Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2019 Intel Corporation
  4 *
  5 */
  6
  7#include "gem/i915_gem_internal.h"
  8
  9#include "i915_drv.h"
 10#include "i915_reg.h"
 11#include "intel_de.h"
 12#include "intel_display_types.h"
 13#include "intel_dsb.h"
 14
 15struct i915_vma;
 16
 17enum dsb_id {
 18	INVALID_DSB = -1,
 19	DSB1,
 20	DSB2,
 21	DSB3,
 22	MAX_DSB_PER_PIPE
 23};
 24
 25struct intel_dsb {
 26	enum dsb_id id;
 27	u32 *cmd_buf;
 28	struct i915_vma *vma;
 29
 30	/*
 31	 * free_pos will point the first free entry position
 32	 * and help in calculating tail of command buffer.
 33	 */
 34	int free_pos;
 35
 36	/*
 37	 * ins_start_offset will help to store start address of the dsb
 38	 * instuction and help in identifying the batch of auto-increment
 39	 * register.
 40	 */
 41	u32 ins_start_offset;
 42};
 43
 44#define DSB_BUF_SIZE    (2 * PAGE_SIZE)
 45
 46/**
 47 * DOC: DSB
 48 *
 49 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
 50 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
 51 * engine that can be programmed to download the DSB from memory.
 52 * It allows driver to batch submit display HW programming. This helps to
 53 * reduce loading time and CPU activity, thereby making the context switch
 54 * faster. DSB Support added from Gen12 Intel graphics based platform.
 55 *
 56 * DSB's can access only the pipe, plane, and transcoder Data Island Packet
 57 * registers.
 58 *
 59 * DSB HW can support only register writes (both indexed and direct MMIO
 60 * writes). There are no registers reads possible with DSB HW engine.
 61 */
 62
 63/* DSB opcodes. */
 64#define DSB_OPCODE_SHIFT		24
 65#define DSB_OPCODE_MMIO_WRITE		0x1
 66#define DSB_OPCODE_INDEXED_WRITE	0x9
 67#define DSB_BYTE_EN			0xF
 68#define DSB_BYTE_EN_SHIFT		20
 69#define DSB_REG_VALUE_MASK		0xfffff
 70
 71static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
 72			enum dsb_id id)
 73{
 74	return DSB_STATUS & intel_de_read(i915, DSB_CTRL(pipe, id));
 75}
 76
 77static bool intel_dsb_enable_engine(struct drm_i915_private *i915,
 78				    enum pipe pipe, enum dsb_id id)
 79{
 80	u32 dsb_ctrl;
 81
 82	dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
 83	if (DSB_STATUS & dsb_ctrl) {
 84		drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
 85		return false;
 86	}
 87
 88	dsb_ctrl |= DSB_ENABLE;
 89	intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
 90
 91	intel_de_posting_read(i915, DSB_CTRL(pipe, id));
 92	return true;
 93}
 94
 95static bool intel_dsb_disable_engine(struct drm_i915_private *i915,
 96				     enum pipe pipe, enum dsb_id id)
 97{
 98	u32 dsb_ctrl;
 99
100	dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
101	if (DSB_STATUS & dsb_ctrl) {
102		drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
103		return false;
104	}
105
106	dsb_ctrl &= ~DSB_ENABLE;
107	intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
108
109	intel_de_posting_read(i915, DSB_CTRL(pipe, id));
110	return true;
111}
112
113/**
114 * intel_dsb_indexed_reg_write() -Write to the DSB context for auto
115 * increment register.
116 * @crtc_state: intel_crtc_state structure
117 * @reg: register address.
118 * @val: value.
119 *
120 * This function is used for writing register-value pair in command
121 * buffer of DSB for auto-increment register. During command buffer overflow,
122 * a warning is thrown and rest all erroneous condition register programming
123 * is done through mmio write.
124 */
125
126void intel_dsb_indexed_reg_write(const struct intel_crtc_state *crtc_state,
127				 i915_reg_t reg, u32 val)
128{
129	struct intel_dsb *dsb = crtc_state->dsb;
130	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
131	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
132	u32 *buf;
133	u32 reg_val;
134
135	if (!dsb) {
136		intel_de_write_fw(dev_priv, reg, val);
137		return;
138	}
139	buf = dsb->cmd_buf;
140	if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
141		drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
142		return;
143	}
144
145	/*
146	 * For example the buffer will look like below for 3 dwords for auto
147	 * increment register:
148	 * +--------------------------------------------------------+
149	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
150	 * |          | opcode  |        |        |        |        |
151	 * +--------------------------------------------------------+
152	 * +          +         +        +        +        +        +
153	 * 0          4         8        12       16       20       24
154	 * Byte
155	 *
156	 * As every instruction is 8 byte aligned the index of dsb instruction
157	 * will start always from even number while dealing with u32 array. If
158	 * we are writing odd no of dwords, Zeros will be added in the end for
159	 * padding.
160	 */
161	reg_val = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
162	if (reg_val != i915_mmio_reg_offset(reg)) {
163		/* Every instruction should be 8 byte aligned. */
164		dsb->free_pos = ALIGN(dsb->free_pos, 2);
165
166		dsb->ins_start_offset = dsb->free_pos;
167
168		/* Update the size. */
169		buf[dsb->free_pos++] = 1;
170
171		/* Update the opcode and reg. */
172		buf[dsb->free_pos++] = (DSB_OPCODE_INDEXED_WRITE  <<
173					DSB_OPCODE_SHIFT) |
174					i915_mmio_reg_offset(reg);
175
176		/* Update the value. */
177		buf[dsb->free_pos++] = val;
178	} else {
179		/* Update the new value. */
180		buf[dsb->free_pos++] = val;
181
182		/* Update the size. */
183		buf[dsb->ins_start_offset]++;
184	}
185
186	/* if number of data words is odd, then the last dword should be 0.*/
187	if (dsb->free_pos & 0x1)
188		buf[dsb->free_pos] = 0;
189}
190
191/**
192 * intel_dsb_reg_write() -Write to the DSB context for normal
193 * register.
194 * @crtc_state: intel_crtc_state structure
195 * @reg: register address.
196 * @val: value.
197 *
198 * This function is used for writing register-value pair in command
199 * buffer of DSB. During command buffer overflow, a warning  is thrown
200 * and rest all erroneous condition register programming is done
201 * through mmio write.
202 */
203void intel_dsb_reg_write(const struct intel_crtc_state *crtc_state,
204			 i915_reg_t reg, u32 val)
205{
206	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
207	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
208	struct intel_dsb *dsb;
209	u32 *buf;
210
211	dsb = crtc_state->dsb;
212	if (!dsb) {
213		intel_de_write_fw(dev_priv, reg, val);
214		return;
215	}
216
217	buf = dsb->cmd_buf;
218	if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
219		drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
220		return;
221	}
222
223	dsb->ins_start_offset = dsb->free_pos;
224	buf[dsb->free_pos++] = val;
225	buf[dsb->free_pos++] = (DSB_OPCODE_MMIO_WRITE  << DSB_OPCODE_SHIFT) |
226			       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
227			       i915_mmio_reg_offset(reg);
228}
229
230/**
231 * intel_dsb_commit() - Trigger workload execution of DSB.
232 * @crtc_state: intel_crtc_state structure
233 *
234 * This function is used to do actual write to hardware using DSB.
235 * On errors, fall back to MMIO. Also this function help to reset the context.
236 */
237void intel_dsb_commit(const struct intel_crtc_state *crtc_state)
238{
239	struct intel_dsb *dsb = crtc_state->dsb;
240	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
241	struct drm_device *dev = crtc->base.dev;
242	struct drm_i915_private *dev_priv = to_i915(dev);
243	enum pipe pipe = crtc->pipe;
244	u32 tail;
245
246	if (!(dsb && dsb->free_pos))
247		return;
248
249	if (!intel_dsb_enable_engine(dev_priv, pipe, dsb->id))
250		goto reset;
251
252	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
253		drm_err(&dev_priv->drm,
254			"HEAD_PTR write failed - dsb engine is busy.\n");
255		goto reset;
256	}
257	intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
258		       i915_ggtt_offset(dsb->vma));
259
260	tail = ALIGN(dsb->free_pos * 4, CACHELINE_BYTES);
261	if (tail > dsb->free_pos * 4)
262		memset(&dsb->cmd_buf[dsb->free_pos], 0,
263		       (tail - dsb->free_pos * 4));
264
265	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
266		drm_err(&dev_priv->drm,
267			"TAIL_PTR write failed - dsb engine is busy.\n");
268		goto reset;
269	}
270	drm_dbg_kms(&dev_priv->drm,
271		    "DSB execution started - head 0x%x, tail 0x%x\n",
272		    i915_ggtt_offset(dsb->vma), tail);
273	intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
274		       i915_ggtt_offset(dsb->vma) + tail);
275	if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
276		drm_err(&dev_priv->drm,
277			"Timed out waiting for DSB workload completion.\n");
278		goto reset;
279	}
280
281reset:
282	dsb->free_pos = 0;
283	dsb->ins_start_offset = 0;
284	intel_dsb_disable_engine(dev_priv, pipe, dsb->id);
285}
286
287/**
288 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
289 * @crtc_state: intel_crtc_state structure to prepare associated dsb instance.
290 *
291 * This function prepare the command buffer which is used to store dsb
292 * instructions with data.
293 */
294void intel_dsb_prepare(struct intel_crtc_state *crtc_state)
295{
296	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
297	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
298	struct intel_dsb *dsb;
299	struct drm_i915_gem_object *obj;
300	struct i915_vma *vma;
301	u32 *buf;
302	intel_wakeref_t wakeref;
303
304	if (!HAS_DSB(i915))
305		return;
306
307	dsb = kmalloc(sizeof(*dsb), GFP_KERNEL);
308	if (!dsb) {
309		drm_err(&i915->drm, "DSB object creation failed\n");
310		return;
311	}
312
313	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
314
315	obj = i915_gem_object_create_internal(i915, DSB_BUF_SIZE);
316	if (IS_ERR(obj)) {
 
317		kfree(dsb);
318		goto out;
319	}
320
321	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
322	if (IS_ERR(vma)) {
 
323		i915_gem_object_put(obj);
324		kfree(dsb);
325		goto out;
326	}
327
328	buf = i915_gem_object_pin_map_unlocked(vma->obj, I915_MAP_WC);
329	if (IS_ERR(buf)) {
 
330		i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
331		kfree(dsb);
332		goto out;
333	}
334
335	dsb->id = DSB1;
336	dsb->vma = vma;
337	dsb->cmd_buf = buf;
338	dsb->free_pos = 0;
339	dsb->ins_start_offset = 0;
340	crtc_state->dsb = dsb;
341out:
342	if (!crtc_state->dsb)
343		drm_info(&i915->drm,
344			 "DSB queue setup failed, will fallback to MMIO for display HW programming\n");
345
346	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
347}
348
349/**
350 * intel_dsb_cleanup() - To cleanup DSB context.
351 * @crtc_state: intel_crtc_state structure to cleanup associated dsb instance.
352 *
353 * This function cleanup the DSB context by unpinning and releasing
354 * the VMA object associated with it.
355 */
356void intel_dsb_cleanup(struct intel_crtc_state *crtc_state)
357{
358	if (!crtc_state->dsb)
359		return;
360
361	i915_vma_unpin_and_release(&crtc_state->dsb->vma, I915_VMA_RELEASE_MAP);
362	kfree(crtc_state->dsb);
363	crtc_state->dsb = NULL;
364}
v5.9
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2019 Intel Corporation
  4 *
  5 */
  6
 
 
  7#include "i915_drv.h"
 
 
  8#include "intel_display_types.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9
 10#define DSB_BUF_SIZE    (2 * PAGE_SIZE)
 11
 12/**
 13 * DOC: DSB
 14 *
 15 * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
 16 * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
 17 * engine that can be programmed to download the DSB from memory.
 18 * It allows driver to batch submit display HW programming. This helps to
 19 * reduce loading time and CPU activity, thereby making the context switch
 20 * faster. DSB Support added from Gen12 Intel graphics based platform.
 21 *
 22 * DSB's can access only the pipe, plane, and transcoder Data Island Packet
 23 * registers.
 24 *
 25 * DSB HW can support only register writes (both indexed and direct MMIO
 26 * writes). There are no registers reads possible with DSB HW engine.
 27 */
 28
 29/* DSB opcodes. */
 30#define DSB_OPCODE_SHIFT		24
 31#define DSB_OPCODE_MMIO_WRITE		0x1
 32#define DSB_OPCODE_INDEXED_WRITE	0x9
 33#define DSB_BYTE_EN			0xF
 34#define DSB_BYTE_EN_SHIFT		20
 35#define DSB_REG_VALUE_MASK		0xfffff
 36
 37static bool is_dsb_busy(struct drm_i915_private *i915, enum pipe pipe,
 38			enum dsb_id id)
 39{
 40	return DSB_STATUS & intel_de_read(i915, DSB_CTRL(pipe, id));
 41}
 42
 43static bool intel_dsb_enable_engine(struct drm_i915_private *i915,
 44				    enum pipe pipe, enum dsb_id id)
 45{
 46	u32 dsb_ctrl;
 47
 48	dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
 49	if (DSB_STATUS & dsb_ctrl) {
 50		drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
 51		return false;
 52	}
 53
 54	dsb_ctrl |= DSB_ENABLE;
 55	intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
 56
 57	intel_de_posting_read(i915, DSB_CTRL(pipe, id));
 58	return true;
 59}
 60
 61static bool intel_dsb_disable_engine(struct drm_i915_private *i915,
 62				     enum pipe pipe, enum dsb_id id)
 63{
 64	u32 dsb_ctrl;
 65
 66	dsb_ctrl = intel_de_read(i915, DSB_CTRL(pipe, id));
 67	if (DSB_STATUS & dsb_ctrl) {
 68		drm_dbg_kms(&i915->drm, "DSB engine is busy.\n");
 69		return false;
 70	}
 71
 72	dsb_ctrl &= ~DSB_ENABLE;
 73	intel_de_write(i915, DSB_CTRL(pipe, id), dsb_ctrl);
 74
 75	intel_de_posting_read(i915, DSB_CTRL(pipe, id));
 76	return true;
 77}
 78
 79/**
 80 * intel_dsb_indexed_reg_write() -Write to the DSB context for auto
 81 * increment register.
 82 * @crtc_state: intel_crtc_state structure
 83 * @reg: register address.
 84 * @val: value.
 85 *
 86 * This function is used for writing register-value pair in command
 87 * buffer of DSB for auto-increment register. During command buffer overflow,
 88 * a warning is thrown and rest all erroneous condition register programming
 89 * is done through mmio write.
 90 */
 91
 92void intel_dsb_indexed_reg_write(const struct intel_crtc_state *crtc_state,
 93				 i915_reg_t reg, u32 val)
 94{
 95	struct intel_dsb *dsb = crtc_state->dsb;
 96	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 97	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 98	u32 *buf;
 99	u32 reg_val;
100
101	if (!dsb) {
102		intel_de_write(dev_priv, reg, val);
103		return;
104	}
105	buf = dsb->cmd_buf;
106	if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
107		drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
108		return;
109	}
110
111	/*
112	 * For example the buffer will look like below for 3 dwords for auto
113	 * increment register:
114	 * +--------------------------------------------------------+
115	 * | size = 3 | offset &| value1 | value2 | value3 | zero   |
116	 * |          | opcode  |        |        |        |        |
117	 * +--------------------------------------------------------+
118	 * +          +         +        +        +        +        +
119	 * 0          4         8        12       16       20       24
120	 * Byte
121	 *
122	 * As every instruction is 8 byte aligned the index of dsb instruction
123	 * will start always from even number while dealing with u32 array. If
124	 * we are writing odd no of dwords, Zeros will be added in the end for
125	 * padding.
126	 */
127	reg_val = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
128	if (reg_val != i915_mmio_reg_offset(reg)) {
129		/* Every instruction should be 8 byte aligned. */
130		dsb->free_pos = ALIGN(dsb->free_pos, 2);
131
132		dsb->ins_start_offset = dsb->free_pos;
133
134		/* Update the size. */
135		buf[dsb->free_pos++] = 1;
136
137		/* Update the opcode and reg. */
138		buf[dsb->free_pos++] = (DSB_OPCODE_INDEXED_WRITE  <<
139					DSB_OPCODE_SHIFT) |
140					i915_mmio_reg_offset(reg);
141
142		/* Update the value. */
143		buf[dsb->free_pos++] = val;
144	} else {
145		/* Update the new value. */
146		buf[dsb->free_pos++] = val;
147
148		/* Update the size. */
149		buf[dsb->ins_start_offset]++;
150	}
151
152	/* if number of data words is odd, then the last dword should be 0.*/
153	if (dsb->free_pos & 0x1)
154		buf[dsb->free_pos] = 0;
155}
156
157/**
158 * intel_dsb_reg_write() -Write to the DSB context for normal
159 * register.
160 * @crtc_state: intel_crtc_state structure
161 * @reg: register address.
162 * @val: value.
163 *
164 * This function is used for writing register-value pair in command
165 * buffer of DSB. During command buffer overflow, a warning  is thrown
166 * and rest all erroneous condition register programming is done
167 * through mmio write.
168 */
169void intel_dsb_reg_write(const struct intel_crtc_state *crtc_state,
170			 i915_reg_t reg, u32 val)
171{
172	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
173	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
174	struct intel_dsb *dsb;
175	u32 *buf;
176
177	dsb = crtc_state->dsb;
178	if (!dsb) {
179		intel_de_write(dev_priv, reg, val);
180		return;
181	}
182
183	buf = dsb->cmd_buf;
184	if (drm_WARN_ON(&dev_priv->drm, dsb->free_pos >= DSB_BUF_SIZE)) {
185		drm_dbg_kms(&dev_priv->drm, "DSB buffer overflow\n");
186		return;
187	}
188
189	dsb->ins_start_offset = dsb->free_pos;
190	buf[dsb->free_pos++] = val;
191	buf[dsb->free_pos++] = (DSB_OPCODE_MMIO_WRITE  << DSB_OPCODE_SHIFT) |
192			       (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
193			       i915_mmio_reg_offset(reg);
194}
195
196/**
197 * intel_dsb_commit() - Trigger workload execution of DSB.
198 * @crtc_state: intel_crtc_state structure
199 *
200 * This function is used to do actual write to hardware using DSB.
201 * On errors, fall back to MMIO. Also this function help to reset the context.
202 */
203void intel_dsb_commit(const struct intel_crtc_state *crtc_state)
204{
205	struct intel_dsb *dsb = crtc_state->dsb;
206	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
207	struct drm_device *dev = crtc->base.dev;
208	struct drm_i915_private *dev_priv = to_i915(dev);
209	enum pipe pipe = crtc->pipe;
210	u32 tail;
211
212	if (!(dsb && dsb->free_pos))
213		return;
214
215	if (!intel_dsb_enable_engine(dev_priv, pipe, dsb->id))
216		goto reset;
217
218	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
219		drm_err(&dev_priv->drm,
220			"HEAD_PTR write failed - dsb engine is busy.\n");
221		goto reset;
222	}
223	intel_de_write(dev_priv, DSB_HEAD(pipe, dsb->id),
224		       i915_ggtt_offset(dsb->vma));
225
226	tail = ALIGN(dsb->free_pos * 4, CACHELINE_BYTES);
227	if (tail > dsb->free_pos * 4)
228		memset(&dsb->cmd_buf[dsb->free_pos], 0,
229		       (tail - dsb->free_pos * 4));
230
231	if (is_dsb_busy(dev_priv, pipe, dsb->id)) {
232		drm_err(&dev_priv->drm,
233			"TAIL_PTR write failed - dsb engine is busy.\n");
234		goto reset;
235	}
236	drm_dbg_kms(&dev_priv->drm,
237		    "DSB execution started - head 0x%x, tail 0x%x\n",
238		    i915_ggtt_offset(dsb->vma), tail);
239	intel_de_write(dev_priv, DSB_TAIL(pipe, dsb->id),
240		       i915_ggtt_offset(dsb->vma) + tail);
241	if (wait_for(!is_dsb_busy(dev_priv, pipe, dsb->id), 1)) {
242		drm_err(&dev_priv->drm,
243			"Timed out waiting for DSB workload completion.\n");
244		goto reset;
245	}
246
247reset:
248	dsb->free_pos = 0;
249	dsb->ins_start_offset = 0;
250	intel_dsb_disable_engine(dev_priv, pipe, dsb->id);
251}
252
253/**
254 * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer.
255 * @crtc_state: intel_crtc_state structure to prepare associated dsb instance.
256 *
257 * This function prepare the command buffer which is used to store dsb
258 * instructions with data.
259 */
260void intel_dsb_prepare(struct intel_crtc_state *crtc_state)
261{
262	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
263	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
264	struct intel_dsb *dsb;
265	struct drm_i915_gem_object *obj;
266	struct i915_vma *vma;
267	u32 *buf;
268	intel_wakeref_t wakeref;
269
270	if (!HAS_DSB(i915))
271		return;
272
273	dsb = kmalloc(sizeof(*dsb), GFP_KERNEL);
274	if (!dsb) {
275		drm_err(&i915->drm, "DSB object creation failed\n");
276		return;
277	}
278
279	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
280
281	obj = i915_gem_object_create_internal(i915, DSB_BUF_SIZE);
282	if (IS_ERR(obj)) {
283		drm_err(&i915->drm, "Gem object creation failed\n");
284		kfree(dsb);
285		goto out;
286	}
287
288	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
289	if (IS_ERR(vma)) {
290		drm_err(&i915->drm, "Vma creation failed\n");
291		i915_gem_object_put(obj);
292		kfree(dsb);
293		goto out;
294	}
295
296	buf = i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
297	if (IS_ERR(buf)) {
298		drm_err(&i915->drm, "Command buffer creation failed\n");
299		i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
300		kfree(dsb);
301		goto out;
302	}
303
304	dsb->id = DSB1;
305	dsb->vma = vma;
306	dsb->cmd_buf = buf;
307	dsb->free_pos = 0;
308	dsb->ins_start_offset = 0;
309	crtc_state->dsb = dsb;
310out:
 
 
 
 
311	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
312}
313
314/**
315 * intel_dsb_cleanup() - To cleanup DSB context.
316 * @crtc_state: intel_crtc_state structure to cleanup associated dsb instance.
317 *
318 * This function cleanup the DSB context by unpinning and releasing
319 * the VMA object associated with it.
320 */
321void intel_dsb_cleanup(struct intel_crtc_state *crtc_state)
322{
323	if (!crtc_state->dsb)
324		return;
325
326	i915_vma_unpin_and_release(&crtc_state->dsb->vma, I915_VMA_RELEASE_MAP);
327	kfree(crtc_state->dsb);
328	crtc_state->dsb = NULL;
329}