Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// helpers.c -- Voltage/Current Regulator framework helper functions.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7
8#include <linux/kernel.h>
9#include <linux/err.h>
10#include <linux/delay.h>
11#include <linux/regmap.h>
12#include <linux/regulator/consumer.h>
13#include <linux/regulator/driver.h>
14#include <linux/module.h>
15
16#include "internal.h"
17
18/**
19 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20 *
21 * @rdev: regulator to operate on
22 *
23 * Regulators that use regmap for their register I/O can set the
24 * enable_reg and enable_mask fields in their descriptor and then use
25 * this as their is_enabled operation, saving some code.
26 */
27int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28{
29 unsigned int val;
30 int ret;
31
32 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 if (ret != 0)
34 return ret;
35
36 val &= rdev->desc->enable_mask;
37
38 if (rdev->desc->enable_is_inverted) {
39 if (rdev->desc->enable_val)
40 return val != rdev->desc->enable_val;
41 return val == 0;
42 } else {
43 if (rdev->desc->enable_val)
44 return val == rdev->desc->enable_val;
45 return val != 0;
46 }
47}
48EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49
50/**
51 * regulator_enable_regmap - standard enable() for regmap users
52 *
53 * @rdev: regulator to operate on
54 *
55 * Regulators that use regmap for their register I/O can set the
56 * enable_reg and enable_mask fields in their descriptor and then use
57 * this as their enable() operation, saving some code.
58 */
59int regulator_enable_regmap(struct regulator_dev *rdev)
60{
61 unsigned int val;
62
63 if (rdev->desc->enable_is_inverted) {
64 val = rdev->desc->disable_val;
65 } else {
66 val = rdev->desc->enable_val;
67 if (!val)
68 val = rdev->desc->enable_mask;
69 }
70
71 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 rdev->desc->enable_mask, val);
73}
74EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75
76/**
77 * regulator_disable_regmap - standard disable() for regmap users
78 *
79 * @rdev: regulator to operate on
80 *
81 * Regulators that use regmap for their register I/O can set the
82 * enable_reg and enable_mask fields in their descriptor and then use
83 * this as their disable() operation, saving some code.
84 */
85int regulator_disable_regmap(struct regulator_dev *rdev)
86{
87 unsigned int val;
88
89 if (rdev->desc->enable_is_inverted) {
90 val = rdev->desc->enable_val;
91 if (!val)
92 val = rdev->desc->enable_mask;
93 } else {
94 val = rdev->desc->disable_val;
95 }
96
97 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 rdev->desc->enable_mask, val);
99}
100EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101
102static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 unsigned int rval)
104{
105 int i;
106
107 if (!rdev->desc->linear_range_selectors)
108 return -EINVAL;
109
110 rval &= rdev->desc->vsel_range_mask;
111
112 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 if (rdev->desc->linear_range_selectors[i] == rval)
114 return i;
115 }
116 return -EINVAL;
117}
118
119/**
120 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121 *
122 * @rdev: regulator to operate on
123 *
124 * Regulators that use regmap for their register I/O and use pickable
125 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126 * fields in their descriptor and then use this as their get_voltage_vsel
127 * operation, saving some code.
128 */
129int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130{
131 unsigned int r_val;
132 int range;
133 unsigned int val;
134 int ret;
135 unsigned int voltages = 0;
136 const struct linear_range *r = rdev->desc->linear_ranges;
137
138 if (!r)
139 return -EINVAL;
140
141 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142 if (ret != 0)
143 return ret;
144
145 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146 if (ret != 0)
147 return ret;
148
149 val &= rdev->desc->vsel_mask;
150 val >>= ffs(rdev->desc->vsel_mask) - 1;
151
152 range = regulator_range_selector_to_index(rdev, r_val);
153 if (range < 0)
154 return -EINVAL;
155
156 voltages = linear_range_values_in_range_array(r, range);
157
158 return val + voltages;
159}
160EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161
162/**
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164 *
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
167 *
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
172 */
173int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 unsigned int sel)
175{
176 unsigned int range;
177 int ret, i;
178 unsigned int voltages_in_range = 0;
179
180 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 const struct linear_range *r;
182
183 r = &rdev->desc->linear_ranges[i];
184 voltages_in_range = linear_range_values_in_range(r);
185
186 if (sel < voltages_in_range)
187 break;
188 sel -= voltages_in_range;
189 }
190
191 if (i == rdev->desc->n_linear_ranges)
192 return -EINVAL;
193
194 sel <<= ffs(rdev->desc->vsel_mask) - 1;
195 sel += rdev->desc->linear_ranges[i].min_sel;
196
197 range = rdev->desc->linear_range_selectors[i];
198
199 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200 ret = regmap_update_bits(rdev->regmap,
201 rdev->desc->vsel_reg,
202 rdev->desc->vsel_range_mask |
203 rdev->desc->vsel_mask, sel | range);
204 } else {
205 ret = regmap_update_bits(rdev->regmap,
206 rdev->desc->vsel_range_reg,
207 rdev->desc->vsel_range_mask, range);
208 if (ret)
209 return ret;
210
211 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212 rdev->desc->vsel_mask, sel);
213 }
214
215 if (ret)
216 return ret;
217
218 if (rdev->desc->apply_bit)
219 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220 rdev->desc->apply_bit,
221 rdev->desc->apply_bit);
222 return ret;
223}
224EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
225
226/**
227 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
228 *
229 * @rdev: regulator to operate on
230 *
231 * Regulators that use regmap for their register I/O can set the
232 * vsel_reg and vsel_mask fields in their descriptor and then use this
233 * as their get_voltage_vsel operation, saving some code.
234 */
235int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
236{
237 unsigned int val;
238 int ret;
239
240 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241 if (ret != 0)
242 return ret;
243
244 val &= rdev->desc->vsel_mask;
245 val >>= ffs(rdev->desc->vsel_mask) - 1;
246
247 return val;
248}
249EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
250
251/**
252 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
253 *
254 * @rdev: regulator to operate on
255 * @sel: Selector to set
256 *
257 * Regulators that use regmap for their register I/O can set the
258 * vsel_reg and vsel_mask fields in their descriptor and then use this
259 * as their set_voltage_vsel operation, saving some code.
260 */
261int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
262{
263 int ret;
264
265 sel <<= ffs(rdev->desc->vsel_mask) - 1;
266
267 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268 rdev->desc->vsel_mask, sel);
269 if (ret)
270 return ret;
271
272 if (rdev->desc->apply_bit)
273 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274 rdev->desc->apply_bit,
275 rdev->desc->apply_bit);
276 return ret;
277}
278EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
279
280/**
281 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
282 *
283 * @rdev: Regulator to operate on
284 * @min_uV: Lower bound for voltage
285 * @max_uV: Upper bound for voltage
286 *
287 * Drivers implementing set_voltage_sel() and list_voltage() can use
288 * this as their map_voltage() operation. It will find a suitable
289 * voltage by calling list_voltage() until it gets something in bounds
290 * for the requested voltages.
291 */
292int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293 int min_uV, int max_uV)
294{
295 int best_val = INT_MAX;
296 int selector = 0;
297 int i, ret;
298
299 /* Find the smallest voltage that falls within the specified
300 * range.
301 */
302 for (i = 0; i < rdev->desc->n_voltages; i++) {
303 ret = rdev->desc->ops->list_voltage(rdev, i);
304 if (ret < 0)
305 continue;
306
307 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308 best_val = ret;
309 selector = i;
310 }
311 }
312
313 if (best_val != INT_MAX)
314 return selector;
315 else
316 return -EINVAL;
317}
318EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
319
320/**
321 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
322 *
323 * @rdev: Regulator to operate on
324 * @min_uV: Lower bound for voltage
325 * @max_uV: Upper bound for voltage
326 *
327 * Drivers that have ascendant voltage list can use this as their
328 * map_voltage() operation.
329 */
330int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331 int min_uV, int max_uV)
332{
333 int i, ret;
334
335 for (i = 0; i < rdev->desc->n_voltages; i++) {
336 ret = rdev->desc->ops->list_voltage(rdev, i);
337 if (ret < 0)
338 continue;
339
340 if (ret > max_uV)
341 break;
342
343 if (ret >= min_uV && ret <= max_uV)
344 return i;
345 }
346
347 return -EINVAL;
348}
349EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
350
351/**
352 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
353 *
354 * @rdev: Regulator to operate on
355 * @min_uV: Lower bound for voltage
356 * @max_uV: Upper bound for voltage
357 *
358 * Drivers providing min_uV and uV_step in their regulator_desc can
359 * use this as their map_voltage() operation.
360 */
361int regulator_map_voltage_linear(struct regulator_dev *rdev,
362 int min_uV, int max_uV)
363{
364 int ret, voltage;
365
366 /* Allow uV_step to be 0 for fixed voltage */
367 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369 return 0;
370 else
371 return -EINVAL;
372 }
373
374 if (!rdev->desc->uV_step) {
375 BUG_ON(!rdev->desc->uV_step);
376 return -EINVAL;
377 }
378
379 if (min_uV < rdev->desc->min_uV)
380 min_uV = rdev->desc->min_uV;
381
382 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383 if (ret < 0)
384 return ret;
385
386 ret += rdev->desc->linear_min_sel;
387
388 /* Map back into a voltage to verify we're still in bounds */
389 voltage = rdev->desc->ops->list_voltage(rdev, ret);
390 if (voltage < min_uV || voltage > max_uV)
391 return -EINVAL;
392
393 return ret;
394}
395EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
396
397/**
398 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
399 *
400 * @rdev: Regulator to operate on
401 * @min_uV: Lower bound for voltage
402 * @max_uV: Upper bound for voltage
403 *
404 * Drivers providing linear_ranges in their descriptor can use this as
405 * their map_voltage() callback.
406 */
407int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408 int min_uV, int max_uV)
409{
410 const struct linear_range *range;
411 int ret = -EINVAL;
412 unsigned int sel;
413 bool found;
414 int voltage, i;
415
416 if (!rdev->desc->n_linear_ranges) {
417 BUG_ON(!rdev->desc->n_linear_ranges);
418 return -EINVAL;
419 }
420
421 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 range = &rdev->desc->linear_ranges[i];
423
424 ret = linear_range_get_selector_high(range, min_uV, &sel,
425 &found);
426 if (ret)
427 continue;
428 ret = sel;
429
430 /*
431 * Map back into a voltage to verify we're still in bounds.
432 * If we are not, then continue checking rest of the ranges.
433 */
434 voltage = rdev->desc->ops->list_voltage(rdev, sel);
435 if (voltage >= min_uV && voltage <= max_uV)
436 break;
437 }
438
439 if (i == rdev->desc->n_linear_ranges)
440 return -EINVAL;
441
442 return ret;
443}
444EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
445
446/**
447 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
448 *
449 * @rdev: Regulator to operate on
450 * @min_uV: Lower bound for voltage
451 * @max_uV: Upper bound for voltage
452 *
453 * Drivers providing pickable linear_ranges in their descriptor can use
454 * this as their map_voltage() callback.
455 */
456int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457 int min_uV, int max_uV)
458{
459 const struct linear_range *range;
460 int ret = -EINVAL;
461 int voltage, i;
462 unsigned int selector = 0;
463
464 if (!rdev->desc->n_linear_ranges) {
465 BUG_ON(!rdev->desc->n_linear_ranges);
466 return -EINVAL;
467 }
468
469 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470 int linear_max_uV;
471 bool found;
472 unsigned int sel;
473
474 range = &rdev->desc->linear_ranges[i];
475 linear_max_uV = linear_range_get_max_value(range);
476
477 if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478 selector += linear_range_values_in_range(range);
479 continue;
480 }
481
482 ret = linear_range_get_selector_high(range, min_uV, &sel,
483 &found);
484 if (ret) {
485 selector += linear_range_values_in_range(range);
486 continue;
487 }
488
489 ret = selector + sel - range->min_sel;
490
491 voltage = rdev->desc->ops->list_voltage(rdev, ret);
492
493 /*
494 * Map back into a voltage to verify we're still in bounds.
495 * We may have overlapping voltage ranges. Hence we don't
496 * exit but retry until we have checked all ranges.
497 */
498 if (voltage < min_uV || voltage > max_uV)
499 selector += linear_range_values_in_range(range);
500 else
501 break;
502 }
503
504 if (i == rdev->desc->n_linear_ranges)
505 return -EINVAL;
506
507 return ret;
508}
509EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
510
511/**
512 * regulator_desc_list_voltage_linear - List voltages with simple calculation
513 *
514 * @desc: Regulator desc for regulator which volatges are to be listed
515 * @selector: Selector to convert into a voltage
516 *
517 * Regulators with a simple linear mapping between voltages and
518 * selectors can set min_uV and uV_step in the regulator descriptor
519 * and then use this function prior regulator registration to list
520 * the voltages. This is useful when voltages need to be listed during
521 * device-tree parsing.
522 */
523int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
524 unsigned int selector)
525{
526 if (selector >= desc->n_voltages)
527 return -EINVAL;
528
529 if (selector < desc->linear_min_sel)
530 return 0;
531
532 selector -= desc->linear_min_sel;
533
534 return desc->min_uV + (desc->uV_step * selector);
535}
536EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
537
538/**
539 * regulator_list_voltage_linear - List voltages with simple calculation
540 *
541 * @rdev: Regulator device
542 * @selector: Selector to convert into a voltage
543 *
544 * Regulators with a simple linear mapping between voltages and
545 * selectors can set min_uV and uV_step in the regulator descriptor
546 * and then use this function as their list_voltage() operation,
547 */
548int regulator_list_voltage_linear(struct regulator_dev *rdev,
549 unsigned int selector)
550{
551 return regulator_desc_list_voltage_linear(rdev->desc, selector);
552}
553EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
554
555/**
556 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
557 *
558 * @rdev: Regulator device
559 * @selector: Selector to convert into a voltage
560 *
561 * list_voltage() operation, intended to be used by drivers utilizing pickable
562 * ranges helpers.
563 */
564int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
565 unsigned int selector)
566{
567 const struct linear_range *range;
568 int i;
569 unsigned int all_sels = 0;
570
571 if (!rdev->desc->n_linear_ranges) {
572 BUG_ON(!rdev->desc->n_linear_ranges);
573 return -EINVAL;
574 }
575
576 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
577 unsigned int sel_indexes;
578
579 range = &rdev->desc->linear_ranges[i];
580
581 sel_indexes = linear_range_values_in_range(range) - 1;
582
583 if (all_sels + sel_indexes >= selector) {
584 selector -= all_sels;
585 /*
586 * As we see here, pickable ranges work only as
587 * long as the first selector for each pickable
588 * range is 0, and the each subsequent range for
589 * this 'pick' follow immediately at next unused
590 * selector (Eg. there is no gaps between ranges).
591 * I think this is fine but it probably should be
592 * documented. OTOH, whole pickable range stuff
593 * might benefit from some documentation
594 */
595 return range->min + (range->step * selector);
596 }
597
598 all_sels += (sel_indexes + 1);
599 }
600
601 return -EINVAL;
602}
603EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
604
605/**
606 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
607 *
608 * @desc: Regulator desc for regulator which volatges are to be listed
609 * @selector: Selector to convert into a voltage
610 *
611 * Regulators with a series of simple linear mappings between voltages
612 * and selectors who have set linear_ranges in the regulator descriptor
613 * can use this function prior regulator registration to list voltages.
614 * This is useful when voltages need to be listed during device-tree
615 * parsing.
616 */
617int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
618 unsigned int selector)
619{
620 unsigned int val;
621 int ret;
622
623 BUG_ON(!desc->n_linear_ranges);
624
625 ret = linear_range_get_value_array(desc->linear_ranges,
626 desc->n_linear_ranges, selector,
627 &val);
628 if (ret)
629 return ret;
630
631 return val;
632}
633EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
634
635/**
636 * regulator_list_voltage_linear_range - List voltages for linear ranges
637 *
638 * @rdev: Regulator device
639 * @selector: Selector to convert into a voltage
640 *
641 * Regulators with a series of simple linear mappings between voltages
642 * and selectors can set linear_ranges in the regulator descriptor and
643 * then use this function as their list_voltage() operation,
644 */
645int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
646 unsigned int selector)
647{
648 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
649}
650EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
651
652/**
653 * regulator_list_voltage_table - List voltages with table based mapping
654 *
655 * @rdev: Regulator device
656 * @selector: Selector to convert into a voltage
657 *
658 * Regulators with table based mapping between voltages and
659 * selectors can set volt_table in the regulator descriptor
660 * and then use this function as their list_voltage() operation.
661 */
662int regulator_list_voltage_table(struct regulator_dev *rdev,
663 unsigned int selector)
664{
665 if (!rdev->desc->volt_table) {
666 BUG_ON(!rdev->desc->volt_table);
667 return -EINVAL;
668 }
669
670 if (selector >= rdev->desc->n_voltages)
671 return -EINVAL;
672 if (selector < rdev->desc->linear_min_sel)
673 return 0;
674
675 return rdev->desc->volt_table[selector];
676}
677EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
678
679/**
680 * regulator_set_bypass_regmap - Default set_bypass() using regmap
681 *
682 * @rdev: device to operate on.
683 * @enable: state to set.
684 */
685int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
686{
687 unsigned int val;
688
689 if (enable) {
690 val = rdev->desc->bypass_val_on;
691 if (!val)
692 val = rdev->desc->bypass_mask;
693 } else {
694 val = rdev->desc->bypass_val_off;
695 }
696
697 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
698 rdev->desc->bypass_mask, val);
699}
700EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
701
702/**
703 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
704 *
705 * @rdev: device to operate on.
706 */
707int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
708{
709 unsigned int val;
710
711 val = rdev->desc->soft_start_val_on;
712 if (!val)
713 val = rdev->desc->soft_start_mask;
714
715 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
716 rdev->desc->soft_start_mask, val);
717}
718EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
719
720/**
721 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
722 *
723 * @rdev: device to operate on.
724 */
725int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
726{
727 unsigned int val;
728
729 val = rdev->desc->pull_down_val_on;
730 if (!val)
731 val = rdev->desc->pull_down_mask;
732
733 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
734 rdev->desc->pull_down_mask, val);
735}
736EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
737
738/**
739 * regulator_get_bypass_regmap - Default get_bypass() using regmap
740 *
741 * @rdev: device to operate on.
742 * @enable: current state.
743 */
744int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
745{
746 unsigned int val;
747 unsigned int val_on = rdev->desc->bypass_val_on;
748 int ret;
749
750 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
751 if (ret != 0)
752 return ret;
753
754 if (!val_on)
755 val_on = rdev->desc->bypass_mask;
756
757 *enable = (val & rdev->desc->bypass_mask) == val_on;
758
759 return 0;
760}
761EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
762
763/**
764 * regulator_set_active_discharge_regmap - Default set_active_discharge()
765 * using regmap
766 *
767 * @rdev: device to operate on.
768 * @enable: state to set, 0 to disable and 1 to enable.
769 */
770int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
771 bool enable)
772{
773 unsigned int val;
774
775 if (enable)
776 val = rdev->desc->active_discharge_on;
777 else
778 val = rdev->desc->active_discharge_off;
779
780 return regmap_update_bits(rdev->regmap,
781 rdev->desc->active_discharge_reg,
782 rdev->desc->active_discharge_mask, val);
783}
784EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
785
786/**
787 * regulator_set_current_limit_regmap - set_current_limit for regmap users
788 *
789 * @rdev: regulator to operate on
790 * @min_uA: Lower bound for current limit
791 * @max_uA: Upper bound for current limit
792 *
793 * Regulators that use regmap for their register I/O can set curr_table,
794 * csel_reg and csel_mask fields in their descriptor and then use this
795 * as their set_current_limit operation, saving some code.
796 */
797int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
798 int min_uA, int max_uA)
799{
800 unsigned int n_currents = rdev->desc->n_current_limits;
801 int i, sel = -1;
802
803 if (n_currents == 0)
804 return -EINVAL;
805
806 if (rdev->desc->curr_table) {
807 const unsigned int *curr_table = rdev->desc->curr_table;
808 bool ascend = curr_table[n_currents - 1] > curr_table[0];
809
810 /* search for closest to maximum */
811 if (ascend) {
812 for (i = n_currents - 1; i >= 0; i--) {
813 if (min_uA <= curr_table[i] &&
814 curr_table[i] <= max_uA) {
815 sel = i;
816 break;
817 }
818 }
819 } else {
820 for (i = 0; i < n_currents; i++) {
821 if (min_uA <= curr_table[i] &&
822 curr_table[i] <= max_uA) {
823 sel = i;
824 break;
825 }
826 }
827 }
828 }
829
830 if (sel < 0)
831 return -EINVAL;
832
833 sel <<= ffs(rdev->desc->csel_mask) - 1;
834
835 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
836 rdev->desc->csel_mask, sel);
837}
838EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
839
840/**
841 * regulator_get_current_limit_regmap - get_current_limit for regmap users
842 *
843 * @rdev: regulator to operate on
844 *
845 * Regulators that use regmap for their register I/O can set the
846 * csel_reg and csel_mask fields in their descriptor and then use this
847 * as their get_current_limit operation, saving some code.
848 */
849int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
850{
851 unsigned int val;
852 int ret;
853
854 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
855 if (ret != 0)
856 return ret;
857
858 val &= rdev->desc->csel_mask;
859 val >>= ffs(rdev->desc->csel_mask) - 1;
860
861 if (rdev->desc->curr_table) {
862 if (val >= rdev->desc->n_current_limits)
863 return -EINVAL;
864
865 return rdev->desc->curr_table[val];
866 }
867
868 return -EINVAL;
869}
870EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
871
872/**
873 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
874 * of regulator_bulk_data structs
875 *
876 * @consumers: array of regulator_bulk_data entries to initialize
877 * @supply_names: array of supply name strings
878 * @num_supplies: number of supply names to initialize
879 *
880 * Note: the 'consumers' array must be the size of 'num_supplies'.
881 */
882void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
883 const char *const *supply_names,
884 unsigned int num_supplies)
885{
886 unsigned int i;
887
888 for (i = 0; i < num_supplies; i++)
889 consumers[i].supply = supply_names[i];
890}
891EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
892
893/**
894 * regulator_is_equal - test whether two regulators are the same
895 *
896 * @reg1: first regulator to operate on
897 * @reg2: second regulator to operate on
898 */
899bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
900{
901 return reg1->rdev == reg2->rdev;
902}
903EXPORT_SYMBOL_GPL(regulator_is_equal);
904
905static int find_closest_bigger(unsigned int target, const unsigned int *table,
906 unsigned int num_sel, unsigned int *sel)
907{
908 unsigned int s, tmp, max, maxsel = 0;
909 bool found = false;
910
911 max = table[0];
912
913 for (s = 0; s < num_sel; s++) {
914 if (table[s] > max) {
915 max = table[s];
916 maxsel = s;
917 }
918 if (table[s] >= target) {
919 if (!found || table[s] - target < tmp - target) {
920 tmp = table[s];
921 *sel = s;
922 found = true;
923 if (tmp == target)
924 break;
925 }
926 }
927 }
928
929 if (!found) {
930 *sel = maxsel;
931 return -EINVAL;
932 }
933
934 return 0;
935}
936
937/**
938 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
939 *
940 * @rdev: regulator to operate on
941 *
942 * Regulators that use regmap for their register I/O can set the ramp_reg
943 * and ramp_mask fields in their descriptor and then use this as their
944 * set_ramp_delay operation, saving some code.
945 */
946int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
947{
948 int ret;
949 unsigned int sel;
950
951 if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
952 return -EINVAL;
953
954 ret = find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
955 rdev->desc->n_ramp_values, &sel);
956
957 if (ret) {
958 dev_warn(rdev_get_dev(rdev),
959 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
960 rdev->desc->ramp_delay_table[sel]);
961 }
962
963 sel <<= ffs(rdev->desc->ramp_mask) - 1;
964
965 return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
966 rdev->desc->ramp_mask, sel);
967}
968EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// helpers.c -- Voltage/Current Regulator framework helper functions.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7
8#include <linux/kernel.h>
9#include <linux/err.h>
10#include <linux/delay.h>
11#include <linux/regmap.h>
12#include <linux/regulator/consumer.h>
13#include <linux/regulator/driver.h>
14#include <linux/module.h>
15
16#include "internal.h"
17
18/**
19 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
20 *
21 * @rdev: regulator to operate on
22 *
23 * Regulators that use regmap for their register I/O can set the
24 * enable_reg and enable_mask fields in their descriptor and then use
25 * this as their is_enabled operation, saving some code.
26 */
27int regulator_is_enabled_regmap(struct regulator_dev *rdev)
28{
29 unsigned int val;
30 int ret;
31
32 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
33 if (ret != 0)
34 return ret;
35
36 val &= rdev->desc->enable_mask;
37
38 if (rdev->desc->enable_is_inverted) {
39 if (rdev->desc->enable_val)
40 return val != rdev->desc->enable_val;
41 return val == 0;
42 } else {
43 if (rdev->desc->enable_val)
44 return val == rdev->desc->enable_val;
45 return val != 0;
46 }
47}
48EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
49
50/**
51 * regulator_enable_regmap - standard enable() for regmap users
52 *
53 * @rdev: regulator to operate on
54 *
55 * Regulators that use regmap for their register I/O can set the
56 * enable_reg and enable_mask fields in their descriptor and then use
57 * this as their enable() operation, saving some code.
58 */
59int regulator_enable_regmap(struct regulator_dev *rdev)
60{
61 unsigned int val;
62
63 if (rdev->desc->enable_is_inverted) {
64 val = rdev->desc->disable_val;
65 } else {
66 val = rdev->desc->enable_val;
67 if (!val)
68 val = rdev->desc->enable_mask;
69 }
70
71 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
72 rdev->desc->enable_mask, val);
73}
74EXPORT_SYMBOL_GPL(regulator_enable_regmap);
75
76/**
77 * regulator_disable_regmap - standard disable() for regmap users
78 *
79 * @rdev: regulator to operate on
80 *
81 * Regulators that use regmap for their register I/O can set the
82 * enable_reg and enable_mask fields in their descriptor and then use
83 * this as their disable() operation, saving some code.
84 */
85int regulator_disable_regmap(struct regulator_dev *rdev)
86{
87 unsigned int val;
88
89 if (rdev->desc->enable_is_inverted) {
90 val = rdev->desc->enable_val;
91 if (!val)
92 val = rdev->desc->enable_mask;
93 } else {
94 val = rdev->desc->disable_val;
95 }
96
97 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
98 rdev->desc->enable_mask, val);
99}
100EXPORT_SYMBOL_GPL(regulator_disable_regmap);
101
102static int regulator_range_selector_to_index(struct regulator_dev *rdev,
103 unsigned int rval)
104{
105 int i;
106
107 if (!rdev->desc->linear_range_selectors)
108 return -EINVAL;
109
110 rval &= rdev->desc->vsel_range_mask;
111
112 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
113 if (rdev->desc->linear_range_selectors[i] == rval)
114 return i;
115 }
116 return -EINVAL;
117}
118
119/**
120 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
121 *
122 * @rdev: regulator to operate on
123 *
124 * Regulators that use regmap for their register I/O and use pickable
125 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
126 * fields in their descriptor and then use this as their get_voltage_vsel
127 * operation, saving some code.
128 */
129int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
130{
131 unsigned int r_val;
132 int range;
133 unsigned int val;
134 int ret;
135 unsigned int voltages = 0;
136 const struct linear_range *r = rdev->desc->linear_ranges;
137
138 if (!r)
139 return -EINVAL;
140
141 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
142 if (ret != 0)
143 return ret;
144
145 ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
146 if (ret != 0)
147 return ret;
148
149 val &= rdev->desc->vsel_mask;
150 val >>= ffs(rdev->desc->vsel_mask) - 1;
151
152 range = regulator_range_selector_to_index(rdev, r_val);
153 if (range < 0)
154 return -EINVAL;
155
156 voltages = linear_range_values_in_range_array(r, range);
157
158 return val + voltages;
159}
160EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
161
162/**
163 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
164 *
165 * @rdev: regulator to operate on
166 * @sel: Selector to set
167 *
168 * Regulators that use regmap for their register I/O and use pickable
169 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
170 * fields in their descriptor and then use this as their set_voltage_vsel
171 * operation, saving some code.
172 */
173int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
174 unsigned int sel)
175{
176 unsigned int range;
177 int ret, i;
178 unsigned int voltages_in_range = 0;
179
180 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
181 const struct linear_range *r;
182
183 r = &rdev->desc->linear_ranges[i];
184 voltages_in_range = linear_range_values_in_range(r);
185
186 if (sel < voltages_in_range)
187 break;
188 sel -= voltages_in_range;
189 }
190
191 if (i == rdev->desc->n_linear_ranges)
192 return -EINVAL;
193
194 sel <<= ffs(rdev->desc->vsel_mask) - 1;
195 sel += rdev->desc->linear_ranges[i].min_sel;
196
197 range = rdev->desc->linear_range_selectors[i];
198
199 if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
200 ret = regmap_update_bits(rdev->regmap,
201 rdev->desc->vsel_reg,
202 rdev->desc->vsel_range_mask |
203 rdev->desc->vsel_mask, sel | range);
204 } else {
205 ret = regmap_update_bits(rdev->regmap,
206 rdev->desc->vsel_range_reg,
207 rdev->desc->vsel_range_mask, range);
208 if (ret)
209 return ret;
210
211 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
212 rdev->desc->vsel_mask, sel);
213 }
214
215 if (ret)
216 return ret;
217
218 if (rdev->desc->apply_bit)
219 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
220 rdev->desc->apply_bit,
221 rdev->desc->apply_bit);
222 return ret;
223}
224EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
225
226/**
227 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
228 *
229 * @rdev: regulator to operate on
230 *
231 * Regulators that use regmap for their register I/O can set the
232 * vsel_reg and vsel_mask fields in their descriptor and then use this
233 * as their get_voltage_vsel operation, saving some code.
234 */
235int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
236{
237 unsigned int val;
238 int ret;
239
240 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
241 if (ret != 0)
242 return ret;
243
244 val &= rdev->desc->vsel_mask;
245 val >>= ffs(rdev->desc->vsel_mask) - 1;
246
247 return val;
248}
249EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
250
251/**
252 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
253 *
254 * @rdev: regulator to operate on
255 * @sel: Selector to set
256 *
257 * Regulators that use regmap for their register I/O can set the
258 * vsel_reg and vsel_mask fields in their descriptor and then use this
259 * as their set_voltage_vsel operation, saving some code.
260 */
261int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
262{
263 int ret;
264
265 sel <<= ffs(rdev->desc->vsel_mask) - 1;
266
267 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
268 rdev->desc->vsel_mask, sel);
269 if (ret)
270 return ret;
271
272 if (rdev->desc->apply_bit)
273 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
274 rdev->desc->apply_bit,
275 rdev->desc->apply_bit);
276 return ret;
277}
278EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
279
280/**
281 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
282 *
283 * @rdev: Regulator to operate on
284 * @min_uV: Lower bound for voltage
285 * @max_uV: Upper bound for voltage
286 *
287 * Drivers implementing set_voltage_sel() and list_voltage() can use
288 * this as their map_voltage() operation. It will find a suitable
289 * voltage by calling list_voltage() until it gets something in bounds
290 * for the requested voltages.
291 */
292int regulator_map_voltage_iterate(struct regulator_dev *rdev,
293 int min_uV, int max_uV)
294{
295 int best_val = INT_MAX;
296 int selector = 0;
297 int i, ret;
298
299 /* Find the smallest voltage that falls within the specified
300 * range.
301 */
302 for (i = 0; i < rdev->desc->n_voltages; i++) {
303 ret = rdev->desc->ops->list_voltage(rdev, i);
304 if (ret < 0)
305 continue;
306
307 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
308 best_val = ret;
309 selector = i;
310 }
311 }
312
313 if (best_val != INT_MAX)
314 return selector;
315 else
316 return -EINVAL;
317}
318EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
319
320/**
321 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
322 *
323 * @rdev: Regulator to operate on
324 * @min_uV: Lower bound for voltage
325 * @max_uV: Upper bound for voltage
326 *
327 * Drivers that have ascendant voltage list can use this as their
328 * map_voltage() operation.
329 */
330int regulator_map_voltage_ascend(struct regulator_dev *rdev,
331 int min_uV, int max_uV)
332{
333 int i, ret;
334
335 for (i = 0; i < rdev->desc->n_voltages; i++) {
336 ret = rdev->desc->ops->list_voltage(rdev, i);
337 if (ret < 0)
338 continue;
339
340 if (ret > max_uV)
341 break;
342
343 if (ret >= min_uV && ret <= max_uV)
344 return i;
345 }
346
347 return -EINVAL;
348}
349EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
350
351/**
352 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
353 *
354 * @rdev: Regulator to operate on
355 * @min_uV: Lower bound for voltage
356 * @max_uV: Upper bound for voltage
357 *
358 * Drivers providing min_uV and uV_step in their regulator_desc can
359 * use this as their map_voltage() operation.
360 */
361int regulator_map_voltage_linear(struct regulator_dev *rdev,
362 int min_uV, int max_uV)
363{
364 int ret, voltage;
365
366 /* Allow uV_step to be 0 for fixed voltage */
367 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
368 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
369 return 0;
370 else
371 return -EINVAL;
372 }
373
374 if (!rdev->desc->uV_step) {
375 BUG_ON(!rdev->desc->uV_step);
376 return -EINVAL;
377 }
378
379 if (min_uV < rdev->desc->min_uV)
380 min_uV = rdev->desc->min_uV;
381
382 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
383 if (ret < 0)
384 return ret;
385
386 ret += rdev->desc->linear_min_sel;
387
388 /* Map back into a voltage to verify we're still in bounds */
389 voltage = rdev->desc->ops->list_voltage(rdev, ret);
390 if (voltage < min_uV || voltage > max_uV)
391 return -EINVAL;
392
393 return ret;
394}
395EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
396
397/**
398 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
399 *
400 * @rdev: Regulator to operate on
401 * @min_uV: Lower bound for voltage
402 * @max_uV: Upper bound for voltage
403 *
404 * Drivers providing linear_ranges in their descriptor can use this as
405 * their map_voltage() callback.
406 */
407int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
408 int min_uV, int max_uV)
409{
410 const struct linear_range *range;
411 int ret = -EINVAL;
412 unsigned int sel;
413 bool found;
414 int voltage, i;
415
416 if (!rdev->desc->n_linear_ranges) {
417 BUG_ON(!rdev->desc->n_linear_ranges);
418 return -EINVAL;
419 }
420
421 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
422 range = &rdev->desc->linear_ranges[i];
423
424 ret = linear_range_get_selector_high(range, min_uV, &sel,
425 &found);
426 if (ret)
427 continue;
428 ret = sel;
429
430 /*
431 * Map back into a voltage to verify we're still in bounds.
432 * If we are not, then continue checking rest of the ranges.
433 */
434 voltage = rdev->desc->ops->list_voltage(rdev, sel);
435 if (voltage >= min_uV && voltage <= max_uV)
436 break;
437 }
438
439 if (i == rdev->desc->n_linear_ranges)
440 return -EINVAL;
441
442 return ret;
443}
444EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
445
446/**
447 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
448 *
449 * @rdev: Regulator to operate on
450 * @min_uV: Lower bound for voltage
451 * @max_uV: Upper bound for voltage
452 *
453 * Drivers providing pickable linear_ranges in their descriptor can use
454 * this as their map_voltage() callback.
455 */
456int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
457 int min_uV, int max_uV)
458{
459 const struct linear_range *range;
460 int ret = -EINVAL;
461 int voltage, i;
462 unsigned int selector = 0;
463
464 if (!rdev->desc->n_linear_ranges) {
465 BUG_ON(!rdev->desc->n_linear_ranges);
466 return -EINVAL;
467 }
468
469 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
470 int linear_max_uV;
471 bool found;
472 unsigned int sel;
473
474 range = &rdev->desc->linear_ranges[i];
475 linear_max_uV = linear_range_get_max_value(range);
476
477 if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
478 selector += linear_range_values_in_range(range);
479 continue;
480 }
481
482 ret = linear_range_get_selector_high(range, min_uV, &sel,
483 &found);
484 if (ret) {
485 selector += linear_range_values_in_range(range);
486 continue;
487 }
488
489 ret = selector + sel - range->min_sel;
490
491 voltage = rdev->desc->ops->list_voltage(rdev, ret);
492
493 /*
494 * Map back into a voltage to verify we're still in bounds.
495 * We may have overlapping voltage ranges. Hence we don't
496 * exit but retry until we have checked all ranges.
497 */
498 if (voltage < min_uV || voltage > max_uV)
499 selector += linear_range_values_in_range(range);
500 else
501 break;
502 }
503
504 if (i == rdev->desc->n_linear_ranges)
505 return -EINVAL;
506
507 return ret;
508}
509EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
510
511/**
512 * regulator_list_voltage_linear - List voltages with simple calculation
513 *
514 * @rdev: Regulator device
515 * @selector: Selector to convert into a voltage
516 *
517 * Regulators with a simple linear mapping between voltages and
518 * selectors can set min_uV and uV_step in the regulator descriptor
519 * and then use this function as their list_voltage() operation,
520 */
521int regulator_list_voltage_linear(struct regulator_dev *rdev,
522 unsigned int selector)
523{
524 if (selector >= rdev->desc->n_voltages)
525 return -EINVAL;
526 if (selector < rdev->desc->linear_min_sel)
527 return 0;
528
529 selector -= rdev->desc->linear_min_sel;
530
531 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
532}
533EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
534
535/**
536 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
537 *
538 * @rdev: Regulator device
539 * @selector: Selector to convert into a voltage
540 *
541 * list_voltage() operation, intended to be used by drivers utilizing pickable
542 * ranges helpers.
543 */
544int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
545 unsigned int selector)
546{
547 const struct linear_range *range;
548 int i;
549 unsigned int all_sels = 0;
550
551 if (!rdev->desc->n_linear_ranges) {
552 BUG_ON(!rdev->desc->n_linear_ranges);
553 return -EINVAL;
554 }
555
556 for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
557 unsigned int sel_indexes;
558
559 range = &rdev->desc->linear_ranges[i];
560
561 sel_indexes = linear_range_values_in_range(range) - 1;
562
563 if (all_sels + sel_indexes >= selector) {
564 selector -= all_sels;
565 /*
566 * As we see here, pickable ranges work only as
567 * long as the first selector for each pickable
568 * range is 0, and the each subsequent range for
569 * this 'pick' follow immediately at next unused
570 * selector (Eg. there is no gaps between ranges).
571 * I think this is fine but it probably should be
572 * documented. OTOH, whole pickable range stuff
573 * might benefit from some documentation
574 */
575 return range->min + (range->step * selector);
576 }
577
578 all_sels += (sel_indexes + 1);
579 }
580
581 return -EINVAL;
582}
583EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
584
585/**
586 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
587 *
588 * @desc: Regulator desc for regulator which volatges are to be listed
589 * @selector: Selector to convert into a voltage
590 *
591 * Regulators with a series of simple linear mappings between voltages
592 * and selectors who have set linear_ranges in the regulator descriptor
593 * can use this function prior regulator registration to list voltages.
594 * This is useful when voltages need to be listed during device-tree
595 * parsing.
596 */
597int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
598 unsigned int selector)
599{
600 unsigned int val;
601 int ret;
602
603 BUG_ON(!desc->n_linear_ranges);
604
605 ret = linear_range_get_value_array(desc->linear_ranges,
606 desc->n_linear_ranges, selector,
607 &val);
608 if (ret)
609 return ret;
610
611 return val;
612}
613EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
614
615/**
616 * regulator_list_voltage_linear_range - List voltages for linear ranges
617 *
618 * @rdev: Regulator device
619 * @selector: Selector to convert into a voltage
620 *
621 * Regulators with a series of simple linear mappings between voltages
622 * and selectors can set linear_ranges in the regulator descriptor and
623 * then use this function as their list_voltage() operation,
624 */
625int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
626 unsigned int selector)
627{
628 return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
629}
630EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
631
632/**
633 * regulator_list_voltage_table - List voltages with table based mapping
634 *
635 * @rdev: Regulator device
636 * @selector: Selector to convert into a voltage
637 *
638 * Regulators with table based mapping between voltages and
639 * selectors can set volt_table in the regulator descriptor
640 * and then use this function as their list_voltage() operation.
641 */
642int regulator_list_voltage_table(struct regulator_dev *rdev,
643 unsigned int selector)
644{
645 if (!rdev->desc->volt_table) {
646 BUG_ON(!rdev->desc->volt_table);
647 return -EINVAL;
648 }
649
650 if (selector >= rdev->desc->n_voltages)
651 return -EINVAL;
652
653 return rdev->desc->volt_table[selector];
654}
655EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
656
657/**
658 * regulator_set_bypass_regmap - Default set_bypass() using regmap
659 *
660 * @rdev: device to operate on.
661 * @enable: state to set.
662 */
663int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
664{
665 unsigned int val;
666
667 if (enable) {
668 val = rdev->desc->bypass_val_on;
669 if (!val)
670 val = rdev->desc->bypass_mask;
671 } else {
672 val = rdev->desc->bypass_val_off;
673 }
674
675 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
676 rdev->desc->bypass_mask, val);
677}
678EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
679
680/**
681 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
682 *
683 * @rdev: device to operate on.
684 */
685int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
686{
687 unsigned int val;
688
689 val = rdev->desc->soft_start_val_on;
690 if (!val)
691 val = rdev->desc->soft_start_mask;
692
693 return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
694 rdev->desc->soft_start_mask, val);
695}
696EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
697
698/**
699 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
700 *
701 * @rdev: device to operate on.
702 */
703int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
704{
705 unsigned int val;
706
707 val = rdev->desc->pull_down_val_on;
708 if (!val)
709 val = rdev->desc->pull_down_mask;
710
711 return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
712 rdev->desc->pull_down_mask, val);
713}
714EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
715
716/**
717 * regulator_get_bypass_regmap - Default get_bypass() using regmap
718 *
719 * @rdev: device to operate on.
720 * @enable: current state.
721 */
722int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
723{
724 unsigned int val;
725 unsigned int val_on = rdev->desc->bypass_val_on;
726 int ret;
727
728 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
729 if (ret != 0)
730 return ret;
731
732 if (!val_on)
733 val_on = rdev->desc->bypass_mask;
734
735 *enable = (val & rdev->desc->bypass_mask) == val_on;
736
737 return 0;
738}
739EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
740
741/**
742 * regulator_set_active_discharge_regmap - Default set_active_discharge()
743 * using regmap
744 *
745 * @rdev: device to operate on.
746 * @enable: state to set, 0 to disable and 1 to enable.
747 */
748int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
749 bool enable)
750{
751 unsigned int val;
752
753 if (enable)
754 val = rdev->desc->active_discharge_on;
755 else
756 val = rdev->desc->active_discharge_off;
757
758 return regmap_update_bits(rdev->regmap,
759 rdev->desc->active_discharge_reg,
760 rdev->desc->active_discharge_mask, val);
761}
762EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
763
764/**
765 * regulator_set_current_limit_regmap - set_current_limit for regmap users
766 *
767 * @rdev: regulator to operate on
768 * @min_uA: Lower bound for current limit
769 * @max_uA: Upper bound for current limit
770 *
771 * Regulators that use regmap for their register I/O can set curr_table,
772 * csel_reg and csel_mask fields in their descriptor and then use this
773 * as their set_current_limit operation, saving some code.
774 */
775int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
776 int min_uA, int max_uA)
777{
778 unsigned int n_currents = rdev->desc->n_current_limits;
779 int i, sel = -1;
780
781 if (n_currents == 0)
782 return -EINVAL;
783
784 if (rdev->desc->curr_table) {
785 const unsigned int *curr_table = rdev->desc->curr_table;
786 bool ascend = curr_table[n_currents - 1] > curr_table[0];
787
788 /* search for closest to maximum */
789 if (ascend) {
790 for (i = n_currents - 1; i >= 0; i--) {
791 if (min_uA <= curr_table[i] &&
792 curr_table[i] <= max_uA) {
793 sel = i;
794 break;
795 }
796 }
797 } else {
798 for (i = 0; i < n_currents; i++) {
799 if (min_uA <= curr_table[i] &&
800 curr_table[i] <= max_uA) {
801 sel = i;
802 break;
803 }
804 }
805 }
806 }
807
808 if (sel < 0)
809 return -EINVAL;
810
811 sel <<= ffs(rdev->desc->csel_mask) - 1;
812
813 return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
814 rdev->desc->csel_mask, sel);
815}
816EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
817
818/**
819 * regulator_get_current_limit_regmap - get_current_limit for regmap users
820 *
821 * @rdev: regulator to operate on
822 *
823 * Regulators that use regmap for their register I/O can set the
824 * csel_reg and csel_mask fields in their descriptor and then use this
825 * as their get_current_limit operation, saving some code.
826 */
827int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
828{
829 unsigned int val;
830 int ret;
831
832 ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
833 if (ret != 0)
834 return ret;
835
836 val &= rdev->desc->csel_mask;
837 val >>= ffs(rdev->desc->csel_mask) - 1;
838
839 if (rdev->desc->curr_table) {
840 if (val >= rdev->desc->n_current_limits)
841 return -EINVAL;
842
843 return rdev->desc->curr_table[val];
844 }
845
846 return -EINVAL;
847}
848EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
849
850/**
851 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
852 * of regulator_bulk_data structs
853 *
854 * @consumers: array of regulator_bulk_data entries to initialize
855 * @supply_names: array of supply name strings
856 * @num_supplies: number of supply names to initialize
857 *
858 * Note: the 'consumers' array must be the size of 'num_supplies'.
859 */
860void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
861 const char *const *supply_names,
862 unsigned int num_supplies)
863{
864 unsigned int i;
865
866 for (i = 0; i < num_supplies; i++)
867 consumers[i].supply = supply_names[i];
868}
869EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
870
871/**
872 * regulator_is_equal - test whether two regulators are the same
873 *
874 * @reg1: first regulator to operate on
875 * @reg2: second regulator to operate on
876 */
877bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
878{
879 return reg1->rdev == reg2->rdev;
880}
881EXPORT_SYMBOL_GPL(regulator_is_equal);