Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flex_pipe.h"
   6#include "ice_flow.h"
   7#include "ice.h"
   8
   9/* For supporting double VLAN mode, it is necessary to enable or disable certain
  10 * boost tcam entries. The metadata labels names that match the following
  11 * prefixes will be saved to allow enabling double VLAN mode.
  12 */
  13#define ICE_DVM_PRE	"BOOST_MAC_VLAN_DVM"	/* enable these entries */
  14#define ICE_SVM_PRE	"BOOST_MAC_VLAN_SVM"	/* disable these entries */
  15
  16/* To support tunneling entries by PF, the package will append the PF number to
  17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
  18 */
  19#define ICE_TNL_PRE	"TNL_"
  20static const struct ice_tunnel_type_scan tnls[] = {
  21	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
  22	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
  23	{ TNL_LAST,		"" }
  24};
  25
  26static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
  27	/* SWITCH */
  28	{
  29		ICE_SID_XLT0_SW,
  30		ICE_SID_XLT_KEY_BUILDER_SW,
  31		ICE_SID_XLT1_SW,
  32		ICE_SID_XLT2_SW,
  33		ICE_SID_PROFID_TCAM_SW,
  34		ICE_SID_PROFID_REDIR_SW,
  35		ICE_SID_FLD_VEC_SW,
  36		ICE_SID_CDID_KEY_BUILDER_SW,
  37		ICE_SID_CDID_REDIR_SW
  38	},
  39
  40	/* ACL */
  41	{
  42		ICE_SID_XLT0_ACL,
  43		ICE_SID_XLT_KEY_BUILDER_ACL,
  44		ICE_SID_XLT1_ACL,
  45		ICE_SID_XLT2_ACL,
  46		ICE_SID_PROFID_TCAM_ACL,
  47		ICE_SID_PROFID_REDIR_ACL,
  48		ICE_SID_FLD_VEC_ACL,
  49		ICE_SID_CDID_KEY_BUILDER_ACL,
  50		ICE_SID_CDID_REDIR_ACL
  51	},
  52
  53	/* FD */
  54	{
  55		ICE_SID_XLT0_FD,
  56		ICE_SID_XLT_KEY_BUILDER_FD,
  57		ICE_SID_XLT1_FD,
  58		ICE_SID_XLT2_FD,
  59		ICE_SID_PROFID_TCAM_FD,
  60		ICE_SID_PROFID_REDIR_FD,
  61		ICE_SID_FLD_VEC_FD,
  62		ICE_SID_CDID_KEY_BUILDER_FD,
  63		ICE_SID_CDID_REDIR_FD
  64	},
  65
  66	/* RSS */
  67	{
  68		ICE_SID_XLT0_RSS,
  69		ICE_SID_XLT_KEY_BUILDER_RSS,
  70		ICE_SID_XLT1_RSS,
  71		ICE_SID_XLT2_RSS,
  72		ICE_SID_PROFID_TCAM_RSS,
  73		ICE_SID_PROFID_REDIR_RSS,
  74		ICE_SID_FLD_VEC_RSS,
  75		ICE_SID_CDID_KEY_BUILDER_RSS,
  76		ICE_SID_CDID_REDIR_RSS
  77	},
  78
  79	/* PE */
  80	{
  81		ICE_SID_XLT0_PE,
  82		ICE_SID_XLT_KEY_BUILDER_PE,
  83		ICE_SID_XLT1_PE,
  84		ICE_SID_XLT2_PE,
  85		ICE_SID_PROFID_TCAM_PE,
  86		ICE_SID_PROFID_REDIR_PE,
  87		ICE_SID_FLD_VEC_PE,
  88		ICE_SID_CDID_KEY_BUILDER_PE,
  89		ICE_SID_CDID_REDIR_PE
  90	}
  91};
  92
  93/**
  94 * ice_sect_id - returns section ID
  95 * @blk: block type
  96 * @sect: section type
  97 *
  98 * This helper function returns the proper section ID given a block type and a
  99 * section type.
 100 */
 101static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
 102{
 103	return ice_sect_lkup[blk][sect];
 104}
 105
 106/**
 107 * ice_pkg_val_buf
 108 * @buf: pointer to the ice buffer
 109 *
 110 * This helper function validates a buffer's header.
 111 */
 112static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
 113{
 114	struct ice_buf_hdr *hdr;
 115	u16 section_count;
 116	u16 data_end;
 117
 118	hdr = (struct ice_buf_hdr *)buf->buf;
 119	/* verify data */
 120	section_count = le16_to_cpu(hdr->section_count);
 121	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
 122		return NULL;
 123
 124	data_end = le16_to_cpu(hdr->data_end);
 125	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
 126		return NULL;
 127
 128	return hdr;
 129}
 130
 131/**
 132 * ice_find_buf_table
 133 * @ice_seg: pointer to the ice segment
 134 *
 135 * Returns the address of the buffer table within the ice segment.
 136 */
 137static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
 138{
 139	struct ice_nvm_table *nvms;
 140
 141	nvms = (struct ice_nvm_table *)
 142		(ice_seg->device_table +
 143		 le32_to_cpu(ice_seg->device_table_count));
 144
 145	return (__force struct ice_buf_table *)
 146		(nvms->vers + le32_to_cpu(nvms->table_count));
 147}
 148
 149/**
 150 * ice_pkg_enum_buf
 151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 152 * @state: pointer to the enum state
 153 *
 154 * This function will enumerate all the buffers in the ice segment. The first
 155 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
 156 * ice_seg is set to NULL which continues the enumeration. When the function
 157 * returns a NULL pointer, then the end of the buffers has been reached, or an
 158 * unexpected value has been detected (for example an invalid section count or
 159 * an invalid buffer end value).
 160 */
 161static struct ice_buf_hdr *
 162ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 163{
 164	if (ice_seg) {
 165		state->buf_table = ice_find_buf_table(ice_seg);
 166		if (!state->buf_table)
 167			return NULL;
 168
 169		state->buf_idx = 0;
 170		return ice_pkg_val_buf(state->buf_table->buf_array);
 171	}
 172
 173	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
 174		return ice_pkg_val_buf(state->buf_table->buf_array +
 175				       state->buf_idx);
 176	else
 177		return NULL;
 178}
 179
 180/**
 181 * ice_pkg_advance_sect
 182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 183 * @state: pointer to the enum state
 184 *
 185 * This helper function will advance the section within the ice segment,
 186 * also advancing the buffer if needed.
 187 */
 188static bool
 189ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 190{
 191	if (!ice_seg && !state->buf)
 192		return false;
 193
 194	if (!ice_seg && state->buf)
 195		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
 196			return true;
 197
 198	state->buf = ice_pkg_enum_buf(ice_seg, state);
 199	if (!state->buf)
 200		return false;
 201
 202	/* start of new buffer, reset section index */
 203	state->sect_idx = 0;
 204	return true;
 205}
 206
 207/**
 208 * ice_pkg_enum_section
 209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 210 * @state: pointer to the enum state
 211 * @sect_type: section type to enumerate
 212 *
 213 * This function will enumerate all the sections of a particular type in the
 214 * ice segment. The first call is made with the ice_seg parameter non-NULL;
 215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 216 * When the function returns a NULL pointer, then the end of the matching
 217 * sections has been reached.
 218 */
 219static void *
 220ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 221		     u32 sect_type)
 222{
 223	u16 offset, size;
 224
 225	if (ice_seg)
 226		state->type = sect_type;
 227
 228	if (!ice_pkg_advance_sect(ice_seg, state))
 229		return NULL;
 230
 231	/* scan for next matching section */
 232	while (state->buf->section_entry[state->sect_idx].type !=
 233	       cpu_to_le32(state->type))
 234		if (!ice_pkg_advance_sect(NULL, state))
 235			return NULL;
 236
 237	/* validate section */
 238	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 239	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
 240		return NULL;
 241
 242	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
 243	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
 244		return NULL;
 245
 246	/* make sure the section fits in the buffer */
 247	if (offset + size > ICE_PKG_BUF_SIZE)
 248		return NULL;
 249
 250	state->sect_type =
 251		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
 252
 253	/* calc pointer to this section */
 254	state->sect = ((u8 *)state->buf) +
 255		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 256
 257	return state->sect;
 258}
 259
 260/**
 261 * ice_pkg_enum_entry
 262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 263 * @state: pointer to the enum state
 264 * @sect_type: section type to enumerate
 265 * @offset: pointer to variable that receives the offset in the table (optional)
 266 * @handler: function that handles access to the entries into the section type
 267 *
 268 * This function will enumerate all the entries in particular section type in
 269 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
 270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 271 * When the function returns a NULL pointer, then the end of the entries has
 272 * been reached.
 273 *
 274 * Since each section may have a different header and entry size, the handler
 275 * function is needed to determine the number and location entries in each
 276 * section.
 277 *
 278 * The offset parameter is optional, but should be used for sections that
 279 * contain an offset for each section table. For such cases, the section handler
 280 * function must return the appropriate offset + index to give the absolution
 281 * offset for each entry. For example, if the base for a section's header
 282 * indicates a base offset of 10, and the index for the entry is 2, then
 283 * section handler function should set the offset to 10 + 2 = 12.
 284 */
 285static void *
 286ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 287		   u32 sect_type, u32 *offset,
 288		   void *(*handler)(u32 sect_type, void *section,
 289				    u32 index, u32 *offset))
 290{
 291	void *entry;
 292
 293	if (ice_seg) {
 294		if (!handler)
 295			return NULL;
 296
 297		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
 298			return NULL;
 299
 300		state->entry_idx = 0;
 301		state->handler = handler;
 302	} else {
 303		state->entry_idx++;
 304	}
 305
 306	if (!state->handler)
 307		return NULL;
 308
 309	/* get entry */
 310	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
 311			       offset);
 312	if (!entry) {
 313		/* end of a section, look for another section of this type */
 314		if (!ice_pkg_enum_section(NULL, state, 0))
 315			return NULL;
 316
 317		state->entry_idx = 0;
 318		entry = state->handler(state->sect_type, state->sect,
 319				       state->entry_idx, offset);
 320	}
 321
 322	return entry;
 323}
 324
 325/**
 326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
 327 * @hw: pointer to the HW structure
 328 * @ptype: the hardware PTYPE
 329 */
 330bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
 331{
 332	return ptype < ICE_FLOW_PTYPE_MAX &&
 333	       test_bit(ptype, hw->hw_ptype);
 334}
 335
 336/**
 337 * ice_marker_ptype_tcam_handler
 338 * @sect_type: section type
 339 * @section: pointer to section
 340 * @index: index of the Marker PType TCAM entry to be returned
 341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
 342 *
 343 * This is a callback function that can be passed to ice_pkg_enum_entry.
 344 * Handles enumeration of individual Marker PType TCAM entries.
 345 */
 346static void *
 347ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
 348			      u32 *offset)
 349{
 350	struct ice_marker_ptype_tcam_section *marker_ptype;
 351
 352	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
 353		return NULL;
 354
 355	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
 356		return NULL;
 357
 358	if (offset)
 359		*offset = 0;
 360
 361	marker_ptype = section;
 362	if (index >= le16_to_cpu(marker_ptype->count))
 363		return NULL;
 364
 365	return marker_ptype->tcam + index;
 366}
 367
 368/**
 369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information
 370 * @hw: pointer to the HW structure
 371 */
 372static void ice_fill_hw_ptype(struct ice_hw *hw)
 373{
 374	struct ice_marker_ptype_tcam_entry *tcam;
 375	struct ice_seg *seg = hw->seg;
 376	struct ice_pkg_enum state;
 377
 378	bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
 379	if (!seg)
 380		return;
 381
 382	memset(&state, 0, sizeof(state));
 383
 384	do {
 385		tcam = ice_pkg_enum_entry(seg, &state,
 386					  ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
 387					  ice_marker_ptype_tcam_handler);
 388		if (tcam &&
 389		    le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
 390		    le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
 391			set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
 392
 393		seg = NULL;
 394	} while (tcam);
 395}
 396
 397/**
 398 * ice_boost_tcam_handler
 399 * @sect_type: section type
 400 * @section: pointer to section
 401 * @index: index of the boost TCAM entry to be returned
 402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
 403 *
 404 * This is a callback function that can be passed to ice_pkg_enum_entry.
 405 * Handles enumeration of individual boost TCAM entries.
 406 */
 407static void *
 408ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
 409{
 410	struct ice_boost_tcam_section *boost;
 411
 412	if (!section)
 413		return NULL;
 414
 415	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
 416		return NULL;
 417
 418	/* cppcheck-suppress nullPointer */
 419	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
 420		return NULL;
 421
 422	if (offset)
 423		*offset = 0;
 424
 425	boost = section;
 426	if (index >= le16_to_cpu(boost->count))
 427		return NULL;
 428
 429	return boost->tcam + index;
 430}
 431
 432/**
 433 * ice_find_boost_entry
 434 * @ice_seg: pointer to the ice segment (non-NULL)
 435 * @addr: Boost TCAM address of entry to search for
 436 * @entry: returns pointer to the entry
 437 *
 438 * Finds a particular Boost TCAM entry and returns a pointer to that entry
 439 * if it is found. The ice_seg parameter must not be NULL since the first call
 440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
 441 */
 442static int
 443ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
 444		     struct ice_boost_tcam_entry **entry)
 445{
 446	struct ice_boost_tcam_entry *tcam;
 447	struct ice_pkg_enum state;
 448
 449	memset(&state, 0, sizeof(state));
 450
 451	if (!ice_seg)
 452		return -EINVAL;
 453
 454	do {
 455		tcam = ice_pkg_enum_entry(ice_seg, &state,
 456					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
 457					  ice_boost_tcam_handler);
 458		if (tcam && le16_to_cpu(tcam->addr) == addr) {
 459			*entry = tcam;
 460			return 0;
 461		}
 462
 463		ice_seg = NULL;
 464	} while (tcam);
 465
 466	*entry = NULL;
 467	return -EIO;
 468}
 469
 470/**
 471 * ice_label_enum_handler
 472 * @sect_type: section type
 473 * @section: pointer to section
 474 * @index: index of the label entry to be returned
 475 * @offset: pointer to receive absolute offset, always zero for label sections
 476 *
 477 * This is a callback function that can be passed to ice_pkg_enum_entry.
 478 * Handles enumeration of individual label entries.
 479 */
 480static void *
 481ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
 482		       u32 *offset)
 483{
 484	struct ice_label_section *labels;
 485
 486	if (!section)
 487		return NULL;
 488
 489	/* cppcheck-suppress nullPointer */
 490	if (index > ICE_MAX_LABELS_IN_BUF)
 491		return NULL;
 492
 493	if (offset)
 494		*offset = 0;
 495
 496	labels = section;
 497	if (index >= le16_to_cpu(labels->count))
 498		return NULL;
 499
 500	return labels->label + index;
 501}
 502
 503/**
 504 * ice_enum_labels
 505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
 506 * @type: the section type that will contain the label (0 on subsequent calls)
 507 * @state: ice_pkg_enum structure that will hold the state of the enumeration
 508 * @value: pointer to a value that will return the label's value if found
 509 *
 510 * Enumerates a list of labels in the package. The caller will call
 511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
 512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
 513 * the end of the list has been reached.
 514 */
 515static char *
 516ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
 517		u16 *value)
 518{
 519	struct ice_label *label;
 520
 521	/* Check for valid label section on first call */
 522	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
 523		return NULL;
 524
 525	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
 526				   ice_label_enum_handler);
 527	if (!label)
 528		return NULL;
 529
 530	*value = le16_to_cpu(label->value);
 531	return label->name;
 532}
 533
 534/**
 535 * ice_add_tunnel_hint
 536 * @hw: pointer to the HW structure
 537 * @label_name: label text
 538 * @val: value of the tunnel port boost entry
 539 */
 540static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
 541{
 542	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
 543		u16 i;
 544
 545		for (i = 0; tnls[i].type != TNL_LAST; i++) {
 546			size_t len = strlen(tnls[i].label_prefix);
 547
 548			/* Look for matching label start, before continuing */
 549			if (strncmp(label_name, tnls[i].label_prefix, len))
 550				continue;
 551
 552			/* Make sure this label matches our PF. Note that the PF
 553			 * character ('0' - '7') will be located where our
 554			 * prefix string's null terminator is located.
 555			 */
 556			if ((label_name[len] - '0') == hw->pf_id) {
 557				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
 558				hw->tnl.tbl[hw->tnl.count].valid = false;
 559				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
 560				hw->tnl.tbl[hw->tnl.count].port = 0;
 561				hw->tnl.count++;
 562				break;
 563			}
 564		}
 565	}
 566}
 567
 568/**
 569 * ice_add_dvm_hint
 570 * @hw: pointer to the HW structure
 571 * @val: value of the boost entry
 572 * @enable: true if entry needs to be enabled, or false if needs to be disabled
 573 */
 574static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
 575{
 576	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
 577		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
 578		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
 579		hw->dvm_upd.count++;
 580	}
 581}
 582
 583/**
 584 * ice_init_pkg_hints
 585 * @hw: pointer to the HW structure
 586 * @ice_seg: pointer to the segment of the package scan (non-NULL)
 587 *
 588 * This function will scan the package and save off relevant information
 589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
 590 * since the first call to ice_enum_labels requires a pointer to an actual
 591 * ice_seg structure.
 592 */
 593static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
 594{
 595	struct ice_pkg_enum state;
 596	char *label_name;
 597	u16 val;
 598	int i;
 599
 600	memset(&hw->tnl, 0, sizeof(hw->tnl));
 601	memset(&state, 0, sizeof(state));
 602
 603	if (!ice_seg)
 604		return;
 605
 606	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
 607				     &val);
 608
 609	while (label_name) {
 610		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
 611			/* check for a tunnel entry */
 612			ice_add_tunnel_hint(hw, label_name, val);
 613
 614		/* check for a dvm mode entry */
 615		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
 616			ice_add_dvm_hint(hw, val, true);
 617
 618		/* check for a svm mode entry */
 619		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
 620			ice_add_dvm_hint(hw, val, false);
 
 
 
 
 
 
 
 
 
 
 
 621
 622		label_name = ice_enum_labels(NULL, 0, &state, &val);
 623	}
 624
 625	/* Cache the appropriate boost TCAM entry pointers for tunnels */
 626	for (i = 0; i < hw->tnl.count; i++) {
 627		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
 628				     &hw->tnl.tbl[i].boost_entry);
 629		if (hw->tnl.tbl[i].boost_entry) {
 630			hw->tnl.tbl[i].valid = true;
 631			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
 632				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
 633		}
 634	}
 635
 636	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
 637	for (i = 0; i < hw->dvm_upd.count; i++)
 638		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
 639				     &hw->dvm_upd.tbl[i].boost_entry);
 640}
 641
 642/* Key creation */
 643
 644#define ICE_DC_KEY	0x1	/* don't care */
 645#define ICE_DC_KEYINV	0x1
 646#define ICE_NM_KEY	0x0	/* never match */
 647#define ICE_NM_KEYINV	0x0
 648#define ICE_0_KEY	0x1	/* match 0 */
 649#define ICE_0_KEYINV	0x0
 650#define ICE_1_KEY	0x0	/* match 1 */
 651#define ICE_1_KEYINV	0x1
 652
 653/**
 654 * ice_gen_key_word - generate 16-bits of a key/mask word
 655 * @val: the value
 656 * @valid: valid bits mask (change only the valid bits)
 657 * @dont_care: don't care mask
 658 * @nvr_mtch: never match mask
 659 * @key: pointer to an array of where the resulting key portion
 660 * @key_inv: pointer to an array of where the resulting key invert portion
 661 *
 662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
 663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
 664 * of key and 8 bits of key invert.
 665 *
 666 *     '0' =    b01, always match a 0 bit
 667 *     '1' =    b10, always match a 1 bit
 668 *     '?' =    b11, don't care bit (always matches)
 669 *     '~' =    b00, never match bit
 670 *
 671 * Input:
 672 *          val:         b0  1  0  1  0  1
 673 *          dont_care:   b0  0  1  1  0  0
 674 *          never_mtch:  b0  0  0  0  1  1
 675 *          ------------------------------
 676 * Result:  key:        b01 10 11 11 00 00
 677 */
 678static int
 679ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
 680		 u8 *key_inv)
 681{
 682	u8 in_key = *key, in_key_inv = *key_inv;
 683	u8 i;
 684
 685	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
 686	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
 687		return -EIO;
 688
 689	*key = 0;
 690	*key_inv = 0;
 691
 692	/* encode the 8 bits into 8-bit key and 8-bit key invert */
 693	for (i = 0; i < 8; i++) {
 694		*key >>= 1;
 695		*key_inv >>= 1;
 696
 697		if (!(valid & 0x1)) { /* change only valid bits */
 698			*key |= (in_key & 0x1) << 7;
 699			*key_inv |= (in_key_inv & 0x1) << 7;
 700		} else if (dont_care & 0x1) { /* don't care bit */
 701			*key |= ICE_DC_KEY << 7;
 702			*key_inv |= ICE_DC_KEYINV << 7;
 703		} else if (nvr_mtch & 0x1) { /* never match bit */
 704			*key |= ICE_NM_KEY << 7;
 705			*key_inv |= ICE_NM_KEYINV << 7;
 706		} else if (val & 0x01) { /* exact 1 match */
 707			*key |= ICE_1_KEY << 7;
 708			*key_inv |= ICE_1_KEYINV << 7;
 709		} else { /* exact 0 match */
 710			*key |= ICE_0_KEY << 7;
 711			*key_inv |= ICE_0_KEYINV << 7;
 712		}
 713
 714		dont_care >>= 1;
 715		nvr_mtch >>= 1;
 716		valid >>= 1;
 717		val >>= 1;
 718		in_key >>= 1;
 719		in_key_inv >>= 1;
 720	}
 721
 722	return 0;
 723}
 724
 725/**
 726 * ice_bits_max_set - determine if the number of bits set is within a maximum
 727 * @mask: pointer to the byte array which is the mask
 728 * @size: the number of bytes in the mask
 729 * @max: the max number of set bits
 730 *
 731 * This function determines if there are at most 'max' number of bits set in an
 732 * array. Returns true if the number for bits set is <= max or will return false
 733 * otherwise.
 734 */
 735static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
 736{
 737	u16 count = 0;
 738	u16 i;
 739
 740	/* check each byte */
 741	for (i = 0; i < size; i++) {
 742		/* if 0, go to next byte */
 743		if (!mask[i])
 744			continue;
 745
 746		/* We know there is at least one set bit in this byte because of
 747		 * the above check; if we already have found 'max' number of
 748		 * bits set, then we can return failure now.
 749		 */
 750		if (count == max)
 751			return false;
 752
 753		/* count the bits in this byte, checking threshold */
 754		count += hweight8(mask[i]);
 755		if (count > max)
 756			return false;
 757	}
 758
 759	return true;
 760}
 761
 762/**
 763 * ice_set_key - generate a variable sized key with multiples of 16-bits
 764 * @key: pointer to where the key will be stored
 765 * @size: the size of the complete key in bytes (must be even)
 766 * @val: array of 8-bit values that makes up the value portion of the key
 767 * @upd: array of 8-bit masks that determine what key portion to update
 768 * @dc: array of 8-bit masks that make up the don't care mask
 769 * @nm: array of 8-bit masks that make up the never match mask
 770 * @off: the offset of the first byte in the key to update
 771 * @len: the number of bytes in the key update
 772 *
 773 * This function generates a key from a value, a don't care mask and a never
 774 * match mask.
 775 * upd, dc, and nm are optional parameters, and can be NULL:
 776 *	upd == NULL --> upd mask is all 1's (update all bits)
 777 *	dc == NULL --> dc mask is all 0's (no don't care bits)
 778 *	nm == NULL --> nm mask is all 0's (no never match bits)
 779 */
 780static int
 781ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
 782	    u16 len)
 783{
 784	u16 half_size;
 785	u16 i;
 786
 787	/* size must be a multiple of 2 bytes. */
 788	if (size % 2)
 789		return -EIO;
 790
 791	half_size = size / 2;
 792	if (off + len > half_size)
 793		return -EIO;
 794
 795	/* Make sure at most one bit is set in the never match mask. Having more
 796	 * than one never match mask bit set will cause HW to consume excessive
 797	 * power otherwise; this is a power management efficiency check.
 798	 */
 799#define ICE_NVR_MTCH_BITS_MAX	1
 800	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
 801		return -EIO;
 802
 803	for (i = 0; i < len; i++)
 804		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
 805				     dc ? dc[i] : 0, nm ? nm[i] : 0,
 806				     key + off + i, key + half_size + off + i))
 807			return -EIO;
 808
 809	return 0;
 810}
 811
 812/**
 813 * ice_acquire_global_cfg_lock
 814 * @hw: pointer to the HW structure
 815 * @access: access type (read or write)
 816 *
 817 * This function will request ownership of the global config lock for reading
 818 * or writing of the package. When attempting to obtain write access, the
 819 * caller must check for the following two return values:
 820 *
 821 * 0         -  Means the caller has acquired the global config lock
 822 *              and can perform writing of the package.
 823 * -EALREADY - Indicates another driver has already written the
 824 *             package or has found that no update was necessary; in
 825 *             this case, the caller can just skip performing any
 826 *             update of the package.
 827 */
 828static int
 829ice_acquire_global_cfg_lock(struct ice_hw *hw,
 830			    enum ice_aq_res_access_type access)
 831{
 832	int status;
 833
 834	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
 835				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
 836
 837	if (!status)
 838		mutex_lock(&ice_global_cfg_lock_sw);
 839	else if (status == -EALREADY)
 840		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
 
 841
 842	return status;
 843}
 844
 845/**
 846 * ice_release_global_cfg_lock
 847 * @hw: pointer to the HW structure
 848 *
 849 * This function will release the global config lock.
 850 */
 851static void ice_release_global_cfg_lock(struct ice_hw *hw)
 852{
 853	mutex_unlock(&ice_global_cfg_lock_sw);
 854	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
 855}
 856
 857/**
 858 * ice_acquire_change_lock
 859 * @hw: pointer to the HW structure
 860 * @access: access type (read or write)
 861 *
 862 * This function will request ownership of the change lock.
 863 */
 864int
 865ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
 866{
 867	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
 868			       ICE_CHANGE_LOCK_TIMEOUT);
 869}
 870
 871/**
 872 * ice_release_change_lock
 873 * @hw: pointer to the HW structure
 874 *
 875 * This function will release the change lock using the proper Admin Command.
 876 */
 877void ice_release_change_lock(struct ice_hw *hw)
 878{
 879	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
 880}
 881
 882/**
 883 * ice_aq_download_pkg
 884 * @hw: pointer to the hardware structure
 885 * @pkg_buf: the package buffer to transfer
 886 * @buf_size: the size of the package buffer
 887 * @last_buf: last buffer indicator
 888 * @error_offset: returns error offset
 889 * @error_info: returns error information
 890 * @cd: pointer to command details structure or NULL
 891 *
 892 * Download Package (0x0C40)
 893 */
 894static int
 895ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
 896		    u16 buf_size, bool last_buf, u32 *error_offset,
 897		    u32 *error_info, struct ice_sq_cd *cd)
 898{
 899	struct ice_aqc_download_pkg *cmd;
 900	struct ice_aq_desc desc;
 901	int status;
 902
 903	if (error_offset)
 904		*error_offset = 0;
 905	if (error_info)
 906		*error_info = 0;
 907
 908	cmd = &desc.params.download_pkg;
 909	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
 910	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 911
 912	if (last_buf)
 913		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 914
 915	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 916	if (status == -EIO) {
 917		/* Read error from buffer only when the FW returned an error */
 918		struct ice_aqc_download_pkg_resp *resp;
 919
 920		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 921		if (error_offset)
 922			*error_offset = le32_to_cpu(resp->error_offset);
 923		if (error_info)
 924			*error_info = le32_to_cpu(resp->error_info);
 925	}
 926
 927	return status;
 928}
 929
 930/**
 931 * ice_aq_upload_section
 932 * @hw: pointer to the hardware structure
 933 * @pkg_buf: the package buffer which will receive the section
 934 * @buf_size: the size of the package buffer
 935 * @cd: pointer to command details structure or NULL
 936 *
 937 * Upload Section (0x0C41)
 938 */
 939int
 940ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
 941		      u16 buf_size, struct ice_sq_cd *cd)
 942{
 943	struct ice_aq_desc desc;
 944
 945	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
 946	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 947
 948	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 949}
 950
 951/**
 952 * ice_aq_update_pkg
 953 * @hw: pointer to the hardware structure
 954 * @pkg_buf: the package cmd buffer
 955 * @buf_size: the size of the package cmd buffer
 956 * @last_buf: last buffer indicator
 957 * @error_offset: returns error offset
 958 * @error_info: returns error information
 959 * @cd: pointer to command details structure or NULL
 960 *
 961 * Update Package (0x0C42)
 962 */
 963static int
 964ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
 965		  bool last_buf, u32 *error_offset, u32 *error_info,
 966		  struct ice_sq_cd *cd)
 967{
 968	struct ice_aqc_download_pkg *cmd;
 969	struct ice_aq_desc desc;
 970	int status;
 971
 972	if (error_offset)
 973		*error_offset = 0;
 974	if (error_info)
 975		*error_info = 0;
 976
 977	cmd = &desc.params.download_pkg;
 978	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
 979	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 980
 981	if (last_buf)
 982		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 983
 984	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 985	if (status == -EIO) {
 986		/* Read error from buffer only when the FW returned an error */
 987		struct ice_aqc_download_pkg_resp *resp;
 988
 989		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 990		if (error_offset)
 991			*error_offset = le32_to_cpu(resp->error_offset);
 992		if (error_info)
 993			*error_info = le32_to_cpu(resp->error_info);
 994	}
 995
 996	return status;
 997}
 998
 999/**
1000 * ice_find_seg_in_pkg
1001 * @hw: pointer to the hardware structure
1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1003 * @pkg_hdr: pointer to the package header to be searched
1004 *
1005 * This function searches a package file for a particular segment type. On
1006 * success it returns a pointer to the segment header, otherwise it will
1007 * return NULL.
1008 */
1009static struct ice_generic_seg_hdr *
1010ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1011		    struct ice_pkg_hdr *pkg_hdr)
1012{
1013	u32 i;
1014
1015	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1016		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1017		  pkg_hdr->pkg_format_ver.update,
1018		  pkg_hdr->pkg_format_ver.draft);
1019
1020	/* Search all package segments for the requested segment type */
1021	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1022		struct ice_generic_seg_hdr *seg;
1023
1024		seg = (struct ice_generic_seg_hdr *)
1025			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
1026
1027		if (le32_to_cpu(seg->seg_type) == seg_type)
1028			return seg;
1029	}
1030
1031	return NULL;
1032}
1033
1034/**
1035 * ice_update_pkg_no_lock
1036 * @hw: pointer to the hardware structure
1037 * @bufs: pointer to an array of buffers
1038 * @count: the number of buffers in the array
 
 
1039 */
1040static int
1041ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1042{
1043	int status = 0;
1044	u32 i;
 
 
 
 
1045
1046	for (i = 0; i < count; i++) {
1047		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1048		bool last = ((i + 1) == count);
1049		u32 offset, info;
1050
1051		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1052					   last, &offset, &info, NULL);
1053
1054		if (status) {
1055			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
 
1056				  status, offset, info);
1057			break;
1058		}
1059	}
1060
1061	return status;
1062}
1063
1064/**
1065 * ice_update_pkg
1066 * @hw: pointer to the hardware structure
1067 * @bufs: pointer to an array of buffers
1068 * @count: the number of buffers in the array
1069 *
1070 * Obtains change lock and updates package.
1071 */
1072static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1073{
1074	int status;
1075
1076	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1077	if (status)
1078		return status;
1079
1080	status = ice_update_pkg_no_lock(hw, bufs, count);
1081
1082	ice_release_change_lock(hw);
1083
1084	return status;
1085}
1086
1087static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1088{
1089	switch (aq_err) {
1090	case ICE_AQ_RC_ENOSEC:
1091	case ICE_AQ_RC_EBADSIG:
1092		return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1093	case ICE_AQ_RC_ESVN:
1094		return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1095	case ICE_AQ_RC_EBADMAN:
1096	case ICE_AQ_RC_EBADBUF:
1097		return ICE_DDP_PKG_LOAD_ERROR;
1098	default:
1099		return ICE_DDP_PKG_ERR;
1100	}
1101}
1102
1103/**
1104 * ice_dwnld_cfg_bufs
1105 * @hw: pointer to the hardware structure
1106 * @bufs: pointer to an array of buffers
1107 * @count: the number of buffers in the array
1108 *
1109 * Obtains global config lock and downloads the package configuration buffers
1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111 * found indicates that the rest of the buffers are all metadata buffers.
1112 */
1113static enum ice_ddp_state
1114ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115{
1116	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1117	struct ice_buf_hdr *bh;
1118	enum ice_aq_err err;
1119	u32 offset, info, i;
1120	int status;
1121
1122	if (!bufs || !count)
1123		return ICE_DDP_PKG_ERR;
1124
1125	/* If the first buffer's first section has its metadata bit set
1126	 * then there are no buffers to be downloaded, and the operation is
1127	 * considered a success.
1128	 */
1129	bh = (struct ice_buf_hdr *)bufs;
1130	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1131		return ICE_DDP_PKG_SUCCESS;
 
 
 
 
 
1132
1133	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1134	if (status) {
1135		if (status == -EALREADY)
1136			return ICE_DDP_PKG_ALREADY_LOADED;
1137		return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
 
 
1138	}
1139
1140	for (i = 0; i < count; i++) {
1141		bool last = ((i + 1) == count);
1142
1143		if (!last) {
1144			/* check next buffer for metadata flag */
1145			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1146
1147			/* A set metadata flag in the next buffer will signal
1148			 * that the current buffer will be the last buffer
1149			 * downloaded
1150			 */
1151			if (le16_to_cpu(bh->section_count))
1152				if (le32_to_cpu(bh->section_entry[0].type) &
1153				    ICE_METADATA_BUF)
1154					last = true;
1155		}
1156
1157		bh = (struct ice_buf_hdr *)(bufs + i);
1158
1159		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1160					     &offset, &info, NULL);
1161
1162		/* Save AQ status from download package */
 
1163		if (status) {
1164			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
 
1165				  status, offset, info);
1166			err = hw->adminq.sq_last_status;
1167			state = ice_map_aq_err_to_ddp_state(err);
1168			break;
1169		}
1170
1171		if (last)
1172			break;
1173	}
1174
1175	if (!status) {
1176		status = ice_set_vlan_mode(hw);
1177		if (status)
1178			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1179				  status);
1180	}
1181
1182	ice_release_global_cfg_lock(hw);
1183
1184	return state;
1185}
1186
1187/**
1188 * ice_aq_get_pkg_info_list
1189 * @hw: pointer to the hardware structure
1190 * @pkg_info: the buffer which will receive the information list
1191 * @buf_size: the size of the pkg_info information buffer
1192 * @cd: pointer to command details structure or NULL
1193 *
1194 * Get Package Info List (0x0C43)
1195 */
1196static int
1197ice_aq_get_pkg_info_list(struct ice_hw *hw,
1198			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1199			 u16 buf_size, struct ice_sq_cd *cd)
1200{
1201	struct ice_aq_desc desc;
1202
1203	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1204
1205	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1206}
1207
1208/**
1209 * ice_download_pkg
1210 * @hw: pointer to the hardware structure
1211 * @ice_seg: pointer to the segment of the package to be downloaded
1212 *
1213 * Handles the download of a complete package.
1214 */
1215static enum ice_ddp_state
1216ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1217{
1218	struct ice_buf_table *ice_buf_tbl;
1219	int status;
1220
1221	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1222		  ice_seg->hdr.seg_format_ver.major,
1223		  ice_seg->hdr.seg_format_ver.minor,
1224		  ice_seg->hdr.seg_format_ver.update,
1225		  ice_seg->hdr.seg_format_ver.draft);
1226
1227	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1228		  le32_to_cpu(ice_seg->hdr.seg_type),
1229		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1230
1231	ice_buf_tbl = ice_find_buf_table(ice_seg);
1232
1233	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1234		  le32_to_cpu(ice_buf_tbl->buf_count));
1235
1236	status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1237				    le32_to_cpu(ice_buf_tbl->buf_count));
1238
1239	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1240
1241	return status;
1242}
1243
1244/**
1245 * ice_init_pkg_info
1246 * @hw: pointer to the hardware structure
1247 * @pkg_hdr: pointer to the driver's package hdr
1248 *
1249 * Saves off the package details into the HW structure.
1250 */
1251static enum ice_ddp_state
1252ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1253{
 
1254	struct ice_generic_seg_hdr *seg_hdr;
1255
1256	if (!pkg_hdr)
1257		return ICE_DDP_PKG_ERR;
1258
1259	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1260	if (seg_hdr) {
1261		struct ice_meta_sect *meta;
1262		struct ice_pkg_enum state;
1263
1264		memset(&state, 0, sizeof(state));
1265
1266		/* Get package information from the Metadata Section */
1267		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1268					    ICE_SID_METADATA);
1269		if (!meta) {
1270			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1271			return ICE_DDP_PKG_INVALID_FILE;
1272		}
1273
1274		hw->pkg_ver = meta->ver;
1275		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1276
1277		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1278			  meta->ver.major, meta->ver.minor, meta->ver.update,
1279			  meta->ver.draft, meta->name);
 
 
 
 
 
 
1280
1281		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1282		memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1283		       sizeof(hw->ice_seg_id));
 
 
1284
1285		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1286			  seg_hdr->seg_format_ver.major,
1287			  seg_hdr->seg_format_ver.minor,
1288			  seg_hdr->seg_format_ver.update,
1289			  seg_hdr->seg_format_ver.draft,
1290			  seg_hdr->seg_id);
1291	} else {
1292		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1293		return ICE_DDP_PKG_INVALID_FILE;
 
1294	}
1295
1296	return ICE_DDP_PKG_SUCCESS;
1297}
1298
1299/**
1300 * ice_get_pkg_info
1301 * @hw: pointer to the hardware structure
1302 *
1303 * Store details of the package currently loaded in HW into the HW structure.
1304 */
1305static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1306{
1307	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1308	struct ice_aqc_get_pkg_info_resp *pkg_info;
 
1309	u16 size;
1310	u32 i;
1311
1312	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1313	pkg_info = kzalloc(size, GFP_KERNEL);
1314	if (!pkg_info)
1315		return ICE_DDP_PKG_ERR;
1316
1317	if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
1318		state = ICE_DDP_PKG_ERR;
1319		goto init_pkg_free_alloc;
1320	}
1321
1322	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1323#define ICE_PKG_FLAG_COUNT	4
1324		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1325		u8 place = 0;
1326
1327		if (pkg_info->pkg_info[i].is_active) {
1328			flags[place++] = 'A';
1329			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1330			hw->active_track_id =
1331				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1332			memcpy(hw->active_pkg_name,
1333			       pkg_info->pkg_info[i].name,
1334			       sizeof(pkg_info->pkg_info[i].name));
1335			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1336		}
1337		if (pkg_info->pkg_info[i].is_active_at_boot)
1338			flags[place++] = 'B';
1339		if (pkg_info->pkg_info[i].is_modified)
1340			flags[place++] = 'M';
1341		if (pkg_info->pkg_info[i].is_in_nvm)
1342			flags[place++] = 'N';
1343
1344		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1345			  i, pkg_info->pkg_info[i].ver.major,
1346			  pkg_info->pkg_info[i].ver.minor,
1347			  pkg_info->pkg_info[i].ver.update,
1348			  pkg_info->pkg_info[i].ver.draft,
1349			  pkg_info->pkg_info[i].name, flags);
1350	}
1351
1352init_pkg_free_alloc:
1353	kfree(pkg_info);
1354
1355	return state;
1356}
1357
1358/**
1359 * ice_verify_pkg - verify package
1360 * @pkg: pointer to the package buffer
1361 * @len: size of the package buffer
1362 *
1363 * Verifies various attributes of the package file, including length, format
1364 * version, and the requirement of at least one segment.
1365 */
1366static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1367{
1368	u32 seg_count;
1369	u32 i;
1370
1371	if (len < struct_size(pkg, seg_offset, 1))
1372		return ICE_DDP_PKG_INVALID_FILE;
1373
1374	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1375	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1376	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1377	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1378		return ICE_DDP_PKG_INVALID_FILE;
1379
1380	/* pkg must have at least one segment */
1381	seg_count = le32_to_cpu(pkg->seg_count);
1382	if (seg_count < 1)
1383		return ICE_DDP_PKG_INVALID_FILE;
1384
1385	/* make sure segment array fits in package length */
1386	if (len < struct_size(pkg, seg_offset, seg_count))
1387		return ICE_DDP_PKG_INVALID_FILE;
1388
1389	/* all segments must fit within length */
1390	for (i = 0; i < seg_count; i++) {
1391		u32 off = le32_to_cpu(pkg->seg_offset[i]);
1392		struct ice_generic_seg_hdr *seg;
1393
1394		/* segment header must fit */
1395		if (len < off + sizeof(*seg))
1396			return ICE_DDP_PKG_INVALID_FILE;
1397
1398		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1399
1400		/* segment body must fit */
1401		if (len < off + le32_to_cpu(seg->seg_size))
1402			return ICE_DDP_PKG_INVALID_FILE;
1403	}
1404
1405	return ICE_DDP_PKG_SUCCESS;
1406}
1407
1408/**
1409 * ice_free_seg - free package segment pointer
1410 * @hw: pointer to the hardware structure
1411 *
1412 * Frees the package segment pointer in the proper manner, depending on if the
1413 * segment was allocated or just the passed in pointer was stored.
1414 */
1415void ice_free_seg(struct ice_hw *hw)
1416{
1417	if (hw->pkg_copy) {
1418		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1419		hw->pkg_copy = NULL;
1420		hw->pkg_size = 0;
1421	}
1422	hw->seg = NULL;
1423}
1424
1425/**
1426 * ice_init_pkg_regs - initialize additional package registers
1427 * @hw: pointer to the hardware structure
1428 */
1429static void ice_init_pkg_regs(struct ice_hw *hw)
1430{
1431#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1432#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1433#define ICE_SW_BLK_IDX	0
1434
1435	/* setup Switch block input mask, which is 48-bits in two parts */
1436	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1437	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1438}
1439
1440/**
1441 * ice_chk_pkg_version - check package version for compatibility with driver
1442 * @pkg_ver: pointer to a version structure to check
1443 *
1444 * Check to make sure that the package about to be downloaded is compatible with
1445 * the driver. To be compatible, the major and minor components of the package
1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1447 * definitions.
1448 */
1449static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1450{
1451	if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
1452	    (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1453	     pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
1454		return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
1455	else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
1456		 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1457		  pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
1458		return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
1459
1460	return ICE_DDP_PKG_SUCCESS;
1461}
1462
1463/**
1464 * ice_chk_pkg_compat
1465 * @hw: pointer to the hardware structure
1466 * @ospkg: pointer to the package hdr
1467 * @seg: pointer to the package segment hdr
1468 *
1469 * This function checks the package version compatibility with driver and NVM
1470 */
1471static enum ice_ddp_state
1472ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1473		   struct ice_seg **seg)
1474{
1475	struct ice_aqc_get_pkg_info_resp *pkg;
1476	enum ice_ddp_state state;
1477	u16 size;
1478	u32 i;
1479
1480	/* Check package version compatibility */
1481	state = ice_chk_pkg_version(&hw->pkg_ver);
1482	if (state) {
1483		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1484		return state;
1485	}
1486
1487	/* find ICE segment in given package */
1488	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1489						     ospkg);
1490	if (!*seg) {
1491		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1492		return ICE_DDP_PKG_INVALID_FILE;
1493	}
1494
1495	/* Check if FW is compatible with the OS package */
1496	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1497	pkg = kzalloc(size, GFP_KERNEL);
1498	if (!pkg)
1499		return ICE_DDP_PKG_ERR;
1500
1501	if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
1502		state = ICE_DDP_PKG_LOAD_ERROR;
1503		goto fw_ddp_compat_free_alloc;
1504	}
1505
1506	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1507		/* loop till we find the NVM package */
1508		if (!pkg->pkg_info[i].is_in_nvm)
1509			continue;
1510		if ((*seg)->hdr.seg_format_ver.major !=
1511			pkg->pkg_info[i].ver.major ||
1512		    (*seg)->hdr.seg_format_ver.minor >
1513			pkg->pkg_info[i].ver.minor) {
1514			state = ICE_DDP_PKG_FW_MISMATCH;
1515			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
 
1516		}
1517		/* done processing NVM package so break */
1518		break;
1519	}
1520fw_ddp_compat_free_alloc:
1521	kfree(pkg);
1522	return state;
1523}
1524
1525/**
1526 * ice_sw_fv_handler
1527 * @sect_type: section type
1528 * @section: pointer to section
1529 * @index: index of the field vector entry to be returned
1530 * @offset: ptr to variable that receives the offset in the field vector table
1531 *
1532 * This is a callback function that can be passed to ice_pkg_enum_entry.
1533 * This function treats the given section as of type ice_sw_fv_section and
1534 * enumerates offset field. "offset" is an index into the field vector table.
1535 */
1536static void *
1537ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1538{
1539	struct ice_sw_fv_section *fv_section = section;
1540
1541	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1542		return NULL;
1543	if (index >= le16_to_cpu(fv_section->count))
1544		return NULL;
1545	if (offset)
1546		/* "index" passed in to this function is relative to a given
1547		 * 4k block. To get to the true index into the field vector
1548		 * table need to add the relative index to the base_offset
1549		 * field of this section
1550		 */
1551		*offset = le16_to_cpu(fv_section->base_offset) + index;
1552	return fv_section->fv + index;
1553}
1554
1555/**
1556 * ice_get_prof_index_max - get the max profile index for used profile
1557 * @hw: pointer to the HW struct
1558 *
1559 * Calling this function will get the max profile index for used profile
1560 * and store the index number in struct ice_switch_info *switch_info
1561 * in HW for following use.
1562 */
1563static int ice_get_prof_index_max(struct ice_hw *hw)
1564{
1565	u16 prof_index = 0, j, max_prof_index = 0;
1566	struct ice_pkg_enum state;
1567	struct ice_seg *ice_seg;
1568	bool flag = false;
1569	struct ice_fv *fv;
1570	u32 offset;
1571
1572	memset(&state, 0, sizeof(state));
1573
1574	if (!hw->seg)
1575		return -EINVAL;
1576
1577	ice_seg = hw->seg;
1578
1579	do {
1580		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1581					&offset, ice_sw_fv_handler);
1582		if (!fv)
1583			break;
1584		ice_seg = NULL;
1585
1586		/* in the profile that not be used, the prot_id is set to 0xff
1587		 * and the off is set to 0x1ff for all the field vectors.
1588		 */
1589		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1590			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1591			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1592				flag = true;
1593		if (flag && prof_index > max_prof_index)
1594			max_prof_index = prof_index;
1595
1596		prof_index++;
1597		flag = false;
1598	} while (fv);
1599
1600	hw->switch_info->max_used_prof_index = max_prof_index;
1601
1602	return 0;
1603}
1604
1605/**
1606 * ice_get_ddp_pkg_state - get DDP pkg state after download
1607 * @hw: pointer to the HW struct
1608 * @already_loaded: indicates if pkg was already loaded onto the device
1609 */
1610static enum ice_ddp_state
1611ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
1612{
1613	if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
1614	    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
1615	    hw->pkg_ver.update == hw->active_pkg_ver.update &&
1616	    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
1617	    !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
1618		if (already_loaded)
1619			return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
1620		else
1621			return ICE_DDP_PKG_SUCCESS;
1622	} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
1623		   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
1624		return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
1625	} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
1626		   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
1627		return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
1628	} else {
1629		return ICE_DDP_PKG_ERR;
1630	}
1631}
1632
1633/**
1634 * ice_init_pkg - initialize/download package
1635 * @hw: pointer to the hardware structure
1636 * @buf: pointer to the package buffer
1637 * @len: size of the package buffer
1638 *
1639 * This function initializes a package. The package contains HW tables
1640 * required to do packet processing. First, the function extracts package
1641 * information such as version. Then it finds the ice configuration segment
1642 * within the package; this function then saves a copy of the segment pointer
1643 * within the supplied package buffer. Next, the function will cache any hints
1644 * from the package, followed by downloading the package itself. Note, that if
1645 * a previous PF driver has already downloaded the package successfully, then
1646 * the current driver will not have to download the package again.
1647 *
1648 * The local package contents will be used to query default behavior and to
1649 * update specific sections of the HW's version of the package (e.g. to update
1650 * the parse graph to understand new protocols).
1651 *
1652 * This function stores a pointer to the package buffer memory, and it is
1653 * expected that the supplied buffer will not be freed immediately. If the
1654 * package buffer needs to be freed, such as when read from a file, use
1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1656 * case.
1657 */
1658enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1659{
1660	bool already_loaded = false;
1661	enum ice_ddp_state state;
1662	struct ice_pkg_hdr *pkg;
 
1663	struct ice_seg *seg;
1664
1665	if (!buf || !len)
1666		return ICE_DDP_PKG_ERR;
1667
1668	pkg = (struct ice_pkg_hdr *)buf;
1669	state = ice_verify_pkg(pkg, len);
1670	if (state) {
1671		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1672			  state);
1673		return state;
1674	}
1675
1676	/* initialize package info */
1677	state = ice_init_pkg_info(hw, pkg);
1678	if (state)
1679		return state;
1680
1681	/* before downloading the package, check package version for
1682	 * compatibility with driver
1683	 */
1684	state = ice_chk_pkg_compat(hw, pkg, &seg);
1685	if (state)
1686		return state;
1687
1688	/* initialize package hints and then download package */
1689	ice_init_pkg_hints(hw, seg);
1690	state = ice_download_pkg(hw, seg);
1691	if (state == ICE_DDP_PKG_ALREADY_LOADED) {
1692		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1693		already_loaded = true;
 
1694	}
1695
1696	/* Get information on the package currently loaded in HW, then make sure
1697	 * the driver is compatible with this version.
1698	 */
1699	if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
1700		state = ice_get_pkg_info(hw);
1701		if (!state)
1702			state = ice_get_ddp_pkg_state(hw, already_loaded);
1703	}
1704
1705	if (ice_is_init_pkg_successful(state)) {
1706		hw->seg = seg;
1707		/* on successful package download update other required
1708		 * registers to support the package and fill HW tables
1709		 * with package content.
1710		 */
1711		ice_init_pkg_regs(hw);
1712		ice_fill_blk_tbls(hw);
1713		ice_fill_hw_ptype(hw);
1714		ice_get_prof_index_max(hw);
1715	} else {
1716		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1717			  state);
1718	}
1719
1720	return state;
1721}
1722
1723/**
1724 * ice_copy_and_init_pkg - initialize/download a copy of the package
1725 * @hw: pointer to the hardware structure
1726 * @buf: pointer to the package buffer
1727 * @len: size of the package buffer
1728 *
1729 * This function copies the package buffer, and then calls ice_init_pkg() to
1730 * initialize the copied package contents.
1731 *
1732 * The copying is necessary if the package buffer supplied is constant, or if
1733 * the memory may disappear shortly after calling this function.
1734 *
1735 * If the package buffer resides in the data segment and can be modified, the
1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1737 *
1738 * However, if the package buffer needs to be copied first, such as when being
1739 * read from a file, the caller should use ice_copy_and_init_pkg().
1740 *
1741 * This function will first copy the package buffer, before calling
1742 * ice_init_pkg(). The caller is free to immediately destroy the original
1743 * package buffer, as the new copy will be managed by this function and
1744 * related routines.
1745 */
1746enum ice_ddp_state
1747ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1748{
1749	enum ice_ddp_state state;
1750	u8 *buf_copy;
1751
1752	if (!buf || !len)
1753		return ICE_DDP_PKG_ERR;
1754
1755	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1756
1757	state = ice_init_pkg(hw, buf_copy, len);
1758	if (!ice_is_init_pkg_successful(state)) {
1759		/* Free the copy, since we failed to initialize the package */
1760		devm_kfree(ice_hw_to_dev(hw), buf_copy);
1761	} else {
1762		/* Track the copied pkg so we can free it later */
1763		hw->pkg_copy = buf_copy;
1764		hw->pkg_size = len;
1765	}
1766
1767	return state;
1768}
1769
1770/**
1771 * ice_is_init_pkg_successful - check if DDP init was successful
1772 * @state: state of the DDP pkg after download
1773 */
1774bool ice_is_init_pkg_successful(enum ice_ddp_state state)
1775{
1776	switch (state) {
1777	case ICE_DDP_PKG_SUCCESS:
1778	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
1779	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
1780		return true;
1781	default:
1782		return false;
1783	}
1784}
1785
1786/**
1787 * ice_pkg_buf_alloc
1788 * @hw: pointer to the HW structure
1789 *
1790 * Allocates a package buffer and returns a pointer to the buffer header.
1791 * Note: all package contents must be in Little Endian form.
1792 */
1793static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1794{
1795	struct ice_buf_build *bld;
1796	struct ice_buf_hdr *buf;
1797
1798	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1799	if (!bld)
1800		return NULL;
1801
1802	buf = (struct ice_buf_hdr *)bld;
1803	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1804					     section_entry));
1805	return bld;
1806}
1807
1808static bool ice_is_gtp_u_profile(u16 prof_idx)
1809{
1810	return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
1811		prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
1812	       prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
1813}
1814
1815static bool ice_is_gtp_c_profile(u16 prof_idx)
1816{
1817	switch (prof_idx) {
1818	case ICE_PROFID_IPV4_GTPC_TEID:
1819	case ICE_PROFID_IPV4_GTPC_NO_TEID:
1820	case ICE_PROFID_IPV6_GTPC_TEID:
1821	case ICE_PROFID_IPV6_GTPC_NO_TEID:
1822		return true;
1823	default:
1824		return false;
1825	}
1826}
1827
1828/**
1829 * ice_get_sw_prof_type - determine switch profile type
1830 * @hw: pointer to the HW structure
1831 * @fv: pointer to the switch field vector
1832 * @prof_idx: profile index to check
1833 */
1834static enum ice_prof_type
1835ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
1836{
1837	u16 i;
1838
1839	if (ice_is_gtp_c_profile(prof_idx))
1840		return ICE_PROF_TUN_GTPC;
1841
1842	if (ice_is_gtp_u_profile(prof_idx))
1843		return ICE_PROF_TUN_GTPU;
1844
1845	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1846		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1847		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1848		    fv->ew[i].off == ICE_VNI_OFFSET)
1849			return ICE_PROF_TUN_UDP;
1850
1851		/* GRE tunnel will have GRE protocol */
1852		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1853			return ICE_PROF_TUN_GRE;
1854	}
1855
1856	return ICE_PROF_NON_TUN;
1857}
1858
1859/**
1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1861 * @hw: pointer to hardware structure
1862 * @req_profs: type of profiles requested
1863 * @bm: pointer to memory for returning the bitmap of field vectors
1864 */
1865void
1866ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1867		     unsigned long *bm)
1868{
1869	struct ice_pkg_enum state;
1870	struct ice_seg *ice_seg;
1871	struct ice_fv *fv;
1872
1873	if (req_profs == ICE_PROF_ALL) {
1874		bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1875		return;
1876	}
1877
1878	memset(&state, 0, sizeof(state));
1879	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
1880	ice_seg = hw->seg;
1881	do {
1882		enum ice_prof_type prof_type;
1883		u32 offset;
1884
1885		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1886					&offset, ice_sw_fv_handler);
1887		ice_seg = NULL;
1888
1889		if (fv) {
1890			/* Determine field vector type */
1891			prof_type = ice_get_sw_prof_type(hw, fv, offset);
1892
1893			if (req_profs & prof_type)
1894				set_bit((u16)offset, bm);
1895		}
1896	} while (fv);
1897}
1898
1899/**
1900 * ice_get_sw_fv_list
1901 * @hw: pointer to the HW structure
1902 * @lkups: list of protocol types
1903 * @bm: bitmap of field vectors to consider
1904 * @fv_list: Head of a list
1905 *
1906 * Finds all the field vector entries from switch block that contain
1907 * a given protocol ID and offset and returns a list of structures of type
1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1909 * definition and profile ID information
1910 * NOTE: The caller of the function is responsible for freeing the memory
1911 * allocated for every list entry.
1912 */
1913int
1914ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
1915		   unsigned long *bm, struct list_head *fv_list)
1916{
1917	struct ice_sw_fv_list_entry *fvl;
1918	struct ice_sw_fv_list_entry *tmp;
1919	struct ice_pkg_enum state;
1920	struct ice_seg *ice_seg;
1921	struct ice_fv *fv;
1922	u32 offset;
1923
1924	memset(&state, 0, sizeof(state));
1925
1926	if (!lkups->n_val_words || !hw->seg)
1927		return -EINVAL;
1928
1929	ice_seg = hw->seg;
1930	do {
1931		u16 i;
1932
1933		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1934					&offset, ice_sw_fv_handler);
1935		if (!fv)
1936			break;
1937		ice_seg = NULL;
1938
1939		/* If field vector is not in the bitmap list, then skip this
1940		 * profile.
1941		 */
1942		if (!test_bit((u16)offset, bm))
1943			continue;
1944
1945		for (i = 0; i < lkups->n_val_words; i++) {
1946			int j;
1947
1948			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1949				if (fv->ew[j].prot_id ==
1950				    lkups->fv_words[i].prot_id &&
1951				    fv->ew[j].off == lkups->fv_words[i].off)
1952					break;
1953			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1954				break;
1955			if (i + 1 == lkups->n_val_words) {
1956				fvl = devm_kzalloc(ice_hw_to_dev(hw),
1957						   sizeof(*fvl), GFP_KERNEL);
1958				if (!fvl)
1959					goto err;
1960				fvl->fv_ptr = fv;
1961				fvl->profile_id = offset;
1962				list_add(&fvl->list_entry, fv_list);
1963				break;
1964			}
1965		}
1966	} while (fv);
1967	if (list_empty(fv_list)) {
1968		dev_warn(ice_hw_to_dev(hw), "Required profiles not found in currently loaded DDP package");
1969		return -EIO;
1970	}
1971
1972	return 0;
1973
1974err:
1975	list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
1976		list_del(&fvl->list_entry);
1977		devm_kfree(ice_hw_to_dev(hw), fvl);
1978	}
1979
1980	return -ENOMEM;
1981}
1982
1983/**
1984 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1985 * @hw: pointer to hardware structure
1986 */
1987void ice_init_prof_result_bm(struct ice_hw *hw)
1988{
1989	struct ice_pkg_enum state;
1990	struct ice_seg *ice_seg;
1991	struct ice_fv *fv;
1992
1993	memset(&state, 0, sizeof(state));
1994
1995	if (!hw->seg)
1996		return;
1997
1998	ice_seg = hw->seg;
1999	do {
2000		u32 off;
2001		u16 i;
2002
2003		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
2004					&off, ice_sw_fv_handler);
2005		ice_seg = NULL;
2006		if (!fv)
2007			break;
2008
2009		bitmap_zero(hw->switch_info->prof_res_bm[off],
2010			    ICE_MAX_FV_WORDS);
2011
2012		/* Determine empty field vector indices, these can be
2013		 * used for recipe results. Skip index 0, since it is
2014		 * always used for Switch ID.
2015		 */
2016		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
2017			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
2018			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
2019				set_bit(i, hw->switch_info->prof_res_bm[off]);
2020	} while (fv);
2021}
2022
2023/**
2024 * ice_pkg_buf_free
2025 * @hw: pointer to the HW structure
2026 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2027 *
2028 * Frees a package buffer
2029 */
2030void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
2031{
2032	devm_kfree(ice_hw_to_dev(hw), bld);
2033}
2034
2035/**
2036 * ice_pkg_buf_reserve_section
2037 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2038 * @count: the number of sections to reserve
2039 *
2040 * Reserves one or more section table entries in a package buffer. This routine
2041 * can be called multiple times as long as they are made before calling
2042 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2043 * is called once, the number of sections that can be allocated will not be able
2044 * to be increased; not using all reserved sections is fine, but this will
2045 * result in some wasted space in the buffer.
2046 * Note: all package contents must be in Little Endian form.
2047 */
2048static int
2049ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2050{
2051	struct ice_buf_hdr *buf;
2052	u16 section_count;
2053	u16 data_end;
2054
2055	if (!bld)
2056		return -EINVAL;
2057
2058	buf = (struct ice_buf_hdr *)&bld->buf;
2059
2060	/* already an active section, can't increase table size */
2061	section_count = le16_to_cpu(buf->section_count);
2062	if (section_count > 0)
2063		return -EIO;
2064
2065	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2066		return -EIO;
2067	bld->reserved_section_table_entries += count;
2068
2069	data_end = le16_to_cpu(buf->data_end) +
2070		flex_array_size(buf, section_entry, count);
2071	buf->data_end = cpu_to_le16(data_end);
2072
2073	return 0;
2074}
2075
2076/**
2077 * ice_pkg_buf_alloc_section
2078 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2079 * @type: the section type value
2080 * @size: the size of the section to reserve (in bytes)
2081 *
2082 * Reserves memory in the buffer for a section's content and updates the
2083 * buffers' status accordingly. This routine returns a pointer to the first
2084 * byte of the section start within the buffer, which is used to fill in the
2085 * section contents.
2086 * Note: all package contents must be in Little Endian form.
2087 */
2088static void *
2089ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2090{
2091	struct ice_buf_hdr *buf;
2092	u16 sect_count;
2093	u16 data_end;
2094
2095	if (!bld || !type || !size)
2096		return NULL;
2097
2098	buf = (struct ice_buf_hdr *)&bld->buf;
2099
2100	/* check for enough space left in buffer */
2101	data_end = le16_to_cpu(buf->data_end);
2102
2103	/* section start must align on 4 byte boundary */
2104	data_end = ALIGN(data_end, 4);
2105
2106	if ((data_end + size) > ICE_MAX_S_DATA_END)
2107		return NULL;
2108
2109	/* check for more available section table entries */
2110	sect_count = le16_to_cpu(buf->section_count);
2111	if (sect_count < bld->reserved_section_table_entries) {
2112		void *section_ptr = ((u8 *)buf) + data_end;
2113
2114		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
2115		buf->section_entry[sect_count].size = cpu_to_le16(size);
2116		buf->section_entry[sect_count].type = cpu_to_le32(type);
2117
2118		data_end += size;
2119		buf->data_end = cpu_to_le16(data_end);
2120
2121		buf->section_count = cpu_to_le16(sect_count + 1);
2122		return section_ptr;
2123	}
2124
2125	/* no free section table entries */
2126	return NULL;
2127}
2128
2129/**
2130 * ice_pkg_buf_alloc_single_section
2131 * @hw: pointer to the HW structure
2132 * @type: the section type value
2133 * @size: the size of the section to reserve (in bytes)
2134 * @section: returns pointer to the section
2135 *
2136 * Allocates a package buffer with a single section.
2137 * Note: all package contents must be in Little Endian form.
2138 */
2139struct ice_buf_build *
2140ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2141				 void **section)
2142{
2143	struct ice_buf_build *buf;
2144
2145	if (!section)
2146		return NULL;
2147
2148	buf = ice_pkg_buf_alloc(hw);
2149	if (!buf)
2150		return NULL;
2151
2152	if (ice_pkg_buf_reserve_section(buf, 1))
2153		goto ice_pkg_buf_alloc_single_section_err;
2154
2155	*section = ice_pkg_buf_alloc_section(buf, type, size);
2156	if (!*section)
2157		goto ice_pkg_buf_alloc_single_section_err;
2158
2159	return buf;
2160
2161ice_pkg_buf_alloc_single_section_err:
2162	ice_pkg_buf_free(hw, buf);
2163	return NULL;
2164}
2165
2166/**
2167 * ice_pkg_buf_get_active_sections
2168 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2169 *
2170 * Returns the number of active sections. Before using the package buffer
2171 * in an update package command, the caller should make sure that there is at
2172 * least one active section - otherwise, the buffer is not legal and should
2173 * not be used.
2174 * Note: all package contents must be in Little Endian form.
2175 */
2176static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2177{
2178	struct ice_buf_hdr *buf;
2179
2180	if (!bld)
2181		return 0;
2182
2183	buf = (struct ice_buf_hdr *)&bld->buf;
2184	return le16_to_cpu(buf->section_count);
2185}
2186
2187/**
2188 * ice_pkg_buf
2189 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2190 *
2191 * Return a pointer to the buffer's header
2192 */
2193struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2194{
2195	if (!bld)
2196		return NULL;
2197
2198	return &bld->buf;
2199}
2200
2201/**
2202 * ice_get_open_tunnel_port - retrieve an open tunnel port
2203 * @hw: pointer to the HW structure
2204 * @port: returns open port
2205 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
 
 
 
2206 */
2207bool
2208ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
2209			 enum ice_tunnel_type type)
2210{
2211	bool res = false;
2212	u16 i;
2213
2214	mutex_lock(&hw->tnl_lock);
2215
2216	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2217		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
2218		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
2219			*port = hw->tnl.tbl[i].port;
2220			res = true;
2221			break;
2222		}
2223
2224	mutex_unlock(&hw->tnl_lock);
2225
2226	return res;
2227}
2228
2229/**
2230 * ice_upd_dvm_boost_entry
2231 * @hw: pointer to the HW structure
2232 * @entry: pointer to double vlan boost entry info
 
 
 
 
2233 */
2234static int
2235ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2236{
2237	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2238	int status = -ENOSPC;
2239	struct ice_buf_build *bld;
2240	u8 val, dc, nm;
2241
2242	bld = ice_pkg_buf_alloc(hw);
2243	if (!bld)
2244		return -ENOMEM;
2245
2246	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2247	if (ice_pkg_buf_reserve_section(bld, 2))
2248		goto ice_upd_dvm_boost_entry_err;
2249
2250	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2251					    struct_size(sect_rx, tcam, 1));
2252	if (!sect_rx)
2253		goto ice_upd_dvm_boost_entry_err;
2254	sect_rx->count = cpu_to_le16(1);
2255
2256	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2257					    struct_size(sect_tx, tcam, 1));
2258	if (!sect_tx)
2259		goto ice_upd_dvm_boost_entry_err;
2260	sect_tx->count = cpu_to_le16(1);
2261
2262	/* copy original boost entry to update package buffer */
2263	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
2264
2265	/* re-write the don't care and never match bits accordingly */
2266	if (entry->enable) {
2267		/* all bits are don't care */
2268		val = 0x00;
2269		dc = 0xFF;
2270		nm = 0x00;
2271	} else {
2272		/* disable, one never match bit, the rest are don't care */
2273		val = 0x00;
2274		dc = 0xF7;
2275		nm = 0x08;
2276	}
2277
2278	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2279		    &val, NULL, &dc, &nm, 0, sizeof(u8));
2280
2281	/* exact copy of entry to Tx section entry */
2282	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2283
2284	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2285
2286ice_upd_dvm_boost_entry_err:
2287	ice_pkg_buf_free(hw, bld);
2288
2289	return status;
2290}
2291
2292/**
2293 * ice_set_dvm_boost_entries
2294 * @hw: pointer to the HW structure
 
 
2295 *
2296 * Enable double vlan by updating the appropriate boost tcam entries.
2297 */
2298int ice_set_dvm_boost_entries(struct ice_hw *hw)
 
 
2299{
2300	int status;
2301	u16 i;
2302
2303	for (i = 0; i < hw->dvm_upd.count; i++) {
2304		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2305		if (status)
2306			return status;
2307	}
 
 
2308
2309	return 0;
2310}
2311
2312/**
2313 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
2314 * @hw: pointer to the HW structure
2315 * @type: type of tunnel
2316 * @idx: linear index
2317 *
2318 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
2319 * but really the port table may be sprase, and types are mixed, so convert
2320 * the stack index into the device index.
2321 */
2322static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2323				   u16 idx)
 
2324{
 
2325	u16 i;
2326
 
 
2327	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2328		if (hw->tnl.tbl[i].valid &&
2329		    hw->tnl.tbl[i].type == type &&
2330		    idx-- == 0)
2331			return i;
 
 
2332
2333	WARN_ON_ONCE(1);
2334	return 0;
 
2335}
2336
2337/**
2338 * ice_create_tunnel
2339 * @hw: pointer to the HW structure
2340 * @index: device table entry
2341 * @type: type of tunnel
2342 * @port: port of tunnel to create
2343 *
2344 * Create a tunnel by updating the parse graph in the parser. We do that by
2345 * creating a package buffer with the tunnel info and issuing an update package
2346 * command.
2347 */
2348static int
2349ice_create_tunnel(struct ice_hw *hw, u16 index,
2350		  enum ice_tunnel_type type, u16 port)
2351{
2352	struct ice_boost_tcam_section *sect_rx, *sect_tx;
 
2353	struct ice_buf_build *bld;
2354	int status = -ENOSPC;
2355
2356	mutex_lock(&hw->tnl_lock);
2357
 
 
 
 
 
 
 
 
 
 
 
2358	bld = ice_pkg_buf_alloc(hw);
2359	if (!bld) {
2360		status = -ENOMEM;
2361		goto ice_create_tunnel_end;
2362	}
2363
2364	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2365	if (ice_pkg_buf_reserve_section(bld, 2))
2366		goto ice_create_tunnel_err;
2367
2368	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2369					    struct_size(sect_rx, tcam, 1));
2370	if (!sect_rx)
2371		goto ice_create_tunnel_err;
2372	sect_rx->count = cpu_to_le16(1);
2373
2374	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2375					    struct_size(sect_tx, tcam, 1));
2376	if (!sect_tx)
2377		goto ice_create_tunnel_err;
2378	sect_tx->count = cpu_to_le16(1);
2379
2380	/* copy original boost entry to update package buffer */
2381	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2382	       sizeof(*sect_rx->tcam));
2383
2384	/* over-write the never-match dest port key bits with the encoded port
2385	 * bits
2386	 */
2387	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2388		    (u8 *)&port, NULL, NULL, NULL,
2389		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2390		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2391
2392	/* exact copy of entry to Tx section entry */
2393	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2394
2395	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2396	if (!status)
2397		hw->tnl.tbl[index].port = port;
 
 
 
2398
2399ice_create_tunnel_err:
2400	ice_pkg_buf_free(hw, bld);
2401
2402ice_create_tunnel_end:
2403	mutex_unlock(&hw->tnl_lock);
2404
2405	return status;
2406}
2407
2408/**
2409 * ice_destroy_tunnel
2410 * @hw: pointer to the HW structure
2411 * @index: device table entry
2412 * @type: type of tunnel
2413 * @port: port of tunnel to destroy (ignored if the all parameter is true)
 
2414 *
2415 * Destroys a tunnel or all tunnels by creating an update package buffer
2416 * targeting the specific updates requested and then performing an update
2417 * package.
2418 */
2419static int
2420ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
2421		   u16 port)
2422{
2423	struct ice_boost_tcam_section *sect_rx, *sect_tx;
 
2424	struct ice_buf_build *bld;
2425	int status = -ENOSPC;
 
 
 
2426
2427	mutex_lock(&hw->tnl_lock);
2428
2429	if (WARN_ON(!hw->tnl.tbl[index].valid ||
2430		    hw->tnl.tbl[index].type != type ||
2431		    hw->tnl.tbl[index].port != port)) {
2432		status = -EIO;
 
 
 
 
 
 
 
 
 
 
 
2433		goto ice_destroy_tunnel_end;
2434	}
2435
 
 
 
2436	bld = ice_pkg_buf_alloc(hw);
2437	if (!bld) {
2438		status = -ENOMEM;
2439		goto ice_destroy_tunnel_end;
2440	}
2441
2442	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2443	if (ice_pkg_buf_reserve_section(bld, 2))
2444		goto ice_destroy_tunnel_err;
2445
2446	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2447					    struct_size(sect_rx, tcam, 1));
2448	if (!sect_rx)
2449		goto ice_destroy_tunnel_err;
2450	sect_rx->count = cpu_to_le16(1);
2451
2452	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2453					    struct_size(sect_tx, tcam, 1));
2454	if (!sect_tx)
2455		goto ice_destroy_tunnel_err;
2456	sect_tx->count = cpu_to_le16(1);
2457
2458	/* copy original boost entry to update package buffer, one copy to Rx
2459	 * section, another copy to the Tx section
2460	 */
2461	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2462	       sizeof(*sect_rx->tcam));
2463	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
2464	       sizeof(*sect_tx->tcam));
 
 
 
 
 
2465
2466	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2467	if (!status)
2468		hw->tnl.tbl[index].port = 0;
 
 
 
 
 
 
 
2469
2470ice_destroy_tunnel_err:
2471	ice_pkg_buf_free(hw, bld);
2472
2473ice_destroy_tunnel_end:
2474	mutex_unlock(&hw->tnl_lock);
2475
2476	return status;
2477}
2478
2479int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
2480			    unsigned int idx, struct udp_tunnel_info *ti)
2481{
2482	struct ice_netdev_priv *np = netdev_priv(netdev);
2483	struct ice_vsi *vsi = np->vsi;
2484	struct ice_pf *pf = vsi->back;
2485	enum ice_tunnel_type tnl_type;
2486	int status;
2487	u16 index;
2488
2489	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2490	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
2491
2492	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
2493	if (status) {
2494		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
2495			   status);
2496		return -EIO;
2497	}
2498
2499	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
2500	return 0;
2501}
2502
2503int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
2504			      unsigned int idx, struct udp_tunnel_info *ti)
2505{
2506	struct ice_netdev_priv *np = netdev_priv(netdev);
2507	struct ice_vsi *vsi = np->vsi;
2508	struct ice_pf *pf = vsi->back;
2509	enum ice_tunnel_type tnl_type;
2510	int status;
2511
2512	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2513
2514	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
2515				    ntohs(ti->port));
2516	if (status) {
2517		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
2518			   status);
2519		return -EIO;
2520	}
2521
2522	return 0;
2523}
2524
2525/**
2526 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2527 * @hw: pointer to the hardware structure
2528 * @blk: hardware block
2529 * @prof: profile ID
2530 * @fv_idx: field vector word index
2531 * @prot: variable to receive the protocol ID
2532 * @off: variable to receive the protocol offset
2533 */
2534int
2535ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2536		  u8 *prot, u16 *off)
2537{
2538	struct ice_fv_word *fv_ext;
2539
2540	if (prof >= hw->blk[blk].es.count)
2541		return -EINVAL;
2542
2543	if (fv_idx >= hw->blk[blk].es.fvw)
2544		return -EINVAL;
2545
2546	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2547
2548	*prot = fv_ext[fv_idx].prot_id;
2549	*off = fv_ext[fv_idx].off;
2550
2551	return 0;
2552}
2553
2554/* PTG Management */
2555
2556/**
2557 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2558 * @hw: pointer to the hardware structure
2559 * @blk: HW block
2560 * @ptype: the ptype to search for
2561 * @ptg: pointer to variable that receives the PTG
2562 *
2563 * This function will search the PTGs for a particular ptype, returning the
2564 * PTG ID that contains it through the PTG parameter, with the value of
2565 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2566 */
2567static int
2568ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2569{
2570	if (ptype >= ICE_XLT1_CNT || !ptg)
2571		return -EINVAL;
2572
2573	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2574	return 0;
2575}
2576
2577/**
2578 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2579 * @hw: pointer to the hardware structure
2580 * @blk: HW block
2581 * @ptg: the PTG to allocate
2582 *
2583 * This function allocates a given packet type group ID specified by the PTG
2584 * parameter.
2585 */
2586static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587{
2588	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2589}
2590
2591/**
2592 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2593 * @hw: pointer to the hardware structure
2594 * @blk: HW block
2595 * @ptype: the ptype to remove
2596 * @ptg: the PTG to remove the ptype from
2597 *
2598 * This function will remove the ptype from the specific PTG, and move it to
2599 * the default PTG (ICE_DEFAULT_PTG).
2600 */
2601static int
2602ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2603{
2604	struct ice_ptg_ptype **ch;
2605	struct ice_ptg_ptype *p;
2606
2607	if (ptype > ICE_XLT1_CNT - 1)
2608		return -EINVAL;
2609
2610	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2611		return -ENOENT;
2612
2613	/* Should not happen if .in_use is set, bad config */
2614	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2615		return -EIO;
2616
2617	/* find the ptype within this PTG, and bypass the link over it */
2618	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2619	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2620	while (p) {
2621		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2622			*ch = p->next_ptype;
2623			break;
2624		}
2625
2626		ch = &p->next_ptype;
2627		p = p->next_ptype;
2628	}
2629
2630	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2631	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2632
2633	return 0;
2634}
2635
2636/**
2637 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2638 * @hw: pointer to the hardware structure
2639 * @blk: HW block
2640 * @ptype: the ptype to add or move
2641 * @ptg: the PTG to add or move the ptype to
2642 *
2643 * This function will either add or move a ptype to a particular PTG depending
2644 * on if the ptype is already part of another group. Note that using a
2645 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2646 * default PTG.
2647 */
2648static int
2649ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2650{
 
2651	u8 original_ptg;
2652	int status;
2653
2654	if (ptype > ICE_XLT1_CNT - 1)
2655		return -EINVAL;
2656
2657	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2658		return -ENOENT;
2659
2660	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2661	if (status)
2662		return status;
2663
2664	/* Is ptype already in the correct PTG? */
2665	if (original_ptg == ptg)
2666		return 0;
2667
2668	/* Remove from original PTG and move back to the default PTG */
2669	if (original_ptg != ICE_DEFAULT_PTG)
2670		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2671
2672	/* Moving to default PTG? Then we're done with this request */
2673	if (ptg == ICE_DEFAULT_PTG)
2674		return 0;
2675
2676	/* Add ptype to PTG at beginning of list */
2677	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2678		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2679	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2680		&hw->blk[blk].xlt1.ptypes[ptype];
2681
2682	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2683	hw->blk[blk].xlt1.t[ptype] = ptg;
2684
2685	return 0;
2686}
2687
2688/* Block / table size info */
2689struct ice_blk_size_details {
2690	u16 xlt1;			/* # XLT1 entries */
2691	u16 xlt2;			/* # XLT2 entries */
2692	u16 prof_tcam;			/* # profile ID TCAM entries */
2693	u16 prof_id;			/* # profile IDs */
2694	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2695	u16 prof_redir;			/* # profile redirection entries */
2696	u16 es;				/* # extraction sequence entries */
2697	u16 fvw;			/* # field vector words */
2698	u8 overwrite;			/* overwrite existing entries allowed */
2699	u8 reverse;			/* reverse FV order */
2700};
2701
2702static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2703	/**
2704	 * Table Definitions
2705	 * XLT1 - Number of entries in XLT1 table
2706	 * XLT2 - Number of entries in XLT2 table
2707	 * TCAM - Number of entries Profile ID TCAM table
2708	 * CDID - Control Domain ID of the hardware block
2709	 * PRED - Number of entries in the Profile Redirection Table
2710	 * FV   - Number of entries in the Field Vector
2711	 * FVW  - Width (in WORDs) of the Field Vector
2712	 * OVR  - Overwrite existing table entries
2713	 * REV  - Reverse FV
2714	 */
2715	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2716	/*          Overwrite   , Reverse FV */
2717	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2718		    false, false },
2719	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2720		    false, false },
2721	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2722		    false, true  },
2723	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2724		    true,  true  },
2725	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2726		    false, false },
2727};
2728
2729enum ice_sid_all {
2730	ICE_SID_XLT1_OFF = 0,
2731	ICE_SID_XLT2_OFF,
2732	ICE_SID_PR_OFF,
2733	ICE_SID_PR_REDIR_OFF,
2734	ICE_SID_ES_OFF,
2735	ICE_SID_OFF_COUNT,
2736};
2737
2738/* Characteristic handling */
2739
2740/**
2741 * ice_match_prop_lst - determine if properties of two lists match
2742 * @list1: first properties list
2743 * @list2: second properties list
2744 *
2745 * Count, cookies and the order must match in order to be considered equivalent.
2746 */
2747static bool
2748ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2749{
2750	struct ice_vsig_prof *tmp1;
2751	struct ice_vsig_prof *tmp2;
2752	u16 chk_count = 0;
2753	u16 count = 0;
2754
2755	/* compare counts */
2756	list_for_each_entry(tmp1, list1, list)
2757		count++;
2758	list_for_each_entry(tmp2, list2, list)
2759		chk_count++;
2760	/* cppcheck-suppress knownConditionTrueFalse */
2761	if (!count || count != chk_count)
2762		return false;
2763
2764	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2765	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2766
2767	/* profile cookies must compare, and in the exact same order to take
2768	 * into account priority
2769	 */
2770	while (count--) {
2771		if (tmp2->profile_cookie != tmp1->profile_cookie)
2772			return false;
2773
2774		tmp1 = list_next_entry(tmp1, list);
2775		tmp2 = list_next_entry(tmp2, list);
2776	}
2777
2778	return true;
2779}
2780
2781/* VSIG Management */
2782
2783/**
2784 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2785 * @hw: pointer to the hardware structure
2786 * @blk: HW block
2787 * @vsi: VSI of interest
2788 * @vsig: pointer to receive the VSI group
2789 *
2790 * This function will lookup the VSI entry in the XLT2 list and return
2791 * the VSI group its associated with.
2792 */
2793static int
2794ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2795{
2796	if (!vsig || vsi >= ICE_MAX_VSI)
2797		return -EINVAL;
2798
2799	/* As long as there's a default or valid VSIG associated with the input
2800	 * VSI, the functions returns a success. Any handling of VSIG will be
2801	 * done by the following add, update or remove functions.
2802	 */
2803	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2804
2805	return 0;
2806}
2807
2808/**
2809 * ice_vsig_alloc_val - allocate a new VSIG by value
2810 * @hw: pointer to the hardware structure
2811 * @blk: HW block
2812 * @vsig: the VSIG to allocate
2813 *
2814 * This function will allocate a given VSIG specified by the VSIG parameter.
2815 */
2816static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2817{
2818	u16 idx = vsig & ICE_VSIG_IDX_M;
2819
2820	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2821		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2822		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2823	}
2824
2825	return ICE_VSIG_VALUE(idx, hw->pf_id);
2826}
2827
2828/**
2829 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2830 * @hw: pointer to the hardware structure
2831 * @blk: HW block
2832 *
2833 * This function will iterate through the VSIG list and mark the first
2834 * unused entry for the new VSIG entry as used and return that value.
2835 */
2836static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2837{
2838	u16 i;
2839
2840	for (i = 1; i < ICE_MAX_VSIGS; i++)
2841		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2842			return ice_vsig_alloc_val(hw, blk, i);
2843
2844	return ICE_DEFAULT_VSIG;
2845}
2846
2847/**
2848 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2849 * @hw: pointer to the hardware structure
2850 * @blk: HW block
2851 * @chs: characteristic list
2852 * @vsig: returns the VSIG with the matching profiles, if found
2853 *
2854 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2855 * a group have the same characteristic set. To check if there exists a VSIG
2856 * which has the same characteristics as the input characteristics; this
2857 * function will iterate through the XLT2 list and return the VSIG that has a
2858 * matching configuration. In order to make sure that priorities are accounted
2859 * for, the list must match exactly, including the order in which the
2860 * characteristics are listed.
2861 */
2862static int
2863ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2864			struct list_head *chs, u16 *vsig)
2865{
2866	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2867	u16 i;
2868
2869	for (i = 0; i < xlt2->count; i++)
2870		if (xlt2->vsig_tbl[i].in_use &&
2871		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2872			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2873			return 0;
2874		}
2875
2876	return -ENOENT;
2877}
2878
2879/**
2880 * ice_vsig_free - free VSI group
2881 * @hw: pointer to the hardware structure
2882 * @blk: HW block
2883 * @vsig: VSIG to remove
2884 *
2885 * The function will remove all VSIs associated with the input VSIG and move
2886 * them to the DEFAULT_VSIG and mark the VSIG available.
2887 */
2888static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
 
2889{
2890	struct ice_vsig_prof *dtmp, *del;
2891	struct ice_vsig_vsi *vsi_cur;
2892	u16 idx;
2893
2894	idx = vsig & ICE_VSIG_IDX_M;
2895	if (idx >= ICE_MAX_VSIGS)
2896		return -EINVAL;
2897
2898	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2899		return -ENOENT;
2900
2901	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2902
2903	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2904	/* If the VSIG has at least 1 VSI then iterate through the
2905	 * list and remove the VSIs before deleting the group.
2906	 */
2907	if (vsi_cur) {
2908		/* remove all vsis associated with this VSIG XLT2 entry */
2909		do {
2910			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2911
2912			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2913			vsi_cur->changed = 1;
2914			vsi_cur->next_vsi = NULL;
2915			vsi_cur = tmp;
2916		} while (vsi_cur);
2917
2918		/* NULL terminate head of VSI list */
2919		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2920	}
2921
2922	/* free characteristic list */
2923	list_for_each_entry_safe(del, dtmp,
2924				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2925				 list) {
2926		list_del(&del->list);
2927		devm_kfree(ice_hw_to_dev(hw), del);
2928	}
2929
2930	/* if VSIG characteristic list was cleared for reset
2931	 * re-initialize the list head
2932	 */
2933	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2934
2935	return 0;
2936}
2937
2938/**
2939 * ice_vsig_remove_vsi - remove VSI from VSIG
2940 * @hw: pointer to the hardware structure
2941 * @blk: HW block
2942 * @vsi: VSI to remove
2943 * @vsig: VSI group to remove from
2944 *
2945 * The function will remove the input VSI from its VSI group and move it
2946 * to the DEFAULT_VSIG.
2947 */
2948static int
2949ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2950{
2951	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2952	u16 idx;
2953
2954	idx = vsig & ICE_VSIG_IDX_M;
2955
2956	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2957		return -EINVAL;
2958
2959	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2960		return -ENOENT;
2961
2962	/* entry already in default VSIG, don't have to remove */
2963	if (idx == ICE_DEFAULT_VSIG)
2964		return 0;
2965
2966	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2967	if (!(*vsi_head))
2968		return -EIO;
2969
2970	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2971	vsi_cur = (*vsi_head);
2972
2973	/* iterate the VSI list, skip over the entry to be removed */
2974	while (vsi_cur) {
2975		if (vsi_tgt == vsi_cur) {
2976			(*vsi_head) = vsi_cur->next_vsi;
2977			break;
2978		}
2979		vsi_head = &vsi_cur->next_vsi;
2980		vsi_cur = vsi_cur->next_vsi;
2981	}
2982
2983	/* verify if VSI was removed from group list */
2984	if (!vsi_cur)
2985		return -ENOENT;
2986
2987	vsi_cur->vsig = ICE_DEFAULT_VSIG;
2988	vsi_cur->changed = 1;
2989	vsi_cur->next_vsi = NULL;
2990
2991	return 0;
2992}
2993
2994/**
2995 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2996 * @hw: pointer to the hardware structure
2997 * @blk: HW block
2998 * @vsi: VSI to move
2999 * @vsig: destination VSI group
3000 *
3001 * This function will move or add the input VSI to the target VSIG.
3002 * The function will find the original VSIG the VSI belongs to and
3003 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3004 * then move entry to the new VSIG.
3005 */
3006static int
3007ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3008{
3009	struct ice_vsig_vsi *tmp;
 
3010	u16 orig_vsig, idx;
3011	int status;
3012
3013	idx = vsig & ICE_VSIG_IDX_M;
3014
3015	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3016		return -EINVAL;
3017
3018	/* if VSIG not in use and VSIG is not default type this VSIG
3019	 * doesn't exist.
3020	 */
3021	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3022	    vsig != ICE_DEFAULT_VSIG)
3023		return -ENOENT;
3024
3025	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3026	if (status)
3027		return status;
3028
3029	/* no update required if vsigs match */
3030	if (orig_vsig == vsig)
3031		return 0;
3032
3033	if (orig_vsig != ICE_DEFAULT_VSIG) {
3034		/* remove entry from orig_vsig and add to default VSIG */
3035		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3036		if (status)
3037			return status;
3038	}
3039
3040	if (idx == ICE_DEFAULT_VSIG)
3041		return 0;
3042
3043	/* Create VSI entry and add VSIG and prop_mask values */
3044	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3045	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3046
3047	/* Add new entry to the head of the VSIG list */
3048	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3049	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3050		&hw->blk[blk].xlt2.vsis[vsi];
3051	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3052	hw->blk[blk].xlt2.t[vsi] = vsig;
3053
3054	return 0;
3055}
3056
3057/**
3058 * ice_prof_has_mask_idx - determine if profile index masking is identical
3059 * @hw: pointer to the hardware structure
3060 * @blk: HW block
3061 * @prof: profile to check
3062 * @idx: profile index to check
3063 * @mask: mask to match
3064 */
3065static bool
3066ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3067		      u16 mask)
3068{
3069	bool expect_no_mask = false;
3070	bool found = false;
3071	bool match = false;
3072	u16 i;
3073
3074	/* If mask is 0x0000 or 0xffff, then there is no masking */
3075	if (mask == 0 || mask == 0xffff)
3076		expect_no_mask = true;
3077
3078	/* Scan the enabled masks on this profile, for the specified idx */
3079	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3080	     hw->blk[blk].masks.count; i++)
3081		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3082			if (hw->blk[blk].masks.masks[i].in_use &&
3083			    hw->blk[blk].masks.masks[i].idx == idx) {
3084				found = true;
3085				if (hw->blk[blk].masks.masks[i].mask == mask)
3086					match = true;
3087				break;
3088			}
3089
3090	if (expect_no_mask) {
3091		if (found)
3092			return false;
3093	} else {
3094		if (!match)
3095			return false;
3096	}
3097
3098	return true;
3099}
3100
3101/**
3102 * ice_prof_has_mask - determine if profile masking is identical
3103 * @hw: pointer to the hardware structure
3104 * @blk: HW block
3105 * @prof: profile to check
3106 * @masks: masks to match
3107 */
3108static bool
3109ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3110{
3111	u16 i;
3112
3113	/* es->mask_ena[prof] will have the mask */
3114	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3115		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3116			return false;
3117
3118	return true;
3119}
3120
3121/**
3122 * ice_find_prof_id_with_mask - find profile ID for a given field vector
3123 * @hw: pointer to the hardware structure
3124 * @blk: HW block
3125 * @fv: field vector to search for
3126 * @masks: masks for FV
3127 * @prof_id: receives the profile ID
3128 */
3129static int
3130ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3131			   struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3132{
3133	struct ice_es *es = &hw->blk[blk].es;
 
3134	u8 i;
3135
3136	/* For FD, we don't want to re-use a existed profile with the same
3137	 * field vector and mask. This will cause rule interference.
3138	 */
3139	if (blk == ICE_BLK_FD)
3140		return -ENOENT;
3141
3142	for (i = 0; i < (u8)es->count; i++) {
3143		u16 off = i * es->fvw;
3144
3145		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3146			continue;
3147
3148		/* check if masks settings are the same for this profile */
3149		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3150			continue;
3151
3152		*prof_id = i;
3153		return 0;
3154	}
3155
3156	return -ENOENT;
3157}
3158
3159/**
3160 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3161 * @blk: the block type
3162 * @rsrc_type: pointer to variable to receive the resource type
3163 */
3164static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3165{
3166	switch (blk) {
3167	case ICE_BLK_FD:
3168		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3169		break;
3170	case ICE_BLK_RSS:
3171		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3172		break;
3173	default:
3174		return false;
3175	}
3176	return true;
3177}
3178
3179/**
3180 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3181 * @blk: the block type
3182 * @rsrc_type: pointer to variable to receive the resource type
3183 */
3184static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3185{
3186	switch (blk) {
3187	case ICE_BLK_FD:
3188		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3189		break;
3190	case ICE_BLK_RSS:
3191		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3192		break;
3193	default:
3194		return false;
3195	}
3196	return true;
3197}
3198
3199/**
3200 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3201 * @hw: pointer to the HW struct
3202 * @blk: the block to allocate the TCAM for
3203 * @btm: true to allocate from bottom of table, false to allocate from top
3204 * @tcam_idx: pointer to variable to receive the TCAM entry
3205 *
3206 * This function allocates a new entry in a Profile ID TCAM for a specific
3207 * block.
3208 */
3209static int
3210ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3211		   u16 *tcam_idx)
3212{
3213	u16 res_type;
3214
3215	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3216		return -EINVAL;
3217
3218	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3219}
3220
3221/**
3222 * ice_free_tcam_ent - free hardware TCAM entry
3223 * @hw: pointer to the HW struct
3224 * @blk: the block from which to free the TCAM entry
3225 * @tcam_idx: the TCAM entry to free
3226 *
3227 * This function frees an entry in a Profile ID TCAM for a specific block.
3228 */
3229static int
3230ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3231{
3232	u16 res_type;
3233
3234	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3235		return -EINVAL;
3236
3237	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3238}
3239
3240/**
3241 * ice_alloc_prof_id - allocate profile ID
3242 * @hw: pointer to the HW struct
3243 * @blk: the block to allocate the profile ID for
3244 * @prof_id: pointer to variable to receive the profile ID
3245 *
3246 * This function allocates a new profile ID, which also corresponds to a Field
3247 * Vector (Extraction Sequence) entry.
3248 */
3249static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
 
3250{
 
3251	u16 res_type;
3252	u16 get_prof;
3253	int status;
3254
3255	if (!ice_prof_id_rsrc_type(blk, &res_type))
3256		return -EINVAL;
3257
3258	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3259	if (!status)
3260		*prof_id = (u8)get_prof;
3261
3262	return status;
3263}
3264
3265/**
3266 * ice_free_prof_id - free profile ID
3267 * @hw: pointer to the HW struct
3268 * @blk: the block from which to free the profile ID
3269 * @prof_id: the profile ID to free
3270 *
3271 * This function frees a profile ID, which also corresponds to a Field Vector.
3272 */
3273static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
 
3274{
3275	u16 tmp_prof_id = (u16)prof_id;
3276	u16 res_type;
3277
3278	if (!ice_prof_id_rsrc_type(blk, &res_type))
3279		return -EINVAL;
3280
3281	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3282}
3283
3284/**
3285 * ice_prof_inc_ref - increment reference count for profile
3286 * @hw: pointer to the HW struct
3287 * @blk: the block from which to free the profile ID
3288 * @prof_id: the profile ID for which to increment the reference count
3289 */
3290static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
 
3291{
3292	if (prof_id > hw->blk[blk].es.count)
3293		return -EINVAL;
3294
3295	hw->blk[blk].es.ref_count[prof_id]++;
3296
3297	return 0;
3298}
3299
3300/**
3301 * ice_write_prof_mask_reg - write profile mask register
3302 * @hw: pointer to the HW struct
3303 * @blk: hardware block
3304 * @mask_idx: mask index
3305 * @idx: index of the FV which will use the mask
3306 * @mask: the 16-bit mask
3307 */
3308static void
3309ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3310			u16 idx, u16 mask)
3311{
3312	u32 offset;
3313	u32 val;
3314
3315	switch (blk) {
3316	case ICE_BLK_RSS:
3317		offset = GLQF_HMASK(mask_idx);
3318		val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
3319		val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3320		break;
3321	case ICE_BLK_FD:
3322		offset = GLQF_FDMASK(mask_idx);
3323		val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
3324		val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
3325		break;
3326	default:
3327		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3328			  blk);
3329		return;
3330	}
3331
3332	wr32(hw, offset, val);
3333	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3334		  blk, idx, offset, val);
3335}
3336
3337/**
3338 * ice_write_prof_mask_enable_res - write profile mask enable register
3339 * @hw: pointer to the HW struct
3340 * @blk: hardware block
3341 * @prof_id: profile ID
3342 * @enable_mask: enable mask
3343 */
3344static void
3345ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3346			       u16 prof_id, u32 enable_mask)
3347{
3348	u32 offset;
3349
3350	switch (blk) {
3351	case ICE_BLK_RSS:
3352		offset = GLQF_HMASK_SEL(prof_id);
3353		break;
3354	case ICE_BLK_FD:
3355		offset = GLQF_FDMASK_SEL(prof_id);
3356		break;
3357	default:
3358		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3359			  blk);
3360		return;
3361	}
3362
3363	wr32(hw, offset, enable_mask);
3364	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3365		  blk, prof_id, offset, enable_mask);
3366}
3367
3368/**
3369 * ice_init_prof_masks - initial prof masks
3370 * @hw: pointer to the HW struct
3371 * @blk: hardware block
3372 */
3373static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3374{
3375	u16 per_pf;
3376	u16 i;
3377
3378	mutex_init(&hw->blk[blk].masks.lock);
3379
3380	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3381
3382	hw->blk[blk].masks.count = per_pf;
3383	hw->blk[blk].masks.first = hw->pf_id * per_pf;
3384
3385	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
3386
3387	for (i = hw->blk[blk].masks.first;
3388	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3389		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3390}
3391
3392/**
3393 * ice_init_all_prof_masks - initialize all prof masks
3394 * @hw: pointer to the HW struct
3395 */
3396static void ice_init_all_prof_masks(struct ice_hw *hw)
3397{
3398	ice_init_prof_masks(hw, ICE_BLK_RSS);
3399	ice_init_prof_masks(hw, ICE_BLK_FD);
3400}
3401
3402/**
3403 * ice_alloc_prof_mask - allocate profile mask
3404 * @hw: pointer to the HW struct
3405 * @blk: hardware block
3406 * @idx: index of FV which will use the mask
3407 * @mask: the 16-bit mask
3408 * @mask_idx: variable to receive the mask index
3409 */
3410static int
3411ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3412		    u16 *mask_idx)
3413{
3414	bool found_unused = false, found_copy = false;
3415	u16 unused_idx = 0, copy_idx = 0;
3416	int status = -ENOSPC;
3417	u16 i;
3418
3419	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3420		return -EINVAL;
3421
3422	mutex_lock(&hw->blk[blk].masks.lock);
3423
3424	for (i = hw->blk[blk].masks.first;
3425	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3426		if (hw->blk[blk].masks.masks[i].in_use) {
3427			/* if mask is in use and it exactly duplicates the
3428			 * desired mask and index, then in can be reused
3429			 */
3430			if (hw->blk[blk].masks.masks[i].mask == mask &&
3431			    hw->blk[blk].masks.masks[i].idx == idx) {
3432				found_copy = true;
3433				copy_idx = i;
3434				break;
3435			}
3436		} else {
3437			/* save off unused index, but keep searching in case
3438			 * there is an exact match later on
3439			 */
3440			if (!found_unused) {
3441				found_unused = true;
3442				unused_idx = i;
3443			}
3444		}
3445
3446	if (found_copy)
3447		i = copy_idx;
3448	else if (found_unused)
3449		i = unused_idx;
3450	else
3451		goto err_ice_alloc_prof_mask;
3452
3453	/* update mask for a new entry */
3454	if (found_unused) {
3455		hw->blk[blk].masks.masks[i].in_use = true;
3456		hw->blk[blk].masks.masks[i].mask = mask;
3457		hw->blk[blk].masks.masks[i].idx = idx;
3458		hw->blk[blk].masks.masks[i].ref = 0;
3459		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3460	}
3461
3462	hw->blk[blk].masks.masks[i].ref++;
3463	*mask_idx = i;
3464	status = 0;
3465
3466err_ice_alloc_prof_mask:
3467	mutex_unlock(&hw->blk[blk].masks.lock);
3468
3469	return status;
3470}
3471
3472/**
3473 * ice_free_prof_mask - free profile mask
3474 * @hw: pointer to the HW struct
3475 * @blk: hardware block
3476 * @mask_idx: index of mask
3477 */
3478static int
3479ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3480{
3481	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3482		return -EINVAL;
3483
3484	if (!(mask_idx >= hw->blk[blk].masks.first &&
3485	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3486		return -ENOENT;
3487
3488	mutex_lock(&hw->blk[blk].masks.lock);
3489
3490	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3491		goto exit_ice_free_prof_mask;
3492
3493	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3494		hw->blk[blk].masks.masks[mask_idx].ref--;
3495		goto exit_ice_free_prof_mask;
3496	}
3497
3498	/* remove mask */
3499	hw->blk[blk].masks.masks[mask_idx].in_use = false;
3500	hw->blk[blk].masks.masks[mask_idx].mask = 0;
3501	hw->blk[blk].masks.masks[mask_idx].idx = 0;
3502
3503	/* update mask as unused entry */
3504	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3505		  mask_idx);
3506	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3507
3508exit_ice_free_prof_mask:
3509	mutex_unlock(&hw->blk[blk].masks.lock);
3510
3511	return 0;
3512}
3513
3514/**
3515 * ice_free_prof_masks - free all profile masks for a profile
3516 * @hw: pointer to the HW struct
3517 * @blk: hardware block
3518 * @prof_id: profile ID
3519 */
3520static int
3521ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3522{
3523	u32 mask_bm;
3524	u16 i;
3525
3526	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3527		return -EINVAL;
3528
3529	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3530	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3531		if (mask_bm & BIT(i))
3532			ice_free_prof_mask(hw, blk, i);
3533
3534	return 0;
3535}
3536
3537/**
3538 * ice_shutdown_prof_masks - releases lock for masking
3539 * @hw: pointer to the HW struct
3540 * @blk: hardware block
3541 *
3542 * This should be called before unloading the driver
3543 */
3544static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3545{
3546	u16 i;
3547
3548	mutex_lock(&hw->blk[blk].masks.lock);
3549
3550	for (i = hw->blk[blk].masks.first;
3551	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3552		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3553
3554		hw->blk[blk].masks.masks[i].in_use = false;
3555		hw->blk[blk].masks.masks[i].idx = 0;
3556		hw->blk[blk].masks.masks[i].mask = 0;
3557	}
3558
3559	mutex_unlock(&hw->blk[blk].masks.lock);
3560	mutex_destroy(&hw->blk[blk].masks.lock);
3561}
3562
3563/**
3564 * ice_shutdown_all_prof_masks - releases all locks for masking
3565 * @hw: pointer to the HW struct
3566 *
3567 * This should be called before unloading the driver
3568 */
3569static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3570{
3571	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3572	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3573}
3574
3575/**
3576 * ice_update_prof_masking - set registers according to masking
3577 * @hw: pointer to the HW struct
3578 * @blk: hardware block
3579 * @prof_id: profile ID
3580 * @masks: masks
3581 */
3582static int
3583ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3584			u16 *masks)
3585{
3586	bool err = false;
3587	u32 ena_mask = 0;
3588	u16 idx;
3589	u16 i;
3590
3591	/* Only support FD and RSS masking, otherwise nothing to be done */
3592	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3593		return 0;
3594
3595	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3596		if (masks[i] && masks[i] != 0xFFFF) {
3597			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3598				ena_mask |= BIT(idx);
3599			} else {
3600				/* not enough bitmaps */
3601				err = true;
3602				break;
3603			}
3604		}
3605
3606	if (err) {
3607		/* free any bitmaps we have allocated */
3608		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3609			if (ena_mask & BIT(i))
3610				ice_free_prof_mask(hw, blk, i);
3611
3612		return -EIO;
3613	}
3614
3615	/* enable the masks for this profile */
3616	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3617
3618	/* store enabled masks with profile so that they can be freed later */
3619	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3620
3621	return 0;
3622}
3623
3624/**
3625 * ice_write_es - write an extraction sequence to hardware
3626 * @hw: pointer to the HW struct
3627 * @blk: the block in which to write the extraction sequence
3628 * @prof_id: the profile ID to write
3629 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3630 */
3631static void
3632ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3633	     struct ice_fv_word *fv)
3634{
3635	u16 off;
3636
3637	off = prof_id * hw->blk[blk].es.fvw;
3638	if (!fv) {
3639		memset(&hw->blk[blk].es.t[off], 0,
3640		       hw->blk[blk].es.fvw * sizeof(*fv));
3641		hw->blk[blk].es.written[prof_id] = false;
3642	} else {
3643		memcpy(&hw->blk[blk].es.t[off], fv,
3644		       hw->blk[blk].es.fvw * sizeof(*fv));
3645	}
3646}
3647
3648/**
3649 * ice_prof_dec_ref - decrement reference count for profile
3650 * @hw: pointer to the HW struct
3651 * @blk: the block from which to free the profile ID
3652 * @prof_id: the profile ID for which to decrement the reference count
3653 */
3654static int
3655ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3656{
3657	if (prof_id > hw->blk[blk].es.count)
3658		return -EINVAL;
3659
3660	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3661		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3662			ice_write_es(hw, blk, prof_id, NULL);
3663			ice_free_prof_masks(hw, blk, prof_id);
3664			return ice_free_prof_id(hw, blk, prof_id);
3665		}
3666	}
3667
3668	return 0;
3669}
3670
3671/* Block / table section IDs */
3672static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3673	/* SWITCH */
3674	{	ICE_SID_XLT1_SW,
3675		ICE_SID_XLT2_SW,
3676		ICE_SID_PROFID_TCAM_SW,
3677		ICE_SID_PROFID_REDIR_SW,
3678		ICE_SID_FLD_VEC_SW
3679	},
3680
3681	/* ACL */
3682	{	ICE_SID_XLT1_ACL,
3683		ICE_SID_XLT2_ACL,
3684		ICE_SID_PROFID_TCAM_ACL,
3685		ICE_SID_PROFID_REDIR_ACL,
3686		ICE_SID_FLD_VEC_ACL
3687	},
3688
3689	/* FD */
3690	{	ICE_SID_XLT1_FD,
3691		ICE_SID_XLT2_FD,
3692		ICE_SID_PROFID_TCAM_FD,
3693		ICE_SID_PROFID_REDIR_FD,
3694		ICE_SID_FLD_VEC_FD
3695	},
3696
3697	/* RSS */
3698	{	ICE_SID_XLT1_RSS,
3699		ICE_SID_XLT2_RSS,
3700		ICE_SID_PROFID_TCAM_RSS,
3701		ICE_SID_PROFID_REDIR_RSS,
3702		ICE_SID_FLD_VEC_RSS
3703	},
3704
3705	/* PE */
3706	{	ICE_SID_XLT1_PE,
3707		ICE_SID_XLT2_PE,
3708		ICE_SID_PROFID_TCAM_PE,
3709		ICE_SID_PROFID_REDIR_PE,
3710		ICE_SID_FLD_VEC_PE
3711	}
3712};
3713
3714/**
3715 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3716 * @hw: pointer to the hardware structure
3717 * @blk: the HW block to initialize
3718 */
3719static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3720{
3721	u16 pt;
3722
3723	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3724		u8 ptg;
3725
3726		ptg = hw->blk[blk].xlt1.t[pt];
3727		if (ptg != ICE_DEFAULT_PTG) {
3728			ice_ptg_alloc_val(hw, blk, ptg);
3729			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3730		}
3731	}
3732}
3733
3734/**
3735 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3736 * @hw: pointer to the hardware structure
3737 * @blk: the HW block to initialize
3738 */
3739static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3740{
3741	u16 vsi;
3742
3743	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3744		u16 vsig;
3745
3746		vsig = hw->blk[blk].xlt2.t[vsi];
3747		if (vsig) {
3748			ice_vsig_alloc_val(hw, blk, vsig);
3749			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3750			/* no changes at this time, since this has been
3751			 * initialized from the original package
3752			 */
3753			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3754		}
3755	}
3756}
3757
3758/**
3759 * ice_init_sw_db - init software database from HW tables
3760 * @hw: pointer to the hardware structure
3761 */
3762static void ice_init_sw_db(struct ice_hw *hw)
3763{
3764	u16 i;
3765
3766	for (i = 0; i < ICE_BLK_COUNT; i++) {
3767		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3768		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3769	}
3770}
3771
3772/**
3773 * ice_fill_tbl - Reads content of a single table type into database
3774 * @hw: pointer to the hardware structure
3775 * @block_id: Block ID of the table to copy
3776 * @sid: Section ID of the table to copy
3777 *
3778 * Will attempt to read the entire content of a given table of a single block
3779 * into the driver database. We assume that the buffer will always
3780 * be as large or larger than the data contained in the package. If
3781 * this condition is not met, there is most likely an error in the package
3782 * contents.
3783 */
3784static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3785{
3786	u32 dst_len, sect_len, offset = 0;
3787	struct ice_prof_redir_section *pr;
3788	struct ice_prof_id_section *pid;
3789	struct ice_xlt1_section *xlt1;
3790	struct ice_xlt2_section *xlt2;
3791	struct ice_sw_fv_section *es;
3792	struct ice_pkg_enum state;
3793	u8 *src, *dst;
3794	void *sect;
3795
3796	/* if the HW segment pointer is null then the first iteration of
3797	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3798	 * not be filled and return success.
3799	 */
3800	if (!hw->seg) {
3801		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3802		return;
3803	}
3804
3805	memset(&state, 0, sizeof(state));
3806
3807	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3808
3809	while (sect) {
3810		switch (sid) {
3811		case ICE_SID_XLT1_SW:
3812		case ICE_SID_XLT1_FD:
3813		case ICE_SID_XLT1_RSS:
3814		case ICE_SID_XLT1_ACL:
3815		case ICE_SID_XLT1_PE:
3816			xlt1 = sect;
3817			src = xlt1->value;
3818			sect_len = le16_to_cpu(xlt1->count) *
3819				sizeof(*hw->blk[block_id].xlt1.t);
3820			dst = hw->blk[block_id].xlt1.t;
3821			dst_len = hw->blk[block_id].xlt1.count *
3822				sizeof(*hw->blk[block_id].xlt1.t);
3823			break;
3824		case ICE_SID_XLT2_SW:
3825		case ICE_SID_XLT2_FD:
3826		case ICE_SID_XLT2_RSS:
3827		case ICE_SID_XLT2_ACL:
3828		case ICE_SID_XLT2_PE:
3829			xlt2 = sect;
3830			src = (__force u8 *)xlt2->value;
3831			sect_len = le16_to_cpu(xlt2->count) *
3832				sizeof(*hw->blk[block_id].xlt2.t);
3833			dst = (u8 *)hw->blk[block_id].xlt2.t;
3834			dst_len = hw->blk[block_id].xlt2.count *
3835				sizeof(*hw->blk[block_id].xlt2.t);
3836			break;
3837		case ICE_SID_PROFID_TCAM_SW:
3838		case ICE_SID_PROFID_TCAM_FD:
3839		case ICE_SID_PROFID_TCAM_RSS:
3840		case ICE_SID_PROFID_TCAM_ACL:
3841		case ICE_SID_PROFID_TCAM_PE:
3842			pid = sect;
3843			src = (u8 *)pid->entry;
3844			sect_len = le16_to_cpu(pid->count) *
3845				sizeof(*hw->blk[block_id].prof.t);
3846			dst = (u8 *)hw->blk[block_id].prof.t;
3847			dst_len = hw->blk[block_id].prof.count *
3848				sizeof(*hw->blk[block_id].prof.t);
3849			break;
3850		case ICE_SID_PROFID_REDIR_SW:
3851		case ICE_SID_PROFID_REDIR_FD:
3852		case ICE_SID_PROFID_REDIR_RSS:
3853		case ICE_SID_PROFID_REDIR_ACL:
3854		case ICE_SID_PROFID_REDIR_PE:
3855			pr = sect;
3856			src = pr->redir_value;
3857			sect_len = le16_to_cpu(pr->count) *
3858				sizeof(*hw->blk[block_id].prof_redir.t);
3859			dst = hw->blk[block_id].prof_redir.t;
3860			dst_len = hw->blk[block_id].prof_redir.count *
3861				sizeof(*hw->blk[block_id].prof_redir.t);
3862			break;
3863		case ICE_SID_FLD_VEC_SW:
3864		case ICE_SID_FLD_VEC_FD:
3865		case ICE_SID_FLD_VEC_RSS:
3866		case ICE_SID_FLD_VEC_ACL:
3867		case ICE_SID_FLD_VEC_PE:
3868			es = sect;
3869			src = (u8 *)es->fv;
3870			sect_len = (u32)(le16_to_cpu(es->count) *
3871					 hw->blk[block_id].es.fvw) *
3872				sizeof(*hw->blk[block_id].es.t);
3873			dst = (u8 *)hw->blk[block_id].es.t;
3874			dst_len = (u32)(hw->blk[block_id].es.count *
3875					hw->blk[block_id].es.fvw) *
3876				sizeof(*hw->blk[block_id].es.t);
3877			break;
3878		default:
3879			return;
3880		}
3881
3882		/* if the section offset exceeds destination length, terminate
3883		 * table fill.
3884		 */
3885		if (offset > dst_len)
3886			return;
3887
3888		/* if the sum of section size and offset exceed destination size
3889		 * then we are out of bounds of the HW table size for that PF.
3890		 * Changing section length to fill the remaining table space
3891		 * of that PF.
3892		 */
3893		if ((offset + sect_len) > dst_len)
3894			sect_len = dst_len - offset;
3895
3896		memcpy(dst + offset, src, sect_len);
3897		offset += sect_len;
3898		sect = ice_pkg_enum_section(NULL, &state, sid);
3899	}
3900}
3901
3902/**
3903 * ice_fill_blk_tbls - Read package context for tables
3904 * @hw: pointer to the hardware structure
3905 *
3906 * Reads the current package contents and populates the driver
3907 * database with the data iteratively for all advanced feature
3908 * blocks. Assume that the HW tables have been allocated.
3909 */
3910void ice_fill_blk_tbls(struct ice_hw *hw)
3911{
3912	u8 i;
3913
3914	for (i = 0; i < ICE_BLK_COUNT; i++) {
3915		enum ice_block blk_id = (enum ice_block)i;
3916
3917		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3918		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3919		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3920		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3921		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3922	}
3923
3924	ice_init_sw_db(hw);
3925}
3926
3927/**
3928 * ice_free_prof_map - free profile map
3929 * @hw: pointer to the hardware structure
3930 * @blk_idx: HW block index
3931 */
3932static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3933{
3934	struct ice_es *es = &hw->blk[blk_idx].es;
3935	struct ice_prof_map *del, *tmp;
3936
3937	mutex_lock(&es->prof_map_lock);
3938	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3939		list_del(&del->list);
3940		devm_kfree(ice_hw_to_dev(hw), del);
3941	}
3942	INIT_LIST_HEAD(&es->prof_map);
3943	mutex_unlock(&es->prof_map_lock);
3944}
3945
3946/**
3947 * ice_free_flow_profs - free flow profile entries
3948 * @hw: pointer to the hardware structure
3949 * @blk_idx: HW block index
3950 */
3951static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3952{
3953	struct ice_flow_prof *p, *tmp;
3954
3955	mutex_lock(&hw->fl_profs_locks[blk_idx]);
3956	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3957		struct ice_flow_entry *e, *t;
3958
3959		list_for_each_entry_safe(e, t, &p->entries, l_entry)
3960			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3961					   ICE_FLOW_ENTRY_HNDL(e));
3962
3963		list_del(&p->l_entry);
3964
3965		mutex_destroy(&p->entries_lock);
3966		devm_kfree(ice_hw_to_dev(hw), p);
3967	}
3968	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3969
3970	/* if driver is in reset and tables are being cleared
3971	 * re-initialize the flow profile list heads
3972	 */
3973	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3974}
3975
3976/**
3977 * ice_free_vsig_tbl - free complete VSIG table entries
3978 * @hw: pointer to the hardware structure
3979 * @blk: the HW block on which to free the VSIG table entries
3980 */
3981static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3982{
3983	u16 i;
3984
3985	if (!hw->blk[blk].xlt2.vsig_tbl)
3986		return;
3987
3988	for (i = 1; i < ICE_MAX_VSIGS; i++)
3989		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3990			ice_vsig_free(hw, blk, i);
3991}
3992
3993/**
3994 * ice_free_hw_tbls - free hardware table memory
3995 * @hw: pointer to the hardware structure
3996 */
3997void ice_free_hw_tbls(struct ice_hw *hw)
3998{
3999	struct ice_rss_cfg *r, *rt;
4000	u8 i;
4001
4002	for (i = 0; i < ICE_BLK_COUNT; i++) {
4003		if (hw->blk[i].is_list_init) {
4004			struct ice_es *es = &hw->blk[i].es;
4005
4006			ice_free_prof_map(hw, i);
4007			mutex_destroy(&es->prof_map_lock);
4008
4009			ice_free_flow_profs(hw, i);
4010			mutex_destroy(&hw->fl_profs_locks[i]);
4011
4012			hw->blk[i].is_list_init = false;
4013		}
4014		ice_free_vsig_tbl(hw, (enum ice_block)i);
4015		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
4016		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
4017		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
4018		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
4019		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
4020		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
4021		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
4022		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
4023		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
4024		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
4025		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
4026		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
4027	}
4028
4029	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
4030		list_del(&r->l_entry);
4031		devm_kfree(ice_hw_to_dev(hw), r);
4032	}
4033	mutex_destroy(&hw->rss_locks);
4034	ice_shutdown_all_prof_masks(hw);
4035	memset(hw->blk, 0, sizeof(hw->blk));
4036}
4037
4038/**
4039 * ice_init_flow_profs - init flow profile locks and list heads
4040 * @hw: pointer to the hardware structure
4041 * @blk_idx: HW block index
4042 */
4043static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4044{
4045	mutex_init(&hw->fl_profs_locks[blk_idx]);
4046	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4047}
4048
4049/**
4050 * ice_clear_hw_tbls - clear HW tables and flow profiles
4051 * @hw: pointer to the hardware structure
4052 */
4053void ice_clear_hw_tbls(struct ice_hw *hw)
4054{
4055	u8 i;
4056
4057	for (i = 0; i < ICE_BLK_COUNT; i++) {
4058		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4059		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4060		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4061		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4062		struct ice_es *es = &hw->blk[i].es;
4063
4064		if (hw->blk[i].is_list_init) {
4065			ice_free_prof_map(hw, i);
4066			ice_free_flow_profs(hw, i);
4067		}
4068
4069		ice_free_vsig_tbl(hw, (enum ice_block)i);
4070
4071		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
4072		memset(xlt1->ptg_tbl, 0,
4073		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
4074		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
4075
4076		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
4077		memset(xlt2->vsig_tbl, 0,
4078		       xlt2->count * sizeof(*xlt2->vsig_tbl));
4079		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
4080
4081		memset(prof->t, 0, prof->count * sizeof(*prof->t));
4082		memset(prof_redir->t, 0,
4083		       prof_redir->count * sizeof(*prof_redir->t));
4084
4085		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
4086		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
4087		memset(es->written, 0, es->count * sizeof(*es->written));
4088		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
4089	}
4090}
4091
4092/**
4093 * ice_init_hw_tbls - init hardware table memory
4094 * @hw: pointer to the hardware structure
4095 */
4096int ice_init_hw_tbls(struct ice_hw *hw)
4097{
4098	u8 i;
4099
4100	mutex_init(&hw->rss_locks);
4101	INIT_LIST_HEAD(&hw->rss_list_head);
4102	ice_init_all_prof_masks(hw);
4103	for (i = 0; i < ICE_BLK_COUNT; i++) {
4104		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4105		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4106		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4107		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4108		struct ice_es *es = &hw->blk[i].es;
4109		u16 j;
4110
4111		if (hw->blk[i].is_list_init)
4112			continue;
4113
4114		ice_init_flow_profs(hw, i);
4115		mutex_init(&es->prof_map_lock);
4116		INIT_LIST_HEAD(&es->prof_map);
4117		hw->blk[i].is_list_init = true;
4118
4119		hw->blk[i].overwrite = blk_sizes[i].overwrite;
4120		es->reverse = blk_sizes[i].reverse;
4121
4122		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4123		xlt1->count = blk_sizes[i].xlt1;
4124
4125		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4126					    sizeof(*xlt1->ptypes), GFP_KERNEL);
4127
4128		if (!xlt1->ptypes)
4129			goto err;
4130
4131		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
4132					     sizeof(*xlt1->ptg_tbl),
4133					     GFP_KERNEL);
4134
4135		if (!xlt1->ptg_tbl)
4136			goto err;
4137
4138		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4139				       sizeof(*xlt1->t), GFP_KERNEL);
4140		if (!xlt1->t)
4141			goto err;
4142
4143		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4144		xlt2->count = blk_sizes[i].xlt2;
4145
4146		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4147					  sizeof(*xlt2->vsis), GFP_KERNEL);
4148
4149		if (!xlt2->vsis)
4150			goto err;
4151
4152		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4153					      sizeof(*xlt2->vsig_tbl),
4154					      GFP_KERNEL);
4155		if (!xlt2->vsig_tbl)
4156			goto err;
4157
4158		for (j = 0; j < xlt2->count; j++)
4159			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4160
4161		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4162				       sizeof(*xlt2->t), GFP_KERNEL);
4163		if (!xlt2->t)
4164			goto err;
4165
4166		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4167		prof->count = blk_sizes[i].prof_tcam;
4168		prof->max_prof_id = blk_sizes[i].prof_id;
4169		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4170		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
4171				       sizeof(*prof->t), GFP_KERNEL);
4172
4173		if (!prof->t)
4174			goto err;
4175
4176		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4177		prof_redir->count = blk_sizes[i].prof_redir;
4178		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
4179					     prof_redir->count,
4180					     sizeof(*prof_redir->t),
4181					     GFP_KERNEL);
4182
4183		if (!prof_redir->t)
4184			goto err;
4185
4186		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4187		es->count = blk_sizes[i].es;
4188		es->fvw = blk_sizes[i].fvw;
4189		es->t = devm_kcalloc(ice_hw_to_dev(hw),
4190				     (u32)(es->count * es->fvw),
4191				     sizeof(*es->t), GFP_KERNEL);
4192		if (!es->t)
4193			goto err;
4194
4195		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4196					     sizeof(*es->ref_count),
4197					     GFP_KERNEL);
4198		if (!es->ref_count)
4199			goto err;
4200
4201		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4202					   sizeof(*es->written), GFP_KERNEL);
4203		if (!es->written)
4204			goto err;
4205
4206		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4207					    sizeof(*es->mask_ena), GFP_KERNEL);
4208		if (!es->mask_ena)
4209			goto err;
4210	}
4211	return 0;
4212
4213err:
4214	ice_free_hw_tbls(hw);
4215	return -ENOMEM;
4216}
4217
4218/**
4219 * ice_prof_gen_key - generate profile ID key
4220 * @hw: pointer to the HW struct
4221 * @blk: the block in which to write profile ID to
4222 * @ptg: packet type group (PTG) portion of key
4223 * @vsig: VSIG portion of key
4224 * @cdid: CDID portion of key
4225 * @flags: flag portion of key
4226 * @vl_msk: valid mask
4227 * @dc_msk: don't care mask
4228 * @nm_msk: never match mask
4229 * @key: output of profile ID key
4230 */
4231static int
4232ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4233		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4234		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4235		 u8 key[ICE_TCAM_KEY_SZ])
4236{
4237	struct ice_prof_id_key inkey;
4238
4239	inkey.xlt1 = ptg;
4240	inkey.xlt2_cdid = cpu_to_le16(vsig);
4241	inkey.flags = cpu_to_le16(flags);
4242
4243	switch (hw->blk[blk].prof.cdid_bits) {
4244	case 0:
4245		break;
4246	case 2:
4247#define ICE_CD_2_M 0xC000U
4248#define ICE_CD_2_S 14
4249		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
4250		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
4251		break;
4252	case 4:
4253#define ICE_CD_4_M 0xF000U
4254#define ICE_CD_4_S 12
4255		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
4256		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
4257		break;
4258	case 8:
4259#define ICE_CD_8_M 0xFF00U
4260#define ICE_CD_8_S 16
4261		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
4262		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
4263		break;
4264	default:
4265		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4266		break;
4267	}
4268
4269	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4270			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4271}
4272
4273/**
4274 * ice_tcam_write_entry - write TCAM entry
4275 * @hw: pointer to the HW struct
4276 * @blk: the block in which to write profile ID to
4277 * @idx: the entry index to write to
4278 * @prof_id: profile ID
4279 * @ptg: packet type group (PTG) portion of key
4280 * @vsig: VSIG portion of key
4281 * @cdid: CDID portion of key
4282 * @flags: flag portion of key
4283 * @vl_msk: valid mask
4284 * @dc_msk: don't care mask
4285 * @nm_msk: never match mask
4286 */
4287static int
4288ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4289		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4290		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4291		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4292		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4293{
4294	struct ice_prof_tcam_entry;
4295	int status;
4296
4297	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4298				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4299	if (!status) {
4300		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
4301		hw->blk[blk].prof.t[idx].prof_id = prof_id;
4302	}
4303
4304	return status;
4305}
4306
4307/**
4308 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4309 * @hw: pointer to the hardware structure
4310 * @blk: HW block
4311 * @vsig: VSIG to query
4312 * @refs: pointer to variable to receive the reference count
4313 */
4314static int
4315ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4316{
4317	u16 idx = vsig & ICE_VSIG_IDX_M;
4318	struct ice_vsig_vsi *ptr;
4319
4320	*refs = 0;
4321
4322	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4323		return -ENOENT;
4324
4325	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4326	while (ptr) {
4327		(*refs)++;
4328		ptr = ptr->next_vsi;
4329	}
4330
4331	return 0;
4332}
4333
4334/**
4335 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4336 * @hw: pointer to the hardware structure
4337 * @blk: HW block
4338 * @vsig: VSIG to check against
4339 * @hdl: profile handle
4340 */
4341static bool
4342ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4343{
4344	u16 idx = vsig & ICE_VSIG_IDX_M;
4345	struct ice_vsig_prof *ent;
4346
4347	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4348			    list)
4349		if (ent->profile_cookie == hdl)
4350			return true;
4351
4352	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
 
4353		  vsig);
4354	return false;
4355}
4356
4357/**
4358 * ice_prof_bld_es - build profile ID extraction sequence changes
4359 * @hw: pointer to the HW struct
4360 * @blk: hardware block
4361 * @bld: the update package buffer build to add to
4362 * @chgs: the list of changes to make in hardware
4363 */
4364static int
4365ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4366		struct ice_buf_build *bld, struct list_head *chgs)
4367{
4368	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4369	struct ice_chs_chg *tmp;
4370
4371	list_for_each_entry(tmp, chgs, list_entry)
4372		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4373			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4374			struct ice_pkg_es *p;
4375			u32 id;
4376
4377			id = ice_sect_id(blk, ICE_VEC_TBL);
4378			p = ice_pkg_buf_alloc_section(bld, id,
4379						      struct_size(p, es, 1) +
4380						      vec_size -
4381						      sizeof(p->es[0]));
4382
4383			if (!p)
4384				return -ENOSPC;
4385
4386			p->count = cpu_to_le16(1);
4387			p->offset = cpu_to_le16(tmp->prof_id);
4388
4389			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
4390		}
4391
4392	return 0;
4393}
4394
4395/**
4396 * ice_prof_bld_tcam - build profile ID TCAM changes
4397 * @hw: pointer to the HW struct
4398 * @blk: hardware block
4399 * @bld: the update package buffer build to add to
4400 * @chgs: the list of changes to make in hardware
4401 */
4402static int
4403ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4404		  struct ice_buf_build *bld, struct list_head *chgs)
4405{
4406	struct ice_chs_chg *tmp;
4407
4408	list_for_each_entry(tmp, chgs, list_entry)
4409		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4410			struct ice_prof_id_section *p;
4411			u32 id;
4412
4413			id = ice_sect_id(blk, ICE_PROF_TCAM);
4414			p = ice_pkg_buf_alloc_section(bld, id,
4415						      struct_size(p, entry, 1));
4416
4417			if (!p)
4418				return -ENOSPC;
4419
4420			p->count = cpu_to_le16(1);
4421			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
4422			p->entry[0].prof_id = tmp->prof_id;
4423
4424			memcpy(p->entry[0].key,
4425			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4426			       sizeof(hw->blk[blk].prof.t->key));
4427		}
4428
4429	return 0;
4430}
4431
4432/**
4433 * ice_prof_bld_xlt1 - build XLT1 changes
4434 * @blk: hardware block
4435 * @bld: the update package buffer build to add to
4436 * @chgs: the list of changes to make in hardware
4437 */
4438static int
4439ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4440		  struct list_head *chgs)
4441{
4442	struct ice_chs_chg *tmp;
4443
4444	list_for_each_entry(tmp, chgs, list_entry)
4445		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4446			struct ice_xlt1_section *p;
4447			u32 id;
4448
4449			id = ice_sect_id(blk, ICE_XLT1);
4450			p = ice_pkg_buf_alloc_section(bld, id,
4451						      struct_size(p, value, 1));
4452
4453			if (!p)
4454				return -ENOSPC;
4455
4456			p->count = cpu_to_le16(1);
4457			p->offset = cpu_to_le16(tmp->ptype);
4458			p->value[0] = tmp->ptg;
4459		}
4460
4461	return 0;
4462}
4463
4464/**
4465 * ice_prof_bld_xlt2 - build XLT2 changes
4466 * @blk: hardware block
4467 * @bld: the update package buffer build to add to
4468 * @chgs: the list of changes to make in hardware
4469 */
4470static int
4471ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4472		  struct list_head *chgs)
4473{
4474	struct ice_chs_chg *tmp;
4475
4476	list_for_each_entry(tmp, chgs, list_entry) {
4477		struct ice_xlt2_section *p;
4478		u32 id;
4479
4480		switch (tmp->type) {
4481		case ICE_VSIG_ADD:
4482		case ICE_VSI_MOVE:
4483		case ICE_VSIG_REM:
4484			id = ice_sect_id(blk, ICE_XLT2);
4485			p = ice_pkg_buf_alloc_section(bld, id,
4486						      struct_size(p, value, 1));
4487
4488			if (!p)
4489				return -ENOSPC;
4490
4491			p->count = cpu_to_le16(1);
4492			p->offset = cpu_to_le16(tmp->vsi);
4493			p->value[0] = cpu_to_le16(tmp->vsig);
4494			break;
4495		default:
4496			break;
4497		}
4498	}
4499
4500	return 0;
4501}
4502
4503/**
4504 * ice_upd_prof_hw - update hardware using the change list
4505 * @hw: pointer to the HW struct
4506 * @blk: hardware block
4507 * @chgs: the list of changes to make in hardware
4508 */
4509static int
4510ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4511		struct list_head *chgs)
4512{
4513	struct ice_buf_build *b;
4514	struct ice_chs_chg *tmp;
 
4515	u16 pkg_sects;
4516	u16 xlt1 = 0;
4517	u16 xlt2 = 0;
4518	u16 tcam = 0;
4519	u16 es = 0;
4520	int status;
4521	u16 sects;
4522
4523	/* count number of sections we need */
4524	list_for_each_entry(tmp, chgs, list_entry) {
4525		switch (tmp->type) {
4526		case ICE_PTG_ES_ADD:
4527			if (tmp->add_ptg)
4528				xlt1++;
4529			if (tmp->add_prof)
4530				es++;
4531			break;
4532		case ICE_TCAM_ADD:
4533			tcam++;
4534			break;
4535		case ICE_VSIG_ADD:
4536		case ICE_VSI_MOVE:
4537		case ICE_VSIG_REM:
4538			xlt2++;
4539			break;
4540		default:
4541			break;
4542		}
4543	}
4544	sects = xlt1 + xlt2 + tcam + es;
4545
4546	if (!sects)
4547		return 0;
4548
4549	/* Build update package buffer */
4550	b = ice_pkg_buf_alloc(hw);
4551	if (!b)
4552		return -ENOMEM;
4553
4554	status = ice_pkg_buf_reserve_section(b, sects);
4555	if (status)
4556		goto error_tmp;
4557
4558	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4559	if (es) {
4560		status = ice_prof_bld_es(hw, blk, b, chgs);
4561		if (status)
4562			goto error_tmp;
4563	}
4564
4565	if (tcam) {
4566		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4567		if (status)
4568			goto error_tmp;
4569	}
4570
4571	if (xlt1) {
4572		status = ice_prof_bld_xlt1(blk, b, chgs);
4573		if (status)
4574			goto error_tmp;
4575	}
4576
4577	if (xlt2) {
4578		status = ice_prof_bld_xlt2(blk, b, chgs);
4579		if (status)
4580			goto error_tmp;
4581	}
4582
4583	/* After package buffer build check if the section count in buffer is
4584	 * non-zero and matches the number of sections detected for package
4585	 * update.
4586	 */
4587	pkg_sects = ice_pkg_buf_get_active_sections(b);
4588	if (!pkg_sects || pkg_sects != sects) {
4589		status = -EINVAL;
4590		goto error_tmp;
4591	}
4592
4593	/* update package */
4594	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4595	if (status == -EIO)
4596		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4597
4598error_tmp:
4599	ice_pkg_buf_free(hw, b);
4600	return status;
4601}
4602
4603/**
4604 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4605 * @hw: pointer to the HW struct
4606 * @prof_id: profile ID
4607 * @mask_sel: mask select
4608 *
4609 * This function enable any of the masks selected by the mask select parameter
4610 * for the profile specified.
4611 */
4612static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4613{
4614	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4615
4616	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4617		  GLQF_FDMASK_SEL(prof_id), mask_sel);
4618}
4619
4620struct ice_fd_src_dst_pair {
4621	u8 prot_id;
4622	u8 count;
4623	u16 off;
4624};
4625
4626static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4627	/* These are defined in pairs */
4628	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4629	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4630
4631	{ ICE_PROT_IPV4_IL, 2, 12 },
4632	{ ICE_PROT_IPV4_IL, 2, 16 },
4633
4634	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4635	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4636
4637	{ ICE_PROT_IPV6_IL, 8, 8 },
4638	{ ICE_PROT_IPV6_IL, 8, 24 },
4639
4640	{ ICE_PROT_TCP_IL, 1, 0 },
4641	{ ICE_PROT_TCP_IL, 1, 2 },
4642
4643	{ ICE_PROT_UDP_OF, 1, 0 },
4644	{ ICE_PROT_UDP_OF, 1, 2 },
4645
4646	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
4647	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
4648
4649	{ ICE_PROT_SCTP_IL, 1, 0 },
4650	{ ICE_PROT_SCTP_IL, 1, 2 }
4651};
4652
4653#define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
4654
4655/**
4656 * ice_update_fd_swap - set register appropriately for a FD FV extraction
4657 * @hw: pointer to the HW struct
4658 * @prof_id: profile ID
4659 * @es: extraction sequence (length of array is determined by the block)
4660 */
4661static int
4662ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4663{
4664	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4665	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4666#define ICE_FD_FV_NOT_FOUND (-2)
4667	s8 first_free = ICE_FD_FV_NOT_FOUND;
4668	u8 used[ICE_MAX_FV_WORDS] = { 0 };
4669	s8 orig_free, si;
4670	u32 mask_sel = 0;
4671	u8 i, j, k;
4672
4673	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4674
4675	/* This code assumes that the Flow Director field vectors are assigned
4676	 * from the end of the FV indexes working towards the zero index, that
4677	 * only complete fields will be included and will be consecutive, and
4678	 * that there are no gaps between valid indexes.
4679	 */
4680
4681	/* Determine swap fields present */
4682	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4683		/* Find the first free entry, assuming right to left population.
4684		 * This is where we can start adding additional pairs if needed.
4685		 */
4686		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4687		    ICE_PROT_INVALID)
4688			first_free = i - 1;
4689
4690		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4691			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4692			    es[i].off == ice_fd_pairs[j].off) {
4693				__set_bit(j, pair_list);
4694				pair_start[j] = i;
4695			}
4696	}
4697
4698	orig_free = first_free;
4699
4700	/* determine missing swap fields that need to be added */
4701	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4702		u8 bit1 = test_bit(i + 1, pair_list);
4703		u8 bit0 = test_bit(i, pair_list);
4704
4705		if (bit0 ^ bit1) {
4706			u8 index;
4707
4708			/* add the appropriate 'paired' entry */
4709			if (!bit0)
4710				index = i;
4711			else
4712				index = i + 1;
4713
4714			/* check for room */
4715			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4716				return -ENOSPC;
4717
4718			/* place in extraction sequence */
4719			for (k = 0; k < ice_fd_pairs[index].count; k++) {
4720				es[first_free - k].prot_id =
4721					ice_fd_pairs[index].prot_id;
4722				es[first_free - k].off =
4723					ice_fd_pairs[index].off + (k * 2);
4724
4725				if (k > first_free)
4726					return -EIO;
4727
4728				/* keep track of non-relevant fields */
4729				mask_sel |= BIT(first_free - k);
4730			}
4731
4732			pair_start[index] = first_free;
4733			first_free -= ice_fd_pairs[index].count;
4734		}
4735	}
4736
4737	/* fill in the swap array */
4738	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4739	while (si >= 0) {
4740		u8 indexes_used = 1;
4741
4742		/* assume flat at this index */
4743#define ICE_SWAP_VALID	0x80
4744		used[si] = si | ICE_SWAP_VALID;
4745
4746		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4747			si -= indexes_used;
4748			continue;
4749		}
4750
4751		/* check for a swap location */
4752		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4753			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4754			    es[si].off == ice_fd_pairs[j].off) {
4755				u8 idx;
4756
4757				/* determine the appropriate matching field */
4758				idx = j + ((j % 2) ? -1 : 1);
4759
4760				indexes_used = ice_fd_pairs[idx].count;
4761				for (k = 0; k < indexes_used; k++) {
4762					used[si - k] = (pair_start[idx] - k) |
4763						ICE_SWAP_VALID;
4764				}
4765
4766				break;
4767			}
4768
4769		si -= indexes_used;
4770	}
4771
4772	/* for each set of 4 swap and 4 inset indexes, write the appropriate
4773	 * register
4774	 */
4775	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4776		u32 raw_swap = 0;
4777		u32 raw_in = 0;
4778
4779		for (k = 0; k < 4; k++) {
4780			u8 idx;
4781
4782			idx = (j * 4) + k;
4783			if (used[idx] && !(mask_sel & BIT(idx))) {
4784				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4785#define ICE_INSET_DFLT 0x9f
4786				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4787			}
4788		}
4789
4790		/* write the appropriate swap register set */
4791		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4792
4793		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4794			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4795
4796		/* write the appropriate inset register set */
4797		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4798
4799		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4800			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4801	}
4802
4803	/* initially clear the mask select for this profile */
4804	ice_update_fd_mask(hw, prof_id, 0);
4805
4806	return 0;
4807}
4808
4809/* The entries here needs to match the order of enum ice_ptype_attrib */
4810static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4811	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
4812	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
4813	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
4814	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
4815};
4816
4817/**
4818 * ice_get_ptype_attrib_info - get PTYPE attribute information
4819 * @type: attribute type
4820 * @info: pointer to variable to the attribute information
4821 */
4822static void
4823ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4824			  struct ice_ptype_attrib_info *info)
4825{
4826	*info = ice_ptype_attributes[type];
4827}
4828
4829/**
4830 * ice_add_prof_attrib - add any PTG with attributes to profile
4831 * @prof: pointer to the profile to which PTG entries will be added
4832 * @ptg: PTG to be added
4833 * @ptype: PTYPE that needs to be looked up
4834 * @attr: array of attributes that will be considered
4835 * @attr_cnt: number of elements in the attribute array
4836 */
4837static int
4838ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4839		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
4840{
4841	bool found = false;
4842	u16 i;
4843
4844	for (i = 0; i < attr_cnt; i++)
4845		if (attr[i].ptype == ptype) {
4846			found = true;
4847
4848			prof->ptg[prof->ptg_cnt] = ptg;
4849			ice_get_ptype_attrib_info(attr[i].attrib,
4850						  &prof->attr[prof->ptg_cnt]);
4851
4852			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4853				return -ENOSPC;
4854		}
4855
4856	if (!found)
4857		return -ENOENT;
4858
4859	return 0;
4860}
4861
4862/**
4863 * ice_add_prof - add profile
4864 * @hw: pointer to the HW struct
4865 * @blk: hardware block
4866 * @id: profile tracking ID
4867 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4868 * @attr: array of attributes
4869 * @attr_cnt: number of elements in attr array
4870 * @es: extraction sequence (length of array is determined by the block)
4871 * @masks: mask for extraction sequence
4872 *
4873 * This function registers a profile, which matches a set of PTYPES with a
4874 * particular extraction sequence. While the hardware profile is allocated
4875 * it will not be written until the first call to ice_add_flow that specifies
4876 * the ID value used here.
4877 */
4878int
4879ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4880	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
4881	     struct ice_fv_word *es, u16 *masks)
4882{
4883	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4884	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4885	struct ice_prof_map *prof;
 
4886	u8 byte = 0;
4887	u8 prof_id;
4888	int status;
4889
4890	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4891
4892	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4893
4894	/* search for existing profile */
4895	status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4896	if (status) {
4897		/* allocate profile ID */
4898		status = ice_alloc_prof_id(hw, blk, &prof_id);
4899		if (status)
4900			goto err_ice_add_prof;
4901		if (blk == ICE_BLK_FD) {
4902			/* For Flow Director block, the extraction sequence may
4903			 * need to be altered in the case where there are paired
4904			 * fields that have no match. This is necessary because
4905			 * for Flow Director, src and dest fields need to paired
4906			 * for filter programming and these values are swapped
4907			 * during Tx.
4908			 */
4909			status = ice_update_fd_swap(hw, prof_id, es);
4910			if (status)
4911				goto err_ice_add_prof;
4912		}
4913		status = ice_update_prof_masking(hw, blk, prof_id, masks);
4914		if (status)
4915			goto err_ice_add_prof;
4916
4917		/* and write new es */
4918		ice_write_es(hw, blk, prof_id, es);
4919	}
4920
4921	ice_prof_inc_ref(hw, blk, prof_id);
4922
4923	/* add profile info */
4924	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4925	if (!prof) {
4926		status = -ENOMEM;
4927		goto err_ice_add_prof;
4928	}
4929
4930	prof->profile_cookie = id;
4931	prof->prof_id = prof_id;
4932	prof->ptg_cnt = 0;
4933	prof->context = 0;
4934
4935	/* build list of ptgs */
4936	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4937		u8 bit;
4938
4939		if (!ptypes[byte]) {
4940			bytes--;
4941			byte++;
4942			continue;
4943		}
4944
4945		/* Examine 8 bits per byte */
4946		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4947				 BITS_PER_BYTE) {
4948			u16 ptype;
4949			u8 ptg;
 
4950
4951			ptype = byte * BITS_PER_BYTE + bit;
4952
4953			/* The package should place all ptypes in a non-zero
4954			 * PTG, so the following call should never fail.
4955			 */
4956			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4957				continue;
4958
4959			/* If PTG is already added, skip and continue */
4960			if (test_bit(ptg, ptgs_used))
4961				continue;
4962
4963			__set_bit(ptg, ptgs_used);
4964			/* Check to see there are any attributes for
4965			 * this PTYPE, and add them if found.
4966			 */
4967			status = ice_add_prof_attrib(prof, ptg, ptype,
4968						     attr, attr_cnt);
4969			if (status == -ENOSPC)
 
 
4970				break;
4971			if (status) {
4972				/* This is simple a PTYPE/PTG with no
4973				 * attribute
4974				 */
4975				prof->ptg[prof->ptg_cnt] = ptg;
4976				prof->attr[prof->ptg_cnt].flags = 0;
4977				prof->attr[prof->ptg_cnt].mask = 0;
4978
4979				if (++prof->ptg_cnt >=
4980				    ICE_MAX_PTG_PER_PROFILE)
4981					break;
4982			}
4983		}
4984
4985		bytes--;
4986		byte++;
4987	}
4988
4989	list_add(&prof->list, &hw->blk[blk].es.prof_map);
4990	status = 0;
4991
4992err_ice_add_prof:
4993	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4994	return status;
4995}
4996
4997/**
4998 * ice_search_prof_id - Search for a profile tracking ID
4999 * @hw: pointer to the HW struct
5000 * @blk: hardware block
5001 * @id: profile tracking ID
5002 *
5003 * This will search for a profile tracking ID which was previously added.
5004 * The profile map lock should be held before calling this function.
5005 */
5006static struct ice_prof_map *
5007ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5008{
5009	struct ice_prof_map *entry = NULL;
5010	struct ice_prof_map *map;
5011
5012	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
5013		if (map->profile_cookie == id) {
5014			entry = map;
5015			break;
5016		}
5017
5018	return entry;
5019}
5020
5021/**
5022 * ice_vsig_prof_id_count - count profiles in a VSIG
5023 * @hw: pointer to the HW struct
5024 * @blk: hardware block
5025 * @vsig: VSIG to remove the profile from
5026 */
5027static u16
5028ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5029{
5030	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5031	struct ice_vsig_prof *p;
5032
5033	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5034			    list)
5035		count++;
5036
5037	return count;
5038}
5039
5040/**
5041 * ice_rel_tcam_idx - release a TCAM index
5042 * @hw: pointer to the HW struct
5043 * @blk: hardware block
5044 * @idx: the index to release
5045 */
5046static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
 
5047{
5048	/* Masks to invoke a never match entry */
5049	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5051	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5052	int status;
5053
5054	/* write the TCAM entry */
5055	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5056				      dc_msk, nm_msk);
5057	if (status)
5058		return status;
5059
5060	/* release the TCAM entry */
5061	status = ice_free_tcam_ent(hw, blk, idx);
5062
5063	return status;
5064}
5065
5066/**
5067 * ice_rem_prof_id - remove one profile from a VSIG
5068 * @hw: pointer to the HW struct
5069 * @blk: hardware block
5070 * @prof: pointer to profile structure to remove
5071 */
5072static int
5073ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5074		struct ice_vsig_prof *prof)
5075{
5076	int status;
5077	u16 i;
5078
5079	for (i = 0; i < prof->tcam_count; i++)
5080		if (prof->tcam[i].in_use) {
5081			prof->tcam[i].in_use = false;
5082			status = ice_rel_tcam_idx(hw, blk,
5083						  prof->tcam[i].tcam_idx);
5084			if (status)
5085				return -EIO;
5086		}
5087
5088	return 0;
5089}
5090
5091/**
5092 * ice_rem_vsig - remove VSIG
5093 * @hw: pointer to the HW struct
5094 * @blk: hardware block
5095 * @vsig: the VSIG to remove
5096 * @chg: the change list
5097 */
5098static int
5099ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5100	     struct list_head *chg)
5101{
5102	u16 idx = vsig & ICE_VSIG_IDX_M;
5103	struct ice_vsig_vsi *vsi_cur;
5104	struct ice_vsig_prof *d, *t;
5105	int status;
5106
5107	/* remove TCAM entries */
5108	list_for_each_entry_safe(d, t,
5109				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5110				 list) {
5111		status = ice_rem_prof_id(hw, blk, d);
5112		if (status)
5113			return status;
5114
5115		list_del(&d->list);
5116		devm_kfree(ice_hw_to_dev(hw), d);
5117	}
5118
5119	/* Move all VSIS associated with this VSIG to the default VSIG */
5120	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5121	/* If the VSIG has at least 1 VSI then iterate through the list
5122	 * and remove the VSIs before deleting the group.
5123	 */
5124	if (vsi_cur)
5125		do {
5126			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5127			struct ice_chs_chg *p;
5128
5129			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5130					 GFP_KERNEL);
5131			if (!p)
5132				return -ENOMEM;
5133
5134			p->type = ICE_VSIG_REM;
5135			p->orig_vsig = vsig;
5136			p->vsig = ICE_DEFAULT_VSIG;
5137			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5138
5139			list_add(&p->list_entry, chg);
5140
5141			vsi_cur = tmp;
5142		} while (vsi_cur);
5143
5144	return ice_vsig_free(hw, blk, vsig);
5145}
5146
5147/**
5148 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5149 * @hw: pointer to the HW struct
5150 * @blk: hardware block
5151 * @vsig: VSIG to remove the profile from
5152 * @hdl: profile handle indicating which profile to remove
5153 * @chg: list to receive a record of changes
5154 */
5155static int
5156ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5157		     struct list_head *chg)
5158{
5159	u16 idx = vsig & ICE_VSIG_IDX_M;
5160	struct ice_vsig_prof *p, *t;
5161	int status;
5162
5163	list_for_each_entry_safe(p, t,
5164				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5165				 list)
5166		if (p->profile_cookie == hdl) {
5167			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5168				/* this is the last profile, remove the VSIG */
5169				return ice_rem_vsig(hw, blk, vsig, chg);
5170
5171			status = ice_rem_prof_id(hw, blk, p);
5172			if (!status) {
5173				list_del(&p->list);
5174				devm_kfree(ice_hw_to_dev(hw), p);
5175			}
5176			return status;
5177		}
5178
5179	return -ENOENT;
5180}
5181
5182/**
5183 * ice_rem_flow_all - remove all flows with a particular profile
5184 * @hw: pointer to the HW struct
5185 * @blk: hardware block
5186 * @id: profile tracking ID
5187 */
5188static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
 
5189{
5190	struct ice_chs_chg *del, *tmp;
 
5191	struct list_head chg;
5192	int status;
5193	u16 i;
5194
5195	INIT_LIST_HEAD(&chg);
5196
5197	for (i = 1; i < ICE_MAX_VSIGS; i++)
5198		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5199			if (ice_has_prof_vsig(hw, blk, i, id)) {
5200				status = ice_rem_prof_id_vsig(hw, blk, i, id,
5201							      &chg);
5202				if (status)
5203					goto err_ice_rem_flow_all;
5204			}
5205		}
5206
5207	status = ice_upd_prof_hw(hw, blk, &chg);
5208
5209err_ice_rem_flow_all:
5210	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5211		list_del(&del->list_entry);
5212		devm_kfree(ice_hw_to_dev(hw), del);
5213	}
5214
5215	return status;
5216}
5217
5218/**
5219 * ice_rem_prof - remove profile
5220 * @hw: pointer to the HW struct
5221 * @blk: hardware block
5222 * @id: profile tracking ID
5223 *
5224 * This will remove the profile specified by the ID parameter, which was
5225 * previously created through ice_add_prof. If any existing entries
5226 * are associated with this profile, they will be removed as well.
5227 */
5228int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5229{
5230	struct ice_prof_map *pmap;
5231	int status;
5232
5233	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5234
5235	pmap = ice_search_prof_id(hw, blk, id);
5236	if (!pmap) {
5237		status = -ENOENT;
5238		goto err_ice_rem_prof;
5239	}
5240
5241	/* remove all flows with this profile */
5242	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5243	if (status)
5244		goto err_ice_rem_prof;
5245
5246	/* dereference profile, and possibly remove */
5247	ice_prof_dec_ref(hw, blk, pmap->prof_id);
5248
5249	list_del(&pmap->list);
5250	devm_kfree(ice_hw_to_dev(hw), pmap);
5251
5252err_ice_rem_prof:
5253	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5254	return status;
5255}
5256
5257/**
5258 * ice_get_prof - get profile
5259 * @hw: pointer to the HW struct
5260 * @blk: hardware block
5261 * @hdl: profile handle
5262 * @chg: change list
5263 */
5264static int
5265ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5266	     struct list_head *chg)
5267{
 
5268	struct ice_prof_map *map;
5269	struct ice_chs_chg *p;
5270	int status = 0;
5271	u16 i;
5272
5273	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5274	/* Get the details on the profile specified by the handle ID */
5275	map = ice_search_prof_id(hw, blk, hdl);
5276	if (!map) {
5277		status = -ENOENT;
5278		goto err_ice_get_prof;
5279	}
5280
5281	for (i = 0; i < map->ptg_cnt; i++)
5282		if (!hw->blk[blk].es.written[map->prof_id]) {
5283			/* add ES to change list */
5284			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5285					 GFP_KERNEL);
5286			if (!p) {
5287				status = -ENOMEM;
5288				goto err_ice_get_prof;
5289			}
5290
5291			p->type = ICE_PTG_ES_ADD;
5292			p->ptype = 0;
5293			p->ptg = map->ptg[i];
5294			p->add_ptg = 0;
5295
5296			p->add_prof = 1;
5297			p->prof_id = map->prof_id;
5298
5299			hw->blk[blk].es.written[map->prof_id] = true;
5300
5301			list_add(&p->list_entry, chg);
5302		}
5303
5304err_ice_get_prof:
5305	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5306	/* let caller clean up the change list */
5307	return status;
5308}
5309
5310/**
5311 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5312 * @hw: pointer to the HW struct
5313 * @blk: hardware block
5314 * @vsig: VSIG from which to copy the list
5315 * @lst: output list
5316 *
5317 * This routine makes a copy of the list of profiles in the specified VSIG.
5318 */
5319static int
5320ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5321		   struct list_head *lst)
5322{
5323	struct ice_vsig_prof *ent1, *ent2;
5324	u16 idx = vsig & ICE_VSIG_IDX_M;
5325
5326	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5327			    list) {
5328		struct ice_vsig_prof *p;
5329
5330		/* copy to the input list */
5331		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
5332				 GFP_KERNEL);
5333		if (!p)
5334			goto err_ice_get_profs_vsig;
5335
5336		list_add_tail(&p->list, lst);
5337	}
5338
5339	return 0;
5340
5341err_ice_get_profs_vsig:
5342	list_for_each_entry_safe(ent1, ent2, lst, list) {
5343		list_del(&ent1->list);
5344		devm_kfree(ice_hw_to_dev(hw), ent1);
5345	}
5346
5347	return -ENOMEM;
5348}
5349
5350/**
5351 * ice_add_prof_to_lst - add profile entry to a list
5352 * @hw: pointer to the HW struct
5353 * @blk: hardware block
5354 * @lst: the list to be added to
5355 * @hdl: profile handle of entry to add
5356 */
5357static int
5358ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5359		    struct list_head *lst, u64 hdl)
5360{
 
5361	struct ice_prof_map *map;
5362	struct ice_vsig_prof *p;
5363	int status = 0;
5364	u16 i;
5365
5366	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5367	map = ice_search_prof_id(hw, blk, hdl);
5368	if (!map) {
5369		status = -ENOENT;
5370		goto err_ice_add_prof_to_lst;
5371	}
5372
5373	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5374	if (!p) {
5375		status = -ENOMEM;
5376		goto err_ice_add_prof_to_lst;
5377	}
5378
5379	p->profile_cookie = map->profile_cookie;
5380	p->prof_id = map->prof_id;
5381	p->tcam_count = map->ptg_cnt;
5382
5383	for (i = 0; i < map->ptg_cnt; i++) {
5384		p->tcam[i].prof_id = map->prof_id;
5385		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5386		p->tcam[i].ptg = map->ptg[i];
5387	}
5388
5389	list_add(&p->list, lst);
5390
5391err_ice_add_prof_to_lst:
5392	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5393	return status;
5394}
5395
5396/**
5397 * ice_move_vsi - move VSI to another VSIG
5398 * @hw: pointer to the HW struct
5399 * @blk: hardware block
5400 * @vsi: the VSI to move
5401 * @vsig: the VSIG to move the VSI to
5402 * @chg: the change list
5403 */
5404static int
5405ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5406	     struct list_head *chg)
5407{
 
5408	struct ice_chs_chg *p;
5409	u16 orig_vsig;
5410	int status;
5411
5412	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5413	if (!p)
5414		return -ENOMEM;
5415
5416	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5417	if (!status)
5418		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5419
5420	if (status) {
5421		devm_kfree(ice_hw_to_dev(hw), p);
5422		return status;
5423	}
5424
5425	p->type = ICE_VSI_MOVE;
5426	p->vsi = vsi;
5427	p->orig_vsig = orig_vsig;
5428	p->vsig = vsig;
5429
5430	list_add(&p->list_entry, chg);
5431
5432	return 0;
5433}
5434
5435/**
5436 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5437 * @hw: pointer to the HW struct
5438 * @idx: the index of the TCAM entry to remove
5439 * @chg: the list of change structures to search
5440 */
5441static void
5442ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
5443{
5444	struct ice_chs_chg *pos, *tmp;
5445
5446	list_for_each_entry_safe(tmp, pos, chg, list_entry)
5447		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5448			list_del(&tmp->list_entry);
5449			devm_kfree(ice_hw_to_dev(hw), tmp);
5450		}
5451}
5452
5453/**
5454 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5455 * @hw: pointer to the HW struct
5456 * @blk: hardware block
5457 * @enable: true to enable, false to disable
5458 * @vsig: the VSIG of the TCAM entry
5459 * @tcam: pointer the TCAM info structure of the TCAM to disable
5460 * @chg: the change list
5461 *
5462 * This function appends an enable or disable TCAM entry in the change log
5463 */
5464static int
5465ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5466		      u16 vsig, struct ice_tcam_inf *tcam,
5467		      struct list_head *chg)
5468{
 
5469	struct ice_chs_chg *p;
5470	int status;
5471
5472	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5473	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5474	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5475
5476	/* if disabling, free the TCAM */
5477	if (!enable) {
5478		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5479
5480		/* if we have already created a change for this TCAM entry, then
5481		 * we need to remove that entry, in order to prevent writing to
5482		 * a TCAM entry we no longer will have ownership of.
5483		 */
5484		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5485		tcam->tcam_idx = 0;
5486		tcam->in_use = 0;
5487		return status;
5488	}
5489
5490	/* for re-enabling, reallocate a TCAM */
5491	/* for entries with empty attribute masks, allocate entry from
5492	 * the bottom of the TCAM table; otherwise, allocate from the
5493	 * top of the table in order to give it higher priority
5494	 */
5495	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5496				    &tcam->tcam_idx);
5497	if (status)
5498		return status;
5499
5500	/* add TCAM to change list */
5501	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5502	if (!p)
5503		return -ENOMEM;
5504
5505	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5506				      tcam->ptg, vsig, 0, tcam->attr.flags,
5507				      vl_msk, dc_msk, nm_msk);
5508	if (status)
5509		goto err_ice_prof_tcam_ena_dis;
5510
5511	tcam->in_use = 1;
5512
5513	p->type = ICE_TCAM_ADD;
5514	p->add_tcam_idx = true;
5515	p->prof_id = tcam->prof_id;
5516	p->ptg = tcam->ptg;
5517	p->vsig = 0;
5518	p->tcam_idx = tcam->tcam_idx;
5519
5520	/* log change */
5521	list_add(&p->list_entry, chg);
5522
5523	return 0;
5524
5525err_ice_prof_tcam_ena_dis:
5526	devm_kfree(ice_hw_to_dev(hw), p);
5527	return status;
5528}
5529
5530/**
5531 * ice_adj_prof_priorities - adjust profile based on priorities
5532 * @hw: pointer to the HW struct
5533 * @blk: hardware block
5534 * @vsig: the VSIG for which to adjust profile priorities
5535 * @chg: the change list
5536 */
5537static int
5538ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5539			struct list_head *chg)
5540{
5541	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
5542	struct ice_vsig_prof *t;
5543	int status;
5544	u16 idx;
5545
5546	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
5547	idx = vsig & ICE_VSIG_IDX_M;
5548
5549	/* Priority is based on the order in which the profiles are added. The
5550	 * newest added profile has highest priority and the oldest added
5551	 * profile has the lowest priority. Since the profile property list for
5552	 * a VSIG is sorted from newest to oldest, this code traverses the list
5553	 * in order and enables the first of each PTG that it finds (that is not
5554	 * already enabled); it also disables any duplicate PTGs that it finds
5555	 * in the older profiles (that are currently enabled).
5556	 */
5557
5558	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5559			    list) {
5560		u16 i;
5561
5562		for (i = 0; i < t->tcam_count; i++) {
5563			/* Scan the priorities from newest to oldest.
5564			 * Make sure that the newest profiles take priority.
5565			 */
5566			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
5567			    t->tcam[i].in_use) {
5568				/* need to mark this PTG as never match, as it
5569				 * was already in use and therefore duplicate
5570				 * (and lower priority)
5571				 */
5572				status = ice_prof_tcam_ena_dis(hw, blk, false,
5573							       vsig,
5574							       &t->tcam[i],
5575							       chg);
5576				if (status)
5577					return status;
5578			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
5579				   !t->tcam[i].in_use) {
5580				/* need to enable this PTG, as it in not in use
5581				 * and not enabled (highest priority)
5582				 */
5583				status = ice_prof_tcam_ena_dis(hw, blk, true,
5584							       vsig,
5585							       &t->tcam[i],
5586							       chg);
5587				if (status)
5588					return status;
5589			}
5590
5591			/* keep track of used ptgs */
5592			__set_bit(t->tcam[i].ptg, ptgs_used);
5593		}
5594	}
5595
5596	return 0;
5597}
5598
5599/**
5600 * ice_add_prof_id_vsig - add profile to VSIG
5601 * @hw: pointer to the HW struct
5602 * @blk: hardware block
5603 * @vsig: the VSIG to which this profile is to be added
5604 * @hdl: the profile handle indicating the profile to add
5605 * @rev: true to add entries to the end of the list
5606 * @chg: the change list
5607 */
5608static int
5609ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5610		     bool rev, struct list_head *chg)
5611{
5612	/* Masks that ignore flags */
5613	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5614	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5615	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
 
5616	struct ice_prof_map *map;
5617	struct ice_vsig_prof *t;
5618	struct ice_chs_chg *p;
5619	u16 vsig_idx, i;
5620	int status = 0;
5621
5622	/* Error, if this VSIG already has this profile */
5623	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5624		return -EEXIST;
5625
5626	/* new VSIG profile structure */
5627	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
5628	if (!t)
5629		return -ENOMEM;
5630
5631	mutex_lock(&hw->blk[blk].es.prof_map_lock);
5632	/* Get the details on the profile specified by the handle ID */
5633	map = ice_search_prof_id(hw, blk, hdl);
5634	if (!map) {
5635		status = -ENOENT;
5636		goto err_ice_add_prof_id_vsig;
5637	}
5638
5639	t->profile_cookie = map->profile_cookie;
5640	t->prof_id = map->prof_id;
5641	t->tcam_count = map->ptg_cnt;
5642
5643	/* create TCAM entries */
5644	for (i = 0; i < map->ptg_cnt; i++) {
5645		u16 tcam_idx;
5646
5647		/* add TCAM to change list */
5648		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5649		if (!p) {
5650			status = -ENOMEM;
5651			goto err_ice_add_prof_id_vsig;
5652		}
5653
5654		/* allocate the TCAM entry index */
5655		/* for entries with empty attribute masks, allocate entry from
5656		 * the bottom of the TCAM table; otherwise, allocate from the
5657		 * top of the table in order to give it higher priority
5658		 */
5659		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5660					    &tcam_idx);
5661		if (status) {
5662			devm_kfree(ice_hw_to_dev(hw), p);
5663			goto err_ice_add_prof_id_vsig;
5664		}
5665
5666		t->tcam[i].ptg = map->ptg[i];
5667		t->tcam[i].prof_id = map->prof_id;
5668		t->tcam[i].tcam_idx = tcam_idx;
5669		t->tcam[i].attr = map->attr[i];
5670		t->tcam[i].in_use = true;
5671
5672		p->type = ICE_TCAM_ADD;
5673		p->add_tcam_idx = true;
5674		p->prof_id = t->tcam[i].prof_id;
5675		p->ptg = t->tcam[i].ptg;
5676		p->vsig = vsig;
5677		p->tcam_idx = t->tcam[i].tcam_idx;
5678
5679		/* write the TCAM entry */
5680		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5681					      t->tcam[i].prof_id,
5682					      t->tcam[i].ptg, vsig, 0, 0,
5683					      vl_msk, dc_msk, nm_msk);
5684		if (status) {
5685			devm_kfree(ice_hw_to_dev(hw), p);
5686			goto err_ice_add_prof_id_vsig;
5687		}
5688
5689		/* log change */
5690		list_add(&p->list_entry, chg);
5691	}
5692
5693	/* add profile to VSIG */
5694	vsig_idx = vsig & ICE_VSIG_IDX_M;
5695	if (rev)
5696		list_add_tail(&t->list,
5697			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5698	else
5699		list_add(&t->list,
5700			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5701
5702	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5703	return status;
5704
5705err_ice_add_prof_id_vsig:
5706	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5707	/* let caller clean up the change list */
5708	devm_kfree(ice_hw_to_dev(hw), t);
5709	return status;
5710}
5711
5712/**
5713 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5714 * @hw: pointer to the HW struct
5715 * @blk: hardware block
5716 * @vsi: the initial VSI that will be in VSIG
5717 * @hdl: the profile handle of the profile that will be added to the VSIG
5718 * @chg: the change list
5719 */
5720static int
5721ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5722			struct list_head *chg)
5723{
 
5724	struct ice_chs_chg *p;
5725	u16 new_vsig;
5726	int status;
5727
5728	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5729	if (!p)
5730		return -ENOMEM;
5731
5732	new_vsig = ice_vsig_alloc(hw, blk);
5733	if (!new_vsig) {
5734		status = -EIO;
5735		goto err_ice_create_prof_id_vsig;
5736	}
5737
5738	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5739	if (status)
5740		goto err_ice_create_prof_id_vsig;
5741
5742	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5743	if (status)
5744		goto err_ice_create_prof_id_vsig;
5745
5746	p->type = ICE_VSIG_ADD;
5747	p->vsi = vsi;
5748	p->orig_vsig = ICE_DEFAULT_VSIG;
5749	p->vsig = new_vsig;
5750
5751	list_add(&p->list_entry, chg);
5752
5753	return 0;
5754
5755err_ice_create_prof_id_vsig:
5756	/* let caller clean up the change list */
5757	devm_kfree(ice_hw_to_dev(hw), p);
5758	return status;
5759}
5760
5761/**
5762 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5763 * @hw: pointer to the HW struct
5764 * @blk: hardware block
5765 * @vsi: the initial VSI that will be in VSIG
5766 * @lst: the list of profile that will be added to the VSIG
5767 * @new_vsig: return of new VSIG
5768 * @chg: the change list
5769 */
5770static int
5771ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5772			 struct list_head *lst, u16 *new_vsig,
5773			 struct list_head *chg)
5774{
5775	struct ice_vsig_prof *t;
5776	int status;
5777	u16 vsig;
5778
5779	vsig = ice_vsig_alloc(hw, blk);
5780	if (!vsig)
5781		return -EIO;
5782
5783	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5784	if (status)
5785		return status;
5786
5787	list_for_each_entry(t, lst, list) {
5788		/* Reverse the order here since we are copying the list */
5789		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5790					      true, chg);
5791		if (status)
5792			return status;
5793	}
5794
5795	*new_vsig = vsig;
5796
5797	return 0;
5798}
5799
5800/**
5801 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5802 * @hw: pointer to the HW struct
5803 * @blk: hardware block
5804 * @hdl: the profile handle of the profile to search for
5805 * @vsig: returns the VSIG with the matching profile
5806 */
5807static bool
5808ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5809{
5810	struct ice_vsig_prof *t;
 
5811	struct list_head lst;
5812	int status;
5813
5814	INIT_LIST_HEAD(&lst);
5815
5816	t = kzalloc(sizeof(*t), GFP_KERNEL);
5817	if (!t)
5818		return false;
5819
5820	t->profile_cookie = hdl;
5821	list_add(&t->list, &lst);
5822
5823	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5824
5825	list_del(&t->list);
5826	kfree(t);
5827
5828	return !status;
5829}
5830
5831/**
5832 * ice_add_prof_id_flow - add profile flow
5833 * @hw: pointer to the HW struct
5834 * @blk: hardware block
5835 * @vsi: the VSI to enable with the profile specified by ID
5836 * @hdl: profile handle
5837 *
5838 * Calling this function will update the hardware tables to enable the
5839 * profile indicated by the ID parameter for the VSIs specified in the VSI
5840 * array. Once successfully called, the flow will be enabled.
5841 */
5842int
5843ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5844{
5845	struct ice_vsig_prof *tmp1, *del1;
5846	struct ice_chs_chg *tmp, *del;
5847	struct list_head union_lst;
 
5848	struct list_head chg;
5849	int status;
5850	u16 vsig;
5851
5852	INIT_LIST_HEAD(&union_lst);
5853	INIT_LIST_HEAD(&chg);
5854
5855	/* Get profile */
5856	status = ice_get_prof(hw, blk, hdl, &chg);
5857	if (status)
5858		return status;
5859
5860	/* determine if VSI is already part of a VSIG */
5861	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5862	if (!status && vsig) {
5863		bool only_vsi;
5864		u16 or_vsig;
5865		u16 ref;
5866
5867		/* found in VSIG */
5868		or_vsig = vsig;
5869
5870		/* make sure that there is no overlap/conflict between the new
5871		 * characteristics and the existing ones; we don't support that
5872		 * scenario
5873		 */
5874		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5875			status = -EEXIST;
5876			goto err_ice_add_prof_id_flow;
5877		}
5878
5879		/* last VSI in the VSIG? */
5880		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5881		if (status)
5882			goto err_ice_add_prof_id_flow;
5883		only_vsi = (ref == 1);
5884
5885		/* create a union of the current profiles and the one being
5886		 * added
5887		 */
5888		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5889		if (status)
5890			goto err_ice_add_prof_id_flow;
5891
5892		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5893		if (status)
5894			goto err_ice_add_prof_id_flow;
5895
5896		/* search for an existing VSIG with an exact charc match */
5897		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5898		if (!status) {
5899			/* move VSI to the VSIG that matches */
5900			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5901			if (status)
5902				goto err_ice_add_prof_id_flow;
5903
5904			/* VSI has been moved out of or_vsig. If the or_vsig had
5905			 * only that VSI it is now empty and can be removed.
5906			 */
5907			if (only_vsi) {
5908				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5909				if (status)
5910					goto err_ice_add_prof_id_flow;
5911			}
5912		} else if (only_vsi) {
5913			/* If the original VSIG only contains one VSI, then it
5914			 * will be the requesting VSI. In this case the VSI is
5915			 * not sharing entries and we can simply add the new
5916			 * profile to the VSIG.
5917			 */
5918			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5919						      &chg);
5920			if (status)
5921				goto err_ice_add_prof_id_flow;
5922
5923			/* Adjust priorities */
5924			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5925			if (status)
5926				goto err_ice_add_prof_id_flow;
5927		} else {
5928			/* No match, so we need a new VSIG */
5929			status = ice_create_vsig_from_lst(hw, blk, vsi,
5930							  &union_lst, &vsig,
5931							  &chg);
5932			if (status)
5933				goto err_ice_add_prof_id_flow;
5934
5935			/* Adjust priorities */
5936			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5937			if (status)
5938				goto err_ice_add_prof_id_flow;
5939		}
5940	} else {
5941		/* need to find or add a VSIG */
5942		/* search for an existing VSIG with an exact charc match */
5943		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5944			/* found an exact match */
5945			/* add or move VSI to the VSIG that matches */
5946			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5947			if (status)
5948				goto err_ice_add_prof_id_flow;
5949		} else {
5950			/* we did not find an exact match */
5951			/* we need to add a VSIG */
5952			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5953							 &chg);
5954			if (status)
5955				goto err_ice_add_prof_id_flow;
5956		}
5957	}
5958
5959	/* update hardware */
5960	if (!status)
5961		status = ice_upd_prof_hw(hw, blk, &chg);
5962
5963err_ice_add_prof_id_flow:
5964	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5965		list_del(&del->list_entry);
5966		devm_kfree(ice_hw_to_dev(hw), del);
5967	}
5968
5969	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5970		list_del(&del1->list);
5971		devm_kfree(ice_hw_to_dev(hw), del1);
5972	}
5973
5974	return status;
5975}
5976
5977/**
5978 * ice_rem_prof_from_list - remove a profile from list
5979 * @hw: pointer to the HW struct
5980 * @lst: list to remove the profile from
5981 * @hdl: the profile handle indicating the profile to remove
5982 */
5983static int
5984ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5985{
5986	struct ice_vsig_prof *ent, *tmp;
5987
5988	list_for_each_entry_safe(ent, tmp, lst, list)
5989		if (ent->profile_cookie == hdl) {
5990			list_del(&ent->list);
5991			devm_kfree(ice_hw_to_dev(hw), ent);
5992			return 0;
5993		}
5994
5995	return -ENOENT;
5996}
5997
5998/**
5999 * ice_rem_prof_id_flow - remove flow
6000 * @hw: pointer to the HW struct
6001 * @blk: hardware block
6002 * @vsi: the VSI from which to remove the profile specified by ID
6003 * @hdl: profile tracking handle
6004 *
6005 * Calling this function will update the hardware tables to remove the
6006 * profile indicated by the ID parameter for the VSIs specified in the VSI
6007 * array. Once successfully called, the flow will be disabled.
6008 */
6009int
6010ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6011{
6012	struct ice_vsig_prof *tmp1, *del1;
6013	struct ice_chs_chg *tmp, *del;
6014	struct list_head chg, copy;
6015	int status;
6016	u16 vsig;
6017
6018	INIT_LIST_HEAD(&copy);
6019	INIT_LIST_HEAD(&chg);
6020
6021	/* determine if VSI is already part of a VSIG */
6022	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6023	if (!status && vsig) {
6024		bool last_profile;
6025		bool only_vsi;
6026		u16 ref;
6027
6028		/* found in VSIG */
6029		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6030		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6031		if (status)
6032			goto err_ice_rem_prof_id_flow;
6033		only_vsi = (ref == 1);
6034
6035		if (only_vsi) {
6036			/* If the original VSIG only contains one reference,
6037			 * which will be the requesting VSI, then the VSI is not
6038			 * sharing entries and we can simply remove the specific
6039			 * characteristics from the VSIG.
6040			 */
6041
6042			if (last_profile) {
6043				/* If there are no profiles left for this VSIG,
6044				 * then simply remove the VSIG.
6045				 */
6046				status = ice_rem_vsig(hw, blk, vsig, &chg);
6047				if (status)
6048					goto err_ice_rem_prof_id_flow;
6049			} else {
6050				status = ice_rem_prof_id_vsig(hw, blk, vsig,
6051							      hdl, &chg);
6052				if (status)
6053					goto err_ice_rem_prof_id_flow;
6054
6055				/* Adjust priorities */
6056				status = ice_adj_prof_priorities(hw, blk, vsig,
6057								 &chg);
6058				if (status)
6059					goto err_ice_rem_prof_id_flow;
6060			}
6061
6062		} else {
6063			/* Make a copy of the VSIG's list of Profiles */
6064			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
6065			if (status)
6066				goto err_ice_rem_prof_id_flow;
6067
6068			/* Remove specified profile entry from the list */
6069			status = ice_rem_prof_from_list(hw, &copy, hdl);
6070			if (status)
6071				goto err_ice_rem_prof_id_flow;
6072
6073			if (list_empty(&copy)) {
6074				status = ice_move_vsi(hw, blk, vsi,
6075						      ICE_DEFAULT_VSIG, &chg);
6076				if (status)
6077					goto err_ice_rem_prof_id_flow;
6078
6079			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
6080							    &vsig)) {
6081				/* found an exact match */
6082				/* add or move VSI to the VSIG that matches */
6083				/* Search for a VSIG with a matching profile
6084				 * list
6085				 */
6086
6087				/* Found match, move VSI to the matching VSIG */
6088				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6089				if (status)
6090					goto err_ice_rem_prof_id_flow;
6091			} else {
6092				/* since no existing VSIG supports this
6093				 * characteristic pattern, we need to create a
6094				 * new VSIG and TCAM entries
6095				 */
6096				status = ice_create_vsig_from_lst(hw, blk, vsi,
6097								  &copy, &vsig,
6098								  &chg);
6099				if (status)
6100					goto err_ice_rem_prof_id_flow;
6101
6102				/* Adjust priorities */
6103				status = ice_adj_prof_priorities(hw, blk, vsig,
6104								 &chg);
6105				if (status)
6106					goto err_ice_rem_prof_id_flow;
6107			}
6108		}
6109	} else {
6110		status = -ENOENT;
6111	}
6112
6113	/* update hardware tables */
6114	if (!status)
6115		status = ice_upd_prof_hw(hw, blk, &chg);
6116
6117err_ice_rem_prof_id_flow:
6118	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
6119		list_del(&del->list_entry);
6120		devm_kfree(ice_hw_to_dev(hw), del);
6121	}
6122
6123	list_for_each_entry_safe(del1, tmp1, &copy, list) {
6124		list_del(&del1->list);
6125		devm_kfree(ice_hw_to_dev(hw), del1);
6126	}
6127
6128	return status;
6129}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flex_pipe.h"
   6#include "ice_flow.h"
 
 
 
 
 
 
 
 
   7
   8/* To support tunneling entries by PF, the package will append the PF number to
   9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
  10 */
 
  11static const struct ice_tunnel_type_scan tnls[] = {
  12	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
  13	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
  14	{ TNL_LAST,		"" }
  15};
  16
  17static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
  18	/* SWITCH */
  19	{
  20		ICE_SID_XLT0_SW,
  21		ICE_SID_XLT_KEY_BUILDER_SW,
  22		ICE_SID_XLT1_SW,
  23		ICE_SID_XLT2_SW,
  24		ICE_SID_PROFID_TCAM_SW,
  25		ICE_SID_PROFID_REDIR_SW,
  26		ICE_SID_FLD_VEC_SW,
  27		ICE_SID_CDID_KEY_BUILDER_SW,
  28		ICE_SID_CDID_REDIR_SW
  29	},
  30
  31	/* ACL */
  32	{
  33		ICE_SID_XLT0_ACL,
  34		ICE_SID_XLT_KEY_BUILDER_ACL,
  35		ICE_SID_XLT1_ACL,
  36		ICE_SID_XLT2_ACL,
  37		ICE_SID_PROFID_TCAM_ACL,
  38		ICE_SID_PROFID_REDIR_ACL,
  39		ICE_SID_FLD_VEC_ACL,
  40		ICE_SID_CDID_KEY_BUILDER_ACL,
  41		ICE_SID_CDID_REDIR_ACL
  42	},
  43
  44	/* FD */
  45	{
  46		ICE_SID_XLT0_FD,
  47		ICE_SID_XLT_KEY_BUILDER_FD,
  48		ICE_SID_XLT1_FD,
  49		ICE_SID_XLT2_FD,
  50		ICE_SID_PROFID_TCAM_FD,
  51		ICE_SID_PROFID_REDIR_FD,
  52		ICE_SID_FLD_VEC_FD,
  53		ICE_SID_CDID_KEY_BUILDER_FD,
  54		ICE_SID_CDID_REDIR_FD
  55	},
  56
  57	/* RSS */
  58	{
  59		ICE_SID_XLT0_RSS,
  60		ICE_SID_XLT_KEY_BUILDER_RSS,
  61		ICE_SID_XLT1_RSS,
  62		ICE_SID_XLT2_RSS,
  63		ICE_SID_PROFID_TCAM_RSS,
  64		ICE_SID_PROFID_REDIR_RSS,
  65		ICE_SID_FLD_VEC_RSS,
  66		ICE_SID_CDID_KEY_BUILDER_RSS,
  67		ICE_SID_CDID_REDIR_RSS
  68	},
  69
  70	/* PE */
  71	{
  72		ICE_SID_XLT0_PE,
  73		ICE_SID_XLT_KEY_BUILDER_PE,
  74		ICE_SID_XLT1_PE,
  75		ICE_SID_XLT2_PE,
  76		ICE_SID_PROFID_TCAM_PE,
  77		ICE_SID_PROFID_REDIR_PE,
  78		ICE_SID_FLD_VEC_PE,
  79		ICE_SID_CDID_KEY_BUILDER_PE,
  80		ICE_SID_CDID_REDIR_PE
  81	}
  82};
  83
  84/**
  85 * ice_sect_id - returns section ID
  86 * @blk: block type
  87 * @sect: section type
  88 *
  89 * This helper function returns the proper section ID given a block type and a
  90 * section type.
  91 */
  92static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
  93{
  94	return ice_sect_lkup[blk][sect];
  95}
  96
  97/**
  98 * ice_pkg_val_buf
  99 * @buf: pointer to the ice buffer
 100 *
 101 * This helper function validates a buffer's header.
 102 */
 103static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
 104{
 105	struct ice_buf_hdr *hdr;
 106	u16 section_count;
 107	u16 data_end;
 108
 109	hdr = (struct ice_buf_hdr *)buf->buf;
 110	/* verify data */
 111	section_count = le16_to_cpu(hdr->section_count);
 112	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
 113		return NULL;
 114
 115	data_end = le16_to_cpu(hdr->data_end);
 116	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
 117		return NULL;
 118
 119	return hdr;
 120}
 121
 122/**
 123 * ice_find_buf_table
 124 * @ice_seg: pointer to the ice segment
 125 *
 126 * Returns the address of the buffer table within the ice segment.
 127 */
 128static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
 129{
 130	struct ice_nvm_table *nvms;
 131
 132	nvms = (struct ice_nvm_table *)
 133		(ice_seg->device_table +
 134		 le32_to_cpu(ice_seg->device_table_count));
 135
 136	return (__force struct ice_buf_table *)
 137		(nvms->vers + le32_to_cpu(nvms->table_count));
 138}
 139
 140/**
 141 * ice_pkg_enum_buf
 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 143 * @state: pointer to the enum state
 144 *
 145 * This function will enumerate all the buffers in the ice segment. The first
 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
 147 * ice_seg is set to NULL which continues the enumeration. When the function
 148 * returns a NULL pointer, then the end of the buffers has been reached, or an
 149 * unexpected value has been detected (for example an invalid section count or
 150 * an invalid buffer end value).
 151 */
 152static struct ice_buf_hdr *
 153ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 154{
 155	if (ice_seg) {
 156		state->buf_table = ice_find_buf_table(ice_seg);
 157		if (!state->buf_table)
 158			return NULL;
 159
 160		state->buf_idx = 0;
 161		return ice_pkg_val_buf(state->buf_table->buf_array);
 162	}
 163
 164	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
 165		return ice_pkg_val_buf(state->buf_table->buf_array +
 166				       state->buf_idx);
 167	else
 168		return NULL;
 169}
 170
 171/**
 172 * ice_pkg_advance_sect
 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 174 * @state: pointer to the enum state
 175 *
 176 * This helper function will advance the section within the ice segment,
 177 * also advancing the buffer if needed.
 178 */
 179static bool
 180ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 181{
 182	if (!ice_seg && !state->buf)
 183		return false;
 184
 185	if (!ice_seg && state->buf)
 186		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
 187			return true;
 188
 189	state->buf = ice_pkg_enum_buf(ice_seg, state);
 190	if (!state->buf)
 191		return false;
 192
 193	/* start of new buffer, reset section index */
 194	state->sect_idx = 0;
 195	return true;
 196}
 197
 198/**
 199 * ice_pkg_enum_section
 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 201 * @state: pointer to the enum state
 202 * @sect_type: section type to enumerate
 203 *
 204 * This function will enumerate all the sections of a particular type in the
 205 * ice segment. The first call is made with the ice_seg parameter non-NULL;
 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 207 * When the function returns a NULL pointer, then the end of the matching
 208 * sections has been reached.
 209 */
 210static void *
 211ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 212		     u32 sect_type)
 213{
 214	u16 offset, size;
 215
 216	if (ice_seg)
 217		state->type = sect_type;
 218
 219	if (!ice_pkg_advance_sect(ice_seg, state))
 220		return NULL;
 221
 222	/* scan for next matching section */
 223	while (state->buf->section_entry[state->sect_idx].type !=
 224	       cpu_to_le32(state->type))
 225		if (!ice_pkg_advance_sect(NULL, state))
 226			return NULL;
 227
 228	/* validate section */
 229	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 230	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
 231		return NULL;
 232
 233	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
 234	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
 235		return NULL;
 236
 237	/* make sure the section fits in the buffer */
 238	if (offset + size > ICE_PKG_BUF_SIZE)
 239		return NULL;
 240
 241	state->sect_type =
 242		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
 243
 244	/* calc pointer to this section */
 245	state->sect = ((u8 *)state->buf) +
 246		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 247
 248	return state->sect;
 249}
 250
 251/**
 252 * ice_pkg_enum_entry
 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 254 * @state: pointer to the enum state
 255 * @sect_type: section type to enumerate
 256 * @offset: pointer to variable that receives the offset in the table (optional)
 257 * @handler: function that handles access to the entries into the section type
 258 *
 259 * This function will enumerate all the entries in particular section type in
 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 262 * When the function returns a NULL pointer, then the end of the entries has
 263 * been reached.
 264 *
 265 * Since each section may have a different header and entry size, the handler
 266 * function is needed to determine the number and location entries in each
 267 * section.
 268 *
 269 * The offset parameter is optional, but should be used for sections that
 270 * contain an offset for each section table. For such cases, the section handler
 271 * function must return the appropriate offset + index to give the absolution
 272 * offset for each entry. For example, if the base for a section's header
 273 * indicates a base offset of 10, and the index for the entry is 2, then
 274 * section handler function should set the offset to 10 + 2 = 12.
 275 */
 276static void *
 277ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 278		   u32 sect_type, u32 *offset,
 279		   void *(*handler)(u32 sect_type, void *section,
 280				    u32 index, u32 *offset))
 281{
 282	void *entry;
 283
 284	if (ice_seg) {
 285		if (!handler)
 286			return NULL;
 287
 288		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
 289			return NULL;
 290
 291		state->entry_idx = 0;
 292		state->handler = handler;
 293	} else {
 294		state->entry_idx++;
 295	}
 296
 297	if (!state->handler)
 298		return NULL;
 299
 300	/* get entry */
 301	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
 302			       offset);
 303	if (!entry) {
 304		/* end of a section, look for another section of this type */
 305		if (!ice_pkg_enum_section(NULL, state, 0))
 306			return NULL;
 307
 308		state->entry_idx = 0;
 309		entry = state->handler(state->sect_type, state->sect,
 310				       state->entry_idx, offset);
 311	}
 312
 313	return entry;
 314}
 315
 316/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317 * ice_boost_tcam_handler
 318 * @sect_type: section type
 319 * @section: pointer to section
 320 * @index: index of the boost TCAM entry to be returned
 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
 322 *
 323 * This is a callback function that can be passed to ice_pkg_enum_entry.
 324 * Handles enumeration of individual boost TCAM entries.
 325 */
 326static void *
 327ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
 328{
 329	struct ice_boost_tcam_section *boost;
 330
 331	if (!section)
 332		return NULL;
 333
 334	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
 335		return NULL;
 336
 
 337	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
 338		return NULL;
 339
 340	if (offset)
 341		*offset = 0;
 342
 343	boost = section;
 344	if (index >= le16_to_cpu(boost->count))
 345		return NULL;
 346
 347	return boost->tcam + index;
 348}
 349
 350/**
 351 * ice_find_boost_entry
 352 * @ice_seg: pointer to the ice segment (non-NULL)
 353 * @addr: Boost TCAM address of entry to search for
 354 * @entry: returns pointer to the entry
 355 *
 356 * Finds a particular Boost TCAM entry and returns a pointer to that entry
 357 * if it is found. The ice_seg parameter must not be NULL since the first call
 358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
 359 */
 360static enum ice_status
 361ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
 362		     struct ice_boost_tcam_entry **entry)
 363{
 364	struct ice_boost_tcam_entry *tcam;
 365	struct ice_pkg_enum state;
 366
 367	memset(&state, 0, sizeof(state));
 368
 369	if (!ice_seg)
 370		return ICE_ERR_PARAM;
 371
 372	do {
 373		tcam = ice_pkg_enum_entry(ice_seg, &state,
 374					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
 375					  ice_boost_tcam_handler);
 376		if (tcam && le16_to_cpu(tcam->addr) == addr) {
 377			*entry = tcam;
 378			return 0;
 379		}
 380
 381		ice_seg = NULL;
 382	} while (tcam);
 383
 384	*entry = NULL;
 385	return ICE_ERR_CFG;
 386}
 387
 388/**
 389 * ice_label_enum_handler
 390 * @sect_type: section type
 391 * @section: pointer to section
 392 * @index: index of the label entry to be returned
 393 * @offset: pointer to receive absolute offset, always zero for label sections
 394 *
 395 * This is a callback function that can be passed to ice_pkg_enum_entry.
 396 * Handles enumeration of individual label entries.
 397 */
 398static void *
 399ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
 400		       u32 *offset)
 401{
 402	struct ice_label_section *labels;
 403
 404	if (!section)
 405		return NULL;
 406
 
 407	if (index > ICE_MAX_LABELS_IN_BUF)
 408		return NULL;
 409
 410	if (offset)
 411		*offset = 0;
 412
 413	labels = section;
 414	if (index >= le16_to_cpu(labels->count))
 415		return NULL;
 416
 417	return labels->label + index;
 418}
 419
 420/**
 421 * ice_enum_labels
 422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
 423 * @type: the section type that will contain the label (0 on subsequent calls)
 424 * @state: ice_pkg_enum structure that will hold the state of the enumeration
 425 * @value: pointer to a value that will return the label's value if found
 426 *
 427 * Enumerates a list of labels in the package. The caller will call
 428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
 429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
 430 * the end of the list has been reached.
 431 */
 432static char *
 433ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
 434		u16 *value)
 435{
 436	struct ice_label *label;
 437
 438	/* Check for valid label section on first call */
 439	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
 440		return NULL;
 441
 442	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
 443				   ice_label_enum_handler);
 444	if (!label)
 445		return NULL;
 446
 447	*value = le16_to_cpu(label->value);
 448	return label->name;
 449}
 450
 451/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452 * ice_init_pkg_hints
 453 * @hw: pointer to the HW structure
 454 * @ice_seg: pointer to the segment of the package scan (non-NULL)
 455 *
 456 * This function will scan the package and save off relevant information
 457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
 458 * since the first call to ice_enum_labels requires a pointer to an actual
 459 * ice_seg structure.
 460 */
 461static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
 462{
 463	struct ice_pkg_enum state;
 464	char *label_name;
 465	u16 val;
 466	int i;
 467
 468	memset(&hw->tnl, 0, sizeof(hw->tnl));
 469	memset(&state, 0, sizeof(state));
 470
 471	if (!ice_seg)
 472		return;
 473
 474	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
 475				     &val);
 476
 477	while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
 478		for (i = 0; tnls[i].type != TNL_LAST; i++) {
 479			size_t len = strlen(tnls[i].label_prefix);
 480
 481			/* Look for matching label start, before continuing */
 482			if (strncmp(label_name, tnls[i].label_prefix, len))
 483				continue;
 484
 485			/* Make sure this label matches our PF. Note that the PF
 486			 * character ('0' - '7') will be located where our
 487			 * prefix string's null terminator is located.
 488			 */
 489			if ((label_name[len] - '0') == hw->pf_id) {
 490				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
 491				hw->tnl.tbl[hw->tnl.count].valid = false;
 492				hw->tnl.tbl[hw->tnl.count].in_use = false;
 493				hw->tnl.tbl[hw->tnl.count].marked = false;
 494				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
 495				hw->tnl.tbl[hw->tnl.count].port = 0;
 496				hw->tnl.count++;
 497				break;
 498			}
 499		}
 500
 501		label_name = ice_enum_labels(NULL, 0, &state, &val);
 502	}
 503
 504	/* Cache the appropriate boost TCAM entry pointers */
 505	for (i = 0; i < hw->tnl.count; i++) {
 506		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
 507				     &hw->tnl.tbl[i].boost_entry);
 508		if (hw->tnl.tbl[i].boost_entry)
 509			hw->tnl.tbl[i].valid = true;
 
 
 
 510	}
 
 
 
 
 
 511}
 512
 513/* Key creation */
 514
 515#define ICE_DC_KEY	0x1	/* don't care */
 516#define ICE_DC_KEYINV	0x1
 517#define ICE_NM_KEY	0x0	/* never match */
 518#define ICE_NM_KEYINV	0x0
 519#define ICE_0_KEY	0x1	/* match 0 */
 520#define ICE_0_KEYINV	0x0
 521#define ICE_1_KEY	0x0	/* match 1 */
 522#define ICE_1_KEYINV	0x1
 523
 524/**
 525 * ice_gen_key_word - generate 16-bits of a key/mask word
 526 * @val: the value
 527 * @valid: valid bits mask (change only the valid bits)
 528 * @dont_care: don't care mask
 529 * @nvr_mtch: never match mask
 530 * @key: pointer to an array of where the resulting key portion
 531 * @key_inv: pointer to an array of where the resulting key invert portion
 532 *
 533 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
 534 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
 535 * of key and 8 bits of key invert.
 536 *
 537 *     '0' =    b01, always match a 0 bit
 538 *     '1' =    b10, always match a 1 bit
 539 *     '?' =    b11, don't care bit (always matches)
 540 *     '~' =    b00, never match bit
 541 *
 542 * Input:
 543 *          val:         b0  1  0  1  0  1
 544 *          dont_care:   b0  0  1  1  0  0
 545 *          never_mtch:  b0  0  0  0  1  1
 546 *          ------------------------------
 547 * Result:  key:        b01 10 11 11 00 00
 548 */
 549static enum ice_status
 550ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
 551		 u8 *key_inv)
 552{
 553	u8 in_key = *key, in_key_inv = *key_inv;
 554	u8 i;
 555
 556	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
 557	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
 558		return ICE_ERR_CFG;
 559
 560	*key = 0;
 561	*key_inv = 0;
 562
 563	/* encode the 8 bits into 8-bit key and 8-bit key invert */
 564	for (i = 0; i < 8; i++) {
 565		*key >>= 1;
 566		*key_inv >>= 1;
 567
 568		if (!(valid & 0x1)) { /* change only valid bits */
 569			*key |= (in_key & 0x1) << 7;
 570			*key_inv |= (in_key_inv & 0x1) << 7;
 571		} else if (dont_care & 0x1) { /* don't care bit */
 572			*key |= ICE_DC_KEY << 7;
 573			*key_inv |= ICE_DC_KEYINV << 7;
 574		} else if (nvr_mtch & 0x1) { /* never match bit */
 575			*key |= ICE_NM_KEY << 7;
 576			*key_inv |= ICE_NM_KEYINV << 7;
 577		} else if (val & 0x01) { /* exact 1 match */
 578			*key |= ICE_1_KEY << 7;
 579			*key_inv |= ICE_1_KEYINV << 7;
 580		} else { /* exact 0 match */
 581			*key |= ICE_0_KEY << 7;
 582			*key_inv |= ICE_0_KEYINV << 7;
 583		}
 584
 585		dont_care >>= 1;
 586		nvr_mtch >>= 1;
 587		valid >>= 1;
 588		val >>= 1;
 589		in_key >>= 1;
 590		in_key_inv >>= 1;
 591	}
 592
 593	return 0;
 594}
 595
 596/**
 597 * ice_bits_max_set - determine if the number of bits set is within a maximum
 598 * @mask: pointer to the byte array which is the mask
 599 * @size: the number of bytes in the mask
 600 * @max: the max number of set bits
 601 *
 602 * This function determines if there are at most 'max' number of bits set in an
 603 * array. Returns true if the number for bits set is <= max or will return false
 604 * otherwise.
 605 */
 606static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
 607{
 608	u16 count = 0;
 609	u16 i;
 610
 611	/* check each byte */
 612	for (i = 0; i < size; i++) {
 613		/* if 0, go to next byte */
 614		if (!mask[i])
 615			continue;
 616
 617		/* We know there is at least one set bit in this byte because of
 618		 * the above check; if we already have found 'max' number of
 619		 * bits set, then we can return failure now.
 620		 */
 621		if (count == max)
 622			return false;
 623
 624		/* count the bits in this byte, checking threshold */
 625		count += hweight8(mask[i]);
 626		if (count > max)
 627			return false;
 628	}
 629
 630	return true;
 631}
 632
 633/**
 634 * ice_set_key - generate a variable sized key with multiples of 16-bits
 635 * @key: pointer to where the key will be stored
 636 * @size: the size of the complete key in bytes (must be even)
 637 * @val: array of 8-bit values that makes up the value portion of the key
 638 * @upd: array of 8-bit masks that determine what key portion to update
 639 * @dc: array of 8-bit masks that make up the don't care mask
 640 * @nm: array of 8-bit masks that make up the never match mask
 641 * @off: the offset of the first byte in the key to update
 642 * @len: the number of bytes in the key update
 643 *
 644 * This function generates a key from a value, a don't care mask and a never
 645 * match mask.
 646 * upd, dc, and nm are optional parameters, and can be NULL:
 647 *	upd == NULL --> upd mask is all 1's (update all bits)
 648 *	dc == NULL --> dc mask is all 0's (no don't care bits)
 649 *	nm == NULL --> nm mask is all 0's (no never match bits)
 650 */
 651static enum ice_status
 652ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
 653	    u16 len)
 654{
 655	u16 half_size;
 656	u16 i;
 657
 658	/* size must be a multiple of 2 bytes. */
 659	if (size % 2)
 660		return ICE_ERR_CFG;
 661
 662	half_size = size / 2;
 663	if (off + len > half_size)
 664		return ICE_ERR_CFG;
 665
 666	/* Make sure at most one bit is set in the never match mask. Having more
 667	 * than one never match mask bit set will cause HW to consume excessive
 668	 * power otherwise; this is a power management efficiency check.
 669	 */
 670#define ICE_NVR_MTCH_BITS_MAX	1
 671	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
 672		return ICE_ERR_CFG;
 673
 674	for (i = 0; i < len; i++)
 675		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
 676				     dc ? dc[i] : 0, nm ? nm[i] : 0,
 677				     key + off + i, key + half_size + off + i))
 678			return ICE_ERR_CFG;
 679
 680	return 0;
 681}
 682
 683/**
 684 * ice_acquire_global_cfg_lock
 685 * @hw: pointer to the HW structure
 686 * @access: access type (read or write)
 687 *
 688 * This function will request ownership of the global config lock for reading
 689 * or writing of the package. When attempting to obtain write access, the
 690 * caller must check for the following two return values:
 691 *
 692 * ICE_SUCCESS        - Means the caller has acquired the global config lock
 693 *                      and can perform writing of the package.
 694 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
 695 *                      package or has found that no update was necessary; in
 696 *                      this case, the caller can just skip performing any
 697 *                      update of the package.
 698 */
 699static enum ice_status
 700ice_acquire_global_cfg_lock(struct ice_hw *hw,
 701			    enum ice_aq_res_access_type access)
 702{
 703	enum ice_status status;
 704
 705	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
 706				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
 707
 708	if (!status)
 709		mutex_lock(&ice_global_cfg_lock_sw);
 710	else if (status == ICE_ERR_AQ_NO_WORK)
 711		ice_debug(hw, ICE_DBG_PKG,
 712			  "Global config lock: No work to do\n");
 713
 714	return status;
 715}
 716
 717/**
 718 * ice_release_global_cfg_lock
 719 * @hw: pointer to the HW structure
 720 *
 721 * This function will release the global config lock.
 722 */
 723static void ice_release_global_cfg_lock(struct ice_hw *hw)
 724{
 725	mutex_unlock(&ice_global_cfg_lock_sw);
 726	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
 727}
 728
 729/**
 730 * ice_acquire_change_lock
 731 * @hw: pointer to the HW structure
 732 * @access: access type (read or write)
 733 *
 734 * This function will request ownership of the change lock.
 735 */
 736static enum ice_status
 737ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
 738{
 739	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
 740			       ICE_CHANGE_LOCK_TIMEOUT);
 741}
 742
 743/**
 744 * ice_release_change_lock
 745 * @hw: pointer to the HW structure
 746 *
 747 * This function will release the change lock using the proper Admin Command.
 748 */
 749static void ice_release_change_lock(struct ice_hw *hw)
 750{
 751	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
 752}
 753
 754/**
 755 * ice_aq_download_pkg
 756 * @hw: pointer to the hardware structure
 757 * @pkg_buf: the package buffer to transfer
 758 * @buf_size: the size of the package buffer
 759 * @last_buf: last buffer indicator
 760 * @error_offset: returns error offset
 761 * @error_info: returns error information
 762 * @cd: pointer to command details structure or NULL
 763 *
 764 * Download Package (0x0C40)
 765 */
 766static enum ice_status
 767ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
 768		    u16 buf_size, bool last_buf, u32 *error_offset,
 769		    u32 *error_info, struct ice_sq_cd *cd)
 770{
 771	struct ice_aqc_download_pkg *cmd;
 772	struct ice_aq_desc desc;
 773	enum ice_status status;
 774
 775	if (error_offset)
 776		*error_offset = 0;
 777	if (error_info)
 778		*error_info = 0;
 779
 780	cmd = &desc.params.download_pkg;
 781	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
 782	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 783
 784	if (last_buf)
 785		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 786
 787	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 788	if (status == ICE_ERR_AQ_ERROR) {
 789		/* Read error from buffer only when the FW returned an error */
 790		struct ice_aqc_download_pkg_resp *resp;
 791
 792		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 793		if (error_offset)
 794			*error_offset = le32_to_cpu(resp->error_offset);
 795		if (error_info)
 796			*error_info = le32_to_cpu(resp->error_info);
 797	}
 798
 799	return status;
 800}
 801
 802/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803 * ice_aq_update_pkg
 804 * @hw: pointer to the hardware structure
 805 * @pkg_buf: the package cmd buffer
 806 * @buf_size: the size of the package cmd buffer
 807 * @last_buf: last buffer indicator
 808 * @error_offset: returns error offset
 809 * @error_info: returns error information
 810 * @cd: pointer to command details structure or NULL
 811 *
 812 * Update Package (0x0C42)
 813 */
 814static enum ice_status
 815ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
 816		  bool last_buf, u32 *error_offset, u32 *error_info,
 817		  struct ice_sq_cd *cd)
 818{
 819	struct ice_aqc_download_pkg *cmd;
 820	struct ice_aq_desc desc;
 821	enum ice_status status;
 822
 823	if (error_offset)
 824		*error_offset = 0;
 825	if (error_info)
 826		*error_info = 0;
 827
 828	cmd = &desc.params.download_pkg;
 829	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
 830	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 831
 832	if (last_buf)
 833		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 834
 835	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 836	if (status == ICE_ERR_AQ_ERROR) {
 837		/* Read error from buffer only when the FW returned an error */
 838		struct ice_aqc_download_pkg_resp *resp;
 839
 840		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 841		if (error_offset)
 842			*error_offset = le32_to_cpu(resp->error_offset);
 843		if (error_info)
 844			*error_info = le32_to_cpu(resp->error_info);
 845	}
 846
 847	return status;
 848}
 849
 850/**
 851 * ice_find_seg_in_pkg
 852 * @hw: pointer to the hardware structure
 853 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
 854 * @pkg_hdr: pointer to the package header to be searched
 855 *
 856 * This function searches a package file for a particular segment type. On
 857 * success it returns a pointer to the segment header, otherwise it will
 858 * return NULL.
 859 */
 860static struct ice_generic_seg_hdr *
 861ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
 862		    struct ice_pkg_hdr *pkg_hdr)
 863{
 864	u32 i;
 865
 866	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
 867		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
 868		  pkg_hdr->pkg_format_ver.update,
 869		  pkg_hdr->pkg_format_ver.draft);
 870
 871	/* Search all package segments for the requested segment type */
 872	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
 873		struct ice_generic_seg_hdr *seg;
 874
 875		seg = (struct ice_generic_seg_hdr *)
 876			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
 877
 878		if (le32_to_cpu(seg->seg_type) == seg_type)
 879			return seg;
 880	}
 881
 882	return NULL;
 883}
 884
 885/**
 886 * ice_update_pkg
 887 * @hw: pointer to the hardware structure
 888 * @bufs: pointer to an array of buffers
 889 * @count: the number of buffers in the array
 890 *
 891 * Obtains change lock and updates package.
 892 */
 893static enum ice_status
 894ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
 895{
 896	enum ice_status status;
 897	u32 offset, info, i;
 898
 899	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
 900	if (status)
 901		return status;
 902
 903	for (i = 0; i < count; i++) {
 904		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
 905		bool last = ((i + 1) == count);
 
 906
 907		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
 908					   last, &offset, &info, NULL);
 909
 910		if (status) {
 911			ice_debug(hw, ICE_DBG_PKG,
 912				  "Update pkg failed: err %d off %d inf %d\n",
 913				  status, offset, info);
 914			break;
 915		}
 916	}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	ice_release_change_lock(hw);
 919
 920	return status;
 921}
 922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923/**
 924 * ice_dwnld_cfg_bufs
 925 * @hw: pointer to the hardware structure
 926 * @bufs: pointer to an array of buffers
 927 * @count: the number of buffers in the array
 928 *
 929 * Obtains global config lock and downloads the package configuration buffers
 930 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
 931 * found indicates that the rest of the buffers are all metadata buffers.
 932 */
 933static enum ice_status
 934ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
 935{
 936	enum ice_status status;
 937	struct ice_buf_hdr *bh;
 
 938	u32 offset, info, i;
 
 939
 940	if (!bufs || !count)
 941		return ICE_ERR_PARAM;
 942
 943	/* If the first buffer's first section has its metadata bit set
 944	 * then there are no buffers to be downloaded, and the operation is
 945	 * considered a success.
 946	 */
 947	bh = (struct ice_buf_hdr *)bufs;
 948	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
 949		return 0;
 950
 951	/* reset pkg_dwnld_status in case this function is called in the
 952	 * reset/rebuild flow
 953	 */
 954	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
 955
 956	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
 957	if (status) {
 958		if (status == ICE_ERR_AQ_NO_WORK)
 959			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
 960		else
 961			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 962		return status;
 963	}
 964
 965	for (i = 0; i < count; i++) {
 966		bool last = ((i + 1) == count);
 967
 968		if (!last) {
 969			/* check next buffer for metadata flag */
 970			bh = (struct ice_buf_hdr *)(bufs + i + 1);
 971
 972			/* A set metadata flag in the next buffer will signal
 973			 * that the current buffer will be the last buffer
 974			 * downloaded
 975			 */
 976			if (le16_to_cpu(bh->section_count))
 977				if (le32_to_cpu(bh->section_entry[0].type) &
 978				    ICE_METADATA_BUF)
 979					last = true;
 980		}
 981
 982		bh = (struct ice_buf_hdr *)(bufs + i);
 983
 984		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
 985					     &offset, &info, NULL);
 986
 987		/* Save AQ status from download package */
 988		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 989		if (status) {
 990			ice_debug(hw, ICE_DBG_PKG,
 991				  "Pkg download failed: err %d off %d inf %d\n",
 992				  status, offset, info);
 993
 
 994			break;
 995		}
 996
 997		if (last)
 998			break;
 999	}
1000
 
 
 
 
 
 
 
1001	ice_release_global_cfg_lock(hw);
1002
1003	return status;
1004}
1005
1006/**
1007 * ice_aq_get_pkg_info_list
1008 * @hw: pointer to the hardware structure
1009 * @pkg_info: the buffer which will receive the information list
1010 * @buf_size: the size of the pkg_info information buffer
1011 * @cd: pointer to command details structure or NULL
1012 *
1013 * Get Package Info List (0x0C43)
1014 */
1015static enum ice_status
1016ice_aq_get_pkg_info_list(struct ice_hw *hw,
1017			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1018			 u16 buf_size, struct ice_sq_cd *cd)
1019{
1020	struct ice_aq_desc desc;
1021
1022	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1023
1024	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1025}
1026
1027/**
1028 * ice_download_pkg
1029 * @hw: pointer to the hardware structure
1030 * @ice_seg: pointer to the segment of the package to be downloaded
1031 *
1032 * Handles the download of a complete package.
1033 */
1034static enum ice_status
1035ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1036{
1037	struct ice_buf_table *ice_buf_tbl;
 
1038
1039	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1040		  ice_seg->hdr.seg_format_ver.major,
1041		  ice_seg->hdr.seg_format_ver.minor,
1042		  ice_seg->hdr.seg_format_ver.update,
1043		  ice_seg->hdr.seg_format_ver.draft);
1044
1045	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1046		  le32_to_cpu(ice_seg->hdr.seg_type),
1047		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1048
1049	ice_buf_tbl = ice_find_buf_table(ice_seg);
1050
1051	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1052		  le32_to_cpu(ice_buf_tbl->buf_count));
1053
1054	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1055				  le32_to_cpu(ice_buf_tbl->buf_count));
 
 
 
 
1056}
1057
1058/**
1059 * ice_init_pkg_info
1060 * @hw: pointer to the hardware structure
1061 * @pkg_hdr: pointer to the driver's package hdr
1062 *
1063 * Saves off the package details into the HW structure.
1064 */
1065static enum ice_status
1066ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1067{
1068	struct ice_global_metadata_seg *meta_seg;
1069	struct ice_generic_seg_hdr *seg_hdr;
1070
1071	if (!pkg_hdr)
1072		return ICE_ERR_PARAM;
 
 
 
 
 
1073
1074	meta_seg = (struct ice_global_metadata_seg *)
1075		   ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1076	if (meta_seg) {
1077		hw->pkg_ver = meta_seg->pkg_ver;
1078		memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
 
 
 
 
 
 
 
1079
1080		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1081			  meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1082			  meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1083			  meta_seg->pkg_name);
1084	} else {
1085		ice_debug(hw, ICE_DBG_INIT,
1086			  "Did not find metadata segment in driver package\n");
1087		return ICE_ERR_CFG;
1088	}
1089
1090	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1091	if (seg_hdr) {
1092		hw->ice_pkg_ver = seg_hdr->seg_format_ver;
1093		memcpy(hw->ice_pkg_name, seg_hdr->seg_id,
1094		       sizeof(hw->ice_pkg_name));
1095
1096		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1097			  seg_hdr->seg_format_ver.major,
1098			  seg_hdr->seg_format_ver.minor,
1099			  seg_hdr->seg_format_ver.update,
1100			  seg_hdr->seg_format_ver.draft,
1101			  seg_hdr->seg_id);
1102	} else {
1103		ice_debug(hw, ICE_DBG_INIT,
1104			  "Did not find ice segment in driver package\n");
1105		return ICE_ERR_CFG;
1106	}
1107
1108	return 0;
1109}
1110
1111/**
1112 * ice_get_pkg_info
1113 * @hw: pointer to the hardware structure
1114 *
1115 * Store details of the package currently loaded in HW into the HW structure.
1116 */
1117static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1118{
 
1119	struct ice_aqc_get_pkg_info_resp *pkg_info;
1120	enum ice_status status;
1121	u16 size;
1122	u32 i;
1123
1124	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1125	pkg_info = kzalloc(size, GFP_KERNEL);
1126	if (!pkg_info)
1127		return ICE_ERR_NO_MEMORY;
1128
1129	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1130	if (status)
1131		goto init_pkg_free_alloc;
 
1132
1133	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1134#define ICE_PKG_FLAG_COUNT	4
1135		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1136		u8 place = 0;
1137
1138		if (pkg_info->pkg_info[i].is_active) {
1139			flags[place++] = 'A';
1140			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1141			hw->active_track_id =
1142				le32_to_cpu(pkg_info->pkg_info[i].track_id);
1143			memcpy(hw->active_pkg_name,
1144			       pkg_info->pkg_info[i].name,
1145			       sizeof(pkg_info->pkg_info[i].name));
1146			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1147		}
1148		if (pkg_info->pkg_info[i].is_active_at_boot)
1149			flags[place++] = 'B';
1150		if (pkg_info->pkg_info[i].is_modified)
1151			flags[place++] = 'M';
1152		if (pkg_info->pkg_info[i].is_in_nvm)
1153			flags[place++] = 'N';
1154
1155		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1156			  i, pkg_info->pkg_info[i].ver.major,
1157			  pkg_info->pkg_info[i].ver.minor,
1158			  pkg_info->pkg_info[i].ver.update,
1159			  pkg_info->pkg_info[i].ver.draft,
1160			  pkg_info->pkg_info[i].name, flags);
1161	}
1162
1163init_pkg_free_alloc:
1164	kfree(pkg_info);
1165
1166	return status;
1167}
1168
1169/**
1170 * ice_verify_pkg - verify package
1171 * @pkg: pointer to the package buffer
1172 * @len: size of the package buffer
1173 *
1174 * Verifies various attributes of the package file, including length, format
1175 * version, and the requirement of at least one segment.
1176 */
1177static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1178{
1179	u32 seg_count;
1180	u32 i;
1181
1182	if (len < struct_size(pkg, seg_offset, 1))
1183		return ICE_ERR_BUF_TOO_SHORT;
1184
1185	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1186	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1187	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1188	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1189		return ICE_ERR_CFG;
1190
1191	/* pkg must have at least one segment */
1192	seg_count = le32_to_cpu(pkg->seg_count);
1193	if (seg_count < 1)
1194		return ICE_ERR_CFG;
1195
1196	/* make sure segment array fits in package length */
1197	if (len < struct_size(pkg, seg_offset, seg_count))
1198		return ICE_ERR_BUF_TOO_SHORT;
1199
1200	/* all segments must fit within length */
1201	for (i = 0; i < seg_count; i++) {
1202		u32 off = le32_to_cpu(pkg->seg_offset[i]);
1203		struct ice_generic_seg_hdr *seg;
1204
1205		/* segment header must fit */
1206		if (len < off + sizeof(*seg))
1207			return ICE_ERR_BUF_TOO_SHORT;
1208
1209		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1210
1211		/* segment body must fit */
1212		if (len < off + le32_to_cpu(seg->seg_size))
1213			return ICE_ERR_BUF_TOO_SHORT;
1214	}
1215
1216	return 0;
1217}
1218
1219/**
1220 * ice_free_seg - free package segment pointer
1221 * @hw: pointer to the hardware structure
1222 *
1223 * Frees the package segment pointer in the proper manner, depending on if the
1224 * segment was allocated or just the passed in pointer was stored.
1225 */
1226void ice_free_seg(struct ice_hw *hw)
1227{
1228	if (hw->pkg_copy) {
1229		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1230		hw->pkg_copy = NULL;
1231		hw->pkg_size = 0;
1232	}
1233	hw->seg = NULL;
1234}
1235
1236/**
1237 * ice_init_pkg_regs - initialize additional package registers
1238 * @hw: pointer to the hardware structure
1239 */
1240static void ice_init_pkg_regs(struct ice_hw *hw)
1241{
1242#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1243#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1244#define ICE_SW_BLK_IDX	0
1245
1246	/* setup Switch block input mask, which is 48-bits in two parts */
1247	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1248	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1249}
1250
1251/**
1252 * ice_chk_pkg_version - check package version for compatibility with driver
1253 * @pkg_ver: pointer to a version structure to check
1254 *
1255 * Check to make sure that the package about to be downloaded is compatible with
1256 * the driver. To be compatible, the major and minor components of the package
1257 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1258 * definitions.
1259 */
1260static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1261{
1262	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1263	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1264		return ICE_ERR_NOT_SUPPORTED;
 
 
 
 
 
1265
1266	return 0;
1267}
1268
1269/**
1270 * ice_chk_pkg_compat
1271 * @hw: pointer to the hardware structure
1272 * @ospkg: pointer to the package hdr
1273 * @seg: pointer to the package segment hdr
1274 *
1275 * This function checks the package version compatibility with driver and NVM
1276 */
1277static enum ice_status
1278ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1279		   struct ice_seg **seg)
1280{
1281	struct ice_aqc_get_pkg_info_resp *pkg;
1282	enum ice_status status;
1283	u16 size;
1284	u32 i;
1285
1286	/* Check package version compatibility */
1287	status = ice_chk_pkg_version(&hw->pkg_ver);
1288	if (status) {
1289		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1290		return status;
1291	}
1292
1293	/* find ICE segment in given package */
1294	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1295						     ospkg);
1296	if (!*seg) {
1297		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1298		return ICE_ERR_CFG;
1299	}
1300
1301	/* Check if FW is compatible with the OS package */
1302	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1303	pkg = kzalloc(size, GFP_KERNEL);
1304	if (!pkg)
1305		return ICE_ERR_NO_MEMORY;
1306
1307	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1308	if (status)
1309		goto fw_ddp_compat_free_alloc;
 
1310
1311	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1312		/* loop till we find the NVM package */
1313		if (!pkg->pkg_info[i].is_in_nvm)
1314			continue;
1315		if ((*seg)->hdr.seg_format_ver.major !=
1316			pkg->pkg_info[i].ver.major ||
1317		    (*seg)->hdr.seg_format_ver.minor >
1318			pkg->pkg_info[i].ver.minor) {
1319			status = ICE_ERR_FW_DDP_MISMATCH;
1320			ice_debug(hw, ICE_DBG_INIT,
1321				  "OS package is not compatible with NVM.\n");
1322		}
1323		/* done processing NVM package so break */
1324		break;
1325	}
1326fw_ddp_compat_free_alloc:
1327	kfree(pkg);
1328	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329}
1330
1331/**
1332 * ice_init_pkg - initialize/download package
1333 * @hw: pointer to the hardware structure
1334 * @buf: pointer to the package buffer
1335 * @len: size of the package buffer
1336 *
1337 * This function initializes a package. The package contains HW tables
1338 * required to do packet processing. First, the function extracts package
1339 * information such as version. Then it finds the ice configuration segment
1340 * within the package; this function then saves a copy of the segment pointer
1341 * within the supplied package buffer. Next, the function will cache any hints
1342 * from the package, followed by downloading the package itself. Note, that if
1343 * a previous PF driver has already downloaded the package successfully, then
1344 * the current driver will not have to download the package again.
1345 *
1346 * The local package contents will be used to query default behavior and to
1347 * update specific sections of the HW's version of the package (e.g. to update
1348 * the parse graph to understand new protocols).
1349 *
1350 * This function stores a pointer to the package buffer memory, and it is
1351 * expected that the supplied buffer will not be freed immediately. If the
1352 * package buffer needs to be freed, such as when read from a file, use
1353 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1354 * case.
1355 */
1356enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1357{
 
 
1358	struct ice_pkg_hdr *pkg;
1359	enum ice_status status;
1360	struct ice_seg *seg;
1361
1362	if (!buf || !len)
1363		return ICE_ERR_PARAM;
1364
1365	pkg = (struct ice_pkg_hdr *)buf;
1366	status = ice_verify_pkg(pkg, len);
1367	if (status) {
1368		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1369			  status);
1370		return status;
1371	}
1372
1373	/* initialize package info */
1374	status = ice_init_pkg_info(hw, pkg);
1375	if (status)
1376		return status;
1377
1378	/* before downloading the package, check package version for
1379	 * compatibility with driver
1380	 */
1381	status = ice_chk_pkg_compat(hw, pkg, &seg);
1382	if (status)
1383		return status;
1384
1385	/* initialize package hints and then download package */
1386	ice_init_pkg_hints(hw, seg);
1387	status = ice_download_pkg(hw, seg);
1388	if (status == ICE_ERR_AQ_NO_WORK) {
1389		ice_debug(hw, ICE_DBG_INIT,
1390			  "package previously loaded - no work.\n");
1391		status = 0;
1392	}
1393
1394	/* Get information on the package currently loaded in HW, then make sure
1395	 * the driver is compatible with this version.
1396	 */
1397	if (!status) {
1398		status = ice_get_pkg_info(hw);
1399		if (!status)
1400			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1401	}
1402
1403	if (!status) {
1404		hw->seg = seg;
1405		/* on successful package download update other required
1406		 * registers to support the package and fill HW tables
1407		 * with package content.
1408		 */
1409		ice_init_pkg_regs(hw);
1410		ice_fill_blk_tbls(hw);
 
 
1411	} else {
1412		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1413			  status);
1414	}
1415
1416	return status;
1417}
1418
1419/**
1420 * ice_copy_and_init_pkg - initialize/download a copy of the package
1421 * @hw: pointer to the hardware structure
1422 * @buf: pointer to the package buffer
1423 * @len: size of the package buffer
1424 *
1425 * This function copies the package buffer, and then calls ice_init_pkg() to
1426 * initialize the copied package contents.
1427 *
1428 * The copying is necessary if the package buffer supplied is constant, or if
1429 * the memory may disappear shortly after calling this function.
1430 *
1431 * If the package buffer resides in the data segment and can be modified, the
1432 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1433 *
1434 * However, if the package buffer needs to be copied first, such as when being
1435 * read from a file, the caller should use ice_copy_and_init_pkg().
1436 *
1437 * This function will first copy the package buffer, before calling
1438 * ice_init_pkg(). The caller is free to immediately destroy the original
1439 * package buffer, as the new copy will be managed by this function and
1440 * related routines.
1441 */
1442enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
 
1443{
1444	enum ice_status status;
1445	u8 *buf_copy;
1446
1447	if (!buf || !len)
1448		return ICE_ERR_PARAM;
1449
1450	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1451
1452	status = ice_init_pkg(hw, buf_copy, len);
1453	if (status) {
1454		/* Free the copy, since we failed to initialize the package */
1455		devm_kfree(ice_hw_to_dev(hw), buf_copy);
1456	} else {
1457		/* Track the copied pkg so we can free it later */
1458		hw->pkg_copy = buf_copy;
1459		hw->pkg_size = len;
1460	}
1461
1462	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1463}
1464
1465/**
1466 * ice_pkg_buf_alloc
1467 * @hw: pointer to the HW structure
1468 *
1469 * Allocates a package buffer and returns a pointer to the buffer header.
1470 * Note: all package contents must be in Little Endian form.
1471 */
1472static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1473{
1474	struct ice_buf_build *bld;
1475	struct ice_buf_hdr *buf;
1476
1477	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1478	if (!bld)
1479		return NULL;
1480
1481	buf = (struct ice_buf_hdr *)bld;
1482	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1483					     section_entry));
1484	return bld;
1485}
1486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487/**
1488 * ice_pkg_buf_free
1489 * @hw: pointer to the HW structure
1490 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1491 *
1492 * Frees a package buffer
1493 */
1494static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1495{
1496	devm_kfree(ice_hw_to_dev(hw), bld);
1497}
1498
1499/**
1500 * ice_pkg_buf_reserve_section
1501 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1502 * @count: the number of sections to reserve
1503 *
1504 * Reserves one or more section table entries in a package buffer. This routine
1505 * can be called multiple times as long as they are made before calling
1506 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1507 * is called once, the number of sections that can be allocated will not be able
1508 * to be increased; not using all reserved sections is fine, but this will
1509 * result in some wasted space in the buffer.
1510 * Note: all package contents must be in Little Endian form.
1511 */
1512static enum ice_status
1513ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1514{
1515	struct ice_buf_hdr *buf;
1516	u16 section_count;
1517	u16 data_end;
1518
1519	if (!bld)
1520		return ICE_ERR_PARAM;
1521
1522	buf = (struct ice_buf_hdr *)&bld->buf;
1523
1524	/* already an active section, can't increase table size */
1525	section_count = le16_to_cpu(buf->section_count);
1526	if (section_count > 0)
1527		return ICE_ERR_CFG;
1528
1529	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1530		return ICE_ERR_CFG;
1531	bld->reserved_section_table_entries += count;
1532
1533	data_end = le16_to_cpu(buf->data_end) +
1534		   (count * sizeof(buf->section_entry[0]));
1535	buf->data_end = cpu_to_le16(data_end);
1536
1537	return 0;
1538}
1539
1540/**
1541 * ice_pkg_buf_alloc_section
1542 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1543 * @type: the section type value
1544 * @size: the size of the section to reserve (in bytes)
1545 *
1546 * Reserves memory in the buffer for a section's content and updates the
1547 * buffers' status accordingly. This routine returns a pointer to the first
1548 * byte of the section start within the buffer, which is used to fill in the
1549 * section contents.
1550 * Note: all package contents must be in Little Endian form.
1551 */
1552static void *
1553ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1554{
1555	struct ice_buf_hdr *buf;
1556	u16 sect_count;
1557	u16 data_end;
1558
1559	if (!bld || !type || !size)
1560		return NULL;
1561
1562	buf = (struct ice_buf_hdr *)&bld->buf;
1563
1564	/* check for enough space left in buffer */
1565	data_end = le16_to_cpu(buf->data_end);
1566
1567	/* section start must align on 4 byte boundary */
1568	data_end = ALIGN(data_end, 4);
1569
1570	if ((data_end + size) > ICE_MAX_S_DATA_END)
1571		return NULL;
1572
1573	/* check for more available section table entries */
1574	sect_count = le16_to_cpu(buf->section_count);
1575	if (sect_count < bld->reserved_section_table_entries) {
1576		void *section_ptr = ((u8 *)buf) + data_end;
1577
1578		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1579		buf->section_entry[sect_count].size = cpu_to_le16(size);
1580		buf->section_entry[sect_count].type = cpu_to_le32(type);
1581
1582		data_end += size;
1583		buf->data_end = cpu_to_le16(data_end);
1584
1585		buf->section_count = cpu_to_le16(sect_count + 1);
1586		return section_ptr;
1587	}
1588
1589	/* no free section table entries */
1590	return NULL;
1591}
1592
1593/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594 * ice_pkg_buf_get_active_sections
1595 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1596 *
1597 * Returns the number of active sections. Before using the package buffer
1598 * in an update package command, the caller should make sure that there is at
1599 * least one active section - otherwise, the buffer is not legal and should
1600 * not be used.
1601 * Note: all package contents must be in Little Endian form.
1602 */
1603static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1604{
1605	struct ice_buf_hdr *buf;
1606
1607	if (!bld)
1608		return 0;
1609
1610	buf = (struct ice_buf_hdr *)&bld->buf;
1611	return le16_to_cpu(buf->section_count);
1612}
1613
1614/**
1615 * ice_pkg_buf
1616 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1617 *
1618 * Return a pointer to the buffer's header
1619 */
1620static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1621{
1622	if (!bld)
1623		return NULL;
1624
1625	return &bld->buf;
1626}
1627
1628/**
1629 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
1630 * @hw: pointer to the HW structure
1631 * @port: port to search for
1632 * @index: optionally returns index
1633 *
1634 * Returns whether a port is already in use as a tunnel, and optionally its
1635 * index
1636 */
1637static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
 
 
1638{
 
1639	u16 i;
1640
 
 
1641	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1642		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
1643			if (index)
1644				*index = i;
1645			return true;
 
1646		}
1647
1648	return false;
 
 
1649}
1650
1651/**
1652 * ice_tunnel_port_in_use
1653 * @hw: pointer to the HW structure
1654 * @port: port to search for
1655 * @index: optionally returns index
1656 *
1657 * Returns whether a port is already in use as a tunnel, and optionally its
1658 * index
1659 */
1660bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
 
1661{
1662	bool res;
 
 
 
 
 
 
 
1663
1664	mutex_lock(&hw->tnl_lock);
1665	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
1666	mutex_unlock(&hw->tnl_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667
1668	return res;
1669}
1670
1671/**
1672 * ice_find_free_tunnel_entry
1673 * @hw: pointer to the HW structure
1674 * @type: tunnel type
1675 * @index: optionally returns index
1676 *
1677 * Returns whether there is a free tunnel entry, and optionally its index
1678 */
1679static bool
1680ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1681			   u16 *index)
1682{
 
1683	u16 i;
1684
1685	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1686		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
1687		    hw->tnl.tbl[i].type == type) {
1688			if (index)
1689				*index = i;
1690			return true;
1691		}
1692
1693	return false;
1694}
1695
1696/**
1697 * ice_get_open_tunnel_port - retrieve an open tunnel port
1698 * @hw: pointer to the HW structure
1699 * @type: tunnel type (TNL_ALL will return any open port)
1700 * @port: returns open port
 
 
 
 
1701 */
1702bool
1703ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
1704			 u16 *port)
1705{
1706	bool res = false;
1707	u16 i;
1708
1709	mutex_lock(&hw->tnl_lock);
1710
1711	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1712		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1713		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
1714			*port = hw->tnl.tbl[i].port;
1715			res = true;
1716			break;
1717		}
1718
1719	mutex_unlock(&hw->tnl_lock);
1720
1721	return res;
1722}
1723
1724/**
1725 * ice_create_tunnel
1726 * @hw: pointer to the HW structure
 
1727 * @type: type of tunnel
1728 * @port: port of tunnel to create
1729 *
1730 * Create a tunnel by updating the parse graph in the parser. We do that by
1731 * creating a package buffer with the tunnel info and issuing an update package
1732 * command.
1733 */
1734enum ice_status
1735ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
 
1736{
1737	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1738	enum ice_status status = ICE_ERR_MAX_LIMIT;
1739	struct ice_buf_build *bld;
1740	u16 index;
1741
1742	mutex_lock(&hw->tnl_lock);
1743
1744	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
1745		hw->tnl.tbl[index].ref++;
1746		status = 0;
1747		goto ice_create_tunnel_end;
1748	}
1749
1750	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
1751		status = ICE_ERR_OUT_OF_RANGE;
1752		goto ice_create_tunnel_end;
1753	}
1754
1755	bld = ice_pkg_buf_alloc(hw);
1756	if (!bld) {
1757		status = ICE_ERR_NO_MEMORY;
1758		goto ice_create_tunnel_end;
1759	}
1760
1761	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1762	if (ice_pkg_buf_reserve_section(bld, 2))
1763		goto ice_create_tunnel_err;
1764
1765	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1766					    struct_size(sect_rx, tcam, 1));
1767	if (!sect_rx)
1768		goto ice_create_tunnel_err;
1769	sect_rx->count = cpu_to_le16(1);
1770
1771	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1772					    struct_size(sect_tx, tcam, 1));
1773	if (!sect_tx)
1774		goto ice_create_tunnel_err;
1775	sect_tx->count = cpu_to_le16(1);
1776
1777	/* copy original boost entry to update package buffer */
1778	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1779	       sizeof(*sect_rx->tcam));
1780
1781	/* over-write the never-match dest port key bits with the encoded port
1782	 * bits
1783	 */
1784	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
1785		    (u8 *)&port, NULL, NULL, NULL,
1786		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
1787		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
1788
1789	/* exact copy of entry to Tx section entry */
1790	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
1791
1792	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1793	if (!status) {
1794		hw->tnl.tbl[index].port = port;
1795		hw->tnl.tbl[index].in_use = true;
1796		hw->tnl.tbl[index].ref = 1;
1797	}
1798
1799ice_create_tunnel_err:
1800	ice_pkg_buf_free(hw, bld);
1801
1802ice_create_tunnel_end:
1803	mutex_unlock(&hw->tnl_lock);
1804
1805	return status;
1806}
1807
1808/**
1809 * ice_destroy_tunnel
1810 * @hw: pointer to the HW structure
 
 
1811 * @port: port of tunnel to destroy (ignored if the all parameter is true)
1812 * @all: flag that states to destroy all tunnels
1813 *
1814 * Destroys a tunnel or all tunnels by creating an update package buffer
1815 * targeting the specific updates requested and then performing an update
1816 * package.
1817 */
1818enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
 
 
1819{
1820	struct ice_boost_tcam_section *sect_rx, *sect_tx;
1821	enum ice_status status = ICE_ERR_MAX_LIMIT;
1822	struct ice_buf_build *bld;
1823	u16 count = 0;
1824	u16 index;
1825	u16 size;
1826	u16 i;
1827
1828	mutex_lock(&hw->tnl_lock);
1829
1830	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
1831		if (hw->tnl.tbl[index].ref > 1) {
1832			hw->tnl.tbl[index].ref--;
1833			status = 0;
1834			goto ice_destroy_tunnel_end;
1835		}
1836
1837	/* determine count */
1838	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1839		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1840		    (all || hw->tnl.tbl[i].port == port))
1841			count++;
1842
1843	if (!count) {
1844		status = ICE_ERR_PARAM;
1845		goto ice_destroy_tunnel_end;
1846	}
1847
1848	/* size of section - there is at least one entry */
1849	size = struct_size(sect_rx, tcam, count);
1850
1851	bld = ice_pkg_buf_alloc(hw);
1852	if (!bld) {
1853		status = ICE_ERR_NO_MEMORY;
1854		goto ice_destroy_tunnel_end;
1855	}
1856
1857	/* allocate 2 sections, one for Rx parser, one for Tx parser */
1858	if (ice_pkg_buf_reserve_section(bld, 2))
1859		goto ice_destroy_tunnel_err;
1860
1861	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1862					    size);
1863	if (!sect_rx)
1864		goto ice_destroy_tunnel_err;
1865	sect_rx->count = cpu_to_le16(1);
1866
1867	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1868					    size);
1869	if (!sect_tx)
1870		goto ice_destroy_tunnel_err;
1871	sect_tx->count = cpu_to_le16(1);
1872
1873	/* copy original boost entry to update package buffer, one copy to Rx
1874	 * section, another copy to the Tx section
1875	 */
1876	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1877		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1878		    (all || hw->tnl.tbl[i].port == port)) {
1879			memcpy(sect_rx->tcam + i, hw->tnl.tbl[i].boost_entry,
1880			       sizeof(*sect_rx->tcam));
1881			memcpy(sect_tx->tcam + i, hw->tnl.tbl[i].boost_entry,
1882			       sizeof(*sect_tx->tcam));
1883			hw->tnl.tbl[i].marked = true;
1884		}
1885
1886	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1887	if (!status)
1888		for (i = 0; i < hw->tnl.count &&
1889		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
1890			if (hw->tnl.tbl[i].marked) {
1891				hw->tnl.tbl[i].ref = 0;
1892				hw->tnl.tbl[i].port = 0;
1893				hw->tnl.tbl[i].in_use = false;
1894				hw->tnl.tbl[i].marked = false;
1895			}
1896
1897ice_destroy_tunnel_err:
1898	ice_pkg_buf_free(hw, bld);
1899
1900ice_destroy_tunnel_end:
1901	mutex_unlock(&hw->tnl_lock);
1902
1903	return status;
1904}
1905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906/* PTG Management */
1907
1908/**
1909 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1910 * @hw: pointer to the hardware structure
1911 * @blk: HW block
1912 * @ptype: the ptype to search for
1913 * @ptg: pointer to variable that receives the PTG
1914 *
1915 * This function will search the PTGs for a particular ptype, returning the
1916 * PTG ID that contains it through the PTG parameter, with the value of
1917 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1918 */
1919static enum ice_status
1920ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1921{
1922	if (ptype >= ICE_XLT1_CNT || !ptg)
1923		return ICE_ERR_PARAM;
1924
1925	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1926	return 0;
1927}
1928
1929/**
1930 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1931 * @hw: pointer to the hardware structure
1932 * @blk: HW block
1933 * @ptg: the PTG to allocate
1934 *
1935 * This function allocates a given packet type group ID specified by the PTG
1936 * parameter.
1937 */
1938static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1939{
1940	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1941}
1942
1943/**
1944 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1945 * @hw: pointer to the hardware structure
1946 * @blk: HW block
1947 * @ptype: the ptype to remove
1948 * @ptg: the PTG to remove the ptype from
1949 *
1950 * This function will remove the ptype from the specific PTG, and move it to
1951 * the default PTG (ICE_DEFAULT_PTG).
1952 */
1953static enum ice_status
1954ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1955{
1956	struct ice_ptg_ptype **ch;
1957	struct ice_ptg_ptype *p;
1958
1959	if (ptype > ICE_XLT1_CNT - 1)
1960		return ICE_ERR_PARAM;
1961
1962	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1963		return ICE_ERR_DOES_NOT_EXIST;
1964
1965	/* Should not happen if .in_use is set, bad config */
1966	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1967		return ICE_ERR_CFG;
1968
1969	/* find the ptype within this PTG, and bypass the link over it */
1970	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1971	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1972	while (p) {
1973		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1974			*ch = p->next_ptype;
1975			break;
1976		}
1977
1978		ch = &p->next_ptype;
1979		p = p->next_ptype;
1980	}
1981
1982	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1983	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1984
1985	return 0;
1986}
1987
1988/**
1989 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1990 * @hw: pointer to the hardware structure
1991 * @blk: HW block
1992 * @ptype: the ptype to add or move
1993 * @ptg: the PTG to add or move the ptype to
1994 *
1995 * This function will either add or move a ptype to a particular PTG depending
1996 * on if the ptype is already part of another group. Note that using a
1997 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1998 * default PTG.
1999 */
2000static enum ice_status
2001ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2002{
2003	enum ice_status status;
2004	u8 original_ptg;
 
2005
2006	if (ptype > ICE_XLT1_CNT - 1)
2007		return ICE_ERR_PARAM;
2008
2009	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2010		return ICE_ERR_DOES_NOT_EXIST;
2011
2012	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2013	if (status)
2014		return status;
2015
2016	/* Is ptype already in the correct PTG? */
2017	if (original_ptg == ptg)
2018		return 0;
2019
2020	/* Remove from original PTG and move back to the default PTG */
2021	if (original_ptg != ICE_DEFAULT_PTG)
2022		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2023
2024	/* Moving to default PTG? Then we're done with this request */
2025	if (ptg == ICE_DEFAULT_PTG)
2026		return 0;
2027
2028	/* Add ptype to PTG at beginning of list */
2029	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2030		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2031	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2032		&hw->blk[blk].xlt1.ptypes[ptype];
2033
2034	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2035	hw->blk[blk].xlt1.t[ptype] = ptg;
2036
2037	return 0;
2038}
2039
2040/* Block / table size info */
2041struct ice_blk_size_details {
2042	u16 xlt1;			/* # XLT1 entries */
2043	u16 xlt2;			/* # XLT2 entries */
2044	u16 prof_tcam;			/* # profile ID TCAM entries */
2045	u16 prof_id;			/* # profile IDs */
2046	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2047	u16 prof_redir;			/* # profile redirection entries */
2048	u16 es;				/* # extraction sequence entries */
2049	u16 fvw;			/* # field vector words */
2050	u8 overwrite;			/* overwrite existing entries allowed */
2051	u8 reverse;			/* reverse FV order */
2052};
2053
2054static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2055	/**
2056	 * Table Definitions
2057	 * XLT1 - Number of entries in XLT1 table
2058	 * XLT2 - Number of entries in XLT2 table
2059	 * TCAM - Number of entries Profile ID TCAM table
2060	 * CDID - Control Domain ID of the hardware block
2061	 * PRED - Number of entries in the Profile Redirection Table
2062	 * FV   - Number of entries in the Field Vector
2063	 * FVW  - Width (in WORDs) of the Field Vector
2064	 * OVR  - Overwrite existing table entries
2065	 * REV  - Reverse FV
2066	 */
2067	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2068	/*          Overwrite   , Reverse FV */
2069	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2070		    false, false },
2071	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2072		    false, false },
2073	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2074		    false, true  },
2075	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2076		    true,  true  },
2077	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2078		    false, false },
2079};
2080
2081enum ice_sid_all {
2082	ICE_SID_XLT1_OFF = 0,
2083	ICE_SID_XLT2_OFF,
2084	ICE_SID_PR_OFF,
2085	ICE_SID_PR_REDIR_OFF,
2086	ICE_SID_ES_OFF,
2087	ICE_SID_OFF_COUNT,
2088};
2089
2090/* Characteristic handling */
2091
2092/**
2093 * ice_match_prop_lst - determine if properties of two lists match
2094 * @list1: first properties list
2095 * @list2: second properties list
2096 *
2097 * Count, cookies and the order must match in order to be considered equivalent.
2098 */
2099static bool
2100ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2101{
2102	struct ice_vsig_prof *tmp1;
2103	struct ice_vsig_prof *tmp2;
2104	u16 chk_count = 0;
2105	u16 count = 0;
2106
2107	/* compare counts */
2108	list_for_each_entry(tmp1, list1, list)
2109		count++;
2110	list_for_each_entry(tmp2, list2, list)
2111		chk_count++;
 
2112	if (!count || count != chk_count)
2113		return false;
2114
2115	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2116	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2117
2118	/* profile cookies must compare, and in the exact same order to take
2119	 * into account priority
2120	 */
2121	while (count--) {
2122		if (tmp2->profile_cookie != tmp1->profile_cookie)
2123			return false;
2124
2125		tmp1 = list_next_entry(tmp1, list);
2126		tmp2 = list_next_entry(tmp2, list);
2127	}
2128
2129	return true;
2130}
2131
2132/* VSIG Management */
2133
2134/**
2135 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2136 * @hw: pointer to the hardware structure
2137 * @blk: HW block
2138 * @vsi: VSI of interest
2139 * @vsig: pointer to receive the VSI group
2140 *
2141 * This function will lookup the VSI entry in the XLT2 list and return
2142 * the VSI group its associated with.
2143 */
2144static enum ice_status
2145ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2146{
2147	if (!vsig || vsi >= ICE_MAX_VSI)
2148		return ICE_ERR_PARAM;
2149
2150	/* As long as there's a default or valid VSIG associated with the input
2151	 * VSI, the functions returns a success. Any handling of VSIG will be
2152	 * done by the following add, update or remove functions.
2153	 */
2154	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2155
2156	return 0;
2157}
2158
2159/**
2160 * ice_vsig_alloc_val - allocate a new VSIG by value
2161 * @hw: pointer to the hardware structure
2162 * @blk: HW block
2163 * @vsig: the VSIG to allocate
2164 *
2165 * This function will allocate a given VSIG specified by the VSIG parameter.
2166 */
2167static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2168{
2169	u16 idx = vsig & ICE_VSIG_IDX_M;
2170
2171	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2172		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2173		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2174	}
2175
2176	return ICE_VSIG_VALUE(idx, hw->pf_id);
2177}
2178
2179/**
2180 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2181 * @hw: pointer to the hardware structure
2182 * @blk: HW block
2183 *
2184 * This function will iterate through the VSIG list and mark the first
2185 * unused entry for the new VSIG entry as used and return that value.
2186 */
2187static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2188{
2189	u16 i;
2190
2191	for (i = 1; i < ICE_MAX_VSIGS; i++)
2192		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2193			return ice_vsig_alloc_val(hw, blk, i);
2194
2195	return ICE_DEFAULT_VSIG;
2196}
2197
2198/**
2199 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2200 * @hw: pointer to the hardware structure
2201 * @blk: HW block
2202 * @chs: characteristic list
2203 * @vsig: returns the VSIG with the matching profiles, if found
2204 *
2205 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2206 * a group have the same characteristic set. To check if there exists a VSIG
2207 * which has the same characteristics as the input characteristics; this
2208 * function will iterate through the XLT2 list and return the VSIG that has a
2209 * matching configuration. In order to make sure that priorities are accounted
2210 * for, the list must match exactly, including the order in which the
2211 * characteristics are listed.
2212 */
2213static enum ice_status
2214ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2215			struct list_head *chs, u16 *vsig)
2216{
2217	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2218	u16 i;
2219
2220	for (i = 0; i < xlt2->count; i++)
2221		if (xlt2->vsig_tbl[i].in_use &&
2222		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2223			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2224			return 0;
2225		}
2226
2227	return ICE_ERR_DOES_NOT_EXIST;
2228}
2229
2230/**
2231 * ice_vsig_free - free VSI group
2232 * @hw: pointer to the hardware structure
2233 * @blk: HW block
2234 * @vsig: VSIG to remove
2235 *
2236 * The function will remove all VSIs associated with the input VSIG and move
2237 * them to the DEFAULT_VSIG and mark the VSIG available.
2238 */
2239static enum ice_status
2240ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2241{
2242	struct ice_vsig_prof *dtmp, *del;
2243	struct ice_vsig_vsi *vsi_cur;
2244	u16 idx;
2245
2246	idx = vsig & ICE_VSIG_IDX_M;
2247	if (idx >= ICE_MAX_VSIGS)
2248		return ICE_ERR_PARAM;
2249
2250	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2251		return ICE_ERR_DOES_NOT_EXIST;
2252
2253	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2254
2255	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2256	/* If the VSIG has at least 1 VSI then iterate through the
2257	 * list and remove the VSIs before deleting the group.
2258	 */
2259	if (vsi_cur) {
2260		/* remove all vsis associated with this VSIG XLT2 entry */
2261		do {
2262			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2263
2264			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2265			vsi_cur->changed = 1;
2266			vsi_cur->next_vsi = NULL;
2267			vsi_cur = tmp;
2268		} while (vsi_cur);
2269
2270		/* NULL terminate head of VSI list */
2271		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2272	}
2273
2274	/* free characteristic list */
2275	list_for_each_entry_safe(del, dtmp,
2276				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2277				 list) {
2278		list_del(&del->list);
2279		devm_kfree(ice_hw_to_dev(hw), del);
2280	}
2281
2282	/* if VSIG characteristic list was cleared for reset
2283	 * re-initialize the list head
2284	 */
2285	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2286
2287	return 0;
2288}
2289
2290/**
2291 * ice_vsig_remove_vsi - remove VSI from VSIG
2292 * @hw: pointer to the hardware structure
2293 * @blk: HW block
2294 * @vsi: VSI to remove
2295 * @vsig: VSI group to remove from
2296 *
2297 * The function will remove the input VSI from its VSI group and move it
2298 * to the DEFAULT_VSIG.
2299 */
2300static enum ice_status
2301ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2302{
2303	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2304	u16 idx;
2305
2306	idx = vsig & ICE_VSIG_IDX_M;
2307
2308	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2309		return ICE_ERR_PARAM;
2310
2311	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2312		return ICE_ERR_DOES_NOT_EXIST;
2313
2314	/* entry already in default VSIG, don't have to remove */
2315	if (idx == ICE_DEFAULT_VSIG)
2316		return 0;
2317
2318	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2319	if (!(*vsi_head))
2320		return ICE_ERR_CFG;
2321
2322	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2323	vsi_cur = (*vsi_head);
2324
2325	/* iterate the VSI list, skip over the entry to be removed */
2326	while (vsi_cur) {
2327		if (vsi_tgt == vsi_cur) {
2328			(*vsi_head) = vsi_cur->next_vsi;
2329			break;
2330		}
2331		vsi_head = &vsi_cur->next_vsi;
2332		vsi_cur = vsi_cur->next_vsi;
2333	}
2334
2335	/* verify if VSI was removed from group list */
2336	if (!vsi_cur)
2337		return ICE_ERR_DOES_NOT_EXIST;
2338
2339	vsi_cur->vsig = ICE_DEFAULT_VSIG;
2340	vsi_cur->changed = 1;
2341	vsi_cur->next_vsi = NULL;
2342
2343	return 0;
2344}
2345
2346/**
2347 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2348 * @hw: pointer to the hardware structure
2349 * @blk: HW block
2350 * @vsi: VSI to move
2351 * @vsig: destination VSI group
2352 *
2353 * This function will move or add the input VSI to the target VSIG.
2354 * The function will find the original VSIG the VSI belongs to and
2355 * move the entry to the DEFAULT_VSIG, update the original VSIG and
2356 * then move entry to the new VSIG.
2357 */
2358static enum ice_status
2359ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2360{
2361	struct ice_vsig_vsi *tmp;
2362	enum ice_status status;
2363	u16 orig_vsig, idx;
 
2364
2365	idx = vsig & ICE_VSIG_IDX_M;
2366
2367	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2368		return ICE_ERR_PARAM;
2369
2370	/* if VSIG not in use and VSIG is not default type this VSIG
2371	 * doesn't exist.
2372	 */
2373	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2374	    vsig != ICE_DEFAULT_VSIG)
2375		return ICE_ERR_DOES_NOT_EXIST;
2376
2377	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2378	if (status)
2379		return status;
2380
2381	/* no update required if vsigs match */
2382	if (orig_vsig == vsig)
2383		return 0;
2384
2385	if (orig_vsig != ICE_DEFAULT_VSIG) {
2386		/* remove entry from orig_vsig and add to default VSIG */
2387		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2388		if (status)
2389			return status;
2390	}
2391
2392	if (idx == ICE_DEFAULT_VSIG)
2393		return 0;
2394
2395	/* Create VSI entry and add VSIG and prop_mask values */
2396	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2397	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2398
2399	/* Add new entry to the head of the VSIG list */
2400	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2401	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2402		&hw->blk[blk].xlt2.vsis[vsi];
2403	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2404	hw->blk[blk].xlt2.t[vsi] = vsig;
2405
2406	return 0;
2407}
2408
2409/**
2410 * ice_find_prof_id - find profile ID for a given field vector
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411 * @hw: pointer to the hardware structure
2412 * @blk: HW block
2413 * @fv: field vector to search for
 
2414 * @prof_id: receives the profile ID
2415 */
2416static enum ice_status
2417ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
2418		 struct ice_fv_word *fv, u8 *prof_id)
2419{
2420	struct ice_es *es = &hw->blk[blk].es;
2421	u16 off;
2422	u8 i;
2423
2424	/* For FD, we don't want to re-use a existed profile with the same
2425	 * field vector and mask. This will cause rule interference.
2426	 */
2427	if (blk == ICE_BLK_FD)
2428		return ICE_ERR_DOES_NOT_EXIST;
2429
2430	for (i = 0; i < (u8)es->count; i++) {
2431		off = i * es->fvw;
2432
2433		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2434			continue;
2435
 
 
 
 
2436		*prof_id = i;
2437		return 0;
2438	}
2439
2440	return ICE_ERR_DOES_NOT_EXIST;
2441}
2442
2443/**
2444 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2445 * @blk: the block type
2446 * @rsrc_type: pointer to variable to receive the resource type
2447 */
2448static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2449{
2450	switch (blk) {
2451	case ICE_BLK_FD:
2452		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2453		break;
2454	case ICE_BLK_RSS:
2455		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2456		break;
2457	default:
2458		return false;
2459	}
2460	return true;
2461}
2462
2463/**
2464 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2465 * @blk: the block type
2466 * @rsrc_type: pointer to variable to receive the resource type
2467 */
2468static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2469{
2470	switch (blk) {
2471	case ICE_BLK_FD:
2472		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2473		break;
2474	case ICE_BLK_RSS:
2475		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2476		break;
2477	default:
2478		return false;
2479	}
2480	return true;
2481}
2482
2483/**
2484 * ice_alloc_tcam_ent - allocate hardware TCAM entry
2485 * @hw: pointer to the HW struct
2486 * @blk: the block to allocate the TCAM for
 
2487 * @tcam_idx: pointer to variable to receive the TCAM entry
2488 *
2489 * This function allocates a new entry in a Profile ID TCAM for a specific
2490 * block.
2491 */
2492static enum ice_status
2493ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx)
 
2494{
2495	u16 res_type;
2496
2497	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2498		return ICE_ERR_PARAM;
2499
2500	return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx);
2501}
2502
2503/**
2504 * ice_free_tcam_ent - free hardware TCAM entry
2505 * @hw: pointer to the HW struct
2506 * @blk: the block from which to free the TCAM entry
2507 * @tcam_idx: the TCAM entry to free
2508 *
2509 * This function frees an entry in a Profile ID TCAM for a specific block.
2510 */
2511static enum ice_status
2512ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2513{
2514	u16 res_type;
2515
2516	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2517		return ICE_ERR_PARAM;
2518
2519	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2520}
2521
2522/**
2523 * ice_alloc_prof_id - allocate profile ID
2524 * @hw: pointer to the HW struct
2525 * @blk: the block to allocate the profile ID for
2526 * @prof_id: pointer to variable to receive the profile ID
2527 *
2528 * This function allocates a new profile ID, which also corresponds to a Field
2529 * Vector (Extraction Sequence) entry.
2530 */
2531static enum ice_status
2532ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2533{
2534	enum ice_status status;
2535	u16 res_type;
2536	u16 get_prof;
 
2537
2538	if (!ice_prof_id_rsrc_type(blk, &res_type))
2539		return ICE_ERR_PARAM;
2540
2541	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2542	if (!status)
2543		*prof_id = (u8)get_prof;
2544
2545	return status;
2546}
2547
2548/**
2549 * ice_free_prof_id - free profile ID
2550 * @hw: pointer to the HW struct
2551 * @blk: the block from which to free the profile ID
2552 * @prof_id: the profile ID to free
2553 *
2554 * This function frees a profile ID, which also corresponds to a Field Vector.
2555 */
2556static enum ice_status
2557ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2558{
2559	u16 tmp_prof_id = (u16)prof_id;
2560	u16 res_type;
2561
2562	if (!ice_prof_id_rsrc_type(blk, &res_type))
2563		return ICE_ERR_PARAM;
2564
2565	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2566}
2567
2568/**
2569 * ice_prof_inc_ref - increment reference count for profile
2570 * @hw: pointer to the HW struct
2571 * @blk: the block from which to free the profile ID
2572 * @prof_id: the profile ID for which to increment the reference count
2573 */
2574static enum ice_status
2575ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2576{
2577	if (prof_id > hw->blk[blk].es.count)
2578		return ICE_ERR_PARAM;
2579
2580	hw->blk[blk].es.ref_count[prof_id]++;
2581
2582	return 0;
2583}
2584
2585/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586 * ice_write_es - write an extraction sequence to hardware
2587 * @hw: pointer to the HW struct
2588 * @blk: the block in which to write the extraction sequence
2589 * @prof_id: the profile ID to write
2590 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2591 */
2592static void
2593ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2594	     struct ice_fv_word *fv)
2595{
2596	u16 off;
2597
2598	off = prof_id * hw->blk[blk].es.fvw;
2599	if (!fv) {
2600		memset(&hw->blk[blk].es.t[off], 0,
2601		       hw->blk[blk].es.fvw * sizeof(*fv));
2602		hw->blk[blk].es.written[prof_id] = false;
2603	} else {
2604		memcpy(&hw->blk[blk].es.t[off], fv,
2605		       hw->blk[blk].es.fvw * sizeof(*fv));
2606	}
2607}
2608
2609/**
2610 * ice_prof_dec_ref - decrement reference count for profile
2611 * @hw: pointer to the HW struct
2612 * @blk: the block from which to free the profile ID
2613 * @prof_id: the profile ID for which to decrement the reference count
2614 */
2615static enum ice_status
2616ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2617{
2618	if (prof_id > hw->blk[blk].es.count)
2619		return ICE_ERR_PARAM;
2620
2621	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2622		if (!--hw->blk[blk].es.ref_count[prof_id]) {
2623			ice_write_es(hw, blk, prof_id, NULL);
 
2624			return ice_free_prof_id(hw, blk, prof_id);
2625		}
2626	}
2627
2628	return 0;
2629}
2630
2631/* Block / table section IDs */
2632static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2633	/* SWITCH */
2634	{	ICE_SID_XLT1_SW,
2635		ICE_SID_XLT2_SW,
2636		ICE_SID_PROFID_TCAM_SW,
2637		ICE_SID_PROFID_REDIR_SW,
2638		ICE_SID_FLD_VEC_SW
2639	},
2640
2641	/* ACL */
2642	{	ICE_SID_XLT1_ACL,
2643		ICE_SID_XLT2_ACL,
2644		ICE_SID_PROFID_TCAM_ACL,
2645		ICE_SID_PROFID_REDIR_ACL,
2646		ICE_SID_FLD_VEC_ACL
2647	},
2648
2649	/* FD */
2650	{	ICE_SID_XLT1_FD,
2651		ICE_SID_XLT2_FD,
2652		ICE_SID_PROFID_TCAM_FD,
2653		ICE_SID_PROFID_REDIR_FD,
2654		ICE_SID_FLD_VEC_FD
2655	},
2656
2657	/* RSS */
2658	{	ICE_SID_XLT1_RSS,
2659		ICE_SID_XLT2_RSS,
2660		ICE_SID_PROFID_TCAM_RSS,
2661		ICE_SID_PROFID_REDIR_RSS,
2662		ICE_SID_FLD_VEC_RSS
2663	},
2664
2665	/* PE */
2666	{	ICE_SID_XLT1_PE,
2667		ICE_SID_XLT2_PE,
2668		ICE_SID_PROFID_TCAM_PE,
2669		ICE_SID_PROFID_REDIR_PE,
2670		ICE_SID_FLD_VEC_PE
2671	}
2672};
2673
2674/**
2675 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
2676 * @hw: pointer to the hardware structure
2677 * @blk: the HW block to initialize
2678 */
2679static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
2680{
2681	u16 pt;
2682
2683	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
2684		u8 ptg;
2685
2686		ptg = hw->blk[blk].xlt1.t[pt];
2687		if (ptg != ICE_DEFAULT_PTG) {
2688			ice_ptg_alloc_val(hw, blk, ptg);
2689			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
2690		}
2691	}
2692}
2693
2694/**
2695 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
2696 * @hw: pointer to the hardware structure
2697 * @blk: the HW block to initialize
2698 */
2699static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
2700{
2701	u16 vsi;
2702
2703	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
2704		u16 vsig;
2705
2706		vsig = hw->blk[blk].xlt2.t[vsi];
2707		if (vsig) {
2708			ice_vsig_alloc_val(hw, blk, vsig);
2709			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
2710			/* no changes at this time, since this has been
2711			 * initialized from the original package
2712			 */
2713			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2714		}
2715	}
2716}
2717
2718/**
2719 * ice_init_sw_db - init software database from HW tables
2720 * @hw: pointer to the hardware structure
2721 */
2722static void ice_init_sw_db(struct ice_hw *hw)
2723{
2724	u16 i;
2725
2726	for (i = 0; i < ICE_BLK_COUNT; i++) {
2727		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
2728		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
2729	}
2730}
2731
2732/**
2733 * ice_fill_tbl - Reads content of a single table type into database
2734 * @hw: pointer to the hardware structure
2735 * @block_id: Block ID of the table to copy
2736 * @sid: Section ID of the table to copy
2737 *
2738 * Will attempt to read the entire content of a given table of a single block
2739 * into the driver database. We assume that the buffer will always
2740 * be as large or larger than the data contained in the package. If
2741 * this condition is not met, there is most likely an error in the package
2742 * contents.
2743 */
2744static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
2745{
2746	u32 dst_len, sect_len, offset = 0;
2747	struct ice_prof_redir_section *pr;
2748	struct ice_prof_id_section *pid;
2749	struct ice_xlt1_section *xlt1;
2750	struct ice_xlt2_section *xlt2;
2751	struct ice_sw_fv_section *es;
2752	struct ice_pkg_enum state;
2753	u8 *src, *dst;
2754	void *sect;
2755
2756	/* if the HW segment pointer is null then the first iteration of
2757	 * ice_pkg_enum_section() will fail. In this case the HW tables will
2758	 * not be filled and return success.
2759	 */
2760	if (!hw->seg) {
2761		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
2762		return;
2763	}
2764
2765	memset(&state, 0, sizeof(state));
2766
2767	sect = ice_pkg_enum_section(hw->seg, &state, sid);
2768
2769	while (sect) {
2770		switch (sid) {
2771		case ICE_SID_XLT1_SW:
2772		case ICE_SID_XLT1_FD:
2773		case ICE_SID_XLT1_RSS:
2774		case ICE_SID_XLT1_ACL:
2775		case ICE_SID_XLT1_PE:
2776			xlt1 = (struct ice_xlt1_section *)sect;
2777			src = xlt1->value;
2778			sect_len = le16_to_cpu(xlt1->count) *
2779				sizeof(*hw->blk[block_id].xlt1.t);
2780			dst = hw->blk[block_id].xlt1.t;
2781			dst_len = hw->blk[block_id].xlt1.count *
2782				sizeof(*hw->blk[block_id].xlt1.t);
2783			break;
2784		case ICE_SID_XLT2_SW:
2785		case ICE_SID_XLT2_FD:
2786		case ICE_SID_XLT2_RSS:
2787		case ICE_SID_XLT2_ACL:
2788		case ICE_SID_XLT2_PE:
2789			xlt2 = (struct ice_xlt2_section *)sect;
2790			src = (__force u8 *)xlt2->value;
2791			sect_len = le16_to_cpu(xlt2->count) *
2792				sizeof(*hw->blk[block_id].xlt2.t);
2793			dst = (u8 *)hw->blk[block_id].xlt2.t;
2794			dst_len = hw->blk[block_id].xlt2.count *
2795				sizeof(*hw->blk[block_id].xlt2.t);
2796			break;
2797		case ICE_SID_PROFID_TCAM_SW:
2798		case ICE_SID_PROFID_TCAM_FD:
2799		case ICE_SID_PROFID_TCAM_RSS:
2800		case ICE_SID_PROFID_TCAM_ACL:
2801		case ICE_SID_PROFID_TCAM_PE:
2802			pid = (struct ice_prof_id_section *)sect;
2803			src = (u8 *)pid->entry;
2804			sect_len = le16_to_cpu(pid->count) *
2805				sizeof(*hw->blk[block_id].prof.t);
2806			dst = (u8 *)hw->blk[block_id].prof.t;
2807			dst_len = hw->blk[block_id].prof.count *
2808				sizeof(*hw->blk[block_id].prof.t);
2809			break;
2810		case ICE_SID_PROFID_REDIR_SW:
2811		case ICE_SID_PROFID_REDIR_FD:
2812		case ICE_SID_PROFID_REDIR_RSS:
2813		case ICE_SID_PROFID_REDIR_ACL:
2814		case ICE_SID_PROFID_REDIR_PE:
2815			pr = (struct ice_prof_redir_section *)sect;
2816			src = pr->redir_value;
2817			sect_len = le16_to_cpu(pr->count) *
2818				sizeof(*hw->blk[block_id].prof_redir.t);
2819			dst = hw->blk[block_id].prof_redir.t;
2820			dst_len = hw->blk[block_id].prof_redir.count *
2821				sizeof(*hw->blk[block_id].prof_redir.t);
2822			break;
2823		case ICE_SID_FLD_VEC_SW:
2824		case ICE_SID_FLD_VEC_FD:
2825		case ICE_SID_FLD_VEC_RSS:
2826		case ICE_SID_FLD_VEC_ACL:
2827		case ICE_SID_FLD_VEC_PE:
2828			es = (struct ice_sw_fv_section *)sect;
2829			src = (u8 *)es->fv;
2830			sect_len = (u32)(le16_to_cpu(es->count) *
2831					 hw->blk[block_id].es.fvw) *
2832				sizeof(*hw->blk[block_id].es.t);
2833			dst = (u8 *)hw->blk[block_id].es.t;
2834			dst_len = (u32)(hw->blk[block_id].es.count *
2835					hw->blk[block_id].es.fvw) *
2836				sizeof(*hw->blk[block_id].es.t);
2837			break;
2838		default:
2839			return;
2840		}
2841
2842		/* if the section offset exceeds destination length, terminate
2843		 * table fill.
2844		 */
2845		if (offset > dst_len)
2846			return;
2847
2848		/* if the sum of section size and offset exceed destination size
2849		 * then we are out of bounds of the HW table size for that PF.
2850		 * Changing section length to fill the remaining table space
2851		 * of that PF.
2852		 */
2853		if ((offset + sect_len) > dst_len)
2854			sect_len = dst_len - offset;
2855
2856		memcpy(dst + offset, src, sect_len);
2857		offset += sect_len;
2858		sect = ice_pkg_enum_section(NULL, &state, sid);
2859	}
2860}
2861
2862/**
2863 * ice_fill_blk_tbls - Read package context for tables
2864 * @hw: pointer to the hardware structure
2865 *
2866 * Reads the current package contents and populates the driver
2867 * database with the data iteratively for all advanced feature
2868 * blocks. Assume that the HW tables have been allocated.
2869 */
2870void ice_fill_blk_tbls(struct ice_hw *hw)
2871{
2872	u8 i;
2873
2874	for (i = 0; i < ICE_BLK_COUNT; i++) {
2875		enum ice_block blk_id = (enum ice_block)i;
2876
2877		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2878		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2879		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2880		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2881		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2882	}
2883
2884	ice_init_sw_db(hw);
2885}
2886
2887/**
2888 * ice_free_prof_map - free profile map
2889 * @hw: pointer to the hardware structure
2890 * @blk_idx: HW block index
2891 */
2892static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2893{
2894	struct ice_es *es = &hw->blk[blk_idx].es;
2895	struct ice_prof_map *del, *tmp;
2896
2897	mutex_lock(&es->prof_map_lock);
2898	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2899		list_del(&del->list);
2900		devm_kfree(ice_hw_to_dev(hw), del);
2901	}
2902	INIT_LIST_HEAD(&es->prof_map);
2903	mutex_unlock(&es->prof_map_lock);
2904}
2905
2906/**
2907 * ice_free_flow_profs - free flow profile entries
2908 * @hw: pointer to the hardware structure
2909 * @blk_idx: HW block index
2910 */
2911static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2912{
2913	struct ice_flow_prof *p, *tmp;
2914
2915	mutex_lock(&hw->fl_profs_locks[blk_idx]);
2916	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2917		struct ice_flow_entry *e, *t;
2918
2919		list_for_each_entry_safe(e, t, &p->entries, l_entry)
2920			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2921					   ICE_FLOW_ENTRY_HNDL(e));
2922
2923		list_del(&p->l_entry);
2924
2925		mutex_destroy(&p->entries_lock);
2926		devm_kfree(ice_hw_to_dev(hw), p);
2927	}
2928	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2929
2930	/* if driver is in reset and tables are being cleared
2931	 * re-initialize the flow profile list heads
2932	 */
2933	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2934}
2935
2936/**
2937 * ice_free_vsig_tbl - free complete VSIG table entries
2938 * @hw: pointer to the hardware structure
2939 * @blk: the HW block on which to free the VSIG table entries
2940 */
2941static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2942{
2943	u16 i;
2944
2945	if (!hw->blk[blk].xlt2.vsig_tbl)
2946		return;
2947
2948	for (i = 1; i < ICE_MAX_VSIGS; i++)
2949		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2950			ice_vsig_free(hw, blk, i);
2951}
2952
2953/**
2954 * ice_free_hw_tbls - free hardware table memory
2955 * @hw: pointer to the hardware structure
2956 */
2957void ice_free_hw_tbls(struct ice_hw *hw)
2958{
2959	struct ice_rss_cfg *r, *rt;
2960	u8 i;
2961
2962	for (i = 0; i < ICE_BLK_COUNT; i++) {
2963		if (hw->blk[i].is_list_init) {
2964			struct ice_es *es = &hw->blk[i].es;
2965
2966			ice_free_prof_map(hw, i);
2967			mutex_destroy(&es->prof_map_lock);
2968
2969			ice_free_flow_profs(hw, i);
2970			mutex_destroy(&hw->fl_profs_locks[i]);
2971
2972			hw->blk[i].is_list_init = false;
2973		}
2974		ice_free_vsig_tbl(hw, (enum ice_block)i);
2975		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2976		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2977		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2978		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2979		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2980		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2981		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2982		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2983		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2984		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2985		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
 
2986	}
2987
2988	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2989		list_del(&r->l_entry);
2990		devm_kfree(ice_hw_to_dev(hw), r);
2991	}
2992	mutex_destroy(&hw->rss_locks);
 
2993	memset(hw->blk, 0, sizeof(hw->blk));
2994}
2995
2996/**
2997 * ice_init_flow_profs - init flow profile locks and list heads
2998 * @hw: pointer to the hardware structure
2999 * @blk_idx: HW block index
3000 */
3001static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3002{
3003	mutex_init(&hw->fl_profs_locks[blk_idx]);
3004	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3005}
3006
3007/**
3008 * ice_clear_hw_tbls - clear HW tables and flow profiles
3009 * @hw: pointer to the hardware structure
3010 */
3011void ice_clear_hw_tbls(struct ice_hw *hw)
3012{
3013	u8 i;
3014
3015	for (i = 0; i < ICE_BLK_COUNT; i++) {
3016		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3017		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3018		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3019		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3020		struct ice_es *es = &hw->blk[i].es;
3021
3022		if (hw->blk[i].is_list_init) {
3023			ice_free_prof_map(hw, i);
3024			ice_free_flow_profs(hw, i);
3025		}
3026
3027		ice_free_vsig_tbl(hw, (enum ice_block)i);
3028
3029		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
3030		memset(xlt1->ptg_tbl, 0,
3031		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
3032		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
3033
3034		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
3035		memset(xlt2->vsig_tbl, 0,
3036		       xlt2->count * sizeof(*xlt2->vsig_tbl));
3037		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
3038
3039		memset(prof->t, 0, prof->count * sizeof(*prof->t));
3040		memset(prof_redir->t, 0,
3041		       prof_redir->count * sizeof(*prof_redir->t));
3042
3043		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
3044		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
3045		memset(es->written, 0, es->count * sizeof(*es->written));
 
3046	}
3047}
3048
3049/**
3050 * ice_init_hw_tbls - init hardware table memory
3051 * @hw: pointer to the hardware structure
3052 */
3053enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3054{
3055	u8 i;
3056
3057	mutex_init(&hw->rss_locks);
3058	INIT_LIST_HEAD(&hw->rss_list_head);
 
3059	for (i = 0; i < ICE_BLK_COUNT; i++) {
3060		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3061		struct ice_prof_tcam *prof = &hw->blk[i].prof;
3062		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3063		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3064		struct ice_es *es = &hw->blk[i].es;
3065		u16 j;
3066
3067		if (hw->blk[i].is_list_init)
3068			continue;
3069
3070		ice_init_flow_profs(hw, i);
3071		mutex_init(&es->prof_map_lock);
3072		INIT_LIST_HEAD(&es->prof_map);
3073		hw->blk[i].is_list_init = true;
3074
3075		hw->blk[i].overwrite = blk_sizes[i].overwrite;
3076		es->reverse = blk_sizes[i].reverse;
3077
3078		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3079		xlt1->count = blk_sizes[i].xlt1;
3080
3081		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3082					    sizeof(*xlt1->ptypes), GFP_KERNEL);
3083
3084		if (!xlt1->ptypes)
3085			goto err;
3086
3087		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
3088					     sizeof(*xlt1->ptg_tbl),
3089					     GFP_KERNEL);
3090
3091		if (!xlt1->ptg_tbl)
3092			goto err;
3093
3094		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3095				       sizeof(*xlt1->t), GFP_KERNEL);
3096		if (!xlt1->t)
3097			goto err;
3098
3099		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3100		xlt2->count = blk_sizes[i].xlt2;
3101
3102		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3103					  sizeof(*xlt2->vsis), GFP_KERNEL);
3104
3105		if (!xlt2->vsis)
3106			goto err;
3107
3108		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3109					      sizeof(*xlt2->vsig_tbl),
3110					      GFP_KERNEL);
3111		if (!xlt2->vsig_tbl)
3112			goto err;
3113
3114		for (j = 0; j < xlt2->count; j++)
3115			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3116
3117		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3118				       sizeof(*xlt2->t), GFP_KERNEL);
3119		if (!xlt2->t)
3120			goto err;
3121
3122		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3123		prof->count = blk_sizes[i].prof_tcam;
3124		prof->max_prof_id = blk_sizes[i].prof_id;
3125		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3126		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
3127				       sizeof(*prof->t), GFP_KERNEL);
3128
3129		if (!prof->t)
3130			goto err;
3131
3132		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3133		prof_redir->count = blk_sizes[i].prof_redir;
3134		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
3135					     prof_redir->count,
3136					     sizeof(*prof_redir->t),
3137					     GFP_KERNEL);
3138
3139		if (!prof_redir->t)
3140			goto err;
3141
3142		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3143		es->count = blk_sizes[i].es;
3144		es->fvw = blk_sizes[i].fvw;
3145		es->t = devm_kcalloc(ice_hw_to_dev(hw),
3146				     (u32)(es->count * es->fvw),
3147				     sizeof(*es->t), GFP_KERNEL);
3148		if (!es->t)
3149			goto err;
3150
3151		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3152					     sizeof(*es->ref_count),
3153					     GFP_KERNEL);
3154		if (!es->ref_count)
3155			goto err;
3156
3157		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3158					   sizeof(*es->written), GFP_KERNEL);
3159		if (!es->written)
3160			goto err;
 
 
 
 
 
3161	}
3162	return 0;
3163
3164err:
3165	ice_free_hw_tbls(hw);
3166	return ICE_ERR_NO_MEMORY;
3167}
3168
3169/**
3170 * ice_prof_gen_key - generate profile ID key
3171 * @hw: pointer to the HW struct
3172 * @blk: the block in which to write profile ID to
3173 * @ptg: packet type group (PTG) portion of key
3174 * @vsig: VSIG portion of key
3175 * @cdid: CDID portion of key
3176 * @flags: flag portion of key
3177 * @vl_msk: valid mask
3178 * @dc_msk: don't care mask
3179 * @nm_msk: never match mask
3180 * @key: output of profile ID key
3181 */
3182static enum ice_status
3183ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3184		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3185		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3186		 u8 key[ICE_TCAM_KEY_SZ])
3187{
3188	struct ice_prof_id_key inkey;
3189
3190	inkey.xlt1 = ptg;
3191	inkey.xlt2_cdid = cpu_to_le16(vsig);
3192	inkey.flags = cpu_to_le16(flags);
3193
3194	switch (hw->blk[blk].prof.cdid_bits) {
3195	case 0:
3196		break;
3197	case 2:
3198#define ICE_CD_2_M 0xC000U
3199#define ICE_CD_2_S 14
3200		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
3201		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
3202		break;
3203	case 4:
3204#define ICE_CD_4_M 0xF000U
3205#define ICE_CD_4_S 12
3206		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
3207		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
3208		break;
3209	case 8:
3210#define ICE_CD_8_M 0xFF00U
3211#define ICE_CD_8_S 16
3212		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
3213		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
3214		break;
3215	default:
3216		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3217		break;
3218	}
3219
3220	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3221			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3222}
3223
3224/**
3225 * ice_tcam_write_entry - write TCAM entry
3226 * @hw: pointer to the HW struct
3227 * @blk: the block in which to write profile ID to
3228 * @idx: the entry index to write to
3229 * @prof_id: profile ID
3230 * @ptg: packet type group (PTG) portion of key
3231 * @vsig: VSIG portion of key
3232 * @cdid: CDID portion of key
3233 * @flags: flag portion of key
3234 * @vl_msk: valid mask
3235 * @dc_msk: don't care mask
3236 * @nm_msk: never match mask
3237 */
3238static enum ice_status
3239ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3240		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3241		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3242		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3243		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3244{
3245	struct ice_prof_tcam_entry;
3246	enum ice_status status;
3247
3248	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3249				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3250	if (!status) {
3251		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
3252		hw->blk[blk].prof.t[idx].prof_id = prof_id;
3253	}
3254
3255	return status;
3256}
3257
3258/**
3259 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3260 * @hw: pointer to the hardware structure
3261 * @blk: HW block
3262 * @vsig: VSIG to query
3263 * @refs: pointer to variable to receive the reference count
3264 */
3265static enum ice_status
3266ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3267{
3268	u16 idx = vsig & ICE_VSIG_IDX_M;
3269	struct ice_vsig_vsi *ptr;
3270
3271	*refs = 0;
3272
3273	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3274		return ICE_ERR_DOES_NOT_EXIST;
3275
3276	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3277	while (ptr) {
3278		(*refs)++;
3279		ptr = ptr->next_vsi;
3280	}
3281
3282	return 0;
3283}
3284
3285/**
3286 * ice_has_prof_vsig - check to see if VSIG has a specific profile
3287 * @hw: pointer to the hardware structure
3288 * @blk: HW block
3289 * @vsig: VSIG to check against
3290 * @hdl: profile handle
3291 */
3292static bool
3293ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3294{
3295	u16 idx = vsig & ICE_VSIG_IDX_M;
3296	struct ice_vsig_prof *ent;
3297
3298	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3299			    list)
3300		if (ent->profile_cookie == hdl)
3301			return true;
3302
3303	ice_debug(hw, ICE_DBG_INIT,
3304		  "Characteristic list for VSI group %d not found.\n",
3305		  vsig);
3306	return false;
3307}
3308
3309/**
3310 * ice_prof_bld_es - build profile ID extraction sequence changes
3311 * @hw: pointer to the HW struct
3312 * @blk: hardware block
3313 * @bld: the update package buffer build to add to
3314 * @chgs: the list of changes to make in hardware
3315 */
3316static enum ice_status
3317ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3318		struct ice_buf_build *bld, struct list_head *chgs)
3319{
3320	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3321	struct ice_chs_chg *tmp;
3322
3323	list_for_each_entry(tmp, chgs, list_entry)
3324		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3325			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3326			struct ice_pkg_es *p;
3327			u32 id;
3328
3329			id = ice_sect_id(blk, ICE_VEC_TBL);
3330			p = ice_pkg_buf_alloc_section(bld, id,
3331						      struct_size(p, es, 1) +
3332						      vec_size -
3333						      sizeof(p->es[0]));
3334
3335			if (!p)
3336				return ICE_ERR_MAX_LIMIT;
3337
3338			p->count = cpu_to_le16(1);
3339			p->offset = cpu_to_le16(tmp->prof_id);
3340
3341			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
3342		}
3343
3344	return 0;
3345}
3346
3347/**
3348 * ice_prof_bld_tcam - build profile ID TCAM changes
3349 * @hw: pointer to the HW struct
3350 * @blk: hardware block
3351 * @bld: the update package buffer build to add to
3352 * @chgs: the list of changes to make in hardware
3353 */
3354static enum ice_status
3355ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3356		  struct ice_buf_build *bld, struct list_head *chgs)
3357{
3358	struct ice_chs_chg *tmp;
3359
3360	list_for_each_entry(tmp, chgs, list_entry)
3361		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3362			struct ice_prof_id_section *p;
3363			u32 id;
3364
3365			id = ice_sect_id(blk, ICE_PROF_TCAM);
3366			p = ice_pkg_buf_alloc_section(bld, id,
3367						      struct_size(p, entry, 1));
3368
3369			if (!p)
3370				return ICE_ERR_MAX_LIMIT;
3371
3372			p->count = cpu_to_le16(1);
3373			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
3374			p->entry[0].prof_id = tmp->prof_id;
3375
3376			memcpy(p->entry[0].key,
3377			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3378			       sizeof(hw->blk[blk].prof.t->key));
3379		}
3380
3381	return 0;
3382}
3383
3384/**
3385 * ice_prof_bld_xlt1 - build XLT1 changes
3386 * @blk: hardware block
3387 * @bld: the update package buffer build to add to
3388 * @chgs: the list of changes to make in hardware
3389 */
3390static enum ice_status
3391ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3392		  struct list_head *chgs)
3393{
3394	struct ice_chs_chg *tmp;
3395
3396	list_for_each_entry(tmp, chgs, list_entry)
3397		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3398			struct ice_xlt1_section *p;
3399			u32 id;
3400
3401			id = ice_sect_id(blk, ICE_XLT1);
3402			p = ice_pkg_buf_alloc_section(bld, id,
3403						      struct_size(p, value, 1));
3404
3405			if (!p)
3406				return ICE_ERR_MAX_LIMIT;
3407
3408			p->count = cpu_to_le16(1);
3409			p->offset = cpu_to_le16(tmp->ptype);
3410			p->value[0] = tmp->ptg;
3411		}
3412
3413	return 0;
3414}
3415
3416/**
3417 * ice_prof_bld_xlt2 - build XLT2 changes
3418 * @blk: hardware block
3419 * @bld: the update package buffer build to add to
3420 * @chgs: the list of changes to make in hardware
3421 */
3422static enum ice_status
3423ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3424		  struct list_head *chgs)
3425{
3426	struct ice_chs_chg *tmp;
3427
3428	list_for_each_entry(tmp, chgs, list_entry) {
3429		struct ice_xlt2_section *p;
3430		u32 id;
3431
3432		switch (tmp->type) {
3433		case ICE_VSIG_ADD:
3434		case ICE_VSI_MOVE:
3435		case ICE_VSIG_REM:
3436			id = ice_sect_id(blk, ICE_XLT2);
3437			p = ice_pkg_buf_alloc_section(bld, id,
3438						      struct_size(p, value, 1));
3439
3440			if (!p)
3441				return ICE_ERR_MAX_LIMIT;
3442
3443			p->count = cpu_to_le16(1);
3444			p->offset = cpu_to_le16(tmp->vsi);
3445			p->value[0] = cpu_to_le16(tmp->vsig);
3446			break;
3447		default:
3448			break;
3449		}
3450	}
3451
3452	return 0;
3453}
3454
3455/**
3456 * ice_upd_prof_hw - update hardware using the change list
3457 * @hw: pointer to the HW struct
3458 * @blk: hardware block
3459 * @chgs: the list of changes to make in hardware
3460 */
3461static enum ice_status
3462ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3463		struct list_head *chgs)
3464{
3465	struct ice_buf_build *b;
3466	struct ice_chs_chg *tmp;
3467	enum ice_status status;
3468	u16 pkg_sects;
3469	u16 xlt1 = 0;
3470	u16 xlt2 = 0;
3471	u16 tcam = 0;
3472	u16 es = 0;
 
3473	u16 sects;
3474
3475	/* count number of sections we need */
3476	list_for_each_entry(tmp, chgs, list_entry) {
3477		switch (tmp->type) {
3478		case ICE_PTG_ES_ADD:
3479			if (tmp->add_ptg)
3480				xlt1++;
3481			if (tmp->add_prof)
3482				es++;
3483			break;
3484		case ICE_TCAM_ADD:
3485			tcam++;
3486			break;
3487		case ICE_VSIG_ADD:
3488		case ICE_VSI_MOVE:
3489		case ICE_VSIG_REM:
3490			xlt2++;
3491			break;
3492		default:
3493			break;
3494		}
3495	}
3496	sects = xlt1 + xlt2 + tcam + es;
3497
3498	if (!sects)
3499		return 0;
3500
3501	/* Build update package buffer */
3502	b = ice_pkg_buf_alloc(hw);
3503	if (!b)
3504		return ICE_ERR_NO_MEMORY;
3505
3506	status = ice_pkg_buf_reserve_section(b, sects);
3507	if (status)
3508		goto error_tmp;
3509
3510	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
3511	if (es) {
3512		status = ice_prof_bld_es(hw, blk, b, chgs);
3513		if (status)
3514			goto error_tmp;
3515	}
3516
3517	if (tcam) {
3518		status = ice_prof_bld_tcam(hw, blk, b, chgs);
3519		if (status)
3520			goto error_tmp;
3521	}
3522
3523	if (xlt1) {
3524		status = ice_prof_bld_xlt1(blk, b, chgs);
3525		if (status)
3526			goto error_tmp;
3527	}
3528
3529	if (xlt2) {
3530		status = ice_prof_bld_xlt2(blk, b, chgs);
3531		if (status)
3532			goto error_tmp;
3533	}
3534
3535	/* After package buffer build check if the section count in buffer is
3536	 * non-zero and matches the number of sections detected for package
3537	 * update.
3538	 */
3539	pkg_sects = ice_pkg_buf_get_active_sections(b);
3540	if (!pkg_sects || pkg_sects != sects) {
3541		status = ICE_ERR_INVAL_SIZE;
3542		goto error_tmp;
3543	}
3544
3545	/* update package */
3546	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3547	if (status == ICE_ERR_AQ_ERROR)
3548		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
3549
3550error_tmp:
3551	ice_pkg_buf_free(hw, b);
3552	return status;
3553}
3554
3555/**
3556 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3557 * @hw: pointer to the HW struct
3558 * @prof_id: profile ID
3559 * @mask_sel: mask select
3560 *
3561 * This function enable any of the masks selected by the mask select parameter
3562 * for the profile specified.
3563 */
3564static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3565{
3566	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3567
3568	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3569		  GLQF_FDMASK_SEL(prof_id), mask_sel);
3570}
3571
3572struct ice_fd_src_dst_pair {
3573	u8 prot_id;
3574	u8 count;
3575	u16 off;
3576};
3577
3578static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3579	/* These are defined in pairs */
3580	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3581	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3582
3583	{ ICE_PROT_IPV4_IL, 2, 12 },
3584	{ ICE_PROT_IPV4_IL, 2, 16 },
3585
3586	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3587	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3588
3589	{ ICE_PROT_IPV6_IL, 8, 8 },
3590	{ ICE_PROT_IPV6_IL, 8, 24 },
3591
3592	{ ICE_PROT_TCP_IL, 1, 0 },
3593	{ ICE_PROT_TCP_IL, 1, 2 },
3594
3595	{ ICE_PROT_UDP_OF, 1, 0 },
3596	{ ICE_PROT_UDP_OF, 1, 2 },
3597
3598	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
3599	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
3600
3601	{ ICE_PROT_SCTP_IL, 1, 0 },
3602	{ ICE_PROT_SCTP_IL, 1, 2 }
3603};
3604
3605#define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
3606
3607/**
3608 * ice_update_fd_swap - set register appropriately for a FD FV extraction
3609 * @hw: pointer to the HW struct
3610 * @prof_id: profile ID
3611 * @es: extraction sequence (length of array is determined by the block)
3612 */
3613static enum ice_status
3614ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3615{
3616	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3617	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3618#define ICE_FD_FV_NOT_FOUND (-2)
3619	s8 first_free = ICE_FD_FV_NOT_FOUND;
3620	u8 used[ICE_MAX_FV_WORDS] = { 0 };
3621	s8 orig_free, si;
3622	u32 mask_sel = 0;
3623	u8 i, j, k;
3624
3625	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3626
3627	/* This code assumes that the Flow Director field vectors are assigned
3628	 * from the end of the FV indexes working towards the zero index, that
3629	 * only complete fields will be included and will be consecutive, and
3630	 * that there are no gaps between valid indexes.
3631	 */
3632
3633	/* Determine swap fields present */
3634	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3635		/* Find the first free entry, assuming right to left population.
3636		 * This is where we can start adding additional pairs if needed.
3637		 */
3638		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
3639		    ICE_PROT_INVALID)
3640			first_free = i - 1;
3641
3642		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3643			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
3644			    es[i].off == ice_fd_pairs[j].off) {
3645				set_bit(j, pair_list);
3646				pair_start[j] = i;
3647			}
3648	}
3649
3650	orig_free = first_free;
3651
3652	/* determine missing swap fields that need to be added */
3653	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
3654		u8 bit1 = test_bit(i + 1, pair_list);
3655		u8 bit0 = test_bit(i, pair_list);
3656
3657		if (bit0 ^ bit1) {
3658			u8 index;
3659
3660			/* add the appropriate 'paired' entry */
3661			if (!bit0)
3662				index = i;
3663			else
3664				index = i + 1;
3665
3666			/* check for room */
3667			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
3668				return ICE_ERR_MAX_LIMIT;
3669
3670			/* place in extraction sequence */
3671			for (k = 0; k < ice_fd_pairs[index].count; k++) {
3672				es[first_free - k].prot_id =
3673					ice_fd_pairs[index].prot_id;
3674				es[first_free - k].off =
3675					ice_fd_pairs[index].off + (k * 2);
3676
3677				if (k > first_free)
3678					return ICE_ERR_OUT_OF_RANGE;
3679
3680				/* keep track of non-relevant fields */
3681				mask_sel |= BIT(first_free - k);
3682			}
3683
3684			pair_start[index] = first_free;
3685			first_free -= ice_fd_pairs[index].count;
3686		}
3687	}
3688
3689	/* fill in the swap array */
3690	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
3691	while (si >= 0) {
3692		u8 indexes_used = 1;
3693
3694		/* assume flat at this index */
3695#define ICE_SWAP_VALID	0x80
3696		used[si] = si | ICE_SWAP_VALID;
3697
3698		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
3699			si -= indexes_used;
3700			continue;
3701		}
3702
3703		/* check for a swap location */
3704		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3705			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
3706			    es[si].off == ice_fd_pairs[j].off) {
3707				u8 idx;
3708
3709				/* determine the appropriate matching field */
3710				idx = j + ((j % 2) ? -1 : 1);
3711
3712				indexes_used = ice_fd_pairs[idx].count;
3713				for (k = 0; k < indexes_used; k++) {
3714					used[si - k] = (pair_start[idx] - k) |
3715						ICE_SWAP_VALID;
3716				}
3717
3718				break;
3719			}
3720
3721		si -= indexes_used;
3722	}
3723
3724	/* for each set of 4 swap and 4 inset indexes, write the appropriate
3725	 * register
3726	 */
3727	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
3728		u32 raw_swap = 0;
3729		u32 raw_in = 0;
3730
3731		for (k = 0; k < 4; k++) {
3732			u8 idx;
3733
3734			idx = (j * 4) + k;
3735			if (used[idx] && !(mask_sel & BIT(idx))) {
3736				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
3737#define ICE_INSET_DFLT 0x9f
3738				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
3739			}
3740		}
3741
3742		/* write the appropriate swap register set */
3743		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
3744
3745		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
3746			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
3747
3748		/* write the appropriate inset register set */
3749		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
3750
3751		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
3752			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
3753	}
3754
3755	/* initially clear the mask select for this profile */
3756	ice_update_fd_mask(hw, prof_id, 0);
3757
3758	return 0;
3759}
3760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3761/**
3762 * ice_add_prof - add profile
3763 * @hw: pointer to the HW struct
3764 * @blk: hardware block
3765 * @id: profile tracking ID
3766 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
 
 
3767 * @es: extraction sequence (length of array is determined by the block)
 
3768 *
3769 * This function registers a profile, which matches a set of PTGs with a
3770 * particular extraction sequence. While the hardware profile is allocated
3771 * it will not be written until the first call to ice_add_flow that specifies
3772 * the ID value used here.
3773 */
3774enum ice_status
3775ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3776	     struct ice_fv_word *es)
 
3777{
3778	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3779	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3780	struct ice_prof_map *prof;
3781	enum ice_status status;
3782	u8 byte = 0;
3783	u8 prof_id;
 
3784
3785	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3786
3787	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3788
3789	/* search for existing profile */
3790	status = ice_find_prof_id(hw, blk, es, &prof_id);
3791	if (status) {
3792		/* allocate profile ID */
3793		status = ice_alloc_prof_id(hw, blk, &prof_id);
3794		if (status)
3795			goto err_ice_add_prof;
3796		if (blk == ICE_BLK_FD) {
3797			/* For Flow Director block, the extraction sequence may
3798			 * need to be altered in the case where there are paired
3799			 * fields that have no match. This is necessary because
3800			 * for Flow Director, src and dest fields need to paired
3801			 * for filter programming and these values are swapped
3802			 * during Tx.
3803			 */
3804			status = ice_update_fd_swap(hw, prof_id, es);
3805			if (status)
3806				goto err_ice_add_prof;
3807		}
 
 
 
3808
3809		/* and write new es */
3810		ice_write_es(hw, blk, prof_id, es);
3811	}
3812
3813	ice_prof_inc_ref(hw, blk, prof_id);
3814
3815	/* add profile info */
3816	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3817	if (!prof) {
3818		status = ICE_ERR_NO_MEMORY;
3819		goto err_ice_add_prof;
3820	}
3821
3822	prof->profile_cookie = id;
3823	prof->prof_id = prof_id;
3824	prof->ptg_cnt = 0;
3825	prof->context = 0;
3826
3827	/* build list of ptgs */
3828	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3829		u8 bit;
3830
3831		if (!ptypes[byte]) {
3832			bytes--;
3833			byte++;
3834			continue;
3835		}
3836
3837		/* Examine 8 bits per byte */
3838		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3839				 BITS_PER_BYTE) {
3840			u16 ptype;
3841			u8 ptg;
3842			u8 m;
3843
3844			ptype = byte * BITS_PER_BYTE + bit;
3845
3846			/* The package should place all ptypes in a non-zero
3847			 * PTG, so the following call should never fail.
3848			 */
3849			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3850				continue;
3851
3852			/* If PTG is already added, skip and continue */
3853			if (test_bit(ptg, ptgs_used))
3854				continue;
3855
3856			set_bit(ptg, ptgs_used);
3857			prof->ptg[prof->ptg_cnt] = ptg;
3858
3859			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3860				break;
3861
3862			/* nothing left in byte, then exit */
3863			m = ~(u8)((1 << (bit + 1)) - 1);
3864			if (!(ptypes[byte] & m))
3865				break;
 
 
 
 
 
 
 
 
 
 
 
 
3866		}
3867
3868		bytes--;
3869		byte++;
3870	}
3871
3872	list_add(&prof->list, &hw->blk[blk].es.prof_map);
3873	status = 0;
3874
3875err_ice_add_prof:
3876	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3877	return status;
3878}
3879
3880/**
3881 * ice_search_prof_id - Search for a profile tracking ID
3882 * @hw: pointer to the HW struct
3883 * @blk: hardware block
3884 * @id: profile tracking ID
3885 *
3886 * This will search for a profile tracking ID which was previously added.
3887 * The profile map lock should be held before calling this function.
3888 */
3889static struct ice_prof_map *
3890ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3891{
3892	struct ice_prof_map *entry = NULL;
3893	struct ice_prof_map *map;
3894
3895	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3896		if (map->profile_cookie == id) {
3897			entry = map;
3898			break;
3899		}
3900
3901	return entry;
3902}
3903
3904/**
3905 * ice_vsig_prof_id_count - count profiles in a VSIG
3906 * @hw: pointer to the HW struct
3907 * @blk: hardware block
3908 * @vsig: VSIG to remove the profile from
3909 */
3910static u16
3911ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3912{
3913	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3914	struct ice_vsig_prof *p;
3915
3916	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3917			    list)
3918		count++;
3919
3920	return count;
3921}
3922
3923/**
3924 * ice_rel_tcam_idx - release a TCAM index
3925 * @hw: pointer to the HW struct
3926 * @blk: hardware block
3927 * @idx: the index to release
3928 */
3929static enum ice_status
3930ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3931{
3932	/* Masks to invoke a never match entry */
3933	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3934	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3935	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3936	enum ice_status status;
3937
3938	/* write the TCAM entry */
3939	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3940				      dc_msk, nm_msk);
3941	if (status)
3942		return status;
3943
3944	/* release the TCAM entry */
3945	status = ice_free_tcam_ent(hw, blk, idx);
3946
3947	return status;
3948}
3949
3950/**
3951 * ice_rem_prof_id - remove one profile from a VSIG
3952 * @hw: pointer to the HW struct
3953 * @blk: hardware block
3954 * @prof: pointer to profile structure to remove
3955 */
3956static enum ice_status
3957ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3958		struct ice_vsig_prof *prof)
3959{
3960	enum ice_status status;
3961	u16 i;
3962
3963	for (i = 0; i < prof->tcam_count; i++)
3964		if (prof->tcam[i].in_use) {
3965			prof->tcam[i].in_use = false;
3966			status = ice_rel_tcam_idx(hw, blk,
3967						  prof->tcam[i].tcam_idx);
3968			if (status)
3969				return ICE_ERR_HW_TABLE;
3970		}
3971
3972	return 0;
3973}
3974
3975/**
3976 * ice_rem_vsig - remove VSIG
3977 * @hw: pointer to the HW struct
3978 * @blk: hardware block
3979 * @vsig: the VSIG to remove
3980 * @chg: the change list
3981 */
3982static enum ice_status
3983ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3984	     struct list_head *chg)
3985{
3986	u16 idx = vsig & ICE_VSIG_IDX_M;
3987	struct ice_vsig_vsi *vsi_cur;
3988	struct ice_vsig_prof *d, *t;
3989	enum ice_status status;
3990
3991	/* remove TCAM entries */
3992	list_for_each_entry_safe(d, t,
3993				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3994				 list) {
3995		status = ice_rem_prof_id(hw, blk, d);
3996		if (status)
3997			return status;
3998
3999		list_del(&d->list);
4000		devm_kfree(ice_hw_to_dev(hw), d);
4001	}
4002
4003	/* Move all VSIS associated with this VSIG to the default VSIG */
4004	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4005	/* If the VSIG has at least 1 VSI then iterate through the list
4006	 * and remove the VSIs before deleting the group.
4007	 */
4008	if (vsi_cur)
4009		do {
4010			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4011			struct ice_chs_chg *p;
4012
4013			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4014					 GFP_KERNEL);
4015			if (!p)
4016				return ICE_ERR_NO_MEMORY;
4017
4018			p->type = ICE_VSIG_REM;
4019			p->orig_vsig = vsig;
4020			p->vsig = ICE_DEFAULT_VSIG;
4021			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4022
4023			list_add(&p->list_entry, chg);
4024
4025			vsi_cur = tmp;
4026		} while (vsi_cur);
4027
4028	return ice_vsig_free(hw, blk, vsig);
4029}
4030
4031/**
4032 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4033 * @hw: pointer to the HW struct
4034 * @blk: hardware block
4035 * @vsig: VSIG to remove the profile from
4036 * @hdl: profile handle indicating which profile to remove
4037 * @chg: list to receive a record of changes
4038 */
4039static enum ice_status
4040ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4041		     struct list_head *chg)
4042{
4043	u16 idx = vsig & ICE_VSIG_IDX_M;
4044	struct ice_vsig_prof *p, *t;
4045	enum ice_status status;
4046
4047	list_for_each_entry_safe(p, t,
4048				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4049				 list)
4050		if (p->profile_cookie == hdl) {
4051			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4052				/* this is the last profile, remove the VSIG */
4053				return ice_rem_vsig(hw, blk, vsig, chg);
4054
4055			status = ice_rem_prof_id(hw, blk, p);
4056			if (!status) {
4057				list_del(&p->list);
4058				devm_kfree(ice_hw_to_dev(hw), p);
4059			}
4060			return status;
4061		}
4062
4063	return ICE_ERR_DOES_NOT_EXIST;
4064}
4065
4066/**
4067 * ice_rem_flow_all - remove all flows with a particular profile
4068 * @hw: pointer to the HW struct
4069 * @blk: hardware block
4070 * @id: profile tracking ID
4071 */
4072static enum ice_status
4073ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4074{
4075	struct ice_chs_chg *del, *tmp;
4076	enum ice_status status;
4077	struct list_head chg;
 
4078	u16 i;
4079
4080	INIT_LIST_HEAD(&chg);
4081
4082	for (i = 1; i < ICE_MAX_VSIGS; i++)
4083		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4084			if (ice_has_prof_vsig(hw, blk, i, id)) {
4085				status = ice_rem_prof_id_vsig(hw, blk, i, id,
4086							      &chg);
4087				if (status)
4088					goto err_ice_rem_flow_all;
4089			}
4090		}
4091
4092	status = ice_upd_prof_hw(hw, blk, &chg);
4093
4094err_ice_rem_flow_all:
4095	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4096		list_del(&del->list_entry);
4097		devm_kfree(ice_hw_to_dev(hw), del);
4098	}
4099
4100	return status;
4101}
4102
4103/**
4104 * ice_rem_prof - remove profile
4105 * @hw: pointer to the HW struct
4106 * @blk: hardware block
4107 * @id: profile tracking ID
4108 *
4109 * This will remove the profile specified by the ID parameter, which was
4110 * previously created through ice_add_prof. If any existing entries
4111 * are associated with this profile, they will be removed as well.
4112 */
4113enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4114{
4115	struct ice_prof_map *pmap;
4116	enum ice_status status;
4117
4118	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4119
4120	pmap = ice_search_prof_id(hw, blk, id);
4121	if (!pmap) {
4122		status = ICE_ERR_DOES_NOT_EXIST;
4123		goto err_ice_rem_prof;
4124	}
4125
4126	/* remove all flows with this profile */
4127	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4128	if (status)
4129		goto err_ice_rem_prof;
4130
4131	/* dereference profile, and possibly remove */
4132	ice_prof_dec_ref(hw, blk, pmap->prof_id);
4133
4134	list_del(&pmap->list);
4135	devm_kfree(ice_hw_to_dev(hw), pmap);
4136
4137err_ice_rem_prof:
4138	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4139	return status;
4140}
4141
4142/**
4143 * ice_get_prof - get profile
4144 * @hw: pointer to the HW struct
4145 * @blk: hardware block
4146 * @hdl: profile handle
4147 * @chg: change list
4148 */
4149static enum ice_status
4150ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4151	     struct list_head *chg)
4152{
4153	enum ice_status status = 0;
4154	struct ice_prof_map *map;
4155	struct ice_chs_chg *p;
 
4156	u16 i;
4157
4158	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4159	/* Get the details on the profile specified by the handle ID */
4160	map = ice_search_prof_id(hw, blk, hdl);
4161	if (!map) {
4162		status = ICE_ERR_DOES_NOT_EXIST;
4163		goto err_ice_get_prof;
4164	}
4165
4166	for (i = 0; i < map->ptg_cnt; i++)
4167		if (!hw->blk[blk].es.written[map->prof_id]) {
4168			/* add ES to change list */
4169			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4170					 GFP_KERNEL);
4171			if (!p) {
4172				status = ICE_ERR_NO_MEMORY;
4173				goto err_ice_get_prof;
4174			}
4175
4176			p->type = ICE_PTG_ES_ADD;
4177			p->ptype = 0;
4178			p->ptg = map->ptg[i];
4179			p->add_ptg = 0;
4180
4181			p->add_prof = 1;
4182			p->prof_id = map->prof_id;
4183
4184			hw->blk[blk].es.written[map->prof_id] = true;
4185
4186			list_add(&p->list_entry, chg);
4187		}
4188
4189err_ice_get_prof:
4190	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4191	/* let caller clean up the change list */
4192	return status;
4193}
4194
4195/**
4196 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4197 * @hw: pointer to the HW struct
4198 * @blk: hardware block
4199 * @vsig: VSIG from which to copy the list
4200 * @lst: output list
4201 *
4202 * This routine makes a copy of the list of profiles in the specified VSIG.
4203 */
4204static enum ice_status
4205ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4206		   struct list_head *lst)
4207{
4208	struct ice_vsig_prof *ent1, *ent2;
4209	u16 idx = vsig & ICE_VSIG_IDX_M;
4210
4211	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4212			    list) {
4213		struct ice_vsig_prof *p;
4214
4215		/* copy to the input list */
4216		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
4217				 GFP_KERNEL);
4218		if (!p)
4219			goto err_ice_get_profs_vsig;
4220
4221		list_add_tail(&p->list, lst);
4222	}
4223
4224	return 0;
4225
4226err_ice_get_profs_vsig:
4227	list_for_each_entry_safe(ent1, ent2, lst, list) {
4228		list_del(&ent1->list);
4229		devm_kfree(ice_hw_to_dev(hw), ent1);
4230	}
4231
4232	return ICE_ERR_NO_MEMORY;
4233}
4234
4235/**
4236 * ice_add_prof_to_lst - add profile entry to a list
4237 * @hw: pointer to the HW struct
4238 * @blk: hardware block
4239 * @lst: the list to be added to
4240 * @hdl: profile handle of entry to add
4241 */
4242static enum ice_status
4243ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4244		    struct list_head *lst, u64 hdl)
4245{
4246	enum ice_status status = 0;
4247	struct ice_prof_map *map;
4248	struct ice_vsig_prof *p;
 
4249	u16 i;
4250
4251	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4252	map = ice_search_prof_id(hw, blk, hdl);
4253	if (!map) {
4254		status = ICE_ERR_DOES_NOT_EXIST;
4255		goto err_ice_add_prof_to_lst;
4256	}
4257
4258	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4259	if (!p) {
4260		status = ICE_ERR_NO_MEMORY;
4261		goto err_ice_add_prof_to_lst;
4262	}
4263
4264	p->profile_cookie = map->profile_cookie;
4265	p->prof_id = map->prof_id;
4266	p->tcam_count = map->ptg_cnt;
4267
4268	for (i = 0; i < map->ptg_cnt; i++) {
4269		p->tcam[i].prof_id = map->prof_id;
4270		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4271		p->tcam[i].ptg = map->ptg[i];
4272	}
4273
4274	list_add(&p->list, lst);
4275
4276err_ice_add_prof_to_lst:
4277	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4278	return status;
4279}
4280
4281/**
4282 * ice_move_vsi - move VSI to another VSIG
4283 * @hw: pointer to the HW struct
4284 * @blk: hardware block
4285 * @vsi: the VSI to move
4286 * @vsig: the VSIG to move the VSI to
4287 * @chg: the change list
4288 */
4289static enum ice_status
4290ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4291	     struct list_head *chg)
4292{
4293	enum ice_status status;
4294	struct ice_chs_chg *p;
4295	u16 orig_vsig;
 
4296
4297	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4298	if (!p)
4299		return ICE_ERR_NO_MEMORY;
4300
4301	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4302	if (!status)
4303		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4304
4305	if (status) {
4306		devm_kfree(ice_hw_to_dev(hw), p);
4307		return status;
4308	}
4309
4310	p->type = ICE_VSI_MOVE;
4311	p->vsi = vsi;
4312	p->orig_vsig = orig_vsig;
4313	p->vsig = vsig;
4314
4315	list_add(&p->list_entry, chg);
4316
4317	return 0;
4318}
4319
4320/**
4321 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4322 * @hw: pointer to the HW struct
4323 * @idx: the index of the TCAM entry to remove
4324 * @chg: the list of change structures to search
4325 */
4326static void
4327ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
4328{
4329	struct ice_chs_chg *pos, *tmp;
4330
4331	list_for_each_entry_safe(tmp, pos, chg, list_entry)
4332		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4333			list_del(&tmp->list_entry);
4334			devm_kfree(ice_hw_to_dev(hw), tmp);
4335		}
4336}
4337
4338/**
4339 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4340 * @hw: pointer to the HW struct
4341 * @blk: hardware block
4342 * @enable: true to enable, false to disable
4343 * @vsig: the VSIG of the TCAM entry
4344 * @tcam: pointer the TCAM info structure of the TCAM to disable
4345 * @chg: the change list
4346 *
4347 * This function appends an enable or disable TCAM entry in the change log
4348 */
4349static enum ice_status
4350ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4351		      u16 vsig, struct ice_tcam_inf *tcam,
4352		      struct list_head *chg)
4353{
4354	enum ice_status status;
4355	struct ice_chs_chg *p;
 
4356
4357	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4358	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4359	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4360
4361	/* if disabling, free the TCAM */
4362	if (!enable) {
4363		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4364
4365		/* if we have already created a change for this TCAM entry, then
4366		 * we need to remove that entry, in order to prevent writing to
4367		 * a TCAM entry we no longer will have ownership of.
4368		 */
4369		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4370		tcam->tcam_idx = 0;
4371		tcam->in_use = 0;
4372		return status;
4373	}
4374
4375	/* for re-enabling, reallocate a TCAM */
4376	status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx);
 
 
 
 
 
4377	if (status)
4378		return status;
4379
4380	/* add TCAM to change list */
4381	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4382	if (!p)
4383		return ICE_ERR_NO_MEMORY;
4384
4385	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4386				      tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4387				      nm_msk);
4388	if (status)
4389		goto err_ice_prof_tcam_ena_dis;
4390
4391	tcam->in_use = 1;
4392
4393	p->type = ICE_TCAM_ADD;
4394	p->add_tcam_idx = true;
4395	p->prof_id = tcam->prof_id;
4396	p->ptg = tcam->ptg;
4397	p->vsig = 0;
4398	p->tcam_idx = tcam->tcam_idx;
4399
4400	/* log change */
4401	list_add(&p->list_entry, chg);
4402
4403	return 0;
4404
4405err_ice_prof_tcam_ena_dis:
4406	devm_kfree(ice_hw_to_dev(hw), p);
4407	return status;
4408}
4409
4410/**
4411 * ice_adj_prof_priorities - adjust profile based on priorities
4412 * @hw: pointer to the HW struct
4413 * @blk: hardware block
4414 * @vsig: the VSIG for which to adjust profile priorities
4415 * @chg: the change list
4416 */
4417static enum ice_status
4418ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4419			struct list_head *chg)
4420{
4421	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4422	struct ice_vsig_prof *t;
4423	enum ice_status status;
4424	u16 idx;
4425
4426	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4427	idx = vsig & ICE_VSIG_IDX_M;
4428
4429	/* Priority is based on the order in which the profiles are added. The
4430	 * newest added profile has highest priority and the oldest added
4431	 * profile has the lowest priority. Since the profile property list for
4432	 * a VSIG is sorted from newest to oldest, this code traverses the list
4433	 * in order and enables the first of each PTG that it finds (that is not
4434	 * already enabled); it also disables any duplicate PTGs that it finds
4435	 * in the older profiles (that are currently enabled).
4436	 */
4437
4438	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4439			    list) {
4440		u16 i;
4441
4442		for (i = 0; i < t->tcam_count; i++) {
4443			/* Scan the priorities from newest to oldest.
4444			 * Make sure that the newest profiles take priority.
4445			 */
4446			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
4447			    t->tcam[i].in_use) {
4448				/* need to mark this PTG as never match, as it
4449				 * was already in use and therefore duplicate
4450				 * (and lower priority)
4451				 */
4452				status = ice_prof_tcam_ena_dis(hw, blk, false,
4453							       vsig,
4454							       &t->tcam[i],
4455							       chg);
4456				if (status)
4457					return status;
4458			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
4459				   !t->tcam[i].in_use) {
4460				/* need to enable this PTG, as it in not in use
4461				 * and not enabled (highest priority)
4462				 */
4463				status = ice_prof_tcam_ena_dis(hw, blk, true,
4464							       vsig,
4465							       &t->tcam[i],
4466							       chg);
4467				if (status)
4468					return status;
4469			}
4470
4471			/* keep track of used ptgs */
4472			set_bit(t->tcam[i].ptg, ptgs_used);
4473		}
4474	}
4475
4476	return 0;
4477}
4478
4479/**
4480 * ice_add_prof_id_vsig - add profile to VSIG
4481 * @hw: pointer to the HW struct
4482 * @blk: hardware block
4483 * @vsig: the VSIG to which this profile is to be added
4484 * @hdl: the profile handle indicating the profile to add
4485 * @rev: true to add entries to the end of the list
4486 * @chg: the change list
4487 */
4488static enum ice_status
4489ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4490		     bool rev, struct list_head *chg)
4491{
4492	/* Masks that ignore flags */
4493	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4494	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4495	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4496	enum ice_status status = 0;
4497	struct ice_prof_map *map;
4498	struct ice_vsig_prof *t;
4499	struct ice_chs_chg *p;
4500	u16 vsig_idx, i;
 
4501
4502	/* Error, if this VSIG already has this profile */
4503	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
4504		return ICE_ERR_ALREADY_EXISTS;
4505
4506	/* new VSIG profile structure */
4507	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
4508	if (!t)
4509		return ICE_ERR_NO_MEMORY;
4510
4511	mutex_lock(&hw->blk[blk].es.prof_map_lock);
4512	/* Get the details on the profile specified by the handle ID */
4513	map = ice_search_prof_id(hw, blk, hdl);
4514	if (!map) {
4515		status = ICE_ERR_DOES_NOT_EXIST;
4516		goto err_ice_add_prof_id_vsig;
4517	}
4518
4519	t->profile_cookie = map->profile_cookie;
4520	t->prof_id = map->prof_id;
4521	t->tcam_count = map->ptg_cnt;
4522
4523	/* create TCAM entries */
4524	for (i = 0; i < map->ptg_cnt; i++) {
4525		u16 tcam_idx;
4526
4527		/* add TCAM to change list */
4528		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4529		if (!p) {
4530			status = ICE_ERR_NO_MEMORY;
4531			goto err_ice_add_prof_id_vsig;
4532		}
4533
4534		/* allocate the TCAM entry index */
4535		status = ice_alloc_tcam_ent(hw, blk, &tcam_idx);
 
 
 
 
 
4536		if (status) {
4537			devm_kfree(ice_hw_to_dev(hw), p);
4538			goto err_ice_add_prof_id_vsig;
4539		}
4540
4541		t->tcam[i].ptg = map->ptg[i];
4542		t->tcam[i].prof_id = map->prof_id;
4543		t->tcam[i].tcam_idx = tcam_idx;
 
4544		t->tcam[i].in_use = true;
4545
4546		p->type = ICE_TCAM_ADD;
4547		p->add_tcam_idx = true;
4548		p->prof_id = t->tcam[i].prof_id;
4549		p->ptg = t->tcam[i].ptg;
4550		p->vsig = vsig;
4551		p->tcam_idx = t->tcam[i].tcam_idx;
4552
4553		/* write the TCAM entry */
4554		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
4555					      t->tcam[i].prof_id,
4556					      t->tcam[i].ptg, vsig, 0, 0,
4557					      vl_msk, dc_msk, nm_msk);
4558		if (status) {
4559			devm_kfree(ice_hw_to_dev(hw), p);
4560			goto err_ice_add_prof_id_vsig;
4561		}
4562
4563		/* log change */
4564		list_add(&p->list_entry, chg);
4565	}
4566
4567	/* add profile to VSIG */
4568	vsig_idx = vsig & ICE_VSIG_IDX_M;
4569	if (rev)
4570		list_add_tail(&t->list,
4571			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4572	else
4573		list_add(&t->list,
4574			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4575
4576	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4577	return status;
4578
4579err_ice_add_prof_id_vsig:
4580	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4581	/* let caller clean up the change list */
4582	devm_kfree(ice_hw_to_dev(hw), t);
4583	return status;
4584}
4585
4586/**
4587 * ice_create_prof_id_vsig - add a new VSIG with a single profile
4588 * @hw: pointer to the HW struct
4589 * @blk: hardware block
4590 * @vsi: the initial VSI that will be in VSIG
4591 * @hdl: the profile handle of the profile that will be added to the VSIG
4592 * @chg: the change list
4593 */
4594static enum ice_status
4595ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
4596			struct list_head *chg)
4597{
4598	enum ice_status status;
4599	struct ice_chs_chg *p;
4600	u16 new_vsig;
 
4601
4602	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4603	if (!p)
4604		return ICE_ERR_NO_MEMORY;
4605
4606	new_vsig = ice_vsig_alloc(hw, blk);
4607	if (!new_vsig) {
4608		status = ICE_ERR_HW_TABLE;
4609		goto err_ice_create_prof_id_vsig;
4610	}
4611
4612	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
4613	if (status)
4614		goto err_ice_create_prof_id_vsig;
4615
4616	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
4617	if (status)
4618		goto err_ice_create_prof_id_vsig;
4619
4620	p->type = ICE_VSIG_ADD;
4621	p->vsi = vsi;
4622	p->orig_vsig = ICE_DEFAULT_VSIG;
4623	p->vsig = new_vsig;
4624
4625	list_add(&p->list_entry, chg);
4626
4627	return 0;
4628
4629err_ice_create_prof_id_vsig:
4630	/* let caller clean up the change list */
4631	devm_kfree(ice_hw_to_dev(hw), p);
4632	return status;
4633}
4634
4635/**
4636 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
4637 * @hw: pointer to the HW struct
4638 * @blk: hardware block
4639 * @vsi: the initial VSI that will be in VSIG
4640 * @lst: the list of profile that will be added to the VSIG
4641 * @new_vsig: return of new VSIG
4642 * @chg: the change list
4643 */
4644static enum ice_status
4645ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
4646			 struct list_head *lst, u16 *new_vsig,
4647			 struct list_head *chg)
4648{
4649	struct ice_vsig_prof *t;
4650	enum ice_status status;
4651	u16 vsig;
4652
4653	vsig = ice_vsig_alloc(hw, blk);
4654	if (!vsig)
4655		return ICE_ERR_HW_TABLE;
4656
4657	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
4658	if (status)
4659		return status;
4660
4661	list_for_each_entry(t, lst, list) {
4662		/* Reverse the order here since we are copying the list */
4663		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
4664					      true, chg);
4665		if (status)
4666			return status;
4667	}
4668
4669	*new_vsig = vsig;
4670
4671	return 0;
4672}
4673
4674/**
4675 * ice_find_prof_vsig - find a VSIG with a specific profile handle
4676 * @hw: pointer to the HW struct
4677 * @blk: hardware block
4678 * @hdl: the profile handle of the profile to search for
4679 * @vsig: returns the VSIG with the matching profile
4680 */
4681static bool
4682ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
4683{
4684	struct ice_vsig_prof *t;
4685	enum ice_status status;
4686	struct list_head lst;
 
4687
4688	INIT_LIST_HEAD(&lst);
4689
4690	t = kzalloc(sizeof(*t), GFP_KERNEL);
4691	if (!t)
4692		return false;
4693
4694	t->profile_cookie = hdl;
4695	list_add(&t->list, &lst);
4696
4697	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
4698
4699	list_del(&t->list);
4700	kfree(t);
4701
4702	return !status;
4703}
4704
4705/**
4706 * ice_add_prof_id_flow - add profile flow
4707 * @hw: pointer to the HW struct
4708 * @blk: hardware block
4709 * @vsi: the VSI to enable with the profile specified by ID
4710 * @hdl: profile handle
4711 *
4712 * Calling this function will update the hardware tables to enable the
4713 * profile indicated by the ID parameter for the VSIs specified in the VSI
4714 * array. Once successfully called, the flow will be enabled.
4715 */
4716enum ice_status
4717ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4718{
4719	struct ice_vsig_prof *tmp1, *del1;
4720	struct ice_chs_chg *tmp, *del;
4721	struct list_head union_lst;
4722	enum ice_status status;
4723	struct list_head chg;
 
4724	u16 vsig;
4725
4726	INIT_LIST_HEAD(&union_lst);
4727	INIT_LIST_HEAD(&chg);
4728
4729	/* Get profile */
4730	status = ice_get_prof(hw, blk, hdl, &chg);
4731	if (status)
4732		return status;
4733
4734	/* determine if VSI is already part of a VSIG */
4735	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4736	if (!status && vsig) {
4737		bool only_vsi;
4738		u16 or_vsig;
4739		u16 ref;
4740
4741		/* found in VSIG */
4742		or_vsig = vsig;
4743
4744		/* make sure that there is no overlap/conflict between the new
4745		 * characteristics and the existing ones; we don't support that
4746		 * scenario
4747		 */
4748		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4749			status = ICE_ERR_ALREADY_EXISTS;
4750			goto err_ice_add_prof_id_flow;
4751		}
4752
4753		/* last VSI in the VSIG? */
4754		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4755		if (status)
4756			goto err_ice_add_prof_id_flow;
4757		only_vsi = (ref == 1);
4758
4759		/* create a union of the current profiles and the one being
4760		 * added
4761		 */
4762		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4763		if (status)
4764			goto err_ice_add_prof_id_flow;
4765
4766		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4767		if (status)
4768			goto err_ice_add_prof_id_flow;
4769
4770		/* search for an existing VSIG with an exact charc match */
4771		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4772		if (!status) {
4773			/* move VSI to the VSIG that matches */
4774			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4775			if (status)
4776				goto err_ice_add_prof_id_flow;
4777
4778			/* VSI has been moved out of or_vsig. If the or_vsig had
4779			 * only that VSI it is now empty and can be removed.
4780			 */
4781			if (only_vsi) {
4782				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4783				if (status)
4784					goto err_ice_add_prof_id_flow;
4785			}
4786		} else if (only_vsi) {
4787			/* If the original VSIG only contains one VSI, then it
4788			 * will be the requesting VSI. In this case the VSI is
4789			 * not sharing entries and we can simply add the new
4790			 * profile to the VSIG.
4791			 */
4792			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4793						      &chg);
4794			if (status)
4795				goto err_ice_add_prof_id_flow;
4796
4797			/* Adjust priorities */
4798			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4799			if (status)
4800				goto err_ice_add_prof_id_flow;
4801		} else {
4802			/* No match, so we need a new VSIG */
4803			status = ice_create_vsig_from_lst(hw, blk, vsi,
4804							  &union_lst, &vsig,
4805							  &chg);
4806			if (status)
4807				goto err_ice_add_prof_id_flow;
4808
4809			/* Adjust priorities */
4810			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4811			if (status)
4812				goto err_ice_add_prof_id_flow;
4813		}
4814	} else {
4815		/* need to find or add a VSIG */
4816		/* search for an existing VSIG with an exact charc match */
4817		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4818			/* found an exact match */
4819			/* add or move VSI to the VSIG that matches */
4820			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4821			if (status)
4822				goto err_ice_add_prof_id_flow;
4823		} else {
4824			/* we did not find an exact match */
4825			/* we need to add a VSIG */
4826			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4827							 &chg);
4828			if (status)
4829				goto err_ice_add_prof_id_flow;
4830		}
4831	}
4832
4833	/* update hardware */
4834	if (!status)
4835		status = ice_upd_prof_hw(hw, blk, &chg);
4836
4837err_ice_add_prof_id_flow:
4838	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4839		list_del(&del->list_entry);
4840		devm_kfree(ice_hw_to_dev(hw), del);
4841	}
4842
4843	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4844		list_del(&del1->list);
4845		devm_kfree(ice_hw_to_dev(hw), del1);
4846	}
4847
4848	return status;
4849}
4850
4851/**
4852 * ice_rem_prof_from_list - remove a profile from list
4853 * @hw: pointer to the HW struct
4854 * @lst: list to remove the profile from
4855 * @hdl: the profile handle indicating the profile to remove
4856 */
4857static enum ice_status
4858ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4859{
4860	struct ice_vsig_prof *ent, *tmp;
4861
4862	list_for_each_entry_safe(ent, tmp, lst, list)
4863		if (ent->profile_cookie == hdl) {
4864			list_del(&ent->list);
4865			devm_kfree(ice_hw_to_dev(hw), ent);
4866			return 0;
4867		}
4868
4869	return ICE_ERR_DOES_NOT_EXIST;
4870}
4871
4872/**
4873 * ice_rem_prof_id_flow - remove flow
4874 * @hw: pointer to the HW struct
4875 * @blk: hardware block
4876 * @vsi: the VSI from which to remove the profile specified by ID
4877 * @hdl: profile tracking handle
4878 *
4879 * Calling this function will update the hardware tables to remove the
4880 * profile indicated by the ID parameter for the VSIs specified in the VSI
4881 * array. Once successfully called, the flow will be disabled.
4882 */
4883enum ice_status
4884ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4885{
4886	struct ice_vsig_prof *tmp1, *del1;
4887	struct ice_chs_chg *tmp, *del;
4888	struct list_head chg, copy;
4889	enum ice_status status;
4890	u16 vsig;
4891
4892	INIT_LIST_HEAD(&copy);
4893	INIT_LIST_HEAD(&chg);
4894
4895	/* determine if VSI is already part of a VSIG */
4896	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4897	if (!status && vsig) {
4898		bool last_profile;
4899		bool only_vsi;
4900		u16 ref;
4901
4902		/* found in VSIG */
4903		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4904		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4905		if (status)
4906			goto err_ice_rem_prof_id_flow;
4907		only_vsi = (ref == 1);
4908
4909		if (only_vsi) {
4910			/* If the original VSIG only contains one reference,
4911			 * which will be the requesting VSI, then the VSI is not
4912			 * sharing entries and we can simply remove the specific
4913			 * characteristics from the VSIG.
4914			 */
4915
4916			if (last_profile) {
4917				/* If there are no profiles left for this VSIG,
4918				 * then simply remove the the VSIG.
4919				 */
4920				status = ice_rem_vsig(hw, blk, vsig, &chg);
4921				if (status)
4922					goto err_ice_rem_prof_id_flow;
4923			} else {
4924				status = ice_rem_prof_id_vsig(hw, blk, vsig,
4925							      hdl, &chg);
4926				if (status)
4927					goto err_ice_rem_prof_id_flow;
4928
4929				/* Adjust priorities */
4930				status = ice_adj_prof_priorities(hw, blk, vsig,
4931								 &chg);
4932				if (status)
4933					goto err_ice_rem_prof_id_flow;
4934			}
4935
4936		} else {
4937			/* Make a copy of the VSIG's list of Profiles */
4938			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4939			if (status)
4940				goto err_ice_rem_prof_id_flow;
4941
4942			/* Remove specified profile entry from the list */
4943			status = ice_rem_prof_from_list(hw, &copy, hdl);
4944			if (status)
4945				goto err_ice_rem_prof_id_flow;
4946
4947			if (list_empty(&copy)) {
4948				status = ice_move_vsi(hw, blk, vsi,
4949						      ICE_DEFAULT_VSIG, &chg);
4950				if (status)
4951					goto err_ice_rem_prof_id_flow;
4952
4953			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4954							    &vsig)) {
4955				/* found an exact match */
4956				/* add or move VSI to the VSIG that matches */
4957				/* Search for a VSIG with a matching profile
4958				 * list
4959				 */
4960
4961				/* Found match, move VSI to the matching VSIG */
4962				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4963				if (status)
4964					goto err_ice_rem_prof_id_flow;
4965			} else {
4966				/* since no existing VSIG supports this
4967				 * characteristic pattern, we need to create a
4968				 * new VSIG and TCAM entries
4969				 */
4970				status = ice_create_vsig_from_lst(hw, blk, vsi,
4971								  &copy, &vsig,
4972								  &chg);
4973				if (status)
4974					goto err_ice_rem_prof_id_flow;
4975
4976				/* Adjust priorities */
4977				status = ice_adj_prof_priorities(hw, blk, vsig,
4978								 &chg);
4979				if (status)
4980					goto err_ice_rem_prof_id_flow;
4981			}
4982		}
4983	} else {
4984		status = ICE_ERR_DOES_NOT_EXIST;
4985	}
4986
4987	/* update hardware tables */
4988	if (!status)
4989		status = ice_upd_prof_hw(hw, blk, &chg);
4990
4991err_ice_rem_prof_id_flow:
4992	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4993		list_del(&del->list_entry);
4994		devm_kfree(ice_hw_to_dev(hw), del);
4995	}
4996
4997	list_for_each_entry_safe(del1, tmp1, &copy, list) {
4998		list_del(&del1->list);
4999		devm_kfree(ice_hw_to_dev(hw), del1);
5000	}
5001
5002	return status;
5003}