Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  4 *
  5 * Copyright (C) 2008 David Brownell
  6 */
  7#include <linux/kernel.h>
  8#include <linux/init.h>
  9#include <linux/bcd.h>
 10#include <linux/slab.h>
 11#include <linux/rtc.h>
 12#include <linux/workqueue.h>
 13
 14#include <linux/spi/spi.h>
 15#include <linux/spi/ds1305.h>
 16#include <linux/module.h>
 17
 18
 19/*
 20 * Registers ... mask DS1305_WRITE into register address to write,
 21 * otherwise you're reading it.  All non-bitmask values are BCD.
 22 */
 23#define DS1305_WRITE		0x80
 24
 25
 26/* RTC date/time ... the main special cases are that we:
 27 *  - Need fancy "hours" encoding in 12hour mode
 28 *  - Don't rely on the "day-of-week" field (or tm_wday)
 29 *  - Are a 21st-century clock (2000 <= year < 2100)
 30 */
 31#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 32
 33#define DS1305_SEC		0x00		/* register addresses */
 34#define DS1305_MIN		0x01
 35#define DS1305_HOUR		0x02
 36#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 37#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 38#define DS1305_WDAY		0x03
 39#define DS1305_MDAY		0x04
 40#define DS1305_MON		0x05
 41#define DS1305_YEAR		0x06
 42
 43
 44/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 45 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 46 *
 47 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 48 * only one day into the future (vs potentially up to a week).
 49 *
 50 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 51 * don't currently support them.  We'd either need to do it only when
 52 * no alarm is pending (not the standard model), or to use the second
 53 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 54 * it's wired up a second IRQ we know, or that INTCN is set)
 55 */
 56#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 57#define DS1305_ALM_DISABLE	0x80
 58
 59#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 60#define DS1305_ALM1(r)		(0x0b + (r))
 61
 62
 63/* three control registers */
 64#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 65
 66#define DS1305_CONTROL		0x0f		/* register addresses */
 67#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 68#	define DS1305_WP		0x40	/* write protect */
 69#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 70#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 71#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 72#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 73#define DS1305_STATUS		0x10
 74/* status has just AEIx bits, mirrored as IRQFx */
 75#define DS1305_TRICKLE		0x11
 76/* trickle bits are defined in <linux/spi/ds1305.h> */
 77
 78/* a bunch of NVRAM */
 79#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 80
 81#define DS1305_NVRAM		0x20		/* register addresses */
 82
 83
 84struct ds1305 {
 85	struct spi_device	*spi;
 86	struct rtc_device	*rtc;
 87
 88	struct work_struct	work;
 89
 90	unsigned long		flags;
 91#define FLAG_EXITING	0
 92
 93	bool			hr12;
 94	u8			ctrl[DS1305_CONTROL_LEN];
 95};
 96
 97
 98/*----------------------------------------------------------------------*/
 99
100/*
101 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
102 * software (like a bootloader) which may require it.
103 */
104
105static unsigned bcd2hour(u8 bcd)
106{
107	if (bcd & DS1305_HR_12) {
108		unsigned	hour = 0;
109
110		bcd &= ~DS1305_HR_12;
111		if (bcd & DS1305_HR_PM) {
112			hour = 12;
113			bcd &= ~DS1305_HR_PM;
114		}
115		hour += bcd2bin(bcd);
116		return hour - 1;
117	}
118	return bcd2bin(bcd);
119}
120
121static u8 hour2bcd(bool hr12, int hour)
122{
123	if (hr12) {
124		hour++;
125		if (hour <= 12)
126			return DS1305_HR_12 | bin2bcd(hour);
127		hour -= 12;
128		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
129	}
130	return bin2bcd(hour);
131}
132
133/*----------------------------------------------------------------------*/
134
135/*
136 * Interface to RTC framework
137 */
138
139static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
140{
141	struct ds1305	*ds1305 = dev_get_drvdata(dev);
142	u8		buf[2];
143	long		err = -EINVAL;
144
145	buf[0] = DS1305_WRITE | DS1305_CONTROL;
146	buf[1] = ds1305->ctrl[0];
147
148	if (enabled) {
149		if (ds1305->ctrl[0] & DS1305_AEI0)
150			goto done;
151		buf[1] |= DS1305_AEI0;
152	} else {
153		if (!(buf[1] & DS1305_AEI0))
154			goto done;
155		buf[1] &= ~DS1305_AEI0;
156	}
157	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
158	if (err >= 0)
159		ds1305->ctrl[0] = buf[1];
160done:
161	return err;
162
163}
164
165
166/*
167 * Get/set of date and time is pretty normal.
168 */
169
170static int ds1305_get_time(struct device *dev, struct rtc_time *time)
171{
172	struct ds1305	*ds1305 = dev_get_drvdata(dev);
173	u8		addr = DS1305_SEC;
174	u8		buf[DS1305_RTC_LEN];
175	int		status;
176
177	/* Use write-then-read to get all the date/time registers
178	 * since dma from stack is nonportable
179	 */
180	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
181			buf, sizeof(buf));
182	if (status < 0)
183		return status;
184
185	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
186
187	/* Decode the registers */
188	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
189	time->tm_min = bcd2bin(buf[DS1305_MIN]);
190	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
191	time->tm_wday = buf[DS1305_WDAY] - 1;
192	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
193	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
194	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
195
196	dev_vdbg(dev, "%s secs=%d, mins=%d, "
197		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
198		"read", time->tm_sec, time->tm_min,
199		time->tm_hour, time->tm_mday,
200		time->tm_mon, time->tm_year, time->tm_wday);
201
202	return 0;
203}
204
205static int ds1305_set_time(struct device *dev, struct rtc_time *time)
206{
207	struct ds1305	*ds1305 = dev_get_drvdata(dev);
208	u8		buf[1 + DS1305_RTC_LEN];
209	u8		*bp = buf;
210
211	dev_vdbg(dev, "%s secs=%d, mins=%d, "
212		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
213		"write", time->tm_sec, time->tm_min,
214		time->tm_hour, time->tm_mday,
215		time->tm_mon, time->tm_year, time->tm_wday);
216
217	/* Write registers starting at the first time/date address. */
218	*bp++ = DS1305_WRITE | DS1305_SEC;
219
220	*bp++ = bin2bcd(time->tm_sec);
221	*bp++ = bin2bcd(time->tm_min);
222	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
223	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
224	*bp++ = bin2bcd(time->tm_mday);
225	*bp++ = bin2bcd(time->tm_mon + 1);
226	*bp++ = bin2bcd(time->tm_year - 100);
227
228	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
229
230	/* use write-then-read since dma from stack is nonportable */
231	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
232			NULL, 0);
233}
234
235/*
236 * Get/set of alarm is a bit funky:
237 *
238 * - First there's the inherent raciness of getting the (partitioned)
239 *   status of an alarm that could trigger while we're reading parts
240 *   of that status.
241 *
242 * - Second there's its limited range (we could increase it a bit by
243 *   relying on WDAY), which means it will easily roll over.
244 *
245 * - Third there's the choice of two alarms and alarm signals.
246 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
247 *   that's the only real option for DS1306 runtime alarms, and is
248 *   natural on DS1305.
249 *
250 * - Fourth, there's also ALM1, and a second interrupt signal:
251 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
252 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
253 *       and it won't work when VCC1 is active.
254 *
255 *   So to be most general, we should probably set both alarms to the
256 *   same value, letting ALM1 be the wakeup event source on DS1306
257 *   and handling several wiring options on DS1305.
258 *
259 * - Fifth, we support the polled mode (as well as possible; why not?)
260 *   even when no interrupt line is wired to an IRQ.
261 */
262
263/*
264 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
265 */
266static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
267{
268	struct ds1305	*ds1305 = dev_get_drvdata(dev);
269	struct spi_device *spi = ds1305->spi;
270	u8		addr;
271	int		status;
272	u8		buf[DS1305_ALM_LEN];
273
274	/* Refresh control register cache BEFORE reading ALM0 registers,
275	 * since reading alarm registers acks any pending IRQ.  That
276	 * makes returning "pending" status a bit of a lie, but that bit
277	 * of EFI status is at best fragile anyway (given IRQ handlers).
278	 */
279	addr = DS1305_CONTROL;
280	status = spi_write_then_read(spi, &addr, sizeof(addr),
281			ds1305->ctrl, sizeof(ds1305->ctrl));
282	if (status < 0)
283		return status;
284
285	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
286	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
287
288	/* get and check ALM0 registers */
289	addr = DS1305_ALM0(DS1305_SEC);
290	status = spi_write_then_read(spi, &addr, sizeof(addr),
291			buf, sizeof(buf));
292	if (status < 0)
293		return status;
294
295	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
296		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
297		buf[DS1305_HOUR], buf[DS1305_WDAY]);
298
299	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
300			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
301			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
302		return -EIO;
303
304	/* Stuff these values into alm->time and let RTC framework code
305	 * fill in the rest ... and also handle rollover to tomorrow when
306	 * that's needed.
307	 */
308	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
309	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
310	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
311
312	return 0;
313}
314
315/*
316 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
317 */
318static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
319{
320	struct ds1305	*ds1305 = dev_get_drvdata(dev);
321	struct spi_device *spi = ds1305->spi;
322	unsigned long	now, later;
323	struct rtc_time	tm;
324	int		status;
325	u8		buf[1 + DS1305_ALM_LEN];
326
327	/* convert desired alarm to time_t */
328	later = rtc_tm_to_time64(&alm->time);
329
330	/* Read current time as time_t */
331	status = ds1305_get_time(dev, &tm);
332	if (status < 0)
333		return status;
334	now = rtc_tm_to_time64(&tm);
335
336	/* make sure alarm fires within the next 24 hours */
337	if (later <= now)
338		return -EINVAL;
339	if ((later - now) > 24 * 60 * 60)
340		return -EDOM;
341
342	/* disable alarm if needed */
343	if (ds1305->ctrl[0] & DS1305_AEI0) {
344		ds1305->ctrl[0] &= ~DS1305_AEI0;
345
346		buf[0] = DS1305_WRITE | DS1305_CONTROL;
347		buf[1] = ds1305->ctrl[0];
348		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
349		if (status < 0)
350			return status;
351	}
352
353	/* write alarm */
354	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
355	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
356	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
357	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
358	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
359
360	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
361		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
362		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
363
364	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
365	if (status < 0)
366		return status;
367
368	/* enable alarm if requested */
369	if (alm->enabled) {
370		ds1305->ctrl[0] |= DS1305_AEI0;
371
372		buf[0] = DS1305_WRITE | DS1305_CONTROL;
373		buf[1] = ds1305->ctrl[0];
374		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
375	}
376
377	return status;
378}
379
380#ifdef CONFIG_PROC_FS
381
382static int ds1305_proc(struct device *dev, struct seq_file *seq)
383{
384	struct ds1305	*ds1305 = dev_get_drvdata(dev);
385	char		*diodes = "no";
386	char		*resistors = "";
387
388	/* ctrl[2] is treated as read-only; no locking needed */
389	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
390		switch (ds1305->ctrl[2] & 0x0c) {
391		case DS1305_TRICKLE_DS2:
392			diodes = "2 diodes, ";
393			break;
394		case DS1305_TRICKLE_DS1:
395			diodes = "1 diode, ";
396			break;
397		default:
398			goto done;
399		}
400		switch (ds1305->ctrl[2] & 0x03) {
401		case DS1305_TRICKLE_2K:
402			resistors = "2k Ohm";
403			break;
404		case DS1305_TRICKLE_4K:
405			resistors = "4k Ohm";
406			break;
407		case DS1305_TRICKLE_8K:
408			resistors = "8k Ohm";
409			break;
410		default:
411			diodes = "no";
412			break;
413		}
414	}
415
416done:
417	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
418
419	return 0;
420}
421
422#else
423#define ds1305_proc	NULL
424#endif
425
426static const struct rtc_class_ops ds1305_ops = {
427	.read_time	= ds1305_get_time,
428	.set_time	= ds1305_set_time,
429	.read_alarm	= ds1305_get_alarm,
430	.set_alarm	= ds1305_set_alarm,
431	.proc		= ds1305_proc,
432	.alarm_irq_enable = ds1305_alarm_irq_enable,
433};
434
435static void ds1305_work(struct work_struct *work)
436{
437	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
 
438	struct spi_device *spi = ds1305->spi;
439	u8		buf[3];
440	int		status;
441
442	/* lock to protect ds1305->ctrl */
443	rtc_lock(ds1305->rtc);
444
445	/* Disable the IRQ, and clear its status ... for now, we "know"
446	 * that if more than one alarm is active, they're in sync.
447	 * Note that reading ALM data registers also clears IRQ status.
448	 */
449	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
450	ds1305->ctrl[1] = 0;
451
452	buf[0] = DS1305_WRITE | DS1305_CONTROL;
453	buf[1] = ds1305->ctrl[0];
454	buf[2] = 0;
455
456	status = spi_write_then_read(spi, buf, sizeof(buf),
457			NULL, 0);
458	if (status < 0)
459		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
460
461	rtc_unlock(ds1305->rtc);
462
463	if (!test_bit(FLAG_EXITING, &ds1305->flags))
464		enable_irq(spi->irq);
465
466	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
467}
468
469/*
470 * This "real" IRQ handler hands off to a workqueue mostly to allow
471 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
472 * I/O requests in IRQ context (to clear the IRQ status).
473 */
474static irqreturn_t ds1305_irq(int irq, void *p)
475{
476	struct ds1305		*ds1305 = p;
477
478	disable_irq(irq);
479	schedule_work(&ds1305->work);
480	return IRQ_HANDLED;
481}
482
483/*----------------------------------------------------------------------*/
484
485/*
486 * Interface for NVRAM
487 */
488
489static void msg_init(struct spi_message *m, struct spi_transfer *x,
490		u8 *addr, size_t count, char *tx, char *rx)
491{
492	spi_message_init(m);
493	memset(x, 0, 2 * sizeof(*x));
494
495	x->tx_buf = addr;
496	x->len = 1;
497	spi_message_add_tail(x, m);
498
499	x++;
500
501	x->tx_buf = tx;
502	x->rx_buf = rx;
503	x->len = count;
504	spi_message_add_tail(x, m);
505}
506
507static int ds1305_nvram_read(void *priv, unsigned int off, void *buf,
508			     size_t count)
509{
510	struct ds1305		*ds1305 = priv;
511	struct spi_device	*spi = ds1305->spi;
512	u8			addr;
513	struct spi_message	m;
514	struct spi_transfer	x[2];
515
516	addr = DS1305_NVRAM + off;
517	msg_init(&m, x, &addr, count, NULL, buf);
518
519	return spi_sync(spi, &m);
520}
521
522static int ds1305_nvram_write(void *priv, unsigned int off, void *buf,
523			      size_t count)
524{
525	struct ds1305		*ds1305 = priv;
526	struct spi_device	*spi = ds1305->spi;
527	u8			addr;
528	struct spi_message	m;
529	struct spi_transfer	x[2];
530
531	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
532	msg_init(&m, x, &addr, count, buf, NULL);
533
534	return spi_sync(spi, &m);
535}
536
537/*----------------------------------------------------------------------*/
538
539/*
540 * Interface to SPI stack
541 */
542
543static int ds1305_probe(struct spi_device *spi)
544{
545	struct ds1305			*ds1305;
546	int				status;
547	u8				addr, value;
548	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
549	bool				write_ctrl = false;
550	struct nvmem_config ds1305_nvmem_cfg = {
551		.name = "ds1305_nvram",
552		.word_size = 1,
553		.stride = 1,
554		.size = DS1305_NVRAM_LEN,
555		.reg_read = ds1305_nvram_read,
556		.reg_write = ds1305_nvram_write,
557	};
558
559	/* Sanity check board setup data.  This may be hooked up
560	 * in 3wire mode, but we don't care.  Note that unless
561	 * there's an inverter in place, this needs SPI_CS_HIGH!
562	 */
563	if ((spi->bits_per_word && spi->bits_per_word != 8)
564			|| (spi->max_speed_hz > 2000000)
565			|| !(spi->mode & SPI_CPHA))
566		return -EINVAL;
567
568	/* set up driver data */
569	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
570	if (!ds1305)
571		return -ENOMEM;
572	ds1305->spi = spi;
573	spi_set_drvdata(spi, ds1305);
574
575	/* read and cache control registers */
576	addr = DS1305_CONTROL;
577	status = spi_write_then_read(spi, &addr, sizeof(addr),
578			ds1305->ctrl, sizeof(ds1305->ctrl));
579	if (status < 0) {
580		dev_dbg(&spi->dev, "can't %s, %d\n",
581				"read", status);
582		return status;
583	}
584
585	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
586
587	/* Sanity check register values ... partially compensating for the
588	 * fact that SPI has no device handshake.  A pullup on MISO would
589	 * make these tests fail; but not all systems will have one.  If
590	 * some register is neither 0x00 nor 0xff, a chip is likely there.
591	 */
592	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
593		dev_dbg(&spi->dev, "RTC chip is not present\n");
594		return -ENODEV;
595	}
596	if (ds1305->ctrl[2] == 0)
597		dev_dbg(&spi->dev, "chip may not be present\n");
598
599	/* enable writes if needed ... if we were paranoid it would
600	 * make sense to enable them only when absolutely necessary.
601	 */
602	if (ds1305->ctrl[0] & DS1305_WP) {
603		u8		buf[2];
604
605		ds1305->ctrl[0] &= ~DS1305_WP;
606
607		buf[0] = DS1305_WRITE | DS1305_CONTROL;
608		buf[1] = ds1305->ctrl[0];
609		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
610
611		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
612		if (status < 0)
613			return status;
614	}
615
616	/* on DS1305, maybe start oscillator; like most low power
617	 * oscillators, it may take a second to stabilize
618	 */
619	if (ds1305->ctrl[0] & DS1305_nEOSC) {
620		ds1305->ctrl[0] &= ~DS1305_nEOSC;
621		write_ctrl = true;
622		dev_warn(&spi->dev, "SET TIME!\n");
623	}
624
625	/* ack any pending IRQs */
626	if (ds1305->ctrl[1]) {
627		ds1305->ctrl[1] = 0;
628		write_ctrl = true;
629	}
630
631	/* this may need one-time (re)init */
632	if (pdata) {
633		/* maybe enable trickle charge */
634		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
635			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
636						| pdata->trickle;
637			write_ctrl = true;
638		}
639
640		/* on DS1306, configure 1 Hz signal */
641		if (pdata->is_ds1306) {
642			if (pdata->en_1hz) {
643				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
644					ds1305->ctrl[0] |= DS1306_1HZ;
645					write_ctrl = true;
646				}
647			} else {
648				if (ds1305->ctrl[0] & DS1306_1HZ) {
649					ds1305->ctrl[0] &= ~DS1306_1HZ;
650					write_ctrl = true;
651				}
652			}
653		}
654	}
655
656	if (write_ctrl) {
657		u8		buf[4];
658
659		buf[0] = DS1305_WRITE | DS1305_CONTROL;
660		buf[1] = ds1305->ctrl[0];
661		buf[2] = ds1305->ctrl[1];
662		buf[3] = ds1305->ctrl[2];
663		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
664		if (status < 0) {
665			dev_dbg(&spi->dev, "can't %s, %d\n",
666					"write", status);
667			return status;
668		}
669
670		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
671	}
672
673	/* see if non-Linux software set up AM/PM mode */
674	addr = DS1305_HOUR;
675	status = spi_write_then_read(spi, &addr, sizeof(addr),
676				&value, sizeof(value));
677	if (status < 0) {
678		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
679		return status;
680	}
681
682	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
683	if (ds1305->hr12)
684		dev_dbg(&spi->dev, "AM/PM\n");
685
686	/* register RTC ... from here on, ds1305->ctrl needs locking */
687	ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
688	if (IS_ERR(ds1305->rtc))
689		return PTR_ERR(ds1305->rtc);
690
691	ds1305->rtc->ops = &ds1305_ops;
692	ds1305->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
693	ds1305->rtc->range_max = RTC_TIMESTAMP_END_2099;
694
695	ds1305_nvmem_cfg.priv = ds1305;
696	status = devm_rtc_register_device(ds1305->rtc);
 
697	if (status)
698		return status;
699
700	devm_rtc_nvmem_register(ds1305->rtc, &ds1305_nvmem_cfg);
701
702	/* Maybe set up alarm IRQ; be ready to handle it triggering right
703	 * away.  NOTE that we don't share this.  The signal is active low,
704	 * and we can't ack it before a SPI message delay.  We temporarily
705	 * disable the IRQ until it's acked, which lets us work with more
706	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
707	 */
708	if (spi->irq) {
709		INIT_WORK(&ds1305->work, ds1305_work);
710		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
711				0, dev_name(&ds1305->rtc->dev), ds1305);
712		if (status < 0) {
713			dev_err(&spi->dev, "request_irq %d --> %d\n",
714					spi->irq, status);
715		} else {
716			device_set_wakeup_capable(&spi->dev, 1);
717		}
718	}
719
720	return 0;
721}
722
723static void ds1305_remove(struct spi_device *spi)
724{
725	struct ds1305 *ds1305 = spi_get_drvdata(spi);
726
727	/* carefully shut down irq and workqueue, if present */
728	if (spi->irq) {
729		set_bit(FLAG_EXITING, &ds1305->flags);
730		devm_free_irq(&spi->dev, spi->irq, ds1305);
731		cancel_work_sync(&ds1305->work);
732	}
 
 
733}
734
735static struct spi_driver ds1305_driver = {
736	.driver.name	= "rtc-ds1305",
737	.probe		= ds1305_probe,
738	.remove		= ds1305_remove,
739	/* REVISIT add suspend/resume */
740};
741
742module_spi_driver(ds1305_driver);
743
744MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
745MODULE_LICENSE("GPL");
746MODULE_ALIAS("spi:rtc-ds1305");
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
  4 *
  5 * Copyright (C) 2008 David Brownell
  6 */
  7#include <linux/kernel.h>
  8#include <linux/init.h>
  9#include <linux/bcd.h>
 10#include <linux/slab.h>
 11#include <linux/rtc.h>
 12#include <linux/workqueue.h>
 13
 14#include <linux/spi/spi.h>
 15#include <linux/spi/ds1305.h>
 16#include <linux/module.h>
 17
 18
 19/*
 20 * Registers ... mask DS1305_WRITE into register address to write,
 21 * otherwise you're reading it.  All non-bitmask values are BCD.
 22 */
 23#define DS1305_WRITE		0x80
 24
 25
 26/* RTC date/time ... the main special cases are that we:
 27 *  - Need fancy "hours" encoding in 12hour mode
 28 *  - Don't rely on the "day-of-week" field (or tm_wday)
 29 *  - Are a 21st-century clock (2000 <= year < 2100)
 30 */
 31#define DS1305_RTC_LEN		7		/* bytes for RTC regs */
 32
 33#define DS1305_SEC		0x00		/* register addresses */
 34#define DS1305_MIN		0x01
 35#define DS1305_HOUR		0x02
 36#	define DS1305_HR_12		0x40	/* set == 12 hr mode */
 37#	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
 38#define DS1305_WDAY		0x03
 39#define DS1305_MDAY		0x04
 40#define DS1305_MON		0x05
 41#define DS1305_YEAR		0x06
 42
 43
 44/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
 45 * DS1305_ALM_DISABLE disables a match field (some combos are bad).
 46 *
 47 * NOTE that since we don't use WDAY, we limit ourselves to alarms
 48 * only one day into the future (vs potentially up to a week).
 49 *
 50 * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
 51 * don't currently support them.  We'd either need to do it only when
 52 * no alarm is pending (not the standard model), or to use the second
 53 * alarm (implying that this is a DS1305 not DS1306, *and* that either
 54 * it's wired up a second IRQ we know, or that INTCN is set)
 55 */
 56#define DS1305_ALM_LEN		4		/* bytes for ALM regs */
 57#define DS1305_ALM_DISABLE	0x80
 58
 59#define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
 60#define DS1305_ALM1(r)		(0x0b + (r))
 61
 62
 63/* three control registers */
 64#define DS1305_CONTROL_LEN	3		/* bytes of control regs */
 65
 66#define DS1305_CONTROL		0x0f		/* register addresses */
 67#	define DS1305_nEOSC		0x80	/* low enables oscillator */
 68#	define DS1305_WP		0x40	/* write protect */
 69#	define DS1305_INTCN		0x04	/* clear == only int0 used */
 70#	define DS1306_1HZ		0x04	/* enable 1Hz output */
 71#	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
 72#	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
 73#define DS1305_STATUS		0x10
 74/* status has just AEIx bits, mirrored as IRQFx */
 75#define DS1305_TRICKLE		0x11
 76/* trickle bits are defined in <linux/spi/ds1305.h> */
 77
 78/* a bunch of NVRAM */
 79#define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
 80
 81#define DS1305_NVRAM		0x20		/* register addresses */
 82
 83
 84struct ds1305 {
 85	struct spi_device	*spi;
 86	struct rtc_device	*rtc;
 87
 88	struct work_struct	work;
 89
 90	unsigned long		flags;
 91#define FLAG_EXITING	0
 92
 93	bool			hr12;
 94	u8			ctrl[DS1305_CONTROL_LEN];
 95};
 96
 97
 98/*----------------------------------------------------------------------*/
 99
100/*
101 * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
102 * software (like a bootloader) which may require it.
103 */
104
105static unsigned bcd2hour(u8 bcd)
106{
107	if (bcd & DS1305_HR_12) {
108		unsigned	hour = 0;
109
110		bcd &= ~DS1305_HR_12;
111		if (bcd & DS1305_HR_PM) {
112			hour = 12;
113			bcd &= ~DS1305_HR_PM;
114		}
115		hour += bcd2bin(bcd);
116		return hour - 1;
117	}
118	return bcd2bin(bcd);
119}
120
121static u8 hour2bcd(bool hr12, int hour)
122{
123	if (hr12) {
124		hour++;
125		if (hour <= 12)
126			return DS1305_HR_12 | bin2bcd(hour);
127		hour -= 12;
128		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
129	}
130	return bin2bcd(hour);
131}
132
133/*----------------------------------------------------------------------*/
134
135/*
136 * Interface to RTC framework
137 */
138
139static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
140{
141	struct ds1305	*ds1305 = dev_get_drvdata(dev);
142	u8		buf[2];
143	long		err = -EINVAL;
144
145	buf[0] = DS1305_WRITE | DS1305_CONTROL;
146	buf[1] = ds1305->ctrl[0];
147
148	if (enabled) {
149		if (ds1305->ctrl[0] & DS1305_AEI0)
150			goto done;
151		buf[1] |= DS1305_AEI0;
152	} else {
153		if (!(buf[1] & DS1305_AEI0))
154			goto done;
155		buf[1] &= ~DS1305_AEI0;
156	}
157	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
158	if (err >= 0)
159		ds1305->ctrl[0] = buf[1];
160done:
161	return err;
162
163}
164
165
166/*
167 * Get/set of date and time is pretty normal.
168 */
169
170static int ds1305_get_time(struct device *dev, struct rtc_time *time)
171{
172	struct ds1305	*ds1305 = dev_get_drvdata(dev);
173	u8		addr = DS1305_SEC;
174	u8		buf[DS1305_RTC_LEN];
175	int		status;
176
177	/* Use write-then-read to get all the date/time registers
178	 * since dma from stack is nonportable
179	 */
180	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
181			buf, sizeof(buf));
182	if (status < 0)
183		return status;
184
185	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
186
187	/* Decode the registers */
188	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
189	time->tm_min = bcd2bin(buf[DS1305_MIN]);
190	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
191	time->tm_wday = buf[DS1305_WDAY] - 1;
192	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
193	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
194	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
195
196	dev_vdbg(dev, "%s secs=%d, mins=%d, "
197		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
198		"read", time->tm_sec, time->tm_min,
199		time->tm_hour, time->tm_mday,
200		time->tm_mon, time->tm_year, time->tm_wday);
201
202	return 0;
203}
204
205static int ds1305_set_time(struct device *dev, struct rtc_time *time)
206{
207	struct ds1305	*ds1305 = dev_get_drvdata(dev);
208	u8		buf[1 + DS1305_RTC_LEN];
209	u8		*bp = buf;
210
211	dev_vdbg(dev, "%s secs=%d, mins=%d, "
212		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
213		"write", time->tm_sec, time->tm_min,
214		time->tm_hour, time->tm_mday,
215		time->tm_mon, time->tm_year, time->tm_wday);
216
217	/* Write registers starting at the first time/date address. */
218	*bp++ = DS1305_WRITE | DS1305_SEC;
219
220	*bp++ = bin2bcd(time->tm_sec);
221	*bp++ = bin2bcd(time->tm_min);
222	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
223	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
224	*bp++ = bin2bcd(time->tm_mday);
225	*bp++ = bin2bcd(time->tm_mon + 1);
226	*bp++ = bin2bcd(time->tm_year - 100);
227
228	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
229
230	/* use write-then-read since dma from stack is nonportable */
231	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
232			NULL, 0);
233}
234
235/*
236 * Get/set of alarm is a bit funky:
237 *
238 * - First there's the inherent raciness of getting the (partitioned)
239 *   status of an alarm that could trigger while we're reading parts
240 *   of that status.
241 *
242 * - Second there's its limited range (we could increase it a bit by
243 *   relying on WDAY), which means it will easily roll over.
244 *
245 * - Third there's the choice of two alarms and alarm signals.
246 *   Here we use ALM0 and expect that nINT0 (open drain) is used;
247 *   that's the only real option for DS1306 runtime alarms, and is
248 *   natural on DS1305.
249 *
250 * - Fourth, there's also ALM1, and a second interrupt signal:
251 *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
252 *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
253 *       and it won't work when VCC1 is active.
254 *
255 *   So to be most general, we should probably set both alarms to the
256 *   same value, letting ALM1 be the wakeup event source on DS1306
257 *   and handling several wiring options on DS1305.
258 *
259 * - Fifth, we support the polled mode (as well as possible; why not?)
260 *   even when no interrupt line is wired to an IRQ.
261 */
262
263/*
264 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
265 */
266static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
267{
268	struct ds1305	*ds1305 = dev_get_drvdata(dev);
269	struct spi_device *spi = ds1305->spi;
270	u8		addr;
271	int		status;
272	u8		buf[DS1305_ALM_LEN];
273
274	/* Refresh control register cache BEFORE reading ALM0 registers,
275	 * since reading alarm registers acks any pending IRQ.  That
276	 * makes returning "pending" status a bit of a lie, but that bit
277	 * of EFI status is at best fragile anyway (given IRQ handlers).
278	 */
279	addr = DS1305_CONTROL;
280	status = spi_write_then_read(spi, &addr, sizeof(addr),
281			ds1305->ctrl, sizeof(ds1305->ctrl));
282	if (status < 0)
283		return status;
284
285	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
286	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
287
288	/* get and check ALM0 registers */
289	addr = DS1305_ALM0(DS1305_SEC);
290	status = spi_write_then_read(spi, &addr, sizeof(addr),
291			buf, sizeof(buf));
292	if (status < 0)
293		return status;
294
295	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
296		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
297		buf[DS1305_HOUR], buf[DS1305_WDAY]);
298
299	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
300			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
301			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
302		return -EIO;
303
304	/* Stuff these values into alm->time and let RTC framework code
305	 * fill in the rest ... and also handle rollover to tomorrow when
306	 * that's needed.
307	 */
308	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
309	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
310	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
311
312	return 0;
313}
314
315/*
316 * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
317 */
318static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
319{
320	struct ds1305	*ds1305 = dev_get_drvdata(dev);
321	struct spi_device *spi = ds1305->spi;
322	unsigned long	now, later;
323	struct rtc_time	tm;
324	int		status;
325	u8		buf[1 + DS1305_ALM_LEN];
326
327	/* convert desired alarm to time_t */
328	later = rtc_tm_to_time64(&alm->time);
329
330	/* Read current time as time_t */
331	status = ds1305_get_time(dev, &tm);
332	if (status < 0)
333		return status;
334	now = rtc_tm_to_time64(&tm);
335
336	/* make sure alarm fires within the next 24 hours */
337	if (later <= now)
338		return -EINVAL;
339	if ((later - now) > 24 * 60 * 60)
340		return -EDOM;
341
342	/* disable alarm if needed */
343	if (ds1305->ctrl[0] & DS1305_AEI0) {
344		ds1305->ctrl[0] &= ~DS1305_AEI0;
345
346		buf[0] = DS1305_WRITE | DS1305_CONTROL;
347		buf[1] = ds1305->ctrl[0];
348		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
349		if (status < 0)
350			return status;
351	}
352
353	/* write alarm */
354	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
355	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
356	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
357	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
358	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
359
360	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
361		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
362		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
363
364	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
365	if (status < 0)
366		return status;
367
368	/* enable alarm if requested */
369	if (alm->enabled) {
370		ds1305->ctrl[0] |= DS1305_AEI0;
371
372		buf[0] = DS1305_WRITE | DS1305_CONTROL;
373		buf[1] = ds1305->ctrl[0];
374		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
375	}
376
377	return status;
378}
379
380#ifdef CONFIG_PROC_FS
381
382static int ds1305_proc(struct device *dev, struct seq_file *seq)
383{
384	struct ds1305	*ds1305 = dev_get_drvdata(dev);
385	char		*diodes = "no";
386	char		*resistors = "";
387
388	/* ctrl[2] is treated as read-only; no locking needed */
389	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
390		switch (ds1305->ctrl[2] & 0x0c) {
391		case DS1305_TRICKLE_DS2:
392			diodes = "2 diodes, ";
393			break;
394		case DS1305_TRICKLE_DS1:
395			diodes = "1 diode, ";
396			break;
397		default:
398			goto done;
399		}
400		switch (ds1305->ctrl[2] & 0x03) {
401		case DS1305_TRICKLE_2K:
402			resistors = "2k Ohm";
403			break;
404		case DS1305_TRICKLE_4K:
405			resistors = "4k Ohm";
406			break;
407		case DS1305_TRICKLE_8K:
408			resistors = "8k Ohm";
409			break;
410		default:
411			diodes = "no";
412			break;
413		}
414	}
415
416done:
417	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
418
419	return 0;
420}
421
422#else
423#define ds1305_proc	NULL
424#endif
425
426static const struct rtc_class_ops ds1305_ops = {
427	.read_time	= ds1305_get_time,
428	.set_time	= ds1305_set_time,
429	.read_alarm	= ds1305_get_alarm,
430	.set_alarm	= ds1305_set_alarm,
431	.proc		= ds1305_proc,
432	.alarm_irq_enable = ds1305_alarm_irq_enable,
433};
434
435static void ds1305_work(struct work_struct *work)
436{
437	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
438	struct mutex	*lock = &ds1305->rtc->ops_lock;
439	struct spi_device *spi = ds1305->spi;
440	u8		buf[3];
441	int		status;
442
443	/* lock to protect ds1305->ctrl */
444	mutex_lock(lock);
445
446	/* Disable the IRQ, and clear its status ... for now, we "know"
447	 * that if more than one alarm is active, they're in sync.
448	 * Note that reading ALM data registers also clears IRQ status.
449	 */
450	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
451	ds1305->ctrl[1] = 0;
452
453	buf[0] = DS1305_WRITE | DS1305_CONTROL;
454	buf[1] = ds1305->ctrl[0];
455	buf[2] = 0;
456
457	status = spi_write_then_read(spi, buf, sizeof(buf),
458			NULL, 0);
459	if (status < 0)
460		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
461
462	mutex_unlock(lock);
463
464	if (!test_bit(FLAG_EXITING, &ds1305->flags))
465		enable_irq(spi->irq);
466
467	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
468}
469
470/*
471 * This "real" IRQ handler hands off to a workqueue mostly to allow
472 * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
473 * I/O requests in IRQ context (to clear the IRQ status).
474 */
475static irqreturn_t ds1305_irq(int irq, void *p)
476{
477	struct ds1305		*ds1305 = p;
478
479	disable_irq(irq);
480	schedule_work(&ds1305->work);
481	return IRQ_HANDLED;
482}
483
484/*----------------------------------------------------------------------*/
485
486/*
487 * Interface for NVRAM
488 */
489
490static void msg_init(struct spi_message *m, struct spi_transfer *x,
491		u8 *addr, size_t count, char *tx, char *rx)
492{
493	spi_message_init(m);
494	memset(x, 0, 2 * sizeof(*x));
495
496	x->tx_buf = addr;
497	x->len = 1;
498	spi_message_add_tail(x, m);
499
500	x++;
501
502	x->tx_buf = tx;
503	x->rx_buf = rx;
504	x->len = count;
505	spi_message_add_tail(x, m);
506}
507
508static int ds1305_nvram_read(void *priv, unsigned int off, void *buf,
509			     size_t count)
510{
511	struct ds1305		*ds1305 = priv;
512	struct spi_device	*spi = ds1305->spi;
513	u8			addr;
514	struct spi_message	m;
515	struct spi_transfer	x[2];
516
517	addr = DS1305_NVRAM + off;
518	msg_init(&m, x, &addr, count, NULL, buf);
519
520	return spi_sync(spi, &m);
521}
522
523static int ds1305_nvram_write(void *priv, unsigned int off, void *buf,
524			      size_t count)
525{
526	struct ds1305		*ds1305 = priv;
527	struct spi_device	*spi = ds1305->spi;
528	u8			addr;
529	struct spi_message	m;
530	struct spi_transfer	x[2];
531
532	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
533	msg_init(&m, x, &addr, count, buf, NULL);
534
535	return spi_sync(spi, &m);
536}
537
538/*----------------------------------------------------------------------*/
539
540/*
541 * Interface to SPI stack
542 */
543
544static int ds1305_probe(struct spi_device *spi)
545{
546	struct ds1305			*ds1305;
547	int				status;
548	u8				addr, value;
549	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
550	bool				write_ctrl = false;
551	struct nvmem_config ds1305_nvmem_cfg = {
552		.name = "ds1305_nvram",
553		.word_size = 1,
554		.stride = 1,
555		.size = DS1305_NVRAM_LEN,
556		.reg_read = ds1305_nvram_read,
557		.reg_write = ds1305_nvram_write,
558	};
559
560	/* Sanity check board setup data.  This may be hooked up
561	 * in 3wire mode, but we don't care.  Note that unless
562	 * there's an inverter in place, this needs SPI_CS_HIGH!
563	 */
564	if ((spi->bits_per_word && spi->bits_per_word != 8)
565			|| (spi->max_speed_hz > 2000000)
566			|| !(spi->mode & SPI_CPHA))
567		return -EINVAL;
568
569	/* set up driver data */
570	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
571	if (!ds1305)
572		return -ENOMEM;
573	ds1305->spi = spi;
574	spi_set_drvdata(spi, ds1305);
575
576	/* read and cache control registers */
577	addr = DS1305_CONTROL;
578	status = spi_write_then_read(spi, &addr, sizeof(addr),
579			ds1305->ctrl, sizeof(ds1305->ctrl));
580	if (status < 0) {
581		dev_dbg(&spi->dev, "can't %s, %d\n",
582				"read", status);
583		return status;
584	}
585
586	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
587
588	/* Sanity check register values ... partially compensating for the
589	 * fact that SPI has no device handshake.  A pullup on MISO would
590	 * make these tests fail; but not all systems will have one.  If
591	 * some register is neither 0x00 nor 0xff, a chip is likely there.
592	 */
593	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
594		dev_dbg(&spi->dev, "RTC chip is not present\n");
595		return -ENODEV;
596	}
597	if (ds1305->ctrl[2] == 0)
598		dev_dbg(&spi->dev, "chip may not be present\n");
599
600	/* enable writes if needed ... if we were paranoid it would
601	 * make sense to enable them only when absolutely necessary.
602	 */
603	if (ds1305->ctrl[0] & DS1305_WP) {
604		u8		buf[2];
605
606		ds1305->ctrl[0] &= ~DS1305_WP;
607
608		buf[0] = DS1305_WRITE | DS1305_CONTROL;
609		buf[1] = ds1305->ctrl[0];
610		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
611
612		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
613		if (status < 0)
614			return status;
615	}
616
617	/* on DS1305, maybe start oscillator; like most low power
618	 * oscillators, it may take a second to stabilize
619	 */
620	if (ds1305->ctrl[0] & DS1305_nEOSC) {
621		ds1305->ctrl[0] &= ~DS1305_nEOSC;
622		write_ctrl = true;
623		dev_warn(&spi->dev, "SET TIME!\n");
624	}
625
626	/* ack any pending IRQs */
627	if (ds1305->ctrl[1]) {
628		ds1305->ctrl[1] = 0;
629		write_ctrl = true;
630	}
631
632	/* this may need one-time (re)init */
633	if (pdata) {
634		/* maybe enable trickle charge */
635		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
636			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
637						| pdata->trickle;
638			write_ctrl = true;
639		}
640
641		/* on DS1306, configure 1 Hz signal */
642		if (pdata->is_ds1306) {
643			if (pdata->en_1hz) {
644				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
645					ds1305->ctrl[0] |= DS1306_1HZ;
646					write_ctrl = true;
647				}
648			} else {
649				if (ds1305->ctrl[0] & DS1306_1HZ) {
650					ds1305->ctrl[0] &= ~DS1306_1HZ;
651					write_ctrl = true;
652				}
653			}
654		}
655	}
656
657	if (write_ctrl) {
658		u8		buf[4];
659
660		buf[0] = DS1305_WRITE | DS1305_CONTROL;
661		buf[1] = ds1305->ctrl[0];
662		buf[2] = ds1305->ctrl[1];
663		buf[3] = ds1305->ctrl[2];
664		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
665		if (status < 0) {
666			dev_dbg(&spi->dev, "can't %s, %d\n",
667					"write", status);
668			return status;
669		}
670
671		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
672	}
673
674	/* see if non-Linux software set up AM/PM mode */
675	addr = DS1305_HOUR;
676	status = spi_write_then_read(spi, &addr, sizeof(addr),
677				&value, sizeof(value));
678	if (status < 0) {
679		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
680		return status;
681	}
682
683	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
684	if (ds1305->hr12)
685		dev_dbg(&spi->dev, "AM/PM\n");
686
687	/* register RTC ... from here on, ds1305->ctrl needs locking */
688	ds1305->rtc = devm_rtc_allocate_device(&spi->dev);
689	if (IS_ERR(ds1305->rtc))
690		return PTR_ERR(ds1305->rtc);
691
692	ds1305->rtc->ops = &ds1305_ops;
693	ds1305->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
694	ds1305->rtc->range_max = RTC_TIMESTAMP_END_2099;
695
696	ds1305_nvmem_cfg.priv = ds1305;
697	ds1305->rtc->nvram_old_abi = true;
698	status = rtc_register_device(ds1305->rtc);
699	if (status)
700		return status;
701
702	rtc_nvmem_register(ds1305->rtc, &ds1305_nvmem_cfg);
703
704	/* Maybe set up alarm IRQ; be ready to handle it triggering right
705	 * away.  NOTE that we don't share this.  The signal is active low,
706	 * and we can't ack it before a SPI message delay.  We temporarily
707	 * disable the IRQ until it's acked, which lets us work with more
708	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
709	 */
710	if (spi->irq) {
711		INIT_WORK(&ds1305->work, ds1305_work);
712		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
713				0, dev_name(&ds1305->rtc->dev), ds1305);
714		if (status < 0) {
715			dev_err(&spi->dev, "request_irq %d --> %d\n",
716					spi->irq, status);
717		} else {
718			device_set_wakeup_capable(&spi->dev, 1);
719		}
720	}
721
722	return 0;
723}
724
725static int ds1305_remove(struct spi_device *spi)
726{
727	struct ds1305 *ds1305 = spi_get_drvdata(spi);
728
729	/* carefully shut down irq and workqueue, if present */
730	if (spi->irq) {
731		set_bit(FLAG_EXITING, &ds1305->flags);
732		devm_free_irq(&spi->dev, spi->irq, ds1305);
733		cancel_work_sync(&ds1305->work);
734	}
735
736	return 0;
737}
738
739static struct spi_driver ds1305_driver = {
740	.driver.name	= "rtc-ds1305",
741	.probe		= ds1305_probe,
742	.remove		= ds1305_remove,
743	/* REVISIT add suspend/resume */
744};
745
746module_spi_driver(ds1305_driver);
747
748MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
749MODULE_LICENSE("GPL");
750MODULE_ALIAS("spi:rtc-ds1305");