy_to_user((void __user *)arg, &info, minsz);
1259}
1260
1261static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
1262 unsigned int cmd, unsigned long arg)
1263{
1264 int ret;
1265
1266 mutex_lock(&matrix_dev->lock);
1267 switch (cmd) {
1268 case VFIO_DEVICE_GET_INFO:
1269 ret = vfio_ap_mdev_get_device_info(arg);
1270 break;
1271 case VFIO_DEVICE_RESET:
1272 ret = vfio_ap_mdev_reset_queues(mdev);
1273 break;
1274 default:
1275 ret = -EOPNOTSUPP;
1276 break;
1277 }
1278 mutex_unlock(&matrix_dev->lock);
1279
1280 return ret;
1281}
1282
1283static const struct mdev_parent_ops vfio_ap_matrix_ops = {
1284 .owner = THIS_MODULE,
1285 .supported_type_groups = vfio_ap_mdev_type_groups,
1286 .mdev_attr_groups = vfio_ap_mdev_attr_groups,
1287 .create = vfio_ap_mdev_create,
1288 .remove = vfio_ap_mdev_remove,
1289 .open = vfio_ap_mdev_open,
1290 .release = vfio_ap_mdev_release,
1291 .ioctl = vfio_ap_mdev_ioctl,
1292};
1293
1294int vfio_ap_mdev_register(void)
1295{
1296 atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
1297
1298 return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
1299}
1300
1301void vfio_ap_mdev_unregister(void)
1302{
1303 mdev_unregister_device(&matrix_dev->device);
1304}