Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * usb.c - Hardware dependent module for USB
   4 *
   5 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/fs.h>
  10#include <linux/usb.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/cdev.h>
  14#include <linux/device.h>
  15#include <linux/list.h>
  16#include <linux/completion.h>
  17#include <linux/mutex.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/workqueue.h>
  21#include <linux/sysfs.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/etherdevice.h>
  24#include <linux/uaccess.h>
  25#include <linux/most.h>
  26
  27#define USB_MTU			512
  28#define NO_ISOCHRONOUS_URB	0
  29#define AV_PACKETS_PER_XACT	2
  30#define BUF_CHAIN_SIZE		0xFFFF
  31#define MAX_NUM_ENDPOINTS	30
  32#define MAX_SUFFIX_LEN		10
  33#define MAX_STRING_LEN		80
  34#define MAX_BUF_SIZE		0xFFFF
  35
  36#define USB_VENDOR_ID_SMSC	0x0424  /* VID: SMSC */
  37#define USB_DEV_ID_BRDG		0xC001  /* PID: USB Bridge */
  38#define USB_DEV_ID_OS81118	0xCF18  /* PID: USB OS81118 */
  39#define USB_DEV_ID_OS81119	0xCF19  /* PID: USB OS81119 */
  40#define USB_DEV_ID_OS81210	0xCF30  /* PID: USB OS81210 */
  41/* DRCI Addresses */
  42#define DRCI_REG_NI_STATE	0x0100
  43#define DRCI_REG_PACKET_BW	0x0101
  44#define DRCI_REG_NODE_ADDR	0x0102
  45#define DRCI_REG_NODE_POS	0x0103
  46#define DRCI_REG_MEP_FILTER	0x0140
  47#define DRCI_REG_HASH_TBL0	0x0141
  48#define DRCI_REG_HASH_TBL1	0x0142
  49#define DRCI_REG_HASH_TBL2	0x0143
  50#define DRCI_REG_HASH_TBL3	0x0144
  51#define DRCI_REG_HW_ADDR_HI	0x0145
  52#define DRCI_REG_HW_ADDR_MI	0x0146
  53#define DRCI_REG_HW_ADDR_LO	0x0147
  54#define DRCI_REG_BASE		0x1100
  55#define DRCI_COMMAND		0x02
  56#define DRCI_READ_REQ		0xA0
  57#define DRCI_WRITE_REQ		0xA1
  58
  59/**
  60 * struct most_dci_obj - Direct Communication Interface
  61 * @kobj:position in sysfs
  62 * @usb_device: pointer to the usb device
  63 * @reg_addr: register address for arbitrary DCI access
  64 */
  65struct most_dci_obj {
  66	struct device dev;
  67	struct usb_device *usb_device;
  68	u16 reg_addr;
  69};
  70
  71#define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
  72
  73struct most_dev;
  74
  75struct clear_hold_work {
  76	struct work_struct ws;
  77	struct most_dev *mdev;
  78	unsigned int channel;
  79	int pipe;
  80};
  81
  82#define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
  83
  84/**
  85 * struct most_dev - holds all usb interface specific stuff
  86 * @usb_device: pointer to usb device
  87 * @iface: hardware interface
  88 * @cap: channel capabilities
  89 * @conf: channel configuration
  90 * @dci: direct communication interface of hardware
  91 * @ep_address: endpoint address table
  92 * @description: device description
  93 * @suffix: suffix for channel name
  94 * @channel_lock: synchronize channel access
  95 * @padding_active: indicates channel uses padding
  96 * @is_channel_healthy: health status table of each channel
  97 * @busy_urbs: list of anchored items
  98 * @io_mutex: synchronize I/O with disconnect
  99 * @link_stat_timer: timer for link status reports
 100 * @poll_work_obj: work for polling link status
 101 */
 102struct most_dev {
 103	struct device dev;
 104	struct usb_device *usb_device;
 105	struct most_interface iface;
 106	struct most_channel_capability *cap;
 107	struct most_channel_config *conf;
 108	struct most_dci_obj *dci;
 109	u8 *ep_address;
 110	char description[MAX_STRING_LEN];
 111	char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
 112	spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
 113	bool padding_active[MAX_NUM_ENDPOINTS];
 114	bool is_channel_healthy[MAX_NUM_ENDPOINTS];
 115	struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
 116	struct usb_anchor *busy_urbs;
 117	struct mutex io_mutex;
 118	struct timer_list link_stat_timer;
 119	struct work_struct poll_work_obj;
 120	void (*on_netinfo)(struct most_interface *most_iface,
 121			   unsigned char link_state, unsigned char *addrs);
 122};
 123
 124#define to_mdev(d) container_of(d, struct most_dev, iface)
 125#define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
 126#define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
 127
 128static void wq_clear_halt(struct work_struct *wq_obj);
 129static void wq_netinfo(struct work_struct *wq_obj);
 130
 131/**
 132 * drci_rd_reg - read a DCI register
 133 * @dev: usb device
 134 * @reg: register address
 135 * @buf: buffer to store data
 136 *
 137 * This is reads data from INIC's direct register communication interface
 138 */
 139static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
 140{
 141	int retval;
 142	__le16 *dma_buf;
 143	u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
 144
 145	dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
 146	if (!dma_buf)
 147		return -ENOMEM;
 148
 149	retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 150				 DRCI_READ_REQ, req_type,
 151				 0x0000,
 152				 reg, dma_buf, sizeof(*dma_buf),
 153				 USB_CTRL_GET_TIMEOUT);
 154	*buf = le16_to_cpu(*dma_buf);
 155	kfree(dma_buf);
 156
 157	if (retval < 0)
 158		return retval;
 159	return 0;
 160}
 161
 162/**
 163 * drci_wr_reg - write a DCI register
 164 * @dev: usb device
 165 * @reg: register address
 166 * @data: data to write
 167 *
 168 * This is writes data to INIC's direct register communication interface
 169 */
 170static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
 171{
 172	return usb_control_msg(dev,
 173			       usb_sndctrlpipe(dev, 0),
 174			       DRCI_WRITE_REQ,
 175			       USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
 176			       data,
 177			       reg,
 178			       NULL,
 179			       0,
 180			       USB_CTRL_SET_TIMEOUT);
 181}
 182
 183static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
 184{
 185	return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
 186}
 187
 188/**
 189 * get_stream_frame_size - calculate frame size of current configuration
 190 * @dev: device structure
 191 * @cfg: channel configuration
 192 */
 193static unsigned int get_stream_frame_size(struct device *dev,
 194					  struct most_channel_config *cfg)
 195{
 196	unsigned int frame_size;
 197	unsigned int sub_size = cfg->subbuffer_size;
 198
 199	if (!sub_size) {
 200		dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
 201		return 0;
 202	}
 203	switch (cfg->data_type) {
 204	case MOST_CH_ISOC:
 205		frame_size = AV_PACKETS_PER_XACT * sub_size;
 206		break;
 207	case MOST_CH_SYNC:
 208		if (cfg->packets_per_xact == 0) {
 209			dev_warn(dev, "Misconfig: Packets per XACT zero\n");
 210			frame_size = 0;
 211		} else if (cfg->packets_per_xact == 0xFF) {
 212			frame_size = (USB_MTU / sub_size) * sub_size;
 213		} else {
 214			frame_size = cfg->packets_per_xact * sub_size;
 215		}
 216		break;
 217	default:
 218		dev_warn(dev, "Query frame size of non-streaming channel\n");
 219		frame_size = 0;
 220		break;
 221	}
 222	return frame_size;
 223}
 224
 225/**
 226 * hdm_poison_channel - mark buffers of this channel as invalid
 227 * @iface: pointer to the interface
 228 * @channel: channel ID
 229 *
 230 * This unlinks all URBs submitted to the HCD,
 231 * calls the associated completion function of the core and removes
 232 * them from the list.
 233 *
 234 * Returns 0 on success or error code otherwise.
 235 */
 236static int hdm_poison_channel(struct most_interface *iface, int channel)
 237{
 238	struct most_dev *mdev = to_mdev(iface);
 239	unsigned long flags;
 240	spinlock_t *lock; /* temp. lock */
 241
 242	if (channel < 0 || channel >= iface->num_channels) {
 243		dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
 244		return -ECHRNG;
 245	}
 246
 247	lock = mdev->channel_lock + channel;
 248	spin_lock_irqsave(lock, flags);
 249	mdev->is_channel_healthy[channel] = false;
 250	spin_unlock_irqrestore(lock, flags);
 251
 252	cancel_work_sync(&mdev->clear_work[channel].ws);
 253
 254	mutex_lock(&mdev->io_mutex);
 255	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 256	if (mdev->padding_active[channel])
 257		mdev->padding_active[channel] = false;
 258
 259	if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
 260		del_timer_sync(&mdev->link_stat_timer);
 261		cancel_work_sync(&mdev->poll_work_obj);
 262	}
 263	mutex_unlock(&mdev->io_mutex);
 264	return 0;
 265}
 266
 267/**
 268 * hdm_add_padding - add padding bytes
 269 * @mdev: most device
 270 * @channel: channel ID
 271 * @mbo: buffer object
 272 *
 273 * This inserts the INIC hardware specific padding bytes into a streaming
 274 * channel's buffer
 275 */
 276static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
 277{
 278	struct most_channel_config *conf = &mdev->conf[channel];
 279	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
 280	unsigned int j, num_frames;
 281
 282	if (!frame_size)
 283		return -EINVAL;
 284	num_frames = mbo->buffer_length / frame_size;
 285
 286	if (num_frames < 1) {
 287		dev_err(&mdev->usb_device->dev,
 288			"Missed minimal transfer unit.\n");
 289		return -EINVAL;
 290	}
 291
 292	for (j = num_frames - 1; j > 0; j--)
 293		memmove(mbo->virt_address + j * USB_MTU,
 294			mbo->virt_address + j * frame_size,
 295			frame_size);
 296	mbo->buffer_length = num_frames * USB_MTU;
 297	return 0;
 298}
 299
 300/**
 301 * hdm_remove_padding - remove padding bytes
 302 * @mdev: most device
 303 * @channel: channel ID
 304 * @mbo: buffer object
 305 *
 306 * This takes the INIC hardware specific padding bytes off a streaming
 307 * channel's buffer.
 308 */
 309static int hdm_remove_padding(struct most_dev *mdev, int channel,
 310			      struct mbo *mbo)
 311{
 312	struct most_channel_config *const conf = &mdev->conf[channel];
 313	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
 314	unsigned int j, num_frames;
 315
 316	if (!frame_size)
 317		return -EINVAL;
 318	num_frames = mbo->processed_length / USB_MTU;
 319
 320	for (j = 1; j < num_frames; j++)
 321		memmove(mbo->virt_address + frame_size * j,
 322			mbo->virt_address + USB_MTU * j,
 323			frame_size);
 324
 325	mbo->processed_length = frame_size * num_frames;
 326	return 0;
 327}
 328
 329/**
 330 * hdm_write_completion - completion function for submitted Tx URBs
 331 * @urb: the URB that has been completed
 332 *
 333 * This checks the status of the completed URB. In case the URB has been
 334 * unlinked before, it is immediately freed. On any other error the MBO
 335 * transfer flag is set. On success it frees allocated resources and calls
 336 * the completion function.
 337 *
 338 * Context: interrupt!
 339 */
 340static void hdm_write_completion(struct urb *urb)
 341{
 342	struct mbo *mbo = urb->context;
 343	struct most_dev *mdev = to_mdev(mbo->ifp);
 344	unsigned int channel = mbo->hdm_channel_id;
 345	spinlock_t *lock = mdev->channel_lock + channel;
 346	unsigned long flags;
 347
 348	spin_lock_irqsave(lock, flags);
 349
 350	mbo->processed_length = 0;
 351	mbo->status = MBO_E_INVAL;
 352	if (likely(mdev->is_channel_healthy[channel])) {
 353		switch (urb->status) {
 354		case 0:
 355		case -ESHUTDOWN:
 356			mbo->processed_length = urb->actual_length;
 357			mbo->status = MBO_SUCCESS;
 358			break;
 359		case -EPIPE:
 360			dev_warn(&mdev->usb_device->dev,
 361				 "Broken pipe on ep%02x\n",
 362				 mdev->ep_address[channel]);
 363			mdev->is_channel_healthy[channel] = false;
 364			mdev->clear_work[channel].pipe = urb->pipe;
 365			schedule_work(&mdev->clear_work[channel].ws);
 366			break;
 367		case -ENODEV:
 368		case -EPROTO:
 369			mbo->status = MBO_E_CLOSE;
 370			break;
 371		}
 372	}
 373
 374	spin_unlock_irqrestore(lock, flags);
 375
 376	if (likely(mbo->complete))
 377		mbo->complete(mbo);
 378	usb_free_urb(urb);
 379}
 380
 381/**
 382 * hdm_read_completion - completion function for submitted Rx URBs
 383 * @urb: the URB that has been completed
 384 *
 385 * This checks the status of the completed URB. In case the URB has been
 386 * unlinked before it is immediately freed. On any other error the MBO transfer
 387 * flag is set. On success it frees allocated resources, removes
 388 * padding bytes -if necessary- and calls the completion function.
 389 *
 390 * Context: interrupt!
 391 */
 392static void hdm_read_completion(struct urb *urb)
 393{
 394	struct mbo *mbo = urb->context;
 395	struct most_dev *mdev = to_mdev(mbo->ifp);
 396	unsigned int channel = mbo->hdm_channel_id;
 397	struct device *dev = &mdev->usb_device->dev;
 398	spinlock_t *lock = mdev->channel_lock + channel;
 399	unsigned long flags;
 400
 401	spin_lock_irqsave(lock, flags);
 402
 403	mbo->processed_length = 0;
 404	mbo->status = MBO_E_INVAL;
 405	if (likely(mdev->is_channel_healthy[channel])) {
 406		switch (urb->status) {
 407		case 0:
 408		case -ESHUTDOWN:
 409			mbo->processed_length = urb->actual_length;
 410			mbo->status = MBO_SUCCESS;
 411			if (mdev->padding_active[channel] &&
 412			    hdm_remove_padding(mdev, channel, mbo)) {
 413				mbo->processed_length = 0;
 414				mbo->status = MBO_E_INVAL;
 415			}
 416			break;
 417		case -EPIPE:
 418			dev_warn(dev, "Broken pipe on ep%02x\n",
 419				 mdev->ep_address[channel]);
 420			mdev->is_channel_healthy[channel] = false;
 421			mdev->clear_work[channel].pipe = urb->pipe;
 422			schedule_work(&mdev->clear_work[channel].ws);
 423			break;
 424		case -ENODEV:
 425		case -EPROTO:
 426			mbo->status = MBO_E_CLOSE;
 427			break;
 428		case -EOVERFLOW:
 429			dev_warn(dev, "Babble on ep%02x\n",
 430				 mdev->ep_address[channel]);
 431			break;
 432		}
 433	}
 434
 435	spin_unlock_irqrestore(lock, flags);
 436
 437	if (likely(mbo->complete))
 438		mbo->complete(mbo);
 439	usb_free_urb(urb);
 440}
 441
 442/**
 443 * hdm_enqueue - receive a buffer to be used for data transfer
 444 * @iface: interface to enqueue to
 445 * @channel: ID of the channel
 446 * @mbo: pointer to the buffer object
 447 *
 448 * This allocates a new URB and fills it according to the channel
 449 * that is being used for transmission of data. Before the URB is
 450 * submitted it is stored in the private anchor list.
 451 *
 452 * Returns 0 on success. On any error the URB is freed and a error code
 453 * is returned.
 454 *
 455 * Context: Could in _some_ cases be interrupt!
 456 */
 457static int hdm_enqueue(struct most_interface *iface, int channel,
 458		       struct mbo *mbo)
 459{
 460	struct most_dev *mdev = to_mdev(iface);
 461	struct most_channel_config *conf;
 462	int retval = 0;
 463	struct urb *urb;
 464	unsigned long length;
 465	void *virt_address;
 466
 467	if (!mbo)
 468		return -EINVAL;
 469	if (iface->num_channels <= channel || channel < 0)
 470		return -ECHRNG;
 471
 472	urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
 473	if (!urb)
 474		return -ENOMEM;
 475
 476	conf = &mdev->conf[channel];
 477
 478	mutex_lock(&mdev->io_mutex);
 479	if (!mdev->usb_device) {
 480		retval = -ENODEV;
 481		goto err_free_urb;
 482	}
 483
 484	if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
 485	    hdm_add_padding(mdev, channel, mbo)) {
 486		retval = -EINVAL;
 487		goto err_free_urb;
 488	}
 489
 490	urb->transfer_dma = mbo->bus_address;
 491	virt_address = mbo->virt_address;
 492	length = mbo->buffer_length;
 493
 494	if (conf->direction & MOST_CH_TX) {
 495		usb_fill_bulk_urb(urb, mdev->usb_device,
 496				  usb_sndbulkpipe(mdev->usb_device,
 497						  mdev->ep_address[channel]),
 498				  virt_address,
 499				  length,
 500				  hdm_write_completion,
 501				  mbo);
 502		if (conf->data_type != MOST_CH_ISOC &&
 503		    conf->data_type != MOST_CH_SYNC)
 504			urb->transfer_flags |= URB_ZERO_PACKET;
 505	} else {
 506		usb_fill_bulk_urb(urb, mdev->usb_device,
 507				  usb_rcvbulkpipe(mdev->usb_device,
 508						  mdev->ep_address[channel]),
 509				  virt_address,
 510				  length + conf->extra_len,
 511				  hdm_read_completion,
 512				  mbo);
 513	}
 514	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 515
 516	usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
 517
 518	retval = usb_submit_urb(urb, GFP_KERNEL);
 519	if (retval) {
 520		dev_err(&mdev->usb_device->dev,
 521			"URB submit failed with error %d.\n", retval);
 522		goto err_unanchor_urb;
 523	}
 524	mutex_unlock(&mdev->io_mutex);
 525	return 0;
 526
 527err_unanchor_urb:
 528	usb_unanchor_urb(urb);
 529err_free_urb:
 530	usb_free_urb(urb);
 531	mutex_unlock(&mdev->io_mutex);
 532	return retval;
 533}
 534
 535static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
 536{
 537	struct most_dev *mdev = to_mdev(mbo->ifp);
 538
 539	return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
 540				  &mbo->bus_address);
 541}
 542
 543static void hdm_dma_free(struct mbo *mbo, u32 size)
 544{
 545	struct most_dev *mdev = to_mdev(mbo->ifp);
 546
 547	usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
 548			  mbo->bus_address);
 549}
 550
 551/**
 552 * hdm_configure_channel - receive channel configuration from core
 553 * @iface: interface
 554 * @channel: channel ID
 555 * @conf: structure that holds the configuration information
 556 *
 557 * The attached network interface controller (NIC) supports a padding mode
 558 * to avoid short packets on USB, hence increasing the performance due to a
 559 * lower interrupt load. This mode is default for synchronous data and can
 560 * be switched on for isochronous data. In case padding is active the
 561 * driver needs to know the frame size of the payload in order to calculate
 562 * the number of bytes it needs to pad when transmitting or to cut off when
 563 * receiving data.
 564 *
 565 */
 566static int hdm_configure_channel(struct most_interface *iface, int channel,
 567				 struct most_channel_config *conf)
 568{
 569	unsigned int num_frames;
 570	unsigned int frame_size;
 571	struct most_dev *mdev = to_mdev(iface);
 572	struct device *dev = &mdev->usb_device->dev;
 573
 574	if (!conf) {
 575		dev_err(dev, "Bad config pointer.\n");
 576		return -EINVAL;
 577	}
 578	if (channel < 0 || channel >= iface->num_channels) {
 579		dev_err(dev, "Channel ID out of range.\n");
 580		return -EINVAL;
 581	}
 582
 583	mdev->is_channel_healthy[channel] = true;
 584	mdev->clear_work[channel].channel = channel;
 585	mdev->clear_work[channel].mdev = mdev;
 586	INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
 587
 588	if (!conf->num_buffers || !conf->buffer_size) {
 589		dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
 590		return -EINVAL;
 591	}
 592
 593	if (conf->data_type != MOST_CH_SYNC &&
 594	    !(conf->data_type == MOST_CH_ISOC &&
 595	      conf->packets_per_xact != 0xFF)) {
 596		mdev->padding_active[channel] = false;
 597		/*
 598		 * Since the NIC's padding mode is not going to be
 599		 * used, we can skip the frame size calculations and
 600		 * move directly on to exit.
 601		 */
 602		goto exit;
 603	}
 604
 605	mdev->padding_active[channel] = true;
 606
 607	frame_size = get_stream_frame_size(&mdev->dev, conf);
 608	if (frame_size == 0 || frame_size > USB_MTU) {
 609		dev_warn(dev, "Misconfig: frame size wrong\n");
 610		return -EINVAL;
 611	}
 612
 613	num_frames = conf->buffer_size / frame_size;
 614
 615	if (conf->buffer_size % frame_size) {
 616		u16 old_size = conf->buffer_size;
 617
 618		conf->buffer_size = num_frames * frame_size;
 619		dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
 620			 mdev->suffix[channel], old_size, conf->buffer_size);
 621	}
 622
 623	/* calculate extra length to comply w/ HW padding */
 624	conf->extra_len = num_frames * (USB_MTU - frame_size);
 625
 626exit:
 627	mdev->conf[channel] = *conf;
 628	if (conf->data_type == MOST_CH_ASYNC) {
 629		u16 ep = mdev->ep_address[channel];
 630
 631		if (start_sync_ep(mdev->usb_device, ep) < 0)
 632			dev_warn(dev, "sync for ep%02x failed", ep);
 633	}
 634	return 0;
 635}
 636
 637/**
 638 * hdm_request_netinfo - request network information
 639 * @iface: pointer to interface
 640 * @channel: channel ID
 641 *
 642 * This is used as trigger to set up the link status timer that
 643 * polls for the NI state of the INIC every 2 seconds.
 644 *
 645 */
 646static void hdm_request_netinfo(struct most_interface *iface, int channel,
 647				void (*on_netinfo)(struct most_interface *,
 648						   unsigned char,
 649						   unsigned char *))
 650{
 651	struct most_dev *mdev = to_mdev(iface);
 652
 653	mdev->on_netinfo = on_netinfo;
 654	if (!on_netinfo)
 655		return;
 656
 657	mdev->link_stat_timer.expires = jiffies + HZ;
 658	mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
 659}
 660
 661/**
 662 * link_stat_timer_handler - schedule work obtaining mac address and link status
 663 * @data: pointer to USB device instance
 664 *
 665 * The handler runs in interrupt context. That's why we need to defer the
 666 * tasks to a work queue.
 667 */
 668static void link_stat_timer_handler(struct timer_list *t)
 669{
 670	struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
 671
 672	schedule_work(&mdev->poll_work_obj);
 673	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
 674	add_timer(&mdev->link_stat_timer);
 675}
 676
 677/**
 678 * wq_netinfo - work queue function to deliver latest networking information
 679 * @wq_obj: object that holds data for our deferred work to do
 680 *
 681 * This retrieves the network interface status of the USB INIC
 682 */
 683static void wq_netinfo(struct work_struct *wq_obj)
 684{
 685	struct most_dev *mdev = to_mdev_from_work(wq_obj);
 686	struct usb_device *usb_device = mdev->usb_device;
 687	struct device *dev = &usb_device->dev;
 688	u16 hi, mi, lo, link;
 689	u8 hw_addr[6];
 690
 691	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
 692		dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
 693		return;
 694	}
 695
 696	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
 697		dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
 698		return;
 699	}
 700
 701	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
 702		dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
 703		return;
 704	}
 705
 706	if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
 707		dev_err(dev, "Vendor request 'link status' failed\n");
 708		return;
 709	}
 710
 711	hw_addr[0] = hi >> 8;
 712	hw_addr[1] = hi;
 713	hw_addr[2] = mi >> 8;
 714	hw_addr[3] = mi;
 715	hw_addr[4] = lo >> 8;
 716	hw_addr[5] = lo;
 717
 718	if (mdev->on_netinfo)
 719		mdev->on_netinfo(&mdev->iface, link, hw_addr);
 720}
 721
 722/**
 723 * wq_clear_halt - work queue function
 724 * @wq_obj: work_struct object to execute
 725 *
 726 * This sends a clear_halt to the given USB pipe.
 727 */
 728static void wq_clear_halt(struct work_struct *wq_obj)
 729{
 730	struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
 731	struct most_dev *mdev = clear_work->mdev;
 732	unsigned int channel = clear_work->channel;
 733	int pipe = clear_work->pipe;
 734	int snd_pipe;
 735	int peer;
 736
 737	mutex_lock(&mdev->io_mutex);
 738	most_stop_enqueue(&mdev->iface, channel);
 739	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 740	if (usb_clear_halt(mdev->usb_device, pipe))
 741		dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
 742
 743	/* If the functional Stall condition has been set on an
 744	 * asynchronous rx channel, we need to clear the tx channel
 745	 * too, since the hardware runs its clean-up sequence on both
 746	 * channels, as they are physically one on the network.
 747	 *
 748	 * The USB interface that exposes the asynchronous channels
 749	 * contains always two endpoints, and two only.
 750	 */
 751	if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
 752	    mdev->conf[channel].direction == MOST_CH_RX) {
 753		if (channel == 0)
 754			peer = 1;
 755		else
 756			peer = 0;
 757		snd_pipe = usb_sndbulkpipe(mdev->usb_device,
 758					   mdev->ep_address[peer]);
 759		usb_clear_halt(mdev->usb_device, snd_pipe);
 760	}
 761	mdev->is_channel_healthy[channel] = true;
 762	most_resume_enqueue(&mdev->iface, channel);
 763	mutex_unlock(&mdev->io_mutex);
 764}
 765
 766/**
 767 * hdm_usb_fops - file operation table for USB driver
 768 */
 769static const struct file_operations hdm_usb_fops = {
 770	.owner = THIS_MODULE,
 771};
 772
 773/**
 774 * usb_device_id - ID table for HCD device probing
 775 */
 776static const struct usb_device_id usbid[] = {
 777	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
 778	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
 779	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
 780	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
 781	{ } /* Terminating entry */
 782};
 783
 784struct regs {
 785	const char *name;
 786	u16 reg;
 787};
 788
 789static const struct regs ro_regs[] = {
 790	{ "ni_state", DRCI_REG_NI_STATE },
 791	{ "packet_bandwidth", DRCI_REG_PACKET_BW },
 792	{ "node_address", DRCI_REG_NODE_ADDR },
 793	{ "node_position", DRCI_REG_NODE_POS },
 794};
 795
 796static const struct regs rw_regs[] = {
 797	{ "mep_filter", DRCI_REG_MEP_FILTER },
 798	{ "mep_hash0", DRCI_REG_HASH_TBL0 },
 799	{ "mep_hash1", DRCI_REG_HASH_TBL1 },
 800	{ "mep_hash2", DRCI_REG_HASH_TBL2 },
 801	{ "mep_hash3", DRCI_REG_HASH_TBL3 },
 802	{ "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
 803	{ "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
 804	{ "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
 805};
 806
 807static int get_stat_reg_addr(const struct regs *regs, int size,
 808			     const char *name, u16 *reg_addr)
 809{
 810	int i;
 811
 812	for (i = 0; i < size; i++) {
 813		if (sysfs_streq(name, regs[i].name)) {
 814			*reg_addr = regs[i].reg;
 815			return 0;
 816		}
 817	}
 818	return -EINVAL;
 819}
 820
 821#define get_static_reg_addr(regs, name, reg_addr) \
 822	get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
 823
 824static ssize_t value_show(struct device *dev, struct device_attribute *attr,
 825			  char *buf)
 826{
 827	const char *name = attr->attr.name;
 828	struct most_dci_obj *dci_obj = to_dci_obj(dev);
 829	u16 val;
 830	u16 reg_addr;
 831	int err;
 832
 833	if (sysfs_streq(name, "arb_address"))
 834		return sysfs_emit(buf, "%04x\n", dci_obj->reg_addr);
 835
 836	if (sysfs_streq(name, "arb_value"))
 837		reg_addr = dci_obj->reg_addr;
 838	else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
 839		 get_static_reg_addr(rw_regs, name, &reg_addr))
 840		return -EINVAL;
 841
 842	err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
 843	if (err < 0)
 844		return err;
 845
 846	return sysfs_emit(buf, "%04x\n", val);
 847}
 848
 849static ssize_t value_store(struct device *dev, struct device_attribute *attr,
 850			   const char *buf, size_t count)
 851{
 852	u16 val;
 853	u16 reg_addr;
 854	const char *name = attr->attr.name;
 855	struct most_dci_obj *dci_obj = to_dci_obj(dev);
 856	struct usb_device *usb_dev = dci_obj->usb_device;
 857	int err;
 858
 859	err = kstrtou16(buf, 16, &val);
 860	if (err)
 861		return err;
 862
 863	if (sysfs_streq(name, "arb_address")) {
 864		dci_obj->reg_addr = val;
 865		return count;
 866	}
 867
 868	if (sysfs_streq(name, "arb_value"))
 869		err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
 870	else if (sysfs_streq(name, "sync_ep"))
 871		err = start_sync_ep(usb_dev, val);
 872	else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
 873		err = drci_wr_reg(usb_dev, reg_addr, val);
 874	else
 875		return -EINVAL;
 876
 877	if (err < 0)
 878		return err;
 879
 880	return count;
 881}
 882
 883static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
 884static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
 885static DEVICE_ATTR(node_address, 0444, value_show, NULL);
 886static DEVICE_ATTR(node_position, 0444, value_show, NULL);
 887static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
 888static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
 889static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
 890static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
 891static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
 892static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
 893static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
 894static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
 895static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
 896static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
 897static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
 898
 899static struct attribute *dci_attrs[] = {
 900	&dev_attr_ni_state.attr,
 901	&dev_attr_packet_bandwidth.attr,
 902	&dev_attr_node_address.attr,
 903	&dev_attr_node_position.attr,
 904	&dev_attr_sync_ep.attr,
 905	&dev_attr_mep_filter.attr,
 906	&dev_attr_mep_hash0.attr,
 907	&dev_attr_mep_hash1.attr,
 908	&dev_attr_mep_hash2.attr,
 909	&dev_attr_mep_hash3.attr,
 910	&dev_attr_mep_eui48_hi.attr,
 911	&dev_attr_mep_eui48_mi.attr,
 912	&dev_attr_mep_eui48_lo.attr,
 913	&dev_attr_arb_address.attr,
 914	&dev_attr_arb_value.attr,
 915	NULL,
 916};
 917
 918ATTRIBUTE_GROUPS(dci);
 919
 920static void release_dci(struct device *dev)
 921{
 922	struct most_dci_obj *dci = to_dci_obj(dev);
 923
 924	put_device(dev->parent);
 925	kfree(dci);
 926}
 927
 928static void release_mdev(struct device *dev)
 929{
 930	struct most_dev *mdev = to_mdev_from_dev(dev);
 931
 932	kfree(mdev);
 933}
 934/**
 935 * hdm_probe - probe function of USB device driver
 936 * @interface: Interface of the attached USB device
 937 * @id: Pointer to the USB ID table.
 938 *
 939 * This allocates and initializes the device instance, adds the new
 940 * entry to the internal list, scans the USB descriptors and registers
 941 * the interface with the core.
 942 * Additionally, the DCI objects are created and the hardware is sync'd.
 943 *
 944 * Return 0 on success. In case of an error a negative number is returned.
 945 */
 946static int
 947hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
 948{
 949	struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
 950	struct usb_device *usb_dev = interface_to_usbdev(interface);
 951	struct device *dev = &usb_dev->dev;
 952	struct most_dev *mdev;
 953	unsigned int i;
 954	unsigned int num_endpoints;
 955	struct most_channel_capability *tmp_cap;
 956	struct usb_endpoint_descriptor *ep_desc;
 957	int ret = -ENOMEM;
 958
 959	mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
 960	if (!mdev)
 961		return -ENOMEM;
 962
 963	usb_set_intfdata(interface, mdev);
 964	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
 965	if (num_endpoints > MAX_NUM_ENDPOINTS) {
 966		kfree(mdev);
 967		return -EINVAL;
 968	}
 969	mutex_init(&mdev->io_mutex);
 970	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
 971	timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
 972
 973	mdev->usb_device = usb_dev;
 974	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
 975
 976	mdev->iface.mod = hdm_usb_fops.owner;
 977	mdev->iface.dev = &mdev->dev;
 978	mdev->iface.driver_dev = &interface->dev;
 979	mdev->iface.interface = ITYPE_USB;
 980	mdev->iface.configure = hdm_configure_channel;
 981	mdev->iface.request_netinfo = hdm_request_netinfo;
 982	mdev->iface.enqueue = hdm_enqueue;
 983	mdev->iface.poison_channel = hdm_poison_channel;
 984	mdev->iface.dma_alloc = hdm_dma_alloc;
 985	mdev->iface.dma_free = hdm_dma_free;
 986	mdev->iface.description = mdev->description;
 987	mdev->iface.num_channels = num_endpoints;
 988
 989	snprintf(mdev->description, sizeof(mdev->description),
 990		 "%d-%s:%d.%d",
 991		 usb_dev->bus->busnum,
 992		 usb_dev->devpath,
 993		 usb_dev->config->desc.bConfigurationValue,
 994		 usb_iface_desc->desc.bInterfaceNumber);
 995
 996	mdev->dev.init_name = mdev->description;
 997	mdev->dev.parent = &interface->dev;
 998	mdev->dev.release = release_mdev;
 999	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
1000	if (!mdev->conf)
1001		goto err_free_mdev;
1002
1003	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1004	if (!mdev->cap)
1005		goto err_free_conf;
1006
1007	mdev->iface.channel_vector = mdev->cap;
1008	mdev->ep_address =
1009		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1010	if (!mdev->ep_address)
1011		goto err_free_cap;
1012
1013	mdev->busy_urbs =
1014		kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1015	if (!mdev->busy_urbs)
1016		goto err_free_ep_address;
1017
1018	tmp_cap = mdev->cap;
1019	for (i = 0; i < num_endpoints; i++) {
1020		ep_desc = &usb_iface_desc->endpoint[i].desc;
1021		mdev->ep_address[i] = ep_desc->bEndpointAddress;
1022		mdev->padding_active[i] = false;
1023		mdev->is_channel_healthy[i] = true;
1024
1025		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1026			 mdev->ep_address[i]);
1027
1028		tmp_cap->name_suffix = &mdev->suffix[i][0];
1029		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1030		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1031		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1032		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1033		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1034				     MOST_CH_ISOC | MOST_CH_SYNC;
1035		if (usb_endpoint_dir_in(ep_desc))
1036			tmp_cap->direction = MOST_CH_RX;
1037		else
1038			tmp_cap->direction = MOST_CH_TX;
1039		tmp_cap++;
1040		init_usb_anchor(&mdev->busy_urbs[i]);
1041		spin_lock_init(&mdev->channel_lock[i]);
1042	}
1043	dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1044		le16_to_cpu(usb_dev->descriptor.idVendor),
1045		le16_to_cpu(usb_dev->descriptor.idProduct),
1046		usb_dev->bus->busnum,
1047		usb_dev->devnum);
1048
1049	dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1050		usb_dev->bus->busnum,
1051		usb_dev->devpath,
1052		usb_dev->config->desc.bConfigurationValue,
1053		usb_iface_desc->desc.bInterfaceNumber);
1054
1055	ret = most_register_interface(&mdev->iface);
1056	if (ret)
1057		goto err_free_busy_urbs;
1058
1059	mutex_lock(&mdev->io_mutex);
1060	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1061	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1062	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1063		mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1064		if (!mdev->dci) {
1065			mutex_unlock(&mdev->io_mutex);
1066			most_deregister_interface(&mdev->iface);
1067			ret = -ENOMEM;
1068			goto err_free_busy_urbs;
1069		}
1070
1071		mdev->dci->dev.init_name = "dci";
1072		mdev->dci->dev.parent = get_device(mdev->iface.dev);
1073		mdev->dci->dev.groups = dci_groups;
1074		mdev->dci->dev.release = release_dci;
1075		if (device_register(&mdev->dci->dev)) {
1076			mutex_unlock(&mdev->io_mutex);
1077			most_deregister_interface(&mdev->iface);
1078			ret = -ENOMEM;
1079			goto err_free_dci;
1080		}
1081		mdev->dci->usb_device = mdev->usb_device;
1082	}
1083	mutex_unlock(&mdev->io_mutex);
1084	return 0;
1085err_free_dci:
1086	put_device(&mdev->dci->dev);
1087err_free_busy_urbs:
1088	kfree(mdev->busy_urbs);
1089err_free_ep_address:
1090	kfree(mdev->ep_address);
1091err_free_cap:
1092	kfree(mdev->cap);
1093err_free_conf:
1094	kfree(mdev->conf);
1095err_free_mdev:
1096	put_device(&mdev->dev);
1097	return ret;
1098}
1099
1100/**
1101 * hdm_disconnect - disconnect function of USB device driver
1102 * @interface: Interface of the attached USB device
1103 *
1104 * This deregisters the interface with the core, removes the kernel timer
1105 * and frees resources.
1106 *
1107 * Context: hub kernel thread
1108 */
1109static void hdm_disconnect(struct usb_interface *interface)
1110{
1111	struct most_dev *mdev = usb_get_intfdata(interface);
1112
1113	mutex_lock(&mdev->io_mutex);
1114	usb_set_intfdata(interface, NULL);
1115	mdev->usb_device = NULL;
1116	mutex_unlock(&mdev->io_mutex);
1117
1118	del_timer_sync(&mdev->link_stat_timer);
1119	cancel_work_sync(&mdev->poll_work_obj);
1120
1121	if (mdev->dci)
1122		device_unregister(&mdev->dci->dev);
1123	most_deregister_interface(&mdev->iface);
1124
1125	kfree(mdev->busy_urbs);
1126	kfree(mdev->cap);
1127	kfree(mdev->conf);
1128	kfree(mdev->ep_address);
1129	put_device(&mdev->dci->dev);
1130	put_device(&mdev->dev);
1131}
1132
1133static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
1134{
1135	struct most_dev *mdev = usb_get_intfdata(interface);
1136	int i;
1137
1138	mutex_lock(&mdev->io_mutex);
1139	for (i = 0; i < mdev->iface.num_channels; i++) {
1140		most_stop_enqueue(&mdev->iface, i);
1141		usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
1142	}
1143	mutex_unlock(&mdev->io_mutex);
1144	return 0;
1145}
1146
1147static int hdm_resume(struct usb_interface *interface)
1148{
1149	struct most_dev *mdev = usb_get_intfdata(interface);
1150	int i;
1151
1152	mutex_lock(&mdev->io_mutex);
1153	for (i = 0; i < mdev->iface.num_channels; i++)
1154		most_resume_enqueue(&mdev->iface, i);
1155	mutex_unlock(&mdev->io_mutex);
1156	return 0;
1157}
1158
1159static struct usb_driver hdm_usb = {
1160	.name = "hdm_usb",
1161	.id_table = usbid,
1162	.probe = hdm_probe,
1163	.disconnect = hdm_disconnect,
1164	.resume = hdm_resume,
1165	.suspend = hdm_suspend,
1166};
1167
1168module_usb_driver(hdm_usb);
1169MODULE_LICENSE("GPL");
1170MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1171MODULE_DESCRIPTION("HDM_4_USB");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * usb.c - Hardware dependent module for USB
   4 *
   5 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/fs.h>
  10#include <linux/usb.h>
  11#include <linux/slab.h>
  12#include <linux/init.h>
  13#include <linux/cdev.h>
  14#include <linux/device.h>
  15#include <linux/list.h>
  16#include <linux/completion.h>
  17#include <linux/mutex.h>
  18#include <linux/spinlock.h>
  19#include <linux/interrupt.h>
  20#include <linux/workqueue.h>
  21#include <linux/sysfs.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/etherdevice.h>
  24#include <linux/uaccess.h>
  25#include <linux/most.h>
  26
  27#define USB_MTU			512
  28#define NO_ISOCHRONOUS_URB	0
  29#define AV_PACKETS_PER_XACT	2
  30#define BUF_CHAIN_SIZE		0xFFFF
  31#define MAX_NUM_ENDPOINTS	30
  32#define MAX_SUFFIX_LEN		10
  33#define MAX_STRING_LEN		80
  34#define MAX_BUF_SIZE		0xFFFF
  35
  36#define USB_VENDOR_ID_SMSC	0x0424  /* VID: SMSC */
  37#define USB_DEV_ID_BRDG		0xC001  /* PID: USB Bridge */
  38#define USB_DEV_ID_OS81118	0xCF18  /* PID: USB OS81118 */
  39#define USB_DEV_ID_OS81119	0xCF19  /* PID: USB OS81119 */
  40#define USB_DEV_ID_OS81210	0xCF30  /* PID: USB OS81210 */
  41/* DRCI Addresses */
  42#define DRCI_REG_NI_STATE	0x0100
  43#define DRCI_REG_PACKET_BW	0x0101
  44#define DRCI_REG_NODE_ADDR	0x0102
  45#define DRCI_REG_NODE_POS	0x0103
  46#define DRCI_REG_MEP_FILTER	0x0140
  47#define DRCI_REG_HASH_TBL0	0x0141
  48#define DRCI_REG_HASH_TBL1	0x0142
  49#define DRCI_REG_HASH_TBL2	0x0143
  50#define DRCI_REG_HASH_TBL3	0x0144
  51#define DRCI_REG_HW_ADDR_HI	0x0145
  52#define DRCI_REG_HW_ADDR_MI	0x0146
  53#define DRCI_REG_HW_ADDR_LO	0x0147
  54#define DRCI_REG_BASE		0x1100
  55#define DRCI_COMMAND		0x02
  56#define DRCI_READ_REQ		0xA0
  57#define DRCI_WRITE_REQ		0xA1
  58
  59/**
  60 * struct most_dci_obj - Direct Communication Interface
  61 * @kobj:position in sysfs
  62 * @usb_device: pointer to the usb device
  63 * @reg_addr: register address for arbitrary DCI access
  64 */
  65struct most_dci_obj {
  66	struct device dev;
  67	struct usb_device *usb_device;
  68	u16 reg_addr;
  69};
  70
  71#define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
  72
  73struct most_dev;
  74
  75struct clear_hold_work {
  76	struct work_struct ws;
  77	struct most_dev *mdev;
  78	unsigned int channel;
  79	int pipe;
  80};
  81
  82#define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
  83
  84/**
  85 * struct most_dev - holds all usb interface specific stuff
  86 * @usb_device: pointer to usb device
  87 * @iface: hardware interface
  88 * @cap: channel capabilities
  89 * @conf: channel configuration
  90 * @dci: direct communication interface of hardware
  91 * @ep_address: endpoint address table
  92 * @description: device description
  93 * @suffix: suffix for channel name
  94 * @channel_lock: synchronize channel access
  95 * @padding_active: indicates channel uses padding
  96 * @is_channel_healthy: health status table of each channel
  97 * @busy_urbs: list of anchored items
  98 * @io_mutex: synchronize I/O with disconnect
  99 * @link_stat_timer: timer for link status reports
 100 * @poll_work_obj: work for polling link status
 101 */
 102struct most_dev {
 103	struct device dev;
 104	struct usb_device *usb_device;
 105	struct most_interface iface;
 106	struct most_channel_capability *cap;
 107	struct most_channel_config *conf;
 108	struct most_dci_obj *dci;
 109	u8 *ep_address;
 110	char description[MAX_STRING_LEN];
 111	char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
 112	spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
 113	bool padding_active[MAX_NUM_ENDPOINTS];
 114	bool is_channel_healthy[MAX_NUM_ENDPOINTS];
 115	struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
 116	struct usb_anchor *busy_urbs;
 117	struct mutex io_mutex;
 118	struct timer_list link_stat_timer;
 119	struct work_struct poll_work_obj;
 120	void (*on_netinfo)(struct most_interface *most_iface,
 121			   unsigned char link_state, unsigned char *addrs);
 122};
 123
 124#define to_mdev(d) container_of(d, struct most_dev, iface)
 125#define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
 126#define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
 127
 128static void wq_clear_halt(struct work_struct *wq_obj);
 129static void wq_netinfo(struct work_struct *wq_obj);
 130
 131/**
 132 * drci_rd_reg - read a DCI register
 133 * @dev: usb device
 134 * @reg: register address
 135 * @buf: buffer to store data
 136 *
 137 * This is reads data from INIC's direct register communication interface
 138 */
 139static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
 140{
 141	int retval;
 142	__le16 *dma_buf;
 143	u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
 144
 145	dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
 146	if (!dma_buf)
 147		return -ENOMEM;
 148
 149	retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 150				 DRCI_READ_REQ, req_type,
 151				 0x0000,
 152				 reg, dma_buf, sizeof(*dma_buf), 5 * HZ);
 
 153	*buf = le16_to_cpu(*dma_buf);
 154	kfree(dma_buf);
 155
 156	if (retval < 0)
 157		return retval;
 158	return 0;
 159}
 160
 161/**
 162 * drci_wr_reg - write a DCI register
 163 * @dev: usb device
 164 * @reg: register address
 165 * @data: data to write
 166 *
 167 * This is writes data to INIC's direct register communication interface
 168 */
 169static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
 170{
 171	return usb_control_msg(dev,
 172			       usb_sndctrlpipe(dev, 0),
 173			       DRCI_WRITE_REQ,
 174			       USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
 175			       data,
 176			       reg,
 177			       NULL,
 178			       0,
 179			       5 * HZ);
 180}
 181
 182static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
 183{
 184	return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
 185}
 186
 187/**
 188 * get_stream_frame_size - calculate frame size of current configuration
 189 * @dev: device structure
 190 * @cfg: channel configuration
 191 */
 192static unsigned int get_stream_frame_size(struct device *dev,
 193					  struct most_channel_config *cfg)
 194{
 195	unsigned int frame_size;
 196	unsigned int sub_size = cfg->subbuffer_size;
 197
 198	if (!sub_size) {
 199		dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
 200		return 0;
 201	}
 202	switch (cfg->data_type) {
 203	case MOST_CH_ISOC:
 204		frame_size = AV_PACKETS_PER_XACT * sub_size;
 205		break;
 206	case MOST_CH_SYNC:
 207		if (cfg->packets_per_xact == 0) {
 208			dev_warn(dev, "Misconfig: Packets per XACT zero\n");
 209			frame_size = 0;
 210		} else if (cfg->packets_per_xact == 0xFF) {
 211			frame_size = (USB_MTU / sub_size) * sub_size;
 212		} else {
 213			frame_size = cfg->packets_per_xact * sub_size;
 214		}
 215		break;
 216	default:
 217		dev_warn(dev, "Query frame size of non-streaming channel\n");
 218		frame_size = 0;
 219		break;
 220	}
 221	return frame_size;
 222}
 223
 224/**
 225 * hdm_poison_channel - mark buffers of this channel as invalid
 226 * @iface: pointer to the interface
 227 * @channel: channel ID
 228 *
 229 * This unlinks all URBs submitted to the HCD,
 230 * calls the associated completion function of the core and removes
 231 * them from the list.
 232 *
 233 * Returns 0 on success or error code otherwise.
 234 */
 235static int hdm_poison_channel(struct most_interface *iface, int channel)
 236{
 237	struct most_dev *mdev = to_mdev(iface);
 238	unsigned long flags;
 239	spinlock_t *lock; /* temp. lock */
 240
 241	if (channel < 0 || channel >= iface->num_channels) {
 242		dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
 243		return -ECHRNG;
 244	}
 245
 246	lock = mdev->channel_lock + channel;
 247	spin_lock_irqsave(lock, flags);
 248	mdev->is_channel_healthy[channel] = false;
 249	spin_unlock_irqrestore(lock, flags);
 250
 251	cancel_work_sync(&mdev->clear_work[channel].ws);
 252
 253	mutex_lock(&mdev->io_mutex);
 254	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 255	if (mdev->padding_active[channel])
 256		mdev->padding_active[channel] = false;
 257
 258	if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
 259		del_timer_sync(&mdev->link_stat_timer);
 260		cancel_work_sync(&mdev->poll_work_obj);
 261	}
 262	mutex_unlock(&mdev->io_mutex);
 263	return 0;
 264}
 265
 266/**
 267 * hdm_add_padding - add padding bytes
 268 * @mdev: most device
 269 * @channel: channel ID
 270 * @mbo: buffer object
 271 *
 272 * This inserts the INIC hardware specific padding bytes into a streaming
 273 * channel's buffer
 274 */
 275static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
 276{
 277	struct most_channel_config *conf = &mdev->conf[channel];
 278	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
 279	unsigned int j, num_frames;
 280
 281	if (!frame_size)
 282		return -EINVAL;
 283	num_frames = mbo->buffer_length / frame_size;
 284
 285	if (num_frames < 1) {
 286		dev_err(&mdev->usb_device->dev,
 287			"Missed minimal transfer unit.\n");
 288		return -EINVAL;
 289	}
 290
 291	for (j = num_frames - 1; j > 0; j--)
 292		memmove(mbo->virt_address + j * USB_MTU,
 293			mbo->virt_address + j * frame_size,
 294			frame_size);
 295	mbo->buffer_length = num_frames * USB_MTU;
 296	return 0;
 297}
 298
 299/**
 300 * hdm_remove_padding - remove padding bytes
 301 * @mdev: most device
 302 * @channel: channel ID
 303 * @mbo: buffer object
 304 *
 305 * This takes the INIC hardware specific padding bytes off a streaming
 306 * channel's buffer.
 307 */
 308static int hdm_remove_padding(struct most_dev *mdev, int channel,
 309			      struct mbo *mbo)
 310{
 311	struct most_channel_config *const conf = &mdev->conf[channel];
 312	unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
 313	unsigned int j, num_frames;
 314
 315	if (!frame_size)
 316		return -EINVAL;
 317	num_frames = mbo->processed_length / USB_MTU;
 318
 319	for (j = 1; j < num_frames; j++)
 320		memmove(mbo->virt_address + frame_size * j,
 321			mbo->virt_address + USB_MTU * j,
 322			frame_size);
 323
 324	mbo->processed_length = frame_size * num_frames;
 325	return 0;
 326}
 327
 328/**
 329 * hdm_write_completion - completion function for submitted Tx URBs
 330 * @urb: the URB that has been completed
 331 *
 332 * This checks the status of the completed URB. In case the URB has been
 333 * unlinked before, it is immediately freed. On any other error the MBO
 334 * transfer flag is set. On success it frees allocated resources and calls
 335 * the completion function.
 336 *
 337 * Context: interrupt!
 338 */
 339static void hdm_write_completion(struct urb *urb)
 340{
 341	struct mbo *mbo = urb->context;
 342	struct most_dev *mdev = to_mdev(mbo->ifp);
 343	unsigned int channel = mbo->hdm_channel_id;
 344	spinlock_t *lock = mdev->channel_lock + channel;
 345	unsigned long flags;
 346
 347	spin_lock_irqsave(lock, flags);
 348
 349	mbo->processed_length = 0;
 350	mbo->status = MBO_E_INVAL;
 351	if (likely(mdev->is_channel_healthy[channel])) {
 352		switch (urb->status) {
 353		case 0:
 354		case -ESHUTDOWN:
 355			mbo->processed_length = urb->actual_length;
 356			mbo->status = MBO_SUCCESS;
 357			break;
 358		case -EPIPE:
 359			dev_warn(&mdev->usb_device->dev,
 360				 "Broken pipe on ep%02x\n",
 361				 mdev->ep_address[channel]);
 362			mdev->is_channel_healthy[channel] = false;
 363			mdev->clear_work[channel].pipe = urb->pipe;
 364			schedule_work(&mdev->clear_work[channel].ws);
 365			break;
 366		case -ENODEV:
 367		case -EPROTO:
 368			mbo->status = MBO_E_CLOSE;
 369			break;
 370		}
 371	}
 372
 373	spin_unlock_irqrestore(lock, flags);
 374
 375	if (likely(mbo->complete))
 376		mbo->complete(mbo);
 377	usb_free_urb(urb);
 378}
 379
 380/**
 381 * hdm_read_completion - completion function for submitted Rx URBs
 382 * @urb: the URB that has been completed
 383 *
 384 * This checks the status of the completed URB. In case the URB has been
 385 * unlinked before it is immediately freed. On any other error the MBO transfer
 386 * flag is set. On success it frees allocated resources, removes
 387 * padding bytes -if necessary- and calls the completion function.
 388 *
 389 * Context: interrupt!
 390 */
 391static void hdm_read_completion(struct urb *urb)
 392{
 393	struct mbo *mbo = urb->context;
 394	struct most_dev *mdev = to_mdev(mbo->ifp);
 395	unsigned int channel = mbo->hdm_channel_id;
 396	struct device *dev = &mdev->usb_device->dev;
 397	spinlock_t *lock = mdev->channel_lock + channel;
 398	unsigned long flags;
 399
 400	spin_lock_irqsave(lock, flags);
 401
 402	mbo->processed_length = 0;
 403	mbo->status = MBO_E_INVAL;
 404	if (likely(mdev->is_channel_healthy[channel])) {
 405		switch (urb->status) {
 406		case 0:
 407		case -ESHUTDOWN:
 408			mbo->processed_length = urb->actual_length;
 409			mbo->status = MBO_SUCCESS;
 410			if (mdev->padding_active[channel] &&
 411			    hdm_remove_padding(mdev, channel, mbo)) {
 412				mbo->processed_length = 0;
 413				mbo->status = MBO_E_INVAL;
 414			}
 415			break;
 416		case -EPIPE:
 417			dev_warn(dev, "Broken pipe on ep%02x\n",
 418				 mdev->ep_address[channel]);
 419			mdev->is_channel_healthy[channel] = false;
 420			mdev->clear_work[channel].pipe = urb->pipe;
 421			schedule_work(&mdev->clear_work[channel].ws);
 422			break;
 423		case -ENODEV:
 424		case -EPROTO:
 425			mbo->status = MBO_E_CLOSE;
 426			break;
 427		case -EOVERFLOW:
 428			dev_warn(dev, "Babble on ep%02x\n",
 429				 mdev->ep_address[channel]);
 430			break;
 431		}
 432	}
 433
 434	spin_unlock_irqrestore(lock, flags);
 435
 436	if (likely(mbo->complete))
 437		mbo->complete(mbo);
 438	usb_free_urb(urb);
 439}
 440
 441/**
 442 * hdm_enqueue - receive a buffer to be used for data transfer
 443 * @iface: interface to enqueue to
 444 * @channel: ID of the channel
 445 * @mbo: pointer to the buffer object
 446 *
 447 * This allocates a new URB and fills it according to the channel
 448 * that is being used for transmission of data. Before the URB is
 449 * submitted it is stored in the private anchor list.
 450 *
 451 * Returns 0 on success. On any error the URB is freed and a error code
 452 * is returned.
 453 *
 454 * Context: Could in _some_ cases be interrupt!
 455 */
 456static int hdm_enqueue(struct most_interface *iface, int channel,
 457		       struct mbo *mbo)
 458{
 459	struct most_dev *mdev = to_mdev(iface);
 460	struct most_channel_config *conf;
 461	int retval = 0;
 462	struct urb *urb;
 463	unsigned long length;
 464	void *virt_address;
 465
 466	if (!mbo)
 467		return -EINVAL;
 468	if (iface->num_channels <= channel || channel < 0)
 469		return -ECHRNG;
 470
 471	urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
 472	if (!urb)
 473		return -ENOMEM;
 474
 475	conf = &mdev->conf[channel];
 476
 477	mutex_lock(&mdev->io_mutex);
 478	if (!mdev->usb_device) {
 479		retval = -ENODEV;
 480		goto err_free_urb;
 481	}
 482
 483	if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
 484	    hdm_add_padding(mdev, channel, mbo)) {
 485		retval = -EINVAL;
 486		goto err_free_urb;
 487	}
 488
 489	urb->transfer_dma = mbo->bus_address;
 490	virt_address = mbo->virt_address;
 491	length = mbo->buffer_length;
 492
 493	if (conf->direction & MOST_CH_TX) {
 494		usb_fill_bulk_urb(urb, mdev->usb_device,
 495				  usb_sndbulkpipe(mdev->usb_device,
 496						  mdev->ep_address[channel]),
 497				  virt_address,
 498				  length,
 499				  hdm_write_completion,
 500				  mbo);
 501		if (conf->data_type != MOST_CH_ISOC &&
 502		    conf->data_type != MOST_CH_SYNC)
 503			urb->transfer_flags |= URB_ZERO_PACKET;
 504	} else {
 505		usb_fill_bulk_urb(urb, mdev->usb_device,
 506				  usb_rcvbulkpipe(mdev->usb_device,
 507						  mdev->ep_address[channel]),
 508				  virt_address,
 509				  length + conf->extra_len,
 510				  hdm_read_completion,
 511				  mbo);
 512	}
 513	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
 514
 515	usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
 516
 517	retval = usb_submit_urb(urb, GFP_KERNEL);
 518	if (retval) {
 519		dev_err(&mdev->usb_device->dev,
 520			"URB submit failed with error %d.\n", retval);
 521		goto err_unanchor_urb;
 522	}
 523	mutex_unlock(&mdev->io_mutex);
 524	return 0;
 525
 526err_unanchor_urb:
 527	usb_unanchor_urb(urb);
 528err_free_urb:
 529	usb_free_urb(urb);
 530	mutex_unlock(&mdev->io_mutex);
 531	return retval;
 532}
 533
 534static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
 535{
 536	struct most_dev *mdev = to_mdev(mbo->ifp);
 537
 538	return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
 539				  &mbo->bus_address);
 540}
 541
 542static void hdm_dma_free(struct mbo *mbo, u32 size)
 543{
 544	struct most_dev *mdev = to_mdev(mbo->ifp);
 545
 546	usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
 547			  mbo->bus_address);
 548}
 549
 550/**
 551 * hdm_configure_channel - receive channel configuration from core
 552 * @iface: interface
 553 * @channel: channel ID
 554 * @conf: structure that holds the configuration information
 555 *
 556 * The attached network interface controller (NIC) supports a padding mode
 557 * to avoid short packets on USB, hence increasing the performance due to a
 558 * lower interrupt load. This mode is default for synchronous data and can
 559 * be switched on for isochronous data. In case padding is active the
 560 * driver needs to know the frame size of the payload in order to calculate
 561 * the number of bytes it needs to pad when transmitting or to cut off when
 562 * receiving data.
 563 *
 564 */
 565static int hdm_configure_channel(struct most_interface *iface, int channel,
 566				 struct most_channel_config *conf)
 567{
 568	unsigned int num_frames;
 569	unsigned int frame_size;
 570	struct most_dev *mdev = to_mdev(iface);
 571	struct device *dev = &mdev->usb_device->dev;
 572
 573	if (!conf) {
 574		dev_err(dev, "Bad config pointer.\n");
 575		return -EINVAL;
 576	}
 577	if (channel < 0 || channel >= iface->num_channels) {
 578		dev_err(dev, "Channel ID out of range.\n");
 579		return -EINVAL;
 580	}
 581
 582	mdev->is_channel_healthy[channel] = true;
 583	mdev->clear_work[channel].channel = channel;
 584	mdev->clear_work[channel].mdev = mdev;
 585	INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
 586
 587	if (!conf->num_buffers || !conf->buffer_size) {
 588		dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
 589		return -EINVAL;
 590	}
 591
 592	if (conf->data_type != MOST_CH_SYNC &&
 593	    !(conf->data_type == MOST_CH_ISOC &&
 594	      conf->packets_per_xact != 0xFF)) {
 595		mdev->padding_active[channel] = false;
 596		/*
 597		 * Since the NIC's padding mode is not going to be
 598		 * used, we can skip the frame size calculations and
 599		 * move directly on to exit.
 600		 */
 601		goto exit;
 602	}
 603
 604	mdev->padding_active[channel] = true;
 605
 606	frame_size = get_stream_frame_size(&mdev->dev, conf);
 607	if (frame_size == 0 || frame_size > USB_MTU) {
 608		dev_warn(dev, "Misconfig: frame size wrong\n");
 609		return -EINVAL;
 610	}
 611
 612	num_frames = conf->buffer_size / frame_size;
 613
 614	if (conf->buffer_size % frame_size) {
 615		u16 old_size = conf->buffer_size;
 616
 617		conf->buffer_size = num_frames * frame_size;
 618		dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
 619			 mdev->suffix[channel], old_size, conf->buffer_size);
 620	}
 621
 622	/* calculate extra length to comply w/ HW padding */
 623	conf->extra_len = num_frames * (USB_MTU - frame_size);
 624
 625exit:
 626	mdev->conf[channel] = *conf;
 627	if (conf->data_type == MOST_CH_ASYNC) {
 628		u16 ep = mdev->ep_address[channel];
 629
 630		if (start_sync_ep(mdev->usb_device, ep) < 0)
 631			dev_warn(dev, "sync for ep%02x failed", ep);
 632	}
 633	return 0;
 634}
 635
 636/**
 637 * hdm_request_netinfo - request network information
 638 * @iface: pointer to interface
 639 * @channel: channel ID
 640 *
 641 * This is used as trigger to set up the link status timer that
 642 * polls for the NI state of the INIC every 2 seconds.
 643 *
 644 */
 645static void hdm_request_netinfo(struct most_interface *iface, int channel,
 646				void (*on_netinfo)(struct most_interface *,
 647						   unsigned char,
 648						   unsigned char *))
 649{
 650	struct most_dev *mdev = to_mdev(iface);
 651
 652	mdev->on_netinfo = on_netinfo;
 653	if (!on_netinfo)
 654		return;
 655
 656	mdev->link_stat_timer.expires = jiffies + HZ;
 657	mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
 658}
 659
 660/**
 661 * link_stat_timer_handler - schedule work obtaining mac address and link status
 662 * @data: pointer to USB device instance
 663 *
 664 * The handler runs in interrupt context. That's why we need to defer the
 665 * tasks to a work queue.
 666 */
 667static void link_stat_timer_handler(struct timer_list *t)
 668{
 669	struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
 670
 671	schedule_work(&mdev->poll_work_obj);
 672	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
 673	add_timer(&mdev->link_stat_timer);
 674}
 675
 676/**
 677 * wq_netinfo - work queue function to deliver latest networking information
 678 * @wq_obj: object that holds data for our deferred work to do
 679 *
 680 * This retrieves the network interface status of the USB INIC
 681 */
 682static void wq_netinfo(struct work_struct *wq_obj)
 683{
 684	struct most_dev *mdev = to_mdev_from_work(wq_obj);
 685	struct usb_device *usb_device = mdev->usb_device;
 686	struct device *dev = &usb_device->dev;
 687	u16 hi, mi, lo, link;
 688	u8 hw_addr[6];
 689
 690	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
 691		dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
 692		return;
 693	}
 694
 695	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
 696		dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
 697		return;
 698	}
 699
 700	if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
 701		dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
 702		return;
 703	}
 704
 705	if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
 706		dev_err(dev, "Vendor request 'link status' failed\n");
 707		return;
 708	}
 709
 710	hw_addr[0] = hi >> 8;
 711	hw_addr[1] = hi;
 712	hw_addr[2] = mi >> 8;
 713	hw_addr[3] = mi;
 714	hw_addr[4] = lo >> 8;
 715	hw_addr[5] = lo;
 716
 717	if (mdev->on_netinfo)
 718		mdev->on_netinfo(&mdev->iface, link, hw_addr);
 719}
 720
 721/**
 722 * wq_clear_halt - work queue function
 723 * @wq_obj: work_struct object to execute
 724 *
 725 * This sends a clear_halt to the given USB pipe.
 726 */
 727static void wq_clear_halt(struct work_struct *wq_obj)
 728{
 729	struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
 730	struct most_dev *mdev = clear_work->mdev;
 731	unsigned int channel = clear_work->channel;
 732	int pipe = clear_work->pipe;
 733	int snd_pipe;
 734	int peer;
 735
 736	mutex_lock(&mdev->io_mutex);
 737	most_stop_enqueue(&mdev->iface, channel);
 738	usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
 739	if (usb_clear_halt(mdev->usb_device, pipe))
 740		dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
 741
 742	/* If the functional Stall condition has been set on an
 743	 * asynchronous rx channel, we need to clear the tx channel
 744	 * too, since the hardware runs its clean-up sequence on both
 745	 * channels, as they are physically one on the network.
 746	 *
 747	 * The USB interface that exposes the asynchronous channels
 748	 * contains always two endpoints, and two only.
 749	 */
 750	if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
 751	    mdev->conf[channel].direction == MOST_CH_RX) {
 752		if (channel == 0)
 753			peer = 1;
 754		else
 755			peer = 0;
 756		snd_pipe = usb_sndbulkpipe(mdev->usb_device,
 757					   mdev->ep_address[peer]);
 758		usb_clear_halt(mdev->usb_device, snd_pipe);
 759	}
 760	mdev->is_channel_healthy[channel] = true;
 761	most_resume_enqueue(&mdev->iface, channel);
 762	mutex_unlock(&mdev->io_mutex);
 763}
 764
 765/**
 766 * hdm_usb_fops - file operation table for USB driver
 767 */
 768static const struct file_operations hdm_usb_fops = {
 769	.owner = THIS_MODULE,
 770};
 771
 772/**
 773 * usb_device_id - ID table for HCD device probing
 774 */
 775static const struct usb_device_id usbid[] = {
 776	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
 777	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
 778	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
 779	{ USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
 780	{ } /* Terminating entry */
 781};
 782
 783struct regs {
 784	const char *name;
 785	u16 reg;
 786};
 787
 788static const struct regs ro_regs[] = {
 789	{ "ni_state", DRCI_REG_NI_STATE },
 790	{ "packet_bandwidth", DRCI_REG_PACKET_BW },
 791	{ "node_address", DRCI_REG_NODE_ADDR },
 792	{ "node_position", DRCI_REG_NODE_POS },
 793};
 794
 795static const struct regs rw_regs[] = {
 796	{ "mep_filter", DRCI_REG_MEP_FILTER },
 797	{ "mep_hash0", DRCI_REG_HASH_TBL0 },
 798	{ "mep_hash1", DRCI_REG_HASH_TBL1 },
 799	{ "mep_hash2", DRCI_REG_HASH_TBL2 },
 800	{ "mep_hash3", DRCI_REG_HASH_TBL3 },
 801	{ "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
 802	{ "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
 803	{ "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
 804};
 805
 806static int get_stat_reg_addr(const struct regs *regs, int size,
 807			     const char *name, u16 *reg_addr)
 808{
 809	int i;
 810
 811	for (i = 0; i < size; i++) {
 812		if (sysfs_streq(name, regs[i].name)) {
 813			*reg_addr = regs[i].reg;
 814			return 0;
 815		}
 816	}
 817	return -EINVAL;
 818}
 819
 820#define get_static_reg_addr(regs, name, reg_addr) \
 821	get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
 822
 823static ssize_t value_show(struct device *dev, struct device_attribute *attr,
 824			  char *buf)
 825{
 826	const char *name = attr->attr.name;
 827	struct most_dci_obj *dci_obj = to_dci_obj(dev);
 828	u16 val;
 829	u16 reg_addr;
 830	int err;
 831
 832	if (sysfs_streq(name, "arb_address"))
 833		return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr);
 834
 835	if (sysfs_streq(name, "arb_value"))
 836		reg_addr = dci_obj->reg_addr;
 837	else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
 838		 get_static_reg_addr(rw_regs, name, &reg_addr))
 839		return -EINVAL;
 840
 841	err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
 842	if (err < 0)
 843		return err;
 844
 845	return snprintf(buf, PAGE_SIZE, "%04x\n", val);
 846}
 847
 848static ssize_t value_store(struct device *dev, struct device_attribute *attr,
 849			   const char *buf, size_t count)
 850{
 851	u16 val;
 852	u16 reg_addr;
 853	const char *name = attr->attr.name;
 854	struct most_dci_obj *dci_obj = to_dci_obj(dev);
 855	struct usb_device *usb_dev = dci_obj->usb_device;
 856	int err;
 857
 858	err = kstrtou16(buf, 16, &val);
 859	if (err)
 860		return err;
 861
 862	if (sysfs_streq(name, "arb_address")) {
 863		dci_obj->reg_addr = val;
 864		return count;
 865	}
 866
 867	if (sysfs_streq(name, "arb_value"))
 868		err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
 869	else if (sysfs_streq(name, "sync_ep"))
 870		err = start_sync_ep(usb_dev, val);
 871	else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
 872		err = drci_wr_reg(usb_dev, reg_addr, val);
 873	else
 874		return -EINVAL;
 875
 876	if (err < 0)
 877		return err;
 878
 879	return count;
 880}
 881
 882static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
 883static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
 884static DEVICE_ATTR(node_address, 0444, value_show, NULL);
 885static DEVICE_ATTR(node_position, 0444, value_show, NULL);
 886static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
 887static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
 888static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
 889static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
 890static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
 891static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
 892static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
 893static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
 894static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
 895static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
 896static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
 897
 898static struct attribute *dci_attrs[] = {
 899	&dev_attr_ni_state.attr,
 900	&dev_attr_packet_bandwidth.attr,
 901	&dev_attr_node_address.attr,
 902	&dev_attr_node_position.attr,
 903	&dev_attr_sync_ep.attr,
 904	&dev_attr_mep_filter.attr,
 905	&dev_attr_mep_hash0.attr,
 906	&dev_attr_mep_hash1.attr,
 907	&dev_attr_mep_hash2.attr,
 908	&dev_attr_mep_hash3.attr,
 909	&dev_attr_mep_eui48_hi.attr,
 910	&dev_attr_mep_eui48_mi.attr,
 911	&dev_attr_mep_eui48_lo.attr,
 912	&dev_attr_arb_address.attr,
 913	&dev_attr_arb_value.attr,
 914	NULL,
 915};
 916
 917ATTRIBUTE_GROUPS(dci);
 918
 919static void release_dci(struct device *dev)
 920{
 921	struct most_dci_obj *dci = to_dci_obj(dev);
 922
 923	put_device(dev->parent);
 924	kfree(dci);
 925}
 926
 927static void release_mdev(struct device *dev)
 928{
 929	struct most_dev *mdev = to_mdev_from_dev(dev);
 930
 931	kfree(mdev);
 932}
 933/**
 934 * hdm_probe - probe function of USB device driver
 935 * @interface: Interface of the attached USB device
 936 * @id: Pointer to the USB ID table.
 937 *
 938 * This allocates and initializes the device instance, adds the new
 939 * entry to the internal list, scans the USB descriptors and registers
 940 * the interface with the core.
 941 * Additionally, the DCI objects are created and the hardware is sync'd.
 942 *
 943 * Return 0 on success. In case of an error a negative number is returned.
 944 */
 945static int
 946hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
 947{
 948	struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
 949	struct usb_device *usb_dev = interface_to_usbdev(interface);
 950	struct device *dev = &usb_dev->dev;
 951	struct most_dev *mdev;
 952	unsigned int i;
 953	unsigned int num_endpoints;
 954	struct most_channel_capability *tmp_cap;
 955	struct usb_endpoint_descriptor *ep_desc;
 956	int ret = -ENOMEM;
 957
 958	mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
 959	if (!mdev)
 960		return -ENOMEM;
 961
 962	usb_set_intfdata(interface, mdev);
 963	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
 964	if (num_endpoints > MAX_NUM_ENDPOINTS) {
 965		kfree(mdev);
 966		return -EINVAL;
 967	}
 968	mutex_init(&mdev->io_mutex);
 969	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
 970	timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
 971
 972	mdev->usb_device = usb_dev;
 973	mdev->link_stat_timer.expires = jiffies + (2 * HZ);
 974
 975	mdev->iface.mod = hdm_usb_fops.owner;
 976	mdev->iface.dev = &mdev->dev;
 977	mdev->iface.driver_dev = &interface->dev;
 978	mdev->iface.interface = ITYPE_USB;
 979	mdev->iface.configure = hdm_configure_channel;
 980	mdev->iface.request_netinfo = hdm_request_netinfo;
 981	mdev->iface.enqueue = hdm_enqueue;
 982	mdev->iface.poison_channel = hdm_poison_channel;
 983	mdev->iface.dma_alloc = hdm_dma_alloc;
 984	mdev->iface.dma_free = hdm_dma_free;
 985	mdev->iface.description = mdev->description;
 986	mdev->iface.num_channels = num_endpoints;
 987
 988	snprintf(mdev->description, sizeof(mdev->description),
 989		 "%d-%s:%d.%d",
 990		 usb_dev->bus->busnum,
 991		 usb_dev->devpath,
 992		 usb_dev->config->desc.bConfigurationValue,
 993		 usb_iface_desc->desc.bInterfaceNumber);
 994
 995	mdev->dev.init_name = mdev->description;
 996	mdev->dev.parent = &interface->dev;
 997	mdev->dev.release = release_mdev;
 998	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
 999	if (!mdev->conf)
1000		goto err_free_mdev;
1001
1002	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1003	if (!mdev->cap)
1004		goto err_free_conf;
1005
1006	mdev->iface.channel_vector = mdev->cap;
1007	mdev->ep_address =
1008		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1009	if (!mdev->ep_address)
1010		goto err_free_cap;
1011
1012	mdev->busy_urbs =
1013		kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1014	if (!mdev->busy_urbs)
1015		goto err_free_ep_address;
1016
1017	tmp_cap = mdev->cap;
1018	for (i = 0; i < num_endpoints; i++) {
1019		ep_desc = &usb_iface_desc->endpoint[i].desc;
1020		mdev->ep_address[i] = ep_desc->bEndpointAddress;
1021		mdev->padding_active[i] = false;
1022		mdev->is_channel_healthy[i] = true;
1023
1024		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1025			 mdev->ep_address[i]);
1026
1027		tmp_cap->name_suffix = &mdev->suffix[i][0];
1028		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1029		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1030		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1031		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1032		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1033				     MOST_CH_ISOC | MOST_CH_SYNC;
1034		if (usb_endpoint_dir_in(ep_desc))
1035			tmp_cap->direction = MOST_CH_RX;
1036		else
1037			tmp_cap->direction = MOST_CH_TX;
1038		tmp_cap++;
1039		init_usb_anchor(&mdev->busy_urbs[i]);
1040		spin_lock_init(&mdev->channel_lock[i]);
1041	}
1042	dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1043		le16_to_cpu(usb_dev->descriptor.idVendor),
1044		le16_to_cpu(usb_dev->descriptor.idProduct),
1045		usb_dev->bus->busnum,
1046		usb_dev->devnum);
1047
1048	dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1049		usb_dev->bus->busnum,
1050		usb_dev->devpath,
1051		usb_dev->config->desc.bConfigurationValue,
1052		usb_iface_desc->desc.bInterfaceNumber);
1053
1054	ret = most_register_interface(&mdev->iface);
1055	if (ret)
1056		goto err_free_busy_urbs;
1057
1058	mutex_lock(&mdev->io_mutex);
1059	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1060	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1061	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1062		mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1063		if (!mdev->dci) {
1064			mutex_unlock(&mdev->io_mutex);
1065			most_deregister_interface(&mdev->iface);
1066			ret = -ENOMEM;
1067			goto err_free_busy_urbs;
1068		}
1069
1070		mdev->dci->dev.init_name = "dci";
1071		mdev->dci->dev.parent = get_device(mdev->iface.dev);
1072		mdev->dci->dev.groups = dci_groups;
1073		mdev->dci->dev.release = release_dci;
1074		if (device_register(&mdev->dci->dev)) {
1075			mutex_unlock(&mdev->io_mutex);
1076			most_deregister_interface(&mdev->iface);
1077			ret = -ENOMEM;
1078			goto err_free_dci;
1079		}
1080		mdev->dci->usb_device = mdev->usb_device;
1081	}
1082	mutex_unlock(&mdev->io_mutex);
1083	return 0;
1084err_free_dci:
1085	put_device(&mdev->dci->dev);
1086err_free_busy_urbs:
1087	kfree(mdev->busy_urbs);
1088err_free_ep_address:
1089	kfree(mdev->ep_address);
1090err_free_cap:
1091	kfree(mdev->cap);
1092err_free_conf:
1093	kfree(mdev->conf);
1094err_free_mdev:
1095	put_device(&mdev->dev);
1096	return ret;
1097}
1098
1099/**
1100 * hdm_disconnect - disconnect function of USB device driver
1101 * @interface: Interface of the attached USB device
1102 *
1103 * This deregisters the interface with the core, removes the kernel timer
1104 * and frees resources.
1105 *
1106 * Context: hub kernel thread
1107 */
1108static void hdm_disconnect(struct usb_interface *interface)
1109{
1110	struct most_dev *mdev = usb_get_intfdata(interface);
1111
1112	mutex_lock(&mdev->io_mutex);
1113	usb_set_intfdata(interface, NULL);
1114	mdev->usb_device = NULL;
1115	mutex_unlock(&mdev->io_mutex);
1116
1117	del_timer_sync(&mdev->link_stat_timer);
1118	cancel_work_sync(&mdev->poll_work_obj);
1119
1120	if (mdev->dci)
1121		device_unregister(&mdev->dci->dev);
1122	most_deregister_interface(&mdev->iface);
1123
1124	kfree(mdev->busy_urbs);
1125	kfree(mdev->cap);
1126	kfree(mdev->conf);
1127	kfree(mdev->ep_address);
1128	put_device(&mdev->dci->dev);
1129	put_device(&mdev->dev);
1130}
1131
1132static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
1133{
1134	struct most_dev *mdev = usb_get_intfdata(interface);
1135	int i;
1136
1137	mutex_lock(&mdev->io_mutex);
1138	for (i = 0; i < mdev->iface.num_channels; i++) {
1139		most_stop_enqueue(&mdev->iface, i);
1140		usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
1141	}
1142	mutex_unlock(&mdev->io_mutex);
1143	return 0;
1144}
1145
1146static int hdm_resume(struct usb_interface *interface)
1147{
1148	struct most_dev *mdev = usb_get_intfdata(interface);
1149	int i;
1150
1151	mutex_lock(&mdev->io_mutex);
1152	for (i = 0; i < mdev->iface.num_channels; i++)
1153		most_resume_enqueue(&mdev->iface, i);
1154	mutex_unlock(&mdev->io_mutex);
1155	return 0;
1156}
1157
1158static struct usb_driver hdm_usb = {
1159	.name = "hdm_usb",
1160	.id_table = usbid,
1161	.probe = hdm_probe,
1162	.disconnect = hdm_disconnect,
1163	.resume = hdm_resume,
1164	.suspend = hdm_suspend,
1165};
1166
1167module_usb_driver(hdm_usb);
1168MODULE_LICENSE("GPL");
1169MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1170MODULE_DESCRIPTION("HDM_4_USB");