Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Renesas Timer Support - OSTM
  4 *
  5 * Copyright (C) 2017 Renesas Electronics America, Inc.
  6 * Copyright (C) 2017 Chris Brandt
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/clockchips.h>
 11#include <linux/interrupt.h>
 12#include <linux/platform_device.h>
 13#include <linux/reset.h>
 14#include <linux/sched_clock.h>
 15#include <linux/slab.h>
 16
 17#include "timer-of.h"
 18
 19/*
 20 * The OSTM contains independent channels.
 21 * The first OSTM channel probed will be set up as a free running
 22 * clocksource. Additionally we will use this clocksource for the system
 23 * schedule timer sched_clock().
 24 *
 25 * The second (or more) channel probed will be set up as an interrupt
 26 * driven clock event.
 27 */
 28
 29static void __iomem *system_clock;	/* For sched_clock() */
 30
 31/* OSTM REGISTERS */
 32#define	OSTM_CMP		0x000	/* RW,32 */
 33#define	OSTM_CNT		0x004	/* R,32 */
 34#define	OSTM_TE			0x010	/* R,8 */
 35#define	OSTM_TS			0x014	/* W,8 */
 36#define	OSTM_TT			0x018	/* W,8 */
 37#define	OSTM_CTL		0x020	/* RW,8 */
 38
 39#define	TE			0x01
 40#define	TS			0x01
 41#define	TT			0x01
 42#define	CTL_PERIODIC		0x00
 43#define	CTL_ONESHOT		0x02
 44#define	CTL_FREERUN		0x02
 45
 46static void ostm_timer_stop(struct timer_of *to)
 47{
 48	if (readb(timer_of_base(to) + OSTM_TE) & TE) {
 49		writeb(TT, timer_of_base(to) + OSTM_TT);
 50
 51		/*
 52		 * Read back the register simply to confirm the write operation
 53		 * has completed since I/O writes can sometimes get queued by
 54		 * the bus architecture.
 55		 */
 56		while (readb(timer_of_base(to) + OSTM_TE) & TE)
 57			;
 58	}
 59}
 60
 61static int __init ostm_init_clksrc(struct timer_of *to)
 62{
 63	ostm_timer_stop(to);
 64
 65	writel(0, timer_of_base(to) + OSTM_CMP);
 66	writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
 67	writeb(TS, timer_of_base(to) + OSTM_TS);
 68
 69	return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
 70				     to->np->full_name, timer_of_rate(to), 300,
 71				     32, clocksource_mmio_readl_up);
 72}
 73
 74static u64 notrace ostm_read_sched_clock(void)
 75{
 76	return readl(system_clock);
 77}
 78
 79static void __init ostm_init_sched_clock(struct timer_of *to)
 80{
 81	system_clock = timer_of_base(to) + OSTM_CNT;
 82	sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
 83}
 84
 85static int ostm_clock_event_next(unsigned long delta,
 86				 struct clock_event_device *ced)
 87{
 88	struct timer_of *to = to_timer_of(ced);
 89
 90	ostm_timer_stop(to);
 91
 92	writel(delta, timer_of_base(to) + OSTM_CMP);
 93	writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
 94	writeb(TS, timer_of_base(to) + OSTM_TS);
 95
 96	return 0;
 97}
 98
 99static int ostm_shutdown(struct clock_event_device *ced)
100{
101	struct timer_of *to = to_timer_of(ced);
102
103	ostm_timer_stop(to);
104
105	return 0;
106}
107static int ostm_set_periodic(struct clock_event_device *ced)
108{
109	struct timer_of *to = to_timer_of(ced);
110
111	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
112		ostm_timer_stop(to);
113
114	writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
115	writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
116	writeb(TS, timer_of_base(to) + OSTM_TS);
117
118	return 0;
119}
120
121static int ostm_set_oneshot(struct clock_event_device *ced)
122{
123	struct timer_of *to = to_timer_of(ced);
124
125	ostm_timer_stop(to);
126
127	return 0;
128}
129
130static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
131{
132	struct clock_event_device *ced = dev_id;
133
134	if (clockevent_state_oneshot(ced))
135		ostm_timer_stop(to_timer_of(ced));
136
137	/* notify clockevent layer */
138	if (ced->event_handler)
139		ced->event_handler(ced);
140
141	return IRQ_HANDLED;
142}
143
144static int __init ostm_init_clkevt(struct timer_of *to)
145{
146	struct clock_event_device *ced = &to->clkevt;
147
148	ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
149	ced->set_state_shutdown = ostm_shutdown;
150	ced->set_state_periodic = ostm_set_periodic;
151	ced->set_state_oneshot = ostm_set_oneshot;
152	ced->set_next_event = ostm_clock_event_next;
153	ced->shift = 32;
154	ced->rating = 300;
155	ced->cpumask = cpumask_of(0);
156	clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
157					0xffffffff);
158
159	return 0;
160}
161
162static int __init ostm_init(struct device_node *np)
163{
164	struct reset_control *rstc;
165	struct timer_of *to;
166	int ret;
167
168	to = kzalloc(sizeof(*to), GFP_KERNEL);
169	if (!to)
170		return -ENOMEM;
171
172	rstc = of_reset_control_get_optional_exclusive(np, NULL);
173	if (IS_ERR(rstc)) {
174		ret = PTR_ERR(rstc);
175		goto err_free;
176	}
177
178	reset_control_deassert(rstc);
179
180	to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
181	if (system_clock) {
182		/*
183		 * clock sources don't use interrupts, clock events do
184		 */
185		to->flags |= TIMER_OF_IRQ;
186		to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
187		to->of_irq.handler = ostm_timer_interrupt;
188	}
189
190	ret = timer_of_init(np, to);
191	if (ret)
192		goto err_reset;
193
194	/*
195	 * First probed device will be used as system clocksource. Any
196	 * additional devices will be used as clock events.
197	 */
198	if (!system_clock) {
199		ret = ostm_init_clksrc(to);
200		if (ret)
201			goto err_cleanup;
202
203		ostm_init_sched_clock(to);
204		pr_info("%pOF: used for clocksource\n", np);
205	} else {
206		ret = ostm_init_clkevt(to);
207		if (ret)
208			goto err_cleanup;
209
210		pr_info("%pOF: used for clock events\n", np);
211	}
212
213	return 0;
214
215err_cleanup:
216	timer_of_cleanup(to);
217err_reset:
218	reset_control_assert(rstc);
219	reset_control_put(rstc);
220err_free:
221	kfree(to);
222	return ret;
223}
224
225TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);
226
227#ifdef CONFIG_ARCH_RZG2L
228static int __init ostm_probe(struct platform_device *pdev)
229{
230	struct device *dev = &pdev->dev;
231
232	return ostm_init(dev->of_node);
233}
234
235static const struct of_device_id ostm_of_table[] = {
236	{ .compatible = "renesas,ostm", },
237	{ /* sentinel */ }
238};
239
240static struct platform_driver ostm_device_driver = {
241	.driver = {
242		.name = "renesas_ostm",
243		.of_match_table = of_match_ptr(ostm_of_table),
244		.suppress_bind_attrs = true,
245	},
246};
247builtin_platform_driver_probe(ostm_device_driver, ostm_probe);
248#endif
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Renesas Timer Support - OSTM
  4 *
  5 * Copyright (C) 2017 Renesas Electronics America, Inc.
  6 * Copyright (C) 2017 Chris Brandt
  7 */
  8
  9#include <linux/clk.h>
 10#include <linux/clockchips.h>
 11#include <linux/interrupt.h>
 
 
 12#include <linux/sched_clock.h>
 13#include <linux/slab.h>
 14
 15#include "timer-of.h"
 16
 17/*
 18 * The OSTM contains independent channels.
 19 * The first OSTM channel probed will be set up as a free running
 20 * clocksource. Additionally we will use this clocksource for the system
 21 * schedule timer sched_clock().
 22 *
 23 * The second (or more) channel probed will be set up as an interrupt
 24 * driven clock event.
 25 */
 26
 27static void __iomem *system_clock;	/* For sched_clock() */
 28
 29/* OSTM REGISTERS */
 30#define	OSTM_CMP		0x000	/* RW,32 */
 31#define	OSTM_CNT		0x004	/* R,32 */
 32#define	OSTM_TE			0x010	/* R,8 */
 33#define	OSTM_TS			0x014	/* W,8 */
 34#define	OSTM_TT			0x018	/* W,8 */
 35#define	OSTM_CTL		0x020	/* RW,8 */
 36
 37#define	TE			0x01
 38#define	TS			0x01
 39#define	TT			0x01
 40#define	CTL_PERIODIC		0x00
 41#define	CTL_ONESHOT		0x02
 42#define	CTL_FREERUN		0x02
 43
 44static void ostm_timer_stop(struct timer_of *to)
 45{
 46	if (readb(timer_of_base(to) + OSTM_TE) & TE) {
 47		writeb(TT, timer_of_base(to) + OSTM_TT);
 48
 49		/*
 50		 * Read back the register simply to confirm the write operation
 51		 * has completed since I/O writes can sometimes get queued by
 52		 * the bus architecture.
 53		 */
 54		while (readb(timer_of_base(to) + OSTM_TE) & TE)
 55			;
 56	}
 57}
 58
 59static int __init ostm_init_clksrc(struct timer_of *to)
 60{
 61	ostm_timer_stop(to);
 62
 63	writel(0, timer_of_base(to) + OSTM_CMP);
 64	writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL);
 65	writeb(TS, timer_of_base(to) + OSTM_TS);
 66
 67	return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT,
 68				     to->np->full_name, timer_of_rate(to), 300,
 69				     32, clocksource_mmio_readl_up);
 70}
 71
 72static u64 notrace ostm_read_sched_clock(void)
 73{
 74	return readl(system_clock);
 75}
 76
 77static void __init ostm_init_sched_clock(struct timer_of *to)
 78{
 79	system_clock = timer_of_base(to) + OSTM_CNT;
 80	sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to));
 81}
 82
 83static int ostm_clock_event_next(unsigned long delta,
 84				 struct clock_event_device *ced)
 85{
 86	struct timer_of *to = to_timer_of(ced);
 87
 88	ostm_timer_stop(to);
 89
 90	writel(delta, timer_of_base(to) + OSTM_CMP);
 91	writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL);
 92	writeb(TS, timer_of_base(to) + OSTM_TS);
 93
 94	return 0;
 95}
 96
 97static int ostm_shutdown(struct clock_event_device *ced)
 98{
 99	struct timer_of *to = to_timer_of(ced);
100
101	ostm_timer_stop(to);
102
103	return 0;
104}
105static int ostm_set_periodic(struct clock_event_device *ced)
106{
107	struct timer_of *to = to_timer_of(ced);
108
109	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
110		ostm_timer_stop(to);
111
112	writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP);
113	writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL);
114	writeb(TS, timer_of_base(to) + OSTM_TS);
115
116	return 0;
117}
118
119static int ostm_set_oneshot(struct clock_event_device *ced)
120{
121	struct timer_of *to = to_timer_of(ced);
122
123	ostm_timer_stop(to);
124
125	return 0;
126}
127
128static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
129{
130	struct clock_event_device *ced = dev_id;
131
132	if (clockevent_state_oneshot(ced))
133		ostm_timer_stop(to_timer_of(ced));
134
135	/* notify clockevent layer */
136	if (ced->event_handler)
137		ced->event_handler(ced);
138
139	return IRQ_HANDLED;
140}
141
142static int __init ostm_init_clkevt(struct timer_of *to)
143{
144	struct clock_event_device *ced = &to->clkevt;
145
146	ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
147	ced->set_state_shutdown = ostm_shutdown;
148	ced->set_state_periodic = ostm_set_periodic;
149	ced->set_state_oneshot = ostm_set_oneshot;
150	ced->set_next_event = ostm_clock_event_next;
151	ced->shift = 32;
152	ced->rating = 300;
153	ced->cpumask = cpumask_of(0);
154	clockevents_config_and_register(ced, timer_of_rate(to), 0xf,
155					0xffffffff);
156
157	return 0;
158}
159
160static int __init ostm_init(struct device_node *np)
161{
 
162	struct timer_of *to;
163	int ret;
164
165	to = kzalloc(sizeof(*to), GFP_KERNEL);
166	if (!to)
167		return -ENOMEM;
168
 
 
 
 
 
 
 
 
169	to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
170	if (system_clock) {
171		/*
172		 * clock sources don't use interrupts, clock events do
173		 */
174		to->flags |= TIMER_OF_IRQ;
175		to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL;
176		to->of_irq.handler = ostm_timer_interrupt;
177	}
178
179	ret = timer_of_init(np, to);
180	if (ret)
181		goto err_free;
182
183	/*
184	 * First probed device will be used as system clocksource. Any
185	 * additional devices will be used as clock events.
186	 */
187	if (!system_clock) {
188		ret = ostm_init_clksrc(to);
189		if (ret)
190			goto err_cleanup;
191
192		ostm_init_sched_clock(to);
193		pr_info("%pOF: used for clocksource\n", np);
194	} else {
195		ret = ostm_init_clkevt(to);
196		if (ret)
197			goto err_cleanup;
198
199		pr_info("%pOF: used for clock events\n", np);
200	}
201
202	return 0;
203
204err_cleanup:
205	timer_of_cleanup(to);
 
 
 
206err_free:
207	kfree(to);
208	return ret;
209}
210
211TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);