Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#ifndef __ARM64_KVM_MMU_H__
  8#define __ARM64_KVM_MMU_H__
  9
 10#include <asm/page.h>
 11#include <asm/memory.h>
 12#include <asm/mmu.h>
 13#include <asm/cpufeature.h>
 14
 15/*
 16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
 17 * "negative" addresses. This makes it impossible to directly share
 18 * mappings with the kernel.
 19 *
 20 * Instead, give the HYP mode its own VA region at a fixed offset from
 21 * the kernel by just masking the top bits (which are all ones for a
 22 * kernel address). We need to find out how many bits to mask.
 23 *
 24 * We want to build a set of page tables that cover both parts of the
 25 * idmap (the trampoline page used to initialize EL2), and our normal
 26 * runtime VA space, at the same time.
 27 *
 28 * Given that the kernel uses VA_BITS for its entire address space,
 29 * and that half of that space (VA_BITS - 1) is used for the linear
 30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
 31 *
 32 * The main question is "Within the VA_BITS space, does EL2 use the
 33 * top or the bottom half of that space to shadow the kernel's linear
 34 * mapping?". As we need to idmap the trampoline page, this is
 35 * determined by the range in which this page lives.
 36 *
 37 * If the page is in the bottom half, we have to use the top half. If
 38 * the page is in the top half, we have to use the bottom half:
 39 *
 40 * T = __pa_symbol(__hyp_idmap_text_start)
 41 * if (T & BIT(VA_BITS - 1))
 42 *	HYP_VA_MIN = 0  //idmap in upper half
 43 * else
 44 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
 45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
 46 *
 
 
 
 
 
 
 
 
 
 
 47 * When using VHE, there are no separate hyp mappings and all KVM
 48 * functionality is already mapped as part of the main kernel
 49 * mappings, and none of this applies in that case.
 50 */
 51
 52#ifdef __ASSEMBLY__
 53
 54#include <asm/alternative.h>
 55
 56/*
 57 * Convert a kernel VA into a HYP VA.
 58 * reg: VA to be converted.
 59 *
 60 * The actual code generation takes place in kvm_update_va_mask, and
 61 * the instructions below are only there to reserve the space and
 62 * perform the register allocation (kvm_update_va_mask uses the
 63 * specific registers encoded in the instructions).
 64 */
 65.macro kern_hyp_va	reg
 66alternative_cb ARM64_ALWAYS_SYSTEM, kvm_update_va_mask
 67	and     \reg, \reg, #1		/* mask with va_mask */
 68	ror	\reg, \reg, #1		/* rotate to the first tag bit */
 69	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
 70	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
 71	ror	\reg, \reg, #63		/* rotate back */
 72alternative_cb_end
 73.endm
 74
 75/*
 76 * Convert a hypervisor VA to a PA
 77 * reg: hypervisor address to be converted in place
 78 * tmp: temporary register
 79 */
 80.macro hyp_pa reg, tmp
 81	ldr_l	\tmp, hyp_physvirt_offset
 82	add	\reg, \reg, \tmp
 83.endm
 84
 85/*
 86 * Convert a hypervisor VA to a kernel image address
 87 * reg: hypervisor address to be converted in place
 88 * tmp: temporary register
 89 *
 90 * The actual code generation takes place in kvm_get_kimage_voffset, and
 91 * the instructions below are only there to reserve the space and
 92 * perform the register allocation (kvm_get_kimage_voffset uses the
 93 * specific registers encoded in the instructions).
 94 */
 95.macro hyp_kimg_va reg, tmp
 96	/* Convert hyp VA -> PA. */
 97	hyp_pa	\reg, \tmp
 98
 99	/* Load kimage_voffset. */
100alternative_cb ARM64_ALWAYS_SYSTEM, kvm_get_kimage_voffset
101	movz	\tmp, #0
102	movk	\tmp, #0, lsl #16
103	movk	\tmp, #0, lsl #32
104	movk	\tmp, #0, lsl #48
105alternative_cb_end
106
107	/* Convert PA -> kimg VA. */
108	add	\reg, \reg, \tmp
109.endm
110
111#else
112
113#include <linux/pgtable.h>
114#include <asm/pgalloc.h>
115#include <asm/cache.h>
116#include <asm/cacheflush.h>
117#include <asm/mmu_context.h>
118#include <asm/kvm_host.h>
119
120void kvm_update_va_mask(struct alt_instr *alt,
121			__le32 *origptr, __le32 *updptr, int nr_inst);
122void kvm_compute_layout(void);
123void kvm_apply_hyp_relocations(void);
124
125#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
126
127static __always_inline unsigned long __kern_hyp_va(unsigned long v)
128{
129	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
130				    "ror %0, %0, #1\n"
131				    "add %0, %0, #0\n"
132				    "add %0, %0, #0, lsl 12\n"
133				    "ror %0, %0, #63\n",
134				    ARM64_ALWAYS_SYSTEM,
135				    kvm_update_va_mask)
136		     : "+r" (v));
137	return v;
138}
139
140#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
141
142/*
143 * We currently support using a VM-specified IPA size. For backward
144 * compatibility, the default IPA size is fixed to 40bits.
145 */
146#define KVM_PHYS_SHIFT	(40)
147
148#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
149#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
150#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
151
152#include <asm/kvm_pgtable.h>
 
 
 
 
 
153#include <asm/stage2_pgtable.h>
154
155int kvm_share_hyp(void *from, void *to);
156void kvm_unshare_hyp(void *from, void *to);
157int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
158int __create_hyp_mappings(unsigned long start, unsigned long size,
159			  unsigned long phys, enum kvm_pgtable_prot prot);
160int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
161int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
162			   void __iomem **kaddr,
163			   void __iomem **haddr);
164int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
165			     void **haddr);
166void free_hyp_pgds(void);
167
168void stage2_unmap_vm(struct kvm *kvm);
169int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type);
170void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
171int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
172			  phys_addr_t pa, unsigned long size, bool writable);
173
174int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
175
 
 
176phys_addr_t kvm_mmu_get_httbr(void);
177phys_addr_t kvm_get_idmap_vector(void);
178int kvm_mmu_init(u32 *hyp_va_bits);
 
 
 
 
 
 
 
 
179
180static inline void *__kvm_vector_slot2addr(void *base,
181					   enum arm64_hyp_spectre_vector slot)
 
 
 
 
 
 
 
 
 
 
182{
183	int idx = slot - (slot != HYP_VECTOR_DIRECT);
 
 
184
185	return base + (idx * SZ_2K);
 
 
 
186}
187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188struct kvm;
189
190#define kvm_flush_dcache_to_poc(a,l)	\
191	dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
192
193static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
194{
195	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
196}
197
198static inline void __clean_dcache_guest_page(void *va, size_t size)
199{
 
 
200	/*
201	 * With FWB, we ensure that the guest always accesses memory using
202	 * cacheable attributes, and we don't have to clean to PoC when
203	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
204	 * PoU is not required either in this case.
205	 */
206	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207		return;
208
209	kvm_flush_dcache_to_poc(va, size);
210}
211
212static inline void __invalidate_icache_guest_page(void *va, size_t size)
 
213{
214	if (icache_is_aliasing()) {
215		/* any kind of VIPT cache */
216		icache_inval_all_pou();
217	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
218		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
219		icache_inval_pou((unsigned long)va, (unsigned long)va + size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220	}
221}
222
223void kvm_set_way_flush(struct kvm_vcpu *vcpu);
224void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226static inline unsigned int kvm_get_vmid_bits(void)
227{
228	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
229
230	return get_vmid_bits(reg);
231}
232
233/*
234 * We are not in the kvm->srcu critical section most of the time, so we take
235 * the SRCU read lock here. Since we copy the data from the user page, we
236 * can immediately drop the lock again.
237 */
238static inline int kvm_read_guest_lock(struct kvm *kvm,
239				      gpa_t gpa, void *data, unsigned long len)
240{
241	int srcu_idx = srcu_read_lock(&kvm->srcu);
242	int ret = kvm_read_guest(kvm, gpa, data, len);
243
244	srcu_read_unlock(&kvm->srcu, srcu_idx);
245
246	return ret;
247}
248
249static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
250				       const void *data, unsigned long len)
251{
252	int srcu_idx = srcu_read_lock(&kvm->srcu);
253	int ret = kvm_write_guest(kvm, gpa, data, len);
254
255	srcu_read_unlock(&kvm->srcu, srcu_idx);
256
257	return ret;
258}
259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
261
262/*
263 * When this is (directly or indirectly) used on the TLB invalidation
264 * path, we rely on a previously issued DSB so that page table updates
265 * and VMID reads are correctly ordered.
266 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
268{
269	struct kvm_vmid *vmid = &mmu->vmid;
270	u64 vmid_field, baddr;
271	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
272
273	baddr = mmu->pgd_phys;
274	vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
275	vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
276	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
277}
278
279/*
280 * Must be called from hyp code running at EL2 with an updated VTTBR
281 * and interrupts disabled.
282 */
283static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
284					  struct kvm_arch *arch)
285{
286	write_sysreg(arch->vtcr, vtcr_el2);
287	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
288
289	/*
290	 * ARM errata 1165522 and 1530923 require the actual execution of the
291	 * above before we can switch to the EL1/EL0 translation regime used by
292	 * the guest.
293	 */
294	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
295}
296
297static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
298{
299	return container_of(mmu->arch, struct kvm, arch);
300}
301#endif /* __ASSEMBLY__ */
302#endif /* __ARM64_KVM_MMU_H__ */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Copyright (C) 2012,2013 - ARM Ltd
  4 * Author: Marc Zyngier <marc.zyngier@arm.com>
  5 */
  6
  7#ifndef __ARM64_KVM_MMU_H__
  8#define __ARM64_KVM_MMU_H__
  9
 10#include <asm/page.h>
 11#include <asm/memory.h>
 
 12#include <asm/cpufeature.h>
 13
 14/*
 15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
 16 * "negative" addresses. This makes it impossible to directly share
 17 * mappings with the kernel.
 18 *
 19 * Instead, give the HYP mode its own VA region at a fixed offset from
 20 * the kernel by just masking the top bits (which are all ones for a
 21 * kernel address). We need to find out how many bits to mask.
 22 *
 23 * We want to build a set of page tables that cover both parts of the
 24 * idmap (the trampoline page used to initialize EL2), and our normal
 25 * runtime VA space, at the same time.
 26 *
 27 * Given that the kernel uses VA_BITS for its entire address space,
 28 * and that half of that space (VA_BITS - 1) is used for the linear
 29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
 30 *
 31 * The main question is "Within the VA_BITS space, does EL2 use the
 32 * top or the bottom half of that space to shadow the kernel's linear
 33 * mapping?". As we need to idmap the trampoline page, this is
 34 * determined by the range in which this page lives.
 35 *
 36 * If the page is in the bottom half, we have to use the top half. If
 37 * the page is in the top half, we have to use the bottom half:
 38 *
 39 * T = __pa_symbol(__hyp_idmap_text_start)
 40 * if (T & BIT(VA_BITS - 1))
 41 *	HYP_VA_MIN = 0  //idmap in upper half
 42 * else
 43 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
 44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
 45 *
 46 * This of course assumes that the trampoline page exists within the
 47 * VA_BITS range. If it doesn't, then it means we're in the odd case
 48 * where the kernel idmap (as well as HYP) uses more levels than the
 49 * kernel runtime page tables (as seen when the kernel is configured
 50 * for 4k pages, 39bits VA, and yet memory lives just above that
 51 * limit, forcing the idmap to use 4 levels of page tables while the
 52 * kernel itself only uses 3). In this particular case, it doesn't
 53 * matter which side of VA_BITS we use, as we're guaranteed not to
 54 * conflict with anything.
 55 *
 56 * When using VHE, there are no separate hyp mappings and all KVM
 57 * functionality is already mapped as part of the main kernel
 58 * mappings, and none of this applies in that case.
 59 */
 60
 61#ifdef __ASSEMBLY__
 62
 63#include <asm/alternative.h>
 64
 65/*
 66 * Convert a kernel VA into a HYP VA.
 67 * reg: VA to be converted.
 68 *
 69 * The actual code generation takes place in kvm_update_va_mask, and
 70 * the instructions below are only there to reserve the space and
 71 * perform the register allocation (kvm_update_va_mask uses the
 72 * specific registers encoded in the instructions).
 73 */
 74.macro kern_hyp_va	reg
 75alternative_cb kvm_update_va_mask
 76	and     \reg, \reg, #1		/* mask with va_mask */
 77	ror	\reg, \reg, #1		/* rotate to the first tag bit */
 78	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
 79	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
 80	ror	\reg, \reg, #63		/* rotate back */
 81alternative_cb_end
 82.endm
 83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 84#else
 85
 86#include <linux/pgtable.h>
 87#include <asm/pgalloc.h>
 88#include <asm/cache.h>
 89#include <asm/cacheflush.h>
 90#include <asm/mmu_context.h>
 
 91
 92void kvm_update_va_mask(struct alt_instr *alt,
 93			__le32 *origptr, __le32 *updptr, int nr_inst);
 94void kvm_compute_layout(void);
 
 
 
 95
 96static __always_inline unsigned long __kern_hyp_va(unsigned long v)
 97{
 98	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
 99				    "ror %0, %0, #1\n"
100				    "add %0, %0, #0\n"
101				    "add %0, %0, #0, lsl 12\n"
102				    "ror %0, %0, #63\n",
 
103				    kvm_update_va_mask)
104		     : "+r" (v));
105	return v;
106}
107
108#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
109
110/*
111 * We currently support using a VM-specified IPA size. For backward
112 * compatibility, the default IPA size is fixed to 40bits.
113 */
114#define KVM_PHYS_SHIFT	(40)
115
116#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
117#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
118#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
119
120static inline bool kvm_page_empty(void *ptr)
121{
122	struct page *ptr_page = virt_to_page(ptr);
123	return page_count(ptr_page) == 1;
124}
125
126#include <asm/stage2_pgtable.h>
127
128int create_hyp_mappings(void *from, void *to, pgprot_t prot);
 
 
 
 
 
129int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
130			   void __iomem **kaddr,
131			   void __iomem **haddr);
132int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
133			     void **haddr);
134void free_hyp_pgds(void);
135
136void stage2_unmap_vm(struct kvm *kvm);
137int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
138void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
139int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
140			  phys_addr_t pa, unsigned long size, bool writable);
141
142int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
143
144void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
145
146phys_addr_t kvm_mmu_get_httbr(void);
147phys_addr_t kvm_get_idmap_vector(void);
148int kvm_mmu_init(void);
149void kvm_clear_hyp_idmap(void);
150
151#define kvm_mk_pmd(ptep)					\
152	__pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
153#define kvm_mk_pud(pmdp)					\
154	__pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
155#define kvm_mk_p4d(pmdp)					\
156	__p4d(__phys_to_p4d_val(__pa(pmdp)) | PUD_TYPE_TABLE)
157
158#define kvm_set_pud(pudp, pud)		set_pud(pudp, pud)
159
160#define kvm_pfn_pte(pfn, prot)		pfn_pte(pfn, prot)
161#define kvm_pfn_pmd(pfn, prot)		pfn_pmd(pfn, prot)
162#define kvm_pfn_pud(pfn, prot)		pfn_pud(pfn, prot)
163
164#define kvm_pud_pfn(pud)		pud_pfn(pud)
165
166#define kvm_pmd_mkhuge(pmd)		pmd_mkhuge(pmd)
167#define kvm_pud_mkhuge(pud)		pud_mkhuge(pud)
168
169static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
170{
171	pte_val(pte) |= PTE_S2_RDWR;
172	return pte;
173}
174
175static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
176{
177	pmd_val(pmd) |= PMD_S2_RDWR;
178	return pmd;
179}
180
181static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
182{
183	pud_val(pud) |= PUD_S2_RDWR;
184	return pud;
185}
186
187static inline pte_t kvm_s2pte_mkexec(pte_t pte)
188{
189	pte_val(pte) &= ~PTE_S2_XN;
190	return pte;
191}
192
193static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
194{
195	pmd_val(pmd) &= ~PMD_S2_XN;
196	return pmd;
197}
198
199static inline pud_t kvm_s2pud_mkexec(pud_t pud)
200{
201	pud_val(pud) &= ~PUD_S2_XN;
202	return pud;
203}
204
205static inline void kvm_set_s2pte_readonly(pte_t *ptep)
206{
207	pteval_t old_pteval, pteval;
208
209	pteval = READ_ONCE(pte_val(*ptep));
210	do {
211		old_pteval = pteval;
212		pteval &= ~PTE_S2_RDWR;
213		pteval |= PTE_S2_RDONLY;
214		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215	} while (pteval != old_pteval);
216}
217
218static inline bool kvm_s2pte_readonly(pte_t *ptep)
219{
220	return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
221}
222
223static inline bool kvm_s2pte_exec(pte_t *ptep)
224{
225	return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
226}
227
228static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
229{
230	kvm_set_s2pte_readonly((pte_t *)pmdp);
231}
232
233static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
234{
235	return kvm_s2pte_readonly((pte_t *)pmdp);
236}
237
238static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
239{
240	return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
241}
242
243static inline void kvm_set_s2pud_readonly(pud_t *pudp)
244{
245	kvm_set_s2pte_readonly((pte_t *)pudp);
246}
247
248static inline bool kvm_s2pud_readonly(pud_t *pudp)
249{
250	return kvm_s2pte_readonly((pte_t *)pudp);
251}
252
253static inline bool kvm_s2pud_exec(pud_t *pudp)
254{
255	return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
256}
257
258static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
259{
260	return pud_mkyoung(pud);
261}
262
263static inline bool kvm_s2pud_young(pud_t pud)
264{
265	return pud_young(pud);
266}
267
268#define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
269
270#ifdef __PAGETABLE_PMD_FOLDED
271#define hyp_pmd_table_empty(pmdp) (0)
272#else
273#define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
274#endif
275
276#ifdef __PAGETABLE_PUD_FOLDED
277#define hyp_pud_table_empty(pudp) (0)
278#else
279#define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
280#endif
281
282#ifdef __PAGETABLE_P4D_FOLDED
283#define hyp_p4d_table_empty(p4dp) (0)
284#else
285#define hyp_p4d_table_empty(p4dp) kvm_page_empty(p4dp)
286#endif
287
288struct kvm;
289
290#define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
 
291
292static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
293{
294	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
295}
296
297static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
298{
299	void *va = page_address(pfn_to_page(pfn));
300
301	/*
302	 * With FWB, we ensure that the guest always accesses memory using
303	 * cacheable attributes, and we don't have to clean to PoC when
304	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
305	 * PoU is not required either in this case.
306	 */
307	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
308		return;
309
310	kvm_flush_dcache_to_poc(va, size);
311}
312
313static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
314						  unsigned long size)
315{
316	if (icache_is_aliasing()) {
317		/* any kind of VIPT cache */
318		__flush_icache_all();
319	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
320		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
321		void *va = page_address(pfn_to_page(pfn));
322
323		invalidate_icache_range((unsigned long)va,
324					(unsigned long)va + size);
325	}
326}
327
328static inline void __kvm_flush_dcache_pte(pte_t pte)
329{
330	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
331		struct page *page = pte_page(pte);
332		kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
333	}
334}
335
336static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
337{
338	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
339		struct page *page = pmd_page(pmd);
340		kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
341	}
342}
343
344static inline void __kvm_flush_dcache_pud(pud_t pud)
345{
346	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
347		struct page *page = pud_page(pud);
348		kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
349	}
350}
351
352void kvm_set_way_flush(struct kvm_vcpu *vcpu);
353void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
354
355static inline bool __kvm_cpu_uses_extended_idmap(void)
356{
357	return __cpu_uses_extended_idmap_level();
358}
359
360static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
361{
362	return idmap_ptrs_per_pgd;
363}
364
365/*
366 * Can't use pgd_populate here, because the extended idmap adds an extra level
367 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
368 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
369 */
370static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
371				       pgd_t *hyp_pgd,
372				       pgd_t *merged_hyp_pgd,
373				       unsigned long hyp_idmap_start)
374{
375	int idmap_idx;
376	u64 pgd_addr;
377
378	/*
379	 * Use the first entry to access the HYP mappings. It is
380	 * guaranteed to be free, otherwise we wouldn't use an
381	 * extended idmap.
382	 */
383	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
384	pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
385	merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
386
387	/*
388	 * Create another extended level entry that points to the boot HYP map,
389	 * which contains an ID mapping of the HYP init code. We essentially
390	 * merge the boot and runtime HYP maps by doing so, but they don't
391	 * overlap anyway, so this is fine.
392	 */
393	idmap_idx = hyp_idmap_start >> VA_BITS;
394	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
395	pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
396	merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
397}
398
399static inline unsigned int kvm_get_vmid_bits(void)
400{
401	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
402
403	return get_vmid_bits(reg);
404}
405
406/*
407 * We are not in the kvm->srcu critical section most of the time, so we take
408 * the SRCU read lock here. Since we copy the data from the user page, we
409 * can immediately drop the lock again.
410 */
411static inline int kvm_read_guest_lock(struct kvm *kvm,
412				      gpa_t gpa, void *data, unsigned long len)
413{
414	int srcu_idx = srcu_read_lock(&kvm->srcu);
415	int ret = kvm_read_guest(kvm, gpa, data, len);
416
417	srcu_read_unlock(&kvm->srcu, srcu_idx);
418
419	return ret;
420}
421
422static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
423				       const void *data, unsigned long len)
424{
425	int srcu_idx = srcu_read_lock(&kvm->srcu);
426	int ret = kvm_write_guest(kvm, gpa, data, len);
427
428	srcu_read_unlock(&kvm->srcu, srcu_idx);
429
430	return ret;
431}
432
433#ifdef CONFIG_KVM_INDIRECT_VECTORS
434/*
435 * EL2 vectors can be mapped and rerouted in a number of ways,
436 * depending on the kernel configuration and CPU present:
437 *
438 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
439 *   hardening sequence is placed in one of the vector slots, which is
440 *   executed before jumping to the real vectors.
441 *
442 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
443 *   ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
444 *   hardening sequence is mapped next to the idmap page, and executed
445 *   before jumping to the real vectors.
446 *
447 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
448 *   empty slot is selected, mapped next to the idmap page, and
449 *   executed before jumping to the real vectors.
450 *
451 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
452 * VHE, as we don't have hypervisor-specific mappings. If the system
453 * is VHE and yet selects this capability, it will be ignored.
454 */
455#include <asm/mmu.h>
456
457extern void *__kvm_bp_vect_base;
458extern int __kvm_harden_el2_vector_slot;
459
460/*  This is called on both VHE and !VHE systems */
461static inline void *kvm_get_hyp_vector(void)
462{
463	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
464	void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
465	int slot = -1;
466
467	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
468		vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
469		slot = data->hyp_vectors_slot;
470	}
471
472	if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
473		vect = __kvm_bp_vect_base;
474		if (slot == -1)
475			slot = __kvm_harden_el2_vector_slot;
476	}
477
478	if (slot != -1)
479		vect += slot * SZ_2K;
480
481	return vect;
482}
483
484/*  This is only called on a !VHE system */
485static inline int kvm_map_vectors(void)
486{
487	/*
488	 * HBP  = ARM64_HARDEN_BRANCH_PREDICTOR
489	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
490	 *
491	 * !HBP + !HEL2 -> use direct vectors
492	 *  HBP + !HEL2 -> use hardened vectors in place
493	 * !HBP +  HEL2 -> allocate one vector slot and use exec mapping
494	 *  HBP +  HEL2 -> use hardened vertors and use exec mapping
495	 */
496	if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
497		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
498		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
499	}
500
501	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
502		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
503		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
504
505		/*
506		 * Always allocate a spare vector slot, as we don't
507		 * know yet which CPUs have a BP hardening slot that
508		 * we can reuse.
509		 */
510		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
511		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
512		return create_hyp_exec_mappings(vect_pa, size,
513						&__kvm_bp_vect_base);
514	}
515
516	return 0;
517}
518#else
519static inline void *kvm_get_hyp_vector(void)
520{
521	return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
522}
523
524static inline int kvm_map_vectors(void)
525{
526	return 0;
527}
528#endif
529
530#ifdef CONFIG_ARM64_SSBD
531DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
532
533static inline int hyp_map_aux_data(void)
534{
535	int cpu, err;
536
537	for_each_possible_cpu(cpu) {
538		u64 *ptr;
539
540		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
541		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
542		if (err)
543			return err;
544	}
545	return 0;
546}
547#else
548static inline int hyp_map_aux_data(void)
549{
550	return 0;
551}
552#endif
553
554#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
555
556/*
557 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
558 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
559 * 52bit IPS.
560 */
561static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
562{
563	int x = ARM64_VTTBR_X(ipa_shift, levels);
564
565	return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
566}
567
568static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
569{
570	unsigned int x = arm64_vttbr_x(ipa_shift, levels);
571
572	return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
573}
574
575static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
576{
577	return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
578}
579
580static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
581{
582	struct kvm_vmid *vmid = &mmu->vmid;
583	u64 vmid_field, baddr;
584	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
585
586	baddr = mmu->pgd_phys;
587	vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
 
588	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
589}
590
591/*
592 * Must be called from hyp code running at EL2 with an updated VTTBR
593 * and interrupts disabled.
594 */
595static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
 
596{
597	write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
598	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
599
600	/*
601	 * ARM errata 1165522 and 1530923 require the actual execution of the
602	 * above before we can switch to the EL1/EL0 translation regime used by
603	 * the guest.
604	 */
605	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
606}
607
 
 
 
 
608#endif /* __ASSEMBLY__ */
609#endif /* __ARM64_KVM_MMU_H__ */