Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
 
  12#include <linux/module.h>
  13#include <linux/sbitmap.h>
  14
  15#include <trace/events/block.h>
  16
  17#include "elevator.h"
  18#include "blk.h"
  19#include "blk-mq.h"
  20#include "blk-mq-debugfs.h"
  21#include "blk-mq-sched.h"
  22#include "blk-mq-tag.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/kyber.h>
  26
  27/*
  28 * Scheduling domains: the device is divided into multiple domains based on the
  29 * request type.
  30 */
  31enum {
  32	KYBER_READ,
  33	KYBER_WRITE,
  34	KYBER_DISCARD,
  35	KYBER_OTHER,
  36	KYBER_NUM_DOMAINS,
  37};
  38
  39static const char *kyber_domain_names[] = {
  40	[KYBER_READ] = "READ",
  41	[KYBER_WRITE] = "WRITE",
  42	[KYBER_DISCARD] = "DISCARD",
  43	[KYBER_OTHER] = "OTHER",
  44};
  45
  46enum {
  47	/*
  48	 * In order to prevent starvation of synchronous requests by a flood of
  49	 * asynchronous requests, we reserve 25% of requests for synchronous
  50	 * operations.
  51	 */
  52	KYBER_ASYNC_PERCENT = 75,
  53};
  54
  55/*
  56 * Maximum device-wide depth for each scheduling domain.
  57 *
  58 * Even for fast devices with lots of tags like NVMe, you can saturate the
  59 * device with only a fraction of the maximum possible queue depth. So, we cap
  60 * these to a reasonable value.
  61 */
  62static const unsigned int kyber_depth[] = {
  63	[KYBER_READ] = 256,
  64	[KYBER_WRITE] = 128,
  65	[KYBER_DISCARD] = 64,
  66	[KYBER_OTHER] = 16,
  67};
  68
  69/*
  70 * Default latency targets for each scheduling domain.
  71 */
  72static const u64 kyber_latency_targets[] = {
  73	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  74	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  75	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  76};
  77
  78/*
  79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  80 * domain.
  81 */
  82static const unsigned int kyber_batch_size[] = {
  83	[KYBER_READ] = 16,
  84	[KYBER_WRITE] = 8,
  85	[KYBER_DISCARD] = 1,
  86	[KYBER_OTHER] = 1,
  87};
  88
  89/*
  90 * Requests latencies are recorded in a histogram with buckets defined relative
  91 * to the target latency:
  92 *
  93 * <= 1/4 * target latency
  94 * <= 1/2 * target latency
  95 * <= 3/4 * target latency
  96 * <= target latency
  97 * <= 1 1/4 * target latency
  98 * <= 1 1/2 * target latency
  99 * <= 1 3/4 * target latency
 100 * > 1 3/4 * target latency
 101 */
 102enum {
 103	/*
 104	 * The width of the latency histogram buckets is
 105	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 106	 */
 107	KYBER_LATENCY_SHIFT = 2,
 108	/*
 109	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 110	 * thus, "good".
 111	 */
 112	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 113	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 114	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 115};
 116
 117/*
 118 * We measure both the total latency and the I/O latency (i.e., latency after
 119 * submitting to the device).
 120 */
 121enum {
 122	KYBER_TOTAL_LATENCY,
 123	KYBER_IO_LATENCY,
 124};
 125
 126static const char *kyber_latency_type_names[] = {
 127	[KYBER_TOTAL_LATENCY] = "total",
 128	[KYBER_IO_LATENCY] = "I/O",
 129};
 130
 131/*
 132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 133 * domain except for KYBER_OTHER.
 134 */
 135struct kyber_cpu_latency {
 136	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 137};
 138
 139/*
 140 * There is a same mapping between ctx & hctx and kcq & khd,
 141 * we use request->mq_ctx->index_hw to index the kcq in khd.
 142 */
 143struct kyber_ctx_queue {
 144	/*
 145	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 146	 * Also protect the rqs on rq_list when merge.
 147	 */
 148	spinlock_t lock;
 149	struct list_head rq_list[KYBER_NUM_DOMAINS];
 150} ____cacheline_aligned_in_smp;
 151
 152struct kyber_queue_data {
 153	struct request_queue *q;
 154	dev_t dev;
 155
 156	/*
 157	 * Each scheduling domain has a limited number of in-flight requests
 158	 * device-wide, limited by these tokens.
 159	 */
 160	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 161
 162	/*
 163	 * Async request percentage, converted to per-word depth for
 164	 * sbitmap_get_shallow().
 165	 */
 166	unsigned int async_depth;
 167
 168	struct kyber_cpu_latency __percpu *cpu_latency;
 169
 170	/* Timer for stats aggregation and adjusting domain tokens. */
 171	struct timer_list timer;
 172
 173	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 174
 175	unsigned long latency_timeout[KYBER_OTHER];
 176
 177	int domain_p99[KYBER_OTHER];
 178
 179	/* Target latencies in nanoseconds. */
 180	u64 latency_targets[KYBER_OTHER];
 181};
 182
 183struct kyber_hctx_data {
 184	spinlock_t lock;
 185	struct list_head rqs[KYBER_NUM_DOMAINS];
 186	unsigned int cur_domain;
 187	unsigned int batching;
 188	struct kyber_ctx_queue *kcqs;
 189	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 190	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 191	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 192	atomic_t wait_index[KYBER_NUM_DOMAINS];
 193};
 194
 195static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 196			     void *key);
 197
 198static unsigned int kyber_sched_domain(blk_opf_t opf)
 199{
 200	switch (opf & REQ_OP_MASK) {
 201	case REQ_OP_READ:
 202		return KYBER_READ;
 203	case REQ_OP_WRITE:
 204		return KYBER_WRITE;
 205	case REQ_OP_DISCARD:
 206		return KYBER_DISCARD;
 207	default:
 208		return KYBER_OTHER;
 209	}
 210}
 211
 212static void flush_latency_buckets(struct kyber_queue_data *kqd,
 213				  struct kyber_cpu_latency *cpu_latency,
 214				  unsigned int sched_domain, unsigned int type)
 215{
 216	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 217	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 218	unsigned int bucket;
 219
 220	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 221		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 222}
 223
 224/*
 225 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 226 * aren't enough samples yet.
 227 */
 228static int calculate_percentile(struct kyber_queue_data *kqd,
 229				unsigned int sched_domain, unsigned int type,
 230				unsigned int percentile)
 231{
 232	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 233	unsigned int bucket, samples = 0, percentile_samples;
 234
 235	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 236		samples += buckets[bucket];
 237
 238	if (!samples)
 239		return -1;
 240
 241	/*
 242	 * We do the calculation once we have 500 samples or one second passes
 243	 * since the first sample was recorded, whichever comes first.
 244	 */
 245	if (!kqd->latency_timeout[sched_domain])
 246		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 247	if (samples < 500 &&
 248	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 249		return -1;
 250	}
 251	kqd->latency_timeout[sched_domain] = 0;
 252
 253	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 254	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 255		if (buckets[bucket] >= percentile_samples)
 256			break;
 257		percentile_samples -= buckets[bucket];
 258	}
 259	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 260
 261	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
 262			    kyber_latency_type_names[type], percentile,
 263			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 264
 265	return bucket;
 266}
 267
 268static void kyber_resize_domain(struct kyber_queue_data *kqd,
 269				unsigned int sched_domain, unsigned int depth)
 270{
 271	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 272	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 273		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 274		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
 275				   depth);
 276	}
 277}
 278
 279static void kyber_timer_fn(struct timer_list *t)
 280{
 281	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 282	unsigned int sched_domain;
 283	int cpu;
 284	bool bad = false;
 285
 286	/* Sum all of the per-cpu latency histograms. */
 287	for_each_online_cpu(cpu) {
 288		struct kyber_cpu_latency *cpu_latency;
 289
 290		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 291		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 292			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 293					      KYBER_TOTAL_LATENCY);
 294			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 295					      KYBER_IO_LATENCY);
 296		}
 297	}
 298
 299	/*
 300	 * Check if any domains have a high I/O latency, which might indicate
 301	 * congestion in the device. Note that we use the p90; we don't want to
 302	 * be too sensitive to outliers here.
 303	 */
 304	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 305		int p90;
 306
 307		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 308					   90);
 309		if (p90 >= KYBER_GOOD_BUCKETS)
 310			bad = true;
 311	}
 312
 313	/*
 314	 * Adjust the scheduling domain depths. If we determined that there was
 315	 * congestion, we throttle all domains with good latencies. Either way,
 316	 * we ease up on throttling domains with bad latencies.
 317	 */
 318	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 319		unsigned int orig_depth, depth;
 320		int p99;
 321
 322		p99 = calculate_percentile(kqd, sched_domain,
 323					   KYBER_TOTAL_LATENCY, 99);
 324		/*
 325		 * This is kind of subtle: different domains will not
 326		 * necessarily have enough samples to calculate the latency
 327		 * percentiles during the same window, so we have to remember
 328		 * the p99 for the next time we observe congestion; once we do,
 329		 * we don't want to throttle again until we get more data, so we
 330		 * reset it to -1.
 331		 */
 332		if (bad) {
 333			if (p99 < 0)
 334				p99 = kqd->domain_p99[sched_domain];
 335			kqd->domain_p99[sched_domain] = -1;
 336		} else if (p99 >= 0) {
 337			kqd->domain_p99[sched_domain] = p99;
 338		}
 339		if (p99 < 0)
 340			continue;
 341
 342		/*
 343		 * If this domain has bad latency, throttle less. Otherwise,
 344		 * throttle more iff we determined that there is congestion.
 345		 *
 346		 * The new depth is scaled linearly with the p99 latency vs the
 347		 * latency target. E.g., if the p99 is 3/4 of the target, then
 348		 * we throttle down to 3/4 of the current depth, and if the p99
 349		 * is 2x the target, then we double the depth.
 350		 */
 351		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 352			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 353			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 354			kyber_resize_domain(kqd, sched_domain, depth);
 355		}
 356	}
 357}
 358
 
 
 
 
 
 
 
 
 
 359static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 360{
 361	struct kyber_queue_data *kqd;
 
 362	int ret = -ENOMEM;
 363	int i;
 364
 365	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 366	if (!kqd)
 367		goto err;
 368
 369	kqd->q = q;
 370	kqd->dev = disk_devt(q->disk);
 371
 372	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 373					    GFP_KERNEL | __GFP_ZERO);
 374	if (!kqd->cpu_latency)
 375		goto err_kqd;
 376
 377	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 378
 379	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 380		WARN_ON(!kyber_depth[i]);
 381		WARN_ON(!kyber_batch_size[i]);
 382		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 383					      kyber_depth[i], -1, false,
 384					      GFP_KERNEL, q->node);
 385		if (ret) {
 386			while (--i >= 0)
 387				sbitmap_queue_free(&kqd->domain_tokens[i]);
 388			goto err_buckets;
 389		}
 390	}
 391
 392	for (i = 0; i < KYBER_OTHER; i++) {
 393		kqd->domain_p99[i] = -1;
 394		kqd->latency_targets[i] = kyber_latency_targets[i];
 395	}
 396
 
 
 
 397	return kqd;
 398
 399err_buckets:
 400	free_percpu(kqd->cpu_latency);
 401err_kqd:
 402	kfree(kqd);
 403err:
 404	return ERR_PTR(ret);
 405}
 406
 407static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 408{
 409	struct kyber_queue_data *kqd;
 410	struct elevator_queue *eq;
 411
 412	eq = elevator_alloc(q, e);
 413	if (!eq)
 414		return -ENOMEM;
 415
 416	kqd = kyber_queue_data_alloc(q);
 417	if (IS_ERR(kqd)) {
 418		kobject_put(&eq->kobj);
 419		return PTR_ERR(kqd);
 420	}
 421
 422	blk_stat_enable_accounting(q);
 423
 424	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
 425
 426	eq->elevator_data = kqd;
 427	q->elevator = eq;
 428
 429	return 0;
 430}
 431
 432static void kyber_exit_sched(struct elevator_queue *e)
 433{
 434	struct kyber_queue_data *kqd = e->elevator_data;
 435	int i;
 436
 437	timer_shutdown_sync(&kqd->timer);
 438	blk_stat_disable_accounting(kqd->q);
 439
 440	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 441		sbitmap_queue_free(&kqd->domain_tokens[i]);
 442	free_percpu(kqd->cpu_latency);
 443	kfree(kqd);
 444}
 445
 446static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 447{
 448	unsigned int i;
 449
 450	spin_lock_init(&kcq->lock);
 451	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 452		INIT_LIST_HEAD(&kcq->rq_list[i]);
 453}
 454
 455static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
 456{
 457	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 458	struct blk_mq_tags *tags = hctx->sched_tags;
 459	unsigned int shift = tags->bitmap_tags.sb.shift;
 460
 461	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 462
 463	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
 464}
 465
 466static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 467{
 
 468	struct kyber_hctx_data *khd;
 469	int i;
 470
 471	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 472	if (!khd)
 473		return -ENOMEM;
 474
 475	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 476				       sizeof(struct kyber_ctx_queue),
 477				       GFP_KERNEL, hctx->numa_node);
 478	if (!khd->kcqs)
 479		goto err_khd;
 480
 481	for (i = 0; i < hctx->nr_ctx; i++)
 482		kyber_ctx_queue_init(&khd->kcqs[i]);
 483
 484	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 485		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 486				      ilog2(8), GFP_KERNEL, hctx->numa_node,
 487				      false, false)) {
 488			while (--i >= 0)
 489				sbitmap_free(&khd->kcq_map[i]);
 490			goto err_kcqs;
 491		}
 492	}
 493
 494	spin_lock_init(&khd->lock);
 495
 496	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 497		INIT_LIST_HEAD(&khd->rqs[i]);
 498		khd->domain_wait[i].sbq = NULL;
 499		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 500					  kyber_domain_wake);
 501		khd->domain_wait[i].wait.private = hctx;
 502		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 503		atomic_set(&khd->wait_index[i], 0);
 504	}
 505
 506	khd->cur_domain = 0;
 507	khd->batching = 0;
 508
 509	hctx->sched_data = khd;
 510	kyber_depth_updated(hctx);
 
 511
 512	return 0;
 513
 514err_kcqs:
 515	kfree(khd->kcqs);
 516err_khd:
 517	kfree(khd);
 518	return -ENOMEM;
 519}
 520
 521static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 522{
 523	struct kyber_hctx_data *khd = hctx->sched_data;
 524	int i;
 525
 526	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 527		sbitmap_free(&khd->kcq_map[i]);
 528	kfree(khd->kcqs);
 529	kfree(hctx->sched_data);
 530}
 531
 532static int rq_get_domain_token(struct request *rq)
 533{
 534	return (long)rq->elv.priv[0];
 535}
 536
 537static void rq_set_domain_token(struct request *rq, int token)
 538{
 539	rq->elv.priv[0] = (void *)(long)token;
 540}
 541
 542static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 543				  struct request *rq)
 544{
 545	unsigned int sched_domain;
 546	int nr;
 547
 548	nr = rq_get_domain_token(rq);
 549	if (nr != -1) {
 550		sched_domain = kyber_sched_domain(rq->cmd_flags);
 551		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 552				    rq->mq_ctx->cpu);
 553	}
 554}
 555
 556static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
 557{
 558	/*
 559	 * We use the scheduler tags as per-hardware queue queueing tokens.
 560	 * Async requests can be limited at this stage.
 561	 */
 562	if (!op_is_sync(opf)) {
 563		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 564
 565		data->shallow_depth = kqd->async_depth;
 566	}
 567}
 568
 569static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
 570		unsigned int nr_segs)
 571{
 572	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 573	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 574	struct kyber_hctx_data *khd = hctx->sched_data;
 
 575	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 576	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 577	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 578	bool merged;
 579
 580	spin_lock(&kcq->lock);
 581	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 582	spin_unlock(&kcq->lock);
 583
 584	return merged;
 585}
 586
 587static void kyber_prepare_request(struct request *rq)
 588{
 589	rq_set_domain_token(rq, -1);
 590}
 591
 592static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 593				  struct list_head *rq_list, bool at_head)
 594{
 595	struct kyber_hctx_data *khd = hctx->sched_data;
 596	struct request *rq, *next;
 597
 598	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 599		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 600		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 601		struct list_head *head = &kcq->rq_list[sched_domain];
 602
 603		spin_lock(&kcq->lock);
 604		trace_block_rq_insert(rq);
 605		if (at_head)
 606			list_move(&rq->queuelist, head);
 607		else
 608			list_move_tail(&rq->queuelist, head);
 609		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 610				rq->mq_ctx->index_hw[hctx->type]);
 
 611		spin_unlock(&kcq->lock);
 612	}
 613}
 614
 615static void kyber_finish_request(struct request *rq)
 616{
 617	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 618
 619	rq_clear_domain_token(kqd, rq);
 620}
 621
 622static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 623			       unsigned int sched_domain, unsigned int type,
 624			       u64 target, u64 latency)
 625{
 626	unsigned int bucket;
 627	u64 divisor;
 628
 629	if (latency > 0) {
 630		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 631		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 632			       KYBER_LATENCY_BUCKETS - 1);
 633	} else {
 634		bucket = 0;
 635	}
 636
 637	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 638}
 639
 640static void kyber_completed_request(struct request *rq, u64 now)
 641{
 642	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 643	struct kyber_cpu_latency *cpu_latency;
 644	unsigned int sched_domain;
 645	u64 target;
 646
 647	sched_domain = kyber_sched_domain(rq->cmd_flags);
 648	if (sched_domain == KYBER_OTHER)
 649		return;
 650
 651	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 652	target = kqd->latency_targets[sched_domain];
 653	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 654			   target, now - rq->start_time_ns);
 655	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 656			   now - rq->io_start_time_ns);
 657	put_cpu_ptr(kqd->cpu_latency);
 658
 659	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 660}
 661
 662struct flush_kcq_data {
 663	struct kyber_hctx_data *khd;
 664	unsigned int sched_domain;
 665	struct list_head *list;
 666};
 667
 668static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 669{
 670	struct flush_kcq_data *flush_data = data;
 671	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 672
 673	spin_lock(&kcq->lock);
 674	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 675			      flush_data->list);
 676	sbitmap_clear_bit(sb, bitnr);
 677	spin_unlock(&kcq->lock);
 678
 679	return true;
 680}
 681
 682static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 683				  unsigned int sched_domain,
 684				  struct list_head *list)
 685{
 686	struct flush_kcq_data data = {
 687		.khd = khd,
 688		.sched_domain = sched_domain,
 689		.list = list,
 690	};
 691
 692	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 693			     flush_busy_kcq, &data);
 694}
 695
 696static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 697			     void *key)
 698{
 699	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 700	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 701
 702	sbitmap_del_wait_queue(wait);
 703	blk_mq_run_hw_queue(hctx, true);
 704	return 1;
 705}
 706
 707static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 708				  struct kyber_hctx_data *khd,
 709				  struct blk_mq_hw_ctx *hctx)
 710{
 711	unsigned int sched_domain = khd->cur_domain;
 712	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 713	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 714	struct sbq_wait_state *ws;
 715	int nr;
 716
 717	nr = __sbitmap_queue_get(domain_tokens);
 718
 719	/*
 720	 * If we failed to get a domain token, make sure the hardware queue is
 721	 * run when one becomes available. Note that this is serialized on
 722	 * khd->lock, but we still need to be careful about the waker.
 723	 */
 724	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 725		ws = sbq_wait_ptr(domain_tokens,
 726				  &khd->wait_index[sched_domain]);
 727		khd->domain_ws[sched_domain] = ws;
 728		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 729
 730		/*
 731		 * Try again in case a token was freed before we got on the wait
 732		 * queue.
 733		 */
 734		nr = __sbitmap_queue_get(domain_tokens);
 735	}
 736
 737	/*
 738	 * If we got a token while we were on the wait queue, remove ourselves
 739	 * from the wait queue to ensure that all wake ups make forward
 740	 * progress. It's possible that the waker already deleted the entry
 741	 * between the !list_empty_careful() check and us grabbing the lock, but
 742	 * list_del_init() is okay with that.
 743	 */
 744	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 745		ws = khd->domain_ws[sched_domain];
 746		spin_lock_irq(&ws->wait.lock);
 747		sbitmap_del_wait_queue(wait);
 748		spin_unlock_irq(&ws->wait.lock);
 749	}
 750
 751	return nr;
 752}
 753
 754static struct request *
 755kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 756			  struct kyber_hctx_data *khd,
 757			  struct blk_mq_hw_ctx *hctx)
 758{
 759	struct list_head *rqs;
 760	struct request *rq;
 761	int nr;
 762
 763	rqs = &khd->rqs[khd->cur_domain];
 764
 765	/*
 766	 * If we already have a flushed request, then we just need to get a
 767	 * token for it. Otherwise, if there are pending requests in the kcqs,
 768	 * flush the kcqs, but only if we can get a token. If not, we should
 769	 * leave the requests in the kcqs so that they can be merged. Note that
 770	 * khd->lock serializes the flushes, so if we observed any bit set in
 771	 * the kcq_map, we will always get a request.
 772	 */
 773	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 774	if (rq) {
 775		nr = kyber_get_domain_token(kqd, khd, hctx);
 776		if (nr >= 0) {
 777			khd->batching++;
 778			rq_set_domain_token(rq, nr);
 779			list_del_init(&rq->queuelist);
 780			return rq;
 781		} else {
 782			trace_kyber_throttled(kqd->dev,
 783					      kyber_domain_names[khd->cur_domain]);
 784		}
 785	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 786		nr = kyber_get_domain_token(kqd, khd, hctx);
 787		if (nr >= 0) {
 788			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 789			rq = list_first_entry(rqs, struct request, queuelist);
 790			khd->batching++;
 791			rq_set_domain_token(rq, nr);
 792			list_del_init(&rq->queuelist);
 793			return rq;
 794		} else {
 795			trace_kyber_throttled(kqd->dev,
 796					      kyber_domain_names[khd->cur_domain]);
 797		}
 798	}
 799
 800	/* There were either no pending requests or no tokens. */
 801	return NULL;
 802}
 803
 804static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 805{
 806	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 807	struct kyber_hctx_data *khd = hctx->sched_data;
 808	struct request *rq;
 809	int i;
 810
 811	spin_lock(&khd->lock);
 812
 813	/*
 814	 * First, if we are still entitled to batch, try to dispatch a request
 815	 * from the batch.
 816	 */
 817	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 818		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 819		if (rq)
 820			goto out;
 821	}
 822
 823	/*
 824	 * Either,
 825	 * 1. We were no longer entitled to a batch.
 826	 * 2. The domain we were batching didn't have any requests.
 827	 * 3. The domain we were batching was out of tokens.
 828	 *
 829	 * Start another batch. Note that this wraps back around to the original
 830	 * domain if no other domains have requests or tokens.
 831	 */
 832	khd->batching = 0;
 833	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 834		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 835			khd->cur_domain = 0;
 836		else
 837			khd->cur_domain++;
 838
 839		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 840		if (rq)
 841			goto out;
 842	}
 843
 844	rq = NULL;
 845out:
 846	spin_unlock(&khd->lock);
 847	return rq;
 848}
 849
 850static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 851{
 852	struct kyber_hctx_data *khd = hctx->sched_data;
 853	int i;
 854
 855	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 856		if (!list_empty_careful(&khd->rqs[i]) ||
 857		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 858			return true;
 859	}
 860
 861	return false;
 862}
 863
 864#define KYBER_LAT_SHOW_STORE(domain, name)				\
 865static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 866				       char *page)			\
 867{									\
 868	struct kyber_queue_data *kqd = e->elevator_data;		\
 869									\
 870	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 871}									\
 872									\
 873static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 874					const char *page, size_t count)	\
 875{									\
 876	struct kyber_queue_data *kqd = e->elevator_data;		\
 877	unsigned long long nsec;					\
 878	int ret;							\
 879									\
 880	ret = kstrtoull(page, 10, &nsec);				\
 881	if (ret)							\
 882		return ret;						\
 883									\
 884	kqd->latency_targets[domain] = nsec;				\
 885									\
 886	return count;							\
 887}
 888KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 889KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 890#undef KYBER_LAT_SHOW_STORE
 891
 892#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 893static struct elv_fs_entry kyber_sched_attrs[] = {
 894	KYBER_LAT_ATTR(read),
 895	KYBER_LAT_ATTR(write),
 896	__ATTR_NULL
 897};
 898#undef KYBER_LAT_ATTR
 899
 900#ifdef CONFIG_BLK_DEBUG_FS
 901#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 902static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 903{									\
 904	struct request_queue *q = data;					\
 905	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 906									\
 907	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 908	return 0;							\
 909}									\
 910									\
 911static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 912	__acquires(&khd->lock)						\
 913{									\
 914	struct blk_mq_hw_ctx *hctx = m->private;			\
 915	struct kyber_hctx_data *khd = hctx->sched_data;			\
 916									\
 917	spin_lock(&khd->lock);						\
 918	return seq_list_start(&khd->rqs[domain], *pos);			\
 919}									\
 920									\
 921static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 922				     loff_t *pos)			\
 923{									\
 924	struct blk_mq_hw_ctx *hctx = m->private;			\
 925	struct kyber_hctx_data *khd = hctx->sched_data;			\
 926									\
 927	return seq_list_next(v, &khd->rqs[domain], pos);		\
 928}									\
 929									\
 930static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 931	__releases(&khd->lock)						\
 932{									\
 933	struct blk_mq_hw_ctx *hctx = m->private;			\
 934	struct kyber_hctx_data *khd = hctx->sched_data;			\
 935									\
 936	spin_unlock(&khd->lock);					\
 937}									\
 938									\
 939static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 940	.start	= kyber_##name##_rqs_start,				\
 941	.next	= kyber_##name##_rqs_next,				\
 942	.stop	= kyber_##name##_rqs_stop,				\
 943	.show	= blk_mq_debugfs_rq_show,				\
 944};									\
 945									\
 946static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 947{									\
 948	struct blk_mq_hw_ctx *hctx = data;				\
 949	struct kyber_hctx_data *khd = hctx->sched_data;			\
 950	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 951									\
 952	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 953	return 0;							\
 954}
 955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 957KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 958KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 959#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 960
 961static int kyber_async_depth_show(void *data, struct seq_file *m)
 962{
 963	struct request_queue *q = data;
 964	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 965
 966	seq_printf(m, "%u\n", kqd->async_depth);
 967	return 0;
 968}
 969
 970static int kyber_cur_domain_show(void *data, struct seq_file *m)
 971{
 972	struct blk_mq_hw_ctx *hctx = data;
 973	struct kyber_hctx_data *khd = hctx->sched_data;
 974
 975	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 976	return 0;
 977}
 978
 979static int kyber_batching_show(void *data, struct seq_file *m)
 980{
 981	struct blk_mq_hw_ctx *hctx = data;
 982	struct kyber_hctx_data *khd = hctx->sched_data;
 983
 984	seq_printf(m, "%u\n", khd->batching);
 985	return 0;
 986}
 987
 988#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 989	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 990static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 991	KYBER_QUEUE_DOMAIN_ATTRS(read),
 992	KYBER_QUEUE_DOMAIN_ATTRS(write),
 993	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 994	KYBER_QUEUE_DOMAIN_ATTRS(other),
 995	{"async_depth", 0400, kyber_async_depth_show},
 996	{},
 997};
 998#undef KYBER_QUEUE_DOMAIN_ATTRS
 999
1000#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
1001	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
1002	{#name "_waiting", 0400, kyber_##name##_waiting_show}
1003static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1004	KYBER_HCTX_DOMAIN_ATTRS(read),
1005	KYBER_HCTX_DOMAIN_ATTRS(write),
1006	KYBER_HCTX_DOMAIN_ATTRS(discard),
1007	KYBER_HCTX_DOMAIN_ATTRS(other),
1008	{"cur_domain", 0400, kyber_cur_domain_show},
1009	{"batching", 0400, kyber_batching_show},
1010	{},
1011};
1012#undef KYBER_HCTX_DOMAIN_ATTRS
1013#endif
1014
1015static struct elevator_type kyber_sched = {
1016	.ops = {
1017		.init_sched = kyber_init_sched,
1018		.exit_sched = kyber_exit_sched,
1019		.init_hctx = kyber_init_hctx,
1020		.exit_hctx = kyber_exit_hctx,
1021		.limit_depth = kyber_limit_depth,
1022		.bio_merge = kyber_bio_merge,
1023		.prepare_request = kyber_prepare_request,
1024		.insert_requests = kyber_insert_requests,
1025		.finish_request = kyber_finish_request,
1026		.requeue_request = kyber_finish_request,
1027		.completed_request = kyber_completed_request,
1028		.dispatch_request = kyber_dispatch_request,
1029		.has_work = kyber_has_work,
1030		.depth_updated = kyber_depth_updated,
1031	},
1032#ifdef CONFIG_BLK_DEBUG_FS
1033	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1034	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1035#endif
1036	.elevator_attrs = kyber_sched_attrs,
1037	.elevator_name = "kyber",
1038	.elevator_owner = THIS_MODULE,
1039};
1040
1041static int __init kyber_init(void)
1042{
1043	return elv_register(&kyber_sched);
1044}
1045
1046static void __exit kyber_exit(void)
1047{
1048	elv_unregister(&kyber_sched);
1049}
1050
1051module_init(kyber_init);
1052module_exit(kyber_exit);
1053
1054MODULE_AUTHOR("Omar Sandoval");
1055MODULE_LICENSE("GPL");
1056MODULE_DESCRIPTION("Kyber I/O scheduler");
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
 
 
 
  16#include "blk.h"
  17#include "blk-mq.h"
  18#include "blk-mq-debugfs.h"
  19#include "blk-mq-sched.h"
  20#include "blk-mq-tag.h"
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/kyber.h>
  24
  25/*
  26 * Scheduling domains: the device is divided into multiple domains based on the
  27 * request type.
  28 */
  29enum {
  30	KYBER_READ,
  31	KYBER_WRITE,
  32	KYBER_DISCARD,
  33	KYBER_OTHER,
  34	KYBER_NUM_DOMAINS,
  35};
  36
  37static const char *kyber_domain_names[] = {
  38	[KYBER_READ] = "READ",
  39	[KYBER_WRITE] = "WRITE",
  40	[KYBER_DISCARD] = "DISCARD",
  41	[KYBER_OTHER] = "OTHER",
  42};
  43
  44enum {
  45	/*
  46	 * In order to prevent starvation of synchronous requests by a flood of
  47	 * asynchronous requests, we reserve 25% of requests for synchronous
  48	 * operations.
  49	 */
  50	KYBER_ASYNC_PERCENT = 75,
  51};
  52
  53/*
  54 * Maximum device-wide depth for each scheduling domain.
  55 *
  56 * Even for fast devices with lots of tags like NVMe, you can saturate the
  57 * device with only a fraction of the maximum possible queue depth. So, we cap
  58 * these to a reasonable value.
  59 */
  60static const unsigned int kyber_depth[] = {
  61	[KYBER_READ] = 256,
  62	[KYBER_WRITE] = 128,
  63	[KYBER_DISCARD] = 64,
  64	[KYBER_OTHER] = 16,
  65};
  66
  67/*
  68 * Default latency targets for each scheduling domain.
  69 */
  70static const u64 kyber_latency_targets[] = {
  71	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  72	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  73	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  74};
  75
  76/*
  77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  78 * domain.
  79 */
  80static const unsigned int kyber_batch_size[] = {
  81	[KYBER_READ] = 16,
  82	[KYBER_WRITE] = 8,
  83	[KYBER_DISCARD] = 1,
  84	[KYBER_OTHER] = 1,
  85};
  86
  87/*
  88 * Requests latencies are recorded in a histogram with buckets defined relative
  89 * to the target latency:
  90 *
  91 * <= 1/4 * target latency
  92 * <= 1/2 * target latency
  93 * <= 3/4 * target latency
  94 * <= target latency
  95 * <= 1 1/4 * target latency
  96 * <= 1 1/2 * target latency
  97 * <= 1 3/4 * target latency
  98 * > 1 3/4 * target latency
  99 */
 100enum {
 101	/*
 102	 * The width of the latency histogram buckets is
 103	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 104	 */
 105	KYBER_LATENCY_SHIFT = 2,
 106	/*
 107	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 108	 * thus, "good".
 109	 */
 110	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 111	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 112	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 113};
 114
 115/*
 116 * We measure both the total latency and the I/O latency (i.e., latency after
 117 * submitting to the device).
 118 */
 119enum {
 120	KYBER_TOTAL_LATENCY,
 121	KYBER_IO_LATENCY,
 122};
 123
 124static const char *kyber_latency_type_names[] = {
 125	[KYBER_TOTAL_LATENCY] = "total",
 126	[KYBER_IO_LATENCY] = "I/O",
 127};
 128
 129/*
 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 131 * domain except for KYBER_OTHER.
 132 */
 133struct kyber_cpu_latency {
 134	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 135};
 136
 137/*
 138 * There is a same mapping between ctx & hctx and kcq & khd,
 139 * we use request->mq_ctx->index_hw to index the kcq in khd.
 140 */
 141struct kyber_ctx_queue {
 142	/*
 143	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 144	 * Also protect the rqs on rq_list when merge.
 145	 */
 146	spinlock_t lock;
 147	struct list_head rq_list[KYBER_NUM_DOMAINS];
 148} ____cacheline_aligned_in_smp;
 149
 150struct kyber_queue_data {
 151	struct request_queue *q;
 
 152
 153	/*
 154	 * Each scheduling domain has a limited number of in-flight requests
 155	 * device-wide, limited by these tokens.
 156	 */
 157	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 158
 159	/*
 160	 * Async request percentage, converted to per-word depth for
 161	 * sbitmap_get_shallow().
 162	 */
 163	unsigned int async_depth;
 164
 165	struct kyber_cpu_latency __percpu *cpu_latency;
 166
 167	/* Timer for stats aggregation and adjusting domain tokens. */
 168	struct timer_list timer;
 169
 170	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 171
 172	unsigned long latency_timeout[KYBER_OTHER];
 173
 174	int domain_p99[KYBER_OTHER];
 175
 176	/* Target latencies in nanoseconds. */
 177	u64 latency_targets[KYBER_OTHER];
 178};
 179
 180struct kyber_hctx_data {
 181	spinlock_t lock;
 182	struct list_head rqs[KYBER_NUM_DOMAINS];
 183	unsigned int cur_domain;
 184	unsigned int batching;
 185	struct kyber_ctx_queue *kcqs;
 186	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 187	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 188	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 189	atomic_t wait_index[KYBER_NUM_DOMAINS];
 190};
 191
 192static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 193			     void *key);
 194
 195static unsigned int kyber_sched_domain(unsigned int op)
 196{
 197	switch (op & REQ_OP_MASK) {
 198	case REQ_OP_READ:
 199		return KYBER_READ;
 200	case REQ_OP_WRITE:
 201		return KYBER_WRITE;
 202	case REQ_OP_DISCARD:
 203		return KYBER_DISCARD;
 204	default:
 205		return KYBER_OTHER;
 206	}
 207}
 208
 209static void flush_latency_buckets(struct kyber_queue_data *kqd,
 210				  struct kyber_cpu_latency *cpu_latency,
 211				  unsigned int sched_domain, unsigned int type)
 212{
 213	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 214	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 215	unsigned int bucket;
 216
 217	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 218		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 219}
 220
 221/*
 222 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 223 * aren't enough samples yet.
 224 */
 225static int calculate_percentile(struct kyber_queue_data *kqd,
 226				unsigned int sched_domain, unsigned int type,
 227				unsigned int percentile)
 228{
 229	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 230	unsigned int bucket, samples = 0, percentile_samples;
 231
 232	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 233		samples += buckets[bucket];
 234
 235	if (!samples)
 236		return -1;
 237
 238	/*
 239	 * We do the calculation once we have 500 samples or one second passes
 240	 * since the first sample was recorded, whichever comes first.
 241	 */
 242	if (!kqd->latency_timeout[sched_domain])
 243		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 244	if (samples < 500 &&
 245	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 246		return -1;
 247	}
 248	kqd->latency_timeout[sched_domain] = 0;
 249
 250	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 251	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 252		if (buckets[bucket] >= percentile_samples)
 253			break;
 254		percentile_samples -= buckets[bucket];
 255	}
 256	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 257
 258	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 259			    kyber_latency_type_names[type], percentile,
 260			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 261
 262	return bucket;
 263}
 264
 265static void kyber_resize_domain(struct kyber_queue_data *kqd,
 266				unsigned int sched_domain, unsigned int depth)
 267{
 268	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 269	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 270		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 271		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 272				   depth);
 273	}
 274}
 275
 276static void kyber_timer_fn(struct timer_list *t)
 277{
 278	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 279	unsigned int sched_domain;
 280	int cpu;
 281	bool bad = false;
 282
 283	/* Sum all of the per-cpu latency histograms. */
 284	for_each_online_cpu(cpu) {
 285		struct kyber_cpu_latency *cpu_latency;
 286
 287		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 288		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 289			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 290					      KYBER_TOTAL_LATENCY);
 291			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292					      KYBER_IO_LATENCY);
 293		}
 294	}
 295
 296	/*
 297	 * Check if any domains have a high I/O latency, which might indicate
 298	 * congestion in the device. Note that we use the p90; we don't want to
 299	 * be too sensitive to outliers here.
 300	 */
 301	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 302		int p90;
 303
 304		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 305					   90);
 306		if (p90 >= KYBER_GOOD_BUCKETS)
 307			bad = true;
 308	}
 309
 310	/*
 311	 * Adjust the scheduling domain depths. If we determined that there was
 312	 * congestion, we throttle all domains with good latencies. Either way,
 313	 * we ease up on throttling domains with bad latencies.
 314	 */
 315	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 316		unsigned int orig_depth, depth;
 317		int p99;
 318
 319		p99 = calculate_percentile(kqd, sched_domain,
 320					   KYBER_TOTAL_LATENCY, 99);
 321		/*
 322		 * This is kind of subtle: different domains will not
 323		 * necessarily have enough samples to calculate the latency
 324		 * percentiles during the same window, so we have to remember
 325		 * the p99 for the next time we observe congestion; once we do,
 326		 * we don't want to throttle again until we get more data, so we
 327		 * reset it to -1.
 328		 */
 329		if (bad) {
 330			if (p99 < 0)
 331				p99 = kqd->domain_p99[sched_domain];
 332			kqd->domain_p99[sched_domain] = -1;
 333		} else if (p99 >= 0) {
 334			kqd->domain_p99[sched_domain] = p99;
 335		}
 336		if (p99 < 0)
 337			continue;
 338
 339		/*
 340		 * If this domain has bad latency, throttle less. Otherwise,
 341		 * throttle more iff we determined that there is congestion.
 342		 *
 343		 * The new depth is scaled linearly with the p99 latency vs the
 344		 * latency target. E.g., if the p99 is 3/4 of the target, then
 345		 * we throttle down to 3/4 of the current depth, and if the p99
 346		 * is 2x the target, then we double the depth.
 347		 */
 348		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 349			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 350			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 351			kyber_resize_domain(kqd, sched_domain, depth);
 352		}
 353	}
 354}
 355
 356static unsigned int kyber_sched_tags_shift(struct request_queue *q)
 357{
 358	/*
 359	 * All of the hardware queues have the same depth, so we can just grab
 360	 * the shift of the first one.
 361	 */
 362	return q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
 363}
 364
 365static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 366{
 367	struct kyber_queue_data *kqd;
 368	unsigned int shift;
 369	int ret = -ENOMEM;
 370	int i;
 371
 372	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 373	if (!kqd)
 374		goto err;
 375
 376	kqd->q = q;
 
 377
 378	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 379					    GFP_KERNEL | __GFP_ZERO);
 380	if (!kqd->cpu_latency)
 381		goto err_kqd;
 382
 383	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 384
 385	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 386		WARN_ON(!kyber_depth[i]);
 387		WARN_ON(!kyber_batch_size[i]);
 388		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 389					      kyber_depth[i], -1, false,
 390					      GFP_KERNEL, q->node);
 391		if (ret) {
 392			while (--i >= 0)
 393				sbitmap_queue_free(&kqd->domain_tokens[i]);
 394			goto err_buckets;
 395		}
 396	}
 397
 398	for (i = 0; i < KYBER_OTHER; i++) {
 399		kqd->domain_p99[i] = -1;
 400		kqd->latency_targets[i] = kyber_latency_targets[i];
 401	}
 402
 403	shift = kyber_sched_tags_shift(q);
 404	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 405
 406	return kqd;
 407
 408err_buckets:
 409	free_percpu(kqd->cpu_latency);
 410err_kqd:
 411	kfree(kqd);
 412err:
 413	return ERR_PTR(ret);
 414}
 415
 416static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 417{
 418	struct kyber_queue_data *kqd;
 419	struct elevator_queue *eq;
 420
 421	eq = elevator_alloc(q, e);
 422	if (!eq)
 423		return -ENOMEM;
 424
 425	kqd = kyber_queue_data_alloc(q);
 426	if (IS_ERR(kqd)) {
 427		kobject_put(&eq->kobj);
 428		return PTR_ERR(kqd);
 429	}
 430
 431	blk_stat_enable_accounting(q);
 432
 
 
 433	eq->elevator_data = kqd;
 434	q->elevator = eq;
 435
 436	return 0;
 437}
 438
 439static void kyber_exit_sched(struct elevator_queue *e)
 440{
 441	struct kyber_queue_data *kqd = e->elevator_data;
 442	int i;
 443
 444	del_timer_sync(&kqd->timer);
 
 445
 446	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447		sbitmap_queue_free(&kqd->domain_tokens[i]);
 448	free_percpu(kqd->cpu_latency);
 449	kfree(kqd);
 450}
 451
 452static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 453{
 454	unsigned int i;
 455
 456	spin_lock_init(&kcq->lock);
 457	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 458		INIT_LIST_HEAD(&kcq->rq_list[i]);
 459}
 460
 
 
 
 
 
 
 
 
 
 
 
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 464	struct kyber_hctx_data *khd;
 465	int i;
 466
 467	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 468	if (!khd)
 469		return -ENOMEM;
 470
 471	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 472				       sizeof(struct kyber_ctx_queue),
 473				       GFP_KERNEL, hctx->numa_node);
 474	if (!khd->kcqs)
 475		goto err_khd;
 476
 477	for (i = 0; i < hctx->nr_ctx; i++)
 478		kyber_ctx_queue_init(&khd->kcqs[i]);
 479
 480	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 481		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 482				      ilog2(8), GFP_KERNEL, hctx->numa_node)) {
 
 483			while (--i >= 0)
 484				sbitmap_free(&khd->kcq_map[i]);
 485			goto err_kcqs;
 486		}
 487	}
 488
 489	spin_lock_init(&khd->lock);
 490
 491	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492		INIT_LIST_HEAD(&khd->rqs[i]);
 493		khd->domain_wait[i].sbq = NULL;
 494		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495					  kyber_domain_wake);
 496		khd->domain_wait[i].wait.private = hctx;
 497		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498		atomic_set(&khd->wait_index[i], 0);
 499	}
 500
 501	khd->cur_domain = 0;
 502	khd->batching = 0;
 503
 504	hctx->sched_data = khd;
 505	sbitmap_queue_min_shallow_depth(&hctx->sched_tags->bitmap_tags,
 506					kqd->async_depth);
 507
 508	return 0;
 509
 510err_kcqs:
 511	kfree(khd->kcqs);
 512err_khd:
 513	kfree(khd);
 514	return -ENOMEM;
 515}
 516
 517static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 518{
 519	struct kyber_hctx_data *khd = hctx->sched_data;
 520	int i;
 521
 522	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 523		sbitmap_free(&khd->kcq_map[i]);
 524	kfree(khd->kcqs);
 525	kfree(hctx->sched_data);
 526}
 527
 528static int rq_get_domain_token(struct request *rq)
 529{
 530	return (long)rq->elv.priv[0];
 531}
 532
 533static void rq_set_domain_token(struct request *rq, int token)
 534{
 535	rq->elv.priv[0] = (void *)(long)token;
 536}
 537
 538static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 539				  struct request *rq)
 540{
 541	unsigned int sched_domain;
 542	int nr;
 543
 544	nr = rq_get_domain_token(rq);
 545	if (nr != -1) {
 546		sched_domain = kyber_sched_domain(rq->cmd_flags);
 547		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 548				    rq->mq_ctx->cpu);
 549	}
 550}
 551
 552static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 553{
 554	/*
 555	 * We use the scheduler tags as per-hardware queue queueing tokens.
 556	 * Async requests can be limited at this stage.
 557	 */
 558	if (!op_is_sync(op)) {
 559		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 560
 561		data->shallow_depth = kqd->async_depth;
 562	}
 563}
 564
 565static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
 566		unsigned int nr_segs)
 567{
 
 
 568	struct kyber_hctx_data *khd = hctx->sched_data;
 569	struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
 570	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573	bool merged;
 574
 575	spin_lock(&kcq->lock);
 576	merged = blk_mq_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577	spin_unlock(&kcq->lock);
 578
 579	return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq)
 583{
 584	rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588				  struct list_head *rq_list, bool at_head)
 589{
 590	struct kyber_hctx_data *khd = hctx->sched_data;
 591	struct request *rq, *next;
 592
 593	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596		struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598		spin_lock(&kcq->lock);
 
 599		if (at_head)
 600			list_move(&rq->queuelist, head);
 601		else
 602			list_move_tail(&rq->queuelist, head);
 603		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 604				rq->mq_ctx->index_hw[hctx->type]);
 605		blk_mq_sched_request_inserted(rq);
 606		spin_unlock(&kcq->lock);
 607	}
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614	rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618			       unsigned int sched_domain, unsigned int type,
 619			       u64 target, u64 latency)
 620{
 621	unsigned int bucket;
 622	u64 divisor;
 623
 624	if (latency > 0) {
 625		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627			       KYBER_LATENCY_BUCKETS - 1);
 628	} else {
 629		bucket = 0;
 630	}
 631
 632	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638	struct kyber_cpu_latency *cpu_latency;
 639	unsigned int sched_domain;
 640	u64 target;
 641
 642	sched_domain = kyber_sched_domain(rq->cmd_flags);
 643	if (sched_domain == KYBER_OTHER)
 644		return;
 645
 646	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647	target = kqd->latency_targets[sched_domain];
 648	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649			   target, now - rq->start_time_ns);
 650	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651			   now - rq->io_start_time_ns);
 652	put_cpu_ptr(kqd->cpu_latency);
 653
 654	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 656
 657struct flush_kcq_data {
 658	struct kyber_hctx_data *khd;
 659	unsigned int sched_domain;
 660	struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665	struct flush_kcq_data *flush_data = data;
 666	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668	spin_lock(&kcq->lock);
 669	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670			      flush_data->list);
 671	sbitmap_clear_bit(sb, bitnr);
 672	spin_unlock(&kcq->lock);
 673
 674	return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678				  unsigned int sched_domain,
 679				  struct list_head *list)
 680{
 681	struct flush_kcq_data data = {
 682		.khd = khd,
 683		.sched_domain = sched_domain,
 684		.list = list,
 685	};
 686
 687	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688			     flush_busy_kcq, &data);
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692			     void *key)
 693{
 694	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697	sbitmap_del_wait_queue(wait);
 698	blk_mq_run_hw_queue(hctx, true);
 699	return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703				  struct kyber_hctx_data *khd,
 704				  struct blk_mq_hw_ctx *hctx)
 705{
 706	unsigned int sched_domain = khd->cur_domain;
 707	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709	struct sbq_wait_state *ws;
 710	int nr;
 711
 712	nr = __sbitmap_queue_get(domain_tokens);
 713
 714	/*
 715	 * If we failed to get a domain token, make sure the hardware queue is
 716	 * run when one becomes available. Note that this is serialized on
 717	 * khd->lock, but we still need to be careful about the waker.
 718	 */
 719	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720		ws = sbq_wait_ptr(domain_tokens,
 721				  &khd->wait_index[sched_domain]);
 722		khd->domain_ws[sched_domain] = ws;
 723		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725		/*
 726		 * Try again in case a token was freed before we got on the wait
 727		 * queue.
 728		 */
 729		nr = __sbitmap_queue_get(domain_tokens);
 730	}
 731
 732	/*
 733	 * If we got a token while we were on the wait queue, remove ourselves
 734	 * from the wait queue to ensure that all wake ups make forward
 735	 * progress. It's possible that the waker already deleted the entry
 736	 * between the !list_empty_careful() check and us grabbing the lock, but
 737	 * list_del_init() is okay with that.
 738	 */
 739	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740		ws = khd->domain_ws[sched_domain];
 741		spin_lock_irq(&ws->wait.lock);
 742		sbitmap_del_wait_queue(wait);
 743		spin_unlock_irq(&ws->wait.lock);
 744	}
 745
 746	return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751			  struct kyber_hctx_data *khd,
 752			  struct blk_mq_hw_ctx *hctx)
 753{
 754	struct list_head *rqs;
 755	struct request *rq;
 756	int nr;
 757
 758	rqs = &khd->rqs[khd->cur_domain];
 759
 760	/*
 761	 * If we already have a flushed request, then we just need to get a
 762	 * token for it. Otherwise, if there are pending requests in the kcqs,
 763	 * flush the kcqs, but only if we can get a token. If not, we should
 764	 * leave the requests in the kcqs so that they can be merged. Note that
 765	 * khd->lock serializes the flushes, so if we observed any bit set in
 766	 * the kcq_map, we will always get a request.
 767	 */
 768	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 769	if (rq) {
 770		nr = kyber_get_domain_token(kqd, khd, hctx);
 771		if (nr >= 0) {
 772			khd->batching++;
 773			rq_set_domain_token(rq, nr);
 774			list_del_init(&rq->queuelist);
 775			return rq;
 776		} else {
 777			trace_kyber_throttled(kqd->q,
 778					      kyber_domain_names[khd->cur_domain]);
 779		}
 780	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781		nr = kyber_get_domain_token(kqd, khd, hctx);
 782		if (nr >= 0) {
 783			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784			rq = list_first_entry(rqs, struct request, queuelist);
 785			khd->batching++;
 786			rq_set_domain_token(rq, nr);
 787			list_del_init(&rq->queuelist);
 788			return rq;
 789		} else {
 790			trace_kyber_throttled(kqd->q,
 791					      kyber_domain_names[khd->cur_domain]);
 792		}
 793	}
 794
 795	/* There were either no pending requests or no tokens. */
 796	return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802	struct kyber_hctx_data *khd = hctx->sched_data;
 803	struct request *rq;
 804	int i;
 805
 806	spin_lock(&khd->lock);
 807
 808	/*
 809	 * First, if we are still entitled to batch, try to dispatch a request
 810	 * from the batch.
 811	 */
 812	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814		if (rq)
 815			goto out;
 816	}
 817
 818	/*
 819	 * Either,
 820	 * 1. We were no longer entitled to a batch.
 821	 * 2. The domain we were batching didn't have any requests.
 822	 * 3. The domain we were batching was out of tokens.
 823	 *
 824	 * Start another batch. Note that this wraps back around to the original
 825	 * domain if no other domains have requests or tokens.
 826	 */
 827	khd->batching = 0;
 828	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830			khd->cur_domain = 0;
 831		else
 832			khd->cur_domain++;
 833
 834		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835		if (rq)
 836			goto out;
 837	}
 838
 839	rq = NULL;
 840out:
 841	spin_unlock(&khd->lock);
 842	return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847	struct kyber_hctx_data *khd = hctx->sched_data;
 848	int i;
 849
 850	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851		if (!list_empty_careful(&khd->rqs[i]) ||
 852		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853			return true;
 854	}
 855
 856	return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)				\
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 861				       char *page)			\
 862{									\
 863	struct kyber_queue_data *kqd = e->elevator_data;		\
 864									\
 865	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 866}									\
 867									\
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 869					const char *page, size_t count)	\
 870{									\
 871	struct kyber_queue_data *kqd = e->elevator_data;		\
 872	unsigned long long nsec;					\
 873	int ret;							\
 874									\
 875	ret = kstrtoull(page, 10, &nsec);				\
 876	if (ret)							\
 877		return ret;						\
 878									\
 879	kqd->latency_targets[domain] = nsec;				\
 880									\
 881	return count;							\
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889	KYBER_LAT_ATTR(read),
 890	KYBER_LAT_ATTR(write),
 891	__ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 898{									\
 899	struct request_queue *q = data;					\
 900	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 901									\
 902	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 903	return 0;							\
 904}									\
 905									\
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 907	__acquires(&khd->lock)						\
 908{									\
 909	struct blk_mq_hw_ctx *hctx = m->private;			\
 910	struct kyber_hctx_data *khd = hctx->sched_data;			\
 911									\
 912	spin_lock(&khd->lock);						\
 913	return seq_list_start(&khd->rqs[domain], *pos);			\
 914}									\
 915									\
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 917				     loff_t *pos)			\
 918{									\
 919	struct blk_mq_hw_ctx *hctx = m->private;			\
 920	struct kyber_hctx_data *khd = hctx->sched_data;			\
 921									\
 922	return seq_list_next(v, &khd->rqs[domain], pos);		\
 923}									\
 924									\
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 926	__releases(&khd->lock)						\
 927{									\
 928	struct blk_mq_hw_ctx *hctx = m->private;			\
 929	struct kyber_hctx_data *khd = hctx->sched_data;			\
 930									\
 931	spin_unlock(&khd->lock);					\
 932}									\
 933									\
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 935	.start	= kyber_##name##_rqs_start,				\
 936	.next	= kyber_##name##_rqs_next,				\
 937	.stop	= kyber_##name##_rqs_stop,				\
 938	.show	= blk_mq_debugfs_rq_show,				\
 939};									\
 940									\
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 942{									\
 943	struct blk_mq_hw_ctx *hctx = data;				\
 944	struct kyber_hctx_data *khd = hctx->sched_data;			\
 945	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 946									\
 947	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 948	return 0;							\
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958	struct request_queue *q = data;
 959	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961	seq_printf(m, "%u\n", kqd->async_depth);
 962	return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967	struct blk_mq_hw_ctx *hctx = data;
 968	struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 971	return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976	struct blk_mq_hw_ctx *hctx = data;
 977	struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979	seq_printf(m, "%u\n", khd->batching);
 980	return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 984	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986	KYBER_QUEUE_DOMAIN_ATTRS(read),
 987	KYBER_QUEUE_DOMAIN_ATTRS(write),
 988	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989	KYBER_QUEUE_DOMAIN_ATTRS(other),
 990	{"async_depth", 0400, kyber_async_depth_show},
 991	{},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 996	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 997	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999	KYBER_HCTX_DOMAIN_ATTRS(read),
1000	KYBER_HCTX_DOMAIN_ATTRS(write),
1001	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002	KYBER_HCTX_DOMAIN_ATTRS(other),
1003	{"cur_domain", 0400, kyber_cur_domain_show},
1004	{"batching", 0400, kyber_batching_show},
1005	{},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011	.ops = {
1012		.init_sched = kyber_init_sched,
1013		.exit_sched = kyber_exit_sched,
1014		.init_hctx = kyber_init_hctx,
1015		.exit_hctx = kyber_exit_hctx,
1016		.limit_depth = kyber_limit_depth,
1017		.bio_merge = kyber_bio_merge,
1018		.prepare_request = kyber_prepare_request,
1019		.insert_requests = kyber_insert_requests,
1020		.finish_request = kyber_finish_request,
1021		.requeue_request = kyber_finish_request,
1022		.completed_request = kyber_completed_request,
1023		.dispatch_request = kyber_dispatch_request,
1024		.has_work = kyber_has_work,
 
1025	},
1026#ifdef CONFIG_BLK_DEBUG_FS
1027	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1028	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1029#endif
1030	.elevator_attrs = kyber_sched_attrs,
1031	.elevator_name = "kyber",
1032	.elevator_owner = THIS_MODULE,
1033};
1034
1035static int __init kyber_init(void)
1036{
1037	return elv_register(&kyber_sched);
1038}
1039
1040static void __exit kyber_exit(void)
1041{
1042	elv_unregister(&kyber_sched);
1043}
1044
1045module_init(kyber_init);
1046module_exit(kyber_exit);
1047
1048MODULE_AUTHOR("Omar Sandoval");
1049MODULE_LICENSE("GPL");
1050MODULE_DESCRIPTION("Kyber I/O scheduler");