Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "maps.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-ocaml.h"
16#include "demangle-java.h"
17#include "demangle-rust.h"
18#include "machine.h"
19#include "vdso.h"
20#include "debug.h"
21#include "util/copyfile.h"
22#include <linux/ctype.h>
23#include <linux/kernel.h>
24#include <linux/zalloc.h>
25#include <symbol/kallsyms.h>
26#include <internal/lib.h>
27
28#ifndef EM_AARCH64
29#define EM_AARCH64 183 /* ARM 64 bit */
30#endif
31
32#ifndef ELF32_ST_VISIBILITY
33#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
34#endif
35
36/* For ELF64 the definitions are the same. */
37#ifndef ELF64_ST_VISIBILITY
38#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
39#endif
40
41/* How to extract information held in the st_other field. */
42#ifndef GELF_ST_VISIBILITY
43#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
44#endif
45
46typedef Elf64_Nhdr GElf_Nhdr;
47
48#ifndef DMGL_PARAMS
49#define DMGL_NO_OPTS 0 /* For readability... */
50#define DMGL_PARAMS (1 << 0) /* Include function args */
51#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
52#endif
53
54#ifdef HAVE_LIBBFD_SUPPORT
55#define PACKAGE 'perf'
56#include <bfd.h>
57#else
58#ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
59extern char *cplus_demangle(const char *, int);
60
61static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
62{
63 return cplus_demangle(c, i);
64}
65#else
66#ifdef NO_DEMANGLE
67static inline char *bfd_demangle(void __maybe_unused *v,
68 const char __maybe_unused *c,
69 int __maybe_unused i)
70{
71 return NULL;
72}
73#endif
74#endif
75#endif
76
77#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
78static int elf_getphdrnum(Elf *elf, size_t *dst)
79{
80 GElf_Ehdr gehdr;
81 GElf_Ehdr *ehdr;
82
83 ehdr = gelf_getehdr(elf, &gehdr);
84 if (!ehdr)
85 return -1;
86
87 *dst = ehdr->e_phnum;
88
89 return 0;
90}
91#endif
92
93#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
94static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
95{
96 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
97 return -1;
98}
99#endif
100
101#ifndef NT_GNU_BUILD_ID
102#define NT_GNU_BUILD_ID 3
103#endif
104
105/**
106 * elf_symtab__for_each_symbol - iterate thru all the symbols
107 *
108 * @syms: struct elf_symtab instance to iterate
109 * @idx: uint32_t idx
110 * @sym: GElf_Sym iterator
111 */
112#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
113 for (idx = 0, gelf_getsym(syms, idx, &sym);\
114 idx < nr_syms; \
115 idx++, gelf_getsym(syms, idx, &sym))
116
117static inline uint8_t elf_sym__type(const GElf_Sym *sym)
118{
119 return GELF_ST_TYPE(sym->st_info);
120}
121
122static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
123{
124 return GELF_ST_VISIBILITY(sym->st_other);
125}
126
127#ifndef STT_GNU_IFUNC
128#define STT_GNU_IFUNC 10
129#endif
130
131static inline int elf_sym__is_function(const GElf_Sym *sym)
132{
133 return (elf_sym__type(sym) == STT_FUNC ||
134 elf_sym__type(sym) == STT_GNU_IFUNC) &&
135 sym->st_name != 0 &&
136 sym->st_shndx != SHN_UNDEF;
137}
138
139static inline bool elf_sym__is_object(const GElf_Sym *sym)
140{
141 return elf_sym__type(sym) == STT_OBJECT &&
142 sym->st_name != 0 &&
143 sym->st_shndx != SHN_UNDEF;
144}
145
146static inline int elf_sym__is_label(const GElf_Sym *sym)
147{
148 return elf_sym__type(sym) == STT_NOTYPE &&
149 sym->st_name != 0 &&
150 sym->st_shndx != SHN_UNDEF &&
151 sym->st_shndx != SHN_ABS &&
152 elf_sym__visibility(sym) != STV_HIDDEN &&
153 elf_sym__visibility(sym) != STV_INTERNAL;
154}
155
156static bool elf_sym__filter(GElf_Sym *sym)
157{
158 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
159}
160
161static inline const char *elf_sym__name(const GElf_Sym *sym,
162 const Elf_Data *symstrs)
163{
164 return symstrs->d_buf + sym->st_name;
165}
166
167static inline const char *elf_sec__name(const GElf_Shdr *shdr,
168 const Elf_Data *secstrs)
169{
170 return secstrs->d_buf + shdr->sh_name;
171}
172
173static inline int elf_sec__is_text(const GElf_Shdr *shdr,
174 const Elf_Data *secstrs)
175{
176 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
177}
178
179static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
180 const Elf_Data *secstrs)
181{
182 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
183}
184
185static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
186{
187 return elf_sec__is_text(shdr, secstrs) ||
188 elf_sec__is_data(shdr, secstrs);
189}
190
191static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
192{
193 Elf_Scn *sec = NULL;
194 GElf_Shdr shdr;
195 size_t cnt = 1;
196
197 while ((sec = elf_nextscn(elf, sec)) != NULL) {
198 gelf_getshdr(sec, &shdr);
199
200 if ((addr >= shdr.sh_addr) &&
201 (addr < (shdr.sh_addr + shdr.sh_size)))
202 return cnt;
203
204 ++cnt;
205 }
206
207 return -1;
208}
209
210Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
211 GElf_Shdr *shp, const char *name, size_t *idx)
212{
213 Elf_Scn *sec = NULL;
214 size_t cnt = 1;
215
216 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
217 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
218 return NULL;
219
220 while ((sec = elf_nextscn(elf, sec)) != NULL) {
221 char *str;
222
223 gelf_getshdr(sec, shp);
224 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
225 if (str && !strcmp(name, str)) {
226 if (idx)
227 *idx = cnt;
228 return sec;
229 }
230 ++cnt;
231 }
232
233 return NULL;
234}
235
236bool filename__has_section(const char *filename, const char *sec)
237{
238 int fd;
239 Elf *elf;
240 GElf_Ehdr ehdr;
241 GElf_Shdr shdr;
242 bool found = false;
243
244 fd = open(filename, O_RDONLY);
245 if (fd < 0)
246 return false;
247
248 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
249 if (elf == NULL)
250 goto out;
251
252 if (gelf_getehdr(elf, &ehdr) == NULL)
253 goto elf_out;
254
255 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
256
257elf_out:
258 elf_end(elf);
259out:
260 close(fd);
261 return found;
262}
263
264static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
265{
266 size_t i, phdrnum;
267 u64 sz;
268
269 if (elf_getphdrnum(elf, &phdrnum))
270 return -1;
271
272 for (i = 0; i < phdrnum; i++) {
273 if (gelf_getphdr(elf, i, phdr) == NULL)
274 return -1;
275
276 if (phdr->p_type != PT_LOAD)
277 continue;
278
279 sz = max(phdr->p_memsz, phdr->p_filesz);
280 if (!sz)
281 continue;
282
283 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
284 return 0;
285 }
286
287 /* Not found any valid program header */
288 return -1;
289}
290
291static bool want_demangle(bool is_kernel_sym)
292{
293 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
294}
295
296static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
297{
298 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
299 char *demangled = NULL;
300
301 /*
302 * We need to figure out if the object was created from C++ sources
303 * DWARF DW_compile_unit has this, but we don't always have access
304 * to it...
305 */
306 if (!want_demangle(dso->kernel || kmodule))
307 return demangled;
308
309 demangled = bfd_demangle(NULL, elf_name, demangle_flags);
310 if (demangled == NULL) {
311 demangled = ocaml_demangle_sym(elf_name);
312 if (demangled == NULL) {
313 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
314 }
315 }
316 else if (rust_is_mangled(demangled))
317 /*
318 * Input to Rust demangling is the BFD-demangled
319 * name which it Rust-demangles in place.
320 */
321 rust_demangle_sym(demangled);
322
323 return demangled;
324}
325
326#define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
327 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
328 idx < nr_entries; \
329 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
330
331#define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
332 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
333 idx < nr_entries; \
334 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
335
336/*
337 * We need to check if we have a .dynsym, so that we can handle the
338 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
339 * .dynsym or .symtab).
340 * And always look at the original dso, not at debuginfo packages, that
341 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
342 */
343int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
344{
345 uint32_t nr_rel_entries, idx;
346 GElf_Sym sym;
347 u64 plt_offset, plt_header_size, plt_entry_size;
348 GElf_Shdr shdr_plt;
349 struct symbol *f;
350 GElf_Shdr shdr_rel_plt, shdr_dynsym;
351 Elf_Data *reldata, *syms, *symstrs;
352 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
353 size_t dynsym_idx;
354 GElf_Ehdr ehdr;
355 char sympltname[1024];
356 Elf *elf;
357 int nr = 0, symidx, err = 0;
358
359 if (!ss->dynsym)
360 return 0;
361
362 elf = ss->elf;
363 ehdr = ss->ehdr;
364
365 scn_dynsym = ss->dynsym;
366 shdr_dynsym = ss->dynshdr;
367 dynsym_idx = ss->dynsym_idx;
368
369 if (scn_dynsym == NULL)
370 goto out_elf_end;
371
372 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
373 ".rela.plt", NULL);
374 if (scn_plt_rel == NULL) {
375 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
376 ".rel.plt", NULL);
377 if (scn_plt_rel == NULL)
378 goto out_elf_end;
379 }
380
381 err = -1;
382
383 if (shdr_rel_plt.sh_link != dynsym_idx)
384 goto out_elf_end;
385
386 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
387 goto out_elf_end;
388
389 /*
390 * Fetch the relocation section to find the idxes to the GOT
391 * and the symbols in the .dynsym they refer to.
392 */
393 reldata = elf_getdata(scn_plt_rel, NULL);
394 if (reldata == NULL)
395 goto out_elf_end;
396
397 syms = elf_getdata(scn_dynsym, NULL);
398 if (syms == NULL)
399 goto out_elf_end;
400
401 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
402 if (scn_symstrs == NULL)
403 goto out_elf_end;
404
405 symstrs = elf_getdata(scn_symstrs, NULL);
406 if (symstrs == NULL)
407 goto out_elf_end;
408
409 if (symstrs->d_size == 0)
410 goto out_elf_end;
411
412 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
413 plt_offset = shdr_plt.sh_offset;
414 switch (ehdr.e_machine) {
415 case EM_ARM:
416 plt_header_size = 20;
417 plt_entry_size = 12;
418 break;
419
420 case EM_AARCH64:
421 plt_header_size = 32;
422 plt_entry_size = 16;
423 break;
424
425 case EM_SPARC:
426 plt_header_size = 48;
427 plt_entry_size = 12;
428 break;
429
430 case EM_SPARCV9:
431 plt_header_size = 128;
432 plt_entry_size = 32;
433 break;
434
435 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
436 plt_header_size = shdr_plt.sh_entsize;
437 plt_entry_size = shdr_plt.sh_entsize;
438 break;
439 }
440 plt_offset += plt_header_size;
441
442 if (shdr_rel_plt.sh_type == SHT_RELA) {
443 GElf_Rela pos_mem, *pos;
444
445 elf_section__for_each_rela(reldata, pos, pos_mem, idx,
446 nr_rel_entries) {
447 const char *elf_name = NULL;
448 char *demangled = NULL;
449 symidx = GELF_R_SYM(pos->r_info);
450 gelf_getsym(syms, symidx, &sym);
451
452 elf_name = elf_sym__name(&sym, symstrs);
453 demangled = demangle_sym(dso, 0, elf_name);
454 if (demangled != NULL)
455 elf_name = demangled;
456 snprintf(sympltname, sizeof(sympltname),
457 "%s@plt", elf_name);
458 free(demangled);
459
460 f = symbol__new(plt_offset, plt_entry_size,
461 STB_GLOBAL, STT_FUNC, sympltname);
462 if (!f)
463 goto out_elf_end;
464
465 plt_offset += plt_entry_size;
466 symbols__insert(&dso->symbols, f);
467 ++nr;
468 }
469 } else if (shdr_rel_plt.sh_type == SHT_REL) {
470 GElf_Rel pos_mem, *pos;
471 elf_section__for_each_rel(reldata, pos, pos_mem, idx,
472 nr_rel_entries) {
473 const char *elf_name = NULL;
474 char *demangled = NULL;
475 symidx = GELF_R_SYM(pos->r_info);
476 gelf_getsym(syms, symidx, &sym);
477
478 elf_name = elf_sym__name(&sym, symstrs);
479 demangled = demangle_sym(dso, 0, elf_name);
480 if (demangled != NULL)
481 elf_name = demangled;
482 snprintf(sympltname, sizeof(sympltname),
483 "%s@plt", elf_name);
484 free(demangled);
485
486 f = symbol__new(plt_offset, plt_entry_size,
487 STB_GLOBAL, STT_FUNC, sympltname);
488 if (!f)
489 goto out_elf_end;
490
491 plt_offset += plt_entry_size;
492 symbols__insert(&dso->symbols, f);
493 ++nr;
494 }
495 }
496
497 err = 0;
498out_elf_end:
499 if (err == 0)
500 return nr;
501 pr_debug("%s: problems reading %s PLT info.\n",
502 __func__, dso->long_name);
503 return 0;
504}
505
506char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
507{
508 return demangle_sym(dso, kmodule, elf_name);
509}
510
511/*
512 * Align offset to 4 bytes as needed for note name and descriptor data.
513 */
514#define NOTE_ALIGN(n) (((n) + 3) & -4U)
515
516static int elf_read_build_id(Elf *elf, void *bf, size_t size)
517{
518 int err = -1;
519 GElf_Ehdr ehdr;
520 GElf_Shdr shdr;
521 Elf_Data *data;
522 Elf_Scn *sec;
523 Elf_Kind ek;
524 void *ptr;
525
526 if (size < BUILD_ID_SIZE)
527 goto out;
528
529 ek = elf_kind(elf);
530 if (ek != ELF_K_ELF)
531 goto out;
532
533 if (gelf_getehdr(elf, &ehdr) == NULL) {
534 pr_err("%s: cannot get elf header.\n", __func__);
535 goto out;
536 }
537
538 /*
539 * Check following sections for notes:
540 * '.note.gnu.build-id'
541 * '.notes'
542 * '.note' (VDSO specific)
543 */
544 do {
545 sec = elf_section_by_name(elf, &ehdr, &shdr,
546 ".note.gnu.build-id", NULL);
547 if (sec)
548 break;
549
550 sec = elf_section_by_name(elf, &ehdr, &shdr,
551 ".notes", NULL);
552 if (sec)
553 break;
554
555 sec = elf_section_by_name(elf, &ehdr, &shdr,
556 ".note", NULL);
557 if (sec)
558 break;
559
560 return err;
561
562 } while (0);
563
564 data = elf_getdata(sec, NULL);
565 if (data == NULL)
566 goto out;
567
568 ptr = data->d_buf;
569 while (ptr < (data->d_buf + data->d_size)) {
570 GElf_Nhdr *nhdr = ptr;
571 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
572 descsz = NOTE_ALIGN(nhdr->n_descsz);
573 const char *name;
574
575 ptr += sizeof(*nhdr);
576 name = ptr;
577 ptr += namesz;
578 if (nhdr->n_type == NT_GNU_BUILD_ID &&
579 nhdr->n_namesz == sizeof("GNU")) {
580 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
581 size_t sz = min(size, descsz);
582 memcpy(bf, ptr, sz);
583 memset(bf + sz, 0, size - sz);
584 err = descsz;
585 break;
586 }
587 }
588 ptr += descsz;
589 }
590
591out:
592 return err;
593}
594
595#ifdef HAVE_LIBBFD_BUILDID_SUPPORT
596
597static int read_build_id(const char *filename, struct build_id *bid)
598{
599 size_t size = sizeof(bid->data);
600 int err = -1;
601 bfd *abfd;
602
603 abfd = bfd_openr(filename, NULL);
604 if (!abfd)
605 return -1;
606
607 if (!bfd_check_format(abfd, bfd_object)) {
608 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
609 goto out_close;
610 }
611
612 if (!abfd->build_id || abfd->build_id->size > size)
613 goto out_close;
614
615 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
616 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
617 err = bid->size = abfd->build_id->size;
618
619out_close:
620 bfd_close(abfd);
621 return err;
622}
623
624#else // HAVE_LIBBFD_BUILDID_SUPPORT
625
626static int read_build_id(const char *filename, struct build_id *bid)
627{
628 size_t size = sizeof(bid->data);
629 int fd, err = -1;
630 Elf *elf;
631
632 if (size < BUILD_ID_SIZE)
633 goto out;
634
635 fd = open(filename, O_RDONLY);
636 if (fd < 0)
637 goto out;
638
639 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
640 if (elf == NULL) {
641 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
642 goto out_close;
643 }
644
645 err = elf_read_build_id(elf, bid->data, size);
646 if (err > 0)
647 bid->size = err;
648
649 elf_end(elf);
650out_close:
651 close(fd);
652out:
653 return err;
654}
655
656#endif // HAVE_LIBBFD_BUILDID_SUPPORT
657
658int filename__read_build_id(const char *filename, struct build_id *bid)
659{
660 struct kmod_path m = { .name = NULL, };
661 char path[PATH_MAX];
662 int err;
663
664 if (!filename)
665 return -EFAULT;
666
667 err = kmod_path__parse(&m, filename);
668 if (err)
669 return -1;
670
671 if (m.comp) {
672 int error = 0, fd;
673
674 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
675 if (fd < 0) {
676 pr_debug("Failed to decompress (error %d) %s\n",
677 error, filename);
678 return -1;
679 }
680 close(fd);
681 filename = path;
682 }
683
684 err = read_build_id(filename, bid);
685
686 if (m.comp)
687 unlink(filename);
688 return err;
689}
690
691int sysfs__read_build_id(const char *filename, struct build_id *bid)
692{
693 size_t size = sizeof(bid->data);
694 int fd, err = -1;
695
696 fd = open(filename, O_RDONLY);
697 if (fd < 0)
698 goto out;
699
700 while (1) {
701 char bf[BUFSIZ];
702 GElf_Nhdr nhdr;
703 size_t namesz, descsz;
704
705 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
706 break;
707
708 namesz = NOTE_ALIGN(nhdr.n_namesz);
709 descsz = NOTE_ALIGN(nhdr.n_descsz);
710 if (nhdr.n_type == NT_GNU_BUILD_ID &&
711 nhdr.n_namesz == sizeof("GNU")) {
712 if (read(fd, bf, namesz) != (ssize_t)namesz)
713 break;
714 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
715 size_t sz = min(descsz, size);
716 if (read(fd, bid->data, sz) == (ssize_t)sz) {
717 memset(bid->data + sz, 0, size - sz);
718 bid->size = sz;
719 err = 0;
720 break;
721 }
722 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
723 break;
724 } else {
725 int n = namesz + descsz;
726
727 if (n > (int)sizeof(bf)) {
728 n = sizeof(bf);
729 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
730 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
731 }
732 if (read(fd, bf, n) != n)
733 break;
734 }
735 }
736 close(fd);
737out:
738 return err;
739}
740
741#ifdef HAVE_LIBBFD_SUPPORT
742
743int filename__read_debuglink(const char *filename, char *debuglink,
744 size_t size)
745{
746 int err = -1;
747 asection *section;
748 bfd *abfd;
749
750 abfd = bfd_openr(filename, NULL);
751 if (!abfd)
752 return -1;
753
754 if (!bfd_check_format(abfd, bfd_object)) {
755 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
756 goto out_close;
757 }
758
759 section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
760 if (!section)
761 goto out_close;
762
763 if (section->size > size)
764 goto out_close;
765
766 if (!bfd_get_section_contents(abfd, section, debuglink, 0,
767 section->size))
768 goto out_close;
769
770 err = 0;
771
772out_close:
773 bfd_close(abfd);
774 return err;
775}
776
777#else
778
779int filename__read_debuglink(const char *filename, char *debuglink,
780 size_t size)
781{
782 int fd, err = -1;
783 Elf *elf;
784 GElf_Ehdr ehdr;
785 GElf_Shdr shdr;
786 Elf_Data *data;
787 Elf_Scn *sec;
788 Elf_Kind ek;
789
790 fd = open(filename, O_RDONLY);
791 if (fd < 0)
792 goto out;
793
794 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
795 if (elf == NULL) {
796 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
797 goto out_close;
798 }
799
800 ek = elf_kind(elf);
801 if (ek != ELF_K_ELF)
802 goto out_elf_end;
803
804 if (gelf_getehdr(elf, &ehdr) == NULL) {
805 pr_err("%s: cannot get elf header.\n", __func__);
806 goto out_elf_end;
807 }
808
809 sec = elf_section_by_name(elf, &ehdr, &shdr,
810 ".gnu_debuglink", NULL);
811 if (sec == NULL)
812 goto out_elf_end;
813
814 data = elf_getdata(sec, NULL);
815 if (data == NULL)
816 goto out_elf_end;
817
818 /* the start of this section is a zero-terminated string */
819 strncpy(debuglink, data->d_buf, size);
820
821 err = 0;
822
823out_elf_end:
824 elf_end(elf);
825out_close:
826 close(fd);
827out:
828 return err;
829}
830
831#endif
832
833static int dso__swap_init(struct dso *dso, unsigned char eidata)
834{
835 static unsigned int const endian = 1;
836
837 dso->needs_swap = DSO_SWAP__NO;
838
839 switch (eidata) {
840 case ELFDATA2LSB:
841 /* We are big endian, DSO is little endian. */
842 if (*(unsigned char const *)&endian != 1)
843 dso->needs_swap = DSO_SWAP__YES;
844 break;
845
846 case ELFDATA2MSB:
847 /* We are little endian, DSO is big endian. */
848 if (*(unsigned char const *)&endian != 0)
849 dso->needs_swap = DSO_SWAP__YES;
850 break;
851
852 default:
853 pr_err("unrecognized DSO data encoding %d\n", eidata);
854 return -EINVAL;
855 }
856
857 return 0;
858}
859
860bool symsrc__possibly_runtime(struct symsrc *ss)
861{
862 return ss->dynsym || ss->opdsec;
863}
864
865bool symsrc__has_symtab(struct symsrc *ss)
866{
867 return ss->symtab != NULL;
868}
869
870void symsrc__destroy(struct symsrc *ss)
871{
872 zfree(&ss->name);
873 elf_end(ss->elf);
874 close(ss->fd);
875}
876
877bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
878{
879 /*
880 * Usually vmlinux is an ELF file with type ET_EXEC for most
881 * architectures; except Arm64 kernel is linked with option
882 * '-share', so need to check type ET_DYN.
883 */
884 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
885 ehdr.e_type == ET_DYN;
886}
887
888int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
889 enum dso_binary_type type)
890{
891 GElf_Ehdr ehdr;
892 Elf *elf;
893 int fd;
894
895 if (dso__needs_decompress(dso)) {
896 fd = dso__decompress_kmodule_fd(dso, name);
897 if (fd < 0)
898 return -1;
899
900 type = dso->symtab_type;
901 } else {
902 fd = open(name, O_RDONLY);
903 if (fd < 0) {
904 dso->load_errno = errno;
905 return -1;
906 }
907 }
908
909 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
910 if (elf == NULL) {
911 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
912 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
913 goto out_close;
914 }
915
916 if (gelf_getehdr(elf, &ehdr) == NULL) {
917 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
918 pr_debug("%s: cannot get elf header.\n", __func__);
919 goto out_elf_end;
920 }
921
922 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
923 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
924 goto out_elf_end;
925 }
926
927 /* Always reject images with a mismatched build-id: */
928 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
929 u8 build_id[BUILD_ID_SIZE];
930 struct build_id bid;
931 int size;
932
933 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
934 if (size <= 0) {
935 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
936 goto out_elf_end;
937 }
938
939 build_id__init(&bid, build_id, size);
940 if (!dso__build_id_equal(dso, &bid)) {
941 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
942 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
943 goto out_elf_end;
944 }
945 }
946
947 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
948
949 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
950 NULL);
951 if (ss->symshdr.sh_type != SHT_SYMTAB)
952 ss->symtab = NULL;
953
954 ss->dynsym_idx = 0;
955 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
956 &ss->dynsym_idx);
957 if (ss->dynshdr.sh_type != SHT_DYNSYM)
958 ss->dynsym = NULL;
959
960 ss->opdidx = 0;
961 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
962 &ss->opdidx);
963 if (ss->opdshdr.sh_type != SHT_PROGBITS)
964 ss->opdsec = NULL;
965
966 if (dso->kernel == DSO_SPACE__USER)
967 ss->adjust_symbols = true;
968 else
969 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
970
971 ss->name = strdup(name);
972 if (!ss->name) {
973 dso->load_errno = errno;
974 goto out_elf_end;
975 }
976
977 ss->elf = elf;
978 ss->fd = fd;
979 ss->ehdr = ehdr;
980 ss->type = type;
981
982 return 0;
983
984out_elf_end:
985 elf_end(elf);
986out_close:
987 close(fd);
988 return -1;
989}
990
991/**
992 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
993 * @kmap: kernel maps and relocation reference symbol
994 *
995 * This function returns %true if we are dealing with the kernel maps and the
996 * relocation reference symbol has not yet been found. Otherwise %false is
997 * returned.
998 */
999static bool ref_reloc_sym_not_found(struct kmap *kmap)
1000{
1001 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1002 !kmap->ref_reloc_sym->unrelocated_addr;
1003}
1004
1005/**
1006 * ref_reloc - kernel relocation offset.
1007 * @kmap: kernel maps and relocation reference symbol
1008 *
1009 * This function returns the offset of kernel addresses as determined by using
1010 * the relocation reference symbol i.e. if the kernel has not been relocated
1011 * then the return value is zero.
1012 */
1013static u64 ref_reloc(struct kmap *kmap)
1014{
1015 if (kmap && kmap->ref_reloc_sym &&
1016 kmap->ref_reloc_sym->unrelocated_addr)
1017 return kmap->ref_reloc_sym->addr -
1018 kmap->ref_reloc_sym->unrelocated_addr;
1019 return 0;
1020}
1021
1022void __weak arch__sym_update(struct symbol *s __maybe_unused,
1023 GElf_Sym *sym __maybe_unused) { }
1024
1025static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1026 GElf_Sym *sym, GElf_Shdr *shdr,
1027 struct maps *kmaps, struct kmap *kmap,
1028 struct dso **curr_dsop, struct map **curr_mapp,
1029 const char *section_name,
1030 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1031{
1032 struct dso *curr_dso = *curr_dsop;
1033 struct map *curr_map;
1034 char dso_name[PATH_MAX];
1035
1036 /* Adjust symbol to map to file offset */
1037 if (adjust_kernel_syms)
1038 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1039
1040 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1041 return 0;
1042
1043 if (strcmp(section_name, ".text") == 0) {
1044 /*
1045 * The initial kernel mapping is based on
1046 * kallsyms and identity maps. Overwrite it to
1047 * map to the kernel dso.
1048 */
1049 if (*remap_kernel && dso->kernel && !kmodule) {
1050 *remap_kernel = false;
1051 map->start = shdr->sh_addr + ref_reloc(kmap);
1052 map->end = map->start + shdr->sh_size;
1053 map->pgoff = shdr->sh_offset;
1054 map->map_ip = map__map_ip;
1055 map->unmap_ip = map__unmap_ip;
1056 /* Ensure maps are correctly ordered */
1057 if (kmaps) {
1058 map__get(map);
1059 maps__remove(kmaps, map);
1060 maps__insert(kmaps, map);
1061 map__put(map);
1062 }
1063 }
1064
1065 /*
1066 * The initial module mapping is based on
1067 * /proc/modules mapped to offset zero.
1068 * Overwrite it to map to the module dso.
1069 */
1070 if (*remap_kernel && kmodule) {
1071 *remap_kernel = false;
1072 map->pgoff = shdr->sh_offset;
1073 }
1074
1075 *curr_mapp = map;
1076 *curr_dsop = dso;
1077 return 0;
1078 }
1079
1080 if (!kmap)
1081 return 0;
1082
1083 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1084
1085 curr_map = maps__find_by_name(kmaps, dso_name);
1086 if (curr_map == NULL) {
1087 u64 start = sym->st_value;
1088
1089 if (kmodule)
1090 start += map->start + shdr->sh_offset;
1091
1092 curr_dso = dso__new(dso_name);
1093 if (curr_dso == NULL)
1094 return -1;
1095 curr_dso->kernel = dso->kernel;
1096 curr_dso->long_name = dso->long_name;
1097 curr_dso->long_name_len = dso->long_name_len;
1098 curr_map = map__new2(start, curr_dso);
1099 dso__put(curr_dso);
1100 if (curr_map == NULL)
1101 return -1;
1102
1103 if (curr_dso->kernel)
1104 map__kmap(curr_map)->kmaps = kmaps;
1105
1106 if (adjust_kernel_syms) {
1107 curr_map->start = shdr->sh_addr + ref_reloc(kmap);
1108 curr_map->end = curr_map->start + shdr->sh_size;
1109 curr_map->pgoff = shdr->sh_offset;
1110 } else {
1111 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1112 }
1113 curr_dso->symtab_type = dso->symtab_type;
1114 maps__insert(kmaps, curr_map);
1115 /*
1116 * Add it before we drop the reference to curr_map, i.e. while
1117 * we still are sure to have a reference to this DSO via
1118 * *curr_map->dso.
1119 */
1120 dsos__add(&kmaps->machine->dsos, curr_dso);
1121 /* kmaps already got it */
1122 map__put(curr_map);
1123 dso__set_loaded(curr_dso);
1124 *curr_mapp = curr_map;
1125 *curr_dsop = curr_dso;
1126 } else
1127 *curr_dsop = curr_map->dso;
1128
1129 return 0;
1130}
1131
1132static int
1133dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1134 struct symsrc *runtime_ss, int kmodule, int dynsym)
1135{
1136 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1137 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1138 struct map *curr_map = map;
1139 struct dso *curr_dso = dso;
1140 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1141 uint32_t nr_syms;
1142 int err = -1;
1143 uint32_t idx;
1144 GElf_Ehdr ehdr;
1145 GElf_Shdr shdr;
1146 GElf_Shdr tshdr;
1147 Elf_Data *syms, *opddata = NULL;
1148 GElf_Sym sym;
1149 Elf_Scn *sec, *sec_strndx;
1150 Elf *elf;
1151 int nr = 0;
1152 bool remap_kernel = false, adjust_kernel_syms = false;
1153
1154 if (kmap && !kmaps)
1155 return -1;
1156
1157 elf = syms_ss->elf;
1158 ehdr = syms_ss->ehdr;
1159 if (dynsym) {
1160 sec = syms_ss->dynsym;
1161 shdr = syms_ss->dynshdr;
1162 } else {
1163 sec = syms_ss->symtab;
1164 shdr = syms_ss->symshdr;
1165 }
1166
1167 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1168 ".text", NULL))
1169 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1170
1171 if (runtime_ss->opdsec)
1172 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1173
1174 syms = elf_getdata(sec, NULL);
1175 if (syms == NULL)
1176 goto out_elf_end;
1177
1178 sec = elf_getscn(elf, shdr.sh_link);
1179 if (sec == NULL)
1180 goto out_elf_end;
1181
1182 symstrs = elf_getdata(sec, NULL);
1183 if (symstrs == NULL)
1184 goto out_elf_end;
1185
1186 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1187 if (sec_strndx == NULL)
1188 goto out_elf_end;
1189
1190 secstrs_run = elf_getdata(sec_strndx, NULL);
1191 if (secstrs_run == NULL)
1192 goto out_elf_end;
1193
1194 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1195 if (sec_strndx == NULL)
1196 goto out_elf_end;
1197
1198 secstrs_sym = elf_getdata(sec_strndx, NULL);
1199 if (secstrs_sym == NULL)
1200 goto out_elf_end;
1201
1202 nr_syms = shdr.sh_size / shdr.sh_entsize;
1203
1204 memset(&sym, 0, sizeof(sym));
1205
1206 /*
1207 * The kernel relocation symbol is needed in advance in order to adjust
1208 * kernel maps correctly.
1209 */
1210 if (ref_reloc_sym_not_found(kmap)) {
1211 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1212 const char *elf_name = elf_sym__name(&sym, symstrs);
1213
1214 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1215 continue;
1216 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1217 map->reloc = kmap->ref_reloc_sym->addr -
1218 kmap->ref_reloc_sym->unrelocated_addr;
1219 break;
1220 }
1221 }
1222
1223 /*
1224 * Handle any relocation of vdso necessary because older kernels
1225 * attempted to prelink vdso to its virtual address.
1226 */
1227 if (dso__is_vdso(dso))
1228 map->reloc = map->start - dso->text_offset;
1229
1230 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1231 /*
1232 * Initial kernel and module mappings do not map to the dso.
1233 * Flag the fixups.
1234 */
1235 if (dso->kernel) {
1236 remap_kernel = true;
1237 adjust_kernel_syms = dso->adjust_symbols;
1238 }
1239 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1240 struct symbol *f;
1241 const char *elf_name = elf_sym__name(&sym, symstrs);
1242 char *demangled = NULL;
1243 int is_label = elf_sym__is_label(&sym);
1244 const char *section_name;
1245 bool used_opd = false;
1246
1247 if (!is_label && !elf_sym__filter(&sym))
1248 continue;
1249
1250 /* Reject ARM ELF "mapping symbols": these aren't unique and
1251 * don't identify functions, so will confuse the profile
1252 * output: */
1253 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1254 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1255 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1256 continue;
1257 }
1258
1259 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1260 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1261 u64 *opd = opddata->d_buf + offset;
1262 sym.st_value = DSO__SWAP(dso, u64, *opd);
1263 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1264 sym.st_value);
1265 used_opd = true;
1266 }
1267
1268 /*
1269 * When loading symbols in a data mapping, ABS symbols (which
1270 * has a value of SHN_ABS in its st_shndx) failed at
1271 * elf_getscn(). And it marks the loading as a failure so
1272 * already loaded symbols cannot be fixed up.
1273 *
1274 * I'm not sure what should be done. Just ignore them for now.
1275 * - Namhyung Kim
1276 */
1277 if (sym.st_shndx == SHN_ABS)
1278 continue;
1279
1280 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1281 if (!sec)
1282 goto out_elf_end;
1283
1284 gelf_getshdr(sec, &shdr);
1285
1286 /*
1287 * If the attribute bit SHF_ALLOC is not set, the section
1288 * doesn't occupy memory during process execution.
1289 * E.g. ".gnu.warning.*" section is used by linker to generate
1290 * warnings when calling deprecated functions, the symbols in
1291 * the section aren't loaded to memory during process execution,
1292 * so skip them.
1293 */
1294 if (!(shdr.sh_flags & SHF_ALLOC))
1295 continue;
1296
1297 secstrs = secstrs_sym;
1298
1299 /*
1300 * We have to fallback to runtime when syms' section header has
1301 * NOBITS set. NOBITS results in file offset (sh_offset) not
1302 * being incremented. So sh_offset used below has different
1303 * values for syms (invalid) and runtime (valid).
1304 */
1305 if (shdr.sh_type == SHT_NOBITS) {
1306 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1307 if (!sec)
1308 goto out_elf_end;
1309
1310 gelf_getshdr(sec, &shdr);
1311 secstrs = secstrs_run;
1312 }
1313
1314 if (is_label && !elf_sec__filter(&shdr, secstrs))
1315 continue;
1316
1317 section_name = elf_sec__name(&shdr, secstrs);
1318
1319 /* On ARM, symbols for thumb functions have 1 added to
1320 * the symbol address as a flag - remove it */
1321 if ((ehdr.e_machine == EM_ARM) &&
1322 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1323 (sym.st_value & 1))
1324 --sym.st_value;
1325
1326 if (dso->kernel) {
1327 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1328 section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1329 goto out_elf_end;
1330 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1331 (!used_opd && syms_ss->adjust_symbols)) {
1332 GElf_Phdr phdr;
1333
1334 if (elf_read_program_header(runtime_ss->elf,
1335 (u64)sym.st_value, &phdr)) {
1336 pr_debug4("%s: failed to find program header for "
1337 "symbol: %s st_value: %#" PRIx64 "\n",
1338 __func__, elf_name, (u64)sym.st_value);
1339 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1340 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1341 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1342 (u64)shdr.sh_offset);
1343 /*
1344 * Fail to find program header, let's rollback
1345 * to use shdr.sh_addr and shdr.sh_offset to
1346 * calibrate symbol's file address, though this
1347 * is not necessary for normal C ELF file, we
1348 * still need to handle java JIT symbols in this
1349 * case.
1350 */
1351 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1352 } else {
1353 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1354 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1355 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1356 (u64)phdr.p_offset);
1357 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1358 }
1359 }
1360
1361 demangled = demangle_sym(dso, kmodule, elf_name);
1362 if (demangled != NULL)
1363 elf_name = demangled;
1364
1365 f = symbol__new(sym.st_value, sym.st_size,
1366 GELF_ST_BIND(sym.st_info),
1367 GELF_ST_TYPE(sym.st_info), elf_name);
1368 free(demangled);
1369 if (!f)
1370 goto out_elf_end;
1371
1372 arch__sym_update(f, &sym);
1373
1374 __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1375 nr++;
1376 }
1377
1378 /*
1379 * For misannotated, zeroed, ASM function sizes.
1380 */
1381 if (nr > 0) {
1382 symbols__fixup_end(&dso->symbols, false);
1383 symbols__fixup_duplicate(&dso->symbols);
1384 if (kmap) {
1385 /*
1386 * We need to fixup this here too because we create new
1387 * maps here, for things like vsyscall sections.
1388 */
1389 maps__fixup_end(kmaps);
1390 }
1391 }
1392 err = nr;
1393out_elf_end:
1394 return err;
1395}
1396
1397int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1398 struct symsrc *runtime_ss, int kmodule)
1399{
1400 int nr = 0;
1401 int err = -1;
1402
1403 dso->symtab_type = syms_ss->type;
1404 dso->is_64_bit = syms_ss->is_64_bit;
1405 dso->rel = syms_ss->ehdr.e_type == ET_REL;
1406
1407 /*
1408 * Modules may already have symbols from kallsyms, but those symbols
1409 * have the wrong values for the dso maps, so remove them.
1410 */
1411 if (kmodule && syms_ss->symtab)
1412 symbols__delete(&dso->symbols);
1413
1414 if (!syms_ss->symtab) {
1415 /*
1416 * If the vmlinux is stripped, fail so we will fall back
1417 * to using kallsyms. The vmlinux runtime symbols aren't
1418 * of much use.
1419 */
1420 if (dso->kernel)
1421 return err;
1422 } else {
1423 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1424 kmodule, 0);
1425 if (err < 0)
1426 return err;
1427 nr = err;
1428 }
1429
1430 if (syms_ss->dynsym) {
1431 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1432 kmodule, 1);
1433 if (err < 0)
1434 return err;
1435 err += nr;
1436 }
1437
1438 return err;
1439}
1440
1441static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1442{
1443 GElf_Phdr phdr;
1444 size_t i, phdrnum;
1445 int err;
1446 u64 sz;
1447
1448 if (elf_getphdrnum(elf, &phdrnum))
1449 return -1;
1450
1451 for (i = 0; i < phdrnum; i++) {
1452 if (gelf_getphdr(elf, i, &phdr) == NULL)
1453 return -1;
1454 if (phdr.p_type != PT_LOAD)
1455 continue;
1456 if (exe) {
1457 if (!(phdr.p_flags & PF_X))
1458 continue;
1459 } else {
1460 if (!(phdr.p_flags & PF_R))
1461 continue;
1462 }
1463 sz = min(phdr.p_memsz, phdr.p_filesz);
1464 if (!sz)
1465 continue;
1466 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1467 if (err)
1468 return err;
1469 }
1470 return 0;
1471}
1472
1473int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1474 bool *is_64_bit)
1475{
1476 int err;
1477 Elf *elf;
1478
1479 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1480 if (elf == NULL)
1481 return -1;
1482
1483 if (is_64_bit)
1484 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1485
1486 err = elf_read_maps(elf, exe, mapfn, data);
1487
1488 elf_end(elf);
1489 return err;
1490}
1491
1492enum dso_type dso__type_fd(int fd)
1493{
1494 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1495 GElf_Ehdr ehdr;
1496 Elf_Kind ek;
1497 Elf *elf;
1498
1499 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1500 if (elf == NULL)
1501 goto out;
1502
1503 ek = elf_kind(elf);
1504 if (ek != ELF_K_ELF)
1505 goto out_end;
1506
1507 if (gelf_getclass(elf) == ELFCLASS64) {
1508 dso_type = DSO__TYPE_64BIT;
1509 goto out_end;
1510 }
1511
1512 if (gelf_getehdr(elf, &ehdr) == NULL)
1513 goto out_end;
1514
1515 if (ehdr.e_machine == EM_X86_64)
1516 dso_type = DSO__TYPE_X32BIT;
1517 else
1518 dso_type = DSO__TYPE_32BIT;
1519out_end:
1520 elf_end(elf);
1521out:
1522 return dso_type;
1523}
1524
1525static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1526{
1527 ssize_t r;
1528 size_t n;
1529 int err = -1;
1530 char *buf = malloc(page_size);
1531
1532 if (buf == NULL)
1533 return -1;
1534
1535 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1536 goto out;
1537
1538 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1539 goto out;
1540
1541 while (len) {
1542 n = page_size;
1543 if (len < n)
1544 n = len;
1545 /* Use read because mmap won't work on proc files */
1546 r = read(from, buf, n);
1547 if (r < 0)
1548 goto out;
1549 if (!r)
1550 break;
1551 n = r;
1552 r = write(to, buf, n);
1553 if (r < 0)
1554 goto out;
1555 if ((size_t)r != n)
1556 goto out;
1557 len -= n;
1558 }
1559
1560 err = 0;
1561out:
1562 free(buf);
1563 return err;
1564}
1565
1566struct kcore {
1567 int fd;
1568 int elfclass;
1569 Elf *elf;
1570 GElf_Ehdr ehdr;
1571};
1572
1573static int kcore__open(struct kcore *kcore, const char *filename)
1574{
1575 GElf_Ehdr *ehdr;
1576
1577 kcore->fd = open(filename, O_RDONLY);
1578 if (kcore->fd == -1)
1579 return -1;
1580
1581 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1582 if (!kcore->elf)
1583 goto out_close;
1584
1585 kcore->elfclass = gelf_getclass(kcore->elf);
1586 if (kcore->elfclass == ELFCLASSNONE)
1587 goto out_end;
1588
1589 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1590 if (!ehdr)
1591 goto out_end;
1592
1593 return 0;
1594
1595out_end:
1596 elf_end(kcore->elf);
1597out_close:
1598 close(kcore->fd);
1599 return -1;
1600}
1601
1602static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1603 bool temp)
1604{
1605 kcore->elfclass = elfclass;
1606
1607 if (temp)
1608 kcore->fd = mkstemp(filename);
1609 else
1610 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1611 if (kcore->fd == -1)
1612 return -1;
1613
1614 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1615 if (!kcore->elf)
1616 goto out_close;
1617
1618 if (!gelf_newehdr(kcore->elf, elfclass))
1619 goto out_end;
1620
1621 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1622
1623 return 0;
1624
1625out_end:
1626 elf_end(kcore->elf);
1627out_close:
1628 close(kcore->fd);
1629 unlink(filename);
1630 return -1;
1631}
1632
1633static void kcore__close(struct kcore *kcore)
1634{
1635 elf_end(kcore->elf);
1636 close(kcore->fd);
1637}
1638
1639static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1640{
1641 GElf_Ehdr *ehdr = &to->ehdr;
1642 GElf_Ehdr *kehdr = &from->ehdr;
1643
1644 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1645 ehdr->e_type = kehdr->e_type;
1646 ehdr->e_machine = kehdr->e_machine;
1647 ehdr->e_version = kehdr->e_version;
1648 ehdr->e_entry = 0;
1649 ehdr->e_shoff = 0;
1650 ehdr->e_flags = kehdr->e_flags;
1651 ehdr->e_phnum = count;
1652 ehdr->e_shentsize = 0;
1653 ehdr->e_shnum = 0;
1654 ehdr->e_shstrndx = 0;
1655
1656 if (from->elfclass == ELFCLASS32) {
1657 ehdr->e_phoff = sizeof(Elf32_Ehdr);
1658 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
1659 ehdr->e_phentsize = sizeof(Elf32_Phdr);
1660 } else {
1661 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1662 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1663 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1664 }
1665
1666 if (!gelf_update_ehdr(to->elf, ehdr))
1667 return -1;
1668
1669 if (!gelf_newphdr(to->elf, count))
1670 return -1;
1671
1672 return 0;
1673}
1674
1675static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1676 u64 addr, u64 len)
1677{
1678 GElf_Phdr phdr = {
1679 .p_type = PT_LOAD,
1680 .p_flags = PF_R | PF_W | PF_X,
1681 .p_offset = offset,
1682 .p_vaddr = addr,
1683 .p_paddr = 0,
1684 .p_filesz = len,
1685 .p_memsz = len,
1686 .p_align = page_size,
1687 };
1688
1689 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1690 return -1;
1691
1692 return 0;
1693}
1694
1695static off_t kcore__write(struct kcore *kcore)
1696{
1697 return elf_update(kcore->elf, ELF_C_WRITE);
1698}
1699
1700struct phdr_data {
1701 off_t offset;
1702 off_t rel;
1703 u64 addr;
1704 u64 len;
1705 struct list_head node;
1706 struct phdr_data *remaps;
1707};
1708
1709struct sym_data {
1710 u64 addr;
1711 struct list_head node;
1712};
1713
1714struct kcore_copy_info {
1715 u64 stext;
1716 u64 etext;
1717 u64 first_symbol;
1718 u64 last_symbol;
1719 u64 first_module;
1720 u64 first_module_symbol;
1721 u64 last_module_symbol;
1722 size_t phnum;
1723 struct list_head phdrs;
1724 struct list_head syms;
1725};
1726
1727#define kcore_copy__for_each_phdr(k, p) \
1728 list_for_each_entry((p), &(k)->phdrs, node)
1729
1730static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1731{
1732 struct phdr_data *p = zalloc(sizeof(*p));
1733
1734 if (p) {
1735 p->addr = addr;
1736 p->len = len;
1737 p->offset = offset;
1738 }
1739
1740 return p;
1741}
1742
1743static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1744 u64 addr, u64 len,
1745 off_t offset)
1746{
1747 struct phdr_data *p = phdr_data__new(addr, len, offset);
1748
1749 if (p)
1750 list_add_tail(&p->node, &kci->phdrs);
1751
1752 return p;
1753}
1754
1755static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1756{
1757 struct phdr_data *p, *tmp;
1758
1759 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1760 list_del_init(&p->node);
1761 free(p);
1762 }
1763}
1764
1765static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1766 u64 addr)
1767{
1768 struct sym_data *s = zalloc(sizeof(*s));
1769
1770 if (s) {
1771 s->addr = addr;
1772 list_add_tail(&s->node, &kci->syms);
1773 }
1774
1775 return s;
1776}
1777
1778static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1779{
1780 struct sym_data *s, *tmp;
1781
1782 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1783 list_del_init(&s->node);
1784 free(s);
1785 }
1786}
1787
1788static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1789 u64 start)
1790{
1791 struct kcore_copy_info *kci = arg;
1792
1793 if (!kallsyms__is_function(type))
1794 return 0;
1795
1796 if (strchr(name, '[')) {
1797 if (!kci->first_module_symbol || start < kci->first_module_symbol)
1798 kci->first_module_symbol = start;
1799 if (start > kci->last_module_symbol)
1800 kci->last_module_symbol = start;
1801 return 0;
1802 }
1803
1804 if (!kci->first_symbol || start < kci->first_symbol)
1805 kci->first_symbol = start;
1806
1807 if (!kci->last_symbol || start > kci->last_symbol)
1808 kci->last_symbol = start;
1809
1810 if (!strcmp(name, "_stext")) {
1811 kci->stext = start;
1812 return 0;
1813 }
1814
1815 if (!strcmp(name, "_etext")) {
1816 kci->etext = start;
1817 return 0;
1818 }
1819
1820 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1821 return -1;
1822
1823 return 0;
1824}
1825
1826static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1827 const char *dir)
1828{
1829 char kallsyms_filename[PATH_MAX];
1830
1831 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1832
1833 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1834 return -1;
1835
1836 if (kallsyms__parse(kallsyms_filename, kci,
1837 kcore_copy__process_kallsyms) < 0)
1838 return -1;
1839
1840 return 0;
1841}
1842
1843static int kcore_copy__process_modules(void *arg,
1844 const char *name __maybe_unused,
1845 u64 start, u64 size __maybe_unused)
1846{
1847 struct kcore_copy_info *kci = arg;
1848
1849 if (!kci->first_module || start < kci->first_module)
1850 kci->first_module = start;
1851
1852 return 0;
1853}
1854
1855static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1856 const char *dir)
1857{
1858 char modules_filename[PATH_MAX];
1859
1860 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1861
1862 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1863 return -1;
1864
1865 if (modules__parse(modules_filename, kci,
1866 kcore_copy__process_modules) < 0)
1867 return -1;
1868
1869 return 0;
1870}
1871
1872static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1873 u64 pgoff, u64 s, u64 e)
1874{
1875 u64 len, offset;
1876
1877 if (s < start || s >= end)
1878 return 0;
1879
1880 offset = (s - start) + pgoff;
1881 len = e < end ? e - s : end - s;
1882
1883 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1884}
1885
1886static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1887{
1888 struct kcore_copy_info *kci = data;
1889 u64 end = start + len;
1890 struct sym_data *sdat;
1891
1892 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1893 return -1;
1894
1895 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1896 kci->last_module_symbol))
1897 return -1;
1898
1899 list_for_each_entry(sdat, &kci->syms, node) {
1900 u64 s = round_down(sdat->addr, page_size);
1901
1902 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1903 return -1;
1904 }
1905
1906 return 0;
1907}
1908
1909static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1910{
1911 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1912 return -1;
1913
1914 return 0;
1915}
1916
1917static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1918{
1919 struct phdr_data *p, *k = NULL;
1920 u64 kend;
1921
1922 if (!kci->stext)
1923 return;
1924
1925 /* Find phdr that corresponds to the kernel map (contains stext) */
1926 kcore_copy__for_each_phdr(kci, p) {
1927 u64 pend = p->addr + p->len - 1;
1928
1929 if (p->addr <= kci->stext && pend >= kci->stext) {
1930 k = p;
1931 break;
1932 }
1933 }
1934
1935 if (!k)
1936 return;
1937
1938 kend = k->offset + k->len;
1939
1940 /* Find phdrs that remap the kernel */
1941 kcore_copy__for_each_phdr(kci, p) {
1942 u64 pend = p->offset + p->len;
1943
1944 if (p == k)
1945 continue;
1946
1947 if (p->offset >= k->offset && pend <= kend)
1948 p->remaps = k;
1949 }
1950}
1951
1952static void kcore_copy__layout(struct kcore_copy_info *kci)
1953{
1954 struct phdr_data *p;
1955 off_t rel = 0;
1956
1957 kcore_copy__find_remaps(kci);
1958
1959 kcore_copy__for_each_phdr(kci, p) {
1960 if (!p->remaps) {
1961 p->rel = rel;
1962 rel += p->len;
1963 }
1964 kci->phnum += 1;
1965 }
1966
1967 kcore_copy__for_each_phdr(kci, p) {
1968 struct phdr_data *k = p->remaps;
1969
1970 if (k)
1971 p->rel = p->offset - k->offset + k->rel;
1972 }
1973}
1974
1975static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1976 Elf *elf)
1977{
1978 if (kcore_copy__parse_kallsyms(kci, dir))
1979 return -1;
1980
1981 if (kcore_copy__parse_modules(kci, dir))
1982 return -1;
1983
1984 if (kci->stext)
1985 kci->stext = round_down(kci->stext, page_size);
1986 else
1987 kci->stext = round_down(kci->first_symbol, page_size);
1988
1989 if (kci->etext) {
1990 kci->etext = round_up(kci->etext, page_size);
1991 } else if (kci->last_symbol) {
1992 kci->etext = round_up(kci->last_symbol, page_size);
1993 kci->etext += page_size;
1994 }
1995
1996 if (kci->first_module_symbol &&
1997 (!kci->first_module || kci->first_module_symbol < kci->first_module))
1998 kci->first_module = kci->first_module_symbol;
1999
2000 kci->first_module = round_down(kci->first_module, page_size);
2001
2002 if (kci->last_module_symbol) {
2003 kci->last_module_symbol = round_up(kci->last_module_symbol,
2004 page_size);
2005 kci->last_module_symbol += page_size;
2006 }
2007
2008 if (!kci->stext || !kci->etext)
2009 return -1;
2010
2011 if (kci->first_module && !kci->last_module_symbol)
2012 return -1;
2013
2014 if (kcore_copy__read_maps(kci, elf))
2015 return -1;
2016
2017 kcore_copy__layout(kci);
2018
2019 return 0;
2020}
2021
2022static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2023 const char *name)
2024{
2025 char from_filename[PATH_MAX];
2026 char to_filename[PATH_MAX];
2027
2028 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2029 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2030
2031 return copyfile_mode(from_filename, to_filename, 0400);
2032}
2033
2034static int kcore_copy__unlink(const char *dir, const char *name)
2035{
2036 char filename[PATH_MAX];
2037
2038 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2039
2040 return unlink(filename);
2041}
2042
2043static int kcore_copy__compare_fds(int from, int to)
2044{
2045 char *buf_from;
2046 char *buf_to;
2047 ssize_t ret;
2048 size_t len;
2049 int err = -1;
2050
2051 buf_from = malloc(page_size);
2052 buf_to = malloc(page_size);
2053 if (!buf_from || !buf_to)
2054 goto out;
2055
2056 while (1) {
2057 /* Use read because mmap won't work on proc files */
2058 ret = read(from, buf_from, page_size);
2059 if (ret < 0)
2060 goto out;
2061
2062 if (!ret)
2063 break;
2064
2065 len = ret;
2066
2067 if (readn(to, buf_to, len) != (int)len)
2068 goto out;
2069
2070 if (memcmp(buf_from, buf_to, len))
2071 goto out;
2072 }
2073
2074 err = 0;
2075out:
2076 free(buf_to);
2077 free(buf_from);
2078 return err;
2079}
2080
2081static int kcore_copy__compare_files(const char *from_filename,
2082 const char *to_filename)
2083{
2084 int from, to, err = -1;
2085
2086 from = open(from_filename, O_RDONLY);
2087 if (from < 0)
2088 return -1;
2089
2090 to = open(to_filename, O_RDONLY);
2091 if (to < 0)
2092 goto out_close_from;
2093
2094 err = kcore_copy__compare_fds(from, to);
2095
2096 close(to);
2097out_close_from:
2098 close(from);
2099 return err;
2100}
2101
2102static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2103 const char *name)
2104{
2105 char from_filename[PATH_MAX];
2106 char to_filename[PATH_MAX];
2107
2108 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2109 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2110
2111 return kcore_copy__compare_files(from_filename, to_filename);
2112}
2113
2114/**
2115 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2116 * @from_dir: from directory
2117 * @to_dir: to directory
2118 *
2119 * This function copies kallsyms, modules and kcore files from one directory to
2120 * another. kallsyms and modules are copied entirely. Only code segments are
2121 * copied from kcore. It is assumed that two segments suffice: one for the
2122 * kernel proper and one for all the modules. The code segments are determined
2123 * from kallsyms and modules files. The kernel map starts at _stext or the
2124 * lowest function symbol, and ends at _etext or the highest function symbol.
2125 * The module map starts at the lowest module address and ends at the highest
2126 * module symbol. Start addresses are rounded down to the nearest page. End
2127 * addresses are rounded up to the nearest page. An extra page is added to the
2128 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2129 * symbol too. Because it contains only code sections, the resulting kcore is
2130 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2131 * is not the same for the kernel map and the modules map. That happens because
2132 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2133 * kallsyms file is compared with its copy to check that modules have not been
2134 * loaded or unloaded while the copies were taking place.
2135 *
2136 * Return: %0 on success, %-1 on failure.
2137 */
2138int kcore_copy(const char *from_dir, const char *to_dir)
2139{
2140 struct kcore kcore;
2141 struct kcore extract;
2142 int idx = 0, err = -1;
2143 off_t offset, sz;
2144 struct kcore_copy_info kci = { .stext = 0, };
2145 char kcore_filename[PATH_MAX];
2146 char extract_filename[PATH_MAX];
2147 struct phdr_data *p;
2148
2149 INIT_LIST_HEAD(&kci.phdrs);
2150 INIT_LIST_HEAD(&kci.syms);
2151
2152 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2153 return -1;
2154
2155 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2156 goto out_unlink_kallsyms;
2157
2158 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2159 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2160
2161 if (kcore__open(&kcore, kcore_filename))
2162 goto out_unlink_modules;
2163
2164 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2165 goto out_kcore_close;
2166
2167 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2168 goto out_kcore_close;
2169
2170 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2171 goto out_extract_close;
2172
2173 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2174 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2175 offset = round_up(offset, page_size);
2176
2177 kcore_copy__for_each_phdr(&kci, p) {
2178 off_t offs = p->rel + offset;
2179
2180 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2181 goto out_extract_close;
2182 }
2183
2184 sz = kcore__write(&extract);
2185 if (sz < 0 || sz > offset)
2186 goto out_extract_close;
2187
2188 kcore_copy__for_each_phdr(&kci, p) {
2189 off_t offs = p->rel + offset;
2190
2191 if (p->remaps)
2192 continue;
2193 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2194 goto out_extract_close;
2195 }
2196
2197 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2198 goto out_extract_close;
2199
2200 err = 0;
2201
2202out_extract_close:
2203 kcore__close(&extract);
2204 if (err)
2205 unlink(extract_filename);
2206out_kcore_close:
2207 kcore__close(&kcore);
2208out_unlink_modules:
2209 if (err)
2210 kcore_copy__unlink(to_dir, "modules");
2211out_unlink_kallsyms:
2212 if (err)
2213 kcore_copy__unlink(to_dir, "kallsyms");
2214
2215 kcore_copy__free_phdrs(&kci);
2216 kcore_copy__free_syms(&kci);
2217
2218 return err;
2219}
2220
2221int kcore_extract__create(struct kcore_extract *kce)
2222{
2223 struct kcore kcore;
2224 struct kcore extract;
2225 size_t count = 1;
2226 int idx = 0, err = -1;
2227 off_t offset = page_size, sz;
2228
2229 if (kcore__open(&kcore, kce->kcore_filename))
2230 return -1;
2231
2232 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2233 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2234 goto out_kcore_close;
2235
2236 if (kcore__copy_hdr(&kcore, &extract, count))
2237 goto out_extract_close;
2238
2239 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2240 goto out_extract_close;
2241
2242 sz = kcore__write(&extract);
2243 if (sz < 0 || sz > offset)
2244 goto out_extract_close;
2245
2246 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2247 goto out_extract_close;
2248
2249 err = 0;
2250
2251out_extract_close:
2252 kcore__close(&extract);
2253 if (err)
2254 unlink(kce->extract_filename);
2255out_kcore_close:
2256 kcore__close(&kcore);
2257
2258 return err;
2259}
2260
2261void kcore_extract__delete(struct kcore_extract *kce)
2262{
2263 unlink(kce->extract_filename);
2264}
2265
2266#ifdef HAVE_GELF_GETNOTE_SUPPORT
2267
2268static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2269{
2270 if (!base_off)
2271 return;
2272
2273 if (tmp->bit32)
2274 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2275 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2276 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2277 else
2278 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2279 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2280 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2281}
2282
2283static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2284 GElf_Addr base_off)
2285{
2286 if (!base_off)
2287 return;
2288
2289 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2290 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2291 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2292 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2293}
2294
2295/**
2296 * populate_sdt_note : Parse raw data and identify SDT note
2297 * @elf: elf of the opened file
2298 * @data: raw data of a section with description offset applied
2299 * @len: note description size
2300 * @type: type of the note
2301 * @sdt_notes: List to add the SDT note
2302 *
2303 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2304 * if its an SDT note, it appends to @sdt_notes list.
2305 */
2306static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2307 struct list_head *sdt_notes)
2308{
2309 const char *provider, *name, *args;
2310 struct sdt_note *tmp = NULL;
2311 GElf_Ehdr ehdr;
2312 GElf_Shdr shdr;
2313 int ret = -EINVAL;
2314
2315 union {
2316 Elf64_Addr a64[NR_ADDR];
2317 Elf32_Addr a32[NR_ADDR];
2318 } buf;
2319
2320 Elf_Data dst = {
2321 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2322 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2323 .d_off = 0, .d_align = 0
2324 };
2325 Elf_Data src = {
2326 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2327 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2328 .d_align = 0
2329 };
2330
2331 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2332 if (!tmp) {
2333 ret = -ENOMEM;
2334 goto out_err;
2335 }
2336
2337 INIT_LIST_HEAD(&tmp->note_list);
2338
2339 if (len < dst.d_size + 3)
2340 goto out_free_note;
2341
2342 /* Translation from file representation to memory representation */
2343 if (gelf_xlatetom(*elf, &dst, &src,
2344 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2345 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2346 goto out_free_note;
2347 }
2348
2349 /* Populate the fields of sdt_note */
2350 provider = data + dst.d_size;
2351
2352 name = (const char *)memchr(provider, '\0', data + len - provider);
2353 if (name++ == NULL)
2354 goto out_free_note;
2355
2356 tmp->provider = strdup(provider);
2357 if (!tmp->provider) {
2358 ret = -ENOMEM;
2359 goto out_free_note;
2360 }
2361 tmp->name = strdup(name);
2362 if (!tmp->name) {
2363 ret = -ENOMEM;
2364 goto out_free_prov;
2365 }
2366
2367 args = memchr(name, '\0', data + len - name);
2368
2369 /*
2370 * There is no argument if:
2371 * - We reached the end of the note;
2372 * - There is not enough room to hold a potential string;
2373 * - The argument string is empty or just contains ':'.
2374 */
2375 if (args == NULL || data + len - args < 2 ||
2376 args[1] == ':' || args[1] == '\0')
2377 tmp->args = NULL;
2378 else {
2379 tmp->args = strdup(++args);
2380 if (!tmp->args) {
2381 ret = -ENOMEM;
2382 goto out_free_name;
2383 }
2384 }
2385
2386 if (gelf_getclass(*elf) == ELFCLASS32) {
2387 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2388 tmp->bit32 = true;
2389 } else {
2390 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2391 tmp->bit32 = false;
2392 }
2393
2394 if (!gelf_getehdr(*elf, &ehdr)) {
2395 pr_debug("%s : cannot get elf header.\n", __func__);
2396 ret = -EBADF;
2397 goto out_free_args;
2398 }
2399
2400 /* Adjust the prelink effect :
2401 * Find out the .stapsdt.base section.
2402 * This scn will help us to handle prelinking (if present).
2403 * Compare the retrieved file offset of the base section with the
2404 * base address in the description of the SDT note. If its different,
2405 * then accordingly, adjust the note location.
2406 */
2407 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2408 sdt_adjust_loc(tmp, shdr.sh_offset);
2409
2410 /* Adjust reference counter offset */
2411 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2412 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2413
2414 list_add_tail(&tmp->note_list, sdt_notes);
2415 return 0;
2416
2417out_free_args:
2418 zfree(&tmp->args);
2419out_free_name:
2420 zfree(&tmp->name);
2421out_free_prov:
2422 zfree(&tmp->provider);
2423out_free_note:
2424 free(tmp);
2425out_err:
2426 return ret;
2427}
2428
2429/**
2430 * construct_sdt_notes_list : constructs a list of SDT notes
2431 * @elf : elf to look into
2432 * @sdt_notes : empty list_head
2433 *
2434 * Scans the sections in 'elf' for the section
2435 * .note.stapsdt. It, then calls populate_sdt_note to find
2436 * out the SDT events and populates the 'sdt_notes'.
2437 */
2438static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2439{
2440 GElf_Ehdr ehdr;
2441 Elf_Scn *scn = NULL;
2442 Elf_Data *data;
2443 GElf_Shdr shdr;
2444 size_t shstrndx, next;
2445 GElf_Nhdr nhdr;
2446 size_t name_off, desc_off, offset;
2447 int ret = 0;
2448
2449 if (gelf_getehdr(elf, &ehdr) == NULL) {
2450 ret = -EBADF;
2451 goto out_ret;
2452 }
2453 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2454 ret = -EBADF;
2455 goto out_ret;
2456 }
2457
2458 /* Look for the required section */
2459 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2460 if (!scn) {
2461 ret = -ENOENT;
2462 goto out_ret;
2463 }
2464
2465 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2466 ret = -ENOENT;
2467 goto out_ret;
2468 }
2469
2470 data = elf_getdata(scn, NULL);
2471
2472 /* Get the SDT notes */
2473 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2474 &desc_off)) > 0; offset = next) {
2475 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2476 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2477 sizeof(SDT_NOTE_NAME))) {
2478 /* Check the type of the note */
2479 if (nhdr.n_type != SDT_NOTE_TYPE)
2480 goto out_ret;
2481
2482 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2483 nhdr.n_descsz, sdt_notes);
2484 if (ret < 0)
2485 goto out_ret;
2486 }
2487 }
2488 if (list_empty(sdt_notes))
2489 ret = -ENOENT;
2490
2491out_ret:
2492 return ret;
2493}
2494
2495/**
2496 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2497 * @head : empty list_head
2498 * @target : file to find SDT notes from
2499 *
2500 * This opens the file, initializes
2501 * the ELF and then calls construct_sdt_notes_list.
2502 */
2503int get_sdt_note_list(struct list_head *head, const char *target)
2504{
2505 Elf *elf;
2506 int fd, ret;
2507
2508 fd = open(target, O_RDONLY);
2509 if (fd < 0)
2510 return -EBADF;
2511
2512 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2513 if (!elf) {
2514 ret = -EBADF;
2515 goto out_close;
2516 }
2517 ret = construct_sdt_notes_list(elf, head);
2518 elf_end(elf);
2519out_close:
2520 close(fd);
2521 return ret;
2522}
2523
2524/**
2525 * cleanup_sdt_note_list : free the sdt notes' list
2526 * @sdt_notes: sdt notes' list
2527 *
2528 * Free up the SDT notes in @sdt_notes.
2529 * Returns the number of SDT notes free'd.
2530 */
2531int cleanup_sdt_note_list(struct list_head *sdt_notes)
2532{
2533 struct sdt_note *tmp, *pos;
2534 int nr_free = 0;
2535
2536 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2537 list_del_init(&pos->note_list);
2538 zfree(&pos->args);
2539 zfree(&pos->name);
2540 zfree(&pos->provider);
2541 free(pos);
2542 nr_free++;
2543 }
2544 return nr_free;
2545}
2546
2547/**
2548 * sdt_notes__get_count: Counts the number of sdt events
2549 * @start: list_head to sdt_notes list
2550 *
2551 * Returns the number of SDT notes in a list
2552 */
2553int sdt_notes__get_count(struct list_head *start)
2554{
2555 struct sdt_note *sdt_ptr;
2556 int count = 0;
2557
2558 list_for_each_entry(sdt_ptr, start, note_list)
2559 count++;
2560 return count;
2561}
2562#endif
2563
2564void symbol__elf_init(void)
2565{
2566 elf_version(EV_CURRENT);
2567}
1// SPDX-License-Identifier: GPL-2.0
2#include <fcntl.h>
3#include <stdio.h>
4#include <errno.h>
5#include <stdlib.h>
6#include <string.h>
7#include <unistd.h>
8#include <inttypes.h>
9
10#include "dso.h"
11#include "map.h"
12#include "map_groups.h"
13#include "symbol.h"
14#include "symsrc.h"
15#include "demangle-java.h"
16#include "demangle-rust.h"
17#include "machine.h"
18#include "vdso.h"
19#include "debug.h"
20#include "util/copyfile.h"
21#include <linux/ctype.h>
22#include <linux/kernel.h>
23#include <linux/zalloc.h>
24#include <symbol/kallsyms.h>
25#include <internal/lib.h>
26
27#ifndef EM_AARCH64
28#define EM_AARCH64 183 /* ARM 64 bit */
29#endif
30
31#ifndef ELF32_ST_VISIBILITY
32#define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
33#endif
34
35/* For ELF64 the definitions are the same. */
36#ifndef ELF64_ST_VISIBILITY
37#define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
38#endif
39
40/* How to extract information held in the st_other field. */
41#ifndef GELF_ST_VISIBILITY
42#define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
43#endif
44
45typedef Elf64_Nhdr GElf_Nhdr;
46
47#ifndef DMGL_PARAMS
48#define DMGL_NO_OPTS 0 /* For readability... */
49#define DMGL_PARAMS (1 << 0) /* Include function args */
50#define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */
51#endif
52
53#ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
54extern char *cplus_demangle(const char *, int);
55
56static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
57{
58 return cplus_demangle(c, i);
59}
60#else
61#ifdef NO_DEMANGLE
62static inline char *bfd_demangle(void __maybe_unused *v,
63 const char __maybe_unused *c,
64 int __maybe_unused i)
65{
66 return NULL;
67}
68#else
69#define PACKAGE 'perf'
70#include <bfd.h>
71#endif
72#endif
73
74#ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
75static int elf_getphdrnum(Elf *elf, size_t *dst)
76{
77 GElf_Ehdr gehdr;
78 GElf_Ehdr *ehdr;
79
80 ehdr = gelf_getehdr(elf, &gehdr);
81 if (!ehdr)
82 return -1;
83
84 *dst = ehdr->e_phnum;
85
86 return 0;
87}
88#endif
89
90#ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
91static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
92{
93 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
94 return -1;
95}
96#endif
97
98#ifndef NT_GNU_BUILD_ID
99#define NT_GNU_BUILD_ID 3
100#endif
101
102/**
103 * elf_symtab__for_each_symbol - iterate thru all the symbols
104 *
105 * @syms: struct elf_symtab instance to iterate
106 * @idx: uint32_t idx
107 * @sym: GElf_Sym iterator
108 */
109#define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
110 for (idx = 0, gelf_getsym(syms, idx, &sym);\
111 idx < nr_syms; \
112 idx++, gelf_getsym(syms, idx, &sym))
113
114static inline uint8_t elf_sym__type(const GElf_Sym *sym)
115{
116 return GELF_ST_TYPE(sym->st_info);
117}
118
119static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
120{
121 return GELF_ST_VISIBILITY(sym->st_other);
122}
123
124#ifndef STT_GNU_IFUNC
125#define STT_GNU_IFUNC 10
126#endif
127
128static inline int elf_sym__is_function(const GElf_Sym *sym)
129{
130 return (elf_sym__type(sym) == STT_FUNC ||
131 elf_sym__type(sym) == STT_GNU_IFUNC) &&
132 sym->st_name != 0 &&
133 sym->st_shndx != SHN_UNDEF;
134}
135
136static inline bool elf_sym__is_object(const GElf_Sym *sym)
137{
138 return elf_sym__type(sym) == STT_OBJECT &&
139 sym->st_name != 0 &&
140 sym->st_shndx != SHN_UNDEF;
141}
142
143static inline int elf_sym__is_label(const GElf_Sym *sym)
144{
145 return elf_sym__type(sym) == STT_NOTYPE &&
146 sym->st_name != 0 &&
147 sym->st_shndx != SHN_UNDEF &&
148 sym->st_shndx != SHN_ABS &&
149 elf_sym__visibility(sym) != STV_HIDDEN &&
150 elf_sym__visibility(sym) != STV_INTERNAL;
151}
152
153static bool elf_sym__filter(GElf_Sym *sym)
154{
155 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
156}
157
158static inline const char *elf_sym__name(const GElf_Sym *sym,
159 const Elf_Data *symstrs)
160{
161 return symstrs->d_buf + sym->st_name;
162}
163
164static inline const char *elf_sec__name(const GElf_Shdr *shdr,
165 const Elf_Data *secstrs)
166{
167 return secstrs->d_buf + shdr->sh_name;
168}
169
170static inline int elf_sec__is_text(const GElf_Shdr *shdr,
171 const Elf_Data *secstrs)
172{
173 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
174}
175
176static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
177 const Elf_Data *secstrs)
178{
179 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
180}
181
182static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
183{
184 return elf_sec__is_text(shdr, secstrs) ||
185 elf_sec__is_data(shdr, secstrs);
186}
187
188static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
189{
190 Elf_Scn *sec = NULL;
191 GElf_Shdr shdr;
192 size_t cnt = 1;
193
194 while ((sec = elf_nextscn(elf, sec)) != NULL) {
195 gelf_getshdr(sec, &shdr);
196
197 if ((addr >= shdr.sh_addr) &&
198 (addr < (shdr.sh_addr + shdr.sh_size)))
199 return cnt;
200
201 ++cnt;
202 }
203
204 return -1;
205}
206
207Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
208 GElf_Shdr *shp, const char *name, size_t *idx)
209{
210 Elf_Scn *sec = NULL;
211 size_t cnt = 1;
212
213 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
214 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
215 return NULL;
216
217 while ((sec = elf_nextscn(elf, sec)) != NULL) {
218 char *str;
219
220 gelf_getshdr(sec, shp);
221 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
222 if (str && !strcmp(name, str)) {
223 if (idx)
224 *idx = cnt;
225 return sec;
226 }
227 ++cnt;
228 }
229
230 return NULL;
231}
232
233static bool want_demangle(bool is_kernel_sym)
234{
235 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
236}
237
238static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
239{
240 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
241 char *demangled = NULL;
242
243 /*
244 * We need to figure out if the object was created from C++ sources
245 * DWARF DW_compile_unit has this, but we don't always have access
246 * to it...
247 */
248 if (!want_demangle(dso->kernel || kmodule))
249 return demangled;
250
251 demangled = bfd_demangle(NULL, elf_name, demangle_flags);
252 if (demangled == NULL)
253 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
254 else if (rust_is_mangled(demangled))
255 /*
256 * Input to Rust demangling is the BFD-demangled
257 * name which it Rust-demangles in place.
258 */
259 rust_demangle_sym(demangled);
260
261 return demangled;
262}
263
264#define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
265 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
266 idx < nr_entries; \
267 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
268
269#define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
270 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
271 idx < nr_entries; \
272 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
273
274/*
275 * We need to check if we have a .dynsym, so that we can handle the
276 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
277 * .dynsym or .symtab).
278 * And always look at the original dso, not at debuginfo packages, that
279 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
280 */
281int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
282{
283 uint32_t nr_rel_entries, idx;
284 GElf_Sym sym;
285 u64 plt_offset, plt_header_size, plt_entry_size;
286 GElf_Shdr shdr_plt;
287 struct symbol *f;
288 GElf_Shdr shdr_rel_plt, shdr_dynsym;
289 Elf_Data *reldata, *syms, *symstrs;
290 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
291 size_t dynsym_idx;
292 GElf_Ehdr ehdr;
293 char sympltname[1024];
294 Elf *elf;
295 int nr = 0, symidx, err = 0;
296
297 if (!ss->dynsym)
298 return 0;
299
300 elf = ss->elf;
301 ehdr = ss->ehdr;
302
303 scn_dynsym = ss->dynsym;
304 shdr_dynsym = ss->dynshdr;
305 dynsym_idx = ss->dynsym_idx;
306
307 if (scn_dynsym == NULL)
308 goto out_elf_end;
309
310 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
311 ".rela.plt", NULL);
312 if (scn_plt_rel == NULL) {
313 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
314 ".rel.plt", NULL);
315 if (scn_plt_rel == NULL)
316 goto out_elf_end;
317 }
318
319 err = -1;
320
321 if (shdr_rel_plt.sh_link != dynsym_idx)
322 goto out_elf_end;
323
324 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
325 goto out_elf_end;
326
327 /*
328 * Fetch the relocation section to find the idxes to the GOT
329 * and the symbols in the .dynsym they refer to.
330 */
331 reldata = elf_getdata(scn_plt_rel, NULL);
332 if (reldata == NULL)
333 goto out_elf_end;
334
335 syms = elf_getdata(scn_dynsym, NULL);
336 if (syms == NULL)
337 goto out_elf_end;
338
339 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
340 if (scn_symstrs == NULL)
341 goto out_elf_end;
342
343 symstrs = elf_getdata(scn_symstrs, NULL);
344 if (symstrs == NULL)
345 goto out_elf_end;
346
347 if (symstrs->d_size == 0)
348 goto out_elf_end;
349
350 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
351 plt_offset = shdr_plt.sh_offset;
352 switch (ehdr.e_machine) {
353 case EM_ARM:
354 plt_header_size = 20;
355 plt_entry_size = 12;
356 break;
357
358 case EM_AARCH64:
359 plt_header_size = 32;
360 plt_entry_size = 16;
361 break;
362
363 case EM_SPARC:
364 plt_header_size = 48;
365 plt_entry_size = 12;
366 break;
367
368 case EM_SPARCV9:
369 plt_header_size = 128;
370 plt_entry_size = 32;
371 break;
372
373 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
374 plt_header_size = shdr_plt.sh_entsize;
375 plt_entry_size = shdr_plt.sh_entsize;
376 break;
377 }
378 plt_offset += plt_header_size;
379
380 if (shdr_rel_plt.sh_type == SHT_RELA) {
381 GElf_Rela pos_mem, *pos;
382
383 elf_section__for_each_rela(reldata, pos, pos_mem, idx,
384 nr_rel_entries) {
385 const char *elf_name = NULL;
386 char *demangled = NULL;
387 symidx = GELF_R_SYM(pos->r_info);
388 gelf_getsym(syms, symidx, &sym);
389
390 elf_name = elf_sym__name(&sym, symstrs);
391 demangled = demangle_sym(dso, 0, elf_name);
392 if (demangled != NULL)
393 elf_name = demangled;
394 snprintf(sympltname, sizeof(sympltname),
395 "%s@plt", elf_name);
396 free(demangled);
397
398 f = symbol__new(plt_offset, plt_entry_size,
399 STB_GLOBAL, STT_FUNC, sympltname);
400 if (!f)
401 goto out_elf_end;
402
403 plt_offset += plt_entry_size;
404 symbols__insert(&dso->symbols, f);
405 ++nr;
406 }
407 } else if (shdr_rel_plt.sh_type == SHT_REL) {
408 GElf_Rel pos_mem, *pos;
409 elf_section__for_each_rel(reldata, pos, pos_mem, idx,
410 nr_rel_entries) {
411 const char *elf_name = NULL;
412 char *demangled = NULL;
413 symidx = GELF_R_SYM(pos->r_info);
414 gelf_getsym(syms, symidx, &sym);
415
416 elf_name = elf_sym__name(&sym, symstrs);
417 demangled = demangle_sym(dso, 0, elf_name);
418 if (demangled != NULL)
419 elf_name = demangled;
420 snprintf(sympltname, sizeof(sympltname),
421 "%s@plt", elf_name);
422 free(demangled);
423
424 f = symbol__new(plt_offset, plt_entry_size,
425 STB_GLOBAL, STT_FUNC, sympltname);
426 if (!f)
427 goto out_elf_end;
428
429 plt_offset += plt_entry_size;
430 symbols__insert(&dso->symbols, f);
431 ++nr;
432 }
433 }
434
435 err = 0;
436out_elf_end:
437 if (err == 0)
438 return nr;
439 pr_debug("%s: problems reading %s PLT info.\n",
440 __func__, dso->long_name);
441 return 0;
442}
443
444char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
445{
446 return demangle_sym(dso, kmodule, elf_name);
447}
448
449/*
450 * Align offset to 4 bytes as needed for note name and descriptor data.
451 */
452#define NOTE_ALIGN(n) (((n) + 3) & -4U)
453
454static int elf_read_build_id(Elf *elf, void *bf, size_t size)
455{
456 int err = -1;
457 GElf_Ehdr ehdr;
458 GElf_Shdr shdr;
459 Elf_Data *data;
460 Elf_Scn *sec;
461 Elf_Kind ek;
462 void *ptr;
463
464 if (size < BUILD_ID_SIZE)
465 goto out;
466
467 ek = elf_kind(elf);
468 if (ek != ELF_K_ELF)
469 goto out;
470
471 if (gelf_getehdr(elf, &ehdr) == NULL) {
472 pr_err("%s: cannot get elf header.\n", __func__);
473 goto out;
474 }
475
476 /*
477 * Check following sections for notes:
478 * '.note.gnu.build-id'
479 * '.notes'
480 * '.note' (VDSO specific)
481 */
482 do {
483 sec = elf_section_by_name(elf, &ehdr, &shdr,
484 ".note.gnu.build-id", NULL);
485 if (sec)
486 break;
487
488 sec = elf_section_by_name(elf, &ehdr, &shdr,
489 ".notes", NULL);
490 if (sec)
491 break;
492
493 sec = elf_section_by_name(elf, &ehdr, &shdr,
494 ".note", NULL);
495 if (sec)
496 break;
497
498 return err;
499
500 } while (0);
501
502 data = elf_getdata(sec, NULL);
503 if (data == NULL)
504 goto out;
505
506 ptr = data->d_buf;
507 while (ptr < (data->d_buf + data->d_size)) {
508 GElf_Nhdr *nhdr = ptr;
509 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
510 descsz = NOTE_ALIGN(nhdr->n_descsz);
511 const char *name;
512
513 ptr += sizeof(*nhdr);
514 name = ptr;
515 ptr += namesz;
516 if (nhdr->n_type == NT_GNU_BUILD_ID &&
517 nhdr->n_namesz == sizeof("GNU")) {
518 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
519 size_t sz = min(size, descsz);
520 memcpy(bf, ptr, sz);
521 memset(bf + sz, 0, size - sz);
522 err = descsz;
523 break;
524 }
525 }
526 ptr += descsz;
527 }
528
529out:
530 return err;
531}
532
533int filename__read_build_id(const char *filename, void *bf, size_t size)
534{
535 int fd, err = -1;
536 Elf *elf;
537
538 if (size < BUILD_ID_SIZE)
539 goto out;
540
541 fd = open(filename, O_RDONLY);
542 if (fd < 0)
543 goto out;
544
545 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
546 if (elf == NULL) {
547 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
548 goto out_close;
549 }
550
551 err = elf_read_build_id(elf, bf, size);
552
553 elf_end(elf);
554out_close:
555 close(fd);
556out:
557 return err;
558}
559
560int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
561{
562 int fd, err = -1;
563
564 if (size < BUILD_ID_SIZE)
565 goto out;
566
567 fd = open(filename, O_RDONLY);
568 if (fd < 0)
569 goto out;
570
571 while (1) {
572 char bf[BUFSIZ];
573 GElf_Nhdr nhdr;
574 size_t namesz, descsz;
575
576 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
577 break;
578
579 namesz = NOTE_ALIGN(nhdr.n_namesz);
580 descsz = NOTE_ALIGN(nhdr.n_descsz);
581 if (nhdr.n_type == NT_GNU_BUILD_ID &&
582 nhdr.n_namesz == sizeof("GNU")) {
583 if (read(fd, bf, namesz) != (ssize_t)namesz)
584 break;
585 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
586 size_t sz = min(descsz, size);
587 if (read(fd, build_id, sz) == (ssize_t)sz) {
588 memset(build_id + sz, 0, size - sz);
589 err = 0;
590 break;
591 }
592 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
593 break;
594 } else {
595 int n = namesz + descsz;
596
597 if (n > (int)sizeof(bf)) {
598 n = sizeof(bf);
599 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
600 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
601 }
602 if (read(fd, bf, n) != n)
603 break;
604 }
605 }
606 close(fd);
607out:
608 return err;
609}
610
611int filename__read_debuglink(const char *filename, char *debuglink,
612 size_t size)
613{
614 int fd, err = -1;
615 Elf *elf;
616 GElf_Ehdr ehdr;
617 GElf_Shdr shdr;
618 Elf_Data *data;
619 Elf_Scn *sec;
620 Elf_Kind ek;
621
622 fd = open(filename, O_RDONLY);
623 if (fd < 0)
624 goto out;
625
626 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
627 if (elf == NULL) {
628 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
629 goto out_close;
630 }
631
632 ek = elf_kind(elf);
633 if (ek != ELF_K_ELF)
634 goto out_elf_end;
635
636 if (gelf_getehdr(elf, &ehdr) == NULL) {
637 pr_err("%s: cannot get elf header.\n", __func__);
638 goto out_elf_end;
639 }
640
641 sec = elf_section_by_name(elf, &ehdr, &shdr,
642 ".gnu_debuglink", NULL);
643 if (sec == NULL)
644 goto out_elf_end;
645
646 data = elf_getdata(sec, NULL);
647 if (data == NULL)
648 goto out_elf_end;
649
650 /* the start of this section is a zero-terminated string */
651 strncpy(debuglink, data->d_buf, size);
652
653 err = 0;
654
655out_elf_end:
656 elf_end(elf);
657out_close:
658 close(fd);
659out:
660 return err;
661}
662
663static int dso__swap_init(struct dso *dso, unsigned char eidata)
664{
665 static unsigned int const endian = 1;
666
667 dso->needs_swap = DSO_SWAP__NO;
668
669 switch (eidata) {
670 case ELFDATA2LSB:
671 /* We are big endian, DSO is little endian. */
672 if (*(unsigned char const *)&endian != 1)
673 dso->needs_swap = DSO_SWAP__YES;
674 break;
675
676 case ELFDATA2MSB:
677 /* We are little endian, DSO is big endian. */
678 if (*(unsigned char const *)&endian != 0)
679 dso->needs_swap = DSO_SWAP__YES;
680 break;
681
682 default:
683 pr_err("unrecognized DSO data encoding %d\n", eidata);
684 return -EINVAL;
685 }
686
687 return 0;
688}
689
690bool symsrc__possibly_runtime(struct symsrc *ss)
691{
692 return ss->dynsym || ss->opdsec;
693}
694
695bool symsrc__has_symtab(struct symsrc *ss)
696{
697 return ss->symtab != NULL;
698}
699
700void symsrc__destroy(struct symsrc *ss)
701{
702 zfree(&ss->name);
703 elf_end(ss->elf);
704 close(ss->fd);
705}
706
707bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr)
708{
709 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL;
710}
711
712int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
713 enum dso_binary_type type)
714{
715 GElf_Ehdr ehdr;
716 Elf *elf;
717 int fd;
718
719 if (dso__needs_decompress(dso)) {
720 fd = dso__decompress_kmodule_fd(dso, name);
721 if (fd < 0)
722 return -1;
723
724 type = dso->symtab_type;
725 } else {
726 fd = open(name, O_RDONLY);
727 if (fd < 0) {
728 dso->load_errno = errno;
729 return -1;
730 }
731 }
732
733 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
734 if (elf == NULL) {
735 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
736 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
737 goto out_close;
738 }
739
740 if (gelf_getehdr(elf, &ehdr) == NULL) {
741 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
742 pr_debug("%s: cannot get elf header.\n", __func__);
743 goto out_elf_end;
744 }
745
746 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
747 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
748 goto out_elf_end;
749 }
750
751 /* Always reject images with a mismatched build-id: */
752 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
753 u8 build_id[BUILD_ID_SIZE];
754
755 if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
756 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
757 goto out_elf_end;
758 }
759
760 if (!dso__build_id_equal(dso, build_id)) {
761 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
762 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
763 goto out_elf_end;
764 }
765 }
766
767 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
768
769 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
770 NULL);
771 if (ss->symshdr.sh_type != SHT_SYMTAB)
772 ss->symtab = NULL;
773
774 ss->dynsym_idx = 0;
775 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
776 &ss->dynsym_idx);
777 if (ss->dynshdr.sh_type != SHT_DYNSYM)
778 ss->dynsym = NULL;
779
780 ss->opdidx = 0;
781 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
782 &ss->opdidx);
783 if (ss->opdshdr.sh_type != SHT_PROGBITS)
784 ss->opdsec = NULL;
785
786 if (dso->kernel == DSO_TYPE_USER)
787 ss->adjust_symbols = true;
788 else
789 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
790
791 ss->name = strdup(name);
792 if (!ss->name) {
793 dso->load_errno = errno;
794 goto out_elf_end;
795 }
796
797 ss->elf = elf;
798 ss->fd = fd;
799 ss->ehdr = ehdr;
800 ss->type = type;
801
802 return 0;
803
804out_elf_end:
805 elf_end(elf);
806out_close:
807 close(fd);
808 return -1;
809}
810
811/**
812 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
813 * @kmap: kernel maps and relocation reference symbol
814 *
815 * This function returns %true if we are dealing with the kernel maps and the
816 * relocation reference symbol has not yet been found. Otherwise %false is
817 * returned.
818 */
819static bool ref_reloc_sym_not_found(struct kmap *kmap)
820{
821 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
822 !kmap->ref_reloc_sym->unrelocated_addr;
823}
824
825/**
826 * ref_reloc - kernel relocation offset.
827 * @kmap: kernel maps and relocation reference symbol
828 *
829 * This function returns the offset of kernel addresses as determined by using
830 * the relocation reference symbol i.e. if the kernel has not been relocated
831 * then the return value is zero.
832 */
833static u64 ref_reloc(struct kmap *kmap)
834{
835 if (kmap && kmap->ref_reloc_sym &&
836 kmap->ref_reloc_sym->unrelocated_addr)
837 return kmap->ref_reloc_sym->addr -
838 kmap->ref_reloc_sym->unrelocated_addr;
839 return 0;
840}
841
842void __weak arch__sym_update(struct symbol *s __maybe_unused,
843 GElf_Sym *sym __maybe_unused) { }
844
845static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
846 GElf_Sym *sym, GElf_Shdr *shdr,
847 struct map_groups *kmaps, struct kmap *kmap,
848 struct dso **curr_dsop, struct map **curr_mapp,
849 const char *section_name,
850 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
851{
852 struct dso *curr_dso = *curr_dsop;
853 struct map *curr_map;
854 char dso_name[PATH_MAX];
855
856 /* Adjust symbol to map to file offset */
857 if (adjust_kernel_syms)
858 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
859
860 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
861 return 0;
862
863 if (strcmp(section_name, ".text") == 0) {
864 /*
865 * The initial kernel mapping is based on
866 * kallsyms and identity maps. Overwrite it to
867 * map to the kernel dso.
868 */
869 if (*remap_kernel && dso->kernel) {
870 *remap_kernel = false;
871 map->start = shdr->sh_addr + ref_reloc(kmap);
872 map->end = map->start + shdr->sh_size;
873 map->pgoff = shdr->sh_offset;
874 map->map_ip = map__map_ip;
875 map->unmap_ip = map__unmap_ip;
876 /* Ensure maps are correctly ordered */
877 if (kmaps) {
878 map__get(map);
879 map_groups__remove(kmaps, map);
880 map_groups__insert(kmaps, map);
881 map__put(map);
882 }
883 }
884
885 /*
886 * The initial module mapping is based on
887 * /proc/modules mapped to offset zero.
888 * Overwrite it to map to the module dso.
889 */
890 if (*remap_kernel && kmodule) {
891 *remap_kernel = false;
892 map->pgoff = shdr->sh_offset;
893 }
894
895 *curr_mapp = map;
896 *curr_dsop = dso;
897 return 0;
898 }
899
900 if (!kmap)
901 return 0;
902
903 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
904
905 curr_map = map_groups__find_by_name(kmaps, dso_name);
906 if (curr_map == NULL) {
907 u64 start = sym->st_value;
908
909 if (kmodule)
910 start += map->start + shdr->sh_offset;
911
912 curr_dso = dso__new(dso_name);
913 if (curr_dso == NULL)
914 return -1;
915 curr_dso->kernel = dso->kernel;
916 curr_dso->long_name = dso->long_name;
917 curr_dso->long_name_len = dso->long_name_len;
918 curr_map = map__new2(start, curr_dso);
919 dso__put(curr_dso);
920 if (curr_map == NULL)
921 return -1;
922
923 if (adjust_kernel_syms) {
924 curr_map->start = shdr->sh_addr + ref_reloc(kmap);
925 curr_map->end = curr_map->start + shdr->sh_size;
926 curr_map->pgoff = shdr->sh_offset;
927 } else {
928 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
929 }
930 curr_dso->symtab_type = dso->symtab_type;
931 map_groups__insert(kmaps, curr_map);
932 /*
933 * Add it before we drop the referece to curr_map, i.e. while
934 * we still are sure to have a reference to this DSO via
935 * *curr_map->dso.
936 */
937 dsos__add(&map->groups->machine->dsos, curr_dso);
938 /* kmaps already got it */
939 map__put(curr_map);
940 dso__set_loaded(curr_dso);
941 *curr_mapp = curr_map;
942 *curr_dsop = curr_dso;
943 } else
944 *curr_dsop = curr_map->dso;
945
946 return 0;
947}
948
949int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
950 struct symsrc *runtime_ss, int kmodule)
951{
952 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
953 struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL;
954 struct map *curr_map = map;
955 struct dso *curr_dso = dso;
956 Elf_Data *symstrs, *secstrs;
957 uint32_t nr_syms;
958 int err = -1;
959 uint32_t idx;
960 GElf_Ehdr ehdr;
961 GElf_Shdr shdr;
962 GElf_Shdr tshdr;
963 Elf_Data *syms, *opddata = NULL;
964 GElf_Sym sym;
965 Elf_Scn *sec, *sec_strndx;
966 Elf *elf;
967 int nr = 0;
968 bool remap_kernel = false, adjust_kernel_syms = false;
969
970 if (kmap && !kmaps)
971 return -1;
972
973 dso->symtab_type = syms_ss->type;
974 dso->is_64_bit = syms_ss->is_64_bit;
975 dso->rel = syms_ss->ehdr.e_type == ET_REL;
976
977 /*
978 * Modules may already have symbols from kallsyms, but those symbols
979 * have the wrong values for the dso maps, so remove them.
980 */
981 if (kmodule && syms_ss->symtab)
982 symbols__delete(&dso->symbols);
983
984 if (!syms_ss->symtab) {
985 /*
986 * If the vmlinux is stripped, fail so we will fall back
987 * to using kallsyms. The vmlinux runtime symbols aren't
988 * of much use.
989 */
990 if (dso->kernel)
991 goto out_elf_end;
992
993 syms_ss->symtab = syms_ss->dynsym;
994 syms_ss->symshdr = syms_ss->dynshdr;
995 }
996
997 elf = syms_ss->elf;
998 ehdr = syms_ss->ehdr;
999 sec = syms_ss->symtab;
1000 shdr = syms_ss->symshdr;
1001
1002 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1003 ".text", NULL))
1004 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1005
1006 if (runtime_ss->opdsec)
1007 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1008
1009 syms = elf_getdata(sec, NULL);
1010 if (syms == NULL)
1011 goto out_elf_end;
1012
1013 sec = elf_getscn(elf, shdr.sh_link);
1014 if (sec == NULL)
1015 goto out_elf_end;
1016
1017 symstrs = elf_getdata(sec, NULL);
1018 if (symstrs == NULL)
1019 goto out_elf_end;
1020
1021 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1022 if (sec_strndx == NULL)
1023 goto out_elf_end;
1024
1025 secstrs = elf_getdata(sec_strndx, NULL);
1026 if (secstrs == NULL)
1027 goto out_elf_end;
1028
1029 nr_syms = shdr.sh_size / shdr.sh_entsize;
1030
1031 memset(&sym, 0, sizeof(sym));
1032
1033 /*
1034 * The kernel relocation symbol is needed in advance in order to adjust
1035 * kernel maps correctly.
1036 */
1037 if (ref_reloc_sym_not_found(kmap)) {
1038 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1039 const char *elf_name = elf_sym__name(&sym, symstrs);
1040
1041 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1042 continue;
1043 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1044 map->reloc = kmap->ref_reloc_sym->addr -
1045 kmap->ref_reloc_sym->unrelocated_addr;
1046 break;
1047 }
1048 }
1049
1050 /*
1051 * Handle any relocation of vdso necessary because older kernels
1052 * attempted to prelink vdso to its virtual address.
1053 */
1054 if (dso__is_vdso(dso))
1055 map->reloc = map->start - dso->text_offset;
1056
1057 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1058 /*
1059 * Initial kernel and module mappings do not map to the dso.
1060 * Flag the fixups.
1061 */
1062 if (dso->kernel || kmodule) {
1063 remap_kernel = true;
1064 adjust_kernel_syms = dso->adjust_symbols;
1065 }
1066 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1067 struct symbol *f;
1068 const char *elf_name = elf_sym__name(&sym, symstrs);
1069 char *demangled = NULL;
1070 int is_label = elf_sym__is_label(&sym);
1071 const char *section_name;
1072 bool used_opd = false;
1073
1074 if (!is_label && !elf_sym__filter(&sym))
1075 continue;
1076
1077 /* Reject ARM ELF "mapping symbols": these aren't unique and
1078 * don't identify functions, so will confuse the profile
1079 * output: */
1080 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1081 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1082 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1083 continue;
1084 }
1085
1086 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1087 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1088 u64 *opd = opddata->d_buf + offset;
1089 sym.st_value = DSO__SWAP(dso, u64, *opd);
1090 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1091 sym.st_value);
1092 used_opd = true;
1093 }
1094 /*
1095 * When loading symbols in a data mapping, ABS symbols (which
1096 * has a value of SHN_ABS in its st_shndx) failed at
1097 * elf_getscn(). And it marks the loading as a failure so
1098 * already loaded symbols cannot be fixed up.
1099 *
1100 * I'm not sure what should be done. Just ignore them for now.
1101 * - Namhyung Kim
1102 */
1103 if (sym.st_shndx == SHN_ABS)
1104 continue;
1105
1106 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1107 if (!sec)
1108 goto out_elf_end;
1109
1110 gelf_getshdr(sec, &shdr);
1111
1112 if (is_label && !elf_sec__filter(&shdr, secstrs))
1113 continue;
1114
1115 section_name = elf_sec__name(&shdr, secstrs);
1116
1117 /* On ARM, symbols for thumb functions have 1 added to
1118 * the symbol address as a flag - remove it */
1119 if ((ehdr.e_machine == EM_ARM) &&
1120 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1121 (sym.st_value & 1))
1122 --sym.st_value;
1123
1124 if (dso->kernel || kmodule) {
1125 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1126 section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1127 goto out_elf_end;
1128 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1129 (!used_opd && syms_ss->adjust_symbols)) {
1130 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1131 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1132 (u64)sym.st_value, (u64)shdr.sh_addr,
1133 (u64)shdr.sh_offset);
1134 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1135 }
1136
1137 demangled = demangle_sym(dso, kmodule, elf_name);
1138 if (demangled != NULL)
1139 elf_name = demangled;
1140
1141 f = symbol__new(sym.st_value, sym.st_size,
1142 GELF_ST_BIND(sym.st_info),
1143 GELF_ST_TYPE(sym.st_info), elf_name);
1144 free(demangled);
1145 if (!f)
1146 goto out_elf_end;
1147
1148 arch__sym_update(f, &sym);
1149
1150 __symbols__insert(&curr_dso->symbols, f, dso->kernel);
1151 nr++;
1152 }
1153
1154 /*
1155 * For misannotated, zeroed, ASM function sizes.
1156 */
1157 if (nr > 0) {
1158 symbols__fixup_end(&dso->symbols);
1159 symbols__fixup_duplicate(&dso->symbols);
1160 if (kmap) {
1161 /*
1162 * We need to fixup this here too because we create new
1163 * maps here, for things like vsyscall sections.
1164 */
1165 map_groups__fixup_end(kmaps);
1166 }
1167 }
1168 err = nr;
1169out_elf_end:
1170 return err;
1171}
1172
1173static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1174{
1175 GElf_Phdr phdr;
1176 size_t i, phdrnum;
1177 int err;
1178 u64 sz;
1179
1180 if (elf_getphdrnum(elf, &phdrnum))
1181 return -1;
1182
1183 for (i = 0; i < phdrnum; i++) {
1184 if (gelf_getphdr(elf, i, &phdr) == NULL)
1185 return -1;
1186 if (phdr.p_type != PT_LOAD)
1187 continue;
1188 if (exe) {
1189 if (!(phdr.p_flags & PF_X))
1190 continue;
1191 } else {
1192 if (!(phdr.p_flags & PF_R))
1193 continue;
1194 }
1195 sz = min(phdr.p_memsz, phdr.p_filesz);
1196 if (!sz)
1197 continue;
1198 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1199 if (err)
1200 return err;
1201 }
1202 return 0;
1203}
1204
1205int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1206 bool *is_64_bit)
1207{
1208 int err;
1209 Elf *elf;
1210
1211 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1212 if (elf == NULL)
1213 return -1;
1214
1215 if (is_64_bit)
1216 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1217
1218 err = elf_read_maps(elf, exe, mapfn, data);
1219
1220 elf_end(elf);
1221 return err;
1222}
1223
1224enum dso_type dso__type_fd(int fd)
1225{
1226 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1227 GElf_Ehdr ehdr;
1228 Elf_Kind ek;
1229 Elf *elf;
1230
1231 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1232 if (elf == NULL)
1233 goto out;
1234
1235 ek = elf_kind(elf);
1236 if (ek != ELF_K_ELF)
1237 goto out_end;
1238
1239 if (gelf_getclass(elf) == ELFCLASS64) {
1240 dso_type = DSO__TYPE_64BIT;
1241 goto out_end;
1242 }
1243
1244 if (gelf_getehdr(elf, &ehdr) == NULL)
1245 goto out_end;
1246
1247 if (ehdr.e_machine == EM_X86_64)
1248 dso_type = DSO__TYPE_X32BIT;
1249 else
1250 dso_type = DSO__TYPE_32BIT;
1251out_end:
1252 elf_end(elf);
1253out:
1254 return dso_type;
1255}
1256
1257static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1258{
1259 ssize_t r;
1260 size_t n;
1261 int err = -1;
1262 char *buf = malloc(page_size);
1263
1264 if (buf == NULL)
1265 return -1;
1266
1267 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1268 goto out;
1269
1270 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1271 goto out;
1272
1273 while (len) {
1274 n = page_size;
1275 if (len < n)
1276 n = len;
1277 /* Use read because mmap won't work on proc files */
1278 r = read(from, buf, n);
1279 if (r < 0)
1280 goto out;
1281 if (!r)
1282 break;
1283 n = r;
1284 r = write(to, buf, n);
1285 if (r < 0)
1286 goto out;
1287 if ((size_t)r != n)
1288 goto out;
1289 len -= n;
1290 }
1291
1292 err = 0;
1293out:
1294 free(buf);
1295 return err;
1296}
1297
1298struct kcore {
1299 int fd;
1300 int elfclass;
1301 Elf *elf;
1302 GElf_Ehdr ehdr;
1303};
1304
1305static int kcore__open(struct kcore *kcore, const char *filename)
1306{
1307 GElf_Ehdr *ehdr;
1308
1309 kcore->fd = open(filename, O_RDONLY);
1310 if (kcore->fd == -1)
1311 return -1;
1312
1313 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1314 if (!kcore->elf)
1315 goto out_close;
1316
1317 kcore->elfclass = gelf_getclass(kcore->elf);
1318 if (kcore->elfclass == ELFCLASSNONE)
1319 goto out_end;
1320
1321 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1322 if (!ehdr)
1323 goto out_end;
1324
1325 return 0;
1326
1327out_end:
1328 elf_end(kcore->elf);
1329out_close:
1330 close(kcore->fd);
1331 return -1;
1332}
1333
1334static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1335 bool temp)
1336{
1337 kcore->elfclass = elfclass;
1338
1339 if (temp)
1340 kcore->fd = mkstemp(filename);
1341 else
1342 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1343 if (kcore->fd == -1)
1344 return -1;
1345
1346 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1347 if (!kcore->elf)
1348 goto out_close;
1349
1350 if (!gelf_newehdr(kcore->elf, elfclass))
1351 goto out_end;
1352
1353 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1354
1355 return 0;
1356
1357out_end:
1358 elf_end(kcore->elf);
1359out_close:
1360 close(kcore->fd);
1361 unlink(filename);
1362 return -1;
1363}
1364
1365static void kcore__close(struct kcore *kcore)
1366{
1367 elf_end(kcore->elf);
1368 close(kcore->fd);
1369}
1370
1371static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1372{
1373 GElf_Ehdr *ehdr = &to->ehdr;
1374 GElf_Ehdr *kehdr = &from->ehdr;
1375
1376 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1377 ehdr->e_type = kehdr->e_type;
1378 ehdr->e_machine = kehdr->e_machine;
1379 ehdr->e_version = kehdr->e_version;
1380 ehdr->e_entry = 0;
1381 ehdr->e_shoff = 0;
1382 ehdr->e_flags = kehdr->e_flags;
1383 ehdr->e_phnum = count;
1384 ehdr->e_shentsize = 0;
1385 ehdr->e_shnum = 0;
1386 ehdr->e_shstrndx = 0;
1387
1388 if (from->elfclass == ELFCLASS32) {
1389 ehdr->e_phoff = sizeof(Elf32_Ehdr);
1390 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
1391 ehdr->e_phentsize = sizeof(Elf32_Phdr);
1392 } else {
1393 ehdr->e_phoff = sizeof(Elf64_Ehdr);
1394 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1395 ehdr->e_phentsize = sizeof(Elf64_Phdr);
1396 }
1397
1398 if (!gelf_update_ehdr(to->elf, ehdr))
1399 return -1;
1400
1401 if (!gelf_newphdr(to->elf, count))
1402 return -1;
1403
1404 return 0;
1405}
1406
1407static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1408 u64 addr, u64 len)
1409{
1410 GElf_Phdr phdr = {
1411 .p_type = PT_LOAD,
1412 .p_flags = PF_R | PF_W | PF_X,
1413 .p_offset = offset,
1414 .p_vaddr = addr,
1415 .p_paddr = 0,
1416 .p_filesz = len,
1417 .p_memsz = len,
1418 .p_align = page_size,
1419 };
1420
1421 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1422 return -1;
1423
1424 return 0;
1425}
1426
1427static off_t kcore__write(struct kcore *kcore)
1428{
1429 return elf_update(kcore->elf, ELF_C_WRITE);
1430}
1431
1432struct phdr_data {
1433 off_t offset;
1434 off_t rel;
1435 u64 addr;
1436 u64 len;
1437 struct list_head node;
1438 struct phdr_data *remaps;
1439};
1440
1441struct sym_data {
1442 u64 addr;
1443 struct list_head node;
1444};
1445
1446struct kcore_copy_info {
1447 u64 stext;
1448 u64 etext;
1449 u64 first_symbol;
1450 u64 last_symbol;
1451 u64 first_module;
1452 u64 last_module_symbol;
1453 size_t phnum;
1454 struct list_head phdrs;
1455 struct list_head syms;
1456};
1457
1458#define kcore_copy__for_each_phdr(k, p) \
1459 list_for_each_entry((p), &(k)->phdrs, node)
1460
1461static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1462{
1463 struct phdr_data *p = zalloc(sizeof(*p));
1464
1465 if (p) {
1466 p->addr = addr;
1467 p->len = len;
1468 p->offset = offset;
1469 }
1470
1471 return p;
1472}
1473
1474static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1475 u64 addr, u64 len,
1476 off_t offset)
1477{
1478 struct phdr_data *p = phdr_data__new(addr, len, offset);
1479
1480 if (p)
1481 list_add_tail(&p->node, &kci->phdrs);
1482
1483 return p;
1484}
1485
1486static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1487{
1488 struct phdr_data *p, *tmp;
1489
1490 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1491 list_del_init(&p->node);
1492 free(p);
1493 }
1494}
1495
1496static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1497 u64 addr)
1498{
1499 struct sym_data *s = zalloc(sizeof(*s));
1500
1501 if (s) {
1502 s->addr = addr;
1503 list_add_tail(&s->node, &kci->syms);
1504 }
1505
1506 return s;
1507}
1508
1509static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1510{
1511 struct sym_data *s, *tmp;
1512
1513 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1514 list_del_init(&s->node);
1515 free(s);
1516 }
1517}
1518
1519static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1520 u64 start)
1521{
1522 struct kcore_copy_info *kci = arg;
1523
1524 if (!kallsyms__is_function(type))
1525 return 0;
1526
1527 if (strchr(name, '[')) {
1528 if (start > kci->last_module_symbol)
1529 kci->last_module_symbol = start;
1530 return 0;
1531 }
1532
1533 if (!kci->first_symbol || start < kci->first_symbol)
1534 kci->first_symbol = start;
1535
1536 if (!kci->last_symbol || start > kci->last_symbol)
1537 kci->last_symbol = start;
1538
1539 if (!strcmp(name, "_stext")) {
1540 kci->stext = start;
1541 return 0;
1542 }
1543
1544 if (!strcmp(name, "_etext")) {
1545 kci->etext = start;
1546 return 0;
1547 }
1548
1549 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1550 return -1;
1551
1552 return 0;
1553}
1554
1555static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1556 const char *dir)
1557{
1558 char kallsyms_filename[PATH_MAX];
1559
1560 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1561
1562 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1563 return -1;
1564
1565 if (kallsyms__parse(kallsyms_filename, kci,
1566 kcore_copy__process_kallsyms) < 0)
1567 return -1;
1568
1569 return 0;
1570}
1571
1572static int kcore_copy__process_modules(void *arg,
1573 const char *name __maybe_unused,
1574 u64 start, u64 size __maybe_unused)
1575{
1576 struct kcore_copy_info *kci = arg;
1577
1578 if (!kci->first_module || start < kci->first_module)
1579 kci->first_module = start;
1580
1581 return 0;
1582}
1583
1584static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1585 const char *dir)
1586{
1587 char modules_filename[PATH_MAX];
1588
1589 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1590
1591 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1592 return -1;
1593
1594 if (modules__parse(modules_filename, kci,
1595 kcore_copy__process_modules) < 0)
1596 return -1;
1597
1598 return 0;
1599}
1600
1601static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1602 u64 pgoff, u64 s, u64 e)
1603{
1604 u64 len, offset;
1605
1606 if (s < start || s >= end)
1607 return 0;
1608
1609 offset = (s - start) + pgoff;
1610 len = e < end ? e - s : end - s;
1611
1612 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1613}
1614
1615static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1616{
1617 struct kcore_copy_info *kci = data;
1618 u64 end = start + len;
1619 struct sym_data *sdat;
1620
1621 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1622 return -1;
1623
1624 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1625 kci->last_module_symbol))
1626 return -1;
1627
1628 list_for_each_entry(sdat, &kci->syms, node) {
1629 u64 s = round_down(sdat->addr, page_size);
1630
1631 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1632 return -1;
1633 }
1634
1635 return 0;
1636}
1637
1638static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1639{
1640 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1641 return -1;
1642
1643 return 0;
1644}
1645
1646static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1647{
1648 struct phdr_data *p, *k = NULL;
1649 u64 kend;
1650
1651 if (!kci->stext)
1652 return;
1653
1654 /* Find phdr that corresponds to the kernel map (contains stext) */
1655 kcore_copy__for_each_phdr(kci, p) {
1656 u64 pend = p->addr + p->len - 1;
1657
1658 if (p->addr <= kci->stext && pend >= kci->stext) {
1659 k = p;
1660 break;
1661 }
1662 }
1663
1664 if (!k)
1665 return;
1666
1667 kend = k->offset + k->len;
1668
1669 /* Find phdrs that remap the kernel */
1670 kcore_copy__for_each_phdr(kci, p) {
1671 u64 pend = p->offset + p->len;
1672
1673 if (p == k)
1674 continue;
1675
1676 if (p->offset >= k->offset && pend <= kend)
1677 p->remaps = k;
1678 }
1679}
1680
1681static void kcore_copy__layout(struct kcore_copy_info *kci)
1682{
1683 struct phdr_data *p;
1684 off_t rel = 0;
1685
1686 kcore_copy__find_remaps(kci);
1687
1688 kcore_copy__for_each_phdr(kci, p) {
1689 if (!p->remaps) {
1690 p->rel = rel;
1691 rel += p->len;
1692 }
1693 kci->phnum += 1;
1694 }
1695
1696 kcore_copy__for_each_phdr(kci, p) {
1697 struct phdr_data *k = p->remaps;
1698
1699 if (k)
1700 p->rel = p->offset - k->offset + k->rel;
1701 }
1702}
1703
1704static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1705 Elf *elf)
1706{
1707 if (kcore_copy__parse_kallsyms(kci, dir))
1708 return -1;
1709
1710 if (kcore_copy__parse_modules(kci, dir))
1711 return -1;
1712
1713 if (kci->stext)
1714 kci->stext = round_down(kci->stext, page_size);
1715 else
1716 kci->stext = round_down(kci->first_symbol, page_size);
1717
1718 if (kci->etext) {
1719 kci->etext = round_up(kci->etext, page_size);
1720 } else if (kci->last_symbol) {
1721 kci->etext = round_up(kci->last_symbol, page_size);
1722 kci->etext += page_size;
1723 }
1724
1725 kci->first_module = round_down(kci->first_module, page_size);
1726
1727 if (kci->last_module_symbol) {
1728 kci->last_module_symbol = round_up(kci->last_module_symbol,
1729 page_size);
1730 kci->last_module_symbol += page_size;
1731 }
1732
1733 if (!kci->stext || !kci->etext)
1734 return -1;
1735
1736 if (kci->first_module && !kci->last_module_symbol)
1737 return -1;
1738
1739 if (kcore_copy__read_maps(kci, elf))
1740 return -1;
1741
1742 kcore_copy__layout(kci);
1743
1744 return 0;
1745}
1746
1747static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1748 const char *name)
1749{
1750 char from_filename[PATH_MAX];
1751 char to_filename[PATH_MAX];
1752
1753 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1754 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1755
1756 return copyfile_mode(from_filename, to_filename, 0400);
1757}
1758
1759static int kcore_copy__unlink(const char *dir, const char *name)
1760{
1761 char filename[PATH_MAX];
1762
1763 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1764
1765 return unlink(filename);
1766}
1767
1768static int kcore_copy__compare_fds(int from, int to)
1769{
1770 char *buf_from;
1771 char *buf_to;
1772 ssize_t ret;
1773 size_t len;
1774 int err = -1;
1775
1776 buf_from = malloc(page_size);
1777 buf_to = malloc(page_size);
1778 if (!buf_from || !buf_to)
1779 goto out;
1780
1781 while (1) {
1782 /* Use read because mmap won't work on proc files */
1783 ret = read(from, buf_from, page_size);
1784 if (ret < 0)
1785 goto out;
1786
1787 if (!ret)
1788 break;
1789
1790 len = ret;
1791
1792 if (readn(to, buf_to, len) != (int)len)
1793 goto out;
1794
1795 if (memcmp(buf_from, buf_to, len))
1796 goto out;
1797 }
1798
1799 err = 0;
1800out:
1801 free(buf_to);
1802 free(buf_from);
1803 return err;
1804}
1805
1806static int kcore_copy__compare_files(const char *from_filename,
1807 const char *to_filename)
1808{
1809 int from, to, err = -1;
1810
1811 from = open(from_filename, O_RDONLY);
1812 if (from < 0)
1813 return -1;
1814
1815 to = open(to_filename, O_RDONLY);
1816 if (to < 0)
1817 goto out_close_from;
1818
1819 err = kcore_copy__compare_fds(from, to);
1820
1821 close(to);
1822out_close_from:
1823 close(from);
1824 return err;
1825}
1826
1827static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1828 const char *name)
1829{
1830 char from_filename[PATH_MAX];
1831 char to_filename[PATH_MAX];
1832
1833 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1834 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1835
1836 return kcore_copy__compare_files(from_filename, to_filename);
1837}
1838
1839/**
1840 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1841 * @from_dir: from directory
1842 * @to_dir: to directory
1843 *
1844 * This function copies kallsyms, modules and kcore files from one directory to
1845 * another. kallsyms and modules are copied entirely. Only code segments are
1846 * copied from kcore. It is assumed that two segments suffice: one for the
1847 * kernel proper and one for all the modules. The code segments are determined
1848 * from kallsyms and modules files. The kernel map starts at _stext or the
1849 * lowest function symbol, and ends at _etext or the highest function symbol.
1850 * The module map starts at the lowest module address and ends at the highest
1851 * module symbol. Start addresses are rounded down to the nearest page. End
1852 * addresses are rounded up to the nearest page. An extra page is added to the
1853 * highest kernel symbol and highest module symbol to, hopefully, encompass that
1854 * symbol too. Because it contains only code sections, the resulting kcore is
1855 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
1856 * is not the same for the kernel map and the modules map. That happens because
1857 * the data is copied adjacently whereas the original kcore has gaps. Finally,
1858 * kallsyms and modules files are compared with their copies to check that
1859 * modules have not been loaded or unloaded while the copies were taking place.
1860 *
1861 * Return: %0 on success, %-1 on failure.
1862 */
1863int kcore_copy(const char *from_dir, const char *to_dir)
1864{
1865 struct kcore kcore;
1866 struct kcore extract;
1867 int idx = 0, err = -1;
1868 off_t offset, sz;
1869 struct kcore_copy_info kci = { .stext = 0, };
1870 char kcore_filename[PATH_MAX];
1871 char extract_filename[PATH_MAX];
1872 struct phdr_data *p;
1873
1874 INIT_LIST_HEAD(&kci.phdrs);
1875 INIT_LIST_HEAD(&kci.syms);
1876
1877 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1878 return -1;
1879
1880 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1881 goto out_unlink_kallsyms;
1882
1883 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1884 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1885
1886 if (kcore__open(&kcore, kcore_filename))
1887 goto out_unlink_modules;
1888
1889 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1890 goto out_kcore_close;
1891
1892 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1893 goto out_kcore_close;
1894
1895 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1896 goto out_extract_close;
1897
1898 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1899 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1900 offset = round_up(offset, page_size);
1901
1902 kcore_copy__for_each_phdr(&kci, p) {
1903 off_t offs = p->rel + offset;
1904
1905 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1906 goto out_extract_close;
1907 }
1908
1909 sz = kcore__write(&extract);
1910 if (sz < 0 || sz > offset)
1911 goto out_extract_close;
1912
1913 kcore_copy__for_each_phdr(&kci, p) {
1914 off_t offs = p->rel + offset;
1915
1916 if (p->remaps)
1917 continue;
1918 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1919 goto out_extract_close;
1920 }
1921
1922 if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1923 goto out_extract_close;
1924
1925 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1926 goto out_extract_close;
1927
1928 err = 0;
1929
1930out_extract_close:
1931 kcore__close(&extract);
1932 if (err)
1933 unlink(extract_filename);
1934out_kcore_close:
1935 kcore__close(&kcore);
1936out_unlink_modules:
1937 if (err)
1938 kcore_copy__unlink(to_dir, "modules");
1939out_unlink_kallsyms:
1940 if (err)
1941 kcore_copy__unlink(to_dir, "kallsyms");
1942
1943 kcore_copy__free_phdrs(&kci);
1944 kcore_copy__free_syms(&kci);
1945
1946 return err;
1947}
1948
1949int kcore_extract__create(struct kcore_extract *kce)
1950{
1951 struct kcore kcore;
1952 struct kcore extract;
1953 size_t count = 1;
1954 int idx = 0, err = -1;
1955 off_t offset = page_size, sz;
1956
1957 if (kcore__open(&kcore, kce->kcore_filename))
1958 return -1;
1959
1960 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1961 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1962 goto out_kcore_close;
1963
1964 if (kcore__copy_hdr(&kcore, &extract, count))
1965 goto out_extract_close;
1966
1967 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1968 goto out_extract_close;
1969
1970 sz = kcore__write(&extract);
1971 if (sz < 0 || sz > offset)
1972 goto out_extract_close;
1973
1974 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1975 goto out_extract_close;
1976
1977 err = 0;
1978
1979out_extract_close:
1980 kcore__close(&extract);
1981 if (err)
1982 unlink(kce->extract_filename);
1983out_kcore_close:
1984 kcore__close(&kcore);
1985
1986 return err;
1987}
1988
1989void kcore_extract__delete(struct kcore_extract *kce)
1990{
1991 unlink(kce->extract_filename);
1992}
1993
1994#ifdef HAVE_GELF_GETNOTE_SUPPORT
1995
1996static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
1997{
1998 if (!base_off)
1999 return;
2000
2001 if (tmp->bit32)
2002 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2003 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2004 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2005 else
2006 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2007 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2008 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2009}
2010
2011static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2012 GElf_Addr base_off)
2013{
2014 if (!base_off)
2015 return;
2016
2017 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2018 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2019 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2020 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2021}
2022
2023/**
2024 * populate_sdt_note : Parse raw data and identify SDT note
2025 * @elf: elf of the opened file
2026 * @data: raw data of a section with description offset applied
2027 * @len: note description size
2028 * @type: type of the note
2029 * @sdt_notes: List to add the SDT note
2030 *
2031 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2032 * if its an SDT note, it appends to @sdt_notes list.
2033 */
2034static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2035 struct list_head *sdt_notes)
2036{
2037 const char *provider, *name, *args;
2038 struct sdt_note *tmp = NULL;
2039 GElf_Ehdr ehdr;
2040 GElf_Shdr shdr;
2041 int ret = -EINVAL;
2042
2043 union {
2044 Elf64_Addr a64[NR_ADDR];
2045 Elf32_Addr a32[NR_ADDR];
2046 } buf;
2047
2048 Elf_Data dst = {
2049 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2050 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2051 .d_off = 0, .d_align = 0
2052 };
2053 Elf_Data src = {
2054 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2055 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2056 .d_align = 0
2057 };
2058
2059 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2060 if (!tmp) {
2061 ret = -ENOMEM;
2062 goto out_err;
2063 }
2064
2065 INIT_LIST_HEAD(&tmp->note_list);
2066
2067 if (len < dst.d_size + 3)
2068 goto out_free_note;
2069
2070 /* Translation from file representation to memory representation */
2071 if (gelf_xlatetom(*elf, &dst, &src,
2072 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2073 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2074 goto out_free_note;
2075 }
2076
2077 /* Populate the fields of sdt_note */
2078 provider = data + dst.d_size;
2079
2080 name = (const char *)memchr(provider, '\0', data + len - provider);
2081 if (name++ == NULL)
2082 goto out_free_note;
2083
2084 tmp->provider = strdup(provider);
2085 if (!tmp->provider) {
2086 ret = -ENOMEM;
2087 goto out_free_note;
2088 }
2089 tmp->name = strdup(name);
2090 if (!tmp->name) {
2091 ret = -ENOMEM;
2092 goto out_free_prov;
2093 }
2094
2095 args = memchr(name, '\0', data + len - name);
2096
2097 /*
2098 * There is no argument if:
2099 * - We reached the end of the note;
2100 * - There is not enough room to hold a potential string;
2101 * - The argument string is empty or just contains ':'.
2102 */
2103 if (args == NULL || data + len - args < 2 ||
2104 args[1] == ':' || args[1] == '\0')
2105 tmp->args = NULL;
2106 else {
2107 tmp->args = strdup(++args);
2108 if (!tmp->args) {
2109 ret = -ENOMEM;
2110 goto out_free_name;
2111 }
2112 }
2113
2114 if (gelf_getclass(*elf) == ELFCLASS32) {
2115 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2116 tmp->bit32 = true;
2117 } else {
2118 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2119 tmp->bit32 = false;
2120 }
2121
2122 if (!gelf_getehdr(*elf, &ehdr)) {
2123 pr_debug("%s : cannot get elf header.\n", __func__);
2124 ret = -EBADF;
2125 goto out_free_args;
2126 }
2127
2128 /* Adjust the prelink effect :
2129 * Find out the .stapsdt.base section.
2130 * This scn will help us to handle prelinking (if present).
2131 * Compare the retrieved file offset of the base section with the
2132 * base address in the description of the SDT note. If its different,
2133 * then accordingly, adjust the note location.
2134 */
2135 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2136 sdt_adjust_loc(tmp, shdr.sh_offset);
2137
2138 /* Adjust reference counter offset */
2139 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2140 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2141
2142 list_add_tail(&tmp->note_list, sdt_notes);
2143 return 0;
2144
2145out_free_args:
2146 zfree(&tmp->args);
2147out_free_name:
2148 zfree(&tmp->name);
2149out_free_prov:
2150 zfree(&tmp->provider);
2151out_free_note:
2152 free(tmp);
2153out_err:
2154 return ret;
2155}
2156
2157/**
2158 * construct_sdt_notes_list : constructs a list of SDT notes
2159 * @elf : elf to look into
2160 * @sdt_notes : empty list_head
2161 *
2162 * Scans the sections in 'elf' for the section
2163 * .note.stapsdt. It, then calls populate_sdt_note to find
2164 * out the SDT events and populates the 'sdt_notes'.
2165 */
2166static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2167{
2168 GElf_Ehdr ehdr;
2169 Elf_Scn *scn = NULL;
2170 Elf_Data *data;
2171 GElf_Shdr shdr;
2172 size_t shstrndx, next;
2173 GElf_Nhdr nhdr;
2174 size_t name_off, desc_off, offset;
2175 int ret = 0;
2176
2177 if (gelf_getehdr(elf, &ehdr) == NULL) {
2178 ret = -EBADF;
2179 goto out_ret;
2180 }
2181 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2182 ret = -EBADF;
2183 goto out_ret;
2184 }
2185
2186 /* Look for the required section */
2187 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2188 if (!scn) {
2189 ret = -ENOENT;
2190 goto out_ret;
2191 }
2192
2193 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2194 ret = -ENOENT;
2195 goto out_ret;
2196 }
2197
2198 data = elf_getdata(scn, NULL);
2199
2200 /* Get the SDT notes */
2201 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2202 &desc_off)) > 0; offset = next) {
2203 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2204 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2205 sizeof(SDT_NOTE_NAME))) {
2206 /* Check the type of the note */
2207 if (nhdr.n_type != SDT_NOTE_TYPE)
2208 goto out_ret;
2209
2210 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2211 nhdr.n_descsz, sdt_notes);
2212 if (ret < 0)
2213 goto out_ret;
2214 }
2215 }
2216 if (list_empty(sdt_notes))
2217 ret = -ENOENT;
2218
2219out_ret:
2220 return ret;
2221}
2222
2223/**
2224 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2225 * @head : empty list_head
2226 * @target : file to find SDT notes from
2227 *
2228 * This opens the file, initializes
2229 * the ELF and then calls construct_sdt_notes_list.
2230 */
2231int get_sdt_note_list(struct list_head *head, const char *target)
2232{
2233 Elf *elf;
2234 int fd, ret;
2235
2236 fd = open(target, O_RDONLY);
2237 if (fd < 0)
2238 return -EBADF;
2239
2240 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2241 if (!elf) {
2242 ret = -EBADF;
2243 goto out_close;
2244 }
2245 ret = construct_sdt_notes_list(elf, head);
2246 elf_end(elf);
2247out_close:
2248 close(fd);
2249 return ret;
2250}
2251
2252/**
2253 * cleanup_sdt_note_list : free the sdt notes' list
2254 * @sdt_notes: sdt notes' list
2255 *
2256 * Free up the SDT notes in @sdt_notes.
2257 * Returns the number of SDT notes free'd.
2258 */
2259int cleanup_sdt_note_list(struct list_head *sdt_notes)
2260{
2261 struct sdt_note *tmp, *pos;
2262 int nr_free = 0;
2263
2264 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2265 list_del_init(&pos->note_list);
2266 zfree(&pos->name);
2267 zfree(&pos->provider);
2268 free(pos);
2269 nr_free++;
2270 }
2271 return nr_free;
2272}
2273
2274/**
2275 * sdt_notes__get_count: Counts the number of sdt events
2276 * @start: list_head to sdt_notes list
2277 *
2278 * Returns the number of SDT notes in a list
2279 */
2280int sdt_notes__get_count(struct list_head *start)
2281{
2282 struct sdt_note *sdt_ptr;
2283 int count = 0;
2284
2285 list_for_each_entry(sdt_ptr, start, note_list)
2286 count++;
2287 return count;
2288}
2289#endif
2290
2291void symbol__elf_init(void)
2292{
2293 elf_version(EV_CURRENT);
2294}