Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Bluetooth Software UART Qualcomm protocol
4 *
5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6 * protocol extension to H4.
7 *
8 * Copyright (C) 2007 Texas Instruments, Inc.
9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10 *
11 * Acknowledgements:
12 * This file is based on hci_ll.c, which was...
13 * Written by Ohad Ben-Cohen <ohad@bencohen.org>
14 * which was in turn based on hci_h4.c, which was written
15 * by Maxim Krasnyansky and Marcel Holtmann.
16 */
17
18#include <linux/kernel.h>
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/debugfs.h>
22#include <linux/delay.h>
23#include <linux/devcoredump.h>
24#include <linux/device.h>
25#include <linux/gpio/consumer.h>
26#include <linux/mod_devicetable.h>
27#include <linux/module.h>
28#include <linux/of_device.h>
29#include <linux/acpi.h>
30#include <linux/platform_device.h>
31#include <linux/regulator/consumer.h>
32#include <linux/serdev.h>
33#include <linux/mutex.h>
34#include <asm/unaligned.h>
35
36#include <net/bluetooth/bluetooth.h>
37#include <net/bluetooth/hci_core.h>
38
39#include "hci_uart.h"
40#include "btqca.h"
41
42/* HCI_IBS protocol messages */
43#define HCI_IBS_SLEEP_IND 0xFE
44#define HCI_IBS_WAKE_IND 0xFD
45#define HCI_IBS_WAKE_ACK 0xFC
46#define HCI_MAX_IBS_SIZE 10
47
48#define IBS_WAKE_RETRANS_TIMEOUT_MS 100
49#define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
50#define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
51#define CMD_TRANS_TIMEOUT_MS 100
52#define MEMDUMP_TIMEOUT_MS 8000
53#define IBS_DISABLE_SSR_TIMEOUT_MS \
54 (MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55#define FW_DOWNLOAD_TIMEOUT_MS 3000
56
57/* susclk rate */
58#define SUSCLK_RATE_32KHZ 32768
59
60/* Controller debug log header */
61#define QCA_DEBUG_HANDLE 0x2EDC
62
63/* max retry count when init fails */
64#define MAX_INIT_RETRIES 3
65
66/* Controller dump header */
67#define QCA_SSR_DUMP_HANDLE 0x0108
68#define QCA_DUMP_PACKET_SIZE 255
69#define QCA_LAST_SEQUENCE_NUM 0xFFFF
70#define QCA_CRASHBYTE_PACKET_LEN 1096
71#define QCA_MEMDUMP_BYTE 0xFB
72
73enum qca_flags {
74 QCA_IBS_DISABLED,
75 QCA_DROP_VENDOR_EVENT,
76 QCA_SUSPENDING,
77 QCA_MEMDUMP_COLLECTION,
78 QCA_HW_ERROR_EVENT,
79 QCA_SSR_TRIGGERED,
80 QCA_BT_OFF,
81 QCA_ROM_FW
82};
83
84enum qca_capabilities {
85 QCA_CAP_WIDEBAND_SPEECH = BIT(0),
86 QCA_CAP_VALID_LE_STATES = BIT(1),
87};
88
89/* HCI_IBS transmit side sleep protocol states */
90enum tx_ibs_states {
91 HCI_IBS_TX_ASLEEP,
92 HCI_IBS_TX_WAKING,
93 HCI_IBS_TX_AWAKE,
94};
95
96/* HCI_IBS receive side sleep protocol states */
97enum rx_states {
98 HCI_IBS_RX_ASLEEP,
99 HCI_IBS_RX_AWAKE,
100};
101
102/* HCI_IBS transmit and receive side clock state vote */
103enum hci_ibs_clock_state_vote {
104 HCI_IBS_VOTE_STATS_UPDATE,
105 HCI_IBS_TX_VOTE_CLOCK_ON,
106 HCI_IBS_TX_VOTE_CLOCK_OFF,
107 HCI_IBS_RX_VOTE_CLOCK_ON,
108 HCI_IBS_RX_VOTE_CLOCK_OFF,
109};
110
111/* Controller memory dump states */
112enum qca_memdump_states {
113 QCA_MEMDUMP_IDLE,
114 QCA_MEMDUMP_COLLECTING,
115 QCA_MEMDUMP_COLLECTED,
116 QCA_MEMDUMP_TIMEOUT,
117};
118
119struct qca_memdump_data {
120 char *memdump_buf_head;
121 char *memdump_buf_tail;
122 u32 current_seq_no;
123 u32 received_dump;
124 u32 ram_dump_size;
125};
126
127struct qca_memdump_event_hdr {
128 __u8 evt;
129 __u8 plen;
130 __u16 opcode;
131 __u16 seq_no;
132 __u8 reserved;
133} __packed;
134
135
136struct qca_dump_size {
137 u32 dump_size;
138} __packed;
139
140struct qca_data {
141 struct hci_uart *hu;
142 struct sk_buff *rx_skb;
143 struct sk_buff_head txq;
144 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
145 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
146 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
147 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
148 u8 rx_ibs_state; /* HCI_IBS receive side power state */
149 bool tx_vote; /* Clock must be on for TX */
150 bool rx_vote; /* Clock must be on for RX */
151 struct timer_list tx_idle_timer;
152 u32 tx_idle_delay;
153 struct timer_list wake_retrans_timer;
154 u32 wake_retrans;
155 struct workqueue_struct *workqueue;
156 struct work_struct ws_awake_rx;
157 struct work_struct ws_awake_device;
158 struct work_struct ws_rx_vote_off;
159 struct work_struct ws_tx_vote_off;
160 struct work_struct ctrl_memdump_evt;
161 struct delayed_work ctrl_memdump_timeout;
162 struct qca_memdump_data *qca_memdump;
163 unsigned long flags;
164 struct completion drop_ev_comp;
165 wait_queue_head_t suspend_wait_q;
166 enum qca_memdump_states memdump_state;
167 struct mutex hci_memdump_lock;
168
169 /* For debugging purpose */
170 u64 ibs_sent_wacks;
171 u64 ibs_sent_slps;
172 u64 ibs_sent_wakes;
173 u64 ibs_recv_wacks;
174 u64 ibs_recv_slps;
175 u64 ibs_recv_wakes;
176 u64 vote_last_jif;
177 u32 vote_on_ms;
178 u32 vote_off_ms;
179 u64 tx_votes_on;
180 u64 rx_votes_on;
181 u64 tx_votes_off;
182 u64 rx_votes_off;
183 u64 votes_on;
184 u64 votes_off;
185};
186
187enum qca_speed_type {
188 QCA_INIT_SPEED = 1,
189 QCA_OPER_SPEED
190};
191
192/*
193 * Voltage regulator information required for configuring the
194 * QCA Bluetooth chipset
195 */
196struct qca_vreg {
197 const char *name;
198 unsigned int load_uA;
199};
200
201struct qca_device_data {
202 enum qca_btsoc_type soc_type;
203 struct qca_vreg *vregs;
204 size_t num_vregs;
205 uint32_t capabilities;
206};
207
208/*
209 * Platform data for the QCA Bluetooth power driver.
210 */
211struct qca_power {
212 struct device *dev;
213 struct regulator_bulk_data *vreg_bulk;
214 int num_vregs;
215 bool vregs_on;
216};
217
218struct qca_serdev {
219 struct hci_uart serdev_hu;
220 struct gpio_desc *bt_en;
221 struct gpio_desc *sw_ctrl;
222 struct clk *susclk;
223 enum qca_btsoc_type btsoc_type;
224 struct qca_power *bt_power;
225 u32 init_speed;
226 u32 oper_speed;
227 const char *firmware_name;
228};
229
230static int qca_regulator_enable(struct qca_serdev *qcadev);
231static void qca_regulator_disable(struct qca_serdev *qcadev);
232static void qca_power_shutdown(struct hci_uart *hu);
233static int qca_power_off(struct hci_dev *hdev);
234static void qca_controller_memdump(struct work_struct *work);
235
236static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
237{
238 enum qca_btsoc_type soc_type;
239
240 if (hu->serdev) {
241 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
242
243 soc_type = qsd->btsoc_type;
244 } else {
245 soc_type = QCA_ROME;
246 }
247
248 return soc_type;
249}
250
251static const char *qca_get_firmware_name(struct hci_uart *hu)
252{
253 if (hu->serdev) {
254 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
255
256 return qsd->firmware_name;
257 } else {
258 return NULL;
259 }
260}
261
262static void __serial_clock_on(struct tty_struct *tty)
263{
264 /* TODO: Some chipset requires to enable UART clock on client
265 * side to save power consumption or manual work is required.
266 * Please put your code to control UART clock here if needed
267 */
268}
269
270static void __serial_clock_off(struct tty_struct *tty)
271{
272 /* TODO: Some chipset requires to disable UART clock on client
273 * side to save power consumption or manual work is required.
274 * Please put your code to control UART clock off here if needed
275 */
276}
277
278/* serial_clock_vote needs to be called with the ibs lock held */
279static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
280{
281 struct qca_data *qca = hu->priv;
282 unsigned int diff;
283
284 bool old_vote = (qca->tx_vote | qca->rx_vote);
285 bool new_vote;
286
287 switch (vote) {
288 case HCI_IBS_VOTE_STATS_UPDATE:
289 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
290
291 if (old_vote)
292 qca->vote_off_ms += diff;
293 else
294 qca->vote_on_ms += diff;
295 return;
296
297 case HCI_IBS_TX_VOTE_CLOCK_ON:
298 qca->tx_vote = true;
299 qca->tx_votes_on++;
300 break;
301
302 case HCI_IBS_RX_VOTE_CLOCK_ON:
303 qca->rx_vote = true;
304 qca->rx_votes_on++;
305 break;
306
307 case HCI_IBS_TX_VOTE_CLOCK_OFF:
308 qca->tx_vote = false;
309 qca->tx_votes_off++;
310 break;
311
312 case HCI_IBS_RX_VOTE_CLOCK_OFF:
313 qca->rx_vote = false;
314 qca->rx_votes_off++;
315 break;
316
317 default:
318 BT_ERR("Voting irregularity");
319 return;
320 }
321
322 new_vote = qca->rx_vote | qca->tx_vote;
323
324 if (new_vote != old_vote) {
325 if (new_vote)
326 __serial_clock_on(hu->tty);
327 else
328 __serial_clock_off(hu->tty);
329
330 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
331 vote ? "true" : "false");
332
333 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
334
335 if (new_vote) {
336 qca->votes_on++;
337 qca->vote_off_ms += diff;
338 } else {
339 qca->votes_off++;
340 qca->vote_on_ms += diff;
341 }
342 qca->vote_last_jif = jiffies;
343 }
344}
345
346/* Builds and sends an HCI_IBS command packet.
347 * These are very simple packets with only 1 cmd byte.
348 */
349static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
350{
351 int err = 0;
352 struct sk_buff *skb = NULL;
353 struct qca_data *qca = hu->priv;
354
355 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
356
357 skb = bt_skb_alloc(1, GFP_ATOMIC);
358 if (!skb) {
359 BT_ERR("Failed to allocate memory for HCI_IBS packet");
360 return -ENOMEM;
361 }
362
363 /* Assign HCI_IBS type */
364 skb_put_u8(skb, cmd);
365
366 skb_queue_tail(&qca->txq, skb);
367
368 return err;
369}
370
371static void qca_wq_awake_device(struct work_struct *work)
372{
373 struct qca_data *qca = container_of(work, struct qca_data,
374 ws_awake_device);
375 struct hci_uart *hu = qca->hu;
376 unsigned long retrans_delay;
377 unsigned long flags;
378
379 BT_DBG("hu %p wq awake device", hu);
380
381 /* Vote for serial clock */
382 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
383
384 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
385
386 /* Send wake indication to device */
387 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
388 BT_ERR("Failed to send WAKE to device");
389
390 qca->ibs_sent_wakes++;
391
392 /* Start retransmit timer */
393 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
394 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
395
396 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
397
398 /* Actually send the packets */
399 hci_uart_tx_wakeup(hu);
400}
401
402static void qca_wq_awake_rx(struct work_struct *work)
403{
404 struct qca_data *qca = container_of(work, struct qca_data,
405 ws_awake_rx);
406 struct hci_uart *hu = qca->hu;
407 unsigned long flags;
408
409 BT_DBG("hu %p wq awake rx", hu);
410
411 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
412
413 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
414 qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
415
416 /* Always acknowledge device wake up,
417 * sending IBS message doesn't count as TX ON.
418 */
419 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
420 BT_ERR("Failed to acknowledge device wake up");
421
422 qca->ibs_sent_wacks++;
423
424 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
425
426 /* Actually send the packets */
427 hci_uart_tx_wakeup(hu);
428}
429
430static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
431{
432 struct qca_data *qca = container_of(work, struct qca_data,
433 ws_rx_vote_off);
434 struct hci_uart *hu = qca->hu;
435
436 BT_DBG("hu %p rx clock vote off", hu);
437
438 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
439}
440
441static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
442{
443 struct qca_data *qca = container_of(work, struct qca_data,
444 ws_tx_vote_off);
445 struct hci_uart *hu = qca->hu;
446
447 BT_DBG("hu %p tx clock vote off", hu);
448
449 /* Run HCI tx handling unlocked */
450 hci_uart_tx_wakeup(hu);
451
452 /* Now that message queued to tty driver, vote for tty clocks off.
453 * It is up to the tty driver to pend the clocks off until tx done.
454 */
455 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
456}
457
458static void hci_ibs_tx_idle_timeout(struct timer_list *t)
459{
460 struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
461 struct hci_uart *hu = qca->hu;
462 unsigned long flags;
463
464 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
465
466 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
467 flags, SINGLE_DEPTH_NESTING);
468
469 switch (qca->tx_ibs_state) {
470 case HCI_IBS_TX_AWAKE:
471 /* TX_IDLE, go to SLEEP */
472 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
473 BT_ERR("Failed to send SLEEP to device");
474 break;
475 }
476 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
477 qca->ibs_sent_slps++;
478 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
479 break;
480
481 case HCI_IBS_TX_ASLEEP:
482 case HCI_IBS_TX_WAKING:
483 default:
484 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
485 break;
486 }
487
488 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
489}
490
491static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
492{
493 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
494 struct hci_uart *hu = qca->hu;
495 unsigned long flags, retrans_delay;
496 bool retransmit = false;
497
498 BT_DBG("hu %p wake retransmit timeout in %d state",
499 hu, qca->tx_ibs_state);
500
501 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
502 flags, SINGLE_DEPTH_NESTING);
503
504 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
505 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
506 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
507 return;
508 }
509
510 switch (qca->tx_ibs_state) {
511 case HCI_IBS_TX_WAKING:
512 /* No WAKE_ACK, retransmit WAKE */
513 retransmit = true;
514 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
515 BT_ERR("Failed to acknowledge device wake up");
516 break;
517 }
518 qca->ibs_sent_wakes++;
519 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
520 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
521 break;
522
523 case HCI_IBS_TX_ASLEEP:
524 case HCI_IBS_TX_AWAKE:
525 default:
526 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
527 break;
528 }
529
530 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
531
532 if (retransmit)
533 hci_uart_tx_wakeup(hu);
534}
535
536
537static void qca_controller_memdump_timeout(struct work_struct *work)
538{
539 struct qca_data *qca = container_of(work, struct qca_data,
540 ctrl_memdump_timeout.work);
541 struct hci_uart *hu = qca->hu;
542
543 mutex_lock(&qca->hci_memdump_lock);
544 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
545 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
546 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
547 /* Inject hw error event to reset the device
548 * and driver.
549 */
550 hci_reset_dev(hu->hdev);
551 }
552 }
553
554 mutex_unlock(&qca->hci_memdump_lock);
555}
556
557
558/* Initialize protocol */
559static int qca_open(struct hci_uart *hu)
560{
561 struct qca_serdev *qcadev;
562 struct qca_data *qca;
563
564 BT_DBG("hu %p qca_open", hu);
565
566 if (!hci_uart_has_flow_control(hu))
567 return -EOPNOTSUPP;
568
569 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
570 if (!qca)
571 return -ENOMEM;
572
573 skb_queue_head_init(&qca->txq);
574 skb_queue_head_init(&qca->tx_wait_q);
575 skb_queue_head_init(&qca->rx_memdump_q);
576 spin_lock_init(&qca->hci_ibs_lock);
577 mutex_init(&qca->hci_memdump_lock);
578 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
579 if (!qca->workqueue) {
580 BT_ERR("QCA Workqueue not initialized properly");
581 kfree(qca);
582 return -ENOMEM;
583 }
584
585 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
586 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
587 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
588 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
589 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
590 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
591 qca_controller_memdump_timeout);
592 init_waitqueue_head(&qca->suspend_wait_q);
593
594 qca->hu = hu;
595 init_completion(&qca->drop_ev_comp);
596
597 /* Assume we start with both sides asleep -- extra wakes OK */
598 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
599 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
600
601 qca->vote_last_jif = jiffies;
602
603 hu->priv = qca;
604
605 if (hu->serdev) {
606 qcadev = serdev_device_get_drvdata(hu->serdev);
607
608 if (qca_is_wcn399x(qcadev->btsoc_type) ||
609 qca_is_wcn6750(qcadev->btsoc_type))
610 hu->init_speed = qcadev->init_speed;
611
612 if (qcadev->oper_speed)
613 hu->oper_speed = qcadev->oper_speed;
614 }
615
616 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
617 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
618
619 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
620 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
621
622 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
623 qca->tx_idle_delay, qca->wake_retrans);
624
625 return 0;
626}
627
628static void qca_debugfs_init(struct hci_dev *hdev)
629{
630 struct hci_uart *hu = hci_get_drvdata(hdev);
631 struct qca_data *qca = hu->priv;
632 struct dentry *ibs_dir;
633 umode_t mode;
634
635 if (!hdev->debugfs)
636 return;
637
638 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
639
640 /* read only */
641 mode = 0444;
642 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
643 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
644 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
645 &qca->ibs_sent_slps);
646 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
647 &qca->ibs_sent_wakes);
648 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
649 &qca->ibs_sent_wacks);
650 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
651 &qca->ibs_recv_slps);
652 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
653 &qca->ibs_recv_wakes);
654 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
655 &qca->ibs_recv_wacks);
656 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
657 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
658 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
659 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
660 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
661 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
662 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
663 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
664 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
665 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
666
667 /* read/write */
668 mode = 0644;
669 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
670 debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
671 &qca->tx_idle_delay);
672}
673
674/* Flush protocol data */
675static int qca_flush(struct hci_uart *hu)
676{
677 struct qca_data *qca = hu->priv;
678
679 BT_DBG("hu %p qca flush", hu);
680
681 skb_queue_purge(&qca->tx_wait_q);
682 skb_queue_purge(&qca->txq);
683
684 return 0;
685}
686
687/* Close protocol */
688static int qca_close(struct hci_uart *hu)
689{
690 struct qca_data *qca = hu->priv;
691
692 BT_DBG("hu %p qca close", hu);
693
694 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
695
696 skb_queue_purge(&qca->tx_wait_q);
697 skb_queue_purge(&qca->txq);
698 skb_queue_purge(&qca->rx_memdump_q);
699 /*
700 * Shut the timers down so they can't be rearmed when
701 * destroy_workqueue() drains pending work which in turn might try
702 * to arm a timer. After shutdown rearm attempts are silently
703 * ignored by the timer core code.
704 */
705 timer_shutdown_sync(&qca->tx_idle_timer);
706 timer_shutdown_sync(&qca->wake_retrans_timer);
707 destroy_workqueue(qca->workqueue);
708 qca->hu = NULL;
709
710 kfree_skb(qca->rx_skb);
711
712 hu->priv = NULL;
713
714 kfree(qca);
715
716 return 0;
717}
718
719/* Called upon a wake-up-indication from the device.
720 */
721static void device_want_to_wakeup(struct hci_uart *hu)
722{
723 unsigned long flags;
724 struct qca_data *qca = hu->priv;
725
726 BT_DBG("hu %p want to wake up", hu);
727
728 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
729
730 qca->ibs_recv_wakes++;
731
732 /* Don't wake the rx up when suspending. */
733 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
734 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
735 return;
736 }
737
738 switch (qca->rx_ibs_state) {
739 case HCI_IBS_RX_ASLEEP:
740 /* Make sure clock is on - we may have turned clock off since
741 * receiving the wake up indicator awake rx clock.
742 */
743 queue_work(qca->workqueue, &qca->ws_awake_rx);
744 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
745 return;
746
747 case HCI_IBS_RX_AWAKE:
748 /* Always acknowledge device wake up,
749 * sending IBS message doesn't count as TX ON.
750 */
751 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
752 BT_ERR("Failed to acknowledge device wake up");
753 break;
754 }
755 qca->ibs_sent_wacks++;
756 break;
757
758 default:
759 /* Any other state is illegal */
760 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
761 qca->rx_ibs_state);
762 break;
763 }
764
765 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
766
767 /* Actually send the packets */
768 hci_uart_tx_wakeup(hu);
769}
770
771/* Called upon a sleep-indication from the device.
772 */
773static void device_want_to_sleep(struct hci_uart *hu)
774{
775 unsigned long flags;
776 struct qca_data *qca = hu->priv;
777
778 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
779
780 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
781
782 qca->ibs_recv_slps++;
783
784 switch (qca->rx_ibs_state) {
785 case HCI_IBS_RX_AWAKE:
786 /* Update state */
787 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
788 /* Vote off rx clock under workqueue */
789 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
790 break;
791
792 case HCI_IBS_RX_ASLEEP:
793 break;
794
795 default:
796 /* Any other state is illegal */
797 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
798 qca->rx_ibs_state);
799 break;
800 }
801
802 wake_up_interruptible(&qca->suspend_wait_q);
803
804 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
805}
806
807/* Called upon wake-up-acknowledgement from the device
808 */
809static void device_woke_up(struct hci_uart *hu)
810{
811 unsigned long flags, idle_delay;
812 struct qca_data *qca = hu->priv;
813 struct sk_buff *skb = NULL;
814
815 BT_DBG("hu %p woke up", hu);
816
817 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
818
819 qca->ibs_recv_wacks++;
820
821 /* Don't react to the wake-up-acknowledgment when suspending. */
822 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
823 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
824 return;
825 }
826
827 switch (qca->tx_ibs_state) {
828 case HCI_IBS_TX_AWAKE:
829 /* Expect one if we send 2 WAKEs */
830 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
831 qca->tx_ibs_state);
832 break;
833
834 case HCI_IBS_TX_WAKING:
835 /* Send pending packets */
836 while ((skb = skb_dequeue(&qca->tx_wait_q)))
837 skb_queue_tail(&qca->txq, skb);
838
839 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
840 del_timer(&qca->wake_retrans_timer);
841 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
842 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
843 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
844 break;
845
846 case HCI_IBS_TX_ASLEEP:
847 default:
848 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
849 qca->tx_ibs_state);
850 break;
851 }
852
853 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
854
855 /* Actually send the packets */
856 hci_uart_tx_wakeup(hu);
857}
858
859/* Enqueue frame for transmittion (padding, crc, etc) may be called from
860 * two simultaneous tasklets.
861 */
862static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
863{
864 unsigned long flags = 0, idle_delay;
865 struct qca_data *qca = hu->priv;
866
867 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
868 qca->tx_ibs_state);
869
870 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
871 /* As SSR is in progress, ignore the packets */
872 bt_dev_dbg(hu->hdev, "SSR is in progress");
873 kfree_skb(skb);
874 return 0;
875 }
876
877 /* Prepend skb with frame type */
878 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
879
880 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
881
882 /* Don't go to sleep in middle of patch download or
883 * Out-Of-Band(GPIOs control) sleep is selected.
884 * Don't wake the device up when suspending.
885 */
886 if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
887 test_bit(QCA_SUSPENDING, &qca->flags)) {
888 skb_queue_tail(&qca->txq, skb);
889 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
890 return 0;
891 }
892
893 /* Act according to current state */
894 switch (qca->tx_ibs_state) {
895 case HCI_IBS_TX_AWAKE:
896 BT_DBG("Device awake, sending normally");
897 skb_queue_tail(&qca->txq, skb);
898 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
899 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
900 break;
901
902 case HCI_IBS_TX_ASLEEP:
903 BT_DBG("Device asleep, waking up and queueing packet");
904 /* Save packet for later */
905 skb_queue_tail(&qca->tx_wait_q, skb);
906
907 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
908 /* Schedule a work queue to wake up device */
909 queue_work(qca->workqueue, &qca->ws_awake_device);
910 break;
911
912 case HCI_IBS_TX_WAKING:
913 BT_DBG("Device waking up, queueing packet");
914 /* Transient state; just keep packet for later */
915 skb_queue_tail(&qca->tx_wait_q, skb);
916 break;
917
918 default:
919 BT_ERR("Illegal tx state: %d (losing packet)",
920 qca->tx_ibs_state);
921 dev_kfree_skb_irq(skb);
922 break;
923 }
924
925 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
926
927 return 0;
928}
929
930static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
931{
932 struct hci_uart *hu = hci_get_drvdata(hdev);
933
934 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
935
936 device_want_to_sleep(hu);
937
938 kfree_skb(skb);
939 return 0;
940}
941
942static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
943{
944 struct hci_uart *hu = hci_get_drvdata(hdev);
945
946 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
947
948 device_want_to_wakeup(hu);
949
950 kfree_skb(skb);
951 return 0;
952}
953
954static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
955{
956 struct hci_uart *hu = hci_get_drvdata(hdev);
957
958 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
959
960 device_woke_up(hu);
961
962 kfree_skb(skb);
963 return 0;
964}
965
966static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
967{
968 /* We receive debug logs from chip as an ACL packets.
969 * Instead of sending the data to ACL to decode the
970 * received data, we are pushing them to the above layers
971 * as a diagnostic packet.
972 */
973 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
974 return hci_recv_diag(hdev, skb);
975
976 return hci_recv_frame(hdev, skb);
977}
978
979static void qca_controller_memdump(struct work_struct *work)
980{
981 struct qca_data *qca = container_of(work, struct qca_data,
982 ctrl_memdump_evt);
983 struct hci_uart *hu = qca->hu;
984 struct sk_buff *skb;
985 struct qca_memdump_event_hdr *cmd_hdr;
986 struct qca_memdump_data *qca_memdump = qca->qca_memdump;
987 struct qca_dump_size *dump;
988 char *memdump_buf;
989 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
990 u16 seq_no;
991 u32 dump_size;
992 u32 rx_size;
993 enum qca_btsoc_type soc_type = qca_soc_type(hu);
994
995 while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
996
997 mutex_lock(&qca->hci_memdump_lock);
998 /* Skip processing the received packets if timeout detected
999 * or memdump collection completed.
1000 */
1001 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1002 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1003 mutex_unlock(&qca->hci_memdump_lock);
1004 return;
1005 }
1006
1007 if (!qca_memdump) {
1008 qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1009 GFP_ATOMIC);
1010 if (!qca_memdump) {
1011 mutex_unlock(&qca->hci_memdump_lock);
1012 return;
1013 }
1014
1015 qca->qca_memdump = qca_memdump;
1016 }
1017
1018 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1019 cmd_hdr = (void *) skb->data;
1020 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1021 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1022
1023 if (!seq_no) {
1024
1025 /* This is the first frame of memdump packet from
1026 * the controller, Disable IBS to recevie dump
1027 * with out any interruption, ideally time required for
1028 * the controller to send the dump is 8 seconds. let us
1029 * start timer to handle this asynchronous activity.
1030 */
1031 set_bit(QCA_IBS_DISABLED, &qca->flags);
1032 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1033 dump = (void *) skb->data;
1034 dump_size = __le32_to_cpu(dump->dump_size);
1035 if (!(dump_size)) {
1036 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1037 kfree(qca_memdump);
1038 kfree_skb(skb);
1039 qca->qca_memdump = NULL;
1040 mutex_unlock(&qca->hci_memdump_lock);
1041 return;
1042 }
1043
1044 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1045 dump_size);
1046 queue_delayed_work(qca->workqueue,
1047 &qca->ctrl_memdump_timeout,
1048 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1049 );
1050
1051 skb_pull(skb, sizeof(dump_size));
1052 memdump_buf = vmalloc(dump_size);
1053 qca_memdump->ram_dump_size = dump_size;
1054 qca_memdump->memdump_buf_head = memdump_buf;
1055 qca_memdump->memdump_buf_tail = memdump_buf;
1056 }
1057
1058 memdump_buf = qca_memdump->memdump_buf_tail;
1059
1060 /* If sequence no 0 is missed then there is no point in
1061 * accepting the other sequences.
1062 */
1063 if (!memdump_buf) {
1064 bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1065 kfree(qca_memdump);
1066 kfree_skb(skb);
1067 qca->qca_memdump = NULL;
1068 mutex_unlock(&qca->hci_memdump_lock);
1069 return;
1070 }
1071
1072 /* There could be chance of missing some packets from
1073 * the controller. In such cases let us store the dummy
1074 * packets in the buffer.
1075 */
1076 /* For QCA6390, controller does not lost packets but
1077 * sequence number field of packet sometimes has error
1078 * bits, so skip this checking for missing packet.
1079 */
1080 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1081 (soc_type != QCA_QCA6390) &&
1082 seq_no != QCA_LAST_SEQUENCE_NUM) {
1083 bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1084 qca_memdump->current_seq_no);
1085 rx_size = qca_memdump->received_dump;
1086 rx_size += QCA_DUMP_PACKET_SIZE;
1087 if (rx_size > qca_memdump->ram_dump_size) {
1088 bt_dev_err(hu->hdev,
1089 "QCA memdump received %d, no space for missed packet",
1090 qca_memdump->received_dump);
1091 break;
1092 }
1093 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1094 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1095 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1096 qca_memdump->current_seq_no++;
1097 }
1098
1099 rx_size = qca_memdump->received_dump + skb->len;
1100 if (rx_size <= qca_memdump->ram_dump_size) {
1101 if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1102 (seq_no != qca_memdump->current_seq_no))
1103 bt_dev_err(hu->hdev,
1104 "QCA memdump unexpected packet %d",
1105 seq_no);
1106 bt_dev_dbg(hu->hdev,
1107 "QCA memdump packet %d with length %d",
1108 seq_no, skb->len);
1109 memcpy(memdump_buf, (unsigned char *)skb->data,
1110 skb->len);
1111 memdump_buf = memdump_buf + skb->len;
1112 qca_memdump->memdump_buf_tail = memdump_buf;
1113 qca_memdump->current_seq_no = seq_no + 1;
1114 qca_memdump->received_dump += skb->len;
1115 } else {
1116 bt_dev_err(hu->hdev,
1117 "QCA memdump received %d, no space for packet %d",
1118 qca_memdump->received_dump, seq_no);
1119 }
1120 qca->qca_memdump = qca_memdump;
1121 kfree_skb(skb);
1122 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1123 bt_dev_info(hu->hdev,
1124 "QCA memdump Done, received %d, total %d",
1125 qca_memdump->received_dump,
1126 qca_memdump->ram_dump_size);
1127 memdump_buf = qca_memdump->memdump_buf_head;
1128 dev_coredumpv(&hu->serdev->dev, memdump_buf,
1129 qca_memdump->received_dump, GFP_KERNEL);
1130 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1131 kfree(qca->qca_memdump);
1132 qca->qca_memdump = NULL;
1133 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1134 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1135 }
1136
1137 mutex_unlock(&qca->hci_memdump_lock);
1138 }
1139
1140}
1141
1142static int qca_controller_memdump_event(struct hci_dev *hdev,
1143 struct sk_buff *skb)
1144{
1145 struct hci_uart *hu = hci_get_drvdata(hdev);
1146 struct qca_data *qca = hu->priv;
1147
1148 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1149 skb_queue_tail(&qca->rx_memdump_q, skb);
1150 queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1151
1152 return 0;
1153}
1154
1155static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1156{
1157 struct hci_uart *hu = hci_get_drvdata(hdev);
1158 struct qca_data *qca = hu->priv;
1159
1160 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1161 struct hci_event_hdr *hdr = (void *)skb->data;
1162
1163 /* For the WCN3990 the vendor command for a baudrate change
1164 * isn't sent as synchronous HCI command, because the
1165 * controller sends the corresponding vendor event with the
1166 * new baudrate. The event is received and properly decoded
1167 * after changing the baudrate of the host port. It needs to
1168 * be dropped, otherwise it can be misinterpreted as
1169 * response to a later firmware download command (also a
1170 * vendor command).
1171 */
1172
1173 if (hdr->evt == HCI_EV_VENDOR)
1174 complete(&qca->drop_ev_comp);
1175
1176 kfree_skb(skb);
1177
1178 return 0;
1179 }
1180 /* We receive chip memory dump as an event packet, With a dedicated
1181 * handler followed by a hardware error event. When this event is
1182 * received we store dump into a file before closing hci. This
1183 * dump will help in triaging the issues.
1184 */
1185 if ((skb->data[0] == HCI_VENDOR_PKT) &&
1186 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1187 return qca_controller_memdump_event(hdev, skb);
1188
1189 return hci_recv_frame(hdev, skb);
1190}
1191
1192#define QCA_IBS_SLEEP_IND_EVENT \
1193 .type = HCI_IBS_SLEEP_IND, \
1194 .hlen = 0, \
1195 .loff = 0, \
1196 .lsize = 0, \
1197 .maxlen = HCI_MAX_IBS_SIZE
1198
1199#define QCA_IBS_WAKE_IND_EVENT \
1200 .type = HCI_IBS_WAKE_IND, \
1201 .hlen = 0, \
1202 .loff = 0, \
1203 .lsize = 0, \
1204 .maxlen = HCI_MAX_IBS_SIZE
1205
1206#define QCA_IBS_WAKE_ACK_EVENT \
1207 .type = HCI_IBS_WAKE_ACK, \
1208 .hlen = 0, \
1209 .loff = 0, \
1210 .lsize = 0, \
1211 .maxlen = HCI_MAX_IBS_SIZE
1212
1213static const struct h4_recv_pkt qca_recv_pkts[] = {
1214 { H4_RECV_ACL, .recv = qca_recv_acl_data },
1215 { H4_RECV_SCO, .recv = hci_recv_frame },
1216 { H4_RECV_EVENT, .recv = qca_recv_event },
1217 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
1218 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
1219 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1220};
1221
1222static int qca_recv(struct hci_uart *hu, const void *data, int count)
1223{
1224 struct qca_data *qca = hu->priv;
1225
1226 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1227 return -EUNATCH;
1228
1229 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1230 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1231 if (IS_ERR(qca->rx_skb)) {
1232 int err = PTR_ERR(qca->rx_skb);
1233 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1234 qca->rx_skb = NULL;
1235 return err;
1236 }
1237
1238 return count;
1239}
1240
1241static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1242{
1243 struct qca_data *qca = hu->priv;
1244
1245 return skb_dequeue(&qca->txq);
1246}
1247
1248static uint8_t qca_get_baudrate_value(int speed)
1249{
1250 switch (speed) {
1251 case 9600:
1252 return QCA_BAUDRATE_9600;
1253 case 19200:
1254 return QCA_BAUDRATE_19200;
1255 case 38400:
1256 return QCA_BAUDRATE_38400;
1257 case 57600:
1258 return QCA_BAUDRATE_57600;
1259 case 115200:
1260 return QCA_BAUDRATE_115200;
1261 case 230400:
1262 return QCA_BAUDRATE_230400;
1263 case 460800:
1264 return QCA_BAUDRATE_460800;
1265 case 500000:
1266 return QCA_BAUDRATE_500000;
1267 case 921600:
1268 return QCA_BAUDRATE_921600;
1269 case 1000000:
1270 return QCA_BAUDRATE_1000000;
1271 case 2000000:
1272 return QCA_BAUDRATE_2000000;
1273 case 3000000:
1274 return QCA_BAUDRATE_3000000;
1275 case 3200000:
1276 return QCA_BAUDRATE_3200000;
1277 case 3500000:
1278 return QCA_BAUDRATE_3500000;
1279 default:
1280 return QCA_BAUDRATE_115200;
1281 }
1282}
1283
1284static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1285{
1286 struct hci_uart *hu = hci_get_drvdata(hdev);
1287 struct qca_data *qca = hu->priv;
1288 struct sk_buff *skb;
1289 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1290
1291 if (baudrate > QCA_BAUDRATE_3200000)
1292 return -EINVAL;
1293
1294 cmd[4] = baudrate;
1295
1296 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1297 if (!skb) {
1298 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1299 return -ENOMEM;
1300 }
1301
1302 /* Assign commands to change baudrate and packet type. */
1303 skb_put_data(skb, cmd, sizeof(cmd));
1304 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1305
1306 skb_queue_tail(&qca->txq, skb);
1307 hci_uart_tx_wakeup(hu);
1308
1309 /* Wait for the baudrate change request to be sent */
1310
1311 while (!skb_queue_empty(&qca->txq))
1312 usleep_range(100, 200);
1313
1314 if (hu->serdev)
1315 serdev_device_wait_until_sent(hu->serdev,
1316 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1317
1318 /* Give the controller time to process the request */
1319 if (qca_is_wcn399x(qca_soc_type(hu)) ||
1320 qca_is_wcn6750(qca_soc_type(hu)))
1321 usleep_range(1000, 10000);
1322 else
1323 msleep(300);
1324
1325 return 0;
1326}
1327
1328static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1329{
1330 if (hu->serdev)
1331 serdev_device_set_baudrate(hu->serdev, speed);
1332 else
1333 hci_uart_set_baudrate(hu, speed);
1334}
1335
1336static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1337{
1338 int ret;
1339 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1340 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1341
1342 /* These power pulses are single byte command which are sent
1343 * at required baudrate to wcn3990. On wcn3990, we have an external
1344 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1345 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1346 * and also we use the same power inputs to turn on and off for
1347 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1348 * we send a power on pulse at 115200 bps. This algorithm will help to
1349 * save power. Disabling hardware flow control is mandatory while
1350 * sending power pulses to SoC.
1351 */
1352 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1353
1354 serdev_device_write_flush(hu->serdev);
1355 hci_uart_set_flow_control(hu, true);
1356 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1357 if (ret < 0) {
1358 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1359 return ret;
1360 }
1361
1362 serdev_device_wait_until_sent(hu->serdev, timeout);
1363 hci_uart_set_flow_control(hu, false);
1364
1365 /* Give to controller time to boot/shutdown */
1366 if (on)
1367 msleep(100);
1368 else
1369 usleep_range(1000, 10000);
1370
1371 return 0;
1372}
1373
1374static unsigned int qca_get_speed(struct hci_uart *hu,
1375 enum qca_speed_type speed_type)
1376{
1377 unsigned int speed = 0;
1378
1379 if (speed_type == QCA_INIT_SPEED) {
1380 if (hu->init_speed)
1381 speed = hu->init_speed;
1382 else if (hu->proto->init_speed)
1383 speed = hu->proto->init_speed;
1384 } else {
1385 if (hu->oper_speed)
1386 speed = hu->oper_speed;
1387 else if (hu->proto->oper_speed)
1388 speed = hu->proto->oper_speed;
1389 }
1390
1391 return speed;
1392}
1393
1394static int qca_check_speeds(struct hci_uart *hu)
1395{
1396 if (qca_is_wcn399x(qca_soc_type(hu)) ||
1397 qca_is_wcn6750(qca_soc_type(hu))) {
1398 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1399 !qca_get_speed(hu, QCA_OPER_SPEED))
1400 return -EINVAL;
1401 } else {
1402 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1403 !qca_get_speed(hu, QCA_OPER_SPEED))
1404 return -EINVAL;
1405 }
1406
1407 return 0;
1408}
1409
1410static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1411{
1412 unsigned int speed, qca_baudrate;
1413 struct qca_data *qca = hu->priv;
1414 int ret = 0;
1415
1416 if (speed_type == QCA_INIT_SPEED) {
1417 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1418 if (speed)
1419 host_set_baudrate(hu, speed);
1420 } else {
1421 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1422
1423 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1424 if (!speed)
1425 return 0;
1426
1427 /* Disable flow control for wcn3990 to deassert RTS while
1428 * changing the baudrate of chip and host.
1429 */
1430 if (qca_is_wcn399x(soc_type) ||
1431 qca_is_wcn6750(soc_type))
1432 hci_uart_set_flow_control(hu, true);
1433
1434 if (soc_type == QCA_WCN3990) {
1435 reinit_completion(&qca->drop_ev_comp);
1436 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1437 }
1438
1439 qca_baudrate = qca_get_baudrate_value(speed);
1440 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1441 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1442 if (ret)
1443 goto error;
1444
1445 host_set_baudrate(hu, speed);
1446
1447error:
1448 if (qca_is_wcn399x(soc_type) ||
1449 qca_is_wcn6750(soc_type))
1450 hci_uart_set_flow_control(hu, false);
1451
1452 if (soc_type == QCA_WCN3990) {
1453 /* Wait for the controller to send the vendor event
1454 * for the baudrate change command.
1455 */
1456 if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1457 msecs_to_jiffies(100))) {
1458 bt_dev_err(hu->hdev,
1459 "Failed to change controller baudrate\n");
1460 ret = -ETIMEDOUT;
1461 }
1462
1463 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1464 }
1465 }
1466
1467 return ret;
1468}
1469
1470static int qca_send_crashbuffer(struct hci_uart *hu)
1471{
1472 struct qca_data *qca = hu->priv;
1473 struct sk_buff *skb;
1474
1475 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1476 if (!skb) {
1477 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1478 return -ENOMEM;
1479 }
1480
1481 /* We forcefully crash the controller, by sending 0xfb byte for
1482 * 1024 times. We also might have chance of losing data, To be
1483 * on safer side we send 1096 bytes to the SoC.
1484 */
1485 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1486 QCA_CRASHBYTE_PACKET_LEN);
1487 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1488 bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1489 skb_queue_tail(&qca->txq, skb);
1490 hci_uart_tx_wakeup(hu);
1491
1492 return 0;
1493}
1494
1495static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1496{
1497 struct hci_uart *hu = hci_get_drvdata(hdev);
1498 struct qca_data *qca = hu->priv;
1499
1500 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1501 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1502
1503 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1504}
1505
1506static void qca_hw_error(struct hci_dev *hdev, u8 code)
1507{
1508 struct hci_uart *hu = hci_get_drvdata(hdev);
1509 struct qca_data *qca = hu->priv;
1510
1511 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1512 set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1513 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1514
1515 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1516 /* If hardware error event received for other than QCA
1517 * soc memory dump event, then we need to crash the SOC
1518 * and wait here for 8 seconds to get the dump packets.
1519 * This will block main thread to be on hold until we
1520 * collect dump.
1521 */
1522 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1523 qca_send_crashbuffer(hu);
1524 qca_wait_for_dump_collection(hdev);
1525 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1526 /* Let us wait here until memory dump collected or
1527 * memory dump timer expired.
1528 */
1529 bt_dev_info(hdev, "waiting for dump to complete");
1530 qca_wait_for_dump_collection(hdev);
1531 }
1532
1533 mutex_lock(&qca->hci_memdump_lock);
1534 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1535 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1536 if (qca->qca_memdump) {
1537 vfree(qca->qca_memdump->memdump_buf_head);
1538 kfree(qca->qca_memdump);
1539 qca->qca_memdump = NULL;
1540 }
1541 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1542 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1543 }
1544 mutex_unlock(&qca->hci_memdump_lock);
1545
1546 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1547 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1548 cancel_work_sync(&qca->ctrl_memdump_evt);
1549 skb_queue_purge(&qca->rx_memdump_q);
1550 }
1551
1552 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1553}
1554
1555static void qca_cmd_timeout(struct hci_dev *hdev)
1556{
1557 struct hci_uart *hu = hci_get_drvdata(hdev);
1558 struct qca_data *qca = hu->priv;
1559
1560 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1561 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1562 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1563 qca_send_crashbuffer(hu);
1564 qca_wait_for_dump_collection(hdev);
1565 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1566 /* Let us wait here until memory dump collected or
1567 * memory dump timer expired.
1568 */
1569 bt_dev_info(hdev, "waiting for dump to complete");
1570 qca_wait_for_dump_collection(hdev);
1571 }
1572
1573 mutex_lock(&qca->hci_memdump_lock);
1574 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1575 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1576 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1577 /* Inject hw error event to reset the device
1578 * and driver.
1579 */
1580 hci_reset_dev(hu->hdev);
1581 }
1582 }
1583 mutex_unlock(&qca->hci_memdump_lock);
1584}
1585
1586static bool qca_wakeup(struct hci_dev *hdev)
1587{
1588 struct hci_uart *hu = hci_get_drvdata(hdev);
1589 bool wakeup;
1590
1591 /* UART driver handles the interrupt from BT SoC.So we need to use
1592 * device handle of UART driver to get the status of device may wakeup.
1593 */
1594 wakeup = device_may_wakeup(hu->serdev->ctrl->dev.parent);
1595 bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1596
1597 return wakeup;
1598}
1599
1600static int qca_regulator_init(struct hci_uart *hu)
1601{
1602 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1603 struct qca_serdev *qcadev;
1604 int ret;
1605 bool sw_ctrl_state;
1606
1607 /* Check for vregs status, may be hci down has turned
1608 * off the voltage regulator.
1609 */
1610 qcadev = serdev_device_get_drvdata(hu->serdev);
1611 if (!qcadev->bt_power->vregs_on) {
1612 serdev_device_close(hu->serdev);
1613 ret = qca_regulator_enable(qcadev);
1614 if (ret)
1615 return ret;
1616
1617 ret = serdev_device_open(hu->serdev);
1618 if (ret) {
1619 bt_dev_err(hu->hdev, "failed to open port");
1620 return ret;
1621 }
1622 }
1623
1624 if (qca_is_wcn399x(soc_type)) {
1625 /* Forcefully enable wcn399x to enter in to boot mode. */
1626 host_set_baudrate(hu, 2400);
1627 ret = qca_send_power_pulse(hu, false);
1628 if (ret)
1629 return ret;
1630 }
1631
1632 /* For wcn6750 need to enable gpio bt_en */
1633 if (qcadev->bt_en) {
1634 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1635 msleep(50);
1636 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1637 msleep(50);
1638 if (qcadev->sw_ctrl) {
1639 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1640 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1641 }
1642 }
1643
1644 qca_set_speed(hu, QCA_INIT_SPEED);
1645
1646 if (qca_is_wcn399x(soc_type)) {
1647 ret = qca_send_power_pulse(hu, true);
1648 if (ret)
1649 return ret;
1650 }
1651
1652 /* Now the device is in ready state to communicate with host.
1653 * To sync host with device we need to reopen port.
1654 * Without this, we will have RTS and CTS synchronization
1655 * issues.
1656 */
1657 serdev_device_close(hu->serdev);
1658 ret = serdev_device_open(hu->serdev);
1659 if (ret) {
1660 bt_dev_err(hu->hdev, "failed to open port");
1661 return ret;
1662 }
1663
1664 hci_uart_set_flow_control(hu, false);
1665
1666 return 0;
1667}
1668
1669static int qca_power_on(struct hci_dev *hdev)
1670{
1671 struct hci_uart *hu = hci_get_drvdata(hdev);
1672 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1673 struct qca_serdev *qcadev;
1674 struct qca_data *qca = hu->priv;
1675 int ret = 0;
1676
1677 /* Non-serdev device usually is powered by external power
1678 * and don't need additional action in driver for power on
1679 */
1680 if (!hu->serdev)
1681 return 0;
1682
1683 if (qca_is_wcn399x(soc_type) ||
1684 qca_is_wcn6750(soc_type)) {
1685 ret = qca_regulator_init(hu);
1686 } else {
1687 qcadev = serdev_device_get_drvdata(hu->serdev);
1688 if (qcadev->bt_en) {
1689 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1690 /* Controller needs time to bootup. */
1691 msleep(150);
1692 }
1693 }
1694
1695 clear_bit(QCA_BT_OFF, &qca->flags);
1696 return ret;
1697}
1698
1699static int qca_setup(struct hci_uart *hu)
1700{
1701 struct hci_dev *hdev = hu->hdev;
1702 struct qca_data *qca = hu->priv;
1703 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1704 unsigned int retries = 0;
1705 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1706 const char *firmware_name = qca_get_firmware_name(hu);
1707 int ret;
1708 struct qca_btsoc_version ver;
1709
1710 ret = qca_check_speeds(hu);
1711 if (ret)
1712 return ret;
1713
1714 clear_bit(QCA_ROM_FW, &qca->flags);
1715 /* Patch downloading has to be done without IBS mode */
1716 set_bit(QCA_IBS_DISABLED, &qca->flags);
1717
1718 /* Enable controller to do both LE scan and BR/EDR inquiry
1719 * simultaneously.
1720 */
1721 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1722
1723 bt_dev_info(hdev, "setting up %s",
1724 qca_is_wcn399x(soc_type) ? "wcn399x" :
1725 (soc_type == QCA_WCN6750) ? "wcn6750" : "ROME/QCA6390");
1726
1727 qca->memdump_state = QCA_MEMDUMP_IDLE;
1728
1729retry:
1730 ret = qca_power_on(hdev);
1731 if (ret)
1732 goto out;
1733
1734 clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1735
1736 if (qca_is_wcn399x(soc_type) ||
1737 qca_is_wcn6750(soc_type)) {
1738 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1739 hci_set_aosp_capable(hdev);
1740
1741 ret = qca_read_soc_version(hdev, &ver, soc_type);
1742 if (ret)
1743 goto out;
1744 } else {
1745 qca_set_speed(hu, QCA_INIT_SPEED);
1746 }
1747
1748 /* Setup user speed if needed */
1749 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1750 if (speed) {
1751 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1752 if (ret)
1753 goto out;
1754
1755 qca_baudrate = qca_get_baudrate_value(speed);
1756 }
1757
1758 if (!(qca_is_wcn399x(soc_type) ||
1759 qca_is_wcn6750(soc_type))) {
1760 /* Get QCA version information */
1761 ret = qca_read_soc_version(hdev, &ver, soc_type);
1762 if (ret)
1763 goto out;
1764 }
1765
1766 /* Setup patch / NVM configurations */
1767 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1768 firmware_name);
1769 if (!ret) {
1770 clear_bit(QCA_IBS_DISABLED, &qca->flags);
1771 qca_debugfs_init(hdev);
1772 hu->hdev->hw_error = qca_hw_error;
1773 hu->hdev->cmd_timeout = qca_cmd_timeout;
1774 if (device_can_wakeup(hu->serdev->ctrl->dev.parent))
1775 hu->hdev->wakeup = qca_wakeup;
1776 } else if (ret == -ENOENT) {
1777 /* No patch/nvm-config found, run with original fw/config */
1778 set_bit(QCA_ROM_FW, &qca->flags);
1779 ret = 0;
1780 } else if (ret == -EAGAIN) {
1781 /*
1782 * Userspace firmware loader will return -EAGAIN in case no
1783 * patch/nvm-config is found, so run with original fw/config.
1784 */
1785 set_bit(QCA_ROM_FW, &qca->flags);
1786 ret = 0;
1787 }
1788
1789out:
1790 if (ret && retries < MAX_INIT_RETRIES) {
1791 bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1792 qca_power_shutdown(hu);
1793 if (hu->serdev) {
1794 serdev_device_close(hu->serdev);
1795 ret = serdev_device_open(hu->serdev);
1796 if (ret) {
1797 bt_dev_err(hdev, "failed to open port");
1798 return ret;
1799 }
1800 }
1801 retries++;
1802 goto retry;
1803 }
1804
1805 /* Setup bdaddr */
1806 if (soc_type == QCA_ROME)
1807 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1808 else
1809 hu->hdev->set_bdaddr = qca_set_bdaddr;
1810
1811 return ret;
1812}
1813
1814static const struct hci_uart_proto qca_proto = {
1815 .id = HCI_UART_QCA,
1816 .name = "QCA",
1817 .manufacturer = 29,
1818 .init_speed = 115200,
1819 .oper_speed = 3000000,
1820 .open = qca_open,
1821 .close = qca_close,
1822 .flush = qca_flush,
1823 .setup = qca_setup,
1824 .recv = qca_recv,
1825 .enqueue = qca_enqueue,
1826 .dequeue = qca_dequeue,
1827};
1828
1829static const struct qca_device_data qca_soc_data_wcn3990 = {
1830 .soc_type = QCA_WCN3990,
1831 .vregs = (struct qca_vreg []) {
1832 { "vddio", 15000 },
1833 { "vddxo", 80000 },
1834 { "vddrf", 300000 },
1835 { "vddch0", 450000 },
1836 },
1837 .num_vregs = 4,
1838};
1839
1840static const struct qca_device_data qca_soc_data_wcn3991 = {
1841 .soc_type = QCA_WCN3991,
1842 .vregs = (struct qca_vreg []) {
1843 { "vddio", 15000 },
1844 { "vddxo", 80000 },
1845 { "vddrf", 300000 },
1846 { "vddch0", 450000 },
1847 },
1848 .num_vregs = 4,
1849 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1850};
1851
1852static const struct qca_device_data qca_soc_data_wcn3998 = {
1853 .soc_type = QCA_WCN3998,
1854 .vregs = (struct qca_vreg []) {
1855 { "vddio", 10000 },
1856 { "vddxo", 80000 },
1857 { "vddrf", 300000 },
1858 { "vddch0", 450000 },
1859 },
1860 .num_vregs = 4,
1861};
1862
1863static const struct qca_device_data qca_soc_data_qca6390 = {
1864 .soc_type = QCA_QCA6390,
1865 .num_vregs = 0,
1866};
1867
1868static const struct qca_device_data qca_soc_data_wcn6750 = {
1869 .soc_type = QCA_WCN6750,
1870 .vregs = (struct qca_vreg []) {
1871 { "vddio", 5000 },
1872 { "vddaon", 26000 },
1873 { "vddbtcxmx", 126000 },
1874 { "vddrfacmn", 12500 },
1875 { "vddrfa0p8", 102000 },
1876 { "vddrfa1p7", 302000 },
1877 { "vddrfa1p2", 257000 },
1878 { "vddrfa2p2", 1700000 },
1879 { "vddasd", 200 },
1880 },
1881 .num_vregs = 9,
1882 .capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1883};
1884
1885static void qca_power_shutdown(struct hci_uart *hu)
1886{
1887 struct qca_serdev *qcadev;
1888 struct qca_data *qca = hu->priv;
1889 unsigned long flags;
1890 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1891 bool sw_ctrl_state;
1892
1893 /* From this point we go into power off state. But serial port is
1894 * still open, stop queueing the IBS data and flush all the buffered
1895 * data in skb's.
1896 */
1897 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1898 set_bit(QCA_IBS_DISABLED, &qca->flags);
1899 qca_flush(hu);
1900 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1901
1902 /* Non-serdev device usually is powered by external power
1903 * and don't need additional action in driver for power down
1904 */
1905 if (!hu->serdev)
1906 return;
1907
1908 qcadev = serdev_device_get_drvdata(hu->serdev);
1909
1910 if (qca_is_wcn399x(soc_type)) {
1911 host_set_baudrate(hu, 2400);
1912 qca_send_power_pulse(hu, false);
1913 qca_regulator_disable(qcadev);
1914 } else if (soc_type == QCA_WCN6750) {
1915 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1916 msleep(100);
1917 qca_regulator_disable(qcadev);
1918 if (qcadev->sw_ctrl) {
1919 sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1920 bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1921 }
1922 } else if (qcadev->bt_en) {
1923 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1924 }
1925
1926 set_bit(QCA_BT_OFF, &qca->flags);
1927}
1928
1929static int qca_power_off(struct hci_dev *hdev)
1930{
1931 struct hci_uart *hu = hci_get_drvdata(hdev);
1932 struct qca_data *qca = hu->priv;
1933 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1934
1935 hu->hdev->hw_error = NULL;
1936 hu->hdev->cmd_timeout = NULL;
1937
1938 del_timer_sync(&qca->wake_retrans_timer);
1939 del_timer_sync(&qca->tx_idle_timer);
1940
1941 /* Stop sending shutdown command if soc crashes. */
1942 if (soc_type != QCA_ROME
1943 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1944 qca_send_pre_shutdown_cmd(hdev);
1945 usleep_range(8000, 10000);
1946 }
1947
1948 qca_power_shutdown(hu);
1949 return 0;
1950}
1951
1952static int qca_regulator_enable(struct qca_serdev *qcadev)
1953{
1954 struct qca_power *power = qcadev->bt_power;
1955 int ret;
1956
1957 /* Already enabled */
1958 if (power->vregs_on)
1959 return 0;
1960
1961 BT_DBG("enabling %d regulators)", power->num_vregs);
1962
1963 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1964 if (ret)
1965 return ret;
1966
1967 power->vregs_on = true;
1968
1969 ret = clk_prepare_enable(qcadev->susclk);
1970 if (ret)
1971 qca_regulator_disable(qcadev);
1972
1973 return ret;
1974}
1975
1976static void qca_regulator_disable(struct qca_serdev *qcadev)
1977{
1978 struct qca_power *power;
1979
1980 if (!qcadev)
1981 return;
1982
1983 power = qcadev->bt_power;
1984
1985 /* Already disabled? */
1986 if (!power->vregs_on)
1987 return;
1988
1989 regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1990 power->vregs_on = false;
1991
1992 clk_disable_unprepare(qcadev->susclk);
1993}
1994
1995static int qca_init_regulators(struct qca_power *qca,
1996 const struct qca_vreg *vregs, size_t num_vregs)
1997{
1998 struct regulator_bulk_data *bulk;
1999 int ret;
2000 int i;
2001
2002 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2003 if (!bulk)
2004 return -ENOMEM;
2005
2006 for (i = 0; i < num_vregs; i++)
2007 bulk[i].supply = vregs[i].name;
2008
2009 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2010 if (ret < 0)
2011 return ret;
2012
2013 for (i = 0; i < num_vregs; i++) {
2014 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2015 if (ret)
2016 return ret;
2017 }
2018
2019 qca->vreg_bulk = bulk;
2020 qca->num_vregs = num_vregs;
2021
2022 return 0;
2023}
2024
2025static int qca_serdev_probe(struct serdev_device *serdev)
2026{
2027 struct qca_serdev *qcadev;
2028 struct hci_dev *hdev;
2029 const struct qca_device_data *data;
2030 int err;
2031 bool power_ctrl_enabled = true;
2032
2033 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2034 if (!qcadev)
2035 return -ENOMEM;
2036
2037 qcadev->serdev_hu.serdev = serdev;
2038 data = device_get_match_data(&serdev->dev);
2039 serdev_device_set_drvdata(serdev, qcadev);
2040 device_property_read_string(&serdev->dev, "firmware-name",
2041 &qcadev->firmware_name);
2042 device_property_read_u32(&serdev->dev, "max-speed",
2043 &qcadev->oper_speed);
2044 if (!qcadev->oper_speed)
2045 BT_DBG("UART will pick default operating speed");
2046
2047 if (data &&
2048 (qca_is_wcn399x(data->soc_type) ||
2049 qca_is_wcn6750(data->soc_type))) {
2050 qcadev->btsoc_type = data->soc_type;
2051 qcadev->bt_power = devm_kzalloc(&serdev->dev,
2052 sizeof(struct qca_power),
2053 GFP_KERNEL);
2054 if (!qcadev->bt_power)
2055 return -ENOMEM;
2056
2057 qcadev->bt_power->dev = &serdev->dev;
2058 err = qca_init_regulators(qcadev->bt_power, data->vregs,
2059 data->num_vregs);
2060 if (err) {
2061 BT_ERR("Failed to init regulators:%d", err);
2062 return err;
2063 }
2064
2065 qcadev->bt_power->vregs_on = false;
2066
2067 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2068 GPIOD_OUT_LOW);
2069 if (IS_ERR_OR_NULL(qcadev->bt_en) && data->soc_type == QCA_WCN6750) {
2070 dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2071 power_ctrl_enabled = false;
2072 }
2073
2074 qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2075 GPIOD_IN);
2076 if (IS_ERR_OR_NULL(qcadev->sw_ctrl) && data->soc_type == QCA_WCN6750)
2077 dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2078
2079 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2080 if (IS_ERR(qcadev->susclk)) {
2081 dev_err(&serdev->dev, "failed to acquire clk\n");
2082 return PTR_ERR(qcadev->susclk);
2083 }
2084
2085 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2086 if (err) {
2087 BT_ERR("wcn3990 serdev registration failed");
2088 return err;
2089 }
2090 } else {
2091 if (data)
2092 qcadev->btsoc_type = data->soc_type;
2093 else
2094 qcadev->btsoc_type = QCA_ROME;
2095
2096 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2097 GPIOD_OUT_LOW);
2098 if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2099 dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2100 power_ctrl_enabled = false;
2101 }
2102
2103 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2104 if (IS_ERR(qcadev->susclk)) {
2105 dev_warn(&serdev->dev, "failed to acquire clk\n");
2106 return PTR_ERR(qcadev->susclk);
2107 }
2108 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2109 if (err)
2110 return err;
2111
2112 err = clk_prepare_enable(qcadev->susclk);
2113 if (err)
2114 return err;
2115
2116 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2117 if (err) {
2118 BT_ERR("Rome serdev registration failed");
2119 clk_disable_unprepare(qcadev->susclk);
2120 return err;
2121 }
2122 }
2123
2124 hdev = qcadev->serdev_hu.hdev;
2125
2126 if (power_ctrl_enabled) {
2127 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2128 hdev->shutdown = qca_power_off;
2129 }
2130
2131 if (data) {
2132 /* Wideband speech support must be set per driver since it can't
2133 * be queried via hci. Same with the valid le states quirk.
2134 */
2135 if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2136 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2137 &hdev->quirks);
2138
2139 if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2140 set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2141 }
2142
2143 return 0;
2144}
2145
2146static void qca_serdev_remove(struct serdev_device *serdev)
2147{
2148 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2149 struct qca_power *power = qcadev->bt_power;
2150
2151 if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2152 qca_is_wcn6750(qcadev->btsoc_type)) &&
2153 power->vregs_on)
2154 qca_power_shutdown(&qcadev->serdev_hu);
2155 else if (qcadev->susclk)
2156 clk_disable_unprepare(qcadev->susclk);
2157
2158 hci_uart_unregister_device(&qcadev->serdev_hu);
2159}
2160
2161static void qca_serdev_shutdown(struct device *dev)
2162{
2163 int ret;
2164 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2165 struct serdev_device *serdev = to_serdev_device(dev);
2166 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2167 struct hci_uart *hu = &qcadev->serdev_hu;
2168 struct hci_dev *hdev = hu->hdev;
2169 struct qca_data *qca = hu->priv;
2170 const u8 ibs_wake_cmd[] = { 0xFD };
2171 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2172
2173 if (qcadev->btsoc_type == QCA_QCA6390) {
2174 if (test_bit(QCA_BT_OFF, &qca->flags) ||
2175 !test_bit(HCI_RUNNING, &hdev->flags))
2176 return;
2177
2178 serdev_device_write_flush(serdev);
2179 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2180 sizeof(ibs_wake_cmd));
2181 if (ret < 0) {
2182 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2183 return;
2184 }
2185 serdev_device_wait_until_sent(serdev, timeout);
2186 usleep_range(8000, 10000);
2187
2188 serdev_device_write_flush(serdev);
2189 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2190 sizeof(edl_reset_soc_cmd));
2191 if (ret < 0) {
2192 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2193 return;
2194 }
2195 serdev_device_wait_until_sent(serdev, timeout);
2196 usleep_range(8000, 10000);
2197 }
2198}
2199
2200static int __maybe_unused qca_suspend(struct device *dev)
2201{
2202 struct serdev_device *serdev = to_serdev_device(dev);
2203 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2204 struct hci_uart *hu = &qcadev->serdev_hu;
2205 struct qca_data *qca = hu->priv;
2206 unsigned long flags;
2207 bool tx_pending = false;
2208 int ret = 0;
2209 u8 cmd;
2210 u32 wait_timeout = 0;
2211
2212 set_bit(QCA_SUSPENDING, &qca->flags);
2213
2214 /* if BT SoC is running with default firmware then it does not
2215 * support in-band sleep
2216 */
2217 if (test_bit(QCA_ROM_FW, &qca->flags))
2218 return 0;
2219
2220 /* During SSR after memory dump collection, controller will be
2221 * powered off and then powered on.If controller is powered off
2222 * during SSR then we should wait until SSR is completed.
2223 */
2224 if (test_bit(QCA_BT_OFF, &qca->flags) &&
2225 !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2226 return 0;
2227
2228 if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2229 test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2230 wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2231 IBS_DISABLE_SSR_TIMEOUT_MS :
2232 FW_DOWNLOAD_TIMEOUT_MS;
2233
2234 /* QCA_IBS_DISABLED flag is set to true, During FW download
2235 * and during memory dump collection. It is reset to false,
2236 * After FW download complete.
2237 */
2238 wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2239 TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2240
2241 if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2242 bt_dev_err(hu->hdev, "SSR or FW download time out");
2243 ret = -ETIMEDOUT;
2244 goto error;
2245 }
2246 }
2247
2248 cancel_work_sync(&qca->ws_awake_device);
2249 cancel_work_sync(&qca->ws_awake_rx);
2250
2251 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2252 flags, SINGLE_DEPTH_NESTING);
2253
2254 switch (qca->tx_ibs_state) {
2255 case HCI_IBS_TX_WAKING:
2256 del_timer(&qca->wake_retrans_timer);
2257 fallthrough;
2258 case HCI_IBS_TX_AWAKE:
2259 del_timer(&qca->tx_idle_timer);
2260
2261 serdev_device_write_flush(hu->serdev);
2262 cmd = HCI_IBS_SLEEP_IND;
2263 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2264
2265 if (ret < 0) {
2266 BT_ERR("Failed to send SLEEP to device");
2267 break;
2268 }
2269
2270 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2271 qca->ibs_sent_slps++;
2272 tx_pending = true;
2273 break;
2274
2275 case HCI_IBS_TX_ASLEEP:
2276 break;
2277
2278 default:
2279 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2280 ret = -EINVAL;
2281 break;
2282 }
2283
2284 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2285
2286 if (ret < 0)
2287 goto error;
2288
2289 if (tx_pending) {
2290 serdev_device_wait_until_sent(hu->serdev,
2291 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2292 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2293 }
2294
2295 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2296 * to sleep, so that the packet does not wake the system later.
2297 */
2298 ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2299 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2300 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2301 if (ret == 0) {
2302 ret = -ETIMEDOUT;
2303 goto error;
2304 }
2305
2306 return 0;
2307
2308error:
2309 clear_bit(QCA_SUSPENDING, &qca->flags);
2310
2311 return ret;
2312}
2313
2314static int __maybe_unused qca_resume(struct device *dev)
2315{
2316 struct serdev_device *serdev = to_serdev_device(dev);
2317 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2318 struct hci_uart *hu = &qcadev->serdev_hu;
2319 struct qca_data *qca = hu->priv;
2320
2321 clear_bit(QCA_SUSPENDING, &qca->flags);
2322
2323 return 0;
2324}
2325
2326static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2327
2328#ifdef CONFIG_OF
2329static const struct of_device_id qca_bluetooth_of_match[] = {
2330 { .compatible = "qcom,qca6174-bt" },
2331 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2332 { .compatible = "qcom,qca9377-bt" },
2333 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2334 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2335 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2336 { .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2337 { /* sentinel */ }
2338};
2339MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2340#endif
2341
2342#ifdef CONFIG_ACPI
2343static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2344 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2345 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2346 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2347 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2348 { },
2349};
2350MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2351#endif
2352
2353
2354static struct serdev_device_driver qca_serdev_driver = {
2355 .probe = qca_serdev_probe,
2356 .remove = qca_serdev_remove,
2357 .driver = {
2358 .name = "hci_uart_qca",
2359 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2360 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2361 .shutdown = qca_serdev_shutdown,
2362 .pm = &qca_pm_ops,
2363 },
2364};
2365
2366int __init qca_init(void)
2367{
2368 serdev_device_driver_register(&qca_serdev_driver);
2369
2370 return hci_uart_register_proto(&qca_proto);
2371}
2372
2373int __exit qca_deinit(void)
2374{
2375 serdev_device_driver_unregister(&qca_serdev_driver);
2376
2377 return hci_uart_unregister_proto(&qca_proto);
2378}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Bluetooth Software UART Qualcomm protocol
4 *
5 * HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6 * protocol extension to H4.
7 *
8 * Copyright (C) 2007 Texas Instruments, Inc.
9 * Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10 *
11 * Acknowledgements:
12 * This file is based on hci_ll.c, which was...
13 * Written by Ohad Ben-Cohen <ohad@bencohen.org>
14 * which was in turn based on hci_h4.c, which was written
15 * by Maxim Krasnyansky and Marcel Holtmann.
16 */
17
18#include <linux/kernel.h>
19#include <linux/clk.h>
20#include <linux/completion.h>
21#include <linux/debugfs.h>
22#include <linux/delay.h>
23#include <linux/devcoredump.h>
24#include <linux/device.h>
25#include <linux/gpio/consumer.h>
26#include <linux/mod_devicetable.h>
27#include <linux/module.h>
28#include <linux/of_device.h>
29#include <linux/acpi.h>
30#include <linux/platform_device.h>
31#include <linux/regulator/consumer.h>
32#include <linux/serdev.h>
33#include <linux/mutex.h>
34#include <asm/unaligned.h>
35
36#include <net/bluetooth/bluetooth.h>
37#include <net/bluetooth/hci_core.h>
38
39#include "hci_uart.h"
40#include "btqca.h"
41
42/* HCI_IBS protocol messages */
43#define HCI_IBS_SLEEP_IND 0xFE
44#define HCI_IBS_WAKE_IND 0xFD
45#define HCI_IBS_WAKE_ACK 0xFC
46#define HCI_MAX_IBS_SIZE 10
47
48#define IBS_WAKE_RETRANS_TIMEOUT_MS 100
49#define IBS_BTSOC_TX_IDLE_TIMEOUT_MS 200
50#define IBS_HOST_TX_IDLE_TIMEOUT_MS 2000
51#define CMD_TRANS_TIMEOUT_MS 100
52#define MEMDUMP_TIMEOUT_MS 8000
53
54/* susclk rate */
55#define SUSCLK_RATE_32KHZ 32768
56
57/* Controller debug log header */
58#define QCA_DEBUG_HANDLE 0x2EDC
59
60/* max retry count when init fails */
61#define MAX_INIT_RETRIES 3
62
63/* Controller dump header */
64#define QCA_SSR_DUMP_HANDLE 0x0108
65#define QCA_DUMP_PACKET_SIZE 255
66#define QCA_LAST_SEQUENCE_NUM 0xFFFF
67#define QCA_CRASHBYTE_PACKET_LEN 1096
68#define QCA_MEMDUMP_BYTE 0xFB
69
70enum qca_flags {
71 QCA_IBS_ENABLED,
72 QCA_DROP_VENDOR_EVENT,
73 QCA_SUSPENDING,
74 QCA_MEMDUMP_COLLECTION,
75 QCA_HW_ERROR_EVENT,
76 QCA_SSR_TRIGGERED
77};
78
79enum qca_capabilities {
80 QCA_CAP_WIDEBAND_SPEECH = BIT(0),
81};
82
83/* HCI_IBS transmit side sleep protocol states */
84enum tx_ibs_states {
85 HCI_IBS_TX_ASLEEP,
86 HCI_IBS_TX_WAKING,
87 HCI_IBS_TX_AWAKE,
88};
89
90/* HCI_IBS receive side sleep protocol states */
91enum rx_states {
92 HCI_IBS_RX_ASLEEP,
93 HCI_IBS_RX_AWAKE,
94};
95
96/* HCI_IBS transmit and receive side clock state vote */
97enum hci_ibs_clock_state_vote {
98 HCI_IBS_VOTE_STATS_UPDATE,
99 HCI_IBS_TX_VOTE_CLOCK_ON,
100 HCI_IBS_TX_VOTE_CLOCK_OFF,
101 HCI_IBS_RX_VOTE_CLOCK_ON,
102 HCI_IBS_RX_VOTE_CLOCK_OFF,
103};
104
105/* Controller memory dump states */
106enum qca_memdump_states {
107 QCA_MEMDUMP_IDLE,
108 QCA_MEMDUMP_COLLECTING,
109 QCA_MEMDUMP_COLLECTED,
110 QCA_MEMDUMP_TIMEOUT,
111};
112
113struct qca_memdump_data {
114 char *memdump_buf_head;
115 char *memdump_buf_tail;
116 u32 current_seq_no;
117 u32 received_dump;
118 u32 ram_dump_size;
119};
120
121struct qca_memdump_event_hdr {
122 __u8 evt;
123 __u8 plen;
124 __u16 opcode;
125 __u16 seq_no;
126 __u8 reserved;
127} __packed;
128
129
130struct qca_dump_size {
131 u32 dump_size;
132} __packed;
133
134struct qca_data {
135 struct hci_uart *hu;
136 struct sk_buff *rx_skb;
137 struct sk_buff_head txq;
138 struct sk_buff_head tx_wait_q; /* HCI_IBS wait queue */
139 struct sk_buff_head rx_memdump_q; /* Memdump wait queue */
140 spinlock_t hci_ibs_lock; /* HCI_IBS state lock */
141 u8 tx_ibs_state; /* HCI_IBS transmit side power state*/
142 u8 rx_ibs_state; /* HCI_IBS receive side power state */
143 bool tx_vote; /* Clock must be on for TX */
144 bool rx_vote; /* Clock must be on for RX */
145 struct timer_list tx_idle_timer;
146 u32 tx_idle_delay;
147 struct timer_list wake_retrans_timer;
148 u32 wake_retrans;
149 struct workqueue_struct *workqueue;
150 struct work_struct ws_awake_rx;
151 struct work_struct ws_awake_device;
152 struct work_struct ws_rx_vote_off;
153 struct work_struct ws_tx_vote_off;
154 struct work_struct ctrl_memdump_evt;
155 struct delayed_work ctrl_memdump_timeout;
156 struct qca_memdump_data *qca_memdump;
157 unsigned long flags;
158 struct completion drop_ev_comp;
159 wait_queue_head_t suspend_wait_q;
160 enum qca_memdump_states memdump_state;
161 struct mutex hci_memdump_lock;
162
163 /* For debugging purpose */
164 u64 ibs_sent_wacks;
165 u64 ibs_sent_slps;
166 u64 ibs_sent_wakes;
167 u64 ibs_recv_wacks;
168 u64 ibs_recv_slps;
169 u64 ibs_recv_wakes;
170 u64 vote_last_jif;
171 u32 vote_on_ms;
172 u32 vote_off_ms;
173 u64 tx_votes_on;
174 u64 rx_votes_on;
175 u64 tx_votes_off;
176 u64 rx_votes_off;
177 u64 votes_on;
178 u64 votes_off;
179};
180
181enum qca_speed_type {
182 QCA_INIT_SPEED = 1,
183 QCA_OPER_SPEED
184};
185
186/*
187 * Voltage regulator information required for configuring the
188 * QCA Bluetooth chipset
189 */
190struct qca_vreg {
191 const char *name;
192 unsigned int load_uA;
193};
194
195struct qca_device_data {
196 enum qca_btsoc_type soc_type;
197 struct qca_vreg *vregs;
198 size_t num_vregs;
199 uint32_t capabilities;
200};
201
202/*
203 * Platform data for the QCA Bluetooth power driver.
204 */
205struct qca_power {
206 struct device *dev;
207 struct regulator_bulk_data *vreg_bulk;
208 int num_vregs;
209 bool vregs_on;
210};
211
212struct qca_serdev {
213 struct hci_uart serdev_hu;
214 struct gpio_desc *bt_en;
215 struct clk *susclk;
216 enum qca_btsoc_type btsoc_type;
217 struct qca_power *bt_power;
218 u32 init_speed;
219 u32 oper_speed;
220 const char *firmware_name;
221};
222
223static int qca_regulator_enable(struct qca_serdev *qcadev);
224static void qca_regulator_disable(struct qca_serdev *qcadev);
225static void qca_power_shutdown(struct hci_uart *hu);
226static int qca_power_off(struct hci_dev *hdev);
227static void qca_controller_memdump(struct work_struct *work);
228
229static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
230{
231 enum qca_btsoc_type soc_type;
232
233 if (hu->serdev) {
234 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
235
236 soc_type = qsd->btsoc_type;
237 } else {
238 soc_type = QCA_ROME;
239 }
240
241 return soc_type;
242}
243
244static const char *qca_get_firmware_name(struct hci_uart *hu)
245{
246 if (hu->serdev) {
247 struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
248
249 return qsd->firmware_name;
250 } else {
251 return NULL;
252 }
253}
254
255static void __serial_clock_on(struct tty_struct *tty)
256{
257 /* TODO: Some chipset requires to enable UART clock on client
258 * side to save power consumption or manual work is required.
259 * Please put your code to control UART clock here if needed
260 */
261}
262
263static void __serial_clock_off(struct tty_struct *tty)
264{
265 /* TODO: Some chipset requires to disable UART clock on client
266 * side to save power consumption or manual work is required.
267 * Please put your code to control UART clock off here if needed
268 */
269}
270
271/* serial_clock_vote needs to be called with the ibs lock held */
272static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
273{
274 struct qca_data *qca = hu->priv;
275 unsigned int diff;
276
277 bool old_vote = (qca->tx_vote | qca->rx_vote);
278 bool new_vote;
279
280 switch (vote) {
281 case HCI_IBS_VOTE_STATS_UPDATE:
282 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
283
284 if (old_vote)
285 qca->vote_off_ms += diff;
286 else
287 qca->vote_on_ms += diff;
288 return;
289
290 case HCI_IBS_TX_VOTE_CLOCK_ON:
291 qca->tx_vote = true;
292 qca->tx_votes_on++;
293 break;
294
295 case HCI_IBS_RX_VOTE_CLOCK_ON:
296 qca->rx_vote = true;
297 qca->rx_votes_on++;
298 break;
299
300 case HCI_IBS_TX_VOTE_CLOCK_OFF:
301 qca->tx_vote = false;
302 qca->tx_votes_off++;
303 break;
304
305 case HCI_IBS_RX_VOTE_CLOCK_OFF:
306 qca->rx_vote = false;
307 qca->rx_votes_off++;
308 break;
309
310 default:
311 BT_ERR("Voting irregularity");
312 return;
313 }
314
315 new_vote = qca->rx_vote | qca->tx_vote;
316
317 if (new_vote != old_vote) {
318 if (new_vote)
319 __serial_clock_on(hu->tty);
320 else
321 __serial_clock_off(hu->tty);
322
323 BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
324 vote ? "true" : "false");
325
326 diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
327
328 if (new_vote) {
329 qca->votes_on++;
330 qca->vote_off_ms += diff;
331 } else {
332 qca->votes_off++;
333 qca->vote_on_ms += diff;
334 }
335 qca->vote_last_jif = jiffies;
336 }
337}
338
339/* Builds and sends an HCI_IBS command packet.
340 * These are very simple packets with only 1 cmd byte.
341 */
342static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
343{
344 int err = 0;
345 struct sk_buff *skb = NULL;
346 struct qca_data *qca = hu->priv;
347
348 BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
349
350 skb = bt_skb_alloc(1, GFP_ATOMIC);
351 if (!skb) {
352 BT_ERR("Failed to allocate memory for HCI_IBS packet");
353 return -ENOMEM;
354 }
355
356 /* Assign HCI_IBS type */
357 skb_put_u8(skb, cmd);
358
359 skb_queue_tail(&qca->txq, skb);
360
361 return err;
362}
363
364static void qca_wq_awake_device(struct work_struct *work)
365{
366 struct qca_data *qca = container_of(work, struct qca_data,
367 ws_awake_device);
368 struct hci_uart *hu = qca->hu;
369 unsigned long retrans_delay;
370 unsigned long flags;
371
372 BT_DBG("hu %p wq awake device", hu);
373
374 /* Vote for serial clock */
375 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
376
377 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
378
379 /* Send wake indication to device */
380 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
381 BT_ERR("Failed to send WAKE to device");
382
383 qca->ibs_sent_wakes++;
384
385 /* Start retransmit timer */
386 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
387 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
388
389 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
390
391 /* Actually send the packets */
392 hci_uart_tx_wakeup(hu);
393}
394
395static void qca_wq_awake_rx(struct work_struct *work)
396{
397 struct qca_data *qca = container_of(work, struct qca_data,
398 ws_awake_rx);
399 struct hci_uart *hu = qca->hu;
400 unsigned long flags;
401
402 BT_DBG("hu %p wq awake rx", hu);
403
404 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
405
406 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
407 qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
408
409 /* Always acknowledge device wake up,
410 * sending IBS message doesn't count as TX ON.
411 */
412 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
413 BT_ERR("Failed to acknowledge device wake up");
414
415 qca->ibs_sent_wacks++;
416
417 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
418
419 /* Actually send the packets */
420 hci_uart_tx_wakeup(hu);
421}
422
423static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
424{
425 struct qca_data *qca = container_of(work, struct qca_data,
426 ws_rx_vote_off);
427 struct hci_uart *hu = qca->hu;
428
429 BT_DBG("hu %p rx clock vote off", hu);
430
431 serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
432}
433
434static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
435{
436 struct qca_data *qca = container_of(work, struct qca_data,
437 ws_tx_vote_off);
438 struct hci_uart *hu = qca->hu;
439
440 BT_DBG("hu %p tx clock vote off", hu);
441
442 /* Run HCI tx handling unlocked */
443 hci_uart_tx_wakeup(hu);
444
445 /* Now that message queued to tty driver, vote for tty clocks off.
446 * It is up to the tty driver to pend the clocks off until tx done.
447 */
448 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
449}
450
451static void hci_ibs_tx_idle_timeout(struct timer_list *t)
452{
453 struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
454 struct hci_uart *hu = qca->hu;
455 unsigned long flags;
456
457 BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
458
459 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
460 flags, SINGLE_DEPTH_NESTING);
461
462 switch (qca->tx_ibs_state) {
463 case HCI_IBS_TX_AWAKE:
464 /* TX_IDLE, go to SLEEP */
465 if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
466 BT_ERR("Failed to send SLEEP to device");
467 break;
468 }
469 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
470 qca->ibs_sent_slps++;
471 queue_work(qca->workqueue, &qca->ws_tx_vote_off);
472 break;
473
474 case HCI_IBS_TX_ASLEEP:
475 case HCI_IBS_TX_WAKING:
476 default:
477 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
478 break;
479 }
480
481 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
482}
483
484static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
485{
486 struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
487 struct hci_uart *hu = qca->hu;
488 unsigned long flags, retrans_delay;
489 bool retransmit = false;
490
491 BT_DBG("hu %p wake retransmit timeout in %d state",
492 hu, qca->tx_ibs_state);
493
494 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
495 flags, SINGLE_DEPTH_NESTING);
496
497 /* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
498 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
499 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
500 return;
501 }
502
503 switch (qca->tx_ibs_state) {
504 case HCI_IBS_TX_WAKING:
505 /* No WAKE_ACK, retransmit WAKE */
506 retransmit = true;
507 if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
508 BT_ERR("Failed to acknowledge device wake up");
509 break;
510 }
511 qca->ibs_sent_wakes++;
512 retrans_delay = msecs_to_jiffies(qca->wake_retrans);
513 mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
514 break;
515
516 case HCI_IBS_TX_ASLEEP:
517 case HCI_IBS_TX_AWAKE:
518 default:
519 BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
520 break;
521 }
522
523 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
524
525 if (retransmit)
526 hci_uart_tx_wakeup(hu);
527}
528
529
530static void qca_controller_memdump_timeout(struct work_struct *work)
531{
532 struct qca_data *qca = container_of(work, struct qca_data,
533 ctrl_memdump_timeout.work);
534 struct hci_uart *hu = qca->hu;
535
536 mutex_lock(&qca->hci_memdump_lock);
537 if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
538 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
539 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
540 /* Inject hw error event to reset the device
541 * and driver.
542 */
543 hci_reset_dev(hu->hdev);
544 }
545 }
546
547 mutex_unlock(&qca->hci_memdump_lock);
548}
549
550
551/* Initialize protocol */
552static int qca_open(struct hci_uart *hu)
553{
554 struct qca_serdev *qcadev;
555 struct qca_data *qca;
556
557 BT_DBG("hu %p qca_open", hu);
558
559 if (!hci_uart_has_flow_control(hu))
560 return -EOPNOTSUPP;
561
562 qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
563 if (!qca)
564 return -ENOMEM;
565
566 skb_queue_head_init(&qca->txq);
567 skb_queue_head_init(&qca->tx_wait_q);
568 skb_queue_head_init(&qca->rx_memdump_q);
569 spin_lock_init(&qca->hci_ibs_lock);
570 mutex_init(&qca->hci_memdump_lock);
571 qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
572 if (!qca->workqueue) {
573 BT_ERR("QCA Workqueue not initialized properly");
574 kfree(qca);
575 return -ENOMEM;
576 }
577
578 INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
579 INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
580 INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
581 INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
582 INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
583 INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
584 qca_controller_memdump_timeout);
585 init_waitqueue_head(&qca->suspend_wait_q);
586
587 qca->hu = hu;
588 init_completion(&qca->drop_ev_comp);
589
590 /* Assume we start with both sides asleep -- extra wakes OK */
591 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
592 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
593
594 qca->vote_last_jif = jiffies;
595
596 hu->priv = qca;
597
598 if (hu->serdev) {
599 qcadev = serdev_device_get_drvdata(hu->serdev);
600
601 if (qca_is_wcn399x(qcadev->btsoc_type))
602 hu->init_speed = qcadev->init_speed;
603
604 if (qcadev->oper_speed)
605 hu->oper_speed = qcadev->oper_speed;
606 }
607
608 timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
609 qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
610
611 timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
612 qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
613
614 BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
615 qca->tx_idle_delay, qca->wake_retrans);
616
617 return 0;
618}
619
620static void qca_debugfs_init(struct hci_dev *hdev)
621{
622 struct hci_uart *hu = hci_get_drvdata(hdev);
623 struct qca_data *qca = hu->priv;
624 struct dentry *ibs_dir;
625 umode_t mode;
626
627 if (!hdev->debugfs)
628 return;
629
630 ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
631
632 /* read only */
633 mode = S_IRUGO;
634 debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
635 debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
636 debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
637 &qca->ibs_sent_slps);
638 debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
639 &qca->ibs_sent_wakes);
640 debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
641 &qca->ibs_sent_wacks);
642 debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
643 &qca->ibs_recv_slps);
644 debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
645 &qca->ibs_recv_wakes);
646 debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
647 &qca->ibs_recv_wacks);
648 debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
649 debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
650 debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
651 debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
652 debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
653 debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
654 debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
655 debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
656 debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
657 debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
658
659 /* read/write */
660 mode = S_IRUGO | S_IWUSR;
661 debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
662 debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
663 &qca->tx_idle_delay);
664}
665
666/* Flush protocol data */
667static int qca_flush(struct hci_uart *hu)
668{
669 struct qca_data *qca = hu->priv;
670
671 BT_DBG("hu %p qca flush", hu);
672
673 skb_queue_purge(&qca->tx_wait_q);
674 skb_queue_purge(&qca->txq);
675
676 return 0;
677}
678
679/* Close protocol */
680static int qca_close(struct hci_uart *hu)
681{
682 struct qca_data *qca = hu->priv;
683
684 BT_DBG("hu %p qca close", hu);
685
686 serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
687
688 skb_queue_purge(&qca->tx_wait_q);
689 skb_queue_purge(&qca->txq);
690 skb_queue_purge(&qca->rx_memdump_q);
691 del_timer(&qca->tx_idle_timer);
692 del_timer(&qca->wake_retrans_timer);
693 destroy_workqueue(qca->workqueue);
694 qca->hu = NULL;
695
696 qca_power_shutdown(hu);
697
698 kfree_skb(qca->rx_skb);
699
700 hu->priv = NULL;
701
702 kfree(qca);
703
704 return 0;
705}
706
707/* Called upon a wake-up-indication from the device.
708 */
709static void device_want_to_wakeup(struct hci_uart *hu)
710{
711 unsigned long flags;
712 struct qca_data *qca = hu->priv;
713
714 BT_DBG("hu %p want to wake up", hu);
715
716 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
717
718 qca->ibs_recv_wakes++;
719
720 /* Don't wake the rx up when suspending. */
721 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
722 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
723 return;
724 }
725
726 switch (qca->rx_ibs_state) {
727 case HCI_IBS_RX_ASLEEP:
728 /* Make sure clock is on - we may have turned clock off since
729 * receiving the wake up indicator awake rx clock.
730 */
731 queue_work(qca->workqueue, &qca->ws_awake_rx);
732 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
733 return;
734
735 case HCI_IBS_RX_AWAKE:
736 /* Always acknowledge device wake up,
737 * sending IBS message doesn't count as TX ON.
738 */
739 if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
740 BT_ERR("Failed to acknowledge device wake up");
741 break;
742 }
743 qca->ibs_sent_wacks++;
744 break;
745
746 default:
747 /* Any other state is illegal */
748 BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
749 qca->rx_ibs_state);
750 break;
751 }
752
753 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
754
755 /* Actually send the packets */
756 hci_uart_tx_wakeup(hu);
757}
758
759/* Called upon a sleep-indication from the device.
760 */
761static void device_want_to_sleep(struct hci_uart *hu)
762{
763 unsigned long flags;
764 struct qca_data *qca = hu->priv;
765
766 BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
767
768 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
769
770 qca->ibs_recv_slps++;
771
772 switch (qca->rx_ibs_state) {
773 case HCI_IBS_RX_AWAKE:
774 /* Update state */
775 qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
776 /* Vote off rx clock under workqueue */
777 queue_work(qca->workqueue, &qca->ws_rx_vote_off);
778 break;
779
780 case HCI_IBS_RX_ASLEEP:
781 break;
782
783 default:
784 /* Any other state is illegal */
785 BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
786 qca->rx_ibs_state);
787 break;
788 }
789
790 wake_up_interruptible(&qca->suspend_wait_q);
791
792 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
793}
794
795/* Called upon wake-up-acknowledgement from the device
796 */
797static void device_woke_up(struct hci_uart *hu)
798{
799 unsigned long flags, idle_delay;
800 struct qca_data *qca = hu->priv;
801 struct sk_buff *skb = NULL;
802
803 BT_DBG("hu %p woke up", hu);
804
805 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
806
807 qca->ibs_recv_wacks++;
808
809 /* Don't react to the wake-up-acknowledgment when suspending. */
810 if (test_bit(QCA_SUSPENDING, &qca->flags)) {
811 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
812 return;
813 }
814
815 switch (qca->tx_ibs_state) {
816 case HCI_IBS_TX_AWAKE:
817 /* Expect one if we send 2 WAKEs */
818 BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
819 qca->tx_ibs_state);
820 break;
821
822 case HCI_IBS_TX_WAKING:
823 /* Send pending packets */
824 while ((skb = skb_dequeue(&qca->tx_wait_q)))
825 skb_queue_tail(&qca->txq, skb);
826
827 /* Switch timers and change state to HCI_IBS_TX_AWAKE */
828 del_timer(&qca->wake_retrans_timer);
829 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
830 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
831 qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
832 break;
833
834 case HCI_IBS_TX_ASLEEP:
835 default:
836 BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
837 qca->tx_ibs_state);
838 break;
839 }
840
841 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
842
843 /* Actually send the packets */
844 hci_uart_tx_wakeup(hu);
845}
846
847/* Enqueue frame for transmittion (padding, crc, etc) may be called from
848 * two simultaneous tasklets.
849 */
850static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
851{
852 unsigned long flags = 0, idle_delay;
853 struct qca_data *qca = hu->priv;
854
855 BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
856 qca->tx_ibs_state);
857
858 if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
859 /* As SSR is in progress, ignore the packets */
860 bt_dev_dbg(hu->hdev, "SSR is in progress");
861 kfree_skb(skb);
862 return 0;
863 }
864
865 /* Prepend skb with frame type */
866 memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
867
868 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
869
870 /* Don't go to sleep in middle of patch download or
871 * Out-Of-Band(GPIOs control) sleep is selected.
872 * Don't wake the device up when suspending.
873 */
874 if (!test_bit(QCA_IBS_ENABLED, &qca->flags) ||
875 test_bit(QCA_SUSPENDING, &qca->flags)) {
876 skb_queue_tail(&qca->txq, skb);
877 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
878 return 0;
879 }
880
881 /* Act according to current state */
882 switch (qca->tx_ibs_state) {
883 case HCI_IBS_TX_AWAKE:
884 BT_DBG("Device awake, sending normally");
885 skb_queue_tail(&qca->txq, skb);
886 idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
887 mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
888 break;
889
890 case HCI_IBS_TX_ASLEEP:
891 BT_DBG("Device asleep, waking up and queueing packet");
892 /* Save packet for later */
893 skb_queue_tail(&qca->tx_wait_q, skb);
894
895 qca->tx_ibs_state = HCI_IBS_TX_WAKING;
896 /* Schedule a work queue to wake up device */
897 queue_work(qca->workqueue, &qca->ws_awake_device);
898 break;
899
900 case HCI_IBS_TX_WAKING:
901 BT_DBG("Device waking up, queueing packet");
902 /* Transient state; just keep packet for later */
903 skb_queue_tail(&qca->tx_wait_q, skb);
904 break;
905
906 default:
907 BT_ERR("Illegal tx state: %d (losing packet)",
908 qca->tx_ibs_state);
909 kfree_skb(skb);
910 break;
911 }
912
913 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
914
915 return 0;
916}
917
918static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
919{
920 struct hci_uart *hu = hci_get_drvdata(hdev);
921
922 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
923
924 device_want_to_sleep(hu);
925
926 kfree_skb(skb);
927 return 0;
928}
929
930static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
931{
932 struct hci_uart *hu = hci_get_drvdata(hdev);
933
934 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
935
936 device_want_to_wakeup(hu);
937
938 kfree_skb(skb);
939 return 0;
940}
941
942static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
943{
944 struct hci_uart *hu = hci_get_drvdata(hdev);
945
946 BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
947
948 device_woke_up(hu);
949
950 kfree_skb(skb);
951 return 0;
952}
953
954static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
955{
956 /* We receive debug logs from chip as an ACL packets.
957 * Instead of sending the data to ACL to decode the
958 * received data, we are pushing them to the above layers
959 * as a diagnostic packet.
960 */
961 if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
962 return hci_recv_diag(hdev, skb);
963
964 return hci_recv_frame(hdev, skb);
965}
966
967static void qca_controller_memdump(struct work_struct *work)
968{
969 struct qca_data *qca = container_of(work, struct qca_data,
970 ctrl_memdump_evt);
971 struct hci_uart *hu = qca->hu;
972 struct sk_buff *skb;
973 struct qca_memdump_event_hdr *cmd_hdr;
974 struct qca_memdump_data *qca_memdump = qca->qca_memdump;
975 struct qca_dump_size *dump;
976 char *memdump_buf;
977 char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
978 u16 seq_no;
979 u32 dump_size;
980 u32 rx_size;
981 enum qca_btsoc_type soc_type = qca_soc_type(hu);
982
983 while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
984
985 mutex_lock(&qca->hci_memdump_lock);
986 /* Skip processing the received packets if timeout detected
987 * or memdump collection completed.
988 */
989 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
990 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
991 mutex_unlock(&qca->hci_memdump_lock);
992 return;
993 }
994
995 if (!qca_memdump) {
996 qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
997 GFP_ATOMIC);
998 if (!qca_memdump) {
999 mutex_unlock(&qca->hci_memdump_lock);
1000 return;
1001 }
1002
1003 qca->qca_memdump = qca_memdump;
1004 }
1005
1006 qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1007 cmd_hdr = (void *) skb->data;
1008 seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1009 skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1010
1011 if (!seq_no) {
1012
1013 /* This is the first frame of memdump packet from
1014 * the controller, Disable IBS to recevie dump
1015 * with out any interruption, ideally time required for
1016 * the controller to send the dump is 8 seconds. let us
1017 * start timer to handle this asynchronous activity.
1018 */
1019 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1020 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1021 dump = (void *) skb->data;
1022 dump_size = __le32_to_cpu(dump->dump_size);
1023 if (!(dump_size)) {
1024 bt_dev_err(hu->hdev, "Rx invalid memdump size");
1025 kfree_skb(skb);
1026 mutex_unlock(&qca->hci_memdump_lock);
1027 return;
1028 }
1029
1030 bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1031 dump_size);
1032 queue_delayed_work(qca->workqueue,
1033 &qca->ctrl_memdump_timeout,
1034 msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1035 );
1036
1037 skb_pull(skb, sizeof(dump_size));
1038 memdump_buf = vmalloc(dump_size);
1039 qca_memdump->ram_dump_size = dump_size;
1040 qca_memdump->memdump_buf_head = memdump_buf;
1041 qca_memdump->memdump_buf_tail = memdump_buf;
1042 }
1043
1044 memdump_buf = qca_memdump->memdump_buf_tail;
1045
1046 /* If sequence no 0 is missed then there is no point in
1047 * accepting the other sequences.
1048 */
1049 if (!memdump_buf) {
1050 bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1051 kfree(qca_memdump);
1052 kfree_skb(skb);
1053 qca->qca_memdump = NULL;
1054 mutex_unlock(&qca->hci_memdump_lock);
1055 return;
1056 }
1057
1058 /* There could be chance of missing some packets from
1059 * the controller. In such cases let us store the dummy
1060 * packets in the buffer.
1061 */
1062 /* For QCA6390, controller does not lost packets but
1063 * sequence number field of packat sometimes has error
1064 * bits, so skip this checking for missing packet.
1065 */
1066 while ((seq_no > qca_memdump->current_seq_no + 1) &&
1067 (soc_type != QCA_QCA6390) &&
1068 seq_no != QCA_LAST_SEQUENCE_NUM) {
1069 bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1070 qca_memdump->current_seq_no);
1071 rx_size = qca_memdump->received_dump;
1072 rx_size += QCA_DUMP_PACKET_SIZE;
1073 if (rx_size > qca_memdump->ram_dump_size) {
1074 bt_dev_err(hu->hdev,
1075 "QCA memdump received %d, no space for missed packet",
1076 qca_memdump->received_dump);
1077 break;
1078 }
1079 memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1080 memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1081 qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1082 qca_memdump->current_seq_no++;
1083 }
1084
1085 rx_size = qca_memdump->received_dump + skb->len;
1086 if (rx_size <= qca_memdump->ram_dump_size) {
1087 if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1088 (seq_no != qca_memdump->current_seq_no))
1089 bt_dev_err(hu->hdev,
1090 "QCA memdump unexpected packet %d",
1091 seq_no);
1092 bt_dev_dbg(hu->hdev,
1093 "QCA memdump packet %d with length %d",
1094 seq_no, skb->len);
1095 memcpy(memdump_buf, (unsigned char *)skb->data,
1096 skb->len);
1097 memdump_buf = memdump_buf + skb->len;
1098 qca_memdump->memdump_buf_tail = memdump_buf;
1099 qca_memdump->current_seq_no = seq_no + 1;
1100 qca_memdump->received_dump += skb->len;
1101 } else {
1102 bt_dev_err(hu->hdev,
1103 "QCA memdump received %d, no space for packet %d",
1104 qca_memdump->received_dump, seq_no);
1105 }
1106 qca->qca_memdump = qca_memdump;
1107 kfree_skb(skb);
1108 if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1109 bt_dev_info(hu->hdev,
1110 "QCA memdump Done, received %d, total %d",
1111 qca_memdump->received_dump,
1112 qca_memdump->ram_dump_size);
1113 memdump_buf = qca_memdump->memdump_buf_head;
1114 dev_coredumpv(&hu->serdev->dev, memdump_buf,
1115 qca_memdump->received_dump, GFP_KERNEL);
1116 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1117 kfree(qca->qca_memdump);
1118 qca->qca_memdump = NULL;
1119 qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1120 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1121 }
1122
1123 mutex_unlock(&qca->hci_memdump_lock);
1124 }
1125
1126}
1127
1128static int qca_controller_memdump_event(struct hci_dev *hdev,
1129 struct sk_buff *skb)
1130{
1131 struct hci_uart *hu = hci_get_drvdata(hdev);
1132 struct qca_data *qca = hu->priv;
1133
1134 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1135 skb_queue_tail(&qca->rx_memdump_q, skb);
1136 queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1137
1138 return 0;
1139}
1140
1141static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1142{
1143 struct hci_uart *hu = hci_get_drvdata(hdev);
1144 struct qca_data *qca = hu->priv;
1145
1146 if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1147 struct hci_event_hdr *hdr = (void *)skb->data;
1148
1149 /* For the WCN3990 the vendor command for a baudrate change
1150 * isn't sent as synchronous HCI command, because the
1151 * controller sends the corresponding vendor event with the
1152 * new baudrate. The event is received and properly decoded
1153 * after changing the baudrate of the host port. It needs to
1154 * be dropped, otherwise it can be misinterpreted as
1155 * response to a later firmware download command (also a
1156 * vendor command).
1157 */
1158
1159 if (hdr->evt == HCI_EV_VENDOR)
1160 complete(&qca->drop_ev_comp);
1161
1162 kfree_skb(skb);
1163
1164 return 0;
1165 }
1166 /* We receive chip memory dump as an event packet, With a dedicated
1167 * handler followed by a hardware error event. When this event is
1168 * received we store dump into a file before closing hci. This
1169 * dump will help in triaging the issues.
1170 */
1171 if ((skb->data[0] == HCI_VENDOR_PKT) &&
1172 (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1173 return qca_controller_memdump_event(hdev, skb);
1174
1175 return hci_recv_frame(hdev, skb);
1176}
1177
1178#define QCA_IBS_SLEEP_IND_EVENT \
1179 .type = HCI_IBS_SLEEP_IND, \
1180 .hlen = 0, \
1181 .loff = 0, \
1182 .lsize = 0, \
1183 .maxlen = HCI_MAX_IBS_SIZE
1184
1185#define QCA_IBS_WAKE_IND_EVENT \
1186 .type = HCI_IBS_WAKE_IND, \
1187 .hlen = 0, \
1188 .loff = 0, \
1189 .lsize = 0, \
1190 .maxlen = HCI_MAX_IBS_SIZE
1191
1192#define QCA_IBS_WAKE_ACK_EVENT \
1193 .type = HCI_IBS_WAKE_ACK, \
1194 .hlen = 0, \
1195 .loff = 0, \
1196 .lsize = 0, \
1197 .maxlen = HCI_MAX_IBS_SIZE
1198
1199static const struct h4_recv_pkt qca_recv_pkts[] = {
1200 { H4_RECV_ACL, .recv = qca_recv_acl_data },
1201 { H4_RECV_SCO, .recv = hci_recv_frame },
1202 { H4_RECV_EVENT, .recv = qca_recv_event },
1203 { QCA_IBS_WAKE_IND_EVENT, .recv = qca_ibs_wake_ind },
1204 { QCA_IBS_WAKE_ACK_EVENT, .recv = qca_ibs_wake_ack },
1205 { QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1206};
1207
1208static int qca_recv(struct hci_uart *hu, const void *data, int count)
1209{
1210 struct qca_data *qca = hu->priv;
1211
1212 if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1213 return -EUNATCH;
1214
1215 qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1216 qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1217 if (IS_ERR(qca->rx_skb)) {
1218 int err = PTR_ERR(qca->rx_skb);
1219 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1220 qca->rx_skb = NULL;
1221 return err;
1222 }
1223
1224 return count;
1225}
1226
1227static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1228{
1229 struct qca_data *qca = hu->priv;
1230
1231 return skb_dequeue(&qca->txq);
1232}
1233
1234static uint8_t qca_get_baudrate_value(int speed)
1235{
1236 switch (speed) {
1237 case 9600:
1238 return QCA_BAUDRATE_9600;
1239 case 19200:
1240 return QCA_BAUDRATE_19200;
1241 case 38400:
1242 return QCA_BAUDRATE_38400;
1243 case 57600:
1244 return QCA_BAUDRATE_57600;
1245 case 115200:
1246 return QCA_BAUDRATE_115200;
1247 case 230400:
1248 return QCA_BAUDRATE_230400;
1249 case 460800:
1250 return QCA_BAUDRATE_460800;
1251 case 500000:
1252 return QCA_BAUDRATE_500000;
1253 case 921600:
1254 return QCA_BAUDRATE_921600;
1255 case 1000000:
1256 return QCA_BAUDRATE_1000000;
1257 case 2000000:
1258 return QCA_BAUDRATE_2000000;
1259 case 3000000:
1260 return QCA_BAUDRATE_3000000;
1261 case 3200000:
1262 return QCA_BAUDRATE_3200000;
1263 case 3500000:
1264 return QCA_BAUDRATE_3500000;
1265 default:
1266 return QCA_BAUDRATE_115200;
1267 }
1268}
1269
1270static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1271{
1272 struct hci_uart *hu = hci_get_drvdata(hdev);
1273 struct qca_data *qca = hu->priv;
1274 struct sk_buff *skb;
1275 u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1276
1277 if (baudrate > QCA_BAUDRATE_3200000)
1278 return -EINVAL;
1279
1280 cmd[4] = baudrate;
1281
1282 skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1283 if (!skb) {
1284 bt_dev_err(hdev, "Failed to allocate baudrate packet");
1285 return -ENOMEM;
1286 }
1287
1288 /* Assign commands to change baudrate and packet type. */
1289 skb_put_data(skb, cmd, sizeof(cmd));
1290 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1291
1292 skb_queue_tail(&qca->txq, skb);
1293 hci_uart_tx_wakeup(hu);
1294
1295 /* Wait for the baudrate change request to be sent */
1296
1297 while (!skb_queue_empty(&qca->txq))
1298 usleep_range(100, 200);
1299
1300 if (hu->serdev)
1301 serdev_device_wait_until_sent(hu->serdev,
1302 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1303
1304 /* Give the controller time to process the request */
1305 if (qca_is_wcn399x(qca_soc_type(hu)))
1306 msleep(10);
1307 else
1308 msleep(300);
1309
1310 return 0;
1311}
1312
1313static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1314{
1315 if (hu->serdev)
1316 serdev_device_set_baudrate(hu->serdev, speed);
1317 else
1318 hci_uart_set_baudrate(hu, speed);
1319}
1320
1321static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1322{
1323 int ret;
1324 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1325 u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1326
1327 /* These power pulses are single byte command which are sent
1328 * at required baudrate to wcn3990. On wcn3990, we have an external
1329 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1330 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1331 * and also we use the same power inputs to turn on and off for
1332 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1333 * we send a power on pulse at 115200 bps. This algorithm will help to
1334 * save power. Disabling hardware flow control is mandatory while
1335 * sending power pulses to SoC.
1336 */
1337 bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1338
1339 serdev_device_write_flush(hu->serdev);
1340 hci_uart_set_flow_control(hu, true);
1341 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1342 if (ret < 0) {
1343 bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1344 return ret;
1345 }
1346
1347 serdev_device_wait_until_sent(hu->serdev, timeout);
1348 hci_uart_set_flow_control(hu, false);
1349
1350 /* Give to controller time to boot/shutdown */
1351 if (on)
1352 msleep(100);
1353 else
1354 msleep(10);
1355
1356 return 0;
1357}
1358
1359static unsigned int qca_get_speed(struct hci_uart *hu,
1360 enum qca_speed_type speed_type)
1361{
1362 unsigned int speed = 0;
1363
1364 if (speed_type == QCA_INIT_SPEED) {
1365 if (hu->init_speed)
1366 speed = hu->init_speed;
1367 else if (hu->proto->init_speed)
1368 speed = hu->proto->init_speed;
1369 } else {
1370 if (hu->oper_speed)
1371 speed = hu->oper_speed;
1372 else if (hu->proto->oper_speed)
1373 speed = hu->proto->oper_speed;
1374 }
1375
1376 return speed;
1377}
1378
1379static int qca_check_speeds(struct hci_uart *hu)
1380{
1381 if (qca_is_wcn399x(qca_soc_type(hu))) {
1382 if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1383 !qca_get_speed(hu, QCA_OPER_SPEED))
1384 return -EINVAL;
1385 } else {
1386 if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1387 !qca_get_speed(hu, QCA_OPER_SPEED))
1388 return -EINVAL;
1389 }
1390
1391 return 0;
1392}
1393
1394static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1395{
1396 unsigned int speed, qca_baudrate;
1397 struct qca_data *qca = hu->priv;
1398 int ret = 0;
1399
1400 if (speed_type == QCA_INIT_SPEED) {
1401 speed = qca_get_speed(hu, QCA_INIT_SPEED);
1402 if (speed)
1403 host_set_baudrate(hu, speed);
1404 } else {
1405 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1406
1407 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1408 if (!speed)
1409 return 0;
1410
1411 /* Disable flow control for wcn3990 to deassert RTS while
1412 * changing the baudrate of chip and host.
1413 */
1414 if (qca_is_wcn399x(soc_type))
1415 hci_uart_set_flow_control(hu, true);
1416
1417 if (soc_type == QCA_WCN3990) {
1418 reinit_completion(&qca->drop_ev_comp);
1419 set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1420 }
1421
1422 qca_baudrate = qca_get_baudrate_value(speed);
1423 bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1424 ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1425 if (ret)
1426 goto error;
1427
1428 host_set_baudrate(hu, speed);
1429
1430error:
1431 if (qca_is_wcn399x(soc_type))
1432 hci_uart_set_flow_control(hu, false);
1433
1434 if (soc_type == QCA_WCN3990) {
1435 /* Wait for the controller to send the vendor event
1436 * for the baudrate change command.
1437 */
1438 if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1439 msecs_to_jiffies(100))) {
1440 bt_dev_err(hu->hdev,
1441 "Failed to change controller baudrate\n");
1442 ret = -ETIMEDOUT;
1443 }
1444
1445 clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1446 }
1447 }
1448
1449 return ret;
1450}
1451
1452static int qca_send_crashbuffer(struct hci_uart *hu)
1453{
1454 struct qca_data *qca = hu->priv;
1455 struct sk_buff *skb;
1456
1457 skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1458 if (!skb) {
1459 bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1460 return -ENOMEM;
1461 }
1462
1463 /* We forcefully crash the controller, by sending 0xfb byte for
1464 * 1024 times. We also might have chance of losing data, To be
1465 * on safer side we send 1096 bytes to the SoC.
1466 */
1467 memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1468 QCA_CRASHBYTE_PACKET_LEN);
1469 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1470 bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1471 skb_queue_tail(&qca->txq, skb);
1472 hci_uart_tx_wakeup(hu);
1473
1474 return 0;
1475}
1476
1477static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1478{
1479 struct hci_uart *hu = hci_get_drvdata(hdev);
1480 struct qca_data *qca = hu->priv;
1481
1482 wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1483 TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1484
1485 clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1486}
1487
1488static void qca_hw_error(struct hci_dev *hdev, u8 code)
1489{
1490 struct hci_uart *hu = hci_get_drvdata(hdev);
1491 struct qca_data *qca = hu->priv;
1492
1493 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1494 set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1495 bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1496
1497 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1498 /* If hardware error event received for other than QCA
1499 * soc memory dump event, then we need to crash the SOC
1500 * and wait here for 8 seconds to get the dump packets.
1501 * This will block main thread to be on hold until we
1502 * collect dump.
1503 */
1504 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1505 qca_send_crashbuffer(hu);
1506 qca_wait_for_dump_collection(hdev);
1507 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1508 /* Let us wait here until memory dump collected or
1509 * memory dump timer expired.
1510 */
1511 bt_dev_info(hdev, "waiting for dump to complete");
1512 qca_wait_for_dump_collection(hdev);
1513 }
1514
1515 mutex_lock(&qca->hci_memdump_lock);
1516 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1517 bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1518 if (qca->qca_memdump) {
1519 vfree(qca->qca_memdump->memdump_buf_head);
1520 kfree(qca->qca_memdump);
1521 qca->qca_memdump = NULL;
1522 }
1523 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1524 cancel_delayed_work(&qca->ctrl_memdump_timeout);
1525 }
1526 mutex_unlock(&qca->hci_memdump_lock);
1527
1528 if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1529 qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1530 cancel_work_sync(&qca->ctrl_memdump_evt);
1531 skb_queue_purge(&qca->rx_memdump_q);
1532 }
1533
1534 clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1535}
1536
1537static void qca_cmd_timeout(struct hci_dev *hdev)
1538{
1539 struct hci_uart *hu = hci_get_drvdata(hdev);
1540 struct qca_data *qca = hu->priv;
1541
1542 set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1543 if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1544 set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1545 qca_send_crashbuffer(hu);
1546 qca_wait_for_dump_collection(hdev);
1547 } else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1548 /* Let us wait here until memory dump collected or
1549 * memory dump timer expired.
1550 */
1551 bt_dev_info(hdev, "waiting for dump to complete");
1552 qca_wait_for_dump_collection(hdev);
1553 }
1554
1555 mutex_lock(&qca->hci_memdump_lock);
1556 if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1557 qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1558 if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1559 /* Inject hw error event to reset the device
1560 * and driver.
1561 */
1562 hci_reset_dev(hu->hdev);
1563 }
1564 }
1565 mutex_unlock(&qca->hci_memdump_lock);
1566}
1567
1568static int qca_wcn3990_init(struct hci_uart *hu)
1569{
1570 struct qca_serdev *qcadev;
1571 int ret;
1572
1573 /* Check for vregs status, may be hci down has turned
1574 * off the voltage regulator.
1575 */
1576 qcadev = serdev_device_get_drvdata(hu->serdev);
1577 if (!qcadev->bt_power->vregs_on) {
1578 serdev_device_close(hu->serdev);
1579 ret = qca_regulator_enable(qcadev);
1580 if (ret)
1581 return ret;
1582
1583 ret = serdev_device_open(hu->serdev);
1584 if (ret) {
1585 bt_dev_err(hu->hdev, "failed to open port");
1586 return ret;
1587 }
1588 }
1589
1590 /* Forcefully enable wcn3990 to enter in to boot mode. */
1591 host_set_baudrate(hu, 2400);
1592 ret = qca_send_power_pulse(hu, false);
1593 if (ret)
1594 return ret;
1595
1596 qca_set_speed(hu, QCA_INIT_SPEED);
1597 ret = qca_send_power_pulse(hu, true);
1598 if (ret)
1599 return ret;
1600
1601 /* Now the device is in ready state to communicate with host.
1602 * To sync host with device we need to reopen port.
1603 * Without this, we will have RTS and CTS synchronization
1604 * issues.
1605 */
1606 serdev_device_close(hu->serdev);
1607 ret = serdev_device_open(hu->serdev);
1608 if (ret) {
1609 bt_dev_err(hu->hdev, "failed to open port");
1610 return ret;
1611 }
1612
1613 hci_uart_set_flow_control(hu, false);
1614
1615 return 0;
1616}
1617
1618static int qca_power_on(struct hci_dev *hdev)
1619{
1620 struct hci_uart *hu = hci_get_drvdata(hdev);
1621 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1622 struct qca_serdev *qcadev;
1623 int ret = 0;
1624
1625 /* Non-serdev device usually is powered by external power
1626 * and don't need additional action in driver for power on
1627 */
1628 if (!hu->serdev)
1629 return 0;
1630
1631 if (qca_is_wcn399x(soc_type)) {
1632 ret = qca_wcn3990_init(hu);
1633 } else {
1634 qcadev = serdev_device_get_drvdata(hu->serdev);
1635 if (qcadev->bt_en) {
1636 gpiod_set_value_cansleep(qcadev->bt_en, 1);
1637 /* Controller needs time to bootup. */
1638 msleep(150);
1639 }
1640 }
1641
1642 return ret;
1643}
1644
1645static int qca_setup(struct hci_uart *hu)
1646{
1647 struct hci_dev *hdev = hu->hdev;
1648 struct qca_data *qca = hu->priv;
1649 unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1650 unsigned int retries = 0;
1651 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1652 const char *firmware_name = qca_get_firmware_name(hu);
1653 int ret;
1654 int soc_ver = 0;
1655
1656 ret = qca_check_speeds(hu);
1657 if (ret)
1658 return ret;
1659
1660 /* Patch downloading has to be done without IBS mode */
1661 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1662
1663 /* Enable controller to do both LE scan and BR/EDR inquiry
1664 * simultaneously.
1665 */
1666 set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1667
1668 bt_dev_info(hdev, "setting up %s",
1669 qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1670
1671 qca->memdump_state = QCA_MEMDUMP_IDLE;
1672
1673retry:
1674 ret = qca_power_on(hdev);
1675 if (ret)
1676 return ret;
1677
1678 clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1679
1680 if (qca_is_wcn399x(soc_type)) {
1681 set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1682
1683 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1684 if (ret)
1685 return ret;
1686 } else {
1687 qca_set_speed(hu, QCA_INIT_SPEED);
1688 }
1689
1690 /* Setup user speed if needed */
1691 speed = qca_get_speed(hu, QCA_OPER_SPEED);
1692 if (speed) {
1693 ret = qca_set_speed(hu, QCA_OPER_SPEED);
1694 if (ret)
1695 return ret;
1696
1697 qca_baudrate = qca_get_baudrate_value(speed);
1698 }
1699
1700 if (!qca_is_wcn399x(soc_type)) {
1701 /* Get QCA version information */
1702 ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1703 if (ret)
1704 return ret;
1705 }
1706
1707 bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1708 /* Setup patch / NVM configurations */
1709 ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1710 firmware_name);
1711 if (!ret) {
1712 set_bit(QCA_IBS_ENABLED, &qca->flags);
1713 qca_debugfs_init(hdev);
1714 hu->hdev->hw_error = qca_hw_error;
1715 hu->hdev->cmd_timeout = qca_cmd_timeout;
1716 } else if (ret == -ENOENT) {
1717 /* No patch/nvm-config found, run with original fw/config */
1718 ret = 0;
1719 } else if (ret == -EAGAIN) {
1720 /*
1721 * Userspace firmware loader will return -EAGAIN in case no
1722 * patch/nvm-config is found, so run with original fw/config.
1723 */
1724 ret = 0;
1725 } else {
1726 if (retries < MAX_INIT_RETRIES) {
1727 qca_power_shutdown(hu);
1728 if (hu->serdev) {
1729 serdev_device_close(hu->serdev);
1730 ret = serdev_device_open(hu->serdev);
1731 if (ret) {
1732 bt_dev_err(hdev, "failed to open port");
1733 return ret;
1734 }
1735 }
1736 retries++;
1737 goto retry;
1738 }
1739 }
1740
1741 /* Setup bdaddr */
1742 if (soc_type == QCA_ROME)
1743 hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1744 else
1745 hu->hdev->set_bdaddr = qca_set_bdaddr;
1746
1747 return ret;
1748}
1749
1750static const struct hci_uart_proto qca_proto = {
1751 .id = HCI_UART_QCA,
1752 .name = "QCA",
1753 .manufacturer = 29,
1754 .init_speed = 115200,
1755 .oper_speed = 3000000,
1756 .open = qca_open,
1757 .close = qca_close,
1758 .flush = qca_flush,
1759 .setup = qca_setup,
1760 .recv = qca_recv,
1761 .enqueue = qca_enqueue,
1762 .dequeue = qca_dequeue,
1763};
1764
1765static const struct qca_device_data qca_soc_data_wcn3990 = {
1766 .soc_type = QCA_WCN3990,
1767 .vregs = (struct qca_vreg []) {
1768 { "vddio", 15000 },
1769 { "vddxo", 80000 },
1770 { "vddrf", 300000 },
1771 { "vddch0", 450000 },
1772 },
1773 .num_vregs = 4,
1774};
1775
1776static const struct qca_device_data qca_soc_data_wcn3991 = {
1777 .soc_type = QCA_WCN3991,
1778 .vregs = (struct qca_vreg []) {
1779 { "vddio", 15000 },
1780 { "vddxo", 80000 },
1781 { "vddrf", 300000 },
1782 { "vddch0", 450000 },
1783 },
1784 .num_vregs = 4,
1785 .capabilities = QCA_CAP_WIDEBAND_SPEECH,
1786};
1787
1788static const struct qca_device_data qca_soc_data_wcn3998 = {
1789 .soc_type = QCA_WCN3998,
1790 .vregs = (struct qca_vreg []) {
1791 { "vddio", 10000 },
1792 { "vddxo", 80000 },
1793 { "vddrf", 300000 },
1794 { "vddch0", 450000 },
1795 },
1796 .num_vregs = 4,
1797};
1798
1799static const struct qca_device_data qca_soc_data_qca6390 = {
1800 .soc_type = QCA_QCA6390,
1801 .num_vregs = 0,
1802};
1803
1804static void qca_power_shutdown(struct hci_uart *hu)
1805{
1806 struct qca_serdev *qcadev;
1807 struct qca_data *qca = hu->priv;
1808 unsigned long flags;
1809 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1810
1811 qcadev = serdev_device_get_drvdata(hu->serdev);
1812
1813 /* From this point we go into power off state. But serial port is
1814 * still open, stop queueing the IBS data and flush all the buffered
1815 * data in skb's.
1816 */
1817 spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1818 clear_bit(QCA_IBS_ENABLED, &qca->flags);
1819 qca_flush(hu);
1820 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1821
1822 /* Non-serdev device usually is powered by external power
1823 * and don't need additional action in driver for power down
1824 */
1825 if (!hu->serdev)
1826 return;
1827
1828 if (qca_is_wcn399x(soc_type)) {
1829 host_set_baudrate(hu, 2400);
1830 qca_send_power_pulse(hu, false);
1831 qca_regulator_disable(qcadev);
1832 } else if (qcadev->bt_en) {
1833 gpiod_set_value_cansleep(qcadev->bt_en, 0);
1834 }
1835}
1836
1837static int qca_power_off(struct hci_dev *hdev)
1838{
1839 struct hci_uart *hu = hci_get_drvdata(hdev);
1840 struct qca_data *qca = hu->priv;
1841 enum qca_btsoc_type soc_type = qca_soc_type(hu);
1842
1843 hu->hdev->hw_error = NULL;
1844 hu->hdev->cmd_timeout = NULL;
1845
1846 /* Stop sending shutdown command if soc crashes. */
1847 if (soc_type != QCA_ROME
1848 && qca->memdump_state == QCA_MEMDUMP_IDLE) {
1849 qca_send_pre_shutdown_cmd(hdev);
1850 usleep_range(8000, 10000);
1851 }
1852
1853 qca_power_shutdown(hu);
1854 return 0;
1855}
1856
1857static int qca_regulator_enable(struct qca_serdev *qcadev)
1858{
1859 struct qca_power *power = qcadev->bt_power;
1860 int ret;
1861
1862 /* Already enabled */
1863 if (power->vregs_on)
1864 return 0;
1865
1866 BT_DBG("enabling %d regulators)", power->num_vregs);
1867
1868 ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1869 if (ret)
1870 return ret;
1871
1872 power->vregs_on = true;
1873
1874 ret = clk_prepare_enable(qcadev->susclk);
1875 if (ret)
1876 qca_regulator_disable(qcadev);
1877
1878 return ret;
1879}
1880
1881static void qca_regulator_disable(struct qca_serdev *qcadev)
1882{
1883 struct qca_power *power;
1884
1885 if (!qcadev)
1886 return;
1887
1888 power = qcadev->bt_power;
1889
1890 /* Already disabled? */
1891 if (!power->vregs_on)
1892 return;
1893
1894 regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1895 power->vregs_on = false;
1896
1897 clk_disable_unprepare(qcadev->susclk);
1898}
1899
1900static int qca_init_regulators(struct qca_power *qca,
1901 const struct qca_vreg *vregs, size_t num_vregs)
1902{
1903 struct regulator_bulk_data *bulk;
1904 int ret;
1905 int i;
1906
1907 bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1908 if (!bulk)
1909 return -ENOMEM;
1910
1911 for (i = 0; i < num_vregs; i++)
1912 bulk[i].supply = vregs[i].name;
1913
1914 ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1915 if (ret < 0)
1916 return ret;
1917
1918 for (i = 0; i < num_vregs; i++) {
1919 ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1920 if (ret)
1921 return ret;
1922 }
1923
1924 qca->vreg_bulk = bulk;
1925 qca->num_vregs = num_vregs;
1926
1927 return 0;
1928}
1929
1930static int qca_serdev_probe(struct serdev_device *serdev)
1931{
1932 struct qca_serdev *qcadev;
1933 struct hci_dev *hdev;
1934 const struct qca_device_data *data;
1935 int err;
1936 bool power_ctrl_enabled = true;
1937
1938 qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1939 if (!qcadev)
1940 return -ENOMEM;
1941
1942 qcadev->serdev_hu.serdev = serdev;
1943 data = device_get_match_data(&serdev->dev);
1944 serdev_device_set_drvdata(serdev, qcadev);
1945 device_property_read_string(&serdev->dev, "firmware-name",
1946 &qcadev->firmware_name);
1947 device_property_read_u32(&serdev->dev, "max-speed",
1948 &qcadev->oper_speed);
1949 if (!qcadev->oper_speed)
1950 BT_DBG("UART will pick default operating speed");
1951
1952 if (data && qca_is_wcn399x(data->soc_type)) {
1953 qcadev->btsoc_type = data->soc_type;
1954 qcadev->bt_power = devm_kzalloc(&serdev->dev,
1955 sizeof(struct qca_power),
1956 GFP_KERNEL);
1957 if (!qcadev->bt_power)
1958 return -ENOMEM;
1959
1960 qcadev->bt_power->dev = &serdev->dev;
1961 err = qca_init_regulators(qcadev->bt_power, data->vregs,
1962 data->num_vregs);
1963 if (err) {
1964 BT_ERR("Failed to init regulators:%d", err);
1965 return err;
1966 }
1967
1968 qcadev->bt_power->vregs_on = false;
1969
1970 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1971 if (IS_ERR(qcadev->susclk)) {
1972 dev_err(&serdev->dev, "failed to acquire clk\n");
1973 return PTR_ERR(qcadev->susclk);
1974 }
1975
1976 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1977 if (err) {
1978 BT_ERR("wcn3990 serdev registration failed");
1979 return err;
1980 }
1981 } else {
1982 if (data)
1983 qcadev->btsoc_type = data->soc_type;
1984 else
1985 qcadev->btsoc_type = QCA_ROME;
1986
1987 qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
1988 GPIOD_OUT_LOW);
1989 if (!qcadev->bt_en) {
1990 dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
1991 power_ctrl_enabled = false;
1992 }
1993
1994 qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1995 if (IS_ERR(qcadev->susclk)) {
1996 dev_warn(&serdev->dev, "failed to acquire clk\n");
1997 return PTR_ERR(qcadev->susclk);
1998 }
1999 err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2000 if (err)
2001 return err;
2002
2003 err = clk_prepare_enable(qcadev->susclk);
2004 if (err)
2005 return err;
2006
2007 err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2008 if (err) {
2009 BT_ERR("Rome serdev registration failed");
2010 if (qcadev->susclk)
2011 clk_disable_unprepare(qcadev->susclk);
2012 return err;
2013 }
2014 }
2015
2016 hdev = qcadev->serdev_hu.hdev;
2017
2018 if (power_ctrl_enabled) {
2019 set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2020 hdev->shutdown = qca_power_off;
2021 }
2022
2023 /* Wideband speech support must be set per driver since it can't be
2024 * queried via hci.
2025 */
2026 if (data && (data->capabilities & QCA_CAP_WIDEBAND_SPEECH))
2027 set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
2028
2029 return 0;
2030}
2031
2032static void qca_serdev_remove(struct serdev_device *serdev)
2033{
2034 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2035
2036 if (qca_is_wcn399x(qcadev->btsoc_type))
2037 qca_power_shutdown(&qcadev->serdev_hu);
2038 else if (qcadev->susclk)
2039 clk_disable_unprepare(qcadev->susclk);
2040
2041 hci_uart_unregister_device(&qcadev->serdev_hu);
2042}
2043
2044static void qca_serdev_shutdown(struct device *dev)
2045{
2046 int ret;
2047 int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2048 struct serdev_device *serdev = to_serdev_device(dev);
2049 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2050 const u8 ibs_wake_cmd[] = { 0xFD };
2051 const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2052
2053 if (qcadev->btsoc_type == QCA_QCA6390) {
2054 serdev_device_write_flush(serdev);
2055 ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2056 sizeof(ibs_wake_cmd));
2057 if (ret < 0) {
2058 BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2059 return;
2060 }
2061 serdev_device_wait_until_sent(serdev, timeout);
2062 usleep_range(8000, 10000);
2063
2064 serdev_device_write_flush(serdev);
2065 ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2066 sizeof(edl_reset_soc_cmd));
2067 if (ret < 0) {
2068 BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2069 return;
2070 }
2071 serdev_device_wait_until_sent(serdev, timeout);
2072 usleep_range(8000, 10000);
2073 }
2074}
2075
2076static int __maybe_unused qca_suspend(struct device *dev)
2077{
2078 struct serdev_device *serdev = to_serdev_device(dev);
2079 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2080 struct hci_uart *hu = &qcadev->serdev_hu;
2081 struct qca_data *qca = hu->priv;
2082 unsigned long flags;
2083 bool tx_pending = false;
2084 int ret = 0;
2085 u8 cmd;
2086
2087 set_bit(QCA_SUSPENDING, &qca->flags);
2088
2089 /* Device is downloading patch or doesn't support in-band sleep. */
2090 if (!test_bit(QCA_IBS_ENABLED, &qca->flags))
2091 return 0;
2092
2093 cancel_work_sync(&qca->ws_awake_device);
2094 cancel_work_sync(&qca->ws_awake_rx);
2095
2096 spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2097 flags, SINGLE_DEPTH_NESTING);
2098
2099 switch (qca->tx_ibs_state) {
2100 case HCI_IBS_TX_WAKING:
2101 del_timer(&qca->wake_retrans_timer);
2102 fallthrough;
2103 case HCI_IBS_TX_AWAKE:
2104 del_timer(&qca->tx_idle_timer);
2105
2106 serdev_device_write_flush(hu->serdev);
2107 cmd = HCI_IBS_SLEEP_IND;
2108 ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2109
2110 if (ret < 0) {
2111 BT_ERR("Failed to send SLEEP to device");
2112 break;
2113 }
2114
2115 qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2116 qca->ibs_sent_slps++;
2117 tx_pending = true;
2118 break;
2119
2120 case HCI_IBS_TX_ASLEEP:
2121 break;
2122
2123 default:
2124 BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2125 ret = -EINVAL;
2126 break;
2127 }
2128
2129 spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2130
2131 if (ret < 0)
2132 goto error;
2133
2134 if (tx_pending) {
2135 serdev_device_wait_until_sent(hu->serdev,
2136 msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2137 serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2138 }
2139
2140 /* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2141 * to sleep, so that the packet does not wake the system later.
2142 */
2143 ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2144 qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2145 msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2146 if (ret == 0) {
2147 ret = -ETIMEDOUT;
2148 goto error;
2149 }
2150
2151 return 0;
2152
2153error:
2154 clear_bit(QCA_SUSPENDING, &qca->flags);
2155
2156 return ret;
2157}
2158
2159static int __maybe_unused qca_resume(struct device *dev)
2160{
2161 struct serdev_device *serdev = to_serdev_device(dev);
2162 struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2163 struct hci_uart *hu = &qcadev->serdev_hu;
2164 struct qca_data *qca = hu->priv;
2165
2166 clear_bit(QCA_SUSPENDING, &qca->flags);
2167
2168 return 0;
2169}
2170
2171static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2172
2173#ifdef CONFIG_OF
2174static const struct of_device_id qca_bluetooth_of_match[] = {
2175 { .compatible = "qcom,qca6174-bt" },
2176 { .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2177 { .compatible = "qcom,qca9377-bt" },
2178 { .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2179 { .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2180 { .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2181 { /* sentinel */ }
2182};
2183MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2184#endif
2185
2186#ifdef CONFIG_ACPI
2187static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2188 { "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2189 { "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2190 { "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2191 { "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2192 { },
2193};
2194MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2195#endif
2196
2197
2198static struct serdev_device_driver qca_serdev_driver = {
2199 .probe = qca_serdev_probe,
2200 .remove = qca_serdev_remove,
2201 .driver = {
2202 .name = "hci_uart_qca",
2203 .of_match_table = of_match_ptr(qca_bluetooth_of_match),
2204 .acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2205 .shutdown = qca_serdev_shutdown,
2206 .pm = &qca_pm_ops,
2207 },
2208};
2209
2210int __init qca_init(void)
2211{
2212 serdev_device_driver_register(&qca_serdev_driver);
2213
2214 return hci_uart_register_proto(&qca_proto);
2215}
2216
2217int __exit qca_deinit(void)
2218{
2219 serdev_device_driver_unregister(&qca_serdev_driver);
2220
2221 return hci_uart_unregister_proto(&qca_proto);
2222}