Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_flex_pipe.h"
6#include "ice_flow.h"
7#include "ice.h"
8
9/* For supporting double VLAN mode, it is necessary to enable or disable certain
10 * boost tcam entries. The metadata labels names that match the following
11 * prefixes will be saved to allow enabling double VLAN mode.
12 */
13#define ICE_DVM_PRE "BOOST_MAC_VLAN_DVM" /* enable these entries */
14#define ICE_SVM_PRE "BOOST_MAC_VLAN_SVM" /* disable these entries */
15
16/* To support tunneling entries by PF, the package will append the PF number to
17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
18 */
19#define ICE_TNL_PRE "TNL_"
20static const struct ice_tunnel_type_scan tnls[] = {
21 { TNL_VXLAN, "TNL_VXLAN_PF" },
22 { TNL_GENEVE, "TNL_GENEVE_PF" },
23 { TNL_LAST, "" }
24};
25
26static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
27 /* SWITCH */
28 {
29 ICE_SID_XLT0_SW,
30 ICE_SID_XLT_KEY_BUILDER_SW,
31 ICE_SID_XLT1_SW,
32 ICE_SID_XLT2_SW,
33 ICE_SID_PROFID_TCAM_SW,
34 ICE_SID_PROFID_REDIR_SW,
35 ICE_SID_FLD_VEC_SW,
36 ICE_SID_CDID_KEY_BUILDER_SW,
37 ICE_SID_CDID_REDIR_SW
38 },
39
40 /* ACL */
41 {
42 ICE_SID_XLT0_ACL,
43 ICE_SID_XLT_KEY_BUILDER_ACL,
44 ICE_SID_XLT1_ACL,
45 ICE_SID_XLT2_ACL,
46 ICE_SID_PROFID_TCAM_ACL,
47 ICE_SID_PROFID_REDIR_ACL,
48 ICE_SID_FLD_VEC_ACL,
49 ICE_SID_CDID_KEY_BUILDER_ACL,
50 ICE_SID_CDID_REDIR_ACL
51 },
52
53 /* FD */
54 {
55 ICE_SID_XLT0_FD,
56 ICE_SID_XLT_KEY_BUILDER_FD,
57 ICE_SID_XLT1_FD,
58 ICE_SID_XLT2_FD,
59 ICE_SID_PROFID_TCAM_FD,
60 ICE_SID_PROFID_REDIR_FD,
61 ICE_SID_FLD_VEC_FD,
62 ICE_SID_CDID_KEY_BUILDER_FD,
63 ICE_SID_CDID_REDIR_FD
64 },
65
66 /* RSS */
67 {
68 ICE_SID_XLT0_RSS,
69 ICE_SID_XLT_KEY_BUILDER_RSS,
70 ICE_SID_XLT1_RSS,
71 ICE_SID_XLT2_RSS,
72 ICE_SID_PROFID_TCAM_RSS,
73 ICE_SID_PROFID_REDIR_RSS,
74 ICE_SID_FLD_VEC_RSS,
75 ICE_SID_CDID_KEY_BUILDER_RSS,
76 ICE_SID_CDID_REDIR_RSS
77 },
78
79 /* PE */
80 {
81 ICE_SID_XLT0_PE,
82 ICE_SID_XLT_KEY_BUILDER_PE,
83 ICE_SID_XLT1_PE,
84 ICE_SID_XLT2_PE,
85 ICE_SID_PROFID_TCAM_PE,
86 ICE_SID_PROFID_REDIR_PE,
87 ICE_SID_FLD_VEC_PE,
88 ICE_SID_CDID_KEY_BUILDER_PE,
89 ICE_SID_CDID_REDIR_PE
90 }
91};
92
93/**
94 * ice_sect_id - returns section ID
95 * @blk: block type
96 * @sect: section type
97 *
98 * This helper function returns the proper section ID given a block type and a
99 * section type.
100 */
101static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
102{
103 return ice_sect_lkup[blk][sect];
104}
105
106/**
107 * ice_pkg_val_buf
108 * @buf: pointer to the ice buffer
109 *
110 * This helper function validates a buffer's header.
111 */
112static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
113{
114 struct ice_buf_hdr *hdr;
115 u16 section_count;
116 u16 data_end;
117
118 hdr = (struct ice_buf_hdr *)buf->buf;
119 /* verify data */
120 section_count = le16_to_cpu(hdr->section_count);
121 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
122 return NULL;
123
124 data_end = le16_to_cpu(hdr->data_end);
125 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
126 return NULL;
127
128 return hdr;
129}
130
131/**
132 * ice_find_buf_table
133 * @ice_seg: pointer to the ice segment
134 *
135 * Returns the address of the buffer table within the ice segment.
136 */
137static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
138{
139 struct ice_nvm_table *nvms;
140
141 nvms = (struct ice_nvm_table *)
142 (ice_seg->device_table +
143 le32_to_cpu(ice_seg->device_table_count));
144
145 return (__force struct ice_buf_table *)
146 (nvms->vers + le32_to_cpu(nvms->table_count));
147}
148
149/**
150 * ice_pkg_enum_buf
151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
152 * @state: pointer to the enum state
153 *
154 * This function will enumerate all the buffers in the ice segment. The first
155 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
156 * ice_seg is set to NULL which continues the enumeration. When the function
157 * returns a NULL pointer, then the end of the buffers has been reached, or an
158 * unexpected value has been detected (for example an invalid section count or
159 * an invalid buffer end value).
160 */
161static struct ice_buf_hdr *
162ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
163{
164 if (ice_seg) {
165 state->buf_table = ice_find_buf_table(ice_seg);
166 if (!state->buf_table)
167 return NULL;
168
169 state->buf_idx = 0;
170 return ice_pkg_val_buf(state->buf_table->buf_array);
171 }
172
173 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
174 return ice_pkg_val_buf(state->buf_table->buf_array +
175 state->buf_idx);
176 else
177 return NULL;
178}
179
180/**
181 * ice_pkg_advance_sect
182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
183 * @state: pointer to the enum state
184 *
185 * This helper function will advance the section within the ice segment,
186 * also advancing the buffer if needed.
187 */
188static bool
189ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
190{
191 if (!ice_seg && !state->buf)
192 return false;
193
194 if (!ice_seg && state->buf)
195 if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
196 return true;
197
198 state->buf = ice_pkg_enum_buf(ice_seg, state);
199 if (!state->buf)
200 return false;
201
202 /* start of new buffer, reset section index */
203 state->sect_idx = 0;
204 return true;
205}
206
207/**
208 * ice_pkg_enum_section
209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
210 * @state: pointer to the enum state
211 * @sect_type: section type to enumerate
212 *
213 * This function will enumerate all the sections of a particular type in the
214 * ice segment. The first call is made with the ice_seg parameter non-NULL;
215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
216 * When the function returns a NULL pointer, then the end of the matching
217 * sections has been reached.
218 */
219static void *
220ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
221 u32 sect_type)
222{
223 u16 offset, size;
224
225 if (ice_seg)
226 state->type = sect_type;
227
228 if (!ice_pkg_advance_sect(ice_seg, state))
229 return NULL;
230
231 /* scan for next matching section */
232 while (state->buf->section_entry[state->sect_idx].type !=
233 cpu_to_le32(state->type))
234 if (!ice_pkg_advance_sect(NULL, state))
235 return NULL;
236
237 /* validate section */
238 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
239 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
240 return NULL;
241
242 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
243 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
244 return NULL;
245
246 /* make sure the section fits in the buffer */
247 if (offset + size > ICE_PKG_BUF_SIZE)
248 return NULL;
249
250 state->sect_type =
251 le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
252
253 /* calc pointer to this section */
254 state->sect = ((u8 *)state->buf) +
255 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
256
257 return state->sect;
258}
259
260/**
261 * ice_pkg_enum_entry
262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
263 * @state: pointer to the enum state
264 * @sect_type: section type to enumerate
265 * @offset: pointer to variable that receives the offset in the table (optional)
266 * @handler: function that handles access to the entries into the section type
267 *
268 * This function will enumerate all the entries in particular section type in
269 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
271 * When the function returns a NULL pointer, then the end of the entries has
272 * been reached.
273 *
274 * Since each section may have a different header and entry size, the handler
275 * function is needed to determine the number and location entries in each
276 * section.
277 *
278 * The offset parameter is optional, but should be used for sections that
279 * contain an offset for each section table. For such cases, the section handler
280 * function must return the appropriate offset + index to give the absolution
281 * offset for each entry. For example, if the base for a section's header
282 * indicates a base offset of 10, and the index for the entry is 2, then
283 * section handler function should set the offset to 10 + 2 = 12.
284 */
285static void *
286ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
287 u32 sect_type, u32 *offset,
288 void *(*handler)(u32 sect_type, void *section,
289 u32 index, u32 *offset))
290{
291 void *entry;
292
293 if (ice_seg) {
294 if (!handler)
295 return NULL;
296
297 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
298 return NULL;
299
300 state->entry_idx = 0;
301 state->handler = handler;
302 } else {
303 state->entry_idx++;
304 }
305
306 if (!state->handler)
307 return NULL;
308
309 /* get entry */
310 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
311 offset);
312 if (!entry) {
313 /* end of a section, look for another section of this type */
314 if (!ice_pkg_enum_section(NULL, state, 0))
315 return NULL;
316
317 state->entry_idx = 0;
318 entry = state->handler(state->sect_type, state->sect,
319 state->entry_idx, offset);
320 }
321
322 return entry;
323}
324
325/**
326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
327 * @hw: pointer to the HW structure
328 * @ptype: the hardware PTYPE
329 */
330bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
331{
332 return ptype < ICE_FLOW_PTYPE_MAX &&
333 test_bit(ptype, hw->hw_ptype);
334}
335
336/**
337 * ice_marker_ptype_tcam_handler
338 * @sect_type: section type
339 * @section: pointer to section
340 * @index: index of the Marker PType TCAM entry to be returned
341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
342 *
343 * This is a callback function that can be passed to ice_pkg_enum_entry.
344 * Handles enumeration of individual Marker PType TCAM entries.
345 */
346static void *
347ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
348 u32 *offset)
349{
350 struct ice_marker_ptype_tcam_section *marker_ptype;
351
352 if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
353 return NULL;
354
355 if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
356 return NULL;
357
358 if (offset)
359 *offset = 0;
360
361 marker_ptype = section;
362 if (index >= le16_to_cpu(marker_ptype->count))
363 return NULL;
364
365 return marker_ptype->tcam + index;
366}
367
368/**
369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information
370 * @hw: pointer to the HW structure
371 */
372static void ice_fill_hw_ptype(struct ice_hw *hw)
373{
374 struct ice_marker_ptype_tcam_entry *tcam;
375 struct ice_seg *seg = hw->seg;
376 struct ice_pkg_enum state;
377
378 bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
379 if (!seg)
380 return;
381
382 memset(&state, 0, sizeof(state));
383
384 do {
385 tcam = ice_pkg_enum_entry(seg, &state,
386 ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
387 ice_marker_ptype_tcam_handler);
388 if (tcam &&
389 le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
390 le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
391 set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
392
393 seg = NULL;
394 } while (tcam);
395}
396
397/**
398 * ice_boost_tcam_handler
399 * @sect_type: section type
400 * @section: pointer to section
401 * @index: index of the boost TCAM entry to be returned
402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
403 *
404 * This is a callback function that can be passed to ice_pkg_enum_entry.
405 * Handles enumeration of individual boost TCAM entries.
406 */
407static void *
408ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
409{
410 struct ice_boost_tcam_section *boost;
411
412 if (!section)
413 return NULL;
414
415 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
416 return NULL;
417
418 /* cppcheck-suppress nullPointer */
419 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
420 return NULL;
421
422 if (offset)
423 *offset = 0;
424
425 boost = section;
426 if (index >= le16_to_cpu(boost->count))
427 return NULL;
428
429 return boost->tcam + index;
430}
431
432/**
433 * ice_find_boost_entry
434 * @ice_seg: pointer to the ice segment (non-NULL)
435 * @addr: Boost TCAM address of entry to search for
436 * @entry: returns pointer to the entry
437 *
438 * Finds a particular Boost TCAM entry and returns a pointer to that entry
439 * if it is found. The ice_seg parameter must not be NULL since the first call
440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
441 */
442static int
443ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
444 struct ice_boost_tcam_entry **entry)
445{
446 struct ice_boost_tcam_entry *tcam;
447 struct ice_pkg_enum state;
448
449 memset(&state, 0, sizeof(state));
450
451 if (!ice_seg)
452 return -EINVAL;
453
454 do {
455 tcam = ice_pkg_enum_entry(ice_seg, &state,
456 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
457 ice_boost_tcam_handler);
458 if (tcam && le16_to_cpu(tcam->addr) == addr) {
459 *entry = tcam;
460 return 0;
461 }
462
463 ice_seg = NULL;
464 } while (tcam);
465
466 *entry = NULL;
467 return -EIO;
468}
469
470/**
471 * ice_label_enum_handler
472 * @sect_type: section type
473 * @section: pointer to section
474 * @index: index of the label entry to be returned
475 * @offset: pointer to receive absolute offset, always zero for label sections
476 *
477 * This is a callback function that can be passed to ice_pkg_enum_entry.
478 * Handles enumeration of individual label entries.
479 */
480static void *
481ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
482 u32 *offset)
483{
484 struct ice_label_section *labels;
485
486 if (!section)
487 return NULL;
488
489 /* cppcheck-suppress nullPointer */
490 if (index > ICE_MAX_LABELS_IN_BUF)
491 return NULL;
492
493 if (offset)
494 *offset = 0;
495
496 labels = section;
497 if (index >= le16_to_cpu(labels->count))
498 return NULL;
499
500 return labels->label + index;
501}
502
503/**
504 * ice_enum_labels
505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
506 * @type: the section type that will contain the label (0 on subsequent calls)
507 * @state: ice_pkg_enum structure that will hold the state of the enumeration
508 * @value: pointer to a value that will return the label's value if found
509 *
510 * Enumerates a list of labels in the package. The caller will call
511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
513 * the end of the list has been reached.
514 */
515static char *
516ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
517 u16 *value)
518{
519 struct ice_label *label;
520
521 /* Check for valid label section on first call */
522 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
523 return NULL;
524
525 label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
526 ice_label_enum_handler);
527 if (!label)
528 return NULL;
529
530 *value = le16_to_cpu(label->value);
531 return label->name;
532}
533
534/**
535 * ice_add_tunnel_hint
536 * @hw: pointer to the HW structure
537 * @label_name: label text
538 * @val: value of the tunnel port boost entry
539 */
540static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
541{
542 if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
543 u16 i;
544
545 for (i = 0; tnls[i].type != TNL_LAST; i++) {
546 size_t len = strlen(tnls[i].label_prefix);
547
548 /* Look for matching label start, before continuing */
549 if (strncmp(label_name, tnls[i].label_prefix, len))
550 continue;
551
552 /* Make sure this label matches our PF. Note that the PF
553 * character ('0' - '7') will be located where our
554 * prefix string's null terminator is located.
555 */
556 if ((label_name[len] - '0') == hw->pf_id) {
557 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
558 hw->tnl.tbl[hw->tnl.count].valid = false;
559 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
560 hw->tnl.tbl[hw->tnl.count].port = 0;
561 hw->tnl.count++;
562 break;
563 }
564 }
565 }
566}
567
568/**
569 * ice_add_dvm_hint
570 * @hw: pointer to the HW structure
571 * @val: value of the boost entry
572 * @enable: true if entry needs to be enabled, or false if needs to be disabled
573 */
574static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
575{
576 if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
577 hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
578 hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
579 hw->dvm_upd.count++;
580 }
581}
582
583/**
584 * ice_init_pkg_hints
585 * @hw: pointer to the HW structure
586 * @ice_seg: pointer to the segment of the package scan (non-NULL)
587 *
588 * This function will scan the package and save off relevant information
589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
590 * since the first call to ice_enum_labels requires a pointer to an actual
591 * ice_seg structure.
592 */
593static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
594{
595 struct ice_pkg_enum state;
596 char *label_name;
597 u16 val;
598 int i;
599
600 memset(&hw->tnl, 0, sizeof(hw->tnl));
601 memset(&state, 0, sizeof(state));
602
603 if (!ice_seg)
604 return;
605
606 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
607 &val);
608
609 while (label_name) {
610 if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
611 /* check for a tunnel entry */
612 ice_add_tunnel_hint(hw, label_name, val);
613
614 /* check for a dvm mode entry */
615 else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
616 ice_add_dvm_hint(hw, val, true);
617
618 /* check for a svm mode entry */
619 else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
620 ice_add_dvm_hint(hw, val, false);
621
622 label_name = ice_enum_labels(NULL, 0, &state, &val);
623 }
624
625 /* Cache the appropriate boost TCAM entry pointers for tunnels */
626 for (i = 0; i < hw->tnl.count; i++) {
627 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
628 &hw->tnl.tbl[i].boost_entry);
629 if (hw->tnl.tbl[i].boost_entry) {
630 hw->tnl.tbl[i].valid = true;
631 if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
632 hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
633 }
634 }
635
636 /* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
637 for (i = 0; i < hw->dvm_upd.count; i++)
638 ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
639 &hw->dvm_upd.tbl[i].boost_entry);
640}
641
642/* Key creation */
643
644#define ICE_DC_KEY 0x1 /* don't care */
645#define ICE_DC_KEYINV 0x1
646#define ICE_NM_KEY 0x0 /* never match */
647#define ICE_NM_KEYINV 0x0
648#define ICE_0_KEY 0x1 /* match 0 */
649#define ICE_0_KEYINV 0x0
650#define ICE_1_KEY 0x0 /* match 1 */
651#define ICE_1_KEYINV 0x1
652
653/**
654 * ice_gen_key_word - generate 16-bits of a key/mask word
655 * @val: the value
656 * @valid: valid bits mask (change only the valid bits)
657 * @dont_care: don't care mask
658 * @nvr_mtch: never match mask
659 * @key: pointer to an array of where the resulting key portion
660 * @key_inv: pointer to an array of where the resulting key invert portion
661 *
662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
664 * of key and 8 bits of key invert.
665 *
666 * '0' = b01, always match a 0 bit
667 * '1' = b10, always match a 1 bit
668 * '?' = b11, don't care bit (always matches)
669 * '~' = b00, never match bit
670 *
671 * Input:
672 * val: b0 1 0 1 0 1
673 * dont_care: b0 0 1 1 0 0
674 * never_mtch: b0 0 0 0 1 1
675 * ------------------------------
676 * Result: key: b01 10 11 11 00 00
677 */
678static int
679ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
680 u8 *key_inv)
681{
682 u8 in_key = *key, in_key_inv = *key_inv;
683 u8 i;
684
685 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
686 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
687 return -EIO;
688
689 *key = 0;
690 *key_inv = 0;
691
692 /* encode the 8 bits into 8-bit key and 8-bit key invert */
693 for (i = 0; i < 8; i++) {
694 *key >>= 1;
695 *key_inv >>= 1;
696
697 if (!(valid & 0x1)) { /* change only valid bits */
698 *key |= (in_key & 0x1) << 7;
699 *key_inv |= (in_key_inv & 0x1) << 7;
700 } else if (dont_care & 0x1) { /* don't care bit */
701 *key |= ICE_DC_KEY << 7;
702 *key_inv |= ICE_DC_KEYINV << 7;
703 } else if (nvr_mtch & 0x1) { /* never match bit */
704 *key |= ICE_NM_KEY << 7;
705 *key_inv |= ICE_NM_KEYINV << 7;
706 } else if (val & 0x01) { /* exact 1 match */
707 *key |= ICE_1_KEY << 7;
708 *key_inv |= ICE_1_KEYINV << 7;
709 } else { /* exact 0 match */
710 *key |= ICE_0_KEY << 7;
711 *key_inv |= ICE_0_KEYINV << 7;
712 }
713
714 dont_care >>= 1;
715 nvr_mtch >>= 1;
716 valid >>= 1;
717 val >>= 1;
718 in_key >>= 1;
719 in_key_inv >>= 1;
720 }
721
722 return 0;
723}
724
725/**
726 * ice_bits_max_set - determine if the number of bits set is within a maximum
727 * @mask: pointer to the byte array which is the mask
728 * @size: the number of bytes in the mask
729 * @max: the max number of set bits
730 *
731 * This function determines if there are at most 'max' number of bits set in an
732 * array. Returns true if the number for bits set is <= max or will return false
733 * otherwise.
734 */
735static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
736{
737 u16 count = 0;
738 u16 i;
739
740 /* check each byte */
741 for (i = 0; i < size; i++) {
742 /* if 0, go to next byte */
743 if (!mask[i])
744 continue;
745
746 /* We know there is at least one set bit in this byte because of
747 * the above check; if we already have found 'max' number of
748 * bits set, then we can return failure now.
749 */
750 if (count == max)
751 return false;
752
753 /* count the bits in this byte, checking threshold */
754 count += hweight8(mask[i]);
755 if (count > max)
756 return false;
757 }
758
759 return true;
760}
761
762/**
763 * ice_set_key - generate a variable sized key with multiples of 16-bits
764 * @key: pointer to where the key will be stored
765 * @size: the size of the complete key in bytes (must be even)
766 * @val: array of 8-bit values that makes up the value portion of the key
767 * @upd: array of 8-bit masks that determine what key portion to update
768 * @dc: array of 8-bit masks that make up the don't care mask
769 * @nm: array of 8-bit masks that make up the never match mask
770 * @off: the offset of the first byte in the key to update
771 * @len: the number of bytes in the key update
772 *
773 * This function generates a key from a value, a don't care mask and a never
774 * match mask.
775 * upd, dc, and nm are optional parameters, and can be NULL:
776 * upd == NULL --> upd mask is all 1's (update all bits)
777 * dc == NULL --> dc mask is all 0's (no don't care bits)
778 * nm == NULL --> nm mask is all 0's (no never match bits)
779 */
780static int
781ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
782 u16 len)
783{
784 u16 half_size;
785 u16 i;
786
787 /* size must be a multiple of 2 bytes. */
788 if (size % 2)
789 return -EIO;
790
791 half_size = size / 2;
792 if (off + len > half_size)
793 return -EIO;
794
795 /* Make sure at most one bit is set in the never match mask. Having more
796 * than one never match mask bit set will cause HW to consume excessive
797 * power otherwise; this is a power management efficiency check.
798 */
799#define ICE_NVR_MTCH_BITS_MAX 1
800 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
801 return -EIO;
802
803 for (i = 0; i < len; i++)
804 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
805 dc ? dc[i] : 0, nm ? nm[i] : 0,
806 key + off + i, key + half_size + off + i))
807 return -EIO;
808
809 return 0;
810}
811
812/**
813 * ice_acquire_global_cfg_lock
814 * @hw: pointer to the HW structure
815 * @access: access type (read or write)
816 *
817 * This function will request ownership of the global config lock for reading
818 * or writing of the package. When attempting to obtain write access, the
819 * caller must check for the following two return values:
820 *
821 * 0 - Means the caller has acquired the global config lock
822 * and can perform writing of the package.
823 * -EALREADY - Indicates another driver has already written the
824 * package or has found that no update was necessary; in
825 * this case, the caller can just skip performing any
826 * update of the package.
827 */
828static int
829ice_acquire_global_cfg_lock(struct ice_hw *hw,
830 enum ice_aq_res_access_type access)
831{
832 int status;
833
834 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
835 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
836
837 if (!status)
838 mutex_lock(&ice_global_cfg_lock_sw);
839 else if (status == -EALREADY)
840 ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
841
842 return status;
843}
844
845/**
846 * ice_release_global_cfg_lock
847 * @hw: pointer to the HW structure
848 *
849 * This function will release the global config lock.
850 */
851static void ice_release_global_cfg_lock(struct ice_hw *hw)
852{
853 mutex_unlock(&ice_global_cfg_lock_sw);
854 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
855}
856
857/**
858 * ice_acquire_change_lock
859 * @hw: pointer to the HW structure
860 * @access: access type (read or write)
861 *
862 * This function will request ownership of the change lock.
863 */
864int
865ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
866{
867 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
868 ICE_CHANGE_LOCK_TIMEOUT);
869}
870
871/**
872 * ice_release_change_lock
873 * @hw: pointer to the HW structure
874 *
875 * This function will release the change lock using the proper Admin Command.
876 */
877void ice_release_change_lock(struct ice_hw *hw)
878{
879 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
880}
881
882/**
883 * ice_aq_download_pkg
884 * @hw: pointer to the hardware structure
885 * @pkg_buf: the package buffer to transfer
886 * @buf_size: the size of the package buffer
887 * @last_buf: last buffer indicator
888 * @error_offset: returns error offset
889 * @error_info: returns error information
890 * @cd: pointer to command details structure or NULL
891 *
892 * Download Package (0x0C40)
893 */
894static int
895ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
896 u16 buf_size, bool last_buf, u32 *error_offset,
897 u32 *error_info, struct ice_sq_cd *cd)
898{
899 struct ice_aqc_download_pkg *cmd;
900 struct ice_aq_desc desc;
901 int status;
902
903 if (error_offset)
904 *error_offset = 0;
905 if (error_info)
906 *error_info = 0;
907
908 cmd = &desc.params.download_pkg;
909 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
910 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
911
912 if (last_buf)
913 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
914
915 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
916 if (status == -EIO) {
917 /* Read error from buffer only when the FW returned an error */
918 struct ice_aqc_download_pkg_resp *resp;
919
920 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
921 if (error_offset)
922 *error_offset = le32_to_cpu(resp->error_offset);
923 if (error_info)
924 *error_info = le32_to_cpu(resp->error_info);
925 }
926
927 return status;
928}
929
930/**
931 * ice_aq_upload_section
932 * @hw: pointer to the hardware structure
933 * @pkg_buf: the package buffer which will receive the section
934 * @buf_size: the size of the package buffer
935 * @cd: pointer to command details structure or NULL
936 *
937 * Upload Section (0x0C41)
938 */
939int
940ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
941 u16 buf_size, struct ice_sq_cd *cd)
942{
943 struct ice_aq_desc desc;
944
945 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
946 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
947
948 return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
949}
950
951/**
952 * ice_aq_update_pkg
953 * @hw: pointer to the hardware structure
954 * @pkg_buf: the package cmd buffer
955 * @buf_size: the size of the package cmd buffer
956 * @last_buf: last buffer indicator
957 * @error_offset: returns error offset
958 * @error_info: returns error information
959 * @cd: pointer to command details structure or NULL
960 *
961 * Update Package (0x0C42)
962 */
963static int
964ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
965 bool last_buf, u32 *error_offset, u32 *error_info,
966 struct ice_sq_cd *cd)
967{
968 struct ice_aqc_download_pkg *cmd;
969 struct ice_aq_desc desc;
970 int status;
971
972 if (error_offset)
973 *error_offset = 0;
974 if (error_info)
975 *error_info = 0;
976
977 cmd = &desc.params.download_pkg;
978 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
979 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
980
981 if (last_buf)
982 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
983
984 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
985 if (status == -EIO) {
986 /* Read error from buffer only when the FW returned an error */
987 struct ice_aqc_download_pkg_resp *resp;
988
989 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
990 if (error_offset)
991 *error_offset = le32_to_cpu(resp->error_offset);
992 if (error_info)
993 *error_info = le32_to_cpu(resp->error_info);
994 }
995
996 return status;
997}
998
999/**
1000 * ice_find_seg_in_pkg
1001 * @hw: pointer to the hardware structure
1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1003 * @pkg_hdr: pointer to the package header to be searched
1004 *
1005 * This function searches a package file for a particular segment type. On
1006 * success it returns a pointer to the segment header, otherwise it will
1007 * return NULL.
1008 */
1009static struct ice_generic_seg_hdr *
1010ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1011 struct ice_pkg_hdr *pkg_hdr)
1012{
1013 u32 i;
1014
1015 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1016 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1017 pkg_hdr->pkg_format_ver.update,
1018 pkg_hdr->pkg_format_ver.draft);
1019
1020 /* Search all package segments for the requested segment type */
1021 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
1022 struct ice_generic_seg_hdr *seg;
1023
1024 seg = (struct ice_generic_seg_hdr *)
1025 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
1026
1027 if (le32_to_cpu(seg->seg_type) == seg_type)
1028 return seg;
1029 }
1030
1031 return NULL;
1032}
1033
1034/**
1035 * ice_update_pkg_no_lock
1036 * @hw: pointer to the hardware structure
1037 * @bufs: pointer to an array of buffers
1038 * @count: the number of buffers in the array
1039 */
1040static int
1041ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1042{
1043 int status = 0;
1044 u32 i;
1045
1046 for (i = 0; i < count; i++) {
1047 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1048 bool last = ((i + 1) == count);
1049 u32 offset, info;
1050
1051 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
1052 last, &offset, &info, NULL);
1053
1054 if (status) {
1055 ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
1056 status, offset, info);
1057 break;
1058 }
1059 }
1060
1061 return status;
1062}
1063
1064/**
1065 * ice_update_pkg
1066 * @hw: pointer to the hardware structure
1067 * @bufs: pointer to an array of buffers
1068 * @count: the number of buffers in the array
1069 *
1070 * Obtains change lock and updates package.
1071 */
1072static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1073{
1074 int status;
1075
1076 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1077 if (status)
1078 return status;
1079
1080 status = ice_update_pkg_no_lock(hw, bufs, count);
1081
1082 ice_release_change_lock(hw);
1083
1084 return status;
1085}
1086
1087static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
1088{
1089 switch (aq_err) {
1090 case ICE_AQ_RC_ENOSEC:
1091 case ICE_AQ_RC_EBADSIG:
1092 return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
1093 case ICE_AQ_RC_ESVN:
1094 return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
1095 case ICE_AQ_RC_EBADMAN:
1096 case ICE_AQ_RC_EBADBUF:
1097 return ICE_DDP_PKG_LOAD_ERROR;
1098 default:
1099 return ICE_DDP_PKG_ERR;
1100 }
1101}
1102
1103/**
1104 * ice_dwnld_cfg_bufs
1105 * @hw: pointer to the hardware structure
1106 * @bufs: pointer to an array of buffers
1107 * @count: the number of buffers in the array
1108 *
1109 * Obtains global config lock and downloads the package configuration buffers
1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111 * found indicates that the rest of the buffers are all metadata buffers.
1112 */
1113static enum ice_ddp_state
1114ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115{
1116 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1117 struct ice_buf_hdr *bh;
1118 enum ice_aq_err err;
1119 u32 offset, info, i;
1120 int status;
1121
1122 if (!bufs || !count)
1123 return ICE_DDP_PKG_ERR;
1124
1125 /* If the first buffer's first section has its metadata bit set
1126 * then there are no buffers to be downloaded, and the operation is
1127 * considered a success.
1128 */
1129 bh = (struct ice_buf_hdr *)bufs;
1130 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
1131 return ICE_DDP_PKG_SUCCESS;
1132
1133 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1134 if (status) {
1135 if (status == -EALREADY)
1136 return ICE_DDP_PKG_ALREADY_LOADED;
1137 return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
1138 }
1139
1140 for (i = 0; i < count; i++) {
1141 bool last = ((i + 1) == count);
1142
1143 if (!last) {
1144 /* check next buffer for metadata flag */
1145 bh = (struct ice_buf_hdr *)(bufs + i + 1);
1146
1147 /* A set metadata flag in the next buffer will signal
1148 * that the current buffer will be the last buffer
1149 * downloaded
1150 */
1151 if (le16_to_cpu(bh->section_count))
1152 if (le32_to_cpu(bh->section_entry[0].type) &
1153 ICE_METADATA_BUF)
1154 last = true;
1155 }
1156
1157 bh = (struct ice_buf_hdr *)(bufs + i);
1158
1159 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1160 &offset, &info, NULL);
1161
1162 /* Save AQ status from download package */
1163 if (status) {
1164 ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1165 status, offset, info);
1166 err = hw->adminq.sq_last_status;
1167 state = ice_map_aq_err_to_ddp_state(err);
1168 break;
1169 }
1170
1171 if (last)
1172 break;
1173 }
1174
1175 if (!status) {
1176 status = ice_set_vlan_mode(hw);
1177 if (status)
1178 ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1179 status);
1180 }
1181
1182 ice_release_global_cfg_lock(hw);
1183
1184 return state;
1185}
1186
1187/**
1188 * ice_aq_get_pkg_info_list
1189 * @hw: pointer to the hardware structure
1190 * @pkg_info: the buffer which will receive the information list
1191 * @buf_size: the size of the pkg_info information buffer
1192 * @cd: pointer to command details structure or NULL
1193 *
1194 * Get Package Info List (0x0C43)
1195 */
1196static int
1197ice_aq_get_pkg_info_list(struct ice_hw *hw,
1198 struct ice_aqc_get_pkg_info_resp *pkg_info,
1199 u16 buf_size, struct ice_sq_cd *cd)
1200{
1201 struct ice_aq_desc desc;
1202
1203 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1204
1205 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1206}
1207
1208/**
1209 * ice_download_pkg
1210 * @hw: pointer to the hardware structure
1211 * @ice_seg: pointer to the segment of the package to be downloaded
1212 *
1213 * Handles the download of a complete package.
1214 */
1215static enum ice_ddp_state
1216ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1217{
1218 struct ice_buf_table *ice_buf_tbl;
1219 int status;
1220
1221 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1222 ice_seg->hdr.seg_format_ver.major,
1223 ice_seg->hdr.seg_format_ver.minor,
1224 ice_seg->hdr.seg_format_ver.update,
1225 ice_seg->hdr.seg_format_ver.draft);
1226
1227 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1228 le32_to_cpu(ice_seg->hdr.seg_type),
1229 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1230
1231 ice_buf_tbl = ice_find_buf_table(ice_seg);
1232
1233 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1234 le32_to_cpu(ice_buf_tbl->buf_count));
1235
1236 status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1237 le32_to_cpu(ice_buf_tbl->buf_count));
1238
1239 ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1240
1241 return status;
1242}
1243
1244/**
1245 * ice_init_pkg_info
1246 * @hw: pointer to the hardware structure
1247 * @pkg_hdr: pointer to the driver's package hdr
1248 *
1249 * Saves off the package details into the HW structure.
1250 */
1251static enum ice_ddp_state
1252ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1253{
1254 struct ice_generic_seg_hdr *seg_hdr;
1255
1256 if (!pkg_hdr)
1257 return ICE_DDP_PKG_ERR;
1258
1259 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1260 if (seg_hdr) {
1261 struct ice_meta_sect *meta;
1262 struct ice_pkg_enum state;
1263
1264 memset(&state, 0, sizeof(state));
1265
1266 /* Get package information from the Metadata Section */
1267 meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1268 ICE_SID_METADATA);
1269 if (!meta) {
1270 ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1271 return ICE_DDP_PKG_INVALID_FILE;
1272 }
1273
1274 hw->pkg_ver = meta->ver;
1275 memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1276
1277 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1278 meta->ver.major, meta->ver.minor, meta->ver.update,
1279 meta->ver.draft, meta->name);
1280
1281 hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1282 memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1283 sizeof(hw->ice_seg_id));
1284
1285 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1286 seg_hdr->seg_format_ver.major,
1287 seg_hdr->seg_format_ver.minor,
1288 seg_hdr->seg_format_ver.update,
1289 seg_hdr->seg_format_ver.draft,
1290 seg_hdr->seg_id);
1291 } else {
1292 ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1293 return ICE_DDP_PKG_INVALID_FILE;
1294 }
1295
1296 return ICE_DDP_PKG_SUCCESS;
1297}
1298
1299/**
1300 * ice_get_pkg_info
1301 * @hw: pointer to the hardware structure
1302 *
1303 * Store details of the package currently loaded in HW into the HW structure.
1304 */
1305static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
1306{
1307 enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
1308 struct ice_aqc_get_pkg_info_resp *pkg_info;
1309 u16 size;
1310 u32 i;
1311
1312 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1313 pkg_info = kzalloc(size, GFP_KERNEL);
1314 if (!pkg_info)
1315 return ICE_DDP_PKG_ERR;
1316
1317 if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
1318 state = ICE_DDP_PKG_ERR;
1319 goto init_pkg_free_alloc;
1320 }
1321
1322 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1323#define ICE_PKG_FLAG_COUNT 4
1324 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1325 u8 place = 0;
1326
1327 if (pkg_info->pkg_info[i].is_active) {
1328 flags[place++] = 'A';
1329 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1330 hw->active_track_id =
1331 le32_to_cpu(pkg_info->pkg_info[i].track_id);
1332 memcpy(hw->active_pkg_name,
1333 pkg_info->pkg_info[i].name,
1334 sizeof(pkg_info->pkg_info[i].name));
1335 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1336 }
1337 if (pkg_info->pkg_info[i].is_active_at_boot)
1338 flags[place++] = 'B';
1339 if (pkg_info->pkg_info[i].is_modified)
1340 flags[place++] = 'M';
1341 if (pkg_info->pkg_info[i].is_in_nvm)
1342 flags[place++] = 'N';
1343
1344 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1345 i, pkg_info->pkg_info[i].ver.major,
1346 pkg_info->pkg_info[i].ver.minor,
1347 pkg_info->pkg_info[i].ver.update,
1348 pkg_info->pkg_info[i].ver.draft,
1349 pkg_info->pkg_info[i].name, flags);
1350 }
1351
1352init_pkg_free_alloc:
1353 kfree(pkg_info);
1354
1355 return state;
1356}
1357
1358/**
1359 * ice_verify_pkg - verify package
1360 * @pkg: pointer to the package buffer
1361 * @len: size of the package buffer
1362 *
1363 * Verifies various attributes of the package file, including length, format
1364 * version, and the requirement of at least one segment.
1365 */
1366static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1367{
1368 u32 seg_count;
1369 u32 i;
1370
1371 if (len < struct_size(pkg, seg_offset, 1))
1372 return ICE_DDP_PKG_INVALID_FILE;
1373
1374 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1375 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1376 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1377 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1378 return ICE_DDP_PKG_INVALID_FILE;
1379
1380 /* pkg must have at least one segment */
1381 seg_count = le32_to_cpu(pkg->seg_count);
1382 if (seg_count < 1)
1383 return ICE_DDP_PKG_INVALID_FILE;
1384
1385 /* make sure segment array fits in package length */
1386 if (len < struct_size(pkg, seg_offset, seg_count))
1387 return ICE_DDP_PKG_INVALID_FILE;
1388
1389 /* all segments must fit within length */
1390 for (i = 0; i < seg_count; i++) {
1391 u32 off = le32_to_cpu(pkg->seg_offset[i]);
1392 struct ice_generic_seg_hdr *seg;
1393
1394 /* segment header must fit */
1395 if (len < off + sizeof(*seg))
1396 return ICE_DDP_PKG_INVALID_FILE;
1397
1398 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1399
1400 /* segment body must fit */
1401 if (len < off + le32_to_cpu(seg->seg_size))
1402 return ICE_DDP_PKG_INVALID_FILE;
1403 }
1404
1405 return ICE_DDP_PKG_SUCCESS;
1406}
1407
1408/**
1409 * ice_free_seg - free package segment pointer
1410 * @hw: pointer to the hardware structure
1411 *
1412 * Frees the package segment pointer in the proper manner, depending on if the
1413 * segment was allocated or just the passed in pointer was stored.
1414 */
1415void ice_free_seg(struct ice_hw *hw)
1416{
1417 if (hw->pkg_copy) {
1418 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1419 hw->pkg_copy = NULL;
1420 hw->pkg_size = 0;
1421 }
1422 hw->seg = NULL;
1423}
1424
1425/**
1426 * ice_init_pkg_regs - initialize additional package registers
1427 * @hw: pointer to the hardware structure
1428 */
1429static void ice_init_pkg_regs(struct ice_hw *hw)
1430{
1431#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1432#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1433#define ICE_SW_BLK_IDX 0
1434
1435 /* setup Switch block input mask, which is 48-bits in two parts */
1436 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1437 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1438}
1439
1440/**
1441 * ice_chk_pkg_version - check package version for compatibility with driver
1442 * @pkg_ver: pointer to a version structure to check
1443 *
1444 * Check to make sure that the package about to be downloaded is compatible with
1445 * the driver. To be compatible, the major and minor components of the package
1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1447 * definitions.
1448 */
1449static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1450{
1451 if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
1452 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1453 pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
1454 return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
1455 else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
1456 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
1457 pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
1458 return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
1459
1460 return ICE_DDP_PKG_SUCCESS;
1461}
1462
1463/**
1464 * ice_chk_pkg_compat
1465 * @hw: pointer to the hardware structure
1466 * @ospkg: pointer to the package hdr
1467 * @seg: pointer to the package segment hdr
1468 *
1469 * This function checks the package version compatibility with driver and NVM
1470 */
1471static enum ice_ddp_state
1472ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1473 struct ice_seg **seg)
1474{
1475 struct ice_aqc_get_pkg_info_resp *pkg;
1476 enum ice_ddp_state state;
1477 u16 size;
1478 u32 i;
1479
1480 /* Check package version compatibility */
1481 state = ice_chk_pkg_version(&hw->pkg_ver);
1482 if (state) {
1483 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1484 return state;
1485 }
1486
1487 /* find ICE segment in given package */
1488 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1489 ospkg);
1490 if (!*seg) {
1491 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1492 return ICE_DDP_PKG_INVALID_FILE;
1493 }
1494
1495 /* Check if FW is compatible with the OS package */
1496 size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1497 pkg = kzalloc(size, GFP_KERNEL);
1498 if (!pkg)
1499 return ICE_DDP_PKG_ERR;
1500
1501 if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
1502 state = ICE_DDP_PKG_LOAD_ERROR;
1503 goto fw_ddp_compat_free_alloc;
1504 }
1505
1506 for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1507 /* loop till we find the NVM package */
1508 if (!pkg->pkg_info[i].is_in_nvm)
1509 continue;
1510 if ((*seg)->hdr.seg_format_ver.major !=
1511 pkg->pkg_info[i].ver.major ||
1512 (*seg)->hdr.seg_format_ver.minor >
1513 pkg->pkg_info[i].ver.minor) {
1514 state = ICE_DDP_PKG_FW_MISMATCH;
1515 ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1516 }
1517 /* done processing NVM package so break */
1518 break;
1519 }
1520fw_ddp_compat_free_alloc:
1521 kfree(pkg);
1522 return state;
1523}
1524
1525/**
1526 * ice_sw_fv_handler
1527 * @sect_type: section type
1528 * @section: pointer to section
1529 * @index: index of the field vector entry to be returned
1530 * @offset: ptr to variable that receives the offset in the field vector table
1531 *
1532 * This is a callback function that can be passed to ice_pkg_enum_entry.
1533 * This function treats the given section as of type ice_sw_fv_section and
1534 * enumerates offset field. "offset" is an index into the field vector table.
1535 */
1536static void *
1537ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1538{
1539 struct ice_sw_fv_section *fv_section = section;
1540
1541 if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1542 return NULL;
1543 if (index >= le16_to_cpu(fv_section->count))
1544 return NULL;
1545 if (offset)
1546 /* "index" passed in to this function is relative to a given
1547 * 4k block. To get to the true index into the field vector
1548 * table need to add the relative index to the base_offset
1549 * field of this section
1550 */
1551 *offset = le16_to_cpu(fv_section->base_offset) + index;
1552 return fv_section->fv + index;
1553}
1554
1555/**
1556 * ice_get_prof_index_max - get the max profile index for used profile
1557 * @hw: pointer to the HW struct
1558 *
1559 * Calling this function will get the max profile index for used profile
1560 * and store the index number in struct ice_switch_info *switch_info
1561 * in HW for following use.
1562 */
1563static int ice_get_prof_index_max(struct ice_hw *hw)
1564{
1565 u16 prof_index = 0, j, max_prof_index = 0;
1566 struct ice_pkg_enum state;
1567 struct ice_seg *ice_seg;
1568 bool flag = false;
1569 struct ice_fv *fv;
1570 u32 offset;
1571
1572 memset(&state, 0, sizeof(state));
1573
1574 if (!hw->seg)
1575 return -EINVAL;
1576
1577 ice_seg = hw->seg;
1578
1579 do {
1580 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1581 &offset, ice_sw_fv_handler);
1582 if (!fv)
1583 break;
1584 ice_seg = NULL;
1585
1586 /* in the profile that not be used, the prot_id is set to 0xff
1587 * and the off is set to 0x1ff for all the field vectors.
1588 */
1589 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1590 if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1591 fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1592 flag = true;
1593 if (flag && prof_index > max_prof_index)
1594 max_prof_index = prof_index;
1595
1596 prof_index++;
1597 flag = false;
1598 } while (fv);
1599
1600 hw->switch_info->max_used_prof_index = max_prof_index;
1601
1602 return 0;
1603}
1604
1605/**
1606 * ice_get_ddp_pkg_state - get DDP pkg state after download
1607 * @hw: pointer to the HW struct
1608 * @already_loaded: indicates if pkg was already loaded onto the device
1609 */
1610static enum ice_ddp_state
1611ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
1612{
1613 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
1614 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
1615 hw->pkg_ver.update == hw->active_pkg_ver.update &&
1616 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
1617 !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
1618 if (already_loaded)
1619 return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
1620 else
1621 return ICE_DDP_PKG_SUCCESS;
1622 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
1623 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
1624 return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
1625 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
1626 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
1627 return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
1628 } else {
1629 return ICE_DDP_PKG_ERR;
1630 }
1631}
1632
1633/**
1634 * ice_init_pkg - initialize/download package
1635 * @hw: pointer to the hardware structure
1636 * @buf: pointer to the package buffer
1637 * @len: size of the package buffer
1638 *
1639 * This function initializes a package. The package contains HW tables
1640 * required to do packet processing. First, the function extracts package
1641 * information such as version. Then it finds the ice configuration segment
1642 * within the package; this function then saves a copy of the segment pointer
1643 * within the supplied package buffer. Next, the function will cache any hints
1644 * from the package, followed by downloading the package itself. Note, that if
1645 * a previous PF driver has already downloaded the package successfully, then
1646 * the current driver will not have to download the package again.
1647 *
1648 * The local package contents will be used to query default behavior and to
1649 * update specific sections of the HW's version of the package (e.g. to update
1650 * the parse graph to understand new protocols).
1651 *
1652 * This function stores a pointer to the package buffer memory, and it is
1653 * expected that the supplied buffer will not be freed immediately. If the
1654 * package buffer needs to be freed, such as when read from a file, use
1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1656 * case.
1657 */
1658enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1659{
1660 bool already_loaded = false;
1661 enum ice_ddp_state state;
1662 struct ice_pkg_hdr *pkg;
1663 struct ice_seg *seg;
1664
1665 if (!buf || !len)
1666 return ICE_DDP_PKG_ERR;
1667
1668 pkg = (struct ice_pkg_hdr *)buf;
1669 state = ice_verify_pkg(pkg, len);
1670 if (state) {
1671 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1672 state);
1673 return state;
1674 }
1675
1676 /* initialize package info */
1677 state = ice_init_pkg_info(hw, pkg);
1678 if (state)
1679 return state;
1680
1681 /* before downloading the package, check package version for
1682 * compatibility with driver
1683 */
1684 state = ice_chk_pkg_compat(hw, pkg, &seg);
1685 if (state)
1686 return state;
1687
1688 /* initialize package hints and then download package */
1689 ice_init_pkg_hints(hw, seg);
1690 state = ice_download_pkg(hw, seg);
1691 if (state == ICE_DDP_PKG_ALREADY_LOADED) {
1692 ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1693 already_loaded = true;
1694 }
1695
1696 /* Get information on the package currently loaded in HW, then make sure
1697 * the driver is compatible with this version.
1698 */
1699 if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
1700 state = ice_get_pkg_info(hw);
1701 if (!state)
1702 state = ice_get_ddp_pkg_state(hw, already_loaded);
1703 }
1704
1705 if (ice_is_init_pkg_successful(state)) {
1706 hw->seg = seg;
1707 /* on successful package download update other required
1708 * registers to support the package and fill HW tables
1709 * with package content.
1710 */
1711 ice_init_pkg_regs(hw);
1712 ice_fill_blk_tbls(hw);
1713 ice_fill_hw_ptype(hw);
1714 ice_get_prof_index_max(hw);
1715 } else {
1716 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1717 state);
1718 }
1719
1720 return state;
1721}
1722
1723/**
1724 * ice_copy_and_init_pkg - initialize/download a copy of the package
1725 * @hw: pointer to the hardware structure
1726 * @buf: pointer to the package buffer
1727 * @len: size of the package buffer
1728 *
1729 * This function copies the package buffer, and then calls ice_init_pkg() to
1730 * initialize the copied package contents.
1731 *
1732 * The copying is necessary if the package buffer supplied is constant, or if
1733 * the memory may disappear shortly after calling this function.
1734 *
1735 * If the package buffer resides in the data segment and can be modified, the
1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1737 *
1738 * However, if the package buffer needs to be copied first, such as when being
1739 * read from a file, the caller should use ice_copy_and_init_pkg().
1740 *
1741 * This function will first copy the package buffer, before calling
1742 * ice_init_pkg(). The caller is free to immediately destroy the original
1743 * package buffer, as the new copy will be managed by this function and
1744 * related routines.
1745 */
1746enum ice_ddp_state
1747ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1748{
1749 enum ice_ddp_state state;
1750 u8 *buf_copy;
1751
1752 if (!buf || !len)
1753 return ICE_DDP_PKG_ERR;
1754
1755 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1756
1757 state = ice_init_pkg(hw, buf_copy, len);
1758 if (!ice_is_init_pkg_successful(state)) {
1759 /* Free the copy, since we failed to initialize the package */
1760 devm_kfree(ice_hw_to_dev(hw), buf_copy);
1761 } else {
1762 /* Track the copied pkg so we can free it later */
1763 hw->pkg_copy = buf_copy;
1764 hw->pkg_size = len;
1765 }
1766
1767 return state;
1768}
1769
1770/**
1771 * ice_is_init_pkg_successful - check if DDP init was successful
1772 * @state: state of the DDP pkg after download
1773 */
1774bool ice_is_init_pkg_successful(enum ice_ddp_state state)
1775{
1776 switch (state) {
1777 case ICE_DDP_PKG_SUCCESS:
1778 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
1779 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
1780 return true;
1781 default:
1782 return false;
1783 }
1784}
1785
1786/**
1787 * ice_pkg_buf_alloc
1788 * @hw: pointer to the HW structure
1789 *
1790 * Allocates a package buffer and returns a pointer to the buffer header.
1791 * Note: all package contents must be in Little Endian form.
1792 */
1793static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1794{
1795 struct ice_buf_build *bld;
1796 struct ice_buf_hdr *buf;
1797
1798 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1799 if (!bld)
1800 return NULL;
1801
1802 buf = (struct ice_buf_hdr *)bld;
1803 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1804 section_entry));
1805 return bld;
1806}
1807
1808static bool ice_is_gtp_u_profile(u16 prof_idx)
1809{
1810 return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
1811 prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
1812 prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
1813}
1814
1815static bool ice_is_gtp_c_profile(u16 prof_idx)
1816{
1817 switch (prof_idx) {
1818 case ICE_PROFID_IPV4_GTPC_TEID:
1819 case ICE_PROFID_IPV4_GTPC_NO_TEID:
1820 case ICE_PROFID_IPV6_GTPC_TEID:
1821 case ICE_PROFID_IPV6_GTPC_NO_TEID:
1822 return true;
1823 default:
1824 return false;
1825 }
1826}
1827
1828/**
1829 * ice_get_sw_prof_type - determine switch profile type
1830 * @hw: pointer to the HW structure
1831 * @fv: pointer to the switch field vector
1832 * @prof_idx: profile index to check
1833 */
1834static enum ice_prof_type
1835ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
1836{
1837 u16 i;
1838
1839 if (ice_is_gtp_c_profile(prof_idx))
1840 return ICE_PROF_TUN_GTPC;
1841
1842 if (ice_is_gtp_u_profile(prof_idx))
1843 return ICE_PROF_TUN_GTPU;
1844
1845 for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1846 /* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1847 if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1848 fv->ew[i].off == ICE_VNI_OFFSET)
1849 return ICE_PROF_TUN_UDP;
1850
1851 /* GRE tunnel will have GRE protocol */
1852 if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1853 return ICE_PROF_TUN_GRE;
1854 }
1855
1856 return ICE_PROF_NON_TUN;
1857}
1858
1859/**
1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1861 * @hw: pointer to hardware structure
1862 * @req_profs: type of profiles requested
1863 * @bm: pointer to memory for returning the bitmap of field vectors
1864 */
1865void
1866ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1867 unsigned long *bm)
1868{
1869 struct ice_pkg_enum state;
1870 struct ice_seg *ice_seg;
1871 struct ice_fv *fv;
1872
1873 if (req_profs == ICE_PROF_ALL) {
1874 bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
1875 return;
1876 }
1877
1878 memset(&state, 0, sizeof(state));
1879 bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
1880 ice_seg = hw->seg;
1881 do {
1882 enum ice_prof_type prof_type;
1883 u32 offset;
1884
1885 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1886 &offset, ice_sw_fv_handler);
1887 ice_seg = NULL;
1888
1889 if (fv) {
1890 /* Determine field vector type */
1891 prof_type = ice_get_sw_prof_type(hw, fv, offset);
1892
1893 if (req_profs & prof_type)
1894 set_bit((u16)offset, bm);
1895 }
1896 } while (fv);
1897}
1898
1899/**
1900 * ice_get_sw_fv_list
1901 * @hw: pointer to the HW structure
1902 * @lkups: list of protocol types
1903 * @bm: bitmap of field vectors to consider
1904 * @fv_list: Head of a list
1905 *
1906 * Finds all the field vector entries from switch block that contain
1907 * a given protocol ID and offset and returns a list of structures of type
1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1909 * definition and profile ID information
1910 * NOTE: The caller of the function is responsible for freeing the memory
1911 * allocated for every list entry.
1912 */
1913int
1914ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
1915 unsigned long *bm, struct list_head *fv_list)
1916{
1917 struct ice_sw_fv_list_entry *fvl;
1918 struct ice_sw_fv_list_entry *tmp;
1919 struct ice_pkg_enum state;
1920 struct ice_seg *ice_seg;
1921 struct ice_fv *fv;
1922 u32 offset;
1923
1924 memset(&state, 0, sizeof(state));
1925
1926 if (!lkups->n_val_words || !hw->seg)
1927 return -EINVAL;
1928
1929 ice_seg = hw->seg;
1930 do {
1931 u16 i;
1932
1933 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1934 &offset, ice_sw_fv_handler);
1935 if (!fv)
1936 break;
1937 ice_seg = NULL;
1938
1939 /* If field vector is not in the bitmap list, then skip this
1940 * profile.
1941 */
1942 if (!test_bit((u16)offset, bm))
1943 continue;
1944
1945 for (i = 0; i < lkups->n_val_words; i++) {
1946 int j;
1947
1948 for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1949 if (fv->ew[j].prot_id ==
1950 lkups->fv_words[i].prot_id &&
1951 fv->ew[j].off == lkups->fv_words[i].off)
1952 break;
1953 if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1954 break;
1955 if (i + 1 == lkups->n_val_words) {
1956 fvl = devm_kzalloc(ice_hw_to_dev(hw),
1957 sizeof(*fvl), GFP_KERNEL);
1958 if (!fvl)
1959 goto err;
1960 fvl->fv_ptr = fv;
1961 fvl->profile_id = offset;
1962 list_add(&fvl->list_entry, fv_list);
1963 break;
1964 }
1965 }
1966 } while (fv);
1967 if (list_empty(fv_list)) {
1968 dev_warn(ice_hw_to_dev(hw), "Required profiles not found in currently loaded DDP package");
1969 return -EIO;
1970 }
1971
1972 return 0;
1973
1974err:
1975 list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
1976 list_del(&fvl->list_entry);
1977 devm_kfree(ice_hw_to_dev(hw), fvl);
1978 }
1979
1980 return -ENOMEM;
1981}
1982
1983/**
1984 * ice_init_prof_result_bm - Initialize the profile result index bitmap
1985 * @hw: pointer to hardware structure
1986 */
1987void ice_init_prof_result_bm(struct ice_hw *hw)
1988{
1989 struct ice_pkg_enum state;
1990 struct ice_seg *ice_seg;
1991 struct ice_fv *fv;
1992
1993 memset(&state, 0, sizeof(state));
1994
1995 if (!hw->seg)
1996 return;
1997
1998 ice_seg = hw->seg;
1999 do {
2000 u32 off;
2001 u16 i;
2002
2003 fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
2004 &off, ice_sw_fv_handler);
2005 ice_seg = NULL;
2006 if (!fv)
2007 break;
2008
2009 bitmap_zero(hw->switch_info->prof_res_bm[off],
2010 ICE_MAX_FV_WORDS);
2011
2012 /* Determine empty field vector indices, these can be
2013 * used for recipe results. Skip index 0, since it is
2014 * always used for Switch ID.
2015 */
2016 for (i = 1; i < ICE_MAX_FV_WORDS; i++)
2017 if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
2018 fv->ew[i].off == ICE_FV_OFFSET_INVAL)
2019 set_bit(i, hw->switch_info->prof_res_bm[off]);
2020 } while (fv);
2021}
2022
2023/**
2024 * ice_pkg_buf_free
2025 * @hw: pointer to the HW structure
2026 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2027 *
2028 * Frees a package buffer
2029 */
2030void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
2031{
2032 devm_kfree(ice_hw_to_dev(hw), bld);
2033}
2034
2035/**
2036 * ice_pkg_buf_reserve_section
2037 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2038 * @count: the number of sections to reserve
2039 *
2040 * Reserves one or more section table entries in a package buffer. This routine
2041 * can be called multiple times as long as they are made before calling
2042 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
2043 * is called once, the number of sections that can be allocated will not be able
2044 * to be increased; not using all reserved sections is fine, but this will
2045 * result in some wasted space in the buffer.
2046 * Note: all package contents must be in Little Endian form.
2047 */
2048static int
2049ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2050{
2051 struct ice_buf_hdr *buf;
2052 u16 section_count;
2053 u16 data_end;
2054
2055 if (!bld)
2056 return -EINVAL;
2057
2058 buf = (struct ice_buf_hdr *)&bld->buf;
2059
2060 /* already an active section, can't increase table size */
2061 section_count = le16_to_cpu(buf->section_count);
2062 if (section_count > 0)
2063 return -EIO;
2064
2065 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2066 return -EIO;
2067 bld->reserved_section_table_entries += count;
2068
2069 data_end = le16_to_cpu(buf->data_end) +
2070 flex_array_size(buf, section_entry, count);
2071 buf->data_end = cpu_to_le16(data_end);
2072
2073 return 0;
2074}
2075
2076/**
2077 * ice_pkg_buf_alloc_section
2078 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2079 * @type: the section type value
2080 * @size: the size of the section to reserve (in bytes)
2081 *
2082 * Reserves memory in the buffer for a section's content and updates the
2083 * buffers' status accordingly. This routine returns a pointer to the first
2084 * byte of the section start within the buffer, which is used to fill in the
2085 * section contents.
2086 * Note: all package contents must be in Little Endian form.
2087 */
2088static void *
2089ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2090{
2091 struct ice_buf_hdr *buf;
2092 u16 sect_count;
2093 u16 data_end;
2094
2095 if (!bld || !type || !size)
2096 return NULL;
2097
2098 buf = (struct ice_buf_hdr *)&bld->buf;
2099
2100 /* check for enough space left in buffer */
2101 data_end = le16_to_cpu(buf->data_end);
2102
2103 /* section start must align on 4 byte boundary */
2104 data_end = ALIGN(data_end, 4);
2105
2106 if ((data_end + size) > ICE_MAX_S_DATA_END)
2107 return NULL;
2108
2109 /* check for more available section table entries */
2110 sect_count = le16_to_cpu(buf->section_count);
2111 if (sect_count < bld->reserved_section_table_entries) {
2112 void *section_ptr = ((u8 *)buf) + data_end;
2113
2114 buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
2115 buf->section_entry[sect_count].size = cpu_to_le16(size);
2116 buf->section_entry[sect_count].type = cpu_to_le32(type);
2117
2118 data_end += size;
2119 buf->data_end = cpu_to_le16(data_end);
2120
2121 buf->section_count = cpu_to_le16(sect_count + 1);
2122 return section_ptr;
2123 }
2124
2125 /* no free section table entries */
2126 return NULL;
2127}
2128
2129/**
2130 * ice_pkg_buf_alloc_single_section
2131 * @hw: pointer to the HW structure
2132 * @type: the section type value
2133 * @size: the size of the section to reserve (in bytes)
2134 * @section: returns pointer to the section
2135 *
2136 * Allocates a package buffer with a single section.
2137 * Note: all package contents must be in Little Endian form.
2138 */
2139struct ice_buf_build *
2140ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2141 void **section)
2142{
2143 struct ice_buf_build *buf;
2144
2145 if (!section)
2146 return NULL;
2147
2148 buf = ice_pkg_buf_alloc(hw);
2149 if (!buf)
2150 return NULL;
2151
2152 if (ice_pkg_buf_reserve_section(buf, 1))
2153 goto ice_pkg_buf_alloc_single_section_err;
2154
2155 *section = ice_pkg_buf_alloc_section(buf, type, size);
2156 if (!*section)
2157 goto ice_pkg_buf_alloc_single_section_err;
2158
2159 return buf;
2160
2161ice_pkg_buf_alloc_single_section_err:
2162 ice_pkg_buf_free(hw, buf);
2163 return NULL;
2164}
2165
2166/**
2167 * ice_pkg_buf_get_active_sections
2168 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2169 *
2170 * Returns the number of active sections. Before using the package buffer
2171 * in an update package command, the caller should make sure that there is at
2172 * least one active section - otherwise, the buffer is not legal and should
2173 * not be used.
2174 * Note: all package contents must be in Little Endian form.
2175 */
2176static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2177{
2178 struct ice_buf_hdr *buf;
2179
2180 if (!bld)
2181 return 0;
2182
2183 buf = (struct ice_buf_hdr *)&bld->buf;
2184 return le16_to_cpu(buf->section_count);
2185}
2186
2187/**
2188 * ice_pkg_buf
2189 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2190 *
2191 * Return a pointer to the buffer's header
2192 */
2193struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2194{
2195 if (!bld)
2196 return NULL;
2197
2198 return &bld->buf;
2199}
2200
2201/**
2202 * ice_get_open_tunnel_port - retrieve an open tunnel port
2203 * @hw: pointer to the HW structure
2204 * @port: returns open port
2205 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
2206 */
2207bool
2208ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
2209 enum ice_tunnel_type type)
2210{
2211 bool res = false;
2212 u16 i;
2213
2214 mutex_lock(&hw->tnl_lock);
2215
2216 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2217 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
2218 (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
2219 *port = hw->tnl.tbl[i].port;
2220 res = true;
2221 break;
2222 }
2223
2224 mutex_unlock(&hw->tnl_lock);
2225
2226 return res;
2227}
2228
2229/**
2230 * ice_upd_dvm_boost_entry
2231 * @hw: pointer to the HW structure
2232 * @entry: pointer to double vlan boost entry info
2233 */
2234static int
2235ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2236{
2237 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2238 int status = -ENOSPC;
2239 struct ice_buf_build *bld;
2240 u8 val, dc, nm;
2241
2242 bld = ice_pkg_buf_alloc(hw);
2243 if (!bld)
2244 return -ENOMEM;
2245
2246 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2247 if (ice_pkg_buf_reserve_section(bld, 2))
2248 goto ice_upd_dvm_boost_entry_err;
2249
2250 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2251 struct_size(sect_rx, tcam, 1));
2252 if (!sect_rx)
2253 goto ice_upd_dvm_boost_entry_err;
2254 sect_rx->count = cpu_to_le16(1);
2255
2256 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2257 struct_size(sect_tx, tcam, 1));
2258 if (!sect_tx)
2259 goto ice_upd_dvm_boost_entry_err;
2260 sect_tx->count = cpu_to_le16(1);
2261
2262 /* copy original boost entry to update package buffer */
2263 memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
2264
2265 /* re-write the don't care and never match bits accordingly */
2266 if (entry->enable) {
2267 /* all bits are don't care */
2268 val = 0x00;
2269 dc = 0xFF;
2270 nm = 0x00;
2271 } else {
2272 /* disable, one never match bit, the rest are don't care */
2273 val = 0x00;
2274 dc = 0xF7;
2275 nm = 0x08;
2276 }
2277
2278 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2279 &val, NULL, &dc, &nm, 0, sizeof(u8));
2280
2281 /* exact copy of entry to Tx section entry */
2282 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2283
2284 status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2285
2286ice_upd_dvm_boost_entry_err:
2287 ice_pkg_buf_free(hw, bld);
2288
2289 return status;
2290}
2291
2292/**
2293 * ice_set_dvm_boost_entries
2294 * @hw: pointer to the HW structure
2295 *
2296 * Enable double vlan by updating the appropriate boost tcam entries.
2297 */
2298int ice_set_dvm_boost_entries(struct ice_hw *hw)
2299{
2300 int status;
2301 u16 i;
2302
2303 for (i = 0; i < hw->dvm_upd.count; i++) {
2304 status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2305 if (status)
2306 return status;
2307 }
2308
2309 return 0;
2310}
2311
2312/**
2313 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
2314 * @hw: pointer to the HW structure
2315 * @type: type of tunnel
2316 * @idx: linear index
2317 *
2318 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
2319 * but really the port table may be sprase, and types are mixed, so convert
2320 * the stack index into the device index.
2321 */
2322static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2323 u16 idx)
2324{
2325 u16 i;
2326
2327 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2328 if (hw->tnl.tbl[i].valid &&
2329 hw->tnl.tbl[i].type == type &&
2330 idx-- == 0)
2331 return i;
2332
2333 WARN_ON_ONCE(1);
2334 return 0;
2335}
2336
2337/**
2338 * ice_create_tunnel
2339 * @hw: pointer to the HW structure
2340 * @index: device table entry
2341 * @type: type of tunnel
2342 * @port: port of tunnel to create
2343 *
2344 * Create a tunnel by updating the parse graph in the parser. We do that by
2345 * creating a package buffer with the tunnel info and issuing an update package
2346 * command.
2347 */
2348static int
2349ice_create_tunnel(struct ice_hw *hw, u16 index,
2350 enum ice_tunnel_type type, u16 port)
2351{
2352 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2353 struct ice_buf_build *bld;
2354 int status = -ENOSPC;
2355
2356 mutex_lock(&hw->tnl_lock);
2357
2358 bld = ice_pkg_buf_alloc(hw);
2359 if (!bld) {
2360 status = -ENOMEM;
2361 goto ice_create_tunnel_end;
2362 }
2363
2364 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2365 if (ice_pkg_buf_reserve_section(bld, 2))
2366 goto ice_create_tunnel_err;
2367
2368 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2369 struct_size(sect_rx, tcam, 1));
2370 if (!sect_rx)
2371 goto ice_create_tunnel_err;
2372 sect_rx->count = cpu_to_le16(1);
2373
2374 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2375 struct_size(sect_tx, tcam, 1));
2376 if (!sect_tx)
2377 goto ice_create_tunnel_err;
2378 sect_tx->count = cpu_to_le16(1);
2379
2380 /* copy original boost entry to update package buffer */
2381 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2382 sizeof(*sect_rx->tcam));
2383
2384 /* over-write the never-match dest port key bits with the encoded port
2385 * bits
2386 */
2387 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2388 (u8 *)&port, NULL, NULL, NULL,
2389 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2390 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2391
2392 /* exact copy of entry to Tx section entry */
2393 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
2394
2395 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2396 if (!status)
2397 hw->tnl.tbl[index].port = port;
2398
2399ice_create_tunnel_err:
2400 ice_pkg_buf_free(hw, bld);
2401
2402ice_create_tunnel_end:
2403 mutex_unlock(&hw->tnl_lock);
2404
2405 return status;
2406}
2407
2408/**
2409 * ice_destroy_tunnel
2410 * @hw: pointer to the HW structure
2411 * @index: device table entry
2412 * @type: type of tunnel
2413 * @port: port of tunnel to destroy (ignored if the all parameter is true)
2414 *
2415 * Destroys a tunnel or all tunnels by creating an update package buffer
2416 * targeting the specific updates requested and then performing an update
2417 * package.
2418 */
2419static int
2420ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
2421 u16 port)
2422{
2423 struct ice_boost_tcam_section *sect_rx, *sect_tx;
2424 struct ice_buf_build *bld;
2425 int status = -ENOSPC;
2426
2427 mutex_lock(&hw->tnl_lock);
2428
2429 if (WARN_ON(!hw->tnl.tbl[index].valid ||
2430 hw->tnl.tbl[index].type != type ||
2431 hw->tnl.tbl[index].port != port)) {
2432 status = -EIO;
2433 goto ice_destroy_tunnel_end;
2434 }
2435
2436 bld = ice_pkg_buf_alloc(hw);
2437 if (!bld) {
2438 status = -ENOMEM;
2439 goto ice_destroy_tunnel_end;
2440 }
2441
2442 /* allocate 2 sections, one for Rx parser, one for Tx parser */
2443 if (ice_pkg_buf_reserve_section(bld, 2))
2444 goto ice_destroy_tunnel_err;
2445
2446 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2447 struct_size(sect_rx, tcam, 1));
2448 if (!sect_rx)
2449 goto ice_destroy_tunnel_err;
2450 sect_rx->count = cpu_to_le16(1);
2451
2452 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2453 struct_size(sect_tx, tcam, 1));
2454 if (!sect_tx)
2455 goto ice_destroy_tunnel_err;
2456 sect_tx->count = cpu_to_le16(1);
2457
2458 /* copy original boost entry to update package buffer, one copy to Rx
2459 * section, another copy to the Tx section
2460 */
2461 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2462 sizeof(*sect_rx->tcam));
2463 memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
2464 sizeof(*sect_tx->tcam));
2465
2466 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2467 if (!status)
2468 hw->tnl.tbl[index].port = 0;
2469
2470ice_destroy_tunnel_err:
2471 ice_pkg_buf_free(hw, bld);
2472
2473ice_destroy_tunnel_end:
2474 mutex_unlock(&hw->tnl_lock);
2475
2476 return status;
2477}
2478
2479int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
2480 unsigned int idx, struct udp_tunnel_info *ti)
2481{
2482 struct ice_netdev_priv *np = netdev_priv(netdev);
2483 struct ice_vsi *vsi = np->vsi;
2484 struct ice_pf *pf = vsi->back;
2485 enum ice_tunnel_type tnl_type;
2486 int status;
2487 u16 index;
2488
2489 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2490 index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
2491
2492 status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
2493 if (status) {
2494 netdev_err(netdev, "Error adding UDP tunnel - %d\n",
2495 status);
2496 return -EIO;
2497 }
2498
2499 udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
2500 return 0;
2501}
2502
2503int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
2504 unsigned int idx, struct udp_tunnel_info *ti)
2505{
2506 struct ice_netdev_priv *np = netdev_priv(netdev);
2507 struct ice_vsi *vsi = np->vsi;
2508 struct ice_pf *pf = vsi->back;
2509 enum ice_tunnel_type tnl_type;
2510 int status;
2511
2512 tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
2513
2514 status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
2515 ntohs(ti->port));
2516 if (status) {
2517 netdev_err(netdev, "Error removing UDP tunnel - %d\n",
2518 status);
2519 return -EIO;
2520 }
2521
2522 return 0;
2523}
2524
2525/**
2526 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2527 * @hw: pointer to the hardware structure
2528 * @blk: hardware block
2529 * @prof: profile ID
2530 * @fv_idx: field vector word index
2531 * @prot: variable to receive the protocol ID
2532 * @off: variable to receive the protocol offset
2533 */
2534int
2535ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2536 u8 *prot, u16 *off)
2537{
2538 struct ice_fv_word *fv_ext;
2539
2540 if (prof >= hw->blk[blk].es.count)
2541 return -EINVAL;
2542
2543 if (fv_idx >= hw->blk[blk].es.fvw)
2544 return -EINVAL;
2545
2546 fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2547
2548 *prot = fv_ext[fv_idx].prot_id;
2549 *off = fv_ext[fv_idx].off;
2550
2551 return 0;
2552}
2553
2554/* PTG Management */
2555
2556/**
2557 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2558 * @hw: pointer to the hardware structure
2559 * @blk: HW block
2560 * @ptype: the ptype to search for
2561 * @ptg: pointer to variable that receives the PTG
2562 *
2563 * This function will search the PTGs for a particular ptype, returning the
2564 * PTG ID that contains it through the PTG parameter, with the value of
2565 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2566 */
2567static int
2568ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2569{
2570 if (ptype >= ICE_XLT1_CNT || !ptg)
2571 return -EINVAL;
2572
2573 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2574 return 0;
2575}
2576
2577/**
2578 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2579 * @hw: pointer to the hardware structure
2580 * @blk: HW block
2581 * @ptg: the PTG to allocate
2582 *
2583 * This function allocates a given packet type group ID specified by the PTG
2584 * parameter.
2585 */
2586static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2587{
2588 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2589}
2590
2591/**
2592 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2593 * @hw: pointer to the hardware structure
2594 * @blk: HW block
2595 * @ptype: the ptype to remove
2596 * @ptg: the PTG to remove the ptype from
2597 *
2598 * This function will remove the ptype from the specific PTG, and move it to
2599 * the default PTG (ICE_DEFAULT_PTG).
2600 */
2601static int
2602ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2603{
2604 struct ice_ptg_ptype **ch;
2605 struct ice_ptg_ptype *p;
2606
2607 if (ptype > ICE_XLT1_CNT - 1)
2608 return -EINVAL;
2609
2610 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2611 return -ENOENT;
2612
2613 /* Should not happen if .in_use is set, bad config */
2614 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2615 return -EIO;
2616
2617 /* find the ptype within this PTG, and bypass the link over it */
2618 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2619 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2620 while (p) {
2621 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2622 *ch = p->next_ptype;
2623 break;
2624 }
2625
2626 ch = &p->next_ptype;
2627 p = p->next_ptype;
2628 }
2629
2630 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2631 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2632
2633 return 0;
2634}
2635
2636/**
2637 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2638 * @hw: pointer to the hardware structure
2639 * @blk: HW block
2640 * @ptype: the ptype to add or move
2641 * @ptg: the PTG to add or move the ptype to
2642 *
2643 * This function will either add or move a ptype to a particular PTG depending
2644 * on if the ptype is already part of another group. Note that using a
2645 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2646 * default PTG.
2647 */
2648static int
2649ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2650{
2651 u8 original_ptg;
2652 int status;
2653
2654 if (ptype > ICE_XLT1_CNT - 1)
2655 return -EINVAL;
2656
2657 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2658 return -ENOENT;
2659
2660 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2661 if (status)
2662 return status;
2663
2664 /* Is ptype already in the correct PTG? */
2665 if (original_ptg == ptg)
2666 return 0;
2667
2668 /* Remove from original PTG and move back to the default PTG */
2669 if (original_ptg != ICE_DEFAULT_PTG)
2670 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2671
2672 /* Moving to default PTG? Then we're done with this request */
2673 if (ptg == ICE_DEFAULT_PTG)
2674 return 0;
2675
2676 /* Add ptype to PTG at beginning of list */
2677 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2678 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2679 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2680 &hw->blk[blk].xlt1.ptypes[ptype];
2681
2682 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2683 hw->blk[blk].xlt1.t[ptype] = ptg;
2684
2685 return 0;
2686}
2687
2688/* Block / table size info */
2689struct ice_blk_size_details {
2690 u16 xlt1; /* # XLT1 entries */
2691 u16 xlt2; /* # XLT2 entries */
2692 u16 prof_tcam; /* # profile ID TCAM entries */
2693 u16 prof_id; /* # profile IDs */
2694 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
2695 u16 prof_redir; /* # profile redirection entries */
2696 u16 es; /* # extraction sequence entries */
2697 u16 fvw; /* # field vector words */
2698 u8 overwrite; /* overwrite existing entries allowed */
2699 u8 reverse; /* reverse FV order */
2700};
2701
2702static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2703 /**
2704 * Table Definitions
2705 * XLT1 - Number of entries in XLT1 table
2706 * XLT2 - Number of entries in XLT2 table
2707 * TCAM - Number of entries Profile ID TCAM table
2708 * CDID - Control Domain ID of the hardware block
2709 * PRED - Number of entries in the Profile Redirection Table
2710 * FV - Number of entries in the Field Vector
2711 * FVW - Width (in WORDs) of the Field Vector
2712 * OVR - Overwrite existing table entries
2713 * REV - Reverse FV
2714 */
2715 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2716 /* Overwrite , Reverse FV */
2717 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2718 false, false },
2719 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2720 false, false },
2721 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2722 false, true },
2723 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2724 true, true },
2725 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2726 false, false },
2727};
2728
2729enum ice_sid_all {
2730 ICE_SID_XLT1_OFF = 0,
2731 ICE_SID_XLT2_OFF,
2732 ICE_SID_PR_OFF,
2733 ICE_SID_PR_REDIR_OFF,
2734 ICE_SID_ES_OFF,
2735 ICE_SID_OFF_COUNT,
2736};
2737
2738/* Characteristic handling */
2739
2740/**
2741 * ice_match_prop_lst - determine if properties of two lists match
2742 * @list1: first properties list
2743 * @list2: second properties list
2744 *
2745 * Count, cookies and the order must match in order to be considered equivalent.
2746 */
2747static bool
2748ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2749{
2750 struct ice_vsig_prof *tmp1;
2751 struct ice_vsig_prof *tmp2;
2752 u16 chk_count = 0;
2753 u16 count = 0;
2754
2755 /* compare counts */
2756 list_for_each_entry(tmp1, list1, list)
2757 count++;
2758 list_for_each_entry(tmp2, list2, list)
2759 chk_count++;
2760 /* cppcheck-suppress knownConditionTrueFalse */
2761 if (!count || count != chk_count)
2762 return false;
2763
2764 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2765 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2766
2767 /* profile cookies must compare, and in the exact same order to take
2768 * into account priority
2769 */
2770 while (count--) {
2771 if (tmp2->profile_cookie != tmp1->profile_cookie)
2772 return false;
2773
2774 tmp1 = list_next_entry(tmp1, list);
2775 tmp2 = list_next_entry(tmp2, list);
2776 }
2777
2778 return true;
2779}
2780
2781/* VSIG Management */
2782
2783/**
2784 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2785 * @hw: pointer to the hardware structure
2786 * @blk: HW block
2787 * @vsi: VSI of interest
2788 * @vsig: pointer to receive the VSI group
2789 *
2790 * This function will lookup the VSI entry in the XLT2 list and return
2791 * the VSI group its associated with.
2792 */
2793static int
2794ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2795{
2796 if (!vsig || vsi >= ICE_MAX_VSI)
2797 return -EINVAL;
2798
2799 /* As long as there's a default or valid VSIG associated with the input
2800 * VSI, the functions returns a success. Any handling of VSIG will be
2801 * done by the following add, update or remove functions.
2802 */
2803 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2804
2805 return 0;
2806}
2807
2808/**
2809 * ice_vsig_alloc_val - allocate a new VSIG by value
2810 * @hw: pointer to the hardware structure
2811 * @blk: HW block
2812 * @vsig: the VSIG to allocate
2813 *
2814 * This function will allocate a given VSIG specified by the VSIG parameter.
2815 */
2816static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2817{
2818 u16 idx = vsig & ICE_VSIG_IDX_M;
2819
2820 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2821 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2822 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2823 }
2824
2825 return ICE_VSIG_VALUE(idx, hw->pf_id);
2826}
2827
2828/**
2829 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2830 * @hw: pointer to the hardware structure
2831 * @blk: HW block
2832 *
2833 * This function will iterate through the VSIG list and mark the first
2834 * unused entry for the new VSIG entry as used and return that value.
2835 */
2836static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2837{
2838 u16 i;
2839
2840 for (i = 1; i < ICE_MAX_VSIGS; i++)
2841 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2842 return ice_vsig_alloc_val(hw, blk, i);
2843
2844 return ICE_DEFAULT_VSIG;
2845}
2846
2847/**
2848 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2849 * @hw: pointer to the hardware structure
2850 * @blk: HW block
2851 * @chs: characteristic list
2852 * @vsig: returns the VSIG with the matching profiles, if found
2853 *
2854 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2855 * a group have the same characteristic set. To check if there exists a VSIG
2856 * which has the same characteristics as the input characteristics; this
2857 * function will iterate through the XLT2 list and return the VSIG that has a
2858 * matching configuration. In order to make sure that priorities are accounted
2859 * for, the list must match exactly, including the order in which the
2860 * characteristics are listed.
2861 */
2862static int
2863ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2864 struct list_head *chs, u16 *vsig)
2865{
2866 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2867 u16 i;
2868
2869 for (i = 0; i < xlt2->count; i++)
2870 if (xlt2->vsig_tbl[i].in_use &&
2871 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2872 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2873 return 0;
2874 }
2875
2876 return -ENOENT;
2877}
2878
2879/**
2880 * ice_vsig_free - free VSI group
2881 * @hw: pointer to the hardware structure
2882 * @blk: HW block
2883 * @vsig: VSIG to remove
2884 *
2885 * The function will remove all VSIs associated with the input VSIG and move
2886 * them to the DEFAULT_VSIG and mark the VSIG available.
2887 */
2888static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2889{
2890 struct ice_vsig_prof *dtmp, *del;
2891 struct ice_vsig_vsi *vsi_cur;
2892 u16 idx;
2893
2894 idx = vsig & ICE_VSIG_IDX_M;
2895 if (idx >= ICE_MAX_VSIGS)
2896 return -EINVAL;
2897
2898 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2899 return -ENOENT;
2900
2901 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2902
2903 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2904 /* If the VSIG has at least 1 VSI then iterate through the
2905 * list and remove the VSIs before deleting the group.
2906 */
2907 if (vsi_cur) {
2908 /* remove all vsis associated with this VSIG XLT2 entry */
2909 do {
2910 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2911
2912 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2913 vsi_cur->changed = 1;
2914 vsi_cur->next_vsi = NULL;
2915 vsi_cur = tmp;
2916 } while (vsi_cur);
2917
2918 /* NULL terminate head of VSI list */
2919 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2920 }
2921
2922 /* free characteristic list */
2923 list_for_each_entry_safe(del, dtmp,
2924 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2925 list) {
2926 list_del(&del->list);
2927 devm_kfree(ice_hw_to_dev(hw), del);
2928 }
2929
2930 /* if VSIG characteristic list was cleared for reset
2931 * re-initialize the list head
2932 */
2933 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2934
2935 return 0;
2936}
2937
2938/**
2939 * ice_vsig_remove_vsi - remove VSI from VSIG
2940 * @hw: pointer to the hardware structure
2941 * @blk: HW block
2942 * @vsi: VSI to remove
2943 * @vsig: VSI group to remove from
2944 *
2945 * The function will remove the input VSI from its VSI group and move it
2946 * to the DEFAULT_VSIG.
2947 */
2948static int
2949ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2950{
2951 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2952 u16 idx;
2953
2954 idx = vsig & ICE_VSIG_IDX_M;
2955
2956 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2957 return -EINVAL;
2958
2959 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2960 return -ENOENT;
2961
2962 /* entry already in default VSIG, don't have to remove */
2963 if (idx == ICE_DEFAULT_VSIG)
2964 return 0;
2965
2966 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2967 if (!(*vsi_head))
2968 return -EIO;
2969
2970 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2971 vsi_cur = (*vsi_head);
2972
2973 /* iterate the VSI list, skip over the entry to be removed */
2974 while (vsi_cur) {
2975 if (vsi_tgt == vsi_cur) {
2976 (*vsi_head) = vsi_cur->next_vsi;
2977 break;
2978 }
2979 vsi_head = &vsi_cur->next_vsi;
2980 vsi_cur = vsi_cur->next_vsi;
2981 }
2982
2983 /* verify if VSI was removed from group list */
2984 if (!vsi_cur)
2985 return -ENOENT;
2986
2987 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2988 vsi_cur->changed = 1;
2989 vsi_cur->next_vsi = NULL;
2990
2991 return 0;
2992}
2993
2994/**
2995 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2996 * @hw: pointer to the hardware structure
2997 * @blk: HW block
2998 * @vsi: VSI to move
2999 * @vsig: destination VSI group
3000 *
3001 * This function will move or add the input VSI to the target VSIG.
3002 * The function will find the original VSIG the VSI belongs to and
3003 * move the entry to the DEFAULT_VSIG, update the original VSIG and
3004 * then move entry to the new VSIG.
3005 */
3006static int
3007ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3008{
3009 struct ice_vsig_vsi *tmp;
3010 u16 orig_vsig, idx;
3011 int status;
3012
3013 idx = vsig & ICE_VSIG_IDX_M;
3014
3015 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3016 return -EINVAL;
3017
3018 /* if VSIG not in use and VSIG is not default type this VSIG
3019 * doesn't exist.
3020 */
3021 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3022 vsig != ICE_DEFAULT_VSIG)
3023 return -ENOENT;
3024
3025 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3026 if (status)
3027 return status;
3028
3029 /* no update required if vsigs match */
3030 if (orig_vsig == vsig)
3031 return 0;
3032
3033 if (orig_vsig != ICE_DEFAULT_VSIG) {
3034 /* remove entry from orig_vsig and add to default VSIG */
3035 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3036 if (status)
3037 return status;
3038 }
3039
3040 if (idx == ICE_DEFAULT_VSIG)
3041 return 0;
3042
3043 /* Create VSI entry and add VSIG and prop_mask values */
3044 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3045 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3046
3047 /* Add new entry to the head of the VSIG list */
3048 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3049 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3050 &hw->blk[blk].xlt2.vsis[vsi];
3051 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3052 hw->blk[blk].xlt2.t[vsi] = vsig;
3053
3054 return 0;
3055}
3056
3057/**
3058 * ice_prof_has_mask_idx - determine if profile index masking is identical
3059 * @hw: pointer to the hardware structure
3060 * @blk: HW block
3061 * @prof: profile to check
3062 * @idx: profile index to check
3063 * @mask: mask to match
3064 */
3065static bool
3066ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3067 u16 mask)
3068{
3069 bool expect_no_mask = false;
3070 bool found = false;
3071 bool match = false;
3072 u16 i;
3073
3074 /* If mask is 0x0000 or 0xffff, then there is no masking */
3075 if (mask == 0 || mask == 0xffff)
3076 expect_no_mask = true;
3077
3078 /* Scan the enabled masks on this profile, for the specified idx */
3079 for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3080 hw->blk[blk].masks.count; i++)
3081 if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3082 if (hw->blk[blk].masks.masks[i].in_use &&
3083 hw->blk[blk].masks.masks[i].idx == idx) {
3084 found = true;
3085 if (hw->blk[blk].masks.masks[i].mask == mask)
3086 match = true;
3087 break;
3088 }
3089
3090 if (expect_no_mask) {
3091 if (found)
3092 return false;
3093 } else {
3094 if (!match)
3095 return false;
3096 }
3097
3098 return true;
3099}
3100
3101/**
3102 * ice_prof_has_mask - determine if profile masking is identical
3103 * @hw: pointer to the hardware structure
3104 * @blk: HW block
3105 * @prof: profile to check
3106 * @masks: masks to match
3107 */
3108static bool
3109ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3110{
3111 u16 i;
3112
3113 /* es->mask_ena[prof] will have the mask */
3114 for (i = 0; i < hw->blk[blk].es.fvw; i++)
3115 if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3116 return false;
3117
3118 return true;
3119}
3120
3121/**
3122 * ice_find_prof_id_with_mask - find profile ID for a given field vector
3123 * @hw: pointer to the hardware structure
3124 * @blk: HW block
3125 * @fv: field vector to search for
3126 * @masks: masks for FV
3127 * @prof_id: receives the profile ID
3128 */
3129static int
3130ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3131 struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3132{
3133 struct ice_es *es = &hw->blk[blk].es;
3134 u8 i;
3135
3136 /* For FD, we don't want to re-use a existed profile with the same
3137 * field vector and mask. This will cause rule interference.
3138 */
3139 if (blk == ICE_BLK_FD)
3140 return -ENOENT;
3141
3142 for (i = 0; i < (u8)es->count; i++) {
3143 u16 off = i * es->fvw;
3144
3145 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3146 continue;
3147
3148 /* check if masks settings are the same for this profile */
3149 if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3150 continue;
3151
3152 *prof_id = i;
3153 return 0;
3154 }
3155
3156 return -ENOENT;
3157}
3158
3159/**
3160 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3161 * @blk: the block type
3162 * @rsrc_type: pointer to variable to receive the resource type
3163 */
3164static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3165{
3166 switch (blk) {
3167 case ICE_BLK_FD:
3168 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3169 break;
3170 case ICE_BLK_RSS:
3171 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3172 break;
3173 default:
3174 return false;
3175 }
3176 return true;
3177}
3178
3179/**
3180 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3181 * @blk: the block type
3182 * @rsrc_type: pointer to variable to receive the resource type
3183 */
3184static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3185{
3186 switch (blk) {
3187 case ICE_BLK_FD:
3188 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3189 break;
3190 case ICE_BLK_RSS:
3191 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3192 break;
3193 default:
3194 return false;
3195 }
3196 return true;
3197}
3198
3199/**
3200 * ice_alloc_tcam_ent - allocate hardware TCAM entry
3201 * @hw: pointer to the HW struct
3202 * @blk: the block to allocate the TCAM for
3203 * @btm: true to allocate from bottom of table, false to allocate from top
3204 * @tcam_idx: pointer to variable to receive the TCAM entry
3205 *
3206 * This function allocates a new entry in a Profile ID TCAM for a specific
3207 * block.
3208 */
3209static int
3210ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3211 u16 *tcam_idx)
3212{
3213 u16 res_type;
3214
3215 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3216 return -EINVAL;
3217
3218 return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3219}
3220
3221/**
3222 * ice_free_tcam_ent - free hardware TCAM entry
3223 * @hw: pointer to the HW struct
3224 * @blk: the block from which to free the TCAM entry
3225 * @tcam_idx: the TCAM entry to free
3226 *
3227 * This function frees an entry in a Profile ID TCAM for a specific block.
3228 */
3229static int
3230ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3231{
3232 u16 res_type;
3233
3234 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3235 return -EINVAL;
3236
3237 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3238}
3239
3240/**
3241 * ice_alloc_prof_id - allocate profile ID
3242 * @hw: pointer to the HW struct
3243 * @blk: the block to allocate the profile ID for
3244 * @prof_id: pointer to variable to receive the profile ID
3245 *
3246 * This function allocates a new profile ID, which also corresponds to a Field
3247 * Vector (Extraction Sequence) entry.
3248 */
3249static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3250{
3251 u16 res_type;
3252 u16 get_prof;
3253 int status;
3254
3255 if (!ice_prof_id_rsrc_type(blk, &res_type))
3256 return -EINVAL;
3257
3258 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3259 if (!status)
3260 *prof_id = (u8)get_prof;
3261
3262 return status;
3263}
3264
3265/**
3266 * ice_free_prof_id - free profile ID
3267 * @hw: pointer to the HW struct
3268 * @blk: the block from which to free the profile ID
3269 * @prof_id: the profile ID to free
3270 *
3271 * This function frees a profile ID, which also corresponds to a Field Vector.
3272 */
3273static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3274{
3275 u16 tmp_prof_id = (u16)prof_id;
3276 u16 res_type;
3277
3278 if (!ice_prof_id_rsrc_type(blk, &res_type))
3279 return -EINVAL;
3280
3281 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3282}
3283
3284/**
3285 * ice_prof_inc_ref - increment reference count for profile
3286 * @hw: pointer to the HW struct
3287 * @blk: the block from which to free the profile ID
3288 * @prof_id: the profile ID for which to increment the reference count
3289 */
3290static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3291{
3292 if (prof_id > hw->blk[blk].es.count)
3293 return -EINVAL;
3294
3295 hw->blk[blk].es.ref_count[prof_id]++;
3296
3297 return 0;
3298}
3299
3300/**
3301 * ice_write_prof_mask_reg - write profile mask register
3302 * @hw: pointer to the HW struct
3303 * @blk: hardware block
3304 * @mask_idx: mask index
3305 * @idx: index of the FV which will use the mask
3306 * @mask: the 16-bit mask
3307 */
3308static void
3309ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3310 u16 idx, u16 mask)
3311{
3312 u32 offset;
3313 u32 val;
3314
3315 switch (blk) {
3316 case ICE_BLK_RSS:
3317 offset = GLQF_HMASK(mask_idx);
3318 val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
3319 val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3320 break;
3321 case ICE_BLK_FD:
3322 offset = GLQF_FDMASK(mask_idx);
3323 val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
3324 val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
3325 break;
3326 default:
3327 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3328 blk);
3329 return;
3330 }
3331
3332 wr32(hw, offset, val);
3333 ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3334 blk, idx, offset, val);
3335}
3336
3337/**
3338 * ice_write_prof_mask_enable_res - write profile mask enable register
3339 * @hw: pointer to the HW struct
3340 * @blk: hardware block
3341 * @prof_id: profile ID
3342 * @enable_mask: enable mask
3343 */
3344static void
3345ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3346 u16 prof_id, u32 enable_mask)
3347{
3348 u32 offset;
3349
3350 switch (blk) {
3351 case ICE_BLK_RSS:
3352 offset = GLQF_HMASK_SEL(prof_id);
3353 break;
3354 case ICE_BLK_FD:
3355 offset = GLQF_FDMASK_SEL(prof_id);
3356 break;
3357 default:
3358 ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3359 blk);
3360 return;
3361 }
3362
3363 wr32(hw, offset, enable_mask);
3364 ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3365 blk, prof_id, offset, enable_mask);
3366}
3367
3368/**
3369 * ice_init_prof_masks - initial prof masks
3370 * @hw: pointer to the HW struct
3371 * @blk: hardware block
3372 */
3373static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3374{
3375 u16 per_pf;
3376 u16 i;
3377
3378 mutex_init(&hw->blk[blk].masks.lock);
3379
3380 per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3381
3382 hw->blk[blk].masks.count = per_pf;
3383 hw->blk[blk].masks.first = hw->pf_id * per_pf;
3384
3385 memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
3386
3387 for (i = hw->blk[blk].masks.first;
3388 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3389 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3390}
3391
3392/**
3393 * ice_init_all_prof_masks - initialize all prof masks
3394 * @hw: pointer to the HW struct
3395 */
3396static void ice_init_all_prof_masks(struct ice_hw *hw)
3397{
3398 ice_init_prof_masks(hw, ICE_BLK_RSS);
3399 ice_init_prof_masks(hw, ICE_BLK_FD);
3400}
3401
3402/**
3403 * ice_alloc_prof_mask - allocate profile mask
3404 * @hw: pointer to the HW struct
3405 * @blk: hardware block
3406 * @idx: index of FV which will use the mask
3407 * @mask: the 16-bit mask
3408 * @mask_idx: variable to receive the mask index
3409 */
3410static int
3411ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3412 u16 *mask_idx)
3413{
3414 bool found_unused = false, found_copy = false;
3415 u16 unused_idx = 0, copy_idx = 0;
3416 int status = -ENOSPC;
3417 u16 i;
3418
3419 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3420 return -EINVAL;
3421
3422 mutex_lock(&hw->blk[blk].masks.lock);
3423
3424 for (i = hw->blk[blk].masks.first;
3425 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3426 if (hw->blk[blk].masks.masks[i].in_use) {
3427 /* if mask is in use and it exactly duplicates the
3428 * desired mask and index, then in can be reused
3429 */
3430 if (hw->blk[blk].masks.masks[i].mask == mask &&
3431 hw->blk[blk].masks.masks[i].idx == idx) {
3432 found_copy = true;
3433 copy_idx = i;
3434 break;
3435 }
3436 } else {
3437 /* save off unused index, but keep searching in case
3438 * there is an exact match later on
3439 */
3440 if (!found_unused) {
3441 found_unused = true;
3442 unused_idx = i;
3443 }
3444 }
3445
3446 if (found_copy)
3447 i = copy_idx;
3448 else if (found_unused)
3449 i = unused_idx;
3450 else
3451 goto err_ice_alloc_prof_mask;
3452
3453 /* update mask for a new entry */
3454 if (found_unused) {
3455 hw->blk[blk].masks.masks[i].in_use = true;
3456 hw->blk[blk].masks.masks[i].mask = mask;
3457 hw->blk[blk].masks.masks[i].idx = idx;
3458 hw->blk[blk].masks.masks[i].ref = 0;
3459 ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3460 }
3461
3462 hw->blk[blk].masks.masks[i].ref++;
3463 *mask_idx = i;
3464 status = 0;
3465
3466err_ice_alloc_prof_mask:
3467 mutex_unlock(&hw->blk[blk].masks.lock);
3468
3469 return status;
3470}
3471
3472/**
3473 * ice_free_prof_mask - free profile mask
3474 * @hw: pointer to the HW struct
3475 * @blk: hardware block
3476 * @mask_idx: index of mask
3477 */
3478static int
3479ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3480{
3481 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3482 return -EINVAL;
3483
3484 if (!(mask_idx >= hw->blk[blk].masks.first &&
3485 mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3486 return -ENOENT;
3487
3488 mutex_lock(&hw->blk[blk].masks.lock);
3489
3490 if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3491 goto exit_ice_free_prof_mask;
3492
3493 if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3494 hw->blk[blk].masks.masks[mask_idx].ref--;
3495 goto exit_ice_free_prof_mask;
3496 }
3497
3498 /* remove mask */
3499 hw->blk[blk].masks.masks[mask_idx].in_use = false;
3500 hw->blk[blk].masks.masks[mask_idx].mask = 0;
3501 hw->blk[blk].masks.masks[mask_idx].idx = 0;
3502
3503 /* update mask as unused entry */
3504 ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3505 mask_idx);
3506 ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3507
3508exit_ice_free_prof_mask:
3509 mutex_unlock(&hw->blk[blk].masks.lock);
3510
3511 return 0;
3512}
3513
3514/**
3515 * ice_free_prof_masks - free all profile masks for a profile
3516 * @hw: pointer to the HW struct
3517 * @blk: hardware block
3518 * @prof_id: profile ID
3519 */
3520static int
3521ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3522{
3523 u32 mask_bm;
3524 u16 i;
3525
3526 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3527 return -EINVAL;
3528
3529 mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3530 for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3531 if (mask_bm & BIT(i))
3532 ice_free_prof_mask(hw, blk, i);
3533
3534 return 0;
3535}
3536
3537/**
3538 * ice_shutdown_prof_masks - releases lock for masking
3539 * @hw: pointer to the HW struct
3540 * @blk: hardware block
3541 *
3542 * This should be called before unloading the driver
3543 */
3544static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3545{
3546 u16 i;
3547
3548 mutex_lock(&hw->blk[blk].masks.lock);
3549
3550 for (i = hw->blk[blk].masks.first;
3551 i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3552 ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3553
3554 hw->blk[blk].masks.masks[i].in_use = false;
3555 hw->blk[blk].masks.masks[i].idx = 0;
3556 hw->blk[blk].masks.masks[i].mask = 0;
3557 }
3558
3559 mutex_unlock(&hw->blk[blk].masks.lock);
3560 mutex_destroy(&hw->blk[blk].masks.lock);
3561}
3562
3563/**
3564 * ice_shutdown_all_prof_masks - releases all locks for masking
3565 * @hw: pointer to the HW struct
3566 *
3567 * This should be called before unloading the driver
3568 */
3569static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3570{
3571 ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3572 ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3573}
3574
3575/**
3576 * ice_update_prof_masking - set registers according to masking
3577 * @hw: pointer to the HW struct
3578 * @blk: hardware block
3579 * @prof_id: profile ID
3580 * @masks: masks
3581 */
3582static int
3583ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3584 u16 *masks)
3585{
3586 bool err = false;
3587 u32 ena_mask = 0;
3588 u16 idx;
3589 u16 i;
3590
3591 /* Only support FD and RSS masking, otherwise nothing to be done */
3592 if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3593 return 0;
3594
3595 for (i = 0; i < hw->blk[blk].es.fvw; i++)
3596 if (masks[i] && masks[i] != 0xFFFF) {
3597 if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3598 ena_mask |= BIT(idx);
3599 } else {
3600 /* not enough bitmaps */
3601 err = true;
3602 break;
3603 }
3604 }
3605
3606 if (err) {
3607 /* free any bitmaps we have allocated */
3608 for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3609 if (ena_mask & BIT(i))
3610 ice_free_prof_mask(hw, blk, i);
3611
3612 return -EIO;
3613 }
3614
3615 /* enable the masks for this profile */
3616 ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3617
3618 /* store enabled masks with profile so that they can be freed later */
3619 hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3620
3621 return 0;
3622}
3623
3624/**
3625 * ice_write_es - write an extraction sequence to hardware
3626 * @hw: pointer to the HW struct
3627 * @blk: the block in which to write the extraction sequence
3628 * @prof_id: the profile ID to write
3629 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3630 */
3631static void
3632ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3633 struct ice_fv_word *fv)
3634{
3635 u16 off;
3636
3637 off = prof_id * hw->blk[blk].es.fvw;
3638 if (!fv) {
3639 memset(&hw->blk[blk].es.t[off], 0,
3640 hw->blk[blk].es.fvw * sizeof(*fv));
3641 hw->blk[blk].es.written[prof_id] = false;
3642 } else {
3643 memcpy(&hw->blk[blk].es.t[off], fv,
3644 hw->blk[blk].es.fvw * sizeof(*fv));
3645 }
3646}
3647
3648/**
3649 * ice_prof_dec_ref - decrement reference count for profile
3650 * @hw: pointer to the HW struct
3651 * @blk: the block from which to free the profile ID
3652 * @prof_id: the profile ID for which to decrement the reference count
3653 */
3654static int
3655ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3656{
3657 if (prof_id > hw->blk[blk].es.count)
3658 return -EINVAL;
3659
3660 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3661 if (!--hw->blk[blk].es.ref_count[prof_id]) {
3662 ice_write_es(hw, blk, prof_id, NULL);
3663 ice_free_prof_masks(hw, blk, prof_id);
3664 return ice_free_prof_id(hw, blk, prof_id);
3665 }
3666 }
3667
3668 return 0;
3669}
3670
3671/* Block / table section IDs */
3672static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3673 /* SWITCH */
3674 { ICE_SID_XLT1_SW,
3675 ICE_SID_XLT2_SW,
3676 ICE_SID_PROFID_TCAM_SW,
3677 ICE_SID_PROFID_REDIR_SW,
3678 ICE_SID_FLD_VEC_SW
3679 },
3680
3681 /* ACL */
3682 { ICE_SID_XLT1_ACL,
3683 ICE_SID_XLT2_ACL,
3684 ICE_SID_PROFID_TCAM_ACL,
3685 ICE_SID_PROFID_REDIR_ACL,
3686 ICE_SID_FLD_VEC_ACL
3687 },
3688
3689 /* FD */
3690 { ICE_SID_XLT1_FD,
3691 ICE_SID_XLT2_FD,
3692 ICE_SID_PROFID_TCAM_FD,
3693 ICE_SID_PROFID_REDIR_FD,
3694 ICE_SID_FLD_VEC_FD
3695 },
3696
3697 /* RSS */
3698 { ICE_SID_XLT1_RSS,
3699 ICE_SID_XLT2_RSS,
3700 ICE_SID_PROFID_TCAM_RSS,
3701 ICE_SID_PROFID_REDIR_RSS,
3702 ICE_SID_FLD_VEC_RSS
3703 },
3704
3705 /* PE */
3706 { ICE_SID_XLT1_PE,
3707 ICE_SID_XLT2_PE,
3708 ICE_SID_PROFID_TCAM_PE,
3709 ICE_SID_PROFID_REDIR_PE,
3710 ICE_SID_FLD_VEC_PE
3711 }
3712};
3713
3714/**
3715 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3716 * @hw: pointer to the hardware structure
3717 * @blk: the HW block to initialize
3718 */
3719static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3720{
3721 u16 pt;
3722
3723 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3724 u8 ptg;
3725
3726 ptg = hw->blk[blk].xlt1.t[pt];
3727 if (ptg != ICE_DEFAULT_PTG) {
3728 ice_ptg_alloc_val(hw, blk, ptg);
3729 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3730 }
3731 }
3732}
3733
3734/**
3735 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3736 * @hw: pointer to the hardware structure
3737 * @blk: the HW block to initialize
3738 */
3739static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3740{
3741 u16 vsi;
3742
3743 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3744 u16 vsig;
3745
3746 vsig = hw->blk[blk].xlt2.t[vsi];
3747 if (vsig) {
3748 ice_vsig_alloc_val(hw, blk, vsig);
3749 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3750 /* no changes at this time, since this has been
3751 * initialized from the original package
3752 */
3753 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3754 }
3755 }
3756}
3757
3758/**
3759 * ice_init_sw_db - init software database from HW tables
3760 * @hw: pointer to the hardware structure
3761 */
3762static void ice_init_sw_db(struct ice_hw *hw)
3763{
3764 u16 i;
3765
3766 for (i = 0; i < ICE_BLK_COUNT; i++) {
3767 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3768 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3769 }
3770}
3771
3772/**
3773 * ice_fill_tbl - Reads content of a single table type into database
3774 * @hw: pointer to the hardware structure
3775 * @block_id: Block ID of the table to copy
3776 * @sid: Section ID of the table to copy
3777 *
3778 * Will attempt to read the entire content of a given table of a single block
3779 * into the driver database. We assume that the buffer will always
3780 * be as large or larger than the data contained in the package. If
3781 * this condition is not met, there is most likely an error in the package
3782 * contents.
3783 */
3784static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3785{
3786 u32 dst_len, sect_len, offset = 0;
3787 struct ice_prof_redir_section *pr;
3788 struct ice_prof_id_section *pid;
3789 struct ice_xlt1_section *xlt1;
3790 struct ice_xlt2_section *xlt2;
3791 struct ice_sw_fv_section *es;
3792 struct ice_pkg_enum state;
3793 u8 *src, *dst;
3794 void *sect;
3795
3796 /* if the HW segment pointer is null then the first iteration of
3797 * ice_pkg_enum_section() will fail. In this case the HW tables will
3798 * not be filled and return success.
3799 */
3800 if (!hw->seg) {
3801 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3802 return;
3803 }
3804
3805 memset(&state, 0, sizeof(state));
3806
3807 sect = ice_pkg_enum_section(hw->seg, &state, sid);
3808
3809 while (sect) {
3810 switch (sid) {
3811 case ICE_SID_XLT1_SW:
3812 case ICE_SID_XLT1_FD:
3813 case ICE_SID_XLT1_RSS:
3814 case ICE_SID_XLT1_ACL:
3815 case ICE_SID_XLT1_PE:
3816 xlt1 = sect;
3817 src = xlt1->value;
3818 sect_len = le16_to_cpu(xlt1->count) *
3819 sizeof(*hw->blk[block_id].xlt1.t);
3820 dst = hw->blk[block_id].xlt1.t;
3821 dst_len = hw->blk[block_id].xlt1.count *
3822 sizeof(*hw->blk[block_id].xlt1.t);
3823 break;
3824 case ICE_SID_XLT2_SW:
3825 case ICE_SID_XLT2_FD:
3826 case ICE_SID_XLT2_RSS:
3827 case ICE_SID_XLT2_ACL:
3828 case ICE_SID_XLT2_PE:
3829 xlt2 = sect;
3830 src = (__force u8 *)xlt2->value;
3831 sect_len = le16_to_cpu(xlt2->count) *
3832 sizeof(*hw->blk[block_id].xlt2.t);
3833 dst = (u8 *)hw->blk[block_id].xlt2.t;
3834 dst_len = hw->blk[block_id].xlt2.count *
3835 sizeof(*hw->blk[block_id].xlt2.t);
3836 break;
3837 case ICE_SID_PROFID_TCAM_SW:
3838 case ICE_SID_PROFID_TCAM_FD:
3839 case ICE_SID_PROFID_TCAM_RSS:
3840 case ICE_SID_PROFID_TCAM_ACL:
3841 case ICE_SID_PROFID_TCAM_PE:
3842 pid = sect;
3843 src = (u8 *)pid->entry;
3844 sect_len = le16_to_cpu(pid->count) *
3845 sizeof(*hw->blk[block_id].prof.t);
3846 dst = (u8 *)hw->blk[block_id].prof.t;
3847 dst_len = hw->blk[block_id].prof.count *
3848 sizeof(*hw->blk[block_id].prof.t);
3849 break;
3850 case ICE_SID_PROFID_REDIR_SW:
3851 case ICE_SID_PROFID_REDIR_FD:
3852 case ICE_SID_PROFID_REDIR_RSS:
3853 case ICE_SID_PROFID_REDIR_ACL:
3854 case ICE_SID_PROFID_REDIR_PE:
3855 pr = sect;
3856 src = pr->redir_value;
3857 sect_len = le16_to_cpu(pr->count) *
3858 sizeof(*hw->blk[block_id].prof_redir.t);
3859 dst = hw->blk[block_id].prof_redir.t;
3860 dst_len = hw->blk[block_id].prof_redir.count *
3861 sizeof(*hw->blk[block_id].prof_redir.t);
3862 break;
3863 case ICE_SID_FLD_VEC_SW:
3864 case ICE_SID_FLD_VEC_FD:
3865 case ICE_SID_FLD_VEC_RSS:
3866 case ICE_SID_FLD_VEC_ACL:
3867 case ICE_SID_FLD_VEC_PE:
3868 es = sect;
3869 src = (u8 *)es->fv;
3870 sect_len = (u32)(le16_to_cpu(es->count) *
3871 hw->blk[block_id].es.fvw) *
3872 sizeof(*hw->blk[block_id].es.t);
3873 dst = (u8 *)hw->blk[block_id].es.t;
3874 dst_len = (u32)(hw->blk[block_id].es.count *
3875 hw->blk[block_id].es.fvw) *
3876 sizeof(*hw->blk[block_id].es.t);
3877 break;
3878 default:
3879 return;
3880 }
3881
3882 /* if the section offset exceeds destination length, terminate
3883 * table fill.
3884 */
3885 if (offset > dst_len)
3886 return;
3887
3888 /* if the sum of section size and offset exceed destination size
3889 * then we are out of bounds of the HW table size for that PF.
3890 * Changing section length to fill the remaining table space
3891 * of that PF.
3892 */
3893 if ((offset + sect_len) > dst_len)
3894 sect_len = dst_len - offset;
3895
3896 memcpy(dst + offset, src, sect_len);
3897 offset += sect_len;
3898 sect = ice_pkg_enum_section(NULL, &state, sid);
3899 }
3900}
3901
3902/**
3903 * ice_fill_blk_tbls - Read package context for tables
3904 * @hw: pointer to the hardware structure
3905 *
3906 * Reads the current package contents and populates the driver
3907 * database with the data iteratively for all advanced feature
3908 * blocks. Assume that the HW tables have been allocated.
3909 */
3910void ice_fill_blk_tbls(struct ice_hw *hw)
3911{
3912 u8 i;
3913
3914 for (i = 0; i < ICE_BLK_COUNT; i++) {
3915 enum ice_block blk_id = (enum ice_block)i;
3916
3917 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3918 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3919 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3920 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3921 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3922 }
3923
3924 ice_init_sw_db(hw);
3925}
3926
3927/**
3928 * ice_free_prof_map - free profile map
3929 * @hw: pointer to the hardware structure
3930 * @blk_idx: HW block index
3931 */
3932static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3933{
3934 struct ice_es *es = &hw->blk[blk_idx].es;
3935 struct ice_prof_map *del, *tmp;
3936
3937 mutex_lock(&es->prof_map_lock);
3938 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3939 list_del(&del->list);
3940 devm_kfree(ice_hw_to_dev(hw), del);
3941 }
3942 INIT_LIST_HEAD(&es->prof_map);
3943 mutex_unlock(&es->prof_map_lock);
3944}
3945
3946/**
3947 * ice_free_flow_profs - free flow profile entries
3948 * @hw: pointer to the hardware structure
3949 * @blk_idx: HW block index
3950 */
3951static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3952{
3953 struct ice_flow_prof *p, *tmp;
3954
3955 mutex_lock(&hw->fl_profs_locks[blk_idx]);
3956 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3957 struct ice_flow_entry *e, *t;
3958
3959 list_for_each_entry_safe(e, t, &p->entries, l_entry)
3960 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3961 ICE_FLOW_ENTRY_HNDL(e));
3962
3963 list_del(&p->l_entry);
3964
3965 mutex_destroy(&p->entries_lock);
3966 devm_kfree(ice_hw_to_dev(hw), p);
3967 }
3968 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3969
3970 /* if driver is in reset and tables are being cleared
3971 * re-initialize the flow profile list heads
3972 */
3973 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3974}
3975
3976/**
3977 * ice_free_vsig_tbl - free complete VSIG table entries
3978 * @hw: pointer to the hardware structure
3979 * @blk: the HW block on which to free the VSIG table entries
3980 */
3981static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3982{
3983 u16 i;
3984
3985 if (!hw->blk[blk].xlt2.vsig_tbl)
3986 return;
3987
3988 for (i = 1; i < ICE_MAX_VSIGS; i++)
3989 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3990 ice_vsig_free(hw, blk, i);
3991}
3992
3993/**
3994 * ice_free_hw_tbls - free hardware table memory
3995 * @hw: pointer to the hardware structure
3996 */
3997void ice_free_hw_tbls(struct ice_hw *hw)
3998{
3999 struct ice_rss_cfg *r, *rt;
4000 u8 i;
4001
4002 for (i = 0; i < ICE_BLK_COUNT; i++) {
4003 if (hw->blk[i].is_list_init) {
4004 struct ice_es *es = &hw->blk[i].es;
4005
4006 ice_free_prof_map(hw, i);
4007 mutex_destroy(&es->prof_map_lock);
4008
4009 ice_free_flow_profs(hw, i);
4010 mutex_destroy(&hw->fl_profs_locks[i]);
4011
4012 hw->blk[i].is_list_init = false;
4013 }
4014 ice_free_vsig_tbl(hw, (enum ice_block)i);
4015 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
4016 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
4017 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
4018 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
4019 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
4020 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
4021 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
4022 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
4023 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
4024 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
4025 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
4026 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
4027 }
4028
4029 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
4030 list_del(&r->l_entry);
4031 devm_kfree(ice_hw_to_dev(hw), r);
4032 }
4033 mutex_destroy(&hw->rss_locks);
4034 ice_shutdown_all_prof_masks(hw);
4035 memset(hw->blk, 0, sizeof(hw->blk));
4036}
4037
4038/**
4039 * ice_init_flow_profs - init flow profile locks and list heads
4040 * @hw: pointer to the hardware structure
4041 * @blk_idx: HW block index
4042 */
4043static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4044{
4045 mutex_init(&hw->fl_profs_locks[blk_idx]);
4046 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4047}
4048
4049/**
4050 * ice_clear_hw_tbls - clear HW tables and flow profiles
4051 * @hw: pointer to the hardware structure
4052 */
4053void ice_clear_hw_tbls(struct ice_hw *hw)
4054{
4055 u8 i;
4056
4057 for (i = 0; i < ICE_BLK_COUNT; i++) {
4058 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4059 struct ice_prof_tcam *prof = &hw->blk[i].prof;
4060 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4061 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4062 struct ice_es *es = &hw->blk[i].es;
4063
4064 if (hw->blk[i].is_list_init) {
4065 ice_free_prof_map(hw, i);
4066 ice_free_flow_profs(hw, i);
4067 }
4068
4069 ice_free_vsig_tbl(hw, (enum ice_block)i);
4070
4071 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
4072 memset(xlt1->ptg_tbl, 0,
4073 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
4074 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
4075
4076 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
4077 memset(xlt2->vsig_tbl, 0,
4078 xlt2->count * sizeof(*xlt2->vsig_tbl));
4079 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
4080
4081 memset(prof->t, 0, prof->count * sizeof(*prof->t));
4082 memset(prof_redir->t, 0,
4083 prof_redir->count * sizeof(*prof_redir->t));
4084
4085 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
4086 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
4087 memset(es->written, 0, es->count * sizeof(*es->written));
4088 memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
4089 }
4090}
4091
4092/**
4093 * ice_init_hw_tbls - init hardware table memory
4094 * @hw: pointer to the hardware structure
4095 */
4096int ice_init_hw_tbls(struct ice_hw *hw)
4097{
4098 u8 i;
4099
4100 mutex_init(&hw->rss_locks);
4101 INIT_LIST_HEAD(&hw->rss_list_head);
4102 ice_init_all_prof_masks(hw);
4103 for (i = 0; i < ICE_BLK_COUNT; i++) {
4104 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4105 struct ice_prof_tcam *prof = &hw->blk[i].prof;
4106 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4107 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4108 struct ice_es *es = &hw->blk[i].es;
4109 u16 j;
4110
4111 if (hw->blk[i].is_list_init)
4112 continue;
4113
4114 ice_init_flow_profs(hw, i);
4115 mutex_init(&es->prof_map_lock);
4116 INIT_LIST_HEAD(&es->prof_map);
4117 hw->blk[i].is_list_init = true;
4118
4119 hw->blk[i].overwrite = blk_sizes[i].overwrite;
4120 es->reverse = blk_sizes[i].reverse;
4121
4122 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4123 xlt1->count = blk_sizes[i].xlt1;
4124
4125 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4126 sizeof(*xlt1->ptypes), GFP_KERNEL);
4127
4128 if (!xlt1->ptypes)
4129 goto err;
4130
4131 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
4132 sizeof(*xlt1->ptg_tbl),
4133 GFP_KERNEL);
4134
4135 if (!xlt1->ptg_tbl)
4136 goto err;
4137
4138 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
4139 sizeof(*xlt1->t), GFP_KERNEL);
4140 if (!xlt1->t)
4141 goto err;
4142
4143 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4144 xlt2->count = blk_sizes[i].xlt2;
4145
4146 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4147 sizeof(*xlt2->vsis), GFP_KERNEL);
4148
4149 if (!xlt2->vsis)
4150 goto err;
4151
4152 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4153 sizeof(*xlt2->vsig_tbl),
4154 GFP_KERNEL);
4155 if (!xlt2->vsig_tbl)
4156 goto err;
4157
4158 for (j = 0; j < xlt2->count; j++)
4159 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4160
4161 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
4162 sizeof(*xlt2->t), GFP_KERNEL);
4163 if (!xlt2->t)
4164 goto err;
4165
4166 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4167 prof->count = blk_sizes[i].prof_tcam;
4168 prof->max_prof_id = blk_sizes[i].prof_id;
4169 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4170 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
4171 sizeof(*prof->t), GFP_KERNEL);
4172
4173 if (!prof->t)
4174 goto err;
4175
4176 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4177 prof_redir->count = blk_sizes[i].prof_redir;
4178 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
4179 prof_redir->count,
4180 sizeof(*prof_redir->t),
4181 GFP_KERNEL);
4182
4183 if (!prof_redir->t)
4184 goto err;
4185
4186 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4187 es->count = blk_sizes[i].es;
4188 es->fvw = blk_sizes[i].fvw;
4189 es->t = devm_kcalloc(ice_hw_to_dev(hw),
4190 (u32)(es->count * es->fvw),
4191 sizeof(*es->t), GFP_KERNEL);
4192 if (!es->t)
4193 goto err;
4194
4195 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4196 sizeof(*es->ref_count),
4197 GFP_KERNEL);
4198 if (!es->ref_count)
4199 goto err;
4200
4201 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4202 sizeof(*es->written), GFP_KERNEL);
4203 if (!es->written)
4204 goto err;
4205
4206 es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
4207 sizeof(*es->mask_ena), GFP_KERNEL);
4208 if (!es->mask_ena)
4209 goto err;
4210 }
4211 return 0;
4212
4213err:
4214 ice_free_hw_tbls(hw);
4215 return -ENOMEM;
4216}
4217
4218/**
4219 * ice_prof_gen_key - generate profile ID key
4220 * @hw: pointer to the HW struct
4221 * @blk: the block in which to write profile ID to
4222 * @ptg: packet type group (PTG) portion of key
4223 * @vsig: VSIG portion of key
4224 * @cdid: CDID portion of key
4225 * @flags: flag portion of key
4226 * @vl_msk: valid mask
4227 * @dc_msk: don't care mask
4228 * @nm_msk: never match mask
4229 * @key: output of profile ID key
4230 */
4231static int
4232ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4233 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4234 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4235 u8 key[ICE_TCAM_KEY_SZ])
4236{
4237 struct ice_prof_id_key inkey;
4238
4239 inkey.xlt1 = ptg;
4240 inkey.xlt2_cdid = cpu_to_le16(vsig);
4241 inkey.flags = cpu_to_le16(flags);
4242
4243 switch (hw->blk[blk].prof.cdid_bits) {
4244 case 0:
4245 break;
4246 case 2:
4247#define ICE_CD_2_M 0xC000U
4248#define ICE_CD_2_S 14
4249 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
4250 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
4251 break;
4252 case 4:
4253#define ICE_CD_4_M 0xF000U
4254#define ICE_CD_4_S 12
4255 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
4256 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
4257 break;
4258 case 8:
4259#define ICE_CD_8_M 0xFF00U
4260#define ICE_CD_8_S 16
4261 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
4262 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
4263 break;
4264 default:
4265 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4266 break;
4267 }
4268
4269 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4270 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4271}
4272
4273/**
4274 * ice_tcam_write_entry - write TCAM entry
4275 * @hw: pointer to the HW struct
4276 * @blk: the block in which to write profile ID to
4277 * @idx: the entry index to write to
4278 * @prof_id: profile ID
4279 * @ptg: packet type group (PTG) portion of key
4280 * @vsig: VSIG portion of key
4281 * @cdid: CDID portion of key
4282 * @flags: flag portion of key
4283 * @vl_msk: valid mask
4284 * @dc_msk: don't care mask
4285 * @nm_msk: never match mask
4286 */
4287static int
4288ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4289 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4290 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4291 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4292 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4293{
4294 struct ice_prof_tcam_entry;
4295 int status;
4296
4297 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4298 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4299 if (!status) {
4300 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
4301 hw->blk[blk].prof.t[idx].prof_id = prof_id;
4302 }
4303
4304 return status;
4305}
4306
4307/**
4308 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4309 * @hw: pointer to the hardware structure
4310 * @blk: HW block
4311 * @vsig: VSIG to query
4312 * @refs: pointer to variable to receive the reference count
4313 */
4314static int
4315ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4316{
4317 u16 idx = vsig & ICE_VSIG_IDX_M;
4318 struct ice_vsig_vsi *ptr;
4319
4320 *refs = 0;
4321
4322 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4323 return -ENOENT;
4324
4325 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4326 while (ptr) {
4327 (*refs)++;
4328 ptr = ptr->next_vsi;
4329 }
4330
4331 return 0;
4332}
4333
4334/**
4335 * ice_has_prof_vsig - check to see if VSIG has a specific profile
4336 * @hw: pointer to the hardware structure
4337 * @blk: HW block
4338 * @vsig: VSIG to check against
4339 * @hdl: profile handle
4340 */
4341static bool
4342ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4343{
4344 u16 idx = vsig & ICE_VSIG_IDX_M;
4345 struct ice_vsig_prof *ent;
4346
4347 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4348 list)
4349 if (ent->profile_cookie == hdl)
4350 return true;
4351
4352 ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4353 vsig);
4354 return false;
4355}
4356
4357/**
4358 * ice_prof_bld_es - build profile ID extraction sequence changes
4359 * @hw: pointer to the HW struct
4360 * @blk: hardware block
4361 * @bld: the update package buffer build to add to
4362 * @chgs: the list of changes to make in hardware
4363 */
4364static int
4365ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4366 struct ice_buf_build *bld, struct list_head *chgs)
4367{
4368 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4369 struct ice_chs_chg *tmp;
4370
4371 list_for_each_entry(tmp, chgs, list_entry)
4372 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4373 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4374 struct ice_pkg_es *p;
4375 u32 id;
4376
4377 id = ice_sect_id(blk, ICE_VEC_TBL);
4378 p = ice_pkg_buf_alloc_section(bld, id,
4379 struct_size(p, es, 1) +
4380 vec_size -
4381 sizeof(p->es[0]));
4382
4383 if (!p)
4384 return -ENOSPC;
4385
4386 p->count = cpu_to_le16(1);
4387 p->offset = cpu_to_le16(tmp->prof_id);
4388
4389 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
4390 }
4391
4392 return 0;
4393}
4394
4395/**
4396 * ice_prof_bld_tcam - build profile ID TCAM changes
4397 * @hw: pointer to the HW struct
4398 * @blk: hardware block
4399 * @bld: the update package buffer build to add to
4400 * @chgs: the list of changes to make in hardware
4401 */
4402static int
4403ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4404 struct ice_buf_build *bld, struct list_head *chgs)
4405{
4406 struct ice_chs_chg *tmp;
4407
4408 list_for_each_entry(tmp, chgs, list_entry)
4409 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4410 struct ice_prof_id_section *p;
4411 u32 id;
4412
4413 id = ice_sect_id(blk, ICE_PROF_TCAM);
4414 p = ice_pkg_buf_alloc_section(bld, id,
4415 struct_size(p, entry, 1));
4416
4417 if (!p)
4418 return -ENOSPC;
4419
4420 p->count = cpu_to_le16(1);
4421 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
4422 p->entry[0].prof_id = tmp->prof_id;
4423
4424 memcpy(p->entry[0].key,
4425 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4426 sizeof(hw->blk[blk].prof.t->key));
4427 }
4428
4429 return 0;
4430}
4431
4432/**
4433 * ice_prof_bld_xlt1 - build XLT1 changes
4434 * @blk: hardware block
4435 * @bld: the update package buffer build to add to
4436 * @chgs: the list of changes to make in hardware
4437 */
4438static int
4439ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4440 struct list_head *chgs)
4441{
4442 struct ice_chs_chg *tmp;
4443
4444 list_for_each_entry(tmp, chgs, list_entry)
4445 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4446 struct ice_xlt1_section *p;
4447 u32 id;
4448
4449 id = ice_sect_id(blk, ICE_XLT1);
4450 p = ice_pkg_buf_alloc_section(bld, id,
4451 struct_size(p, value, 1));
4452
4453 if (!p)
4454 return -ENOSPC;
4455
4456 p->count = cpu_to_le16(1);
4457 p->offset = cpu_to_le16(tmp->ptype);
4458 p->value[0] = tmp->ptg;
4459 }
4460
4461 return 0;
4462}
4463
4464/**
4465 * ice_prof_bld_xlt2 - build XLT2 changes
4466 * @blk: hardware block
4467 * @bld: the update package buffer build to add to
4468 * @chgs: the list of changes to make in hardware
4469 */
4470static int
4471ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4472 struct list_head *chgs)
4473{
4474 struct ice_chs_chg *tmp;
4475
4476 list_for_each_entry(tmp, chgs, list_entry) {
4477 struct ice_xlt2_section *p;
4478 u32 id;
4479
4480 switch (tmp->type) {
4481 case ICE_VSIG_ADD:
4482 case ICE_VSI_MOVE:
4483 case ICE_VSIG_REM:
4484 id = ice_sect_id(blk, ICE_XLT2);
4485 p = ice_pkg_buf_alloc_section(bld, id,
4486 struct_size(p, value, 1));
4487
4488 if (!p)
4489 return -ENOSPC;
4490
4491 p->count = cpu_to_le16(1);
4492 p->offset = cpu_to_le16(tmp->vsi);
4493 p->value[0] = cpu_to_le16(tmp->vsig);
4494 break;
4495 default:
4496 break;
4497 }
4498 }
4499
4500 return 0;
4501}
4502
4503/**
4504 * ice_upd_prof_hw - update hardware using the change list
4505 * @hw: pointer to the HW struct
4506 * @blk: hardware block
4507 * @chgs: the list of changes to make in hardware
4508 */
4509static int
4510ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4511 struct list_head *chgs)
4512{
4513 struct ice_buf_build *b;
4514 struct ice_chs_chg *tmp;
4515 u16 pkg_sects;
4516 u16 xlt1 = 0;
4517 u16 xlt2 = 0;
4518 u16 tcam = 0;
4519 u16 es = 0;
4520 int status;
4521 u16 sects;
4522
4523 /* count number of sections we need */
4524 list_for_each_entry(tmp, chgs, list_entry) {
4525 switch (tmp->type) {
4526 case ICE_PTG_ES_ADD:
4527 if (tmp->add_ptg)
4528 xlt1++;
4529 if (tmp->add_prof)
4530 es++;
4531 break;
4532 case ICE_TCAM_ADD:
4533 tcam++;
4534 break;
4535 case ICE_VSIG_ADD:
4536 case ICE_VSI_MOVE:
4537 case ICE_VSIG_REM:
4538 xlt2++;
4539 break;
4540 default:
4541 break;
4542 }
4543 }
4544 sects = xlt1 + xlt2 + tcam + es;
4545
4546 if (!sects)
4547 return 0;
4548
4549 /* Build update package buffer */
4550 b = ice_pkg_buf_alloc(hw);
4551 if (!b)
4552 return -ENOMEM;
4553
4554 status = ice_pkg_buf_reserve_section(b, sects);
4555 if (status)
4556 goto error_tmp;
4557
4558 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
4559 if (es) {
4560 status = ice_prof_bld_es(hw, blk, b, chgs);
4561 if (status)
4562 goto error_tmp;
4563 }
4564
4565 if (tcam) {
4566 status = ice_prof_bld_tcam(hw, blk, b, chgs);
4567 if (status)
4568 goto error_tmp;
4569 }
4570
4571 if (xlt1) {
4572 status = ice_prof_bld_xlt1(blk, b, chgs);
4573 if (status)
4574 goto error_tmp;
4575 }
4576
4577 if (xlt2) {
4578 status = ice_prof_bld_xlt2(blk, b, chgs);
4579 if (status)
4580 goto error_tmp;
4581 }
4582
4583 /* After package buffer build check if the section count in buffer is
4584 * non-zero and matches the number of sections detected for package
4585 * update.
4586 */
4587 pkg_sects = ice_pkg_buf_get_active_sections(b);
4588 if (!pkg_sects || pkg_sects != sects) {
4589 status = -EINVAL;
4590 goto error_tmp;
4591 }
4592
4593 /* update package */
4594 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4595 if (status == -EIO)
4596 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4597
4598error_tmp:
4599 ice_pkg_buf_free(hw, b);
4600 return status;
4601}
4602
4603/**
4604 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4605 * @hw: pointer to the HW struct
4606 * @prof_id: profile ID
4607 * @mask_sel: mask select
4608 *
4609 * This function enable any of the masks selected by the mask select parameter
4610 * for the profile specified.
4611 */
4612static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4613{
4614 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4615
4616 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4617 GLQF_FDMASK_SEL(prof_id), mask_sel);
4618}
4619
4620struct ice_fd_src_dst_pair {
4621 u8 prot_id;
4622 u8 count;
4623 u16 off;
4624};
4625
4626static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4627 /* These are defined in pairs */
4628 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4629 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4630
4631 { ICE_PROT_IPV4_IL, 2, 12 },
4632 { ICE_PROT_IPV4_IL, 2, 16 },
4633
4634 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4635 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4636
4637 { ICE_PROT_IPV6_IL, 8, 8 },
4638 { ICE_PROT_IPV6_IL, 8, 24 },
4639
4640 { ICE_PROT_TCP_IL, 1, 0 },
4641 { ICE_PROT_TCP_IL, 1, 2 },
4642
4643 { ICE_PROT_UDP_OF, 1, 0 },
4644 { ICE_PROT_UDP_OF, 1, 2 },
4645
4646 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
4647 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
4648
4649 { ICE_PROT_SCTP_IL, 1, 0 },
4650 { ICE_PROT_SCTP_IL, 1, 2 }
4651};
4652
4653#define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
4654
4655/**
4656 * ice_update_fd_swap - set register appropriately for a FD FV extraction
4657 * @hw: pointer to the HW struct
4658 * @prof_id: profile ID
4659 * @es: extraction sequence (length of array is determined by the block)
4660 */
4661static int
4662ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4663{
4664 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4665 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4666#define ICE_FD_FV_NOT_FOUND (-2)
4667 s8 first_free = ICE_FD_FV_NOT_FOUND;
4668 u8 used[ICE_MAX_FV_WORDS] = { 0 };
4669 s8 orig_free, si;
4670 u32 mask_sel = 0;
4671 u8 i, j, k;
4672
4673 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4674
4675 /* This code assumes that the Flow Director field vectors are assigned
4676 * from the end of the FV indexes working towards the zero index, that
4677 * only complete fields will be included and will be consecutive, and
4678 * that there are no gaps between valid indexes.
4679 */
4680
4681 /* Determine swap fields present */
4682 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4683 /* Find the first free entry, assuming right to left population.
4684 * This is where we can start adding additional pairs if needed.
4685 */
4686 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4687 ICE_PROT_INVALID)
4688 first_free = i - 1;
4689
4690 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4691 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4692 es[i].off == ice_fd_pairs[j].off) {
4693 __set_bit(j, pair_list);
4694 pair_start[j] = i;
4695 }
4696 }
4697
4698 orig_free = first_free;
4699
4700 /* determine missing swap fields that need to be added */
4701 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4702 u8 bit1 = test_bit(i + 1, pair_list);
4703 u8 bit0 = test_bit(i, pair_list);
4704
4705 if (bit0 ^ bit1) {
4706 u8 index;
4707
4708 /* add the appropriate 'paired' entry */
4709 if (!bit0)
4710 index = i;
4711 else
4712 index = i + 1;
4713
4714 /* check for room */
4715 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4716 return -ENOSPC;
4717
4718 /* place in extraction sequence */
4719 for (k = 0; k < ice_fd_pairs[index].count; k++) {
4720 es[first_free - k].prot_id =
4721 ice_fd_pairs[index].prot_id;
4722 es[first_free - k].off =
4723 ice_fd_pairs[index].off + (k * 2);
4724
4725 if (k > first_free)
4726 return -EIO;
4727
4728 /* keep track of non-relevant fields */
4729 mask_sel |= BIT(first_free - k);
4730 }
4731
4732 pair_start[index] = first_free;
4733 first_free -= ice_fd_pairs[index].count;
4734 }
4735 }
4736
4737 /* fill in the swap array */
4738 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4739 while (si >= 0) {
4740 u8 indexes_used = 1;
4741
4742 /* assume flat at this index */
4743#define ICE_SWAP_VALID 0x80
4744 used[si] = si | ICE_SWAP_VALID;
4745
4746 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4747 si -= indexes_used;
4748 continue;
4749 }
4750
4751 /* check for a swap location */
4752 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4753 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4754 es[si].off == ice_fd_pairs[j].off) {
4755 u8 idx;
4756
4757 /* determine the appropriate matching field */
4758 idx = j + ((j % 2) ? -1 : 1);
4759
4760 indexes_used = ice_fd_pairs[idx].count;
4761 for (k = 0; k < indexes_used; k++) {
4762 used[si - k] = (pair_start[idx] - k) |
4763 ICE_SWAP_VALID;
4764 }
4765
4766 break;
4767 }
4768
4769 si -= indexes_used;
4770 }
4771
4772 /* for each set of 4 swap and 4 inset indexes, write the appropriate
4773 * register
4774 */
4775 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4776 u32 raw_swap = 0;
4777 u32 raw_in = 0;
4778
4779 for (k = 0; k < 4; k++) {
4780 u8 idx;
4781
4782 idx = (j * 4) + k;
4783 if (used[idx] && !(mask_sel & BIT(idx))) {
4784 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4785#define ICE_INSET_DFLT 0x9f
4786 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4787 }
4788 }
4789
4790 /* write the appropriate swap register set */
4791 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4792
4793 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4794 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4795
4796 /* write the appropriate inset register set */
4797 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4798
4799 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4800 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4801 }
4802
4803 /* initially clear the mask select for this profile */
4804 ice_update_fd_mask(hw, prof_id, 0);
4805
4806 return 0;
4807}
4808
4809/* The entries here needs to match the order of enum ice_ptype_attrib */
4810static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4811 { ICE_GTP_PDU_EH, ICE_GTP_PDU_FLAG_MASK },
4812 { ICE_GTP_SESSION, ICE_GTP_FLAGS_MASK },
4813 { ICE_GTP_DOWNLINK, ICE_GTP_FLAGS_MASK },
4814 { ICE_GTP_UPLINK, ICE_GTP_FLAGS_MASK },
4815};
4816
4817/**
4818 * ice_get_ptype_attrib_info - get PTYPE attribute information
4819 * @type: attribute type
4820 * @info: pointer to variable to the attribute information
4821 */
4822static void
4823ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4824 struct ice_ptype_attrib_info *info)
4825{
4826 *info = ice_ptype_attributes[type];
4827}
4828
4829/**
4830 * ice_add_prof_attrib - add any PTG with attributes to profile
4831 * @prof: pointer to the profile to which PTG entries will be added
4832 * @ptg: PTG to be added
4833 * @ptype: PTYPE that needs to be looked up
4834 * @attr: array of attributes that will be considered
4835 * @attr_cnt: number of elements in the attribute array
4836 */
4837static int
4838ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4839 const struct ice_ptype_attributes *attr, u16 attr_cnt)
4840{
4841 bool found = false;
4842 u16 i;
4843
4844 for (i = 0; i < attr_cnt; i++)
4845 if (attr[i].ptype == ptype) {
4846 found = true;
4847
4848 prof->ptg[prof->ptg_cnt] = ptg;
4849 ice_get_ptype_attrib_info(attr[i].attrib,
4850 &prof->attr[prof->ptg_cnt]);
4851
4852 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4853 return -ENOSPC;
4854 }
4855
4856 if (!found)
4857 return -ENOENT;
4858
4859 return 0;
4860}
4861
4862/**
4863 * ice_add_prof - add profile
4864 * @hw: pointer to the HW struct
4865 * @blk: hardware block
4866 * @id: profile tracking ID
4867 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4868 * @attr: array of attributes
4869 * @attr_cnt: number of elements in attr array
4870 * @es: extraction sequence (length of array is determined by the block)
4871 * @masks: mask for extraction sequence
4872 *
4873 * This function registers a profile, which matches a set of PTYPES with a
4874 * particular extraction sequence. While the hardware profile is allocated
4875 * it will not be written until the first call to ice_add_flow that specifies
4876 * the ID value used here.
4877 */
4878int
4879ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
4880 const struct ice_ptype_attributes *attr, u16 attr_cnt,
4881 struct ice_fv_word *es, u16 *masks)
4882{
4883 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
4884 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4885 struct ice_prof_map *prof;
4886 u8 byte = 0;
4887 u8 prof_id;
4888 int status;
4889
4890 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4891
4892 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4893
4894 /* search for existing profile */
4895 status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
4896 if (status) {
4897 /* allocate profile ID */
4898 status = ice_alloc_prof_id(hw, blk, &prof_id);
4899 if (status)
4900 goto err_ice_add_prof;
4901 if (blk == ICE_BLK_FD) {
4902 /* For Flow Director block, the extraction sequence may
4903 * need to be altered in the case where there are paired
4904 * fields that have no match. This is necessary because
4905 * for Flow Director, src and dest fields need to paired
4906 * for filter programming and these values are swapped
4907 * during Tx.
4908 */
4909 status = ice_update_fd_swap(hw, prof_id, es);
4910 if (status)
4911 goto err_ice_add_prof;
4912 }
4913 status = ice_update_prof_masking(hw, blk, prof_id, masks);
4914 if (status)
4915 goto err_ice_add_prof;
4916
4917 /* and write new es */
4918 ice_write_es(hw, blk, prof_id, es);
4919 }
4920
4921 ice_prof_inc_ref(hw, blk, prof_id);
4922
4923 /* add profile info */
4924 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
4925 if (!prof) {
4926 status = -ENOMEM;
4927 goto err_ice_add_prof;
4928 }
4929
4930 prof->profile_cookie = id;
4931 prof->prof_id = prof_id;
4932 prof->ptg_cnt = 0;
4933 prof->context = 0;
4934
4935 /* build list of ptgs */
4936 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
4937 u8 bit;
4938
4939 if (!ptypes[byte]) {
4940 bytes--;
4941 byte++;
4942 continue;
4943 }
4944
4945 /* Examine 8 bits per byte */
4946 for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
4947 BITS_PER_BYTE) {
4948 u16 ptype;
4949 u8 ptg;
4950
4951 ptype = byte * BITS_PER_BYTE + bit;
4952
4953 /* The package should place all ptypes in a non-zero
4954 * PTG, so the following call should never fail.
4955 */
4956 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
4957 continue;
4958
4959 /* If PTG is already added, skip and continue */
4960 if (test_bit(ptg, ptgs_used))
4961 continue;
4962
4963 __set_bit(ptg, ptgs_used);
4964 /* Check to see there are any attributes for
4965 * this PTYPE, and add them if found.
4966 */
4967 status = ice_add_prof_attrib(prof, ptg, ptype,
4968 attr, attr_cnt);
4969 if (status == -ENOSPC)
4970 break;
4971 if (status) {
4972 /* This is simple a PTYPE/PTG with no
4973 * attribute
4974 */
4975 prof->ptg[prof->ptg_cnt] = ptg;
4976 prof->attr[prof->ptg_cnt].flags = 0;
4977 prof->attr[prof->ptg_cnt].mask = 0;
4978
4979 if (++prof->ptg_cnt >=
4980 ICE_MAX_PTG_PER_PROFILE)
4981 break;
4982 }
4983 }
4984
4985 bytes--;
4986 byte++;
4987 }
4988
4989 list_add(&prof->list, &hw->blk[blk].es.prof_map);
4990 status = 0;
4991
4992err_ice_add_prof:
4993 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4994 return status;
4995}
4996
4997/**
4998 * ice_search_prof_id - Search for a profile tracking ID
4999 * @hw: pointer to the HW struct
5000 * @blk: hardware block
5001 * @id: profile tracking ID
5002 *
5003 * This will search for a profile tracking ID which was previously added.
5004 * The profile map lock should be held before calling this function.
5005 */
5006static struct ice_prof_map *
5007ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5008{
5009 struct ice_prof_map *entry = NULL;
5010 struct ice_prof_map *map;
5011
5012 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
5013 if (map->profile_cookie == id) {
5014 entry = map;
5015 break;
5016 }
5017
5018 return entry;
5019}
5020
5021/**
5022 * ice_vsig_prof_id_count - count profiles in a VSIG
5023 * @hw: pointer to the HW struct
5024 * @blk: hardware block
5025 * @vsig: VSIG to remove the profile from
5026 */
5027static u16
5028ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5029{
5030 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5031 struct ice_vsig_prof *p;
5032
5033 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5034 list)
5035 count++;
5036
5037 return count;
5038}
5039
5040/**
5041 * ice_rel_tcam_idx - release a TCAM index
5042 * @hw: pointer to the HW struct
5043 * @blk: hardware block
5044 * @idx: the index to release
5045 */
5046static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
5047{
5048 /* Masks to invoke a never match entry */
5049 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5050 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5051 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5052 int status;
5053
5054 /* write the TCAM entry */
5055 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5056 dc_msk, nm_msk);
5057 if (status)
5058 return status;
5059
5060 /* release the TCAM entry */
5061 status = ice_free_tcam_ent(hw, blk, idx);
5062
5063 return status;
5064}
5065
5066/**
5067 * ice_rem_prof_id - remove one profile from a VSIG
5068 * @hw: pointer to the HW struct
5069 * @blk: hardware block
5070 * @prof: pointer to profile structure to remove
5071 */
5072static int
5073ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5074 struct ice_vsig_prof *prof)
5075{
5076 int status;
5077 u16 i;
5078
5079 for (i = 0; i < prof->tcam_count; i++)
5080 if (prof->tcam[i].in_use) {
5081 prof->tcam[i].in_use = false;
5082 status = ice_rel_tcam_idx(hw, blk,
5083 prof->tcam[i].tcam_idx);
5084 if (status)
5085 return -EIO;
5086 }
5087
5088 return 0;
5089}
5090
5091/**
5092 * ice_rem_vsig - remove VSIG
5093 * @hw: pointer to the HW struct
5094 * @blk: hardware block
5095 * @vsig: the VSIG to remove
5096 * @chg: the change list
5097 */
5098static int
5099ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5100 struct list_head *chg)
5101{
5102 u16 idx = vsig & ICE_VSIG_IDX_M;
5103 struct ice_vsig_vsi *vsi_cur;
5104 struct ice_vsig_prof *d, *t;
5105 int status;
5106
5107 /* remove TCAM entries */
5108 list_for_each_entry_safe(d, t,
5109 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5110 list) {
5111 status = ice_rem_prof_id(hw, blk, d);
5112 if (status)
5113 return status;
5114
5115 list_del(&d->list);
5116 devm_kfree(ice_hw_to_dev(hw), d);
5117 }
5118
5119 /* Move all VSIS associated with this VSIG to the default VSIG */
5120 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5121 /* If the VSIG has at least 1 VSI then iterate through the list
5122 * and remove the VSIs before deleting the group.
5123 */
5124 if (vsi_cur)
5125 do {
5126 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5127 struct ice_chs_chg *p;
5128
5129 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5130 GFP_KERNEL);
5131 if (!p)
5132 return -ENOMEM;
5133
5134 p->type = ICE_VSIG_REM;
5135 p->orig_vsig = vsig;
5136 p->vsig = ICE_DEFAULT_VSIG;
5137 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5138
5139 list_add(&p->list_entry, chg);
5140
5141 vsi_cur = tmp;
5142 } while (vsi_cur);
5143
5144 return ice_vsig_free(hw, blk, vsig);
5145}
5146
5147/**
5148 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5149 * @hw: pointer to the HW struct
5150 * @blk: hardware block
5151 * @vsig: VSIG to remove the profile from
5152 * @hdl: profile handle indicating which profile to remove
5153 * @chg: list to receive a record of changes
5154 */
5155static int
5156ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5157 struct list_head *chg)
5158{
5159 u16 idx = vsig & ICE_VSIG_IDX_M;
5160 struct ice_vsig_prof *p, *t;
5161 int status;
5162
5163 list_for_each_entry_safe(p, t,
5164 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5165 list)
5166 if (p->profile_cookie == hdl) {
5167 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5168 /* this is the last profile, remove the VSIG */
5169 return ice_rem_vsig(hw, blk, vsig, chg);
5170
5171 status = ice_rem_prof_id(hw, blk, p);
5172 if (!status) {
5173 list_del(&p->list);
5174 devm_kfree(ice_hw_to_dev(hw), p);
5175 }
5176 return status;
5177 }
5178
5179 return -ENOENT;
5180}
5181
5182/**
5183 * ice_rem_flow_all - remove all flows with a particular profile
5184 * @hw: pointer to the HW struct
5185 * @blk: hardware block
5186 * @id: profile tracking ID
5187 */
5188static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
5189{
5190 struct ice_chs_chg *del, *tmp;
5191 struct list_head chg;
5192 int status;
5193 u16 i;
5194
5195 INIT_LIST_HEAD(&chg);
5196
5197 for (i = 1; i < ICE_MAX_VSIGS; i++)
5198 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5199 if (ice_has_prof_vsig(hw, blk, i, id)) {
5200 status = ice_rem_prof_id_vsig(hw, blk, i, id,
5201 &chg);
5202 if (status)
5203 goto err_ice_rem_flow_all;
5204 }
5205 }
5206
5207 status = ice_upd_prof_hw(hw, blk, &chg);
5208
5209err_ice_rem_flow_all:
5210 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5211 list_del(&del->list_entry);
5212 devm_kfree(ice_hw_to_dev(hw), del);
5213 }
5214
5215 return status;
5216}
5217
5218/**
5219 * ice_rem_prof - remove profile
5220 * @hw: pointer to the HW struct
5221 * @blk: hardware block
5222 * @id: profile tracking ID
5223 *
5224 * This will remove the profile specified by the ID parameter, which was
5225 * previously created through ice_add_prof. If any existing entries
5226 * are associated with this profile, they will be removed as well.
5227 */
5228int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5229{
5230 struct ice_prof_map *pmap;
5231 int status;
5232
5233 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5234
5235 pmap = ice_search_prof_id(hw, blk, id);
5236 if (!pmap) {
5237 status = -ENOENT;
5238 goto err_ice_rem_prof;
5239 }
5240
5241 /* remove all flows with this profile */
5242 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5243 if (status)
5244 goto err_ice_rem_prof;
5245
5246 /* dereference profile, and possibly remove */
5247 ice_prof_dec_ref(hw, blk, pmap->prof_id);
5248
5249 list_del(&pmap->list);
5250 devm_kfree(ice_hw_to_dev(hw), pmap);
5251
5252err_ice_rem_prof:
5253 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5254 return status;
5255}
5256
5257/**
5258 * ice_get_prof - get profile
5259 * @hw: pointer to the HW struct
5260 * @blk: hardware block
5261 * @hdl: profile handle
5262 * @chg: change list
5263 */
5264static int
5265ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5266 struct list_head *chg)
5267{
5268 struct ice_prof_map *map;
5269 struct ice_chs_chg *p;
5270 int status = 0;
5271 u16 i;
5272
5273 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5274 /* Get the details on the profile specified by the handle ID */
5275 map = ice_search_prof_id(hw, blk, hdl);
5276 if (!map) {
5277 status = -ENOENT;
5278 goto err_ice_get_prof;
5279 }
5280
5281 for (i = 0; i < map->ptg_cnt; i++)
5282 if (!hw->blk[blk].es.written[map->prof_id]) {
5283 /* add ES to change list */
5284 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
5285 GFP_KERNEL);
5286 if (!p) {
5287 status = -ENOMEM;
5288 goto err_ice_get_prof;
5289 }
5290
5291 p->type = ICE_PTG_ES_ADD;
5292 p->ptype = 0;
5293 p->ptg = map->ptg[i];
5294 p->add_ptg = 0;
5295
5296 p->add_prof = 1;
5297 p->prof_id = map->prof_id;
5298
5299 hw->blk[blk].es.written[map->prof_id] = true;
5300
5301 list_add(&p->list_entry, chg);
5302 }
5303
5304err_ice_get_prof:
5305 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5306 /* let caller clean up the change list */
5307 return status;
5308}
5309
5310/**
5311 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5312 * @hw: pointer to the HW struct
5313 * @blk: hardware block
5314 * @vsig: VSIG from which to copy the list
5315 * @lst: output list
5316 *
5317 * This routine makes a copy of the list of profiles in the specified VSIG.
5318 */
5319static int
5320ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5321 struct list_head *lst)
5322{
5323 struct ice_vsig_prof *ent1, *ent2;
5324 u16 idx = vsig & ICE_VSIG_IDX_M;
5325
5326 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5327 list) {
5328 struct ice_vsig_prof *p;
5329
5330 /* copy to the input list */
5331 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
5332 GFP_KERNEL);
5333 if (!p)
5334 goto err_ice_get_profs_vsig;
5335
5336 list_add_tail(&p->list, lst);
5337 }
5338
5339 return 0;
5340
5341err_ice_get_profs_vsig:
5342 list_for_each_entry_safe(ent1, ent2, lst, list) {
5343 list_del(&ent1->list);
5344 devm_kfree(ice_hw_to_dev(hw), ent1);
5345 }
5346
5347 return -ENOMEM;
5348}
5349
5350/**
5351 * ice_add_prof_to_lst - add profile entry to a list
5352 * @hw: pointer to the HW struct
5353 * @blk: hardware block
5354 * @lst: the list to be added to
5355 * @hdl: profile handle of entry to add
5356 */
5357static int
5358ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5359 struct list_head *lst, u64 hdl)
5360{
5361 struct ice_prof_map *map;
5362 struct ice_vsig_prof *p;
5363 int status = 0;
5364 u16 i;
5365
5366 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5367 map = ice_search_prof_id(hw, blk, hdl);
5368 if (!map) {
5369 status = -ENOENT;
5370 goto err_ice_add_prof_to_lst;
5371 }
5372
5373 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5374 if (!p) {
5375 status = -ENOMEM;
5376 goto err_ice_add_prof_to_lst;
5377 }
5378
5379 p->profile_cookie = map->profile_cookie;
5380 p->prof_id = map->prof_id;
5381 p->tcam_count = map->ptg_cnt;
5382
5383 for (i = 0; i < map->ptg_cnt; i++) {
5384 p->tcam[i].prof_id = map->prof_id;
5385 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5386 p->tcam[i].ptg = map->ptg[i];
5387 }
5388
5389 list_add(&p->list, lst);
5390
5391err_ice_add_prof_to_lst:
5392 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5393 return status;
5394}
5395
5396/**
5397 * ice_move_vsi - move VSI to another VSIG
5398 * @hw: pointer to the HW struct
5399 * @blk: hardware block
5400 * @vsi: the VSI to move
5401 * @vsig: the VSIG to move the VSI to
5402 * @chg: the change list
5403 */
5404static int
5405ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5406 struct list_head *chg)
5407{
5408 struct ice_chs_chg *p;
5409 u16 orig_vsig;
5410 int status;
5411
5412 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5413 if (!p)
5414 return -ENOMEM;
5415
5416 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5417 if (!status)
5418 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5419
5420 if (status) {
5421 devm_kfree(ice_hw_to_dev(hw), p);
5422 return status;
5423 }
5424
5425 p->type = ICE_VSI_MOVE;
5426 p->vsi = vsi;
5427 p->orig_vsig = orig_vsig;
5428 p->vsig = vsig;
5429
5430 list_add(&p->list_entry, chg);
5431
5432 return 0;
5433}
5434
5435/**
5436 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5437 * @hw: pointer to the HW struct
5438 * @idx: the index of the TCAM entry to remove
5439 * @chg: the list of change structures to search
5440 */
5441static void
5442ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
5443{
5444 struct ice_chs_chg *pos, *tmp;
5445
5446 list_for_each_entry_safe(tmp, pos, chg, list_entry)
5447 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5448 list_del(&tmp->list_entry);
5449 devm_kfree(ice_hw_to_dev(hw), tmp);
5450 }
5451}
5452
5453/**
5454 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5455 * @hw: pointer to the HW struct
5456 * @blk: hardware block
5457 * @enable: true to enable, false to disable
5458 * @vsig: the VSIG of the TCAM entry
5459 * @tcam: pointer the TCAM info structure of the TCAM to disable
5460 * @chg: the change list
5461 *
5462 * This function appends an enable or disable TCAM entry in the change log
5463 */
5464static int
5465ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5466 u16 vsig, struct ice_tcam_inf *tcam,
5467 struct list_head *chg)
5468{
5469 struct ice_chs_chg *p;
5470 int status;
5471
5472 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5473 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5474 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5475
5476 /* if disabling, free the TCAM */
5477 if (!enable) {
5478 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5479
5480 /* if we have already created a change for this TCAM entry, then
5481 * we need to remove that entry, in order to prevent writing to
5482 * a TCAM entry we no longer will have ownership of.
5483 */
5484 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5485 tcam->tcam_idx = 0;
5486 tcam->in_use = 0;
5487 return status;
5488 }
5489
5490 /* for re-enabling, reallocate a TCAM */
5491 /* for entries with empty attribute masks, allocate entry from
5492 * the bottom of the TCAM table; otherwise, allocate from the
5493 * top of the table in order to give it higher priority
5494 */
5495 status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5496 &tcam->tcam_idx);
5497 if (status)
5498 return status;
5499
5500 /* add TCAM to change list */
5501 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5502 if (!p)
5503 return -ENOMEM;
5504
5505 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5506 tcam->ptg, vsig, 0, tcam->attr.flags,
5507 vl_msk, dc_msk, nm_msk);
5508 if (status)
5509 goto err_ice_prof_tcam_ena_dis;
5510
5511 tcam->in_use = 1;
5512
5513 p->type = ICE_TCAM_ADD;
5514 p->add_tcam_idx = true;
5515 p->prof_id = tcam->prof_id;
5516 p->ptg = tcam->ptg;
5517 p->vsig = 0;
5518 p->tcam_idx = tcam->tcam_idx;
5519
5520 /* log change */
5521 list_add(&p->list_entry, chg);
5522
5523 return 0;
5524
5525err_ice_prof_tcam_ena_dis:
5526 devm_kfree(ice_hw_to_dev(hw), p);
5527 return status;
5528}
5529
5530/**
5531 * ice_adj_prof_priorities - adjust profile based on priorities
5532 * @hw: pointer to the HW struct
5533 * @blk: hardware block
5534 * @vsig: the VSIG for which to adjust profile priorities
5535 * @chg: the change list
5536 */
5537static int
5538ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5539 struct list_head *chg)
5540{
5541 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
5542 struct ice_vsig_prof *t;
5543 int status;
5544 u16 idx;
5545
5546 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
5547 idx = vsig & ICE_VSIG_IDX_M;
5548
5549 /* Priority is based on the order in which the profiles are added. The
5550 * newest added profile has highest priority and the oldest added
5551 * profile has the lowest priority. Since the profile property list for
5552 * a VSIG is sorted from newest to oldest, this code traverses the list
5553 * in order and enables the first of each PTG that it finds (that is not
5554 * already enabled); it also disables any duplicate PTGs that it finds
5555 * in the older profiles (that are currently enabled).
5556 */
5557
5558 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5559 list) {
5560 u16 i;
5561
5562 for (i = 0; i < t->tcam_count; i++) {
5563 /* Scan the priorities from newest to oldest.
5564 * Make sure that the newest profiles take priority.
5565 */
5566 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
5567 t->tcam[i].in_use) {
5568 /* need to mark this PTG as never match, as it
5569 * was already in use and therefore duplicate
5570 * (and lower priority)
5571 */
5572 status = ice_prof_tcam_ena_dis(hw, blk, false,
5573 vsig,
5574 &t->tcam[i],
5575 chg);
5576 if (status)
5577 return status;
5578 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
5579 !t->tcam[i].in_use) {
5580 /* need to enable this PTG, as it in not in use
5581 * and not enabled (highest priority)
5582 */
5583 status = ice_prof_tcam_ena_dis(hw, blk, true,
5584 vsig,
5585 &t->tcam[i],
5586 chg);
5587 if (status)
5588 return status;
5589 }
5590
5591 /* keep track of used ptgs */
5592 __set_bit(t->tcam[i].ptg, ptgs_used);
5593 }
5594 }
5595
5596 return 0;
5597}
5598
5599/**
5600 * ice_add_prof_id_vsig - add profile to VSIG
5601 * @hw: pointer to the HW struct
5602 * @blk: hardware block
5603 * @vsig: the VSIG to which this profile is to be added
5604 * @hdl: the profile handle indicating the profile to add
5605 * @rev: true to add entries to the end of the list
5606 * @chg: the change list
5607 */
5608static int
5609ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5610 bool rev, struct list_head *chg)
5611{
5612 /* Masks that ignore flags */
5613 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5614 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5615 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5616 struct ice_prof_map *map;
5617 struct ice_vsig_prof *t;
5618 struct ice_chs_chg *p;
5619 u16 vsig_idx, i;
5620 int status = 0;
5621
5622 /* Error, if this VSIG already has this profile */
5623 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5624 return -EEXIST;
5625
5626 /* new VSIG profile structure */
5627 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
5628 if (!t)
5629 return -ENOMEM;
5630
5631 mutex_lock(&hw->blk[blk].es.prof_map_lock);
5632 /* Get the details on the profile specified by the handle ID */
5633 map = ice_search_prof_id(hw, blk, hdl);
5634 if (!map) {
5635 status = -ENOENT;
5636 goto err_ice_add_prof_id_vsig;
5637 }
5638
5639 t->profile_cookie = map->profile_cookie;
5640 t->prof_id = map->prof_id;
5641 t->tcam_count = map->ptg_cnt;
5642
5643 /* create TCAM entries */
5644 for (i = 0; i < map->ptg_cnt; i++) {
5645 u16 tcam_idx;
5646
5647 /* add TCAM to change list */
5648 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5649 if (!p) {
5650 status = -ENOMEM;
5651 goto err_ice_add_prof_id_vsig;
5652 }
5653
5654 /* allocate the TCAM entry index */
5655 /* for entries with empty attribute masks, allocate entry from
5656 * the bottom of the TCAM table; otherwise, allocate from the
5657 * top of the table in order to give it higher priority
5658 */
5659 status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5660 &tcam_idx);
5661 if (status) {
5662 devm_kfree(ice_hw_to_dev(hw), p);
5663 goto err_ice_add_prof_id_vsig;
5664 }
5665
5666 t->tcam[i].ptg = map->ptg[i];
5667 t->tcam[i].prof_id = map->prof_id;
5668 t->tcam[i].tcam_idx = tcam_idx;
5669 t->tcam[i].attr = map->attr[i];
5670 t->tcam[i].in_use = true;
5671
5672 p->type = ICE_TCAM_ADD;
5673 p->add_tcam_idx = true;
5674 p->prof_id = t->tcam[i].prof_id;
5675 p->ptg = t->tcam[i].ptg;
5676 p->vsig = vsig;
5677 p->tcam_idx = t->tcam[i].tcam_idx;
5678
5679 /* write the TCAM entry */
5680 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5681 t->tcam[i].prof_id,
5682 t->tcam[i].ptg, vsig, 0, 0,
5683 vl_msk, dc_msk, nm_msk);
5684 if (status) {
5685 devm_kfree(ice_hw_to_dev(hw), p);
5686 goto err_ice_add_prof_id_vsig;
5687 }
5688
5689 /* log change */
5690 list_add(&p->list_entry, chg);
5691 }
5692
5693 /* add profile to VSIG */
5694 vsig_idx = vsig & ICE_VSIG_IDX_M;
5695 if (rev)
5696 list_add_tail(&t->list,
5697 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5698 else
5699 list_add(&t->list,
5700 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5701
5702 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5703 return status;
5704
5705err_ice_add_prof_id_vsig:
5706 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
5707 /* let caller clean up the change list */
5708 devm_kfree(ice_hw_to_dev(hw), t);
5709 return status;
5710}
5711
5712/**
5713 * ice_create_prof_id_vsig - add a new VSIG with a single profile
5714 * @hw: pointer to the HW struct
5715 * @blk: hardware block
5716 * @vsi: the initial VSI that will be in VSIG
5717 * @hdl: the profile handle of the profile that will be added to the VSIG
5718 * @chg: the change list
5719 */
5720static int
5721ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5722 struct list_head *chg)
5723{
5724 struct ice_chs_chg *p;
5725 u16 new_vsig;
5726 int status;
5727
5728 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
5729 if (!p)
5730 return -ENOMEM;
5731
5732 new_vsig = ice_vsig_alloc(hw, blk);
5733 if (!new_vsig) {
5734 status = -EIO;
5735 goto err_ice_create_prof_id_vsig;
5736 }
5737
5738 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5739 if (status)
5740 goto err_ice_create_prof_id_vsig;
5741
5742 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5743 if (status)
5744 goto err_ice_create_prof_id_vsig;
5745
5746 p->type = ICE_VSIG_ADD;
5747 p->vsi = vsi;
5748 p->orig_vsig = ICE_DEFAULT_VSIG;
5749 p->vsig = new_vsig;
5750
5751 list_add(&p->list_entry, chg);
5752
5753 return 0;
5754
5755err_ice_create_prof_id_vsig:
5756 /* let caller clean up the change list */
5757 devm_kfree(ice_hw_to_dev(hw), p);
5758 return status;
5759}
5760
5761/**
5762 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5763 * @hw: pointer to the HW struct
5764 * @blk: hardware block
5765 * @vsi: the initial VSI that will be in VSIG
5766 * @lst: the list of profile that will be added to the VSIG
5767 * @new_vsig: return of new VSIG
5768 * @chg: the change list
5769 */
5770static int
5771ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5772 struct list_head *lst, u16 *new_vsig,
5773 struct list_head *chg)
5774{
5775 struct ice_vsig_prof *t;
5776 int status;
5777 u16 vsig;
5778
5779 vsig = ice_vsig_alloc(hw, blk);
5780 if (!vsig)
5781 return -EIO;
5782
5783 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5784 if (status)
5785 return status;
5786
5787 list_for_each_entry(t, lst, list) {
5788 /* Reverse the order here since we are copying the list */
5789 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5790 true, chg);
5791 if (status)
5792 return status;
5793 }
5794
5795 *new_vsig = vsig;
5796
5797 return 0;
5798}
5799
5800/**
5801 * ice_find_prof_vsig - find a VSIG with a specific profile handle
5802 * @hw: pointer to the HW struct
5803 * @blk: hardware block
5804 * @hdl: the profile handle of the profile to search for
5805 * @vsig: returns the VSIG with the matching profile
5806 */
5807static bool
5808ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
5809{
5810 struct ice_vsig_prof *t;
5811 struct list_head lst;
5812 int status;
5813
5814 INIT_LIST_HEAD(&lst);
5815
5816 t = kzalloc(sizeof(*t), GFP_KERNEL);
5817 if (!t)
5818 return false;
5819
5820 t->profile_cookie = hdl;
5821 list_add(&t->list, &lst);
5822
5823 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
5824
5825 list_del(&t->list);
5826 kfree(t);
5827
5828 return !status;
5829}
5830
5831/**
5832 * ice_add_prof_id_flow - add profile flow
5833 * @hw: pointer to the HW struct
5834 * @blk: hardware block
5835 * @vsi: the VSI to enable with the profile specified by ID
5836 * @hdl: profile handle
5837 *
5838 * Calling this function will update the hardware tables to enable the
5839 * profile indicated by the ID parameter for the VSIs specified in the VSI
5840 * array. Once successfully called, the flow will be enabled.
5841 */
5842int
5843ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
5844{
5845 struct ice_vsig_prof *tmp1, *del1;
5846 struct ice_chs_chg *tmp, *del;
5847 struct list_head union_lst;
5848 struct list_head chg;
5849 int status;
5850 u16 vsig;
5851
5852 INIT_LIST_HEAD(&union_lst);
5853 INIT_LIST_HEAD(&chg);
5854
5855 /* Get profile */
5856 status = ice_get_prof(hw, blk, hdl, &chg);
5857 if (status)
5858 return status;
5859
5860 /* determine if VSI is already part of a VSIG */
5861 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
5862 if (!status && vsig) {
5863 bool only_vsi;
5864 u16 or_vsig;
5865 u16 ref;
5866
5867 /* found in VSIG */
5868 or_vsig = vsig;
5869
5870 /* make sure that there is no overlap/conflict between the new
5871 * characteristics and the existing ones; we don't support that
5872 * scenario
5873 */
5874 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
5875 status = -EEXIST;
5876 goto err_ice_add_prof_id_flow;
5877 }
5878
5879 /* last VSI in the VSIG? */
5880 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
5881 if (status)
5882 goto err_ice_add_prof_id_flow;
5883 only_vsi = (ref == 1);
5884
5885 /* create a union of the current profiles and the one being
5886 * added
5887 */
5888 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
5889 if (status)
5890 goto err_ice_add_prof_id_flow;
5891
5892 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
5893 if (status)
5894 goto err_ice_add_prof_id_flow;
5895
5896 /* search for an existing VSIG with an exact charc match */
5897 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
5898 if (!status) {
5899 /* move VSI to the VSIG that matches */
5900 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5901 if (status)
5902 goto err_ice_add_prof_id_flow;
5903
5904 /* VSI has been moved out of or_vsig. If the or_vsig had
5905 * only that VSI it is now empty and can be removed.
5906 */
5907 if (only_vsi) {
5908 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
5909 if (status)
5910 goto err_ice_add_prof_id_flow;
5911 }
5912 } else if (only_vsi) {
5913 /* If the original VSIG only contains one VSI, then it
5914 * will be the requesting VSI. In this case the VSI is
5915 * not sharing entries and we can simply add the new
5916 * profile to the VSIG.
5917 */
5918 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
5919 &chg);
5920 if (status)
5921 goto err_ice_add_prof_id_flow;
5922
5923 /* Adjust priorities */
5924 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5925 if (status)
5926 goto err_ice_add_prof_id_flow;
5927 } else {
5928 /* No match, so we need a new VSIG */
5929 status = ice_create_vsig_from_lst(hw, blk, vsi,
5930 &union_lst, &vsig,
5931 &chg);
5932 if (status)
5933 goto err_ice_add_prof_id_flow;
5934
5935 /* Adjust priorities */
5936 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
5937 if (status)
5938 goto err_ice_add_prof_id_flow;
5939 }
5940 } else {
5941 /* need to find or add a VSIG */
5942 /* search for an existing VSIG with an exact charc match */
5943 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
5944 /* found an exact match */
5945 /* add or move VSI to the VSIG that matches */
5946 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
5947 if (status)
5948 goto err_ice_add_prof_id_flow;
5949 } else {
5950 /* we did not find an exact match */
5951 /* we need to add a VSIG */
5952 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
5953 &chg);
5954 if (status)
5955 goto err_ice_add_prof_id_flow;
5956 }
5957 }
5958
5959 /* update hardware */
5960 if (!status)
5961 status = ice_upd_prof_hw(hw, blk, &chg);
5962
5963err_ice_add_prof_id_flow:
5964 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
5965 list_del(&del->list_entry);
5966 devm_kfree(ice_hw_to_dev(hw), del);
5967 }
5968
5969 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
5970 list_del(&del1->list);
5971 devm_kfree(ice_hw_to_dev(hw), del1);
5972 }
5973
5974 return status;
5975}
5976
5977/**
5978 * ice_rem_prof_from_list - remove a profile from list
5979 * @hw: pointer to the HW struct
5980 * @lst: list to remove the profile from
5981 * @hdl: the profile handle indicating the profile to remove
5982 */
5983static int
5984ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
5985{
5986 struct ice_vsig_prof *ent, *tmp;
5987
5988 list_for_each_entry_safe(ent, tmp, lst, list)
5989 if (ent->profile_cookie == hdl) {
5990 list_del(&ent->list);
5991 devm_kfree(ice_hw_to_dev(hw), ent);
5992 return 0;
5993 }
5994
5995 return -ENOENT;
5996}
5997
5998/**
5999 * ice_rem_prof_id_flow - remove flow
6000 * @hw: pointer to the HW struct
6001 * @blk: hardware block
6002 * @vsi: the VSI from which to remove the profile specified by ID
6003 * @hdl: profile tracking handle
6004 *
6005 * Calling this function will update the hardware tables to remove the
6006 * profile indicated by the ID parameter for the VSIs specified in the VSI
6007 * array. Once successfully called, the flow will be disabled.
6008 */
6009int
6010ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6011{
6012 struct ice_vsig_prof *tmp1, *del1;
6013 struct ice_chs_chg *tmp, *del;
6014 struct list_head chg, copy;
6015 int status;
6016 u16 vsig;
6017
6018 INIT_LIST_HEAD(©);
6019 INIT_LIST_HEAD(&chg);
6020
6021 /* determine if VSI is already part of a VSIG */
6022 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6023 if (!status && vsig) {
6024 bool last_profile;
6025 bool only_vsi;
6026 u16 ref;
6027
6028 /* found in VSIG */
6029 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6030 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6031 if (status)
6032 goto err_ice_rem_prof_id_flow;
6033 only_vsi = (ref == 1);
6034
6035 if (only_vsi) {
6036 /* If the original VSIG only contains one reference,
6037 * which will be the requesting VSI, then the VSI is not
6038 * sharing entries and we can simply remove the specific
6039 * characteristics from the VSIG.
6040 */
6041
6042 if (last_profile) {
6043 /* If there are no profiles left for this VSIG,
6044 * then simply remove the VSIG.
6045 */
6046 status = ice_rem_vsig(hw, blk, vsig, &chg);
6047 if (status)
6048 goto err_ice_rem_prof_id_flow;
6049 } else {
6050 status = ice_rem_prof_id_vsig(hw, blk, vsig,
6051 hdl, &chg);
6052 if (status)
6053 goto err_ice_rem_prof_id_flow;
6054
6055 /* Adjust priorities */
6056 status = ice_adj_prof_priorities(hw, blk, vsig,
6057 &chg);
6058 if (status)
6059 goto err_ice_rem_prof_id_flow;
6060 }
6061
6062 } else {
6063 /* Make a copy of the VSIG's list of Profiles */
6064 status = ice_get_profs_vsig(hw, blk, vsig, ©);
6065 if (status)
6066 goto err_ice_rem_prof_id_flow;
6067
6068 /* Remove specified profile entry from the list */
6069 status = ice_rem_prof_from_list(hw, ©, hdl);
6070 if (status)
6071 goto err_ice_rem_prof_id_flow;
6072
6073 if (list_empty(©)) {
6074 status = ice_move_vsi(hw, blk, vsi,
6075 ICE_DEFAULT_VSIG, &chg);
6076 if (status)
6077 goto err_ice_rem_prof_id_flow;
6078
6079 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
6080 &vsig)) {
6081 /* found an exact match */
6082 /* add or move VSI to the VSIG that matches */
6083 /* Search for a VSIG with a matching profile
6084 * list
6085 */
6086
6087 /* Found match, move VSI to the matching VSIG */
6088 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6089 if (status)
6090 goto err_ice_rem_prof_id_flow;
6091 } else {
6092 /* since no existing VSIG supports this
6093 * characteristic pattern, we need to create a
6094 * new VSIG and TCAM entries
6095 */
6096 status = ice_create_vsig_from_lst(hw, blk, vsi,
6097 ©, &vsig,
6098 &chg);
6099 if (status)
6100 goto err_ice_rem_prof_id_flow;
6101
6102 /* Adjust priorities */
6103 status = ice_adj_prof_priorities(hw, blk, vsig,
6104 &chg);
6105 if (status)
6106 goto err_ice_rem_prof_id_flow;
6107 }
6108 }
6109 } else {
6110 status = -ENOENT;
6111 }
6112
6113 /* update hardware tables */
6114 if (!status)
6115 status = ice_upd_prof_hw(hw, blk, &chg);
6116
6117err_ice_rem_prof_id_flow:
6118 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
6119 list_del(&del->list_entry);
6120 devm_kfree(ice_hw_to_dev(hw), del);
6121 }
6122
6123 list_for_each_entry_safe(del1, tmp1, ©, list) {
6124 list_del(&del1->list);
6125 devm_kfree(ice_hw_to_dev(hw), del1);
6126 }
6127
6128 return status;
6129}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2019, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_flex_pipe.h"
6#include "ice_flow.h"
7
8/* To support tunneling entries by PF, the package will append the PF number to
9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
10 */
11static const struct ice_tunnel_type_scan tnls[] = {
12 { TNL_VXLAN, "TNL_VXLAN_PF" },
13 { TNL_GENEVE, "TNL_GENEVE_PF" },
14 { TNL_LAST, "" }
15};
16
17static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
18 /* SWITCH */
19 {
20 ICE_SID_XLT0_SW,
21 ICE_SID_XLT_KEY_BUILDER_SW,
22 ICE_SID_XLT1_SW,
23 ICE_SID_XLT2_SW,
24 ICE_SID_PROFID_TCAM_SW,
25 ICE_SID_PROFID_REDIR_SW,
26 ICE_SID_FLD_VEC_SW,
27 ICE_SID_CDID_KEY_BUILDER_SW,
28 ICE_SID_CDID_REDIR_SW
29 },
30
31 /* ACL */
32 {
33 ICE_SID_XLT0_ACL,
34 ICE_SID_XLT_KEY_BUILDER_ACL,
35 ICE_SID_XLT1_ACL,
36 ICE_SID_XLT2_ACL,
37 ICE_SID_PROFID_TCAM_ACL,
38 ICE_SID_PROFID_REDIR_ACL,
39 ICE_SID_FLD_VEC_ACL,
40 ICE_SID_CDID_KEY_BUILDER_ACL,
41 ICE_SID_CDID_REDIR_ACL
42 },
43
44 /* FD */
45 {
46 ICE_SID_XLT0_FD,
47 ICE_SID_XLT_KEY_BUILDER_FD,
48 ICE_SID_XLT1_FD,
49 ICE_SID_XLT2_FD,
50 ICE_SID_PROFID_TCAM_FD,
51 ICE_SID_PROFID_REDIR_FD,
52 ICE_SID_FLD_VEC_FD,
53 ICE_SID_CDID_KEY_BUILDER_FD,
54 ICE_SID_CDID_REDIR_FD
55 },
56
57 /* RSS */
58 {
59 ICE_SID_XLT0_RSS,
60 ICE_SID_XLT_KEY_BUILDER_RSS,
61 ICE_SID_XLT1_RSS,
62 ICE_SID_XLT2_RSS,
63 ICE_SID_PROFID_TCAM_RSS,
64 ICE_SID_PROFID_REDIR_RSS,
65 ICE_SID_FLD_VEC_RSS,
66 ICE_SID_CDID_KEY_BUILDER_RSS,
67 ICE_SID_CDID_REDIR_RSS
68 },
69
70 /* PE */
71 {
72 ICE_SID_XLT0_PE,
73 ICE_SID_XLT_KEY_BUILDER_PE,
74 ICE_SID_XLT1_PE,
75 ICE_SID_XLT2_PE,
76 ICE_SID_PROFID_TCAM_PE,
77 ICE_SID_PROFID_REDIR_PE,
78 ICE_SID_FLD_VEC_PE,
79 ICE_SID_CDID_KEY_BUILDER_PE,
80 ICE_SID_CDID_REDIR_PE
81 }
82};
83
84/**
85 * ice_sect_id - returns section ID
86 * @blk: block type
87 * @sect: section type
88 *
89 * This helper function returns the proper section ID given a block type and a
90 * section type.
91 */
92static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
93{
94 return ice_sect_lkup[blk][sect];
95}
96
97/**
98 * ice_pkg_val_buf
99 * @buf: pointer to the ice buffer
100 *
101 * This helper function validates a buffer's header.
102 */
103static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
104{
105 struct ice_buf_hdr *hdr;
106 u16 section_count;
107 u16 data_end;
108
109 hdr = (struct ice_buf_hdr *)buf->buf;
110 /* verify data */
111 section_count = le16_to_cpu(hdr->section_count);
112 if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
113 return NULL;
114
115 data_end = le16_to_cpu(hdr->data_end);
116 if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
117 return NULL;
118
119 return hdr;
120}
121
122/**
123 * ice_find_buf_table
124 * @ice_seg: pointer to the ice segment
125 *
126 * Returns the address of the buffer table within the ice segment.
127 */
128static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
129{
130 struct ice_nvm_table *nvms;
131
132 nvms = (struct ice_nvm_table *)
133 (ice_seg->device_table +
134 le32_to_cpu(ice_seg->device_table_count));
135
136 return (__force struct ice_buf_table *)
137 (nvms->vers + le32_to_cpu(nvms->table_count));
138}
139
140/**
141 * ice_pkg_enum_buf
142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
143 * @state: pointer to the enum state
144 *
145 * This function will enumerate all the buffers in the ice segment. The first
146 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
147 * ice_seg is set to NULL which continues the enumeration. When the function
148 * returns a NULL pointer, then the end of the buffers has been reached, or an
149 * unexpected value has been detected (for example an invalid section count or
150 * an invalid buffer end value).
151 */
152static struct ice_buf_hdr *
153ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
154{
155 if (ice_seg) {
156 state->buf_table = ice_find_buf_table(ice_seg);
157 if (!state->buf_table)
158 return NULL;
159
160 state->buf_idx = 0;
161 return ice_pkg_val_buf(state->buf_table->buf_array);
162 }
163
164 if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
165 return ice_pkg_val_buf(state->buf_table->buf_array +
166 state->buf_idx);
167 else
168 return NULL;
169}
170
171/**
172 * ice_pkg_advance_sect
173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
174 * @state: pointer to the enum state
175 *
176 * This helper function will advance the section within the ice segment,
177 * also advancing the buffer if needed.
178 */
179static bool
180ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
181{
182 if (!ice_seg && !state->buf)
183 return false;
184
185 if (!ice_seg && state->buf)
186 if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
187 return true;
188
189 state->buf = ice_pkg_enum_buf(ice_seg, state);
190 if (!state->buf)
191 return false;
192
193 /* start of new buffer, reset section index */
194 state->sect_idx = 0;
195 return true;
196}
197
198/**
199 * ice_pkg_enum_section
200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
201 * @state: pointer to the enum state
202 * @sect_type: section type to enumerate
203 *
204 * This function will enumerate all the sections of a particular type in the
205 * ice segment. The first call is made with the ice_seg parameter non-NULL;
206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
207 * When the function returns a NULL pointer, then the end of the matching
208 * sections has been reached.
209 */
210static void *
211ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
212 u32 sect_type)
213{
214 u16 offset, size;
215
216 if (ice_seg)
217 state->type = sect_type;
218
219 if (!ice_pkg_advance_sect(ice_seg, state))
220 return NULL;
221
222 /* scan for next matching section */
223 while (state->buf->section_entry[state->sect_idx].type !=
224 cpu_to_le32(state->type))
225 if (!ice_pkg_advance_sect(NULL, state))
226 return NULL;
227
228 /* validate section */
229 offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
230 if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
231 return NULL;
232
233 size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
234 if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
235 return NULL;
236
237 /* make sure the section fits in the buffer */
238 if (offset + size > ICE_PKG_BUF_SIZE)
239 return NULL;
240
241 state->sect_type =
242 le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
243
244 /* calc pointer to this section */
245 state->sect = ((u8 *)state->buf) +
246 le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
247
248 return state->sect;
249}
250
251/**
252 * ice_pkg_enum_entry
253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
254 * @state: pointer to the enum state
255 * @sect_type: section type to enumerate
256 * @offset: pointer to variable that receives the offset in the table (optional)
257 * @handler: function that handles access to the entries into the section type
258 *
259 * This function will enumerate all the entries in particular section type in
260 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
262 * When the function returns a NULL pointer, then the end of the entries has
263 * been reached.
264 *
265 * Since each section may have a different header and entry size, the handler
266 * function is needed to determine the number and location entries in each
267 * section.
268 *
269 * The offset parameter is optional, but should be used for sections that
270 * contain an offset for each section table. For such cases, the section handler
271 * function must return the appropriate offset + index to give the absolution
272 * offset for each entry. For example, if the base for a section's header
273 * indicates a base offset of 10, and the index for the entry is 2, then
274 * section handler function should set the offset to 10 + 2 = 12.
275 */
276static void *
277ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
278 u32 sect_type, u32 *offset,
279 void *(*handler)(u32 sect_type, void *section,
280 u32 index, u32 *offset))
281{
282 void *entry;
283
284 if (ice_seg) {
285 if (!handler)
286 return NULL;
287
288 if (!ice_pkg_enum_section(ice_seg, state, sect_type))
289 return NULL;
290
291 state->entry_idx = 0;
292 state->handler = handler;
293 } else {
294 state->entry_idx++;
295 }
296
297 if (!state->handler)
298 return NULL;
299
300 /* get entry */
301 entry = state->handler(state->sect_type, state->sect, state->entry_idx,
302 offset);
303 if (!entry) {
304 /* end of a section, look for another section of this type */
305 if (!ice_pkg_enum_section(NULL, state, 0))
306 return NULL;
307
308 state->entry_idx = 0;
309 entry = state->handler(state->sect_type, state->sect,
310 state->entry_idx, offset);
311 }
312
313 return entry;
314}
315
316/**
317 * ice_boost_tcam_handler
318 * @sect_type: section type
319 * @section: pointer to section
320 * @index: index of the boost TCAM entry to be returned
321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
322 *
323 * This is a callback function that can be passed to ice_pkg_enum_entry.
324 * Handles enumeration of individual boost TCAM entries.
325 */
326static void *
327ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
328{
329 struct ice_boost_tcam_section *boost;
330
331 if (!section)
332 return NULL;
333
334 if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
335 return NULL;
336
337 if (index > ICE_MAX_BST_TCAMS_IN_BUF)
338 return NULL;
339
340 if (offset)
341 *offset = 0;
342
343 boost = section;
344 if (index >= le16_to_cpu(boost->count))
345 return NULL;
346
347 return boost->tcam + index;
348}
349
350/**
351 * ice_find_boost_entry
352 * @ice_seg: pointer to the ice segment (non-NULL)
353 * @addr: Boost TCAM address of entry to search for
354 * @entry: returns pointer to the entry
355 *
356 * Finds a particular Boost TCAM entry and returns a pointer to that entry
357 * if it is found. The ice_seg parameter must not be NULL since the first call
358 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
359 */
360static enum ice_status
361ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
362 struct ice_boost_tcam_entry **entry)
363{
364 struct ice_boost_tcam_entry *tcam;
365 struct ice_pkg_enum state;
366
367 memset(&state, 0, sizeof(state));
368
369 if (!ice_seg)
370 return ICE_ERR_PARAM;
371
372 do {
373 tcam = ice_pkg_enum_entry(ice_seg, &state,
374 ICE_SID_RXPARSER_BOOST_TCAM, NULL,
375 ice_boost_tcam_handler);
376 if (tcam && le16_to_cpu(tcam->addr) == addr) {
377 *entry = tcam;
378 return 0;
379 }
380
381 ice_seg = NULL;
382 } while (tcam);
383
384 *entry = NULL;
385 return ICE_ERR_CFG;
386}
387
388/**
389 * ice_label_enum_handler
390 * @sect_type: section type
391 * @section: pointer to section
392 * @index: index of the label entry to be returned
393 * @offset: pointer to receive absolute offset, always zero for label sections
394 *
395 * This is a callback function that can be passed to ice_pkg_enum_entry.
396 * Handles enumeration of individual label entries.
397 */
398static void *
399ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
400 u32 *offset)
401{
402 struct ice_label_section *labels;
403
404 if (!section)
405 return NULL;
406
407 if (index > ICE_MAX_LABELS_IN_BUF)
408 return NULL;
409
410 if (offset)
411 *offset = 0;
412
413 labels = section;
414 if (index >= le16_to_cpu(labels->count))
415 return NULL;
416
417 return labels->label + index;
418}
419
420/**
421 * ice_enum_labels
422 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
423 * @type: the section type that will contain the label (0 on subsequent calls)
424 * @state: ice_pkg_enum structure that will hold the state of the enumeration
425 * @value: pointer to a value that will return the label's value if found
426 *
427 * Enumerates a list of labels in the package. The caller will call
428 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
429 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
430 * the end of the list has been reached.
431 */
432static char *
433ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
434 u16 *value)
435{
436 struct ice_label *label;
437
438 /* Check for valid label section on first call */
439 if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
440 return NULL;
441
442 label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
443 ice_label_enum_handler);
444 if (!label)
445 return NULL;
446
447 *value = le16_to_cpu(label->value);
448 return label->name;
449}
450
451/**
452 * ice_init_pkg_hints
453 * @hw: pointer to the HW structure
454 * @ice_seg: pointer to the segment of the package scan (non-NULL)
455 *
456 * This function will scan the package and save off relevant information
457 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
458 * since the first call to ice_enum_labels requires a pointer to an actual
459 * ice_seg structure.
460 */
461static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
462{
463 struct ice_pkg_enum state;
464 char *label_name;
465 u16 val;
466 int i;
467
468 memset(&hw->tnl, 0, sizeof(hw->tnl));
469 memset(&state, 0, sizeof(state));
470
471 if (!ice_seg)
472 return;
473
474 label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
475 &val);
476
477 while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
478 for (i = 0; tnls[i].type != TNL_LAST; i++) {
479 size_t len = strlen(tnls[i].label_prefix);
480
481 /* Look for matching label start, before continuing */
482 if (strncmp(label_name, tnls[i].label_prefix, len))
483 continue;
484
485 /* Make sure this label matches our PF. Note that the PF
486 * character ('0' - '7') will be located where our
487 * prefix string's null terminator is located.
488 */
489 if ((label_name[len] - '0') == hw->pf_id) {
490 hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
491 hw->tnl.tbl[hw->tnl.count].valid = false;
492 hw->tnl.tbl[hw->tnl.count].in_use = false;
493 hw->tnl.tbl[hw->tnl.count].marked = false;
494 hw->tnl.tbl[hw->tnl.count].boost_addr = val;
495 hw->tnl.tbl[hw->tnl.count].port = 0;
496 hw->tnl.count++;
497 break;
498 }
499 }
500
501 label_name = ice_enum_labels(NULL, 0, &state, &val);
502 }
503
504 /* Cache the appropriate boost TCAM entry pointers */
505 for (i = 0; i < hw->tnl.count; i++) {
506 ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
507 &hw->tnl.tbl[i].boost_entry);
508 if (hw->tnl.tbl[i].boost_entry)
509 hw->tnl.tbl[i].valid = true;
510 }
511}
512
513/* Key creation */
514
515#define ICE_DC_KEY 0x1 /* don't care */
516#define ICE_DC_KEYINV 0x1
517#define ICE_NM_KEY 0x0 /* never match */
518#define ICE_NM_KEYINV 0x0
519#define ICE_0_KEY 0x1 /* match 0 */
520#define ICE_0_KEYINV 0x0
521#define ICE_1_KEY 0x0 /* match 1 */
522#define ICE_1_KEYINV 0x1
523
524/**
525 * ice_gen_key_word - generate 16-bits of a key/mask word
526 * @val: the value
527 * @valid: valid bits mask (change only the valid bits)
528 * @dont_care: don't care mask
529 * @nvr_mtch: never match mask
530 * @key: pointer to an array of where the resulting key portion
531 * @key_inv: pointer to an array of where the resulting key invert portion
532 *
533 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
534 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
535 * of key and 8 bits of key invert.
536 *
537 * '0' = b01, always match a 0 bit
538 * '1' = b10, always match a 1 bit
539 * '?' = b11, don't care bit (always matches)
540 * '~' = b00, never match bit
541 *
542 * Input:
543 * val: b0 1 0 1 0 1
544 * dont_care: b0 0 1 1 0 0
545 * never_mtch: b0 0 0 0 1 1
546 * ------------------------------
547 * Result: key: b01 10 11 11 00 00
548 */
549static enum ice_status
550ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
551 u8 *key_inv)
552{
553 u8 in_key = *key, in_key_inv = *key_inv;
554 u8 i;
555
556 /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
557 if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
558 return ICE_ERR_CFG;
559
560 *key = 0;
561 *key_inv = 0;
562
563 /* encode the 8 bits into 8-bit key and 8-bit key invert */
564 for (i = 0; i < 8; i++) {
565 *key >>= 1;
566 *key_inv >>= 1;
567
568 if (!(valid & 0x1)) { /* change only valid bits */
569 *key |= (in_key & 0x1) << 7;
570 *key_inv |= (in_key_inv & 0x1) << 7;
571 } else if (dont_care & 0x1) { /* don't care bit */
572 *key |= ICE_DC_KEY << 7;
573 *key_inv |= ICE_DC_KEYINV << 7;
574 } else if (nvr_mtch & 0x1) { /* never match bit */
575 *key |= ICE_NM_KEY << 7;
576 *key_inv |= ICE_NM_KEYINV << 7;
577 } else if (val & 0x01) { /* exact 1 match */
578 *key |= ICE_1_KEY << 7;
579 *key_inv |= ICE_1_KEYINV << 7;
580 } else { /* exact 0 match */
581 *key |= ICE_0_KEY << 7;
582 *key_inv |= ICE_0_KEYINV << 7;
583 }
584
585 dont_care >>= 1;
586 nvr_mtch >>= 1;
587 valid >>= 1;
588 val >>= 1;
589 in_key >>= 1;
590 in_key_inv >>= 1;
591 }
592
593 return 0;
594}
595
596/**
597 * ice_bits_max_set - determine if the number of bits set is within a maximum
598 * @mask: pointer to the byte array which is the mask
599 * @size: the number of bytes in the mask
600 * @max: the max number of set bits
601 *
602 * This function determines if there are at most 'max' number of bits set in an
603 * array. Returns true if the number for bits set is <= max or will return false
604 * otherwise.
605 */
606static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
607{
608 u16 count = 0;
609 u16 i;
610
611 /* check each byte */
612 for (i = 0; i < size; i++) {
613 /* if 0, go to next byte */
614 if (!mask[i])
615 continue;
616
617 /* We know there is at least one set bit in this byte because of
618 * the above check; if we already have found 'max' number of
619 * bits set, then we can return failure now.
620 */
621 if (count == max)
622 return false;
623
624 /* count the bits in this byte, checking threshold */
625 count += hweight8(mask[i]);
626 if (count > max)
627 return false;
628 }
629
630 return true;
631}
632
633/**
634 * ice_set_key - generate a variable sized key with multiples of 16-bits
635 * @key: pointer to where the key will be stored
636 * @size: the size of the complete key in bytes (must be even)
637 * @val: array of 8-bit values that makes up the value portion of the key
638 * @upd: array of 8-bit masks that determine what key portion to update
639 * @dc: array of 8-bit masks that make up the don't care mask
640 * @nm: array of 8-bit masks that make up the never match mask
641 * @off: the offset of the first byte in the key to update
642 * @len: the number of bytes in the key update
643 *
644 * This function generates a key from a value, a don't care mask and a never
645 * match mask.
646 * upd, dc, and nm are optional parameters, and can be NULL:
647 * upd == NULL --> upd mask is all 1's (update all bits)
648 * dc == NULL --> dc mask is all 0's (no don't care bits)
649 * nm == NULL --> nm mask is all 0's (no never match bits)
650 */
651static enum ice_status
652ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
653 u16 len)
654{
655 u16 half_size;
656 u16 i;
657
658 /* size must be a multiple of 2 bytes. */
659 if (size % 2)
660 return ICE_ERR_CFG;
661
662 half_size = size / 2;
663 if (off + len > half_size)
664 return ICE_ERR_CFG;
665
666 /* Make sure at most one bit is set in the never match mask. Having more
667 * than one never match mask bit set will cause HW to consume excessive
668 * power otherwise; this is a power management efficiency check.
669 */
670#define ICE_NVR_MTCH_BITS_MAX 1
671 if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
672 return ICE_ERR_CFG;
673
674 for (i = 0; i < len; i++)
675 if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
676 dc ? dc[i] : 0, nm ? nm[i] : 0,
677 key + off + i, key + half_size + off + i))
678 return ICE_ERR_CFG;
679
680 return 0;
681}
682
683/**
684 * ice_acquire_global_cfg_lock
685 * @hw: pointer to the HW structure
686 * @access: access type (read or write)
687 *
688 * This function will request ownership of the global config lock for reading
689 * or writing of the package. When attempting to obtain write access, the
690 * caller must check for the following two return values:
691 *
692 * ICE_SUCCESS - Means the caller has acquired the global config lock
693 * and can perform writing of the package.
694 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
695 * package or has found that no update was necessary; in
696 * this case, the caller can just skip performing any
697 * update of the package.
698 */
699static enum ice_status
700ice_acquire_global_cfg_lock(struct ice_hw *hw,
701 enum ice_aq_res_access_type access)
702{
703 enum ice_status status;
704
705 status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
706 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
707
708 if (!status)
709 mutex_lock(&ice_global_cfg_lock_sw);
710 else if (status == ICE_ERR_AQ_NO_WORK)
711 ice_debug(hw, ICE_DBG_PKG,
712 "Global config lock: No work to do\n");
713
714 return status;
715}
716
717/**
718 * ice_release_global_cfg_lock
719 * @hw: pointer to the HW structure
720 *
721 * This function will release the global config lock.
722 */
723static void ice_release_global_cfg_lock(struct ice_hw *hw)
724{
725 mutex_unlock(&ice_global_cfg_lock_sw);
726 ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
727}
728
729/**
730 * ice_acquire_change_lock
731 * @hw: pointer to the HW structure
732 * @access: access type (read or write)
733 *
734 * This function will request ownership of the change lock.
735 */
736static enum ice_status
737ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
738{
739 return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
740 ICE_CHANGE_LOCK_TIMEOUT);
741}
742
743/**
744 * ice_release_change_lock
745 * @hw: pointer to the HW structure
746 *
747 * This function will release the change lock using the proper Admin Command.
748 */
749static void ice_release_change_lock(struct ice_hw *hw)
750{
751 ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
752}
753
754/**
755 * ice_aq_download_pkg
756 * @hw: pointer to the hardware structure
757 * @pkg_buf: the package buffer to transfer
758 * @buf_size: the size of the package buffer
759 * @last_buf: last buffer indicator
760 * @error_offset: returns error offset
761 * @error_info: returns error information
762 * @cd: pointer to command details structure or NULL
763 *
764 * Download Package (0x0C40)
765 */
766static enum ice_status
767ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
768 u16 buf_size, bool last_buf, u32 *error_offset,
769 u32 *error_info, struct ice_sq_cd *cd)
770{
771 struct ice_aqc_download_pkg *cmd;
772 struct ice_aq_desc desc;
773 enum ice_status status;
774
775 if (error_offset)
776 *error_offset = 0;
777 if (error_info)
778 *error_info = 0;
779
780 cmd = &desc.params.download_pkg;
781 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
782 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
783
784 if (last_buf)
785 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
786
787 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
788 if (status == ICE_ERR_AQ_ERROR) {
789 /* Read error from buffer only when the FW returned an error */
790 struct ice_aqc_download_pkg_resp *resp;
791
792 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
793 if (error_offset)
794 *error_offset = le32_to_cpu(resp->error_offset);
795 if (error_info)
796 *error_info = le32_to_cpu(resp->error_info);
797 }
798
799 return status;
800}
801
802/**
803 * ice_aq_update_pkg
804 * @hw: pointer to the hardware structure
805 * @pkg_buf: the package cmd buffer
806 * @buf_size: the size of the package cmd buffer
807 * @last_buf: last buffer indicator
808 * @error_offset: returns error offset
809 * @error_info: returns error information
810 * @cd: pointer to command details structure or NULL
811 *
812 * Update Package (0x0C42)
813 */
814static enum ice_status
815ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
816 bool last_buf, u32 *error_offset, u32 *error_info,
817 struct ice_sq_cd *cd)
818{
819 struct ice_aqc_download_pkg *cmd;
820 struct ice_aq_desc desc;
821 enum ice_status status;
822
823 if (error_offset)
824 *error_offset = 0;
825 if (error_info)
826 *error_info = 0;
827
828 cmd = &desc.params.download_pkg;
829 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
830 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
831
832 if (last_buf)
833 cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
834
835 status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
836 if (status == ICE_ERR_AQ_ERROR) {
837 /* Read error from buffer only when the FW returned an error */
838 struct ice_aqc_download_pkg_resp *resp;
839
840 resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
841 if (error_offset)
842 *error_offset = le32_to_cpu(resp->error_offset);
843 if (error_info)
844 *error_info = le32_to_cpu(resp->error_info);
845 }
846
847 return status;
848}
849
850/**
851 * ice_find_seg_in_pkg
852 * @hw: pointer to the hardware structure
853 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
854 * @pkg_hdr: pointer to the package header to be searched
855 *
856 * This function searches a package file for a particular segment type. On
857 * success it returns a pointer to the segment header, otherwise it will
858 * return NULL.
859 */
860static struct ice_generic_seg_hdr *
861ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
862 struct ice_pkg_hdr *pkg_hdr)
863{
864 u32 i;
865
866 ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
867 pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
868 pkg_hdr->pkg_format_ver.update,
869 pkg_hdr->pkg_format_ver.draft);
870
871 /* Search all package segments for the requested segment type */
872 for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
873 struct ice_generic_seg_hdr *seg;
874
875 seg = (struct ice_generic_seg_hdr *)
876 ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
877
878 if (le32_to_cpu(seg->seg_type) == seg_type)
879 return seg;
880 }
881
882 return NULL;
883}
884
885/**
886 * ice_update_pkg
887 * @hw: pointer to the hardware structure
888 * @bufs: pointer to an array of buffers
889 * @count: the number of buffers in the array
890 *
891 * Obtains change lock and updates package.
892 */
893static enum ice_status
894ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
895{
896 enum ice_status status;
897 u32 offset, info, i;
898
899 status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
900 if (status)
901 return status;
902
903 for (i = 0; i < count; i++) {
904 struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
905 bool last = ((i + 1) == count);
906
907 status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
908 last, &offset, &info, NULL);
909
910 if (status) {
911 ice_debug(hw, ICE_DBG_PKG,
912 "Update pkg failed: err %d off %d inf %d\n",
913 status, offset, info);
914 break;
915 }
916 }
917
918 ice_release_change_lock(hw);
919
920 return status;
921}
922
923/**
924 * ice_dwnld_cfg_bufs
925 * @hw: pointer to the hardware structure
926 * @bufs: pointer to an array of buffers
927 * @count: the number of buffers in the array
928 *
929 * Obtains global config lock and downloads the package configuration buffers
930 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
931 * found indicates that the rest of the buffers are all metadata buffers.
932 */
933static enum ice_status
934ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
935{
936 enum ice_status status;
937 struct ice_buf_hdr *bh;
938 u32 offset, info, i;
939
940 if (!bufs || !count)
941 return ICE_ERR_PARAM;
942
943 /* If the first buffer's first section has its metadata bit set
944 * then there are no buffers to be downloaded, and the operation is
945 * considered a success.
946 */
947 bh = (struct ice_buf_hdr *)bufs;
948 if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
949 return 0;
950
951 /* reset pkg_dwnld_status in case this function is called in the
952 * reset/rebuild flow
953 */
954 hw->pkg_dwnld_status = ICE_AQ_RC_OK;
955
956 status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
957 if (status) {
958 if (status == ICE_ERR_AQ_NO_WORK)
959 hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
960 else
961 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
962 return status;
963 }
964
965 for (i = 0; i < count; i++) {
966 bool last = ((i + 1) == count);
967
968 if (!last) {
969 /* check next buffer for metadata flag */
970 bh = (struct ice_buf_hdr *)(bufs + i + 1);
971
972 /* A set metadata flag in the next buffer will signal
973 * that the current buffer will be the last buffer
974 * downloaded
975 */
976 if (le16_to_cpu(bh->section_count))
977 if (le32_to_cpu(bh->section_entry[0].type) &
978 ICE_METADATA_BUF)
979 last = true;
980 }
981
982 bh = (struct ice_buf_hdr *)(bufs + i);
983
984 status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
985 &offset, &info, NULL);
986
987 /* Save AQ status from download package */
988 hw->pkg_dwnld_status = hw->adminq.sq_last_status;
989 if (status) {
990 ice_debug(hw, ICE_DBG_PKG,
991 "Pkg download failed: err %d off %d inf %d\n",
992 status, offset, info);
993
994 break;
995 }
996
997 if (last)
998 break;
999 }
1000
1001 ice_release_global_cfg_lock(hw);
1002
1003 return status;
1004}
1005
1006/**
1007 * ice_aq_get_pkg_info_list
1008 * @hw: pointer to the hardware structure
1009 * @pkg_info: the buffer which will receive the information list
1010 * @buf_size: the size of the pkg_info information buffer
1011 * @cd: pointer to command details structure or NULL
1012 *
1013 * Get Package Info List (0x0C43)
1014 */
1015static enum ice_status
1016ice_aq_get_pkg_info_list(struct ice_hw *hw,
1017 struct ice_aqc_get_pkg_info_resp *pkg_info,
1018 u16 buf_size, struct ice_sq_cd *cd)
1019{
1020 struct ice_aq_desc desc;
1021
1022 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1023
1024 return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1025}
1026
1027/**
1028 * ice_download_pkg
1029 * @hw: pointer to the hardware structure
1030 * @ice_seg: pointer to the segment of the package to be downloaded
1031 *
1032 * Handles the download of a complete package.
1033 */
1034static enum ice_status
1035ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1036{
1037 struct ice_buf_table *ice_buf_tbl;
1038
1039 ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1040 ice_seg->hdr.seg_format_ver.major,
1041 ice_seg->hdr.seg_format_ver.minor,
1042 ice_seg->hdr.seg_format_ver.update,
1043 ice_seg->hdr.seg_format_ver.draft);
1044
1045 ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1046 le32_to_cpu(ice_seg->hdr.seg_type),
1047 le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1048
1049 ice_buf_tbl = ice_find_buf_table(ice_seg);
1050
1051 ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1052 le32_to_cpu(ice_buf_tbl->buf_count));
1053
1054 return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1055 le32_to_cpu(ice_buf_tbl->buf_count));
1056}
1057
1058/**
1059 * ice_init_pkg_info
1060 * @hw: pointer to the hardware structure
1061 * @pkg_hdr: pointer to the driver's package hdr
1062 *
1063 * Saves off the package details into the HW structure.
1064 */
1065static enum ice_status
1066ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1067{
1068 struct ice_global_metadata_seg *meta_seg;
1069 struct ice_generic_seg_hdr *seg_hdr;
1070
1071 if (!pkg_hdr)
1072 return ICE_ERR_PARAM;
1073
1074 meta_seg = (struct ice_global_metadata_seg *)
1075 ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
1076 if (meta_seg) {
1077 hw->pkg_ver = meta_seg->pkg_ver;
1078 memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
1079
1080 ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1081 meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
1082 meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
1083 meta_seg->pkg_name);
1084 } else {
1085 ice_debug(hw, ICE_DBG_INIT,
1086 "Did not find metadata segment in driver package\n");
1087 return ICE_ERR_CFG;
1088 }
1089
1090 seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1091 if (seg_hdr) {
1092 hw->ice_pkg_ver = seg_hdr->seg_format_ver;
1093 memcpy(hw->ice_pkg_name, seg_hdr->seg_id,
1094 sizeof(hw->ice_pkg_name));
1095
1096 ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1097 seg_hdr->seg_format_ver.major,
1098 seg_hdr->seg_format_ver.minor,
1099 seg_hdr->seg_format_ver.update,
1100 seg_hdr->seg_format_ver.draft,
1101 seg_hdr->seg_id);
1102 } else {
1103 ice_debug(hw, ICE_DBG_INIT,
1104 "Did not find ice segment in driver package\n");
1105 return ICE_ERR_CFG;
1106 }
1107
1108 return 0;
1109}
1110
1111/**
1112 * ice_get_pkg_info
1113 * @hw: pointer to the hardware structure
1114 *
1115 * Store details of the package currently loaded in HW into the HW structure.
1116 */
1117static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1118{
1119 struct ice_aqc_get_pkg_info_resp *pkg_info;
1120 enum ice_status status;
1121 u16 size;
1122 u32 i;
1123
1124 size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1125 pkg_info = kzalloc(size, GFP_KERNEL);
1126 if (!pkg_info)
1127 return ICE_ERR_NO_MEMORY;
1128
1129 status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1130 if (status)
1131 goto init_pkg_free_alloc;
1132
1133 for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1134#define ICE_PKG_FLAG_COUNT 4
1135 char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1136 u8 place = 0;
1137
1138 if (pkg_info->pkg_info[i].is_active) {
1139 flags[place++] = 'A';
1140 hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1141 hw->active_track_id =
1142 le32_to_cpu(pkg_info->pkg_info[i].track_id);
1143 memcpy(hw->active_pkg_name,
1144 pkg_info->pkg_info[i].name,
1145 sizeof(pkg_info->pkg_info[i].name));
1146 hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1147 }
1148 if (pkg_info->pkg_info[i].is_active_at_boot)
1149 flags[place++] = 'B';
1150 if (pkg_info->pkg_info[i].is_modified)
1151 flags[place++] = 'M';
1152 if (pkg_info->pkg_info[i].is_in_nvm)
1153 flags[place++] = 'N';
1154
1155 ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1156 i, pkg_info->pkg_info[i].ver.major,
1157 pkg_info->pkg_info[i].ver.minor,
1158 pkg_info->pkg_info[i].ver.update,
1159 pkg_info->pkg_info[i].ver.draft,
1160 pkg_info->pkg_info[i].name, flags);
1161 }
1162
1163init_pkg_free_alloc:
1164 kfree(pkg_info);
1165
1166 return status;
1167}
1168
1169/**
1170 * ice_verify_pkg - verify package
1171 * @pkg: pointer to the package buffer
1172 * @len: size of the package buffer
1173 *
1174 * Verifies various attributes of the package file, including length, format
1175 * version, and the requirement of at least one segment.
1176 */
1177static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1178{
1179 u32 seg_count;
1180 u32 i;
1181
1182 if (len < struct_size(pkg, seg_offset, 1))
1183 return ICE_ERR_BUF_TOO_SHORT;
1184
1185 if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1186 pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1187 pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1188 pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1189 return ICE_ERR_CFG;
1190
1191 /* pkg must have at least one segment */
1192 seg_count = le32_to_cpu(pkg->seg_count);
1193 if (seg_count < 1)
1194 return ICE_ERR_CFG;
1195
1196 /* make sure segment array fits in package length */
1197 if (len < struct_size(pkg, seg_offset, seg_count))
1198 return ICE_ERR_BUF_TOO_SHORT;
1199
1200 /* all segments must fit within length */
1201 for (i = 0; i < seg_count; i++) {
1202 u32 off = le32_to_cpu(pkg->seg_offset[i]);
1203 struct ice_generic_seg_hdr *seg;
1204
1205 /* segment header must fit */
1206 if (len < off + sizeof(*seg))
1207 return ICE_ERR_BUF_TOO_SHORT;
1208
1209 seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1210
1211 /* segment body must fit */
1212 if (len < off + le32_to_cpu(seg->seg_size))
1213 return ICE_ERR_BUF_TOO_SHORT;
1214 }
1215
1216 return 0;
1217}
1218
1219/**
1220 * ice_free_seg - free package segment pointer
1221 * @hw: pointer to the hardware structure
1222 *
1223 * Frees the package segment pointer in the proper manner, depending on if the
1224 * segment was allocated or just the passed in pointer was stored.
1225 */
1226void ice_free_seg(struct ice_hw *hw)
1227{
1228 if (hw->pkg_copy) {
1229 devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1230 hw->pkg_copy = NULL;
1231 hw->pkg_size = 0;
1232 }
1233 hw->seg = NULL;
1234}
1235
1236/**
1237 * ice_init_pkg_regs - initialize additional package registers
1238 * @hw: pointer to the hardware structure
1239 */
1240static void ice_init_pkg_regs(struct ice_hw *hw)
1241{
1242#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1243#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1244#define ICE_SW_BLK_IDX 0
1245
1246 /* setup Switch block input mask, which is 48-bits in two parts */
1247 wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1248 wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1249}
1250
1251/**
1252 * ice_chk_pkg_version - check package version for compatibility with driver
1253 * @pkg_ver: pointer to a version structure to check
1254 *
1255 * Check to make sure that the package about to be downloaded is compatible with
1256 * the driver. To be compatible, the major and minor components of the package
1257 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1258 * definitions.
1259 */
1260static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1261{
1262 if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1263 pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1264 return ICE_ERR_NOT_SUPPORTED;
1265
1266 return 0;
1267}
1268
1269/**
1270 * ice_chk_pkg_compat
1271 * @hw: pointer to the hardware structure
1272 * @ospkg: pointer to the package hdr
1273 * @seg: pointer to the package segment hdr
1274 *
1275 * This function checks the package version compatibility with driver and NVM
1276 */
1277static enum ice_status
1278ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1279 struct ice_seg **seg)
1280{
1281 struct ice_aqc_get_pkg_info_resp *pkg;
1282 enum ice_status status;
1283 u16 size;
1284 u32 i;
1285
1286 /* Check package version compatibility */
1287 status = ice_chk_pkg_version(&hw->pkg_ver);
1288 if (status) {
1289 ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1290 return status;
1291 }
1292
1293 /* find ICE segment in given package */
1294 *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1295 ospkg);
1296 if (!*seg) {
1297 ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1298 return ICE_ERR_CFG;
1299 }
1300
1301 /* Check if FW is compatible with the OS package */
1302 size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1303 pkg = kzalloc(size, GFP_KERNEL);
1304 if (!pkg)
1305 return ICE_ERR_NO_MEMORY;
1306
1307 status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1308 if (status)
1309 goto fw_ddp_compat_free_alloc;
1310
1311 for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1312 /* loop till we find the NVM package */
1313 if (!pkg->pkg_info[i].is_in_nvm)
1314 continue;
1315 if ((*seg)->hdr.seg_format_ver.major !=
1316 pkg->pkg_info[i].ver.major ||
1317 (*seg)->hdr.seg_format_ver.minor >
1318 pkg->pkg_info[i].ver.minor) {
1319 status = ICE_ERR_FW_DDP_MISMATCH;
1320 ice_debug(hw, ICE_DBG_INIT,
1321 "OS package is not compatible with NVM.\n");
1322 }
1323 /* done processing NVM package so break */
1324 break;
1325 }
1326fw_ddp_compat_free_alloc:
1327 kfree(pkg);
1328 return status;
1329}
1330
1331/**
1332 * ice_init_pkg - initialize/download package
1333 * @hw: pointer to the hardware structure
1334 * @buf: pointer to the package buffer
1335 * @len: size of the package buffer
1336 *
1337 * This function initializes a package. The package contains HW tables
1338 * required to do packet processing. First, the function extracts package
1339 * information such as version. Then it finds the ice configuration segment
1340 * within the package; this function then saves a copy of the segment pointer
1341 * within the supplied package buffer. Next, the function will cache any hints
1342 * from the package, followed by downloading the package itself. Note, that if
1343 * a previous PF driver has already downloaded the package successfully, then
1344 * the current driver will not have to download the package again.
1345 *
1346 * The local package contents will be used to query default behavior and to
1347 * update specific sections of the HW's version of the package (e.g. to update
1348 * the parse graph to understand new protocols).
1349 *
1350 * This function stores a pointer to the package buffer memory, and it is
1351 * expected that the supplied buffer will not be freed immediately. If the
1352 * package buffer needs to be freed, such as when read from a file, use
1353 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1354 * case.
1355 */
1356enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1357{
1358 struct ice_pkg_hdr *pkg;
1359 enum ice_status status;
1360 struct ice_seg *seg;
1361
1362 if (!buf || !len)
1363 return ICE_ERR_PARAM;
1364
1365 pkg = (struct ice_pkg_hdr *)buf;
1366 status = ice_verify_pkg(pkg, len);
1367 if (status) {
1368 ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1369 status);
1370 return status;
1371 }
1372
1373 /* initialize package info */
1374 status = ice_init_pkg_info(hw, pkg);
1375 if (status)
1376 return status;
1377
1378 /* before downloading the package, check package version for
1379 * compatibility with driver
1380 */
1381 status = ice_chk_pkg_compat(hw, pkg, &seg);
1382 if (status)
1383 return status;
1384
1385 /* initialize package hints and then download package */
1386 ice_init_pkg_hints(hw, seg);
1387 status = ice_download_pkg(hw, seg);
1388 if (status == ICE_ERR_AQ_NO_WORK) {
1389 ice_debug(hw, ICE_DBG_INIT,
1390 "package previously loaded - no work.\n");
1391 status = 0;
1392 }
1393
1394 /* Get information on the package currently loaded in HW, then make sure
1395 * the driver is compatible with this version.
1396 */
1397 if (!status) {
1398 status = ice_get_pkg_info(hw);
1399 if (!status)
1400 status = ice_chk_pkg_version(&hw->active_pkg_ver);
1401 }
1402
1403 if (!status) {
1404 hw->seg = seg;
1405 /* on successful package download update other required
1406 * registers to support the package and fill HW tables
1407 * with package content.
1408 */
1409 ice_init_pkg_regs(hw);
1410 ice_fill_blk_tbls(hw);
1411 } else {
1412 ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1413 status);
1414 }
1415
1416 return status;
1417}
1418
1419/**
1420 * ice_copy_and_init_pkg - initialize/download a copy of the package
1421 * @hw: pointer to the hardware structure
1422 * @buf: pointer to the package buffer
1423 * @len: size of the package buffer
1424 *
1425 * This function copies the package buffer, and then calls ice_init_pkg() to
1426 * initialize the copied package contents.
1427 *
1428 * The copying is necessary if the package buffer supplied is constant, or if
1429 * the memory may disappear shortly after calling this function.
1430 *
1431 * If the package buffer resides in the data segment and can be modified, the
1432 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1433 *
1434 * However, if the package buffer needs to be copied first, such as when being
1435 * read from a file, the caller should use ice_copy_and_init_pkg().
1436 *
1437 * This function will first copy the package buffer, before calling
1438 * ice_init_pkg(). The caller is free to immediately destroy the original
1439 * package buffer, as the new copy will be managed by this function and
1440 * related routines.
1441 */
1442enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1443{
1444 enum ice_status status;
1445 u8 *buf_copy;
1446
1447 if (!buf || !len)
1448 return ICE_ERR_PARAM;
1449
1450 buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1451
1452 status = ice_init_pkg(hw, buf_copy, len);
1453 if (status) {
1454 /* Free the copy, since we failed to initialize the package */
1455 devm_kfree(ice_hw_to_dev(hw), buf_copy);
1456 } else {
1457 /* Track the copied pkg so we can free it later */
1458 hw->pkg_copy = buf_copy;
1459 hw->pkg_size = len;
1460 }
1461
1462 return status;
1463}
1464
1465/**
1466 * ice_pkg_buf_alloc
1467 * @hw: pointer to the HW structure
1468 *
1469 * Allocates a package buffer and returns a pointer to the buffer header.
1470 * Note: all package contents must be in Little Endian form.
1471 */
1472static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1473{
1474 struct ice_buf_build *bld;
1475 struct ice_buf_hdr *buf;
1476
1477 bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1478 if (!bld)
1479 return NULL;
1480
1481 buf = (struct ice_buf_hdr *)bld;
1482 buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1483 section_entry));
1484 return bld;
1485}
1486
1487/**
1488 * ice_pkg_buf_free
1489 * @hw: pointer to the HW structure
1490 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1491 *
1492 * Frees a package buffer
1493 */
1494static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1495{
1496 devm_kfree(ice_hw_to_dev(hw), bld);
1497}
1498
1499/**
1500 * ice_pkg_buf_reserve_section
1501 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1502 * @count: the number of sections to reserve
1503 *
1504 * Reserves one or more section table entries in a package buffer. This routine
1505 * can be called multiple times as long as they are made before calling
1506 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1507 * is called once, the number of sections that can be allocated will not be able
1508 * to be increased; not using all reserved sections is fine, but this will
1509 * result in some wasted space in the buffer.
1510 * Note: all package contents must be in Little Endian form.
1511 */
1512static enum ice_status
1513ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1514{
1515 struct ice_buf_hdr *buf;
1516 u16 section_count;
1517 u16 data_end;
1518
1519 if (!bld)
1520 return ICE_ERR_PARAM;
1521
1522 buf = (struct ice_buf_hdr *)&bld->buf;
1523
1524 /* already an active section, can't increase table size */
1525 section_count = le16_to_cpu(buf->section_count);
1526 if (section_count > 0)
1527 return ICE_ERR_CFG;
1528
1529 if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1530 return ICE_ERR_CFG;
1531 bld->reserved_section_table_entries += count;
1532
1533 data_end = le16_to_cpu(buf->data_end) +
1534 (count * sizeof(buf->section_entry[0]));
1535 buf->data_end = cpu_to_le16(data_end);
1536
1537 return 0;
1538}
1539
1540/**
1541 * ice_pkg_buf_alloc_section
1542 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1543 * @type: the section type value
1544 * @size: the size of the section to reserve (in bytes)
1545 *
1546 * Reserves memory in the buffer for a section's content and updates the
1547 * buffers' status accordingly. This routine returns a pointer to the first
1548 * byte of the section start within the buffer, which is used to fill in the
1549 * section contents.
1550 * Note: all package contents must be in Little Endian form.
1551 */
1552static void *
1553ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1554{
1555 struct ice_buf_hdr *buf;
1556 u16 sect_count;
1557 u16 data_end;
1558
1559 if (!bld || !type || !size)
1560 return NULL;
1561
1562 buf = (struct ice_buf_hdr *)&bld->buf;
1563
1564 /* check for enough space left in buffer */
1565 data_end = le16_to_cpu(buf->data_end);
1566
1567 /* section start must align on 4 byte boundary */
1568 data_end = ALIGN(data_end, 4);
1569
1570 if ((data_end + size) > ICE_MAX_S_DATA_END)
1571 return NULL;
1572
1573 /* check for more available section table entries */
1574 sect_count = le16_to_cpu(buf->section_count);
1575 if (sect_count < bld->reserved_section_table_entries) {
1576 void *section_ptr = ((u8 *)buf) + data_end;
1577
1578 buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1579 buf->section_entry[sect_count].size = cpu_to_le16(size);
1580 buf->section_entry[sect_count].type = cpu_to_le32(type);
1581
1582 data_end += size;
1583 buf->data_end = cpu_to_le16(data_end);
1584
1585 buf->section_count = cpu_to_le16(sect_count + 1);
1586 return section_ptr;
1587 }
1588
1589 /* no free section table entries */
1590 return NULL;
1591}
1592
1593/**
1594 * ice_pkg_buf_get_active_sections
1595 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1596 *
1597 * Returns the number of active sections. Before using the package buffer
1598 * in an update package command, the caller should make sure that there is at
1599 * least one active section - otherwise, the buffer is not legal and should
1600 * not be used.
1601 * Note: all package contents must be in Little Endian form.
1602 */
1603static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1604{
1605 struct ice_buf_hdr *buf;
1606
1607 if (!bld)
1608 return 0;
1609
1610 buf = (struct ice_buf_hdr *)&bld->buf;
1611 return le16_to_cpu(buf->section_count);
1612}
1613
1614/**
1615 * ice_pkg_buf
1616 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1617 *
1618 * Return a pointer to the buffer's header
1619 */
1620static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1621{
1622 if (!bld)
1623 return NULL;
1624
1625 return &bld->buf;
1626}
1627
1628/**
1629 * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
1630 * @hw: pointer to the HW structure
1631 * @port: port to search for
1632 * @index: optionally returns index
1633 *
1634 * Returns whether a port is already in use as a tunnel, and optionally its
1635 * index
1636 */
1637static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
1638{
1639 u16 i;
1640
1641 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1642 if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
1643 if (index)
1644 *index = i;
1645 return true;
1646 }
1647
1648 return false;
1649}
1650
1651/**
1652 * ice_tunnel_port_in_use
1653 * @hw: pointer to the HW structure
1654 * @port: port to search for
1655 * @index: optionally returns index
1656 *
1657 * Returns whether a port is already in use as a tunnel, and optionally its
1658 * index
1659 */
1660bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
1661{
1662 bool res;
1663
1664 mutex_lock(&hw->tnl_lock);
1665 res = ice_tunnel_port_in_use_hlpr(hw, port, index);
1666 mutex_unlock(&hw->tnl_lock);
1667
1668 return res;
1669}
1670
1671/**
1672 * ice_find_free_tunnel_entry
1673 * @hw: pointer to the HW structure
1674 * @type: tunnel type
1675 * @index: optionally returns index
1676 *
1677 * Returns whether there is a free tunnel entry, and optionally its index
1678 */
1679static bool
1680ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1681 u16 *index)
1682{
1683 u16 i;
1684
1685 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1686 if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
1687 hw->tnl.tbl[i].type == type) {
1688 if (index)
1689 *index = i;
1690 return true;
1691 }
1692
1693 return false;
1694}
1695
1696/**
1697 * ice_get_open_tunnel_port - retrieve an open tunnel port
1698 * @hw: pointer to the HW structure
1699 * @type: tunnel type (TNL_ALL will return any open port)
1700 * @port: returns open port
1701 */
1702bool
1703ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
1704 u16 *port)
1705{
1706 bool res = false;
1707 u16 i;
1708
1709 mutex_lock(&hw->tnl_lock);
1710
1711 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1712 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1713 (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
1714 *port = hw->tnl.tbl[i].port;
1715 res = true;
1716 break;
1717 }
1718
1719 mutex_unlock(&hw->tnl_lock);
1720
1721 return res;
1722}
1723
1724/**
1725 * ice_create_tunnel
1726 * @hw: pointer to the HW structure
1727 * @type: type of tunnel
1728 * @port: port of tunnel to create
1729 *
1730 * Create a tunnel by updating the parse graph in the parser. We do that by
1731 * creating a package buffer with the tunnel info and issuing an update package
1732 * command.
1733 */
1734enum ice_status
1735ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
1736{
1737 struct ice_boost_tcam_section *sect_rx, *sect_tx;
1738 enum ice_status status = ICE_ERR_MAX_LIMIT;
1739 struct ice_buf_build *bld;
1740 u16 index;
1741
1742 mutex_lock(&hw->tnl_lock);
1743
1744 if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
1745 hw->tnl.tbl[index].ref++;
1746 status = 0;
1747 goto ice_create_tunnel_end;
1748 }
1749
1750 if (!ice_find_free_tunnel_entry(hw, type, &index)) {
1751 status = ICE_ERR_OUT_OF_RANGE;
1752 goto ice_create_tunnel_end;
1753 }
1754
1755 bld = ice_pkg_buf_alloc(hw);
1756 if (!bld) {
1757 status = ICE_ERR_NO_MEMORY;
1758 goto ice_create_tunnel_end;
1759 }
1760
1761 /* allocate 2 sections, one for Rx parser, one for Tx parser */
1762 if (ice_pkg_buf_reserve_section(bld, 2))
1763 goto ice_create_tunnel_err;
1764
1765 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1766 struct_size(sect_rx, tcam, 1));
1767 if (!sect_rx)
1768 goto ice_create_tunnel_err;
1769 sect_rx->count = cpu_to_le16(1);
1770
1771 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1772 struct_size(sect_tx, tcam, 1));
1773 if (!sect_tx)
1774 goto ice_create_tunnel_err;
1775 sect_tx->count = cpu_to_le16(1);
1776
1777 /* copy original boost entry to update package buffer */
1778 memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1779 sizeof(*sect_rx->tcam));
1780
1781 /* over-write the never-match dest port key bits with the encoded port
1782 * bits
1783 */
1784 ice_set_key((u8 *)§_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
1785 (u8 *)&port, NULL, NULL, NULL,
1786 (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
1787 sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
1788
1789 /* exact copy of entry to Tx section entry */
1790 memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
1791
1792 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1793 if (!status) {
1794 hw->tnl.tbl[index].port = port;
1795 hw->tnl.tbl[index].in_use = true;
1796 hw->tnl.tbl[index].ref = 1;
1797 }
1798
1799ice_create_tunnel_err:
1800 ice_pkg_buf_free(hw, bld);
1801
1802ice_create_tunnel_end:
1803 mutex_unlock(&hw->tnl_lock);
1804
1805 return status;
1806}
1807
1808/**
1809 * ice_destroy_tunnel
1810 * @hw: pointer to the HW structure
1811 * @port: port of tunnel to destroy (ignored if the all parameter is true)
1812 * @all: flag that states to destroy all tunnels
1813 *
1814 * Destroys a tunnel or all tunnels by creating an update package buffer
1815 * targeting the specific updates requested and then performing an update
1816 * package.
1817 */
1818enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
1819{
1820 struct ice_boost_tcam_section *sect_rx, *sect_tx;
1821 enum ice_status status = ICE_ERR_MAX_LIMIT;
1822 struct ice_buf_build *bld;
1823 u16 count = 0;
1824 u16 index;
1825 u16 size;
1826 u16 i;
1827
1828 mutex_lock(&hw->tnl_lock);
1829
1830 if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
1831 if (hw->tnl.tbl[index].ref > 1) {
1832 hw->tnl.tbl[index].ref--;
1833 status = 0;
1834 goto ice_destroy_tunnel_end;
1835 }
1836
1837 /* determine count */
1838 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1839 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1840 (all || hw->tnl.tbl[i].port == port))
1841 count++;
1842
1843 if (!count) {
1844 status = ICE_ERR_PARAM;
1845 goto ice_destroy_tunnel_end;
1846 }
1847
1848 /* size of section - there is at least one entry */
1849 size = struct_size(sect_rx, tcam, count);
1850
1851 bld = ice_pkg_buf_alloc(hw);
1852 if (!bld) {
1853 status = ICE_ERR_NO_MEMORY;
1854 goto ice_destroy_tunnel_end;
1855 }
1856
1857 /* allocate 2 sections, one for Rx parser, one for Tx parser */
1858 if (ice_pkg_buf_reserve_section(bld, 2))
1859 goto ice_destroy_tunnel_err;
1860
1861 sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1862 size);
1863 if (!sect_rx)
1864 goto ice_destroy_tunnel_err;
1865 sect_rx->count = cpu_to_le16(1);
1866
1867 sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1868 size);
1869 if (!sect_tx)
1870 goto ice_destroy_tunnel_err;
1871 sect_tx->count = cpu_to_le16(1);
1872
1873 /* copy original boost entry to update package buffer, one copy to Rx
1874 * section, another copy to the Tx section
1875 */
1876 for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1877 if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
1878 (all || hw->tnl.tbl[i].port == port)) {
1879 memcpy(sect_rx->tcam + i, hw->tnl.tbl[i].boost_entry,
1880 sizeof(*sect_rx->tcam));
1881 memcpy(sect_tx->tcam + i, hw->tnl.tbl[i].boost_entry,
1882 sizeof(*sect_tx->tcam));
1883 hw->tnl.tbl[i].marked = true;
1884 }
1885
1886 status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1887 if (!status)
1888 for (i = 0; i < hw->tnl.count &&
1889 i < ICE_TUNNEL_MAX_ENTRIES; i++)
1890 if (hw->tnl.tbl[i].marked) {
1891 hw->tnl.tbl[i].ref = 0;
1892 hw->tnl.tbl[i].port = 0;
1893 hw->tnl.tbl[i].in_use = false;
1894 hw->tnl.tbl[i].marked = false;
1895 }
1896
1897ice_destroy_tunnel_err:
1898 ice_pkg_buf_free(hw, bld);
1899
1900ice_destroy_tunnel_end:
1901 mutex_unlock(&hw->tnl_lock);
1902
1903 return status;
1904}
1905
1906/* PTG Management */
1907
1908/**
1909 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1910 * @hw: pointer to the hardware structure
1911 * @blk: HW block
1912 * @ptype: the ptype to search for
1913 * @ptg: pointer to variable that receives the PTG
1914 *
1915 * This function will search the PTGs for a particular ptype, returning the
1916 * PTG ID that contains it through the PTG parameter, with the value of
1917 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1918 */
1919static enum ice_status
1920ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1921{
1922 if (ptype >= ICE_XLT1_CNT || !ptg)
1923 return ICE_ERR_PARAM;
1924
1925 *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1926 return 0;
1927}
1928
1929/**
1930 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1931 * @hw: pointer to the hardware structure
1932 * @blk: HW block
1933 * @ptg: the PTG to allocate
1934 *
1935 * This function allocates a given packet type group ID specified by the PTG
1936 * parameter.
1937 */
1938static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1939{
1940 hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1941}
1942
1943/**
1944 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1945 * @hw: pointer to the hardware structure
1946 * @blk: HW block
1947 * @ptype: the ptype to remove
1948 * @ptg: the PTG to remove the ptype from
1949 *
1950 * This function will remove the ptype from the specific PTG, and move it to
1951 * the default PTG (ICE_DEFAULT_PTG).
1952 */
1953static enum ice_status
1954ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1955{
1956 struct ice_ptg_ptype **ch;
1957 struct ice_ptg_ptype *p;
1958
1959 if (ptype > ICE_XLT1_CNT - 1)
1960 return ICE_ERR_PARAM;
1961
1962 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1963 return ICE_ERR_DOES_NOT_EXIST;
1964
1965 /* Should not happen if .in_use is set, bad config */
1966 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1967 return ICE_ERR_CFG;
1968
1969 /* find the ptype within this PTG, and bypass the link over it */
1970 p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1971 ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1972 while (p) {
1973 if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1974 *ch = p->next_ptype;
1975 break;
1976 }
1977
1978 ch = &p->next_ptype;
1979 p = p->next_ptype;
1980 }
1981
1982 hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1983 hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1984
1985 return 0;
1986}
1987
1988/**
1989 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1990 * @hw: pointer to the hardware structure
1991 * @blk: HW block
1992 * @ptype: the ptype to add or move
1993 * @ptg: the PTG to add or move the ptype to
1994 *
1995 * This function will either add or move a ptype to a particular PTG depending
1996 * on if the ptype is already part of another group. Note that using a
1997 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1998 * default PTG.
1999 */
2000static enum ice_status
2001ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2002{
2003 enum ice_status status;
2004 u8 original_ptg;
2005
2006 if (ptype > ICE_XLT1_CNT - 1)
2007 return ICE_ERR_PARAM;
2008
2009 if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2010 return ICE_ERR_DOES_NOT_EXIST;
2011
2012 status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2013 if (status)
2014 return status;
2015
2016 /* Is ptype already in the correct PTG? */
2017 if (original_ptg == ptg)
2018 return 0;
2019
2020 /* Remove from original PTG and move back to the default PTG */
2021 if (original_ptg != ICE_DEFAULT_PTG)
2022 ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2023
2024 /* Moving to default PTG? Then we're done with this request */
2025 if (ptg == ICE_DEFAULT_PTG)
2026 return 0;
2027
2028 /* Add ptype to PTG at beginning of list */
2029 hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2030 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2031 hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2032 &hw->blk[blk].xlt1.ptypes[ptype];
2033
2034 hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2035 hw->blk[blk].xlt1.t[ptype] = ptg;
2036
2037 return 0;
2038}
2039
2040/* Block / table size info */
2041struct ice_blk_size_details {
2042 u16 xlt1; /* # XLT1 entries */
2043 u16 xlt2; /* # XLT2 entries */
2044 u16 prof_tcam; /* # profile ID TCAM entries */
2045 u16 prof_id; /* # profile IDs */
2046 u8 prof_cdid_bits; /* # CDID one-hot bits used in key */
2047 u16 prof_redir; /* # profile redirection entries */
2048 u16 es; /* # extraction sequence entries */
2049 u16 fvw; /* # field vector words */
2050 u8 overwrite; /* overwrite existing entries allowed */
2051 u8 reverse; /* reverse FV order */
2052};
2053
2054static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2055 /**
2056 * Table Definitions
2057 * XLT1 - Number of entries in XLT1 table
2058 * XLT2 - Number of entries in XLT2 table
2059 * TCAM - Number of entries Profile ID TCAM table
2060 * CDID - Control Domain ID of the hardware block
2061 * PRED - Number of entries in the Profile Redirection Table
2062 * FV - Number of entries in the Field Vector
2063 * FVW - Width (in WORDs) of the Field Vector
2064 * OVR - Overwrite existing table entries
2065 * REV - Reverse FV
2066 */
2067 /* XLT1 , XLT2 ,TCAM, PID,CDID,PRED, FV, FVW */
2068 /* Overwrite , Reverse FV */
2069 /* SW */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256, 0, 256, 256, 48,
2070 false, false },
2071 /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 32,
2072 false, false },
2073 /* FD */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2074 false, true },
2075 /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128, 0, 128, 128, 24,
2076 true, true },
2077 /* PE */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 64, 32, 0, 32, 32, 24,
2078 false, false },
2079};
2080
2081enum ice_sid_all {
2082 ICE_SID_XLT1_OFF = 0,
2083 ICE_SID_XLT2_OFF,
2084 ICE_SID_PR_OFF,
2085 ICE_SID_PR_REDIR_OFF,
2086 ICE_SID_ES_OFF,
2087 ICE_SID_OFF_COUNT,
2088};
2089
2090/* Characteristic handling */
2091
2092/**
2093 * ice_match_prop_lst - determine if properties of two lists match
2094 * @list1: first properties list
2095 * @list2: second properties list
2096 *
2097 * Count, cookies and the order must match in order to be considered equivalent.
2098 */
2099static bool
2100ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2101{
2102 struct ice_vsig_prof *tmp1;
2103 struct ice_vsig_prof *tmp2;
2104 u16 chk_count = 0;
2105 u16 count = 0;
2106
2107 /* compare counts */
2108 list_for_each_entry(tmp1, list1, list)
2109 count++;
2110 list_for_each_entry(tmp2, list2, list)
2111 chk_count++;
2112 if (!count || count != chk_count)
2113 return false;
2114
2115 tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2116 tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2117
2118 /* profile cookies must compare, and in the exact same order to take
2119 * into account priority
2120 */
2121 while (count--) {
2122 if (tmp2->profile_cookie != tmp1->profile_cookie)
2123 return false;
2124
2125 tmp1 = list_next_entry(tmp1, list);
2126 tmp2 = list_next_entry(tmp2, list);
2127 }
2128
2129 return true;
2130}
2131
2132/* VSIG Management */
2133
2134/**
2135 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2136 * @hw: pointer to the hardware structure
2137 * @blk: HW block
2138 * @vsi: VSI of interest
2139 * @vsig: pointer to receive the VSI group
2140 *
2141 * This function will lookup the VSI entry in the XLT2 list and return
2142 * the VSI group its associated with.
2143 */
2144static enum ice_status
2145ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2146{
2147 if (!vsig || vsi >= ICE_MAX_VSI)
2148 return ICE_ERR_PARAM;
2149
2150 /* As long as there's a default or valid VSIG associated with the input
2151 * VSI, the functions returns a success. Any handling of VSIG will be
2152 * done by the following add, update or remove functions.
2153 */
2154 *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2155
2156 return 0;
2157}
2158
2159/**
2160 * ice_vsig_alloc_val - allocate a new VSIG by value
2161 * @hw: pointer to the hardware structure
2162 * @blk: HW block
2163 * @vsig: the VSIG to allocate
2164 *
2165 * This function will allocate a given VSIG specified by the VSIG parameter.
2166 */
2167static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2168{
2169 u16 idx = vsig & ICE_VSIG_IDX_M;
2170
2171 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2172 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2173 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2174 }
2175
2176 return ICE_VSIG_VALUE(idx, hw->pf_id);
2177}
2178
2179/**
2180 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2181 * @hw: pointer to the hardware structure
2182 * @blk: HW block
2183 *
2184 * This function will iterate through the VSIG list and mark the first
2185 * unused entry for the new VSIG entry as used and return that value.
2186 */
2187static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2188{
2189 u16 i;
2190
2191 for (i = 1; i < ICE_MAX_VSIGS; i++)
2192 if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2193 return ice_vsig_alloc_val(hw, blk, i);
2194
2195 return ICE_DEFAULT_VSIG;
2196}
2197
2198/**
2199 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2200 * @hw: pointer to the hardware structure
2201 * @blk: HW block
2202 * @chs: characteristic list
2203 * @vsig: returns the VSIG with the matching profiles, if found
2204 *
2205 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2206 * a group have the same characteristic set. To check if there exists a VSIG
2207 * which has the same characteristics as the input characteristics; this
2208 * function will iterate through the XLT2 list and return the VSIG that has a
2209 * matching configuration. In order to make sure that priorities are accounted
2210 * for, the list must match exactly, including the order in which the
2211 * characteristics are listed.
2212 */
2213static enum ice_status
2214ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2215 struct list_head *chs, u16 *vsig)
2216{
2217 struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2218 u16 i;
2219
2220 for (i = 0; i < xlt2->count; i++)
2221 if (xlt2->vsig_tbl[i].in_use &&
2222 ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2223 *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2224 return 0;
2225 }
2226
2227 return ICE_ERR_DOES_NOT_EXIST;
2228}
2229
2230/**
2231 * ice_vsig_free - free VSI group
2232 * @hw: pointer to the hardware structure
2233 * @blk: HW block
2234 * @vsig: VSIG to remove
2235 *
2236 * The function will remove all VSIs associated with the input VSIG and move
2237 * them to the DEFAULT_VSIG and mark the VSIG available.
2238 */
2239static enum ice_status
2240ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2241{
2242 struct ice_vsig_prof *dtmp, *del;
2243 struct ice_vsig_vsi *vsi_cur;
2244 u16 idx;
2245
2246 idx = vsig & ICE_VSIG_IDX_M;
2247 if (idx >= ICE_MAX_VSIGS)
2248 return ICE_ERR_PARAM;
2249
2250 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2251 return ICE_ERR_DOES_NOT_EXIST;
2252
2253 hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2254
2255 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2256 /* If the VSIG has at least 1 VSI then iterate through the
2257 * list and remove the VSIs before deleting the group.
2258 */
2259 if (vsi_cur) {
2260 /* remove all vsis associated with this VSIG XLT2 entry */
2261 do {
2262 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2263
2264 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2265 vsi_cur->changed = 1;
2266 vsi_cur->next_vsi = NULL;
2267 vsi_cur = tmp;
2268 } while (vsi_cur);
2269
2270 /* NULL terminate head of VSI list */
2271 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2272 }
2273
2274 /* free characteristic list */
2275 list_for_each_entry_safe(del, dtmp,
2276 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2277 list) {
2278 list_del(&del->list);
2279 devm_kfree(ice_hw_to_dev(hw), del);
2280 }
2281
2282 /* if VSIG characteristic list was cleared for reset
2283 * re-initialize the list head
2284 */
2285 INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2286
2287 return 0;
2288}
2289
2290/**
2291 * ice_vsig_remove_vsi - remove VSI from VSIG
2292 * @hw: pointer to the hardware structure
2293 * @blk: HW block
2294 * @vsi: VSI to remove
2295 * @vsig: VSI group to remove from
2296 *
2297 * The function will remove the input VSI from its VSI group and move it
2298 * to the DEFAULT_VSIG.
2299 */
2300static enum ice_status
2301ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2302{
2303 struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2304 u16 idx;
2305
2306 idx = vsig & ICE_VSIG_IDX_M;
2307
2308 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2309 return ICE_ERR_PARAM;
2310
2311 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2312 return ICE_ERR_DOES_NOT_EXIST;
2313
2314 /* entry already in default VSIG, don't have to remove */
2315 if (idx == ICE_DEFAULT_VSIG)
2316 return 0;
2317
2318 vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2319 if (!(*vsi_head))
2320 return ICE_ERR_CFG;
2321
2322 vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2323 vsi_cur = (*vsi_head);
2324
2325 /* iterate the VSI list, skip over the entry to be removed */
2326 while (vsi_cur) {
2327 if (vsi_tgt == vsi_cur) {
2328 (*vsi_head) = vsi_cur->next_vsi;
2329 break;
2330 }
2331 vsi_head = &vsi_cur->next_vsi;
2332 vsi_cur = vsi_cur->next_vsi;
2333 }
2334
2335 /* verify if VSI was removed from group list */
2336 if (!vsi_cur)
2337 return ICE_ERR_DOES_NOT_EXIST;
2338
2339 vsi_cur->vsig = ICE_DEFAULT_VSIG;
2340 vsi_cur->changed = 1;
2341 vsi_cur->next_vsi = NULL;
2342
2343 return 0;
2344}
2345
2346/**
2347 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2348 * @hw: pointer to the hardware structure
2349 * @blk: HW block
2350 * @vsi: VSI to move
2351 * @vsig: destination VSI group
2352 *
2353 * This function will move or add the input VSI to the target VSIG.
2354 * The function will find the original VSIG the VSI belongs to and
2355 * move the entry to the DEFAULT_VSIG, update the original VSIG and
2356 * then move entry to the new VSIG.
2357 */
2358static enum ice_status
2359ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2360{
2361 struct ice_vsig_vsi *tmp;
2362 enum ice_status status;
2363 u16 orig_vsig, idx;
2364
2365 idx = vsig & ICE_VSIG_IDX_M;
2366
2367 if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2368 return ICE_ERR_PARAM;
2369
2370 /* if VSIG not in use and VSIG is not default type this VSIG
2371 * doesn't exist.
2372 */
2373 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2374 vsig != ICE_DEFAULT_VSIG)
2375 return ICE_ERR_DOES_NOT_EXIST;
2376
2377 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2378 if (status)
2379 return status;
2380
2381 /* no update required if vsigs match */
2382 if (orig_vsig == vsig)
2383 return 0;
2384
2385 if (orig_vsig != ICE_DEFAULT_VSIG) {
2386 /* remove entry from orig_vsig and add to default VSIG */
2387 status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2388 if (status)
2389 return status;
2390 }
2391
2392 if (idx == ICE_DEFAULT_VSIG)
2393 return 0;
2394
2395 /* Create VSI entry and add VSIG and prop_mask values */
2396 hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2397 hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2398
2399 /* Add new entry to the head of the VSIG list */
2400 tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2401 hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2402 &hw->blk[blk].xlt2.vsis[vsi];
2403 hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2404 hw->blk[blk].xlt2.t[vsi] = vsig;
2405
2406 return 0;
2407}
2408
2409/**
2410 * ice_find_prof_id - find profile ID for a given field vector
2411 * @hw: pointer to the hardware structure
2412 * @blk: HW block
2413 * @fv: field vector to search for
2414 * @prof_id: receives the profile ID
2415 */
2416static enum ice_status
2417ice_find_prof_id(struct ice_hw *hw, enum ice_block blk,
2418 struct ice_fv_word *fv, u8 *prof_id)
2419{
2420 struct ice_es *es = &hw->blk[blk].es;
2421 u16 off;
2422 u8 i;
2423
2424 /* For FD, we don't want to re-use a existed profile with the same
2425 * field vector and mask. This will cause rule interference.
2426 */
2427 if (blk == ICE_BLK_FD)
2428 return ICE_ERR_DOES_NOT_EXIST;
2429
2430 for (i = 0; i < (u8)es->count; i++) {
2431 off = i * es->fvw;
2432
2433 if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2434 continue;
2435
2436 *prof_id = i;
2437 return 0;
2438 }
2439
2440 return ICE_ERR_DOES_NOT_EXIST;
2441}
2442
2443/**
2444 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2445 * @blk: the block type
2446 * @rsrc_type: pointer to variable to receive the resource type
2447 */
2448static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2449{
2450 switch (blk) {
2451 case ICE_BLK_FD:
2452 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2453 break;
2454 case ICE_BLK_RSS:
2455 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2456 break;
2457 default:
2458 return false;
2459 }
2460 return true;
2461}
2462
2463/**
2464 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2465 * @blk: the block type
2466 * @rsrc_type: pointer to variable to receive the resource type
2467 */
2468static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2469{
2470 switch (blk) {
2471 case ICE_BLK_FD:
2472 *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2473 break;
2474 case ICE_BLK_RSS:
2475 *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2476 break;
2477 default:
2478 return false;
2479 }
2480 return true;
2481}
2482
2483/**
2484 * ice_alloc_tcam_ent - allocate hardware TCAM entry
2485 * @hw: pointer to the HW struct
2486 * @blk: the block to allocate the TCAM for
2487 * @tcam_idx: pointer to variable to receive the TCAM entry
2488 *
2489 * This function allocates a new entry in a Profile ID TCAM for a specific
2490 * block.
2491 */
2492static enum ice_status
2493ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 *tcam_idx)
2494{
2495 u16 res_type;
2496
2497 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2498 return ICE_ERR_PARAM;
2499
2500 return ice_alloc_hw_res(hw, res_type, 1, true, tcam_idx);
2501}
2502
2503/**
2504 * ice_free_tcam_ent - free hardware TCAM entry
2505 * @hw: pointer to the HW struct
2506 * @blk: the block from which to free the TCAM entry
2507 * @tcam_idx: the TCAM entry to free
2508 *
2509 * This function frees an entry in a Profile ID TCAM for a specific block.
2510 */
2511static enum ice_status
2512ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2513{
2514 u16 res_type;
2515
2516 if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2517 return ICE_ERR_PARAM;
2518
2519 return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2520}
2521
2522/**
2523 * ice_alloc_prof_id - allocate profile ID
2524 * @hw: pointer to the HW struct
2525 * @blk: the block to allocate the profile ID for
2526 * @prof_id: pointer to variable to receive the profile ID
2527 *
2528 * This function allocates a new profile ID, which also corresponds to a Field
2529 * Vector (Extraction Sequence) entry.
2530 */
2531static enum ice_status
2532ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2533{
2534 enum ice_status status;
2535 u16 res_type;
2536 u16 get_prof;
2537
2538 if (!ice_prof_id_rsrc_type(blk, &res_type))
2539 return ICE_ERR_PARAM;
2540
2541 status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2542 if (!status)
2543 *prof_id = (u8)get_prof;
2544
2545 return status;
2546}
2547
2548/**
2549 * ice_free_prof_id - free profile ID
2550 * @hw: pointer to the HW struct
2551 * @blk: the block from which to free the profile ID
2552 * @prof_id: the profile ID to free
2553 *
2554 * This function frees a profile ID, which also corresponds to a Field Vector.
2555 */
2556static enum ice_status
2557ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2558{
2559 u16 tmp_prof_id = (u16)prof_id;
2560 u16 res_type;
2561
2562 if (!ice_prof_id_rsrc_type(blk, &res_type))
2563 return ICE_ERR_PARAM;
2564
2565 return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2566}
2567
2568/**
2569 * ice_prof_inc_ref - increment reference count for profile
2570 * @hw: pointer to the HW struct
2571 * @blk: the block from which to free the profile ID
2572 * @prof_id: the profile ID for which to increment the reference count
2573 */
2574static enum ice_status
2575ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2576{
2577 if (prof_id > hw->blk[blk].es.count)
2578 return ICE_ERR_PARAM;
2579
2580 hw->blk[blk].es.ref_count[prof_id]++;
2581
2582 return 0;
2583}
2584
2585/**
2586 * ice_write_es - write an extraction sequence to hardware
2587 * @hw: pointer to the HW struct
2588 * @blk: the block in which to write the extraction sequence
2589 * @prof_id: the profile ID to write
2590 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2591 */
2592static void
2593ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2594 struct ice_fv_word *fv)
2595{
2596 u16 off;
2597
2598 off = prof_id * hw->blk[blk].es.fvw;
2599 if (!fv) {
2600 memset(&hw->blk[blk].es.t[off], 0,
2601 hw->blk[blk].es.fvw * sizeof(*fv));
2602 hw->blk[blk].es.written[prof_id] = false;
2603 } else {
2604 memcpy(&hw->blk[blk].es.t[off], fv,
2605 hw->blk[blk].es.fvw * sizeof(*fv));
2606 }
2607}
2608
2609/**
2610 * ice_prof_dec_ref - decrement reference count for profile
2611 * @hw: pointer to the HW struct
2612 * @blk: the block from which to free the profile ID
2613 * @prof_id: the profile ID for which to decrement the reference count
2614 */
2615static enum ice_status
2616ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2617{
2618 if (prof_id > hw->blk[blk].es.count)
2619 return ICE_ERR_PARAM;
2620
2621 if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2622 if (!--hw->blk[blk].es.ref_count[prof_id]) {
2623 ice_write_es(hw, blk, prof_id, NULL);
2624 return ice_free_prof_id(hw, blk, prof_id);
2625 }
2626 }
2627
2628 return 0;
2629}
2630
2631/* Block / table section IDs */
2632static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2633 /* SWITCH */
2634 { ICE_SID_XLT1_SW,
2635 ICE_SID_XLT2_SW,
2636 ICE_SID_PROFID_TCAM_SW,
2637 ICE_SID_PROFID_REDIR_SW,
2638 ICE_SID_FLD_VEC_SW
2639 },
2640
2641 /* ACL */
2642 { ICE_SID_XLT1_ACL,
2643 ICE_SID_XLT2_ACL,
2644 ICE_SID_PROFID_TCAM_ACL,
2645 ICE_SID_PROFID_REDIR_ACL,
2646 ICE_SID_FLD_VEC_ACL
2647 },
2648
2649 /* FD */
2650 { ICE_SID_XLT1_FD,
2651 ICE_SID_XLT2_FD,
2652 ICE_SID_PROFID_TCAM_FD,
2653 ICE_SID_PROFID_REDIR_FD,
2654 ICE_SID_FLD_VEC_FD
2655 },
2656
2657 /* RSS */
2658 { ICE_SID_XLT1_RSS,
2659 ICE_SID_XLT2_RSS,
2660 ICE_SID_PROFID_TCAM_RSS,
2661 ICE_SID_PROFID_REDIR_RSS,
2662 ICE_SID_FLD_VEC_RSS
2663 },
2664
2665 /* PE */
2666 { ICE_SID_XLT1_PE,
2667 ICE_SID_XLT2_PE,
2668 ICE_SID_PROFID_TCAM_PE,
2669 ICE_SID_PROFID_REDIR_PE,
2670 ICE_SID_FLD_VEC_PE
2671 }
2672};
2673
2674/**
2675 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
2676 * @hw: pointer to the hardware structure
2677 * @blk: the HW block to initialize
2678 */
2679static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
2680{
2681 u16 pt;
2682
2683 for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
2684 u8 ptg;
2685
2686 ptg = hw->blk[blk].xlt1.t[pt];
2687 if (ptg != ICE_DEFAULT_PTG) {
2688 ice_ptg_alloc_val(hw, blk, ptg);
2689 ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
2690 }
2691 }
2692}
2693
2694/**
2695 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
2696 * @hw: pointer to the hardware structure
2697 * @blk: the HW block to initialize
2698 */
2699static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
2700{
2701 u16 vsi;
2702
2703 for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
2704 u16 vsig;
2705
2706 vsig = hw->blk[blk].xlt2.t[vsi];
2707 if (vsig) {
2708 ice_vsig_alloc_val(hw, blk, vsig);
2709 ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
2710 /* no changes at this time, since this has been
2711 * initialized from the original package
2712 */
2713 hw->blk[blk].xlt2.vsis[vsi].changed = 0;
2714 }
2715 }
2716}
2717
2718/**
2719 * ice_init_sw_db - init software database from HW tables
2720 * @hw: pointer to the hardware structure
2721 */
2722static void ice_init_sw_db(struct ice_hw *hw)
2723{
2724 u16 i;
2725
2726 for (i = 0; i < ICE_BLK_COUNT; i++) {
2727 ice_init_sw_xlt1_db(hw, (enum ice_block)i);
2728 ice_init_sw_xlt2_db(hw, (enum ice_block)i);
2729 }
2730}
2731
2732/**
2733 * ice_fill_tbl - Reads content of a single table type into database
2734 * @hw: pointer to the hardware structure
2735 * @block_id: Block ID of the table to copy
2736 * @sid: Section ID of the table to copy
2737 *
2738 * Will attempt to read the entire content of a given table of a single block
2739 * into the driver database. We assume that the buffer will always
2740 * be as large or larger than the data contained in the package. If
2741 * this condition is not met, there is most likely an error in the package
2742 * contents.
2743 */
2744static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
2745{
2746 u32 dst_len, sect_len, offset = 0;
2747 struct ice_prof_redir_section *pr;
2748 struct ice_prof_id_section *pid;
2749 struct ice_xlt1_section *xlt1;
2750 struct ice_xlt2_section *xlt2;
2751 struct ice_sw_fv_section *es;
2752 struct ice_pkg_enum state;
2753 u8 *src, *dst;
2754 void *sect;
2755
2756 /* if the HW segment pointer is null then the first iteration of
2757 * ice_pkg_enum_section() will fail. In this case the HW tables will
2758 * not be filled and return success.
2759 */
2760 if (!hw->seg) {
2761 ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
2762 return;
2763 }
2764
2765 memset(&state, 0, sizeof(state));
2766
2767 sect = ice_pkg_enum_section(hw->seg, &state, sid);
2768
2769 while (sect) {
2770 switch (sid) {
2771 case ICE_SID_XLT1_SW:
2772 case ICE_SID_XLT1_FD:
2773 case ICE_SID_XLT1_RSS:
2774 case ICE_SID_XLT1_ACL:
2775 case ICE_SID_XLT1_PE:
2776 xlt1 = (struct ice_xlt1_section *)sect;
2777 src = xlt1->value;
2778 sect_len = le16_to_cpu(xlt1->count) *
2779 sizeof(*hw->blk[block_id].xlt1.t);
2780 dst = hw->blk[block_id].xlt1.t;
2781 dst_len = hw->blk[block_id].xlt1.count *
2782 sizeof(*hw->blk[block_id].xlt1.t);
2783 break;
2784 case ICE_SID_XLT2_SW:
2785 case ICE_SID_XLT2_FD:
2786 case ICE_SID_XLT2_RSS:
2787 case ICE_SID_XLT2_ACL:
2788 case ICE_SID_XLT2_PE:
2789 xlt2 = (struct ice_xlt2_section *)sect;
2790 src = (__force u8 *)xlt2->value;
2791 sect_len = le16_to_cpu(xlt2->count) *
2792 sizeof(*hw->blk[block_id].xlt2.t);
2793 dst = (u8 *)hw->blk[block_id].xlt2.t;
2794 dst_len = hw->blk[block_id].xlt2.count *
2795 sizeof(*hw->blk[block_id].xlt2.t);
2796 break;
2797 case ICE_SID_PROFID_TCAM_SW:
2798 case ICE_SID_PROFID_TCAM_FD:
2799 case ICE_SID_PROFID_TCAM_RSS:
2800 case ICE_SID_PROFID_TCAM_ACL:
2801 case ICE_SID_PROFID_TCAM_PE:
2802 pid = (struct ice_prof_id_section *)sect;
2803 src = (u8 *)pid->entry;
2804 sect_len = le16_to_cpu(pid->count) *
2805 sizeof(*hw->blk[block_id].prof.t);
2806 dst = (u8 *)hw->blk[block_id].prof.t;
2807 dst_len = hw->blk[block_id].prof.count *
2808 sizeof(*hw->blk[block_id].prof.t);
2809 break;
2810 case ICE_SID_PROFID_REDIR_SW:
2811 case ICE_SID_PROFID_REDIR_FD:
2812 case ICE_SID_PROFID_REDIR_RSS:
2813 case ICE_SID_PROFID_REDIR_ACL:
2814 case ICE_SID_PROFID_REDIR_PE:
2815 pr = (struct ice_prof_redir_section *)sect;
2816 src = pr->redir_value;
2817 sect_len = le16_to_cpu(pr->count) *
2818 sizeof(*hw->blk[block_id].prof_redir.t);
2819 dst = hw->blk[block_id].prof_redir.t;
2820 dst_len = hw->blk[block_id].prof_redir.count *
2821 sizeof(*hw->blk[block_id].prof_redir.t);
2822 break;
2823 case ICE_SID_FLD_VEC_SW:
2824 case ICE_SID_FLD_VEC_FD:
2825 case ICE_SID_FLD_VEC_RSS:
2826 case ICE_SID_FLD_VEC_ACL:
2827 case ICE_SID_FLD_VEC_PE:
2828 es = (struct ice_sw_fv_section *)sect;
2829 src = (u8 *)es->fv;
2830 sect_len = (u32)(le16_to_cpu(es->count) *
2831 hw->blk[block_id].es.fvw) *
2832 sizeof(*hw->blk[block_id].es.t);
2833 dst = (u8 *)hw->blk[block_id].es.t;
2834 dst_len = (u32)(hw->blk[block_id].es.count *
2835 hw->blk[block_id].es.fvw) *
2836 sizeof(*hw->blk[block_id].es.t);
2837 break;
2838 default:
2839 return;
2840 }
2841
2842 /* if the section offset exceeds destination length, terminate
2843 * table fill.
2844 */
2845 if (offset > dst_len)
2846 return;
2847
2848 /* if the sum of section size and offset exceed destination size
2849 * then we are out of bounds of the HW table size for that PF.
2850 * Changing section length to fill the remaining table space
2851 * of that PF.
2852 */
2853 if ((offset + sect_len) > dst_len)
2854 sect_len = dst_len - offset;
2855
2856 memcpy(dst + offset, src, sect_len);
2857 offset += sect_len;
2858 sect = ice_pkg_enum_section(NULL, &state, sid);
2859 }
2860}
2861
2862/**
2863 * ice_fill_blk_tbls - Read package context for tables
2864 * @hw: pointer to the hardware structure
2865 *
2866 * Reads the current package contents and populates the driver
2867 * database with the data iteratively for all advanced feature
2868 * blocks. Assume that the HW tables have been allocated.
2869 */
2870void ice_fill_blk_tbls(struct ice_hw *hw)
2871{
2872 u8 i;
2873
2874 for (i = 0; i < ICE_BLK_COUNT; i++) {
2875 enum ice_block blk_id = (enum ice_block)i;
2876
2877 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2878 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2879 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2880 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2881 ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2882 }
2883
2884 ice_init_sw_db(hw);
2885}
2886
2887/**
2888 * ice_free_prof_map - free profile map
2889 * @hw: pointer to the hardware structure
2890 * @blk_idx: HW block index
2891 */
2892static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2893{
2894 struct ice_es *es = &hw->blk[blk_idx].es;
2895 struct ice_prof_map *del, *tmp;
2896
2897 mutex_lock(&es->prof_map_lock);
2898 list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2899 list_del(&del->list);
2900 devm_kfree(ice_hw_to_dev(hw), del);
2901 }
2902 INIT_LIST_HEAD(&es->prof_map);
2903 mutex_unlock(&es->prof_map_lock);
2904}
2905
2906/**
2907 * ice_free_flow_profs - free flow profile entries
2908 * @hw: pointer to the hardware structure
2909 * @blk_idx: HW block index
2910 */
2911static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2912{
2913 struct ice_flow_prof *p, *tmp;
2914
2915 mutex_lock(&hw->fl_profs_locks[blk_idx]);
2916 list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2917 struct ice_flow_entry *e, *t;
2918
2919 list_for_each_entry_safe(e, t, &p->entries, l_entry)
2920 ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2921 ICE_FLOW_ENTRY_HNDL(e));
2922
2923 list_del(&p->l_entry);
2924
2925 mutex_destroy(&p->entries_lock);
2926 devm_kfree(ice_hw_to_dev(hw), p);
2927 }
2928 mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2929
2930 /* if driver is in reset and tables are being cleared
2931 * re-initialize the flow profile list heads
2932 */
2933 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2934}
2935
2936/**
2937 * ice_free_vsig_tbl - free complete VSIG table entries
2938 * @hw: pointer to the hardware structure
2939 * @blk: the HW block on which to free the VSIG table entries
2940 */
2941static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2942{
2943 u16 i;
2944
2945 if (!hw->blk[blk].xlt2.vsig_tbl)
2946 return;
2947
2948 for (i = 1; i < ICE_MAX_VSIGS; i++)
2949 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2950 ice_vsig_free(hw, blk, i);
2951}
2952
2953/**
2954 * ice_free_hw_tbls - free hardware table memory
2955 * @hw: pointer to the hardware structure
2956 */
2957void ice_free_hw_tbls(struct ice_hw *hw)
2958{
2959 struct ice_rss_cfg *r, *rt;
2960 u8 i;
2961
2962 for (i = 0; i < ICE_BLK_COUNT; i++) {
2963 if (hw->blk[i].is_list_init) {
2964 struct ice_es *es = &hw->blk[i].es;
2965
2966 ice_free_prof_map(hw, i);
2967 mutex_destroy(&es->prof_map_lock);
2968
2969 ice_free_flow_profs(hw, i);
2970 mutex_destroy(&hw->fl_profs_locks[i]);
2971
2972 hw->blk[i].is_list_init = false;
2973 }
2974 ice_free_vsig_tbl(hw, (enum ice_block)i);
2975 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2976 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2977 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2978 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2979 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2980 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2981 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2982 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2983 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2984 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2985 devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2986 }
2987
2988 list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2989 list_del(&r->l_entry);
2990 devm_kfree(ice_hw_to_dev(hw), r);
2991 }
2992 mutex_destroy(&hw->rss_locks);
2993 memset(hw->blk, 0, sizeof(hw->blk));
2994}
2995
2996/**
2997 * ice_init_flow_profs - init flow profile locks and list heads
2998 * @hw: pointer to the hardware structure
2999 * @blk_idx: HW block index
3000 */
3001static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3002{
3003 mutex_init(&hw->fl_profs_locks[blk_idx]);
3004 INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3005}
3006
3007/**
3008 * ice_clear_hw_tbls - clear HW tables and flow profiles
3009 * @hw: pointer to the hardware structure
3010 */
3011void ice_clear_hw_tbls(struct ice_hw *hw)
3012{
3013 u8 i;
3014
3015 for (i = 0; i < ICE_BLK_COUNT; i++) {
3016 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3017 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3018 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3019 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3020 struct ice_es *es = &hw->blk[i].es;
3021
3022 if (hw->blk[i].is_list_init) {
3023 ice_free_prof_map(hw, i);
3024 ice_free_flow_profs(hw, i);
3025 }
3026
3027 ice_free_vsig_tbl(hw, (enum ice_block)i);
3028
3029 memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
3030 memset(xlt1->ptg_tbl, 0,
3031 ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
3032 memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
3033
3034 memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
3035 memset(xlt2->vsig_tbl, 0,
3036 xlt2->count * sizeof(*xlt2->vsig_tbl));
3037 memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
3038
3039 memset(prof->t, 0, prof->count * sizeof(*prof->t));
3040 memset(prof_redir->t, 0,
3041 prof_redir->count * sizeof(*prof_redir->t));
3042
3043 memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
3044 memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
3045 memset(es->written, 0, es->count * sizeof(*es->written));
3046 }
3047}
3048
3049/**
3050 * ice_init_hw_tbls - init hardware table memory
3051 * @hw: pointer to the hardware structure
3052 */
3053enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3054{
3055 u8 i;
3056
3057 mutex_init(&hw->rss_locks);
3058 INIT_LIST_HEAD(&hw->rss_list_head);
3059 for (i = 0; i < ICE_BLK_COUNT; i++) {
3060 struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3061 struct ice_prof_tcam *prof = &hw->blk[i].prof;
3062 struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3063 struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3064 struct ice_es *es = &hw->blk[i].es;
3065 u16 j;
3066
3067 if (hw->blk[i].is_list_init)
3068 continue;
3069
3070 ice_init_flow_profs(hw, i);
3071 mutex_init(&es->prof_map_lock);
3072 INIT_LIST_HEAD(&es->prof_map);
3073 hw->blk[i].is_list_init = true;
3074
3075 hw->blk[i].overwrite = blk_sizes[i].overwrite;
3076 es->reverse = blk_sizes[i].reverse;
3077
3078 xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3079 xlt1->count = blk_sizes[i].xlt1;
3080
3081 xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3082 sizeof(*xlt1->ptypes), GFP_KERNEL);
3083
3084 if (!xlt1->ptypes)
3085 goto err;
3086
3087 xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
3088 sizeof(*xlt1->ptg_tbl),
3089 GFP_KERNEL);
3090
3091 if (!xlt1->ptg_tbl)
3092 goto err;
3093
3094 xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3095 sizeof(*xlt1->t), GFP_KERNEL);
3096 if (!xlt1->t)
3097 goto err;
3098
3099 xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3100 xlt2->count = blk_sizes[i].xlt2;
3101
3102 xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3103 sizeof(*xlt2->vsis), GFP_KERNEL);
3104
3105 if (!xlt2->vsis)
3106 goto err;
3107
3108 xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3109 sizeof(*xlt2->vsig_tbl),
3110 GFP_KERNEL);
3111 if (!xlt2->vsig_tbl)
3112 goto err;
3113
3114 for (j = 0; j < xlt2->count; j++)
3115 INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3116
3117 xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3118 sizeof(*xlt2->t), GFP_KERNEL);
3119 if (!xlt2->t)
3120 goto err;
3121
3122 prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3123 prof->count = blk_sizes[i].prof_tcam;
3124 prof->max_prof_id = blk_sizes[i].prof_id;
3125 prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3126 prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
3127 sizeof(*prof->t), GFP_KERNEL);
3128
3129 if (!prof->t)
3130 goto err;
3131
3132 prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3133 prof_redir->count = blk_sizes[i].prof_redir;
3134 prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
3135 prof_redir->count,
3136 sizeof(*prof_redir->t),
3137 GFP_KERNEL);
3138
3139 if (!prof_redir->t)
3140 goto err;
3141
3142 es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3143 es->count = blk_sizes[i].es;
3144 es->fvw = blk_sizes[i].fvw;
3145 es->t = devm_kcalloc(ice_hw_to_dev(hw),
3146 (u32)(es->count * es->fvw),
3147 sizeof(*es->t), GFP_KERNEL);
3148 if (!es->t)
3149 goto err;
3150
3151 es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3152 sizeof(*es->ref_count),
3153 GFP_KERNEL);
3154 if (!es->ref_count)
3155 goto err;
3156
3157 es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3158 sizeof(*es->written), GFP_KERNEL);
3159 if (!es->written)
3160 goto err;
3161 }
3162 return 0;
3163
3164err:
3165 ice_free_hw_tbls(hw);
3166 return ICE_ERR_NO_MEMORY;
3167}
3168
3169/**
3170 * ice_prof_gen_key - generate profile ID key
3171 * @hw: pointer to the HW struct
3172 * @blk: the block in which to write profile ID to
3173 * @ptg: packet type group (PTG) portion of key
3174 * @vsig: VSIG portion of key
3175 * @cdid: CDID portion of key
3176 * @flags: flag portion of key
3177 * @vl_msk: valid mask
3178 * @dc_msk: don't care mask
3179 * @nm_msk: never match mask
3180 * @key: output of profile ID key
3181 */
3182static enum ice_status
3183ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3184 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3185 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3186 u8 key[ICE_TCAM_KEY_SZ])
3187{
3188 struct ice_prof_id_key inkey;
3189
3190 inkey.xlt1 = ptg;
3191 inkey.xlt2_cdid = cpu_to_le16(vsig);
3192 inkey.flags = cpu_to_le16(flags);
3193
3194 switch (hw->blk[blk].prof.cdid_bits) {
3195 case 0:
3196 break;
3197 case 2:
3198#define ICE_CD_2_M 0xC000U
3199#define ICE_CD_2_S 14
3200 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
3201 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
3202 break;
3203 case 4:
3204#define ICE_CD_4_M 0xF000U
3205#define ICE_CD_4_S 12
3206 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
3207 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
3208 break;
3209 case 8:
3210#define ICE_CD_8_M 0xFF00U
3211#define ICE_CD_8_S 16
3212 inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
3213 inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
3214 break;
3215 default:
3216 ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3217 break;
3218 }
3219
3220 return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3221 nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3222}
3223
3224/**
3225 * ice_tcam_write_entry - write TCAM entry
3226 * @hw: pointer to the HW struct
3227 * @blk: the block in which to write profile ID to
3228 * @idx: the entry index to write to
3229 * @prof_id: profile ID
3230 * @ptg: packet type group (PTG) portion of key
3231 * @vsig: VSIG portion of key
3232 * @cdid: CDID portion of key
3233 * @flags: flag portion of key
3234 * @vl_msk: valid mask
3235 * @dc_msk: don't care mask
3236 * @nm_msk: never match mask
3237 */
3238static enum ice_status
3239ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3240 u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3241 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3242 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3243 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3244{
3245 struct ice_prof_tcam_entry;
3246 enum ice_status status;
3247
3248 status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3249 dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3250 if (!status) {
3251 hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
3252 hw->blk[blk].prof.t[idx].prof_id = prof_id;
3253 }
3254
3255 return status;
3256}
3257
3258/**
3259 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3260 * @hw: pointer to the hardware structure
3261 * @blk: HW block
3262 * @vsig: VSIG to query
3263 * @refs: pointer to variable to receive the reference count
3264 */
3265static enum ice_status
3266ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3267{
3268 u16 idx = vsig & ICE_VSIG_IDX_M;
3269 struct ice_vsig_vsi *ptr;
3270
3271 *refs = 0;
3272
3273 if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3274 return ICE_ERR_DOES_NOT_EXIST;
3275
3276 ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3277 while (ptr) {
3278 (*refs)++;
3279 ptr = ptr->next_vsi;
3280 }
3281
3282 return 0;
3283}
3284
3285/**
3286 * ice_has_prof_vsig - check to see if VSIG has a specific profile
3287 * @hw: pointer to the hardware structure
3288 * @blk: HW block
3289 * @vsig: VSIG to check against
3290 * @hdl: profile handle
3291 */
3292static bool
3293ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3294{
3295 u16 idx = vsig & ICE_VSIG_IDX_M;
3296 struct ice_vsig_prof *ent;
3297
3298 list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3299 list)
3300 if (ent->profile_cookie == hdl)
3301 return true;
3302
3303 ice_debug(hw, ICE_DBG_INIT,
3304 "Characteristic list for VSI group %d not found.\n",
3305 vsig);
3306 return false;
3307}
3308
3309/**
3310 * ice_prof_bld_es - build profile ID extraction sequence changes
3311 * @hw: pointer to the HW struct
3312 * @blk: hardware block
3313 * @bld: the update package buffer build to add to
3314 * @chgs: the list of changes to make in hardware
3315 */
3316static enum ice_status
3317ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3318 struct ice_buf_build *bld, struct list_head *chgs)
3319{
3320 u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3321 struct ice_chs_chg *tmp;
3322
3323 list_for_each_entry(tmp, chgs, list_entry)
3324 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3325 u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3326 struct ice_pkg_es *p;
3327 u32 id;
3328
3329 id = ice_sect_id(blk, ICE_VEC_TBL);
3330 p = ice_pkg_buf_alloc_section(bld, id,
3331 struct_size(p, es, 1) +
3332 vec_size -
3333 sizeof(p->es[0]));
3334
3335 if (!p)
3336 return ICE_ERR_MAX_LIMIT;
3337
3338 p->count = cpu_to_le16(1);
3339 p->offset = cpu_to_le16(tmp->prof_id);
3340
3341 memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
3342 }
3343
3344 return 0;
3345}
3346
3347/**
3348 * ice_prof_bld_tcam - build profile ID TCAM changes
3349 * @hw: pointer to the HW struct
3350 * @blk: hardware block
3351 * @bld: the update package buffer build to add to
3352 * @chgs: the list of changes to make in hardware
3353 */
3354static enum ice_status
3355ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3356 struct ice_buf_build *bld, struct list_head *chgs)
3357{
3358 struct ice_chs_chg *tmp;
3359
3360 list_for_each_entry(tmp, chgs, list_entry)
3361 if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3362 struct ice_prof_id_section *p;
3363 u32 id;
3364
3365 id = ice_sect_id(blk, ICE_PROF_TCAM);
3366 p = ice_pkg_buf_alloc_section(bld, id,
3367 struct_size(p, entry, 1));
3368
3369 if (!p)
3370 return ICE_ERR_MAX_LIMIT;
3371
3372 p->count = cpu_to_le16(1);
3373 p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
3374 p->entry[0].prof_id = tmp->prof_id;
3375
3376 memcpy(p->entry[0].key,
3377 &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3378 sizeof(hw->blk[blk].prof.t->key));
3379 }
3380
3381 return 0;
3382}
3383
3384/**
3385 * ice_prof_bld_xlt1 - build XLT1 changes
3386 * @blk: hardware block
3387 * @bld: the update package buffer build to add to
3388 * @chgs: the list of changes to make in hardware
3389 */
3390static enum ice_status
3391ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3392 struct list_head *chgs)
3393{
3394 struct ice_chs_chg *tmp;
3395
3396 list_for_each_entry(tmp, chgs, list_entry)
3397 if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3398 struct ice_xlt1_section *p;
3399 u32 id;
3400
3401 id = ice_sect_id(blk, ICE_XLT1);
3402 p = ice_pkg_buf_alloc_section(bld, id,
3403 struct_size(p, value, 1));
3404
3405 if (!p)
3406 return ICE_ERR_MAX_LIMIT;
3407
3408 p->count = cpu_to_le16(1);
3409 p->offset = cpu_to_le16(tmp->ptype);
3410 p->value[0] = tmp->ptg;
3411 }
3412
3413 return 0;
3414}
3415
3416/**
3417 * ice_prof_bld_xlt2 - build XLT2 changes
3418 * @blk: hardware block
3419 * @bld: the update package buffer build to add to
3420 * @chgs: the list of changes to make in hardware
3421 */
3422static enum ice_status
3423ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3424 struct list_head *chgs)
3425{
3426 struct ice_chs_chg *tmp;
3427
3428 list_for_each_entry(tmp, chgs, list_entry) {
3429 struct ice_xlt2_section *p;
3430 u32 id;
3431
3432 switch (tmp->type) {
3433 case ICE_VSIG_ADD:
3434 case ICE_VSI_MOVE:
3435 case ICE_VSIG_REM:
3436 id = ice_sect_id(blk, ICE_XLT2);
3437 p = ice_pkg_buf_alloc_section(bld, id,
3438 struct_size(p, value, 1));
3439
3440 if (!p)
3441 return ICE_ERR_MAX_LIMIT;
3442
3443 p->count = cpu_to_le16(1);
3444 p->offset = cpu_to_le16(tmp->vsi);
3445 p->value[0] = cpu_to_le16(tmp->vsig);
3446 break;
3447 default:
3448 break;
3449 }
3450 }
3451
3452 return 0;
3453}
3454
3455/**
3456 * ice_upd_prof_hw - update hardware using the change list
3457 * @hw: pointer to the HW struct
3458 * @blk: hardware block
3459 * @chgs: the list of changes to make in hardware
3460 */
3461static enum ice_status
3462ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3463 struct list_head *chgs)
3464{
3465 struct ice_buf_build *b;
3466 struct ice_chs_chg *tmp;
3467 enum ice_status status;
3468 u16 pkg_sects;
3469 u16 xlt1 = 0;
3470 u16 xlt2 = 0;
3471 u16 tcam = 0;
3472 u16 es = 0;
3473 u16 sects;
3474
3475 /* count number of sections we need */
3476 list_for_each_entry(tmp, chgs, list_entry) {
3477 switch (tmp->type) {
3478 case ICE_PTG_ES_ADD:
3479 if (tmp->add_ptg)
3480 xlt1++;
3481 if (tmp->add_prof)
3482 es++;
3483 break;
3484 case ICE_TCAM_ADD:
3485 tcam++;
3486 break;
3487 case ICE_VSIG_ADD:
3488 case ICE_VSI_MOVE:
3489 case ICE_VSIG_REM:
3490 xlt2++;
3491 break;
3492 default:
3493 break;
3494 }
3495 }
3496 sects = xlt1 + xlt2 + tcam + es;
3497
3498 if (!sects)
3499 return 0;
3500
3501 /* Build update package buffer */
3502 b = ice_pkg_buf_alloc(hw);
3503 if (!b)
3504 return ICE_ERR_NO_MEMORY;
3505
3506 status = ice_pkg_buf_reserve_section(b, sects);
3507 if (status)
3508 goto error_tmp;
3509
3510 /* Preserve order of table update: ES, TCAM, PTG, VSIG */
3511 if (es) {
3512 status = ice_prof_bld_es(hw, blk, b, chgs);
3513 if (status)
3514 goto error_tmp;
3515 }
3516
3517 if (tcam) {
3518 status = ice_prof_bld_tcam(hw, blk, b, chgs);
3519 if (status)
3520 goto error_tmp;
3521 }
3522
3523 if (xlt1) {
3524 status = ice_prof_bld_xlt1(blk, b, chgs);
3525 if (status)
3526 goto error_tmp;
3527 }
3528
3529 if (xlt2) {
3530 status = ice_prof_bld_xlt2(blk, b, chgs);
3531 if (status)
3532 goto error_tmp;
3533 }
3534
3535 /* After package buffer build check if the section count in buffer is
3536 * non-zero and matches the number of sections detected for package
3537 * update.
3538 */
3539 pkg_sects = ice_pkg_buf_get_active_sections(b);
3540 if (!pkg_sects || pkg_sects != sects) {
3541 status = ICE_ERR_INVAL_SIZE;
3542 goto error_tmp;
3543 }
3544
3545 /* update package */
3546 status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3547 if (status == ICE_ERR_AQ_ERROR)
3548 ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
3549
3550error_tmp:
3551 ice_pkg_buf_free(hw, b);
3552 return status;
3553}
3554
3555/**
3556 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3557 * @hw: pointer to the HW struct
3558 * @prof_id: profile ID
3559 * @mask_sel: mask select
3560 *
3561 * This function enable any of the masks selected by the mask select parameter
3562 * for the profile specified.
3563 */
3564static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3565{
3566 wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3567
3568 ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3569 GLQF_FDMASK_SEL(prof_id), mask_sel);
3570}
3571
3572struct ice_fd_src_dst_pair {
3573 u8 prot_id;
3574 u8 count;
3575 u16 off;
3576};
3577
3578static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3579 /* These are defined in pairs */
3580 { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3581 { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3582
3583 { ICE_PROT_IPV4_IL, 2, 12 },
3584 { ICE_PROT_IPV4_IL, 2, 16 },
3585
3586 { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3587 { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3588
3589 { ICE_PROT_IPV6_IL, 8, 8 },
3590 { ICE_PROT_IPV6_IL, 8, 24 },
3591
3592 { ICE_PROT_TCP_IL, 1, 0 },
3593 { ICE_PROT_TCP_IL, 1, 2 },
3594
3595 { ICE_PROT_UDP_OF, 1, 0 },
3596 { ICE_PROT_UDP_OF, 1, 2 },
3597
3598 { ICE_PROT_UDP_IL_OR_S, 1, 0 },
3599 { ICE_PROT_UDP_IL_OR_S, 1, 2 },
3600
3601 { ICE_PROT_SCTP_IL, 1, 0 },
3602 { ICE_PROT_SCTP_IL, 1, 2 }
3603};
3604
3605#define ICE_FD_SRC_DST_PAIR_COUNT ARRAY_SIZE(ice_fd_pairs)
3606
3607/**
3608 * ice_update_fd_swap - set register appropriately for a FD FV extraction
3609 * @hw: pointer to the HW struct
3610 * @prof_id: profile ID
3611 * @es: extraction sequence (length of array is determined by the block)
3612 */
3613static enum ice_status
3614ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3615{
3616 DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3617 u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3618#define ICE_FD_FV_NOT_FOUND (-2)
3619 s8 first_free = ICE_FD_FV_NOT_FOUND;
3620 u8 used[ICE_MAX_FV_WORDS] = { 0 };
3621 s8 orig_free, si;
3622 u32 mask_sel = 0;
3623 u8 i, j, k;
3624
3625 bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3626
3627 /* This code assumes that the Flow Director field vectors are assigned
3628 * from the end of the FV indexes working towards the zero index, that
3629 * only complete fields will be included and will be consecutive, and
3630 * that there are no gaps between valid indexes.
3631 */
3632
3633 /* Determine swap fields present */
3634 for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3635 /* Find the first free entry, assuming right to left population.
3636 * This is where we can start adding additional pairs if needed.
3637 */
3638 if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
3639 ICE_PROT_INVALID)
3640 first_free = i - 1;
3641
3642 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3643 if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
3644 es[i].off == ice_fd_pairs[j].off) {
3645 set_bit(j, pair_list);
3646 pair_start[j] = i;
3647 }
3648 }
3649
3650 orig_free = first_free;
3651
3652 /* determine missing swap fields that need to be added */
3653 for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
3654 u8 bit1 = test_bit(i + 1, pair_list);
3655 u8 bit0 = test_bit(i, pair_list);
3656
3657 if (bit0 ^ bit1) {
3658 u8 index;
3659
3660 /* add the appropriate 'paired' entry */
3661 if (!bit0)
3662 index = i;
3663 else
3664 index = i + 1;
3665
3666 /* check for room */
3667 if (first_free + 1 < (s8)ice_fd_pairs[index].count)
3668 return ICE_ERR_MAX_LIMIT;
3669
3670 /* place in extraction sequence */
3671 for (k = 0; k < ice_fd_pairs[index].count; k++) {
3672 es[first_free - k].prot_id =
3673 ice_fd_pairs[index].prot_id;
3674 es[first_free - k].off =
3675 ice_fd_pairs[index].off + (k * 2);
3676
3677 if (k > first_free)
3678 return ICE_ERR_OUT_OF_RANGE;
3679
3680 /* keep track of non-relevant fields */
3681 mask_sel |= BIT(first_free - k);
3682 }
3683
3684 pair_start[index] = first_free;
3685 first_free -= ice_fd_pairs[index].count;
3686 }
3687 }
3688
3689 /* fill in the swap array */
3690 si = hw->blk[ICE_BLK_FD].es.fvw - 1;
3691 while (si >= 0) {
3692 u8 indexes_used = 1;
3693
3694 /* assume flat at this index */
3695#define ICE_SWAP_VALID 0x80
3696 used[si] = si | ICE_SWAP_VALID;
3697
3698 if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
3699 si -= indexes_used;
3700 continue;
3701 }
3702
3703 /* check for a swap location */
3704 for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
3705 if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
3706 es[si].off == ice_fd_pairs[j].off) {
3707 u8 idx;
3708
3709 /* determine the appropriate matching field */
3710 idx = j + ((j % 2) ? -1 : 1);
3711
3712 indexes_used = ice_fd_pairs[idx].count;
3713 for (k = 0; k < indexes_used; k++) {
3714 used[si - k] = (pair_start[idx] - k) |
3715 ICE_SWAP_VALID;
3716 }
3717
3718 break;
3719 }
3720
3721 si -= indexes_used;
3722 }
3723
3724 /* for each set of 4 swap and 4 inset indexes, write the appropriate
3725 * register
3726 */
3727 for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
3728 u32 raw_swap = 0;
3729 u32 raw_in = 0;
3730
3731 for (k = 0; k < 4; k++) {
3732 u8 idx;
3733
3734 idx = (j * 4) + k;
3735 if (used[idx] && !(mask_sel & BIT(idx))) {
3736 raw_swap |= used[idx] << (k * BITS_PER_BYTE);
3737#define ICE_INSET_DFLT 0x9f
3738 raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
3739 }
3740 }
3741
3742 /* write the appropriate swap register set */
3743 wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
3744
3745 ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
3746 prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
3747
3748 /* write the appropriate inset register set */
3749 wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
3750
3751 ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
3752 prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
3753 }
3754
3755 /* initially clear the mask select for this profile */
3756 ice_update_fd_mask(hw, prof_id, 0);
3757
3758 return 0;
3759}
3760
3761/**
3762 * ice_add_prof - add profile
3763 * @hw: pointer to the HW struct
3764 * @blk: hardware block
3765 * @id: profile tracking ID
3766 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3767 * @es: extraction sequence (length of array is determined by the block)
3768 *
3769 * This function registers a profile, which matches a set of PTGs with a
3770 * particular extraction sequence. While the hardware profile is allocated
3771 * it will not be written until the first call to ice_add_flow that specifies
3772 * the ID value used here.
3773 */
3774enum ice_status
3775ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3776 struct ice_fv_word *es)
3777{
3778 u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3779 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3780 struct ice_prof_map *prof;
3781 enum ice_status status;
3782 u8 byte = 0;
3783 u8 prof_id;
3784
3785 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3786
3787 mutex_lock(&hw->blk[blk].es.prof_map_lock);
3788
3789 /* search for existing profile */
3790 status = ice_find_prof_id(hw, blk, es, &prof_id);
3791 if (status) {
3792 /* allocate profile ID */
3793 status = ice_alloc_prof_id(hw, blk, &prof_id);
3794 if (status)
3795 goto err_ice_add_prof;
3796 if (blk == ICE_BLK_FD) {
3797 /* For Flow Director block, the extraction sequence may
3798 * need to be altered in the case where there are paired
3799 * fields that have no match. This is necessary because
3800 * for Flow Director, src and dest fields need to paired
3801 * for filter programming and these values are swapped
3802 * during Tx.
3803 */
3804 status = ice_update_fd_swap(hw, prof_id, es);
3805 if (status)
3806 goto err_ice_add_prof;
3807 }
3808
3809 /* and write new es */
3810 ice_write_es(hw, blk, prof_id, es);
3811 }
3812
3813 ice_prof_inc_ref(hw, blk, prof_id);
3814
3815 /* add profile info */
3816 prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3817 if (!prof) {
3818 status = ICE_ERR_NO_MEMORY;
3819 goto err_ice_add_prof;
3820 }
3821
3822 prof->profile_cookie = id;
3823 prof->prof_id = prof_id;
3824 prof->ptg_cnt = 0;
3825 prof->context = 0;
3826
3827 /* build list of ptgs */
3828 while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3829 u8 bit;
3830
3831 if (!ptypes[byte]) {
3832 bytes--;
3833 byte++;
3834 continue;
3835 }
3836
3837 /* Examine 8 bits per byte */
3838 for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3839 BITS_PER_BYTE) {
3840 u16 ptype;
3841 u8 ptg;
3842 u8 m;
3843
3844 ptype = byte * BITS_PER_BYTE + bit;
3845
3846 /* The package should place all ptypes in a non-zero
3847 * PTG, so the following call should never fail.
3848 */
3849 if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3850 continue;
3851
3852 /* If PTG is already added, skip and continue */
3853 if (test_bit(ptg, ptgs_used))
3854 continue;
3855
3856 set_bit(ptg, ptgs_used);
3857 prof->ptg[prof->ptg_cnt] = ptg;
3858
3859 if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
3860 break;
3861
3862 /* nothing left in byte, then exit */
3863 m = ~(u8)((1 << (bit + 1)) - 1);
3864 if (!(ptypes[byte] & m))
3865 break;
3866 }
3867
3868 bytes--;
3869 byte++;
3870 }
3871
3872 list_add(&prof->list, &hw->blk[blk].es.prof_map);
3873 status = 0;
3874
3875err_ice_add_prof:
3876 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3877 return status;
3878}
3879
3880/**
3881 * ice_search_prof_id - Search for a profile tracking ID
3882 * @hw: pointer to the HW struct
3883 * @blk: hardware block
3884 * @id: profile tracking ID
3885 *
3886 * This will search for a profile tracking ID which was previously added.
3887 * The profile map lock should be held before calling this function.
3888 */
3889static struct ice_prof_map *
3890ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3891{
3892 struct ice_prof_map *entry = NULL;
3893 struct ice_prof_map *map;
3894
3895 list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3896 if (map->profile_cookie == id) {
3897 entry = map;
3898 break;
3899 }
3900
3901 return entry;
3902}
3903
3904/**
3905 * ice_vsig_prof_id_count - count profiles in a VSIG
3906 * @hw: pointer to the HW struct
3907 * @blk: hardware block
3908 * @vsig: VSIG to remove the profile from
3909 */
3910static u16
3911ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3912{
3913 u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3914 struct ice_vsig_prof *p;
3915
3916 list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3917 list)
3918 count++;
3919
3920 return count;
3921}
3922
3923/**
3924 * ice_rel_tcam_idx - release a TCAM index
3925 * @hw: pointer to the HW struct
3926 * @blk: hardware block
3927 * @idx: the index to release
3928 */
3929static enum ice_status
3930ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3931{
3932 /* Masks to invoke a never match entry */
3933 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3934 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3935 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3936 enum ice_status status;
3937
3938 /* write the TCAM entry */
3939 status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3940 dc_msk, nm_msk);
3941 if (status)
3942 return status;
3943
3944 /* release the TCAM entry */
3945 status = ice_free_tcam_ent(hw, blk, idx);
3946
3947 return status;
3948}
3949
3950/**
3951 * ice_rem_prof_id - remove one profile from a VSIG
3952 * @hw: pointer to the HW struct
3953 * @blk: hardware block
3954 * @prof: pointer to profile structure to remove
3955 */
3956static enum ice_status
3957ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3958 struct ice_vsig_prof *prof)
3959{
3960 enum ice_status status;
3961 u16 i;
3962
3963 for (i = 0; i < prof->tcam_count; i++)
3964 if (prof->tcam[i].in_use) {
3965 prof->tcam[i].in_use = false;
3966 status = ice_rel_tcam_idx(hw, blk,
3967 prof->tcam[i].tcam_idx);
3968 if (status)
3969 return ICE_ERR_HW_TABLE;
3970 }
3971
3972 return 0;
3973}
3974
3975/**
3976 * ice_rem_vsig - remove VSIG
3977 * @hw: pointer to the HW struct
3978 * @blk: hardware block
3979 * @vsig: the VSIG to remove
3980 * @chg: the change list
3981 */
3982static enum ice_status
3983ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3984 struct list_head *chg)
3985{
3986 u16 idx = vsig & ICE_VSIG_IDX_M;
3987 struct ice_vsig_vsi *vsi_cur;
3988 struct ice_vsig_prof *d, *t;
3989 enum ice_status status;
3990
3991 /* remove TCAM entries */
3992 list_for_each_entry_safe(d, t,
3993 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3994 list) {
3995 status = ice_rem_prof_id(hw, blk, d);
3996 if (status)
3997 return status;
3998
3999 list_del(&d->list);
4000 devm_kfree(ice_hw_to_dev(hw), d);
4001 }
4002
4003 /* Move all VSIS associated with this VSIG to the default VSIG */
4004 vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4005 /* If the VSIG has at least 1 VSI then iterate through the list
4006 * and remove the VSIs before deleting the group.
4007 */
4008 if (vsi_cur)
4009 do {
4010 struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
4011 struct ice_chs_chg *p;
4012
4013 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4014 GFP_KERNEL);
4015 if (!p)
4016 return ICE_ERR_NO_MEMORY;
4017
4018 p->type = ICE_VSIG_REM;
4019 p->orig_vsig = vsig;
4020 p->vsig = ICE_DEFAULT_VSIG;
4021 p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
4022
4023 list_add(&p->list_entry, chg);
4024
4025 vsi_cur = tmp;
4026 } while (vsi_cur);
4027
4028 return ice_vsig_free(hw, blk, vsig);
4029}
4030
4031/**
4032 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
4033 * @hw: pointer to the HW struct
4034 * @blk: hardware block
4035 * @vsig: VSIG to remove the profile from
4036 * @hdl: profile handle indicating which profile to remove
4037 * @chg: list to receive a record of changes
4038 */
4039static enum ice_status
4040ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4041 struct list_head *chg)
4042{
4043 u16 idx = vsig & ICE_VSIG_IDX_M;
4044 struct ice_vsig_prof *p, *t;
4045 enum ice_status status;
4046
4047 list_for_each_entry_safe(p, t,
4048 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4049 list)
4050 if (p->profile_cookie == hdl) {
4051 if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
4052 /* this is the last profile, remove the VSIG */
4053 return ice_rem_vsig(hw, blk, vsig, chg);
4054
4055 status = ice_rem_prof_id(hw, blk, p);
4056 if (!status) {
4057 list_del(&p->list);
4058 devm_kfree(ice_hw_to_dev(hw), p);
4059 }
4060 return status;
4061 }
4062
4063 return ICE_ERR_DOES_NOT_EXIST;
4064}
4065
4066/**
4067 * ice_rem_flow_all - remove all flows with a particular profile
4068 * @hw: pointer to the HW struct
4069 * @blk: hardware block
4070 * @id: profile tracking ID
4071 */
4072static enum ice_status
4073ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
4074{
4075 struct ice_chs_chg *del, *tmp;
4076 enum ice_status status;
4077 struct list_head chg;
4078 u16 i;
4079
4080 INIT_LIST_HEAD(&chg);
4081
4082 for (i = 1; i < ICE_MAX_VSIGS; i++)
4083 if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
4084 if (ice_has_prof_vsig(hw, blk, i, id)) {
4085 status = ice_rem_prof_id_vsig(hw, blk, i, id,
4086 &chg);
4087 if (status)
4088 goto err_ice_rem_flow_all;
4089 }
4090 }
4091
4092 status = ice_upd_prof_hw(hw, blk, &chg);
4093
4094err_ice_rem_flow_all:
4095 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4096 list_del(&del->list_entry);
4097 devm_kfree(ice_hw_to_dev(hw), del);
4098 }
4099
4100 return status;
4101}
4102
4103/**
4104 * ice_rem_prof - remove profile
4105 * @hw: pointer to the HW struct
4106 * @blk: hardware block
4107 * @id: profile tracking ID
4108 *
4109 * This will remove the profile specified by the ID parameter, which was
4110 * previously created through ice_add_prof. If any existing entries
4111 * are associated with this profile, they will be removed as well.
4112 */
4113enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
4114{
4115 struct ice_prof_map *pmap;
4116 enum ice_status status;
4117
4118 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4119
4120 pmap = ice_search_prof_id(hw, blk, id);
4121 if (!pmap) {
4122 status = ICE_ERR_DOES_NOT_EXIST;
4123 goto err_ice_rem_prof;
4124 }
4125
4126 /* remove all flows with this profile */
4127 status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
4128 if (status)
4129 goto err_ice_rem_prof;
4130
4131 /* dereference profile, and possibly remove */
4132 ice_prof_dec_ref(hw, blk, pmap->prof_id);
4133
4134 list_del(&pmap->list);
4135 devm_kfree(ice_hw_to_dev(hw), pmap);
4136
4137err_ice_rem_prof:
4138 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4139 return status;
4140}
4141
4142/**
4143 * ice_get_prof - get profile
4144 * @hw: pointer to the HW struct
4145 * @blk: hardware block
4146 * @hdl: profile handle
4147 * @chg: change list
4148 */
4149static enum ice_status
4150ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
4151 struct list_head *chg)
4152{
4153 enum ice_status status = 0;
4154 struct ice_prof_map *map;
4155 struct ice_chs_chg *p;
4156 u16 i;
4157
4158 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4159 /* Get the details on the profile specified by the handle ID */
4160 map = ice_search_prof_id(hw, blk, hdl);
4161 if (!map) {
4162 status = ICE_ERR_DOES_NOT_EXIST;
4163 goto err_ice_get_prof;
4164 }
4165
4166 for (i = 0; i < map->ptg_cnt; i++)
4167 if (!hw->blk[blk].es.written[map->prof_id]) {
4168 /* add ES to change list */
4169 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
4170 GFP_KERNEL);
4171 if (!p) {
4172 status = ICE_ERR_NO_MEMORY;
4173 goto err_ice_get_prof;
4174 }
4175
4176 p->type = ICE_PTG_ES_ADD;
4177 p->ptype = 0;
4178 p->ptg = map->ptg[i];
4179 p->add_ptg = 0;
4180
4181 p->add_prof = 1;
4182 p->prof_id = map->prof_id;
4183
4184 hw->blk[blk].es.written[map->prof_id] = true;
4185
4186 list_add(&p->list_entry, chg);
4187 }
4188
4189err_ice_get_prof:
4190 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4191 /* let caller clean up the change list */
4192 return status;
4193}
4194
4195/**
4196 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
4197 * @hw: pointer to the HW struct
4198 * @blk: hardware block
4199 * @vsig: VSIG from which to copy the list
4200 * @lst: output list
4201 *
4202 * This routine makes a copy of the list of profiles in the specified VSIG.
4203 */
4204static enum ice_status
4205ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4206 struct list_head *lst)
4207{
4208 struct ice_vsig_prof *ent1, *ent2;
4209 u16 idx = vsig & ICE_VSIG_IDX_M;
4210
4211 list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4212 list) {
4213 struct ice_vsig_prof *p;
4214
4215 /* copy to the input list */
4216 p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
4217 GFP_KERNEL);
4218 if (!p)
4219 goto err_ice_get_profs_vsig;
4220
4221 list_add_tail(&p->list, lst);
4222 }
4223
4224 return 0;
4225
4226err_ice_get_profs_vsig:
4227 list_for_each_entry_safe(ent1, ent2, lst, list) {
4228 list_del(&ent1->list);
4229 devm_kfree(ice_hw_to_dev(hw), ent1);
4230 }
4231
4232 return ICE_ERR_NO_MEMORY;
4233}
4234
4235/**
4236 * ice_add_prof_to_lst - add profile entry to a list
4237 * @hw: pointer to the HW struct
4238 * @blk: hardware block
4239 * @lst: the list to be added to
4240 * @hdl: profile handle of entry to add
4241 */
4242static enum ice_status
4243ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
4244 struct list_head *lst, u64 hdl)
4245{
4246 enum ice_status status = 0;
4247 struct ice_prof_map *map;
4248 struct ice_vsig_prof *p;
4249 u16 i;
4250
4251 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4252 map = ice_search_prof_id(hw, blk, hdl);
4253 if (!map) {
4254 status = ICE_ERR_DOES_NOT_EXIST;
4255 goto err_ice_add_prof_to_lst;
4256 }
4257
4258 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4259 if (!p) {
4260 status = ICE_ERR_NO_MEMORY;
4261 goto err_ice_add_prof_to_lst;
4262 }
4263
4264 p->profile_cookie = map->profile_cookie;
4265 p->prof_id = map->prof_id;
4266 p->tcam_count = map->ptg_cnt;
4267
4268 for (i = 0; i < map->ptg_cnt; i++) {
4269 p->tcam[i].prof_id = map->prof_id;
4270 p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
4271 p->tcam[i].ptg = map->ptg[i];
4272 }
4273
4274 list_add(&p->list, lst);
4275
4276err_ice_add_prof_to_lst:
4277 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4278 return status;
4279}
4280
4281/**
4282 * ice_move_vsi - move VSI to another VSIG
4283 * @hw: pointer to the HW struct
4284 * @blk: hardware block
4285 * @vsi: the VSI to move
4286 * @vsig: the VSIG to move the VSI to
4287 * @chg: the change list
4288 */
4289static enum ice_status
4290ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
4291 struct list_head *chg)
4292{
4293 enum ice_status status;
4294 struct ice_chs_chg *p;
4295 u16 orig_vsig;
4296
4297 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4298 if (!p)
4299 return ICE_ERR_NO_MEMORY;
4300
4301 status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
4302 if (!status)
4303 status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
4304
4305 if (status) {
4306 devm_kfree(ice_hw_to_dev(hw), p);
4307 return status;
4308 }
4309
4310 p->type = ICE_VSI_MOVE;
4311 p->vsi = vsi;
4312 p->orig_vsig = orig_vsig;
4313 p->vsig = vsig;
4314
4315 list_add(&p->list_entry, chg);
4316
4317 return 0;
4318}
4319
4320/**
4321 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
4322 * @hw: pointer to the HW struct
4323 * @idx: the index of the TCAM entry to remove
4324 * @chg: the list of change structures to search
4325 */
4326static void
4327ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
4328{
4329 struct ice_chs_chg *pos, *tmp;
4330
4331 list_for_each_entry_safe(tmp, pos, chg, list_entry)
4332 if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
4333 list_del(&tmp->list_entry);
4334 devm_kfree(ice_hw_to_dev(hw), tmp);
4335 }
4336}
4337
4338/**
4339 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
4340 * @hw: pointer to the HW struct
4341 * @blk: hardware block
4342 * @enable: true to enable, false to disable
4343 * @vsig: the VSIG of the TCAM entry
4344 * @tcam: pointer the TCAM info structure of the TCAM to disable
4345 * @chg: the change list
4346 *
4347 * This function appends an enable or disable TCAM entry in the change log
4348 */
4349static enum ice_status
4350ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
4351 u16 vsig, struct ice_tcam_inf *tcam,
4352 struct list_head *chg)
4353{
4354 enum ice_status status;
4355 struct ice_chs_chg *p;
4356
4357 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4358 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4359 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4360
4361 /* if disabling, free the TCAM */
4362 if (!enable) {
4363 status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
4364
4365 /* if we have already created a change for this TCAM entry, then
4366 * we need to remove that entry, in order to prevent writing to
4367 * a TCAM entry we no longer will have ownership of.
4368 */
4369 ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
4370 tcam->tcam_idx = 0;
4371 tcam->in_use = 0;
4372 return status;
4373 }
4374
4375 /* for re-enabling, reallocate a TCAM */
4376 status = ice_alloc_tcam_ent(hw, blk, &tcam->tcam_idx);
4377 if (status)
4378 return status;
4379
4380 /* add TCAM to change list */
4381 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4382 if (!p)
4383 return ICE_ERR_NO_MEMORY;
4384
4385 status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
4386 tcam->ptg, vsig, 0, 0, vl_msk, dc_msk,
4387 nm_msk);
4388 if (status)
4389 goto err_ice_prof_tcam_ena_dis;
4390
4391 tcam->in_use = 1;
4392
4393 p->type = ICE_TCAM_ADD;
4394 p->add_tcam_idx = true;
4395 p->prof_id = tcam->prof_id;
4396 p->ptg = tcam->ptg;
4397 p->vsig = 0;
4398 p->tcam_idx = tcam->tcam_idx;
4399
4400 /* log change */
4401 list_add(&p->list_entry, chg);
4402
4403 return 0;
4404
4405err_ice_prof_tcam_ena_dis:
4406 devm_kfree(ice_hw_to_dev(hw), p);
4407 return status;
4408}
4409
4410/**
4411 * ice_adj_prof_priorities - adjust profile based on priorities
4412 * @hw: pointer to the HW struct
4413 * @blk: hardware block
4414 * @vsig: the VSIG for which to adjust profile priorities
4415 * @chg: the change list
4416 */
4417static enum ice_status
4418ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
4419 struct list_head *chg)
4420{
4421 DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
4422 struct ice_vsig_prof *t;
4423 enum ice_status status;
4424 u16 idx;
4425
4426 bitmap_zero(ptgs_used, ICE_XLT1_CNT);
4427 idx = vsig & ICE_VSIG_IDX_M;
4428
4429 /* Priority is based on the order in which the profiles are added. The
4430 * newest added profile has highest priority and the oldest added
4431 * profile has the lowest priority. Since the profile property list for
4432 * a VSIG is sorted from newest to oldest, this code traverses the list
4433 * in order and enables the first of each PTG that it finds (that is not
4434 * already enabled); it also disables any duplicate PTGs that it finds
4435 * in the older profiles (that are currently enabled).
4436 */
4437
4438 list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4439 list) {
4440 u16 i;
4441
4442 for (i = 0; i < t->tcam_count; i++) {
4443 /* Scan the priorities from newest to oldest.
4444 * Make sure that the newest profiles take priority.
4445 */
4446 if (test_bit(t->tcam[i].ptg, ptgs_used) &&
4447 t->tcam[i].in_use) {
4448 /* need to mark this PTG as never match, as it
4449 * was already in use and therefore duplicate
4450 * (and lower priority)
4451 */
4452 status = ice_prof_tcam_ena_dis(hw, blk, false,
4453 vsig,
4454 &t->tcam[i],
4455 chg);
4456 if (status)
4457 return status;
4458 } else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
4459 !t->tcam[i].in_use) {
4460 /* need to enable this PTG, as it in not in use
4461 * and not enabled (highest priority)
4462 */
4463 status = ice_prof_tcam_ena_dis(hw, blk, true,
4464 vsig,
4465 &t->tcam[i],
4466 chg);
4467 if (status)
4468 return status;
4469 }
4470
4471 /* keep track of used ptgs */
4472 set_bit(t->tcam[i].ptg, ptgs_used);
4473 }
4474 }
4475
4476 return 0;
4477}
4478
4479/**
4480 * ice_add_prof_id_vsig - add profile to VSIG
4481 * @hw: pointer to the HW struct
4482 * @blk: hardware block
4483 * @vsig: the VSIG to which this profile is to be added
4484 * @hdl: the profile handle indicating the profile to add
4485 * @rev: true to add entries to the end of the list
4486 * @chg: the change list
4487 */
4488static enum ice_status
4489ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
4490 bool rev, struct list_head *chg)
4491{
4492 /* Masks that ignore flags */
4493 u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
4494 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
4495 u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
4496 enum ice_status status = 0;
4497 struct ice_prof_map *map;
4498 struct ice_vsig_prof *t;
4499 struct ice_chs_chg *p;
4500 u16 vsig_idx, i;
4501
4502 /* Error, if this VSIG already has this profile */
4503 if (ice_has_prof_vsig(hw, blk, vsig, hdl))
4504 return ICE_ERR_ALREADY_EXISTS;
4505
4506 /* new VSIG profile structure */
4507 t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
4508 if (!t)
4509 return ICE_ERR_NO_MEMORY;
4510
4511 mutex_lock(&hw->blk[blk].es.prof_map_lock);
4512 /* Get the details on the profile specified by the handle ID */
4513 map = ice_search_prof_id(hw, blk, hdl);
4514 if (!map) {
4515 status = ICE_ERR_DOES_NOT_EXIST;
4516 goto err_ice_add_prof_id_vsig;
4517 }
4518
4519 t->profile_cookie = map->profile_cookie;
4520 t->prof_id = map->prof_id;
4521 t->tcam_count = map->ptg_cnt;
4522
4523 /* create TCAM entries */
4524 for (i = 0; i < map->ptg_cnt; i++) {
4525 u16 tcam_idx;
4526
4527 /* add TCAM to change list */
4528 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4529 if (!p) {
4530 status = ICE_ERR_NO_MEMORY;
4531 goto err_ice_add_prof_id_vsig;
4532 }
4533
4534 /* allocate the TCAM entry index */
4535 status = ice_alloc_tcam_ent(hw, blk, &tcam_idx);
4536 if (status) {
4537 devm_kfree(ice_hw_to_dev(hw), p);
4538 goto err_ice_add_prof_id_vsig;
4539 }
4540
4541 t->tcam[i].ptg = map->ptg[i];
4542 t->tcam[i].prof_id = map->prof_id;
4543 t->tcam[i].tcam_idx = tcam_idx;
4544 t->tcam[i].in_use = true;
4545
4546 p->type = ICE_TCAM_ADD;
4547 p->add_tcam_idx = true;
4548 p->prof_id = t->tcam[i].prof_id;
4549 p->ptg = t->tcam[i].ptg;
4550 p->vsig = vsig;
4551 p->tcam_idx = t->tcam[i].tcam_idx;
4552
4553 /* write the TCAM entry */
4554 status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
4555 t->tcam[i].prof_id,
4556 t->tcam[i].ptg, vsig, 0, 0,
4557 vl_msk, dc_msk, nm_msk);
4558 if (status) {
4559 devm_kfree(ice_hw_to_dev(hw), p);
4560 goto err_ice_add_prof_id_vsig;
4561 }
4562
4563 /* log change */
4564 list_add(&p->list_entry, chg);
4565 }
4566
4567 /* add profile to VSIG */
4568 vsig_idx = vsig & ICE_VSIG_IDX_M;
4569 if (rev)
4570 list_add_tail(&t->list,
4571 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4572 else
4573 list_add(&t->list,
4574 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
4575
4576 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4577 return status;
4578
4579err_ice_add_prof_id_vsig:
4580 mutex_unlock(&hw->blk[blk].es.prof_map_lock);
4581 /* let caller clean up the change list */
4582 devm_kfree(ice_hw_to_dev(hw), t);
4583 return status;
4584}
4585
4586/**
4587 * ice_create_prof_id_vsig - add a new VSIG with a single profile
4588 * @hw: pointer to the HW struct
4589 * @blk: hardware block
4590 * @vsi: the initial VSI that will be in VSIG
4591 * @hdl: the profile handle of the profile that will be added to the VSIG
4592 * @chg: the change list
4593 */
4594static enum ice_status
4595ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
4596 struct list_head *chg)
4597{
4598 enum ice_status status;
4599 struct ice_chs_chg *p;
4600 u16 new_vsig;
4601
4602 p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
4603 if (!p)
4604 return ICE_ERR_NO_MEMORY;
4605
4606 new_vsig = ice_vsig_alloc(hw, blk);
4607 if (!new_vsig) {
4608 status = ICE_ERR_HW_TABLE;
4609 goto err_ice_create_prof_id_vsig;
4610 }
4611
4612 status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
4613 if (status)
4614 goto err_ice_create_prof_id_vsig;
4615
4616 status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
4617 if (status)
4618 goto err_ice_create_prof_id_vsig;
4619
4620 p->type = ICE_VSIG_ADD;
4621 p->vsi = vsi;
4622 p->orig_vsig = ICE_DEFAULT_VSIG;
4623 p->vsig = new_vsig;
4624
4625 list_add(&p->list_entry, chg);
4626
4627 return 0;
4628
4629err_ice_create_prof_id_vsig:
4630 /* let caller clean up the change list */
4631 devm_kfree(ice_hw_to_dev(hw), p);
4632 return status;
4633}
4634
4635/**
4636 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
4637 * @hw: pointer to the HW struct
4638 * @blk: hardware block
4639 * @vsi: the initial VSI that will be in VSIG
4640 * @lst: the list of profile that will be added to the VSIG
4641 * @new_vsig: return of new VSIG
4642 * @chg: the change list
4643 */
4644static enum ice_status
4645ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
4646 struct list_head *lst, u16 *new_vsig,
4647 struct list_head *chg)
4648{
4649 struct ice_vsig_prof *t;
4650 enum ice_status status;
4651 u16 vsig;
4652
4653 vsig = ice_vsig_alloc(hw, blk);
4654 if (!vsig)
4655 return ICE_ERR_HW_TABLE;
4656
4657 status = ice_move_vsi(hw, blk, vsi, vsig, chg);
4658 if (status)
4659 return status;
4660
4661 list_for_each_entry(t, lst, list) {
4662 /* Reverse the order here since we are copying the list */
4663 status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
4664 true, chg);
4665 if (status)
4666 return status;
4667 }
4668
4669 *new_vsig = vsig;
4670
4671 return 0;
4672}
4673
4674/**
4675 * ice_find_prof_vsig - find a VSIG with a specific profile handle
4676 * @hw: pointer to the HW struct
4677 * @blk: hardware block
4678 * @hdl: the profile handle of the profile to search for
4679 * @vsig: returns the VSIG with the matching profile
4680 */
4681static bool
4682ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
4683{
4684 struct ice_vsig_prof *t;
4685 enum ice_status status;
4686 struct list_head lst;
4687
4688 INIT_LIST_HEAD(&lst);
4689
4690 t = kzalloc(sizeof(*t), GFP_KERNEL);
4691 if (!t)
4692 return false;
4693
4694 t->profile_cookie = hdl;
4695 list_add(&t->list, &lst);
4696
4697 status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
4698
4699 list_del(&t->list);
4700 kfree(t);
4701
4702 return !status;
4703}
4704
4705/**
4706 * ice_add_prof_id_flow - add profile flow
4707 * @hw: pointer to the HW struct
4708 * @blk: hardware block
4709 * @vsi: the VSI to enable with the profile specified by ID
4710 * @hdl: profile handle
4711 *
4712 * Calling this function will update the hardware tables to enable the
4713 * profile indicated by the ID parameter for the VSIs specified in the VSI
4714 * array. Once successfully called, the flow will be enabled.
4715 */
4716enum ice_status
4717ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4718{
4719 struct ice_vsig_prof *tmp1, *del1;
4720 struct ice_chs_chg *tmp, *del;
4721 struct list_head union_lst;
4722 enum ice_status status;
4723 struct list_head chg;
4724 u16 vsig;
4725
4726 INIT_LIST_HEAD(&union_lst);
4727 INIT_LIST_HEAD(&chg);
4728
4729 /* Get profile */
4730 status = ice_get_prof(hw, blk, hdl, &chg);
4731 if (status)
4732 return status;
4733
4734 /* determine if VSI is already part of a VSIG */
4735 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4736 if (!status && vsig) {
4737 bool only_vsi;
4738 u16 or_vsig;
4739 u16 ref;
4740
4741 /* found in VSIG */
4742 or_vsig = vsig;
4743
4744 /* make sure that there is no overlap/conflict between the new
4745 * characteristics and the existing ones; we don't support that
4746 * scenario
4747 */
4748 if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4749 status = ICE_ERR_ALREADY_EXISTS;
4750 goto err_ice_add_prof_id_flow;
4751 }
4752
4753 /* last VSI in the VSIG? */
4754 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4755 if (status)
4756 goto err_ice_add_prof_id_flow;
4757 only_vsi = (ref == 1);
4758
4759 /* create a union of the current profiles and the one being
4760 * added
4761 */
4762 status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4763 if (status)
4764 goto err_ice_add_prof_id_flow;
4765
4766 status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4767 if (status)
4768 goto err_ice_add_prof_id_flow;
4769
4770 /* search for an existing VSIG with an exact charc match */
4771 status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4772 if (!status) {
4773 /* move VSI to the VSIG that matches */
4774 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4775 if (status)
4776 goto err_ice_add_prof_id_flow;
4777
4778 /* VSI has been moved out of or_vsig. If the or_vsig had
4779 * only that VSI it is now empty and can be removed.
4780 */
4781 if (only_vsi) {
4782 status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4783 if (status)
4784 goto err_ice_add_prof_id_flow;
4785 }
4786 } else if (only_vsi) {
4787 /* If the original VSIG only contains one VSI, then it
4788 * will be the requesting VSI. In this case the VSI is
4789 * not sharing entries and we can simply add the new
4790 * profile to the VSIG.
4791 */
4792 status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4793 &chg);
4794 if (status)
4795 goto err_ice_add_prof_id_flow;
4796
4797 /* Adjust priorities */
4798 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4799 if (status)
4800 goto err_ice_add_prof_id_flow;
4801 } else {
4802 /* No match, so we need a new VSIG */
4803 status = ice_create_vsig_from_lst(hw, blk, vsi,
4804 &union_lst, &vsig,
4805 &chg);
4806 if (status)
4807 goto err_ice_add_prof_id_flow;
4808
4809 /* Adjust priorities */
4810 status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4811 if (status)
4812 goto err_ice_add_prof_id_flow;
4813 }
4814 } else {
4815 /* need to find or add a VSIG */
4816 /* search for an existing VSIG with an exact charc match */
4817 if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4818 /* found an exact match */
4819 /* add or move VSI to the VSIG that matches */
4820 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4821 if (status)
4822 goto err_ice_add_prof_id_flow;
4823 } else {
4824 /* we did not find an exact match */
4825 /* we need to add a VSIG */
4826 status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4827 &chg);
4828 if (status)
4829 goto err_ice_add_prof_id_flow;
4830 }
4831 }
4832
4833 /* update hardware */
4834 if (!status)
4835 status = ice_upd_prof_hw(hw, blk, &chg);
4836
4837err_ice_add_prof_id_flow:
4838 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4839 list_del(&del->list_entry);
4840 devm_kfree(ice_hw_to_dev(hw), del);
4841 }
4842
4843 list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4844 list_del(&del1->list);
4845 devm_kfree(ice_hw_to_dev(hw), del1);
4846 }
4847
4848 return status;
4849}
4850
4851/**
4852 * ice_rem_prof_from_list - remove a profile from list
4853 * @hw: pointer to the HW struct
4854 * @lst: list to remove the profile from
4855 * @hdl: the profile handle indicating the profile to remove
4856 */
4857static enum ice_status
4858ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4859{
4860 struct ice_vsig_prof *ent, *tmp;
4861
4862 list_for_each_entry_safe(ent, tmp, lst, list)
4863 if (ent->profile_cookie == hdl) {
4864 list_del(&ent->list);
4865 devm_kfree(ice_hw_to_dev(hw), ent);
4866 return 0;
4867 }
4868
4869 return ICE_ERR_DOES_NOT_EXIST;
4870}
4871
4872/**
4873 * ice_rem_prof_id_flow - remove flow
4874 * @hw: pointer to the HW struct
4875 * @blk: hardware block
4876 * @vsi: the VSI from which to remove the profile specified by ID
4877 * @hdl: profile tracking handle
4878 *
4879 * Calling this function will update the hardware tables to remove the
4880 * profile indicated by the ID parameter for the VSIs specified in the VSI
4881 * array. Once successfully called, the flow will be disabled.
4882 */
4883enum ice_status
4884ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4885{
4886 struct ice_vsig_prof *tmp1, *del1;
4887 struct ice_chs_chg *tmp, *del;
4888 struct list_head chg, copy;
4889 enum ice_status status;
4890 u16 vsig;
4891
4892 INIT_LIST_HEAD(©);
4893 INIT_LIST_HEAD(&chg);
4894
4895 /* determine if VSI is already part of a VSIG */
4896 status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4897 if (!status && vsig) {
4898 bool last_profile;
4899 bool only_vsi;
4900 u16 ref;
4901
4902 /* found in VSIG */
4903 last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4904 status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4905 if (status)
4906 goto err_ice_rem_prof_id_flow;
4907 only_vsi = (ref == 1);
4908
4909 if (only_vsi) {
4910 /* If the original VSIG only contains one reference,
4911 * which will be the requesting VSI, then the VSI is not
4912 * sharing entries and we can simply remove the specific
4913 * characteristics from the VSIG.
4914 */
4915
4916 if (last_profile) {
4917 /* If there are no profiles left for this VSIG,
4918 * then simply remove the the VSIG.
4919 */
4920 status = ice_rem_vsig(hw, blk, vsig, &chg);
4921 if (status)
4922 goto err_ice_rem_prof_id_flow;
4923 } else {
4924 status = ice_rem_prof_id_vsig(hw, blk, vsig,
4925 hdl, &chg);
4926 if (status)
4927 goto err_ice_rem_prof_id_flow;
4928
4929 /* Adjust priorities */
4930 status = ice_adj_prof_priorities(hw, blk, vsig,
4931 &chg);
4932 if (status)
4933 goto err_ice_rem_prof_id_flow;
4934 }
4935
4936 } else {
4937 /* Make a copy of the VSIG's list of Profiles */
4938 status = ice_get_profs_vsig(hw, blk, vsig, ©);
4939 if (status)
4940 goto err_ice_rem_prof_id_flow;
4941
4942 /* Remove specified profile entry from the list */
4943 status = ice_rem_prof_from_list(hw, ©, hdl);
4944 if (status)
4945 goto err_ice_rem_prof_id_flow;
4946
4947 if (list_empty(©)) {
4948 status = ice_move_vsi(hw, blk, vsi,
4949 ICE_DEFAULT_VSIG, &chg);
4950 if (status)
4951 goto err_ice_rem_prof_id_flow;
4952
4953 } else if (!ice_find_dup_props_vsig(hw, blk, ©,
4954 &vsig)) {
4955 /* found an exact match */
4956 /* add or move VSI to the VSIG that matches */
4957 /* Search for a VSIG with a matching profile
4958 * list
4959 */
4960
4961 /* Found match, move VSI to the matching VSIG */
4962 status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4963 if (status)
4964 goto err_ice_rem_prof_id_flow;
4965 } else {
4966 /* since no existing VSIG supports this
4967 * characteristic pattern, we need to create a
4968 * new VSIG and TCAM entries
4969 */
4970 status = ice_create_vsig_from_lst(hw, blk, vsi,
4971 ©, &vsig,
4972 &chg);
4973 if (status)
4974 goto err_ice_rem_prof_id_flow;
4975
4976 /* Adjust priorities */
4977 status = ice_adj_prof_priorities(hw, blk, vsig,
4978 &chg);
4979 if (status)
4980 goto err_ice_rem_prof_id_flow;
4981 }
4982 }
4983 } else {
4984 status = ICE_ERR_DOES_NOT_EXIST;
4985 }
4986
4987 /* update hardware tables */
4988 if (!status)
4989 status = ice_upd_prof_hw(hw, blk, &chg);
4990
4991err_ice_rem_prof_id_flow:
4992 list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4993 list_del(&del->list_entry);
4994 devm_kfree(ice_hw_to_dev(hw), del);
4995 }
4996
4997 list_for_each_entry_safe(del1, tmp1, ©, list) {
4998 list_del(&del1->list);
4999 devm_kfree(ice_hw_to_dev(hw), del1);
5000 }
5001
5002 return status;
5003}