Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <regex.h>
10#include <stdio.h>
11#include <stdlib.h>
12#include <linux/compiler.h>
13#include <linux/list.h>
14#include <linux/kernel.h>
15#include <linux/bitops.h>
16#include <linux/string.h>
17#include <linux/stringify.h>
18#include <linux/zalloc.h>
19#include <sys/stat.h>
20#include <sys/utsname.h>
21#include <linux/time64.h>
22#include <dirent.h>
23#ifdef HAVE_LIBBPF_SUPPORT
24#include <bpf/libbpf.h>
25#endif
26#include <perf/cpumap.h>
27
28#include "dso.h"
29#include "evlist.h"
30#include "evsel.h"
31#include "util/evsel_fprintf.h"
32#include "header.h"
33#include "memswap.h"
34#include "trace-event.h"
35#include "session.h"
36#include "symbol.h"
37#include "debug.h"
38#include "cpumap.h"
39#include "pmu.h"
40#include "vdso.h"
41#include "strbuf.h"
42#include "build-id.h"
43#include "data.h"
44#include <api/fs/fs.h>
45#include "asm/bug.h"
46#include "tool.h"
47#include "time-utils.h"
48#include "units.h"
49#include "util/util.h" // perf_exe()
50#include "cputopo.h"
51#include "bpf-event.h"
52#include "bpf-utils.h"
53#include "clockid.h"
54#include "pmu-hybrid.h"
55
56#include <linux/ctype.h>
57#include <internal/lib.h>
58
59#ifdef HAVE_LIBTRACEEVENT
60#include <traceevent/event-parse.h>
61#endif
62
63/*
64 * magic2 = "PERFILE2"
65 * must be a numerical value to let the endianness
66 * determine the memory layout. That way we are able
67 * to detect endianness when reading the perf.data file
68 * back.
69 *
70 * we check for legacy (PERFFILE) format.
71 */
72static const char *__perf_magic1 = "PERFFILE";
73static const u64 __perf_magic2 = 0x32454c4946524550ULL;
74static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
75
76#define PERF_MAGIC __perf_magic2
77
78const char perf_version_string[] = PERF_VERSION;
79
80struct perf_file_attr {
81 struct perf_event_attr attr;
82 struct perf_file_section ids;
83};
84
85void perf_header__set_feat(struct perf_header *header, int feat)
86{
87 __set_bit(feat, header->adds_features);
88}
89
90void perf_header__clear_feat(struct perf_header *header, int feat)
91{
92 __clear_bit(feat, header->adds_features);
93}
94
95bool perf_header__has_feat(const struct perf_header *header, int feat)
96{
97 return test_bit(feat, header->adds_features);
98}
99
100static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
101{
102 ssize_t ret = writen(ff->fd, buf, size);
103
104 if (ret != (ssize_t)size)
105 return ret < 0 ? (int)ret : -1;
106 return 0;
107}
108
109static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
110{
111 /* struct perf_event_header::size is u16 */
112 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
113 size_t new_size = ff->size;
114 void *addr;
115
116 if (size + ff->offset > max_size)
117 return -E2BIG;
118
119 while (size > (new_size - ff->offset))
120 new_size <<= 1;
121 new_size = min(max_size, new_size);
122
123 if (ff->size < new_size) {
124 addr = realloc(ff->buf, new_size);
125 if (!addr)
126 return -ENOMEM;
127 ff->buf = addr;
128 ff->size = new_size;
129 }
130
131 memcpy(ff->buf + ff->offset, buf, size);
132 ff->offset += size;
133
134 return 0;
135}
136
137/* Return: 0 if succeeded, -ERR if failed. */
138int do_write(struct feat_fd *ff, const void *buf, size_t size)
139{
140 if (!ff->buf)
141 return __do_write_fd(ff, buf, size);
142 return __do_write_buf(ff, buf, size);
143}
144
145/* Return: 0 if succeeded, -ERR if failed. */
146static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
147{
148 u64 *p = (u64 *) set;
149 int i, ret;
150
151 ret = do_write(ff, &size, sizeof(size));
152 if (ret < 0)
153 return ret;
154
155 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
156 ret = do_write(ff, p + i, sizeof(*p));
157 if (ret < 0)
158 return ret;
159 }
160
161 return 0;
162}
163
164/* Return: 0 if succeeded, -ERR if failed. */
165int write_padded(struct feat_fd *ff, const void *bf,
166 size_t count, size_t count_aligned)
167{
168 static const char zero_buf[NAME_ALIGN];
169 int err = do_write(ff, bf, count);
170
171 if (!err)
172 err = do_write(ff, zero_buf, count_aligned - count);
173
174 return err;
175}
176
177#define string_size(str) \
178 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
179
180/* Return: 0 if succeeded, -ERR if failed. */
181static int do_write_string(struct feat_fd *ff, const char *str)
182{
183 u32 len, olen;
184 int ret;
185
186 olen = strlen(str) + 1;
187 len = PERF_ALIGN(olen, NAME_ALIGN);
188
189 /* write len, incl. \0 */
190 ret = do_write(ff, &len, sizeof(len));
191 if (ret < 0)
192 return ret;
193
194 return write_padded(ff, str, olen, len);
195}
196
197static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
198{
199 ssize_t ret = readn(ff->fd, addr, size);
200
201 if (ret != size)
202 return ret < 0 ? (int)ret : -1;
203 return 0;
204}
205
206static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
207{
208 if (size > (ssize_t)ff->size - ff->offset)
209 return -1;
210
211 memcpy(addr, ff->buf + ff->offset, size);
212 ff->offset += size;
213
214 return 0;
215
216}
217
218static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
219{
220 if (!ff->buf)
221 return __do_read_fd(ff, addr, size);
222 return __do_read_buf(ff, addr, size);
223}
224
225static int do_read_u32(struct feat_fd *ff, u32 *addr)
226{
227 int ret;
228
229 ret = __do_read(ff, addr, sizeof(*addr));
230 if (ret)
231 return ret;
232
233 if (ff->ph->needs_swap)
234 *addr = bswap_32(*addr);
235 return 0;
236}
237
238static int do_read_u64(struct feat_fd *ff, u64 *addr)
239{
240 int ret;
241
242 ret = __do_read(ff, addr, sizeof(*addr));
243 if (ret)
244 return ret;
245
246 if (ff->ph->needs_swap)
247 *addr = bswap_64(*addr);
248 return 0;
249}
250
251static char *do_read_string(struct feat_fd *ff)
252{
253 u32 len;
254 char *buf;
255
256 if (do_read_u32(ff, &len))
257 return NULL;
258
259 buf = malloc(len);
260 if (!buf)
261 return NULL;
262
263 if (!__do_read(ff, buf, len)) {
264 /*
265 * strings are padded by zeroes
266 * thus the actual strlen of buf
267 * may be less than len
268 */
269 return buf;
270 }
271
272 free(buf);
273 return NULL;
274}
275
276/* Return: 0 if succeeded, -ERR if failed. */
277static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
278{
279 unsigned long *set;
280 u64 size, *p;
281 int i, ret;
282
283 ret = do_read_u64(ff, &size);
284 if (ret)
285 return ret;
286
287 set = bitmap_zalloc(size);
288 if (!set)
289 return -ENOMEM;
290
291 p = (u64 *) set;
292
293 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
294 ret = do_read_u64(ff, p + i);
295 if (ret < 0) {
296 free(set);
297 return ret;
298 }
299 }
300
301 *pset = set;
302 *psize = size;
303 return 0;
304}
305
306#ifdef HAVE_LIBTRACEEVENT
307static int write_tracing_data(struct feat_fd *ff,
308 struct evlist *evlist)
309{
310 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
311 return -1;
312
313 return read_tracing_data(ff->fd, &evlist->core.entries);
314}
315#endif
316
317static int write_build_id(struct feat_fd *ff,
318 struct evlist *evlist __maybe_unused)
319{
320 struct perf_session *session;
321 int err;
322
323 session = container_of(ff->ph, struct perf_session, header);
324
325 if (!perf_session__read_build_ids(session, true))
326 return -1;
327
328 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
329 return -1;
330
331 err = perf_session__write_buildid_table(session, ff);
332 if (err < 0) {
333 pr_debug("failed to write buildid table\n");
334 return err;
335 }
336 perf_session__cache_build_ids(session);
337
338 return 0;
339}
340
341static int write_hostname(struct feat_fd *ff,
342 struct evlist *evlist __maybe_unused)
343{
344 struct utsname uts;
345 int ret;
346
347 ret = uname(&uts);
348 if (ret < 0)
349 return -1;
350
351 return do_write_string(ff, uts.nodename);
352}
353
354static int write_osrelease(struct feat_fd *ff,
355 struct evlist *evlist __maybe_unused)
356{
357 struct utsname uts;
358 int ret;
359
360 ret = uname(&uts);
361 if (ret < 0)
362 return -1;
363
364 return do_write_string(ff, uts.release);
365}
366
367static int write_arch(struct feat_fd *ff,
368 struct evlist *evlist __maybe_unused)
369{
370 struct utsname uts;
371 int ret;
372
373 ret = uname(&uts);
374 if (ret < 0)
375 return -1;
376
377 return do_write_string(ff, uts.machine);
378}
379
380static int write_version(struct feat_fd *ff,
381 struct evlist *evlist __maybe_unused)
382{
383 return do_write_string(ff, perf_version_string);
384}
385
386static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
387{
388 FILE *file;
389 char *buf = NULL;
390 char *s, *p;
391 const char *search = cpuinfo_proc;
392 size_t len = 0;
393 int ret = -1;
394
395 if (!search)
396 return -1;
397
398 file = fopen("/proc/cpuinfo", "r");
399 if (!file)
400 return -1;
401
402 while (getline(&buf, &len, file) > 0) {
403 ret = strncmp(buf, search, strlen(search));
404 if (!ret)
405 break;
406 }
407
408 if (ret) {
409 ret = -1;
410 goto done;
411 }
412
413 s = buf;
414
415 p = strchr(buf, ':');
416 if (p && *(p+1) == ' ' && *(p+2))
417 s = p + 2;
418 p = strchr(s, '\n');
419 if (p)
420 *p = '\0';
421
422 /* squash extra space characters (branding string) */
423 p = s;
424 while (*p) {
425 if (isspace(*p)) {
426 char *r = p + 1;
427 char *q = skip_spaces(r);
428 *p = ' ';
429 if (q != (p+1))
430 while ((*r++ = *q++));
431 }
432 p++;
433 }
434 ret = do_write_string(ff, s);
435done:
436 free(buf);
437 fclose(file);
438 return ret;
439}
440
441static int write_cpudesc(struct feat_fd *ff,
442 struct evlist *evlist __maybe_unused)
443{
444#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
445#define CPUINFO_PROC { "cpu", }
446#elif defined(__s390__)
447#define CPUINFO_PROC { "vendor_id", }
448#elif defined(__sh__)
449#define CPUINFO_PROC { "cpu type", }
450#elif defined(__alpha__) || defined(__mips__)
451#define CPUINFO_PROC { "cpu model", }
452#elif defined(__arm__)
453#define CPUINFO_PROC { "model name", "Processor", }
454#elif defined(__arc__)
455#define CPUINFO_PROC { "Processor", }
456#elif defined(__xtensa__)
457#define CPUINFO_PROC { "core ID", }
458#else
459#define CPUINFO_PROC { "model name", }
460#endif
461 const char *cpuinfo_procs[] = CPUINFO_PROC;
462#undef CPUINFO_PROC
463 unsigned int i;
464
465 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
466 int ret;
467 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
468 if (ret >= 0)
469 return ret;
470 }
471 return -1;
472}
473
474
475static int write_nrcpus(struct feat_fd *ff,
476 struct evlist *evlist __maybe_unused)
477{
478 long nr;
479 u32 nrc, nra;
480 int ret;
481
482 nrc = cpu__max_present_cpu().cpu;
483
484 nr = sysconf(_SC_NPROCESSORS_ONLN);
485 if (nr < 0)
486 return -1;
487
488 nra = (u32)(nr & UINT_MAX);
489
490 ret = do_write(ff, &nrc, sizeof(nrc));
491 if (ret < 0)
492 return ret;
493
494 return do_write(ff, &nra, sizeof(nra));
495}
496
497static int write_event_desc(struct feat_fd *ff,
498 struct evlist *evlist)
499{
500 struct evsel *evsel;
501 u32 nre, nri, sz;
502 int ret;
503
504 nre = evlist->core.nr_entries;
505
506 /*
507 * write number of events
508 */
509 ret = do_write(ff, &nre, sizeof(nre));
510 if (ret < 0)
511 return ret;
512
513 /*
514 * size of perf_event_attr struct
515 */
516 sz = (u32)sizeof(evsel->core.attr);
517 ret = do_write(ff, &sz, sizeof(sz));
518 if (ret < 0)
519 return ret;
520
521 evlist__for_each_entry(evlist, evsel) {
522 ret = do_write(ff, &evsel->core.attr, sz);
523 if (ret < 0)
524 return ret;
525 /*
526 * write number of unique id per event
527 * there is one id per instance of an event
528 *
529 * copy into an nri to be independent of the
530 * type of ids,
531 */
532 nri = evsel->core.ids;
533 ret = do_write(ff, &nri, sizeof(nri));
534 if (ret < 0)
535 return ret;
536
537 /*
538 * write event string as passed on cmdline
539 */
540 ret = do_write_string(ff, evsel__name(evsel));
541 if (ret < 0)
542 return ret;
543 /*
544 * write unique ids for this event
545 */
546 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
547 if (ret < 0)
548 return ret;
549 }
550 return 0;
551}
552
553static int write_cmdline(struct feat_fd *ff,
554 struct evlist *evlist __maybe_unused)
555{
556 char pbuf[MAXPATHLEN], *buf;
557 int i, ret, n;
558
559 /* actual path to perf binary */
560 buf = perf_exe(pbuf, MAXPATHLEN);
561
562 /* account for binary path */
563 n = perf_env.nr_cmdline + 1;
564
565 ret = do_write(ff, &n, sizeof(n));
566 if (ret < 0)
567 return ret;
568
569 ret = do_write_string(ff, buf);
570 if (ret < 0)
571 return ret;
572
573 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
574 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
575 if (ret < 0)
576 return ret;
577 }
578 return 0;
579}
580
581
582static int write_cpu_topology(struct feat_fd *ff,
583 struct evlist *evlist __maybe_unused)
584{
585 struct cpu_topology *tp;
586 u32 i;
587 int ret, j;
588
589 tp = cpu_topology__new();
590 if (!tp)
591 return -1;
592
593 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
594 if (ret < 0)
595 goto done;
596
597 for (i = 0; i < tp->package_cpus_lists; i++) {
598 ret = do_write_string(ff, tp->package_cpus_list[i]);
599 if (ret < 0)
600 goto done;
601 }
602 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
603 if (ret < 0)
604 goto done;
605
606 for (i = 0; i < tp->core_cpus_lists; i++) {
607 ret = do_write_string(ff, tp->core_cpus_list[i]);
608 if (ret < 0)
609 break;
610 }
611
612 ret = perf_env__read_cpu_topology_map(&perf_env);
613 if (ret < 0)
614 goto done;
615
616 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
617 ret = do_write(ff, &perf_env.cpu[j].core_id,
618 sizeof(perf_env.cpu[j].core_id));
619 if (ret < 0)
620 return ret;
621 ret = do_write(ff, &perf_env.cpu[j].socket_id,
622 sizeof(perf_env.cpu[j].socket_id));
623 if (ret < 0)
624 return ret;
625 }
626
627 if (!tp->die_cpus_lists)
628 goto done;
629
630 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
631 if (ret < 0)
632 goto done;
633
634 for (i = 0; i < tp->die_cpus_lists; i++) {
635 ret = do_write_string(ff, tp->die_cpus_list[i]);
636 if (ret < 0)
637 goto done;
638 }
639
640 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
641 ret = do_write(ff, &perf_env.cpu[j].die_id,
642 sizeof(perf_env.cpu[j].die_id));
643 if (ret < 0)
644 return ret;
645 }
646
647done:
648 cpu_topology__delete(tp);
649 return ret;
650}
651
652
653
654static int write_total_mem(struct feat_fd *ff,
655 struct evlist *evlist __maybe_unused)
656{
657 char *buf = NULL;
658 FILE *fp;
659 size_t len = 0;
660 int ret = -1, n;
661 uint64_t mem;
662
663 fp = fopen("/proc/meminfo", "r");
664 if (!fp)
665 return -1;
666
667 while (getline(&buf, &len, fp) > 0) {
668 ret = strncmp(buf, "MemTotal:", 9);
669 if (!ret)
670 break;
671 }
672 if (!ret) {
673 n = sscanf(buf, "%*s %"PRIu64, &mem);
674 if (n == 1)
675 ret = do_write(ff, &mem, sizeof(mem));
676 } else
677 ret = -1;
678 free(buf);
679 fclose(fp);
680 return ret;
681}
682
683static int write_numa_topology(struct feat_fd *ff,
684 struct evlist *evlist __maybe_unused)
685{
686 struct numa_topology *tp;
687 int ret = -1;
688 u32 i;
689
690 tp = numa_topology__new();
691 if (!tp)
692 return -ENOMEM;
693
694 ret = do_write(ff, &tp->nr, sizeof(u32));
695 if (ret < 0)
696 goto err;
697
698 for (i = 0; i < tp->nr; i++) {
699 struct numa_topology_node *n = &tp->nodes[i];
700
701 ret = do_write(ff, &n->node, sizeof(u32));
702 if (ret < 0)
703 goto err;
704
705 ret = do_write(ff, &n->mem_total, sizeof(u64));
706 if (ret)
707 goto err;
708
709 ret = do_write(ff, &n->mem_free, sizeof(u64));
710 if (ret)
711 goto err;
712
713 ret = do_write_string(ff, n->cpus);
714 if (ret < 0)
715 goto err;
716 }
717
718 ret = 0;
719
720err:
721 numa_topology__delete(tp);
722 return ret;
723}
724
725/*
726 * File format:
727 *
728 * struct pmu_mappings {
729 * u32 pmu_num;
730 * struct pmu_map {
731 * u32 type;
732 * char name[];
733 * }[pmu_num];
734 * };
735 */
736
737static int write_pmu_mappings(struct feat_fd *ff,
738 struct evlist *evlist __maybe_unused)
739{
740 struct perf_pmu *pmu = NULL;
741 u32 pmu_num = 0;
742 int ret;
743
744 /*
745 * Do a first pass to count number of pmu to avoid lseek so this
746 * works in pipe mode as well.
747 */
748 while ((pmu = perf_pmu__scan(pmu))) {
749 if (!pmu->name)
750 continue;
751 pmu_num++;
752 }
753
754 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 if (ret < 0)
756 return ret;
757
758 while ((pmu = perf_pmu__scan(pmu))) {
759 if (!pmu->name)
760 continue;
761
762 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
763 if (ret < 0)
764 return ret;
765
766 ret = do_write_string(ff, pmu->name);
767 if (ret < 0)
768 return ret;
769 }
770
771 return 0;
772}
773
774/*
775 * File format:
776 *
777 * struct group_descs {
778 * u32 nr_groups;
779 * struct group_desc {
780 * char name[];
781 * u32 leader_idx;
782 * u32 nr_members;
783 * }[nr_groups];
784 * };
785 */
786static int write_group_desc(struct feat_fd *ff,
787 struct evlist *evlist)
788{
789 u32 nr_groups = evlist->core.nr_groups;
790 struct evsel *evsel;
791 int ret;
792
793 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
794 if (ret < 0)
795 return ret;
796
797 evlist__for_each_entry(evlist, evsel) {
798 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
799 const char *name = evsel->group_name ?: "{anon_group}";
800 u32 leader_idx = evsel->core.idx;
801 u32 nr_members = evsel->core.nr_members;
802
803 ret = do_write_string(ff, name);
804 if (ret < 0)
805 return ret;
806
807 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
808 if (ret < 0)
809 return ret;
810
811 ret = do_write(ff, &nr_members, sizeof(nr_members));
812 if (ret < 0)
813 return ret;
814 }
815 }
816 return 0;
817}
818
819/*
820 * Return the CPU id as a raw string.
821 *
822 * Each architecture should provide a more precise id string that
823 * can be use to match the architecture's "mapfile".
824 */
825char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
826{
827 return NULL;
828}
829
830/* Return zero when the cpuid from the mapfile.csv matches the
831 * cpuid string generated on this platform.
832 * Otherwise return non-zero.
833 */
834int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
835{
836 regex_t re;
837 regmatch_t pmatch[1];
838 int match;
839
840 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
841 /* Warn unable to generate match particular string. */
842 pr_info("Invalid regular expression %s\n", mapcpuid);
843 return 1;
844 }
845
846 match = !regexec(&re, cpuid, 1, pmatch, 0);
847 regfree(&re);
848 if (match) {
849 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
850
851 /* Verify the entire string matched. */
852 if (match_len == strlen(cpuid))
853 return 0;
854 }
855 return 1;
856}
857
858/*
859 * default get_cpuid(): nothing gets recorded
860 * actual implementation must be in arch/$(SRCARCH)/util/header.c
861 */
862int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
863{
864 return ENOSYS; /* Not implemented */
865}
866
867static int write_cpuid(struct feat_fd *ff,
868 struct evlist *evlist __maybe_unused)
869{
870 char buffer[64];
871 int ret;
872
873 ret = get_cpuid(buffer, sizeof(buffer));
874 if (ret)
875 return -1;
876
877 return do_write_string(ff, buffer);
878}
879
880static int write_branch_stack(struct feat_fd *ff __maybe_unused,
881 struct evlist *evlist __maybe_unused)
882{
883 return 0;
884}
885
886static int write_auxtrace(struct feat_fd *ff,
887 struct evlist *evlist __maybe_unused)
888{
889 struct perf_session *session;
890 int err;
891
892 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
893 return -1;
894
895 session = container_of(ff->ph, struct perf_session, header);
896
897 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
898 if (err < 0)
899 pr_err("Failed to write auxtrace index\n");
900 return err;
901}
902
903static int write_clockid(struct feat_fd *ff,
904 struct evlist *evlist __maybe_unused)
905{
906 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
907 sizeof(ff->ph->env.clock.clockid_res_ns));
908}
909
910static int write_clock_data(struct feat_fd *ff,
911 struct evlist *evlist __maybe_unused)
912{
913 u64 *data64;
914 u32 data32;
915 int ret;
916
917 /* version */
918 data32 = 1;
919
920 ret = do_write(ff, &data32, sizeof(data32));
921 if (ret < 0)
922 return ret;
923
924 /* clockid */
925 data32 = ff->ph->env.clock.clockid;
926
927 ret = do_write(ff, &data32, sizeof(data32));
928 if (ret < 0)
929 return ret;
930
931 /* TOD ref time */
932 data64 = &ff->ph->env.clock.tod_ns;
933
934 ret = do_write(ff, data64, sizeof(*data64));
935 if (ret < 0)
936 return ret;
937
938 /* clockid ref time */
939 data64 = &ff->ph->env.clock.clockid_ns;
940
941 return do_write(ff, data64, sizeof(*data64));
942}
943
944static int write_hybrid_topology(struct feat_fd *ff,
945 struct evlist *evlist __maybe_unused)
946{
947 struct hybrid_topology *tp;
948 int ret;
949 u32 i;
950
951 tp = hybrid_topology__new();
952 if (!tp)
953 return -ENOENT;
954
955 ret = do_write(ff, &tp->nr, sizeof(u32));
956 if (ret < 0)
957 goto err;
958
959 for (i = 0; i < tp->nr; i++) {
960 struct hybrid_topology_node *n = &tp->nodes[i];
961
962 ret = do_write_string(ff, n->pmu_name);
963 if (ret < 0)
964 goto err;
965
966 ret = do_write_string(ff, n->cpus);
967 if (ret < 0)
968 goto err;
969 }
970
971 ret = 0;
972
973err:
974 hybrid_topology__delete(tp);
975 return ret;
976}
977
978static int write_dir_format(struct feat_fd *ff,
979 struct evlist *evlist __maybe_unused)
980{
981 struct perf_session *session;
982 struct perf_data *data;
983
984 session = container_of(ff->ph, struct perf_session, header);
985 data = session->data;
986
987 if (WARN_ON(!perf_data__is_dir(data)))
988 return -1;
989
990 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
991}
992
993/*
994 * Check whether a CPU is online
995 *
996 * Returns:
997 * 1 -> if CPU is online
998 * 0 -> if CPU is offline
999 * -1 -> error case
1000 */
1001int is_cpu_online(unsigned int cpu)
1002{
1003 char *str;
1004 size_t strlen;
1005 char buf[256];
1006 int status = -1;
1007 struct stat statbuf;
1008
1009 snprintf(buf, sizeof(buf),
1010 "/sys/devices/system/cpu/cpu%d", cpu);
1011 if (stat(buf, &statbuf) != 0)
1012 return 0;
1013
1014 /*
1015 * Check if /sys/devices/system/cpu/cpux/online file
1016 * exists. Some cases cpu0 won't have online file since
1017 * it is not expected to be turned off generally.
1018 * In kernels without CONFIG_HOTPLUG_CPU, this
1019 * file won't exist
1020 */
1021 snprintf(buf, sizeof(buf),
1022 "/sys/devices/system/cpu/cpu%d/online", cpu);
1023 if (stat(buf, &statbuf) != 0)
1024 return 1;
1025
1026 /*
1027 * Read online file using sysfs__read_str.
1028 * If read or open fails, return -1.
1029 * If read succeeds, return value from file
1030 * which gets stored in "str"
1031 */
1032 snprintf(buf, sizeof(buf),
1033 "devices/system/cpu/cpu%d/online", cpu);
1034
1035 if (sysfs__read_str(buf, &str, &strlen) < 0)
1036 return status;
1037
1038 status = atoi(str);
1039
1040 free(str);
1041 return status;
1042}
1043
1044#ifdef HAVE_LIBBPF_SUPPORT
1045static int write_bpf_prog_info(struct feat_fd *ff,
1046 struct evlist *evlist __maybe_unused)
1047{
1048 struct perf_env *env = &ff->ph->env;
1049 struct rb_root *root;
1050 struct rb_node *next;
1051 int ret;
1052
1053 down_read(&env->bpf_progs.lock);
1054
1055 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1056 sizeof(env->bpf_progs.infos_cnt));
1057 if (ret < 0)
1058 goto out;
1059
1060 root = &env->bpf_progs.infos;
1061 next = rb_first(root);
1062 while (next) {
1063 struct bpf_prog_info_node *node;
1064 size_t len;
1065
1066 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1067 next = rb_next(&node->rb_node);
1068 len = sizeof(struct perf_bpil) +
1069 node->info_linear->data_len;
1070
1071 /* before writing to file, translate address to offset */
1072 bpil_addr_to_offs(node->info_linear);
1073 ret = do_write(ff, node->info_linear, len);
1074 /*
1075 * translate back to address even when do_write() fails,
1076 * so that this function never changes the data.
1077 */
1078 bpil_offs_to_addr(node->info_linear);
1079 if (ret < 0)
1080 goto out;
1081 }
1082out:
1083 up_read(&env->bpf_progs.lock);
1084 return ret;
1085}
1086
1087static int write_bpf_btf(struct feat_fd *ff,
1088 struct evlist *evlist __maybe_unused)
1089{
1090 struct perf_env *env = &ff->ph->env;
1091 struct rb_root *root;
1092 struct rb_node *next;
1093 int ret;
1094
1095 down_read(&env->bpf_progs.lock);
1096
1097 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1098 sizeof(env->bpf_progs.btfs_cnt));
1099
1100 if (ret < 0)
1101 goto out;
1102
1103 root = &env->bpf_progs.btfs;
1104 next = rb_first(root);
1105 while (next) {
1106 struct btf_node *node;
1107
1108 node = rb_entry(next, struct btf_node, rb_node);
1109 next = rb_next(&node->rb_node);
1110 ret = do_write(ff, &node->id,
1111 sizeof(u32) * 2 + node->data_size);
1112 if (ret < 0)
1113 goto out;
1114 }
1115out:
1116 up_read(&env->bpf_progs.lock);
1117 return ret;
1118}
1119#endif // HAVE_LIBBPF_SUPPORT
1120
1121static int cpu_cache_level__sort(const void *a, const void *b)
1122{
1123 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1124 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1125
1126 return cache_a->level - cache_b->level;
1127}
1128
1129static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1130{
1131 if (a->level != b->level)
1132 return false;
1133
1134 if (a->line_size != b->line_size)
1135 return false;
1136
1137 if (a->sets != b->sets)
1138 return false;
1139
1140 if (a->ways != b->ways)
1141 return false;
1142
1143 if (strcmp(a->type, b->type))
1144 return false;
1145
1146 if (strcmp(a->size, b->size))
1147 return false;
1148
1149 if (strcmp(a->map, b->map))
1150 return false;
1151
1152 return true;
1153}
1154
1155static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1156{
1157 char path[PATH_MAX], file[PATH_MAX];
1158 struct stat st;
1159 size_t len;
1160
1161 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1162 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1163
1164 if (stat(file, &st))
1165 return 1;
1166
1167 scnprintf(file, PATH_MAX, "%s/level", path);
1168 if (sysfs__read_int(file, (int *) &cache->level))
1169 return -1;
1170
1171 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1172 if (sysfs__read_int(file, (int *) &cache->line_size))
1173 return -1;
1174
1175 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1176 if (sysfs__read_int(file, (int *) &cache->sets))
1177 return -1;
1178
1179 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1180 if (sysfs__read_int(file, (int *) &cache->ways))
1181 return -1;
1182
1183 scnprintf(file, PATH_MAX, "%s/type", path);
1184 if (sysfs__read_str(file, &cache->type, &len))
1185 return -1;
1186
1187 cache->type[len] = 0;
1188 cache->type = strim(cache->type);
1189
1190 scnprintf(file, PATH_MAX, "%s/size", path);
1191 if (sysfs__read_str(file, &cache->size, &len)) {
1192 zfree(&cache->type);
1193 return -1;
1194 }
1195
1196 cache->size[len] = 0;
1197 cache->size = strim(cache->size);
1198
1199 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1200 if (sysfs__read_str(file, &cache->map, &len)) {
1201 zfree(&cache->size);
1202 zfree(&cache->type);
1203 return -1;
1204 }
1205
1206 cache->map[len] = 0;
1207 cache->map = strim(cache->map);
1208 return 0;
1209}
1210
1211static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1212{
1213 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1214}
1215
1216#define MAX_CACHE_LVL 4
1217
1218static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1219{
1220 u32 i, cnt = 0;
1221 u32 nr, cpu;
1222 u16 level;
1223
1224 nr = cpu__max_cpu().cpu;
1225
1226 for (cpu = 0; cpu < nr; cpu++) {
1227 for (level = 0; level < MAX_CACHE_LVL; level++) {
1228 struct cpu_cache_level c;
1229 int err;
1230
1231 err = cpu_cache_level__read(&c, cpu, level);
1232 if (err < 0)
1233 return err;
1234
1235 if (err == 1)
1236 break;
1237
1238 for (i = 0; i < cnt; i++) {
1239 if (cpu_cache_level__cmp(&c, &caches[i]))
1240 break;
1241 }
1242
1243 if (i == cnt)
1244 caches[cnt++] = c;
1245 else
1246 cpu_cache_level__free(&c);
1247 }
1248 }
1249 *cntp = cnt;
1250 return 0;
1251}
1252
1253static int write_cache(struct feat_fd *ff,
1254 struct evlist *evlist __maybe_unused)
1255{
1256 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1257 struct cpu_cache_level caches[max_caches];
1258 u32 cnt = 0, i, version = 1;
1259 int ret;
1260
1261 ret = build_caches(caches, &cnt);
1262 if (ret)
1263 goto out;
1264
1265 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1266
1267 ret = do_write(ff, &version, sizeof(u32));
1268 if (ret < 0)
1269 goto out;
1270
1271 ret = do_write(ff, &cnt, sizeof(u32));
1272 if (ret < 0)
1273 goto out;
1274
1275 for (i = 0; i < cnt; i++) {
1276 struct cpu_cache_level *c = &caches[i];
1277
1278 #define _W(v) \
1279 ret = do_write(ff, &c->v, sizeof(u32)); \
1280 if (ret < 0) \
1281 goto out;
1282
1283 _W(level)
1284 _W(line_size)
1285 _W(sets)
1286 _W(ways)
1287 #undef _W
1288
1289 #define _W(v) \
1290 ret = do_write_string(ff, (const char *) c->v); \
1291 if (ret < 0) \
1292 goto out;
1293
1294 _W(type)
1295 _W(size)
1296 _W(map)
1297 #undef _W
1298 }
1299
1300out:
1301 for (i = 0; i < cnt; i++)
1302 cpu_cache_level__free(&caches[i]);
1303 return ret;
1304}
1305
1306static int write_stat(struct feat_fd *ff __maybe_unused,
1307 struct evlist *evlist __maybe_unused)
1308{
1309 return 0;
1310}
1311
1312static int write_sample_time(struct feat_fd *ff,
1313 struct evlist *evlist)
1314{
1315 int ret;
1316
1317 ret = do_write(ff, &evlist->first_sample_time,
1318 sizeof(evlist->first_sample_time));
1319 if (ret < 0)
1320 return ret;
1321
1322 return do_write(ff, &evlist->last_sample_time,
1323 sizeof(evlist->last_sample_time));
1324}
1325
1326
1327static int memory_node__read(struct memory_node *n, unsigned long idx)
1328{
1329 unsigned int phys, size = 0;
1330 char path[PATH_MAX];
1331 struct dirent *ent;
1332 DIR *dir;
1333
1334#define for_each_memory(mem, dir) \
1335 while ((ent = readdir(dir))) \
1336 if (strcmp(ent->d_name, ".") && \
1337 strcmp(ent->d_name, "..") && \
1338 sscanf(ent->d_name, "memory%u", &mem) == 1)
1339
1340 scnprintf(path, PATH_MAX,
1341 "%s/devices/system/node/node%lu",
1342 sysfs__mountpoint(), idx);
1343
1344 dir = opendir(path);
1345 if (!dir) {
1346 pr_warning("failed: can't open memory sysfs data\n");
1347 return -1;
1348 }
1349
1350 for_each_memory(phys, dir) {
1351 size = max(phys, size);
1352 }
1353
1354 size++;
1355
1356 n->set = bitmap_zalloc(size);
1357 if (!n->set) {
1358 closedir(dir);
1359 return -ENOMEM;
1360 }
1361
1362 n->node = idx;
1363 n->size = size;
1364
1365 rewinddir(dir);
1366
1367 for_each_memory(phys, dir) {
1368 __set_bit(phys, n->set);
1369 }
1370
1371 closedir(dir);
1372 return 0;
1373}
1374
1375static int memory_node__sort(const void *a, const void *b)
1376{
1377 const struct memory_node *na = a;
1378 const struct memory_node *nb = b;
1379
1380 return na->node - nb->node;
1381}
1382
1383static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1384{
1385 char path[PATH_MAX];
1386 struct dirent *ent;
1387 DIR *dir;
1388 u64 cnt = 0;
1389 int ret = 0;
1390
1391 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1392 sysfs__mountpoint());
1393
1394 dir = opendir(path);
1395 if (!dir) {
1396 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1397 __func__, path);
1398 return -1;
1399 }
1400
1401 while (!ret && (ent = readdir(dir))) {
1402 unsigned int idx;
1403 int r;
1404
1405 if (!strcmp(ent->d_name, ".") ||
1406 !strcmp(ent->d_name, ".."))
1407 continue;
1408
1409 r = sscanf(ent->d_name, "node%u", &idx);
1410 if (r != 1)
1411 continue;
1412
1413 if (WARN_ONCE(cnt >= size,
1414 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1415 closedir(dir);
1416 return -1;
1417 }
1418
1419 ret = memory_node__read(&nodes[cnt++], idx);
1420 }
1421
1422 *cntp = cnt;
1423 closedir(dir);
1424
1425 if (!ret)
1426 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427
1428 return ret;
1429}
1430
1431#define MAX_MEMORY_NODES 2000
1432
1433/*
1434 * The MEM_TOPOLOGY holds physical memory map for every
1435 * node in system. The format of data is as follows:
1436 *
1437 * 0 - version | for future changes
1438 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439 * 16 - count | number of nodes
1440 *
1441 * For each node we store map of physical indexes for
1442 * each node:
1443 *
1444 * 32 - node id | node index
1445 * 40 - size | size of bitmap
1446 * 48 - bitmap | bitmap of memory indexes that belongs to node
1447 */
1448static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449 struct evlist *evlist __maybe_unused)
1450{
1451 static struct memory_node nodes[MAX_MEMORY_NODES];
1452 u64 bsize, version = 1, i, nr;
1453 int ret;
1454
1455 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456 (unsigned long long *) &bsize);
1457 if (ret)
1458 return ret;
1459
1460 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1461 if (ret)
1462 return ret;
1463
1464 ret = do_write(ff, &version, sizeof(version));
1465 if (ret < 0)
1466 goto out;
1467
1468 ret = do_write(ff, &bsize, sizeof(bsize));
1469 if (ret < 0)
1470 goto out;
1471
1472 ret = do_write(ff, &nr, sizeof(nr));
1473 if (ret < 0)
1474 goto out;
1475
1476 for (i = 0; i < nr; i++) {
1477 struct memory_node *n = &nodes[i];
1478
1479 #define _W(v) \
1480 ret = do_write(ff, &n->v, sizeof(n->v)); \
1481 if (ret < 0) \
1482 goto out;
1483
1484 _W(node)
1485 _W(size)
1486
1487 #undef _W
1488
1489 ret = do_write_bitmap(ff, n->set, n->size);
1490 if (ret < 0)
1491 goto out;
1492 }
1493
1494out:
1495 return ret;
1496}
1497
1498static int write_compressed(struct feat_fd *ff __maybe_unused,
1499 struct evlist *evlist __maybe_unused)
1500{
1501 int ret;
1502
1503 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1504 if (ret)
1505 return ret;
1506
1507 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1508 if (ret)
1509 return ret;
1510
1511 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1512 if (ret)
1513 return ret;
1514
1515 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1516 if (ret)
1517 return ret;
1518
1519 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1520}
1521
1522static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1523 bool write_pmu)
1524{
1525 struct perf_pmu_caps *caps = NULL;
1526 int ret;
1527
1528 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1529 if (ret < 0)
1530 return ret;
1531
1532 list_for_each_entry(caps, &pmu->caps, list) {
1533 ret = do_write_string(ff, caps->name);
1534 if (ret < 0)
1535 return ret;
1536
1537 ret = do_write_string(ff, caps->value);
1538 if (ret < 0)
1539 return ret;
1540 }
1541
1542 if (write_pmu) {
1543 ret = do_write_string(ff, pmu->name);
1544 if (ret < 0)
1545 return ret;
1546 }
1547
1548 return ret;
1549}
1550
1551static int write_cpu_pmu_caps(struct feat_fd *ff,
1552 struct evlist *evlist __maybe_unused)
1553{
1554 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1555 int ret;
1556
1557 if (!cpu_pmu)
1558 return -ENOENT;
1559
1560 ret = perf_pmu__caps_parse(cpu_pmu);
1561 if (ret < 0)
1562 return ret;
1563
1564 return __write_pmu_caps(ff, cpu_pmu, false);
1565}
1566
1567static int write_pmu_caps(struct feat_fd *ff,
1568 struct evlist *evlist __maybe_unused)
1569{
1570 struct perf_pmu *pmu = NULL;
1571 int nr_pmu = 0;
1572 int ret;
1573
1574 while ((pmu = perf_pmu__scan(pmu))) {
1575 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1576 perf_pmu__caps_parse(pmu) <= 0)
1577 continue;
1578 nr_pmu++;
1579 }
1580
1581 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1582 if (ret < 0)
1583 return ret;
1584
1585 if (!nr_pmu)
1586 return 0;
1587
1588 /*
1589 * Write hybrid pmu caps first to maintain compatibility with
1590 * older perf tool.
1591 */
1592 pmu = NULL;
1593 perf_pmu__for_each_hybrid_pmu(pmu) {
1594 ret = __write_pmu_caps(ff, pmu, true);
1595 if (ret < 0)
1596 return ret;
1597 }
1598
1599 pmu = NULL;
1600 while ((pmu = perf_pmu__scan(pmu))) {
1601 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1602 !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1603 continue;
1604
1605 ret = __write_pmu_caps(ff, pmu, true);
1606 if (ret < 0)
1607 return ret;
1608 }
1609 return 0;
1610}
1611
1612static void print_hostname(struct feat_fd *ff, FILE *fp)
1613{
1614 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1615}
1616
1617static void print_osrelease(struct feat_fd *ff, FILE *fp)
1618{
1619 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1620}
1621
1622static void print_arch(struct feat_fd *ff, FILE *fp)
1623{
1624 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1625}
1626
1627static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1628{
1629 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1630}
1631
1632static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1633{
1634 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1635 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1636}
1637
1638static void print_version(struct feat_fd *ff, FILE *fp)
1639{
1640 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1641}
1642
1643static void print_cmdline(struct feat_fd *ff, FILE *fp)
1644{
1645 int nr, i;
1646
1647 nr = ff->ph->env.nr_cmdline;
1648
1649 fprintf(fp, "# cmdline : ");
1650
1651 for (i = 0; i < nr; i++) {
1652 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1653 if (!argv_i) {
1654 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1655 } else {
1656 char *mem = argv_i;
1657 do {
1658 char *quote = strchr(argv_i, '\'');
1659 if (!quote)
1660 break;
1661 *quote++ = '\0';
1662 fprintf(fp, "%s\\\'", argv_i);
1663 argv_i = quote;
1664 } while (1);
1665 fprintf(fp, "%s ", argv_i);
1666 free(mem);
1667 }
1668 }
1669 fputc('\n', fp);
1670}
1671
1672static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1673{
1674 struct perf_header *ph = ff->ph;
1675 int cpu_nr = ph->env.nr_cpus_avail;
1676 int nr, i;
1677 char *str;
1678
1679 nr = ph->env.nr_sibling_cores;
1680 str = ph->env.sibling_cores;
1681
1682 for (i = 0; i < nr; i++) {
1683 fprintf(fp, "# sibling sockets : %s\n", str);
1684 str += strlen(str) + 1;
1685 }
1686
1687 if (ph->env.nr_sibling_dies) {
1688 nr = ph->env.nr_sibling_dies;
1689 str = ph->env.sibling_dies;
1690
1691 for (i = 0; i < nr; i++) {
1692 fprintf(fp, "# sibling dies : %s\n", str);
1693 str += strlen(str) + 1;
1694 }
1695 }
1696
1697 nr = ph->env.nr_sibling_threads;
1698 str = ph->env.sibling_threads;
1699
1700 for (i = 0; i < nr; i++) {
1701 fprintf(fp, "# sibling threads : %s\n", str);
1702 str += strlen(str) + 1;
1703 }
1704
1705 if (ph->env.nr_sibling_dies) {
1706 if (ph->env.cpu != NULL) {
1707 for (i = 0; i < cpu_nr; i++)
1708 fprintf(fp, "# CPU %d: Core ID %d, "
1709 "Die ID %d, Socket ID %d\n",
1710 i, ph->env.cpu[i].core_id,
1711 ph->env.cpu[i].die_id,
1712 ph->env.cpu[i].socket_id);
1713 } else
1714 fprintf(fp, "# Core ID, Die ID and Socket ID "
1715 "information is not available\n");
1716 } else {
1717 if (ph->env.cpu != NULL) {
1718 for (i = 0; i < cpu_nr; i++)
1719 fprintf(fp, "# CPU %d: Core ID %d, "
1720 "Socket ID %d\n",
1721 i, ph->env.cpu[i].core_id,
1722 ph->env.cpu[i].socket_id);
1723 } else
1724 fprintf(fp, "# Core ID and Socket ID "
1725 "information is not available\n");
1726 }
1727}
1728
1729static void print_clockid(struct feat_fd *ff, FILE *fp)
1730{
1731 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1732 ff->ph->env.clock.clockid_res_ns * 1000);
1733}
1734
1735static void print_clock_data(struct feat_fd *ff, FILE *fp)
1736{
1737 struct timespec clockid_ns;
1738 char tstr[64], date[64];
1739 struct timeval tod_ns;
1740 clockid_t clockid;
1741 struct tm ltime;
1742 u64 ref;
1743
1744 if (!ff->ph->env.clock.enabled) {
1745 fprintf(fp, "# reference time disabled\n");
1746 return;
1747 }
1748
1749 /* Compute TOD time. */
1750 ref = ff->ph->env.clock.tod_ns;
1751 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1752 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1753 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1754
1755 /* Compute clockid time. */
1756 ref = ff->ph->env.clock.clockid_ns;
1757 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1758 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1759 clockid_ns.tv_nsec = ref;
1760
1761 clockid = ff->ph->env.clock.clockid;
1762
1763 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1764 snprintf(tstr, sizeof(tstr), "<error>");
1765 else {
1766 strftime(date, sizeof(date), "%F %T", <ime);
1767 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1768 date, (int) tod_ns.tv_usec);
1769 }
1770
1771 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1772 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1773 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1774 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1775 clockid_name(clockid));
1776}
1777
1778static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1779{
1780 int i;
1781 struct hybrid_node *n;
1782
1783 fprintf(fp, "# hybrid cpu system:\n");
1784 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1785 n = &ff->ph->env.hybrid_nodes[i];
1786 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1787 }
1788}
1789
1790static void print_dir_format(struct feat_fd *ff, FILE *fp)
1791{
1792 struct perf_session *session;
1793 struct perf_data *data;
1794
1795 session = container_of(ff->ph, struct perf_session, header);
1796 data = session->data;
1797
1798 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1799}
1800
1801#ifdef HAVE_LIBBPF_SUPPORT
1802static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1803{
1804 struct perf_env *env = &ff->ph->env;
1805 struct rb_root *root;
1806 struct rb_node *next;
1807
1808 down_read(&env->bpf_progs.lock);
1809
1810 root = &env->bpf_progs.infos;
1811 next = rb_first(root);
1812
1813 while (next) {
1814 struct bpf_prog_info_node *node;
1815
1816 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1817 next = rb_next(&node->rb_node);
1818
1819 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1820 env, fp);
1821 }
1822
1823 up_read(&env->bpf_progs.lock);
1824}
1825
1826static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1827{
1828 struct perf_env *env = &ff->ph->env;
1829 struct rb_root *root;
1830 struct rb_node *next;
1831
1832 down_read(&env->bpf_progs.lock);
1833
1834 root = &env->bpf_progs.btfs;
1835 next = rb_first(root);
1836
1837 while (next) {
1838 struct btf_node *node;
1839
1840 node = rb_entry(next, struct btf_node, rb_node);
1841 next = rb_next(&node->rb_node);
1842 fprintf(fp, "# btf info of id %u\n", node->id);
1843 }
1844
1845 up_read(&env->bpf_progs.lock);
1846}
1847#endif // HAVE_LIBBPF_SUPPORT
1848
1849static void free_event_desc(struct evsel *events)
1850{
1851 struct evsel *evsel;
1852
1853 if (!events)
1854 return;
1855
1856 for (evsel = events; evsel->core.attr.size; evsel++) {
1857 zfree(&evsel->name);
1858 zfree(&evsel->core.id);
1859 }
1860
1861 free(events);
1862}
1863
1864static bool perf_attr_check(struct perf_event_attr *attr)
1865{
1866 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1867 pr_warning("Reserved bits are set unexpectedly. "
1868 "Please update perf tool.\n");
1869 return false;
1870 }
1871
1872 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1873 pr_warning("Unknown sample type (0x%llx) is detected. "
1874 "Please update perf tool.\n",
1875 attr->sample_type);
1876 return false;
1877 }
1878
1879 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1880 pr_warning("Unknown read format (0x%llx) is detected. "
1881 "Please update perf tool.\n",
1882 attr->read_format);
1883 return false;
1884 }
1885
1886 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1887 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1888 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1889 "Please update perf tool.\n",
1890 attr->branch_sample_type);
1891
1892 return false;
1893 }
1894
1895 return true;
1896}
1897
1898static struct evsel *read_event_desc(struct feat_fd *ff)
1899{
1900 struct evsel *evsel, *events = NULL;
1901 u64 *id;
1902 void *buf = NULL;
1903 u32 nre, sz, nr, i, j;
1904 size_t msz;
1905
1906 /* number of events */
1907 if (do_read_u32(ff, &nre))
1908 goto error;
1909
1910 if (do_read_u32(ff, &sz))
1911 goto error;
1912
1913 /* buffer to hold on file attr struct */
1914 buf = malloc(sz);
1915 if (!buf)
1916 goto error;
1917
1918 /* the last event terminates with evsel->core.attr.size == 0: */
1919 events = calloc(nre + 1, sizeof(*events));
1920 if (!events)
1921 goto error;
1922
1923 msz = sizeof(evsel->core.attr);
1924 if (sz < msz)
1925 msz = sz;
1926
1927 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1928 evsel->core.idx = i;
1929
1930 /*
1931 * must read entire on-file attr struct to
1932 * sync up with layout.
1933 */
1934 if (__do_read(ff, buf, sz))
1935 goto error;
1936
1937 if (ff->ph->needs_swap)
1938 perf_event__attr_swap(buf);
1939
1940 memcpy(&evsel->core.attr, buf, msz);
1941
1942 if (!perf_attr_check(&evsel->core.attr))
1943 goto error;
1944
1945 if (do_read_u32(ff, &nr))
1946 goto error;
1947
1948 if (ff->ph->needs_swap)
1949 evsel->needs_swap = true;
1950
1951 evsel->name = do_read_string(ff);
1952 if (!evsel->name)
1953 goto error;
1954
1955 if (!nr)
1956 continue;
1957
1958 id = calloc(nr, sizeof(*id));
1959 if (!id)
1960 goto error;
1961 evsel->core.ids = nr;
1962 evsel->core.id = id;
1963
1964 for (j = 0 ; j < nr; j++) {
1965 if (do_read_u64(ff, id))
1966 goto error;
1967 id++;
1968 }
1969 }
1970out:
1971 free(buf);
1972 return events;
1973error:
1974 free_event_desc(events);
1975 events = NULL;
1976 goto out;
1977}
1978
1979static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1980 void *priv __maybe_unused)
1981{
1982 return fprintf(fp, ", %s = %s", name, val);
1983}
1984
1985static void print_event_desc(struct feat_fd *ff, FILE *fp)
1986{
1987 struct evsel *evsel, *events;
1988 u32 j;
1989 u64 *id;
1990
1991 if (ff->events)
1992 events = ff->events;
1993 else
1994 events = read_event_desc(ff);
1995
1996 if (!events) {
1997 fprintf(fp, "# event desc: not available or unable to read\n");
1998 return;
1999 }
2000
2001 for (evsel = events; evsel->core.attr.size; evsel++) {
2002 fprintf(fp, "# event : name = %s, ", evsel->name);
2003
2004 if (evsel->core.ids) {
2005 fprintf(fp, ", id = {");
2006 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2007 if (j)
2008 fputc(',', fp);
2009 fprintf(fp, " %"PRIu64, *id);
2010 }
2011 fprintf(fp, " }");
2012 }
2013
2014 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2015
2016 fputc('\n', fp);
2017 }
2018
2019 free_event_desc(events);
2020 ff->events = NULL;
2021}
2022
2023static void print_total_mem(struct feat_fd *ff, FILE *fp)
2024{
2025 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2026}
2027
2028static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2029{
2030 int i;
2031 struct numa_node *n;
2032
2033 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2034 n = &ff->ph->env.numa_nodes[i];
2035
2036 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2037 " free = %"PRIu64" kB\n",
2038 n->node, n->mem_total, n->mem_free);
2039
2040 fprintf(fp, "# node%u cpu list : ", n->node);
2041 cpu_map__fprintf(n->map, fp);
2042 }
2043}
2044
2045static void print_cpuid(struct feat_fd *ff, FILE *fp)
2046{
2047 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2048}
2049
2050static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2051{
2052 fprintf(fp, "# contains samples with branch stack\n");
2053}
2054
2055static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2056{
2057 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2058}
2059
2060static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2061{
2062 fprintf(fp, "# contains stat data\n");
2063}
2064
2065static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2066{
2067 int i;
2068
2069 fprintf(fp, "# CPU cache info:\n");
2070 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2071 fprintf(fp, "# ");
2072 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2073 }
2074}
2075
2076static void print_compressed(struct feat_fd *ff, FILE *fp)
2077{
2078 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2079 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2080 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2081}
2082
2083static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2084{
2085 const char *delimiter = "";
2086 int i;
2087
2088 if (!nr_caps) {
2089 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2090 return;
2091 }
2092
2093 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2094 for (i = 0; i < nr_caps; i++) {
2095 fprintf(fp, "%s%s", delimiter, caps[i]);
2096 delimiter = ", ";
2097 }
2098
2099 fprintf(fp, "\n");
2100}
2101
2102static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2103{
2104 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2105 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2106}
2107
2108static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2109{
2110 struct pmu_caps *pmu_caps;
2111
2112 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2113 pmu_caps = &ff->ph->env.pmu_caps[i];
2114 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2115 pmu_caps->pmu_name);
2116 }
2117}
2118
2119static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2120{
2121 const char *delimiter = "# pmu mappings: ";
2122 char *str, *tmp;
2123 u32 pmu_num;
2124 u32 type;
2125
2126 pmu_num = ff->ph->env.nr_pmu_mappings;
2127 if (!pmu_num) {
2128 fprintf(fp, "# pmu mappings: not available\n");
2129 return;
2130 }
2131
2132 str = ff->ph->env.pmu_mappings;
2133
2134 while (pmu_num) {
2135 type = strtoul(str, &tmp, 0);
2136 if (*tmp != ':')
2137 goto error;
2138
2139 str = tmp + 1;
2140 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2141
2142 delimiter = ", ";
2143 str += strlen(str) + 1;
2144 pmu_num--;
2145 }
2146
2147 fprintf(fp, "\n");
2148
2149 if (!pmu_num)
2150 return;
2151error:
2152 fprintf(fp, "# pmu mappings: unable to read\n");
2153}
2154
2155static void print_group_desc(struct feat_fd *ff, FILE *fp)
2156{
2157 struct perf_session *session;
2158 struct evsel *evsel;
2159 u32 nr = 0;
2160
2161 session = container_of(ff->ph, struct perf_session, header);
2162
2163 evlist__for_each_entry(session->evlist, evsel) {
2164 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2165 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2166
2167 nr = evsel->core.nr_members - 1;
2168 } else if (nr) {
2169 fprintf(fp, ",%s", evsel__name(evsel));
2170
2171 if (--nr == 0)
2172 fprintf(fp, "}\n");
2173 }
2174 }
2175}
2176
2177static void print_sample_time(struct feat_fd *ff, FILE *fp)
2178{
2179 struct perf_session *session;
2180 char time_buf[32];
2181 double d;
2182
2183 session = container_of(ff->ph, struct perf_session, header);
2184
2185 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2186 time_buf, sizeof(time_buf));
2187 fprintf(fp, "# time of first sample : %s\n", time_buf);
2188
2189 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2190 time_buf, sizeof(time_buf));
2191 fprintf(fp, "# time of last sample : %s\n", time_buf);
2192
2193 d = (double)(session->evlist->last_sample_time -
2194 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2195
2196 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2197}
2198
2199static void memory_node__fprintf(struct memory_node *n,
2200 unsigned long long bsize, FILE *fp)
2201{
2202 char buf_map[100], buf_size[50];
2203 unsigned long long size;
2204
2205 size = bsize * bitmap_weight(n->set, n->size);
2206 unit_number__scnprintf(buf_size, 50, size);
2207
2208 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2209 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2210}
2211
2212static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2213{
2214 struct memory_node *nodes;
2215 int i, nr;
2216
2217 nodes = ff->ph->env.memory_nodes;
2218 nr = ff->ph->env.nr_memory_nodes;
2219
2220 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2221 nr, ff->ph->env.memory_bsize);
2222
2223 for (i = 0; i < nr; i++) {
2224 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2225 }
2226}
2227
2228static int __event_process_build_id(struct perf_record_header_build_id *bev,
2229 char *filename,
2230 struct perf_session *session)
2231{
2232 int err = -1;
2233 struct machine *machine;
2234 u16 cpumode;
2235 struct dso *dso;
2236 enum dso_space_type dso_space;
2237
2238 machine = perf_session__findnew_machine(session, bev->pid);
2239 if (!machine)
2240 goto out;
2241
2242 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2243
2244 switch (cpumode) {
2245 case PERF_RECORD_MISC_KERNEL:
2246 dso_space = DSO_SPACE__KERNEL;
2247 break;
2248 case PERF_RECORD_MISC_GUEST_KERNEL:
2249 dso_space = DSO_SPACE__KERNEL_GUEST;
2250 break;
2251 case PERF_RECORD_MISC_USER:
2252 case PERF_RECORD_MISC_GUEST_USER:
2253 dso_space = DSO_SPACE__USER;
2254 break;
2255 default:
2256 goto out;
2257 }
2258
2259 dso = machine__findnew_dso(machine, filename);
2260 if (dso != NULL) {
2261 char sbuild_id[SBUILD_ID_SIZE];
2262 struct build_id bid;
2263 size_t size = BUILD_ID_SIZE;
2264
2265 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2266 size = bev->size;
2267
2268 build_id__init(&bid, bev->data, size);
2269 dso__set_build_id(dso, &bid);
2270 dso->header_build_id = 1;
2271
2272 if (dso_space != DSO_SPACE__USER) {
2273 struct kmod_path m = { .name = NULL, };
2274
2275 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2276 dso__set_module_info(dso, &m, machine);
2277
2278 dso->kernel = dso_space;
2279 free(m.name);
2280 }
2281
2282 build_id__sprintf(&dso->bid, sbuild_id);
2283 pr_debug("build id event received for %s: %s [%zu]\n",
2284 dso->long_name, sbuild_id, size);
2285 dso__put(dso);
2286 }
2287
2288 err = 0;
2289out:
2290 return err;
2291}
2292
2293static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2294 int input, u64 offset, u64 size)
2295{
2296 struct perf_session *session = container_of(header, struct perf_session, header);
2297 struct {
2298 struct perf_event_header header;
2299 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2300 char filename[0];
2301 } old_bev;
2302 struct perf_record_header_build_id bev;
2303 char filename[PATH_MAX];
2304 u64 limit = offset + size;
2305
2306 while (offset < limit) {
2307 ssize_t len;
2308
2309 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2310 return -1;
2311
2312 if (header->needs_swap)
2313 perf_event_header__bswap(&old_bev.header);
2314
2315 len = old_bev.header.size - sizeof(old_bev);
2316 if (readn(input, filename, len) != len)
2317 return -1;
2318
2319 bev.header = old_bev.header;
2320
2321 /*
2322 * As the pid is the missing value, we need to fill
2323 * it properly. The header.misc value give us nice hint.
2324 */
2325 bev.pid = HOST_KERNEL_ID;
2326 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2327 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2328 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2329
2330 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2331 __event_process_build_id(&bev, filename, session);
2332
2333 offset += bev.header.size;
2334 }
2335
2336 return 0;
2337}
2338
2339static int perf_header__read_build_ids(struct perf_header *header,
2340 int input, u64 offset, u64 size)
2341{
2342 struct perf_session *session = container_of(header, struct perf_session, header);
2343 struct perf_record_header_build_id bev;
2344 char filename[PATH_MAX];
2345 u64 limit = offset + size, orig_offset = offset;
2346 int err = -1;
2347
2348 while (offset < limit) {
2349 ssize_t len;
2350
2351 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2352 goto out;
2353
2354 if (header->needs_swap)
2355 perf_event_header__bswap(&bev.header);
2356
2357 len = bev.header.size - sizeof(bev);
2358 if (readn(input, filename, len) != len)
2359 goto out;
2360 /*
2361 * The a1645ce1 changeset:
2362 *
2363 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2364 *
2365 * Added a field to struct perf_record_header_build_id that broke the file
2366 * format.
2367 *
2368 * Since the kernel build-id is the first entry, process the
2369 * table using the old format if the well known
2370 * '[kernel.kallsyms]' string for the kernel build-id has the
2371 * first 4 characters chopped off (where the pid_t sits).
2372 */
2373 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2374 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2375 return -1;
2376 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2377 }
2378
2379 __event_process_build_id(&bev, filename, session);
2380
2381 offset += bev.header.size;
2382 }
2383 err = 0;
2384out:
2385 return err;
2386}
2387
2388/* Macro for features that simply need to read and store a string. */
2389#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2390static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2391{\
2392 free(ff->ph->env.__feat_env); \
2393 ff->ph->env.__feat_env = do_read_string(ff); \
2394 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2395}
2396
2397FEAT_PROCESS_STR_FUN(hostname, hostname);
2398FEAT_PROCESS_STR_FUN(osrelease, os_release);
2399FEAT_PROCESS_STR_FUN(version, version);
2400FEAT_PROCESS_STR_FUN(arch, arch);
2401FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2402FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2403
2404#ifdef HAVE_LIBTRACEEVENT
2405static int process_tracing_data(struct feat_fd *ff, void *data)
2406{
2407 ssize_t ret = trace_report(ff->fd, data, false);
2408
2409 return ret < 0 ? -1 : 0;
2410}
2411#endif
2412
2413static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2414{
2415 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2416 pr_debug("Failed to read buildids, continuing...\n");
2417 return 0;
2418}
2419
2420static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2421{
2422 int ret;
2423 u32 nr_cpus_avail, nr_cpus_online;
2424
2425 ret = do_read_u32(ff, &nr_cpus_avail);
2426 if (ret)
2427 return ret;
2428
2429 ret = do_read_u32(ff, &nr_cpus_online);
2430 if (ret)
2431 return ret;
2432 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2433 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2434 return 0;
2435}
2436
2437static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2438{
2439 u64 total_mem;
2440 int ret;
2441
2442 ret = do_read_u64(ff, &total_mem);
2443 if (ret)
2444 return -1;
2445 ff->ph->env.total_mem = (unsigned long long)total_mem;
2446 return 0;
2447}
2448
2449static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2450{
2451 struct evsel *evsel;
2452
2453 evlist__for_each_entry(evlist, evsel) {
2454 if (evsel->core.idx == idx)
2455 return evsel;
2456 }
2457
2458 return NULL;
2459}
2460
2461static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2462{
2463 struct evsel *evsel;
2464
2465 if (!event->name)
2466 return;
2467
2468 evsel = evlist__find_by_index(evlist, event->core.idx);
2469 if (!evsel)
2470 return;
2471
2472 if (evsel->name)
2473 return;
2474
2475 evsel->name = strdup(event->name);
2476}
2477
2478static int
2479process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2480{
2481 struct perf_session *session;
2482 struct evsel *evsel, *events = read_event_desc(ff);
2483
2484 if (!events)
2485 return 0;
2486
2487 session = container_of(ff->ph, struct perf_session, header);
2488
2489 if (session->data->is_pipe) {
2490 /* Save events for reading later by print_event_desc,
2491 * since they can't be read again in pipe mode. */
2492 ff->events = events;
2493 }
2494
2495 for (evsel = events; evsel->core.attr.size; evsel++)
2496 evlist__set_event_name(session->evlist, evsel);
2497
2498 if (!session->data->is_pipe)
2499 free_event_desc(events);
2500
2501 return 0;
2502}
2503
2504static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2505{
2506 char *str, *cmdline = NULL, **argv = NULL;
2507 u32 nr, i, len = 0;
2508
2509 if (do_read_u32(ff, &nr))
2510 return -1;
2511
2512 ff->ph->env.nr_cmdline = nr;
2513
2514 cmdline = zalloc(ff->size + nr + 1);
2515 if (!cmdline)
2516 return -1;
2517
2518 argv = zalloc(sizeof(char *) * (nr + 1));
2519 if (!argv)
2520 goto error;
2521
2522 for (i = 0; i < nr; i++) {
2523 str = do_read_string(ff);
2524 if (!str)
2525 goto error;
2526
2527 argv[i] = cmdline + len;
2528 memcpy(argv[i], str, strlen(str) + 1);
2529 len += strlen(str) + 1;
2530 free(str);
2531 }
2532 ff->ph->env.cmdline = cmdline;
2533 ff->ph->env.cmdline_argv = (const char **) argv;
2534 return 0;
2535
2536error:
2537 free(argv);
2538 free(cmdline);
2539 return -1;
2540}
2541
2542static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2543{
2544 u32 nr, i;
2545 char *str;
2546 struct strbuf sb;
2547 int cpu_nr = ff->ph->env.nr_cpus_avail;
2548 u64 size = 0;
2549 struct perf_header *ph = ff->ph;
2550 bool do_core_id_test = true;
2551
2552 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2553 if (!ph->env.cpu)
2554 return -1;
2555
2556 if (do_read_u32(ff, &nr))
2557 goto free_cpu;
2558
2559 ph->env.nr_sibling_cores = nr;
2560 size += sizeof(u32);
2561 if (strbuf_init(&sb, 128) < 0)
2562 goto free_cpu;
2563
2564 for (i = 0; i < nr; i++) {
2565 str = do_read_string(ff);
2566 if (!str)
2567 goto error;
2568
2569 /* include a NULL character at the end */
2570 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2571 goto error;
2572 size += string_size(str);
2573 free(str);
2574 }
2575 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2576
2577 if (do_read_u32(ff, &nr))
2578 return -1;
2579
2580 ph->env.nr_sibling_threads = nr;
2581 size += sizeof(u32);
2582
2583 for (i = 0; i < nr; i++) {
2584 str = do_read_string(ff);
2585 if (!str)
2586 goto error;
2587
2588 /* include a NULL character at the end */
2589 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2590 goto error;
2591 size += string_size(str);
2592 free(str);
2593 }
2594 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2595
2596 /*
2597 * The header may be from old perf,
2598 * which doesn't include core id and socket id information.
2599 */
2600 if (ff->size <= size) {
2601 zfree(&ph->env.cpu);
2602 return 0;
2603 }
2604
2605 /* On s390 the socket_id number is not related to the numbers of cpus.
2606 * The socket_id number might be higher than the numbers of cpus.
2607 * This depends on the configuration.
2608 * AArch64 is the same.
2609 */
2610 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2611 || !strncmp(ph->env.arch, "aarch64", 7)))
2612 do_core_id_test = false;
2613
2614 for (i = 0; i < (u32)cpu_nr; i++) {
2615 if (do_read_u32(ff, &nr))
2616 goto free_cpu;
2617
2618 ph->env.cpu[i].core_id = nr;
2619 size += sizeof(u32);
2620
2621 if (do_read_u32(ff, &nr))
2622 goto free_cpu;
2623
2624 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2625 pr_debug("socket_id number is too big."
2626 "You may need to upgrade the perf tool.\n");
2627 goto free_cpu;
2628 }
2629
2630 ph->env.cpu[i].socket_id = nr;
2631 size += sizeof(u32);
2632 }
2633
2634 /*
2635 * The header may be from old perf,
2636 * which doesn't include die information.
2637 */
2638 if (ff->size <= size)
2639 return 0;
2640
2641 if (do_read_u32(ff, &nr))
2642 return -1;
2643
2644 ph->env.nr_sibling_dies = nr;
2645 size += sizeof(u32);
2646
2647 for (i = 0; i < nr; i++) {
2648 str = do_read_string(ff);
2649 if (!str)
2650 goto error;
2651
2652 /* include a NULL character at the end */
2653 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2654 goto error;
2655 size += string_size(str);
2656 free(str);
2657 }
2658 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2659
2660 for (i = 0; i < (u32)cpu_nr; i++) {
2661 if (do_read_u32(ff, &nr))
2662 goto free_cpu;
2663
2664 ph->env.cpu[i].die_id = nr;
2665 }
2666
2667 return 0;
2668
2669error:
2670 strbuf_release(&sb);
2671free_cpu:
2672 zfree(&ph->env.cpu);
2673 return -1;
2674}
2675
2676static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2677{
2678 struct numa_node *nodes, *n;
2679 u32 nr, i;
2680 char *str;
2681
2682 /* nr nodes */
2683 if (do_read_u32(ff, &nr))
2684 return -1;
2685
2686 nodes = zalloc(sizeof(*nodes) * nr);
2687 if (!nodes)
2688 return -ENOMEM;
2689
2690 for (i = 0; i < nr; i++) {
2691 n = &nodes[i];
2692
2693 /* node number */
2694 if (do_read_u32(ff, &n->node))
2695 goto error;
2696
2697 if (do_read_u64(ff, &n->mem_total))
2698 goto error;
2699
2700 if (do_read_u64(ff, &n->mem_free))
2701 goto error;
2702
2703 str = do_read_string(ff);
2704 if (!str)
2705 goto error;
2706
2707 n->map = perf_cpu_map__new(str);
2708 if (!n->map)
2709 goto error;
2710
2711 free(str);
2712 }
2713 ff->ph->env.nr_numa_nodes = nr;
2714 ff->ph->env.numa_nodes = nodes;
2715 return 0;
2716
2717error:
2718 free(nodes);
2719 return -1;
2720}
2721
2722static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2723{
2724 char *name;
2725 u32 pmu_num;
2726 u32 type;
2727 struct strbuf sb;
2728
2729 if (do_read_u32(ff, &pmu_num))
2730 return -1;
2731
2732 if (!pmu_num) {
2733 pr_debug("pmu mappings not available\n");
2734 return 0;
2735 }
2736
2737 ff->ph->env.nr_pmu_mappings = pmu_num;
2738 if (strbuf_init(&sb, 128) < 0)
2739 return -1;
2740
2741 while (pmu_num) {
2742 if (do_read_u32(ff, &type))
2743 goto error;
2744
2745 name = do_read_string(ff);
2746 if (!name)
2747 goto error;
2748
2749 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2750 goto error;
2751 /* include a NULL character at the end */
2752 if (strbuf_add(&sb, "", 1) < 0)
2753 goto error;
2754
2755 if (!strcmp(name, "msr"))
2756 ff->ph->env.msr_pmu_type = type;
2757
2758 free(name);
2759 pmu_num--;
2760 }
2761 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2762 return 0;
2763
2764error:
2765 strbuf_release(&sb);
2766 return -1;
2767}
2768
2769static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2770{
2771 size_t ret = -1;
2772 u32 i, nr, nr_groups;
2773 struct perf_session *session;
2774 struct evsel *evsel, *leader = NULL;
2775 struct group_desc {
2776 char *name;
2777 u32 leader_idx;
2778 u32 nr_members;
2779 } *desc;
2780
2781 if (do_read_u32(ff, &nr_groups))
2782 return -1;
2783
2784 ff->ph->env.nr_groups = nr_groups;
2785 if (!nr_groups) {
2786 pr_debug("group desc not available\n");
2787 return 0;
2788 }
2789
2790 desc = calloc(nr_groups, sizeof(*desc));
2791 if (!desc)
2792 return -1;
2793
2794 for (i = 0; i < nr_groups; i++) {
2795 desc[i].name = do_read_string(ff);
2796 if (!desc[i].name)
2797 goto out_free;
2798
2799 if (do_read_u32(ff, &desc[i].leader_idx))
2800 goto out_free;
2801
2802 if (do_read_u32(ff, &desc[i].nr_members))
2803 goto out_free;
2804 }
2805
2806 /*
2807 * Rebuild group relationship based on the group_desc
2808 */
2809 session = container_of(ff->ph, struct perf_session, header);
2810 session->evlist->core.nr_groups = nr_groups;
2811
2812 i = nr = 0;
2813 evlist__for_each_entry(session->evlist, evsel) {
2814 if (evsel->core.idx == (int) desc[i].leader_idx) {
2815 evsel__set_leader(evsel, evsel);
2816 /* {anon_group} is a dummy name */
2817 if (strcmp(desc[i].name, "{anon_group}")) {
2818 evsel->group_name = desc[i].name;
2819 desc[i].name = NULL;
2820 }
2821 evsel->core.nr_members = desc[i].nr_members;
2822
2823 if (i >= nr_groups || nr > 0) {
2824 pr_debug("invalid group desc\n");
2825 goto out_free;
2826 }
2827
2828 leader = evsel;
2829 nr = evsel->core.nr_members - 1;
2830 i++;
2831 } else if (nr) {
2832 /* This is a group member */
2833 evsel__set_leader(evsel, leader);
2834
2835 nr--;
2836 }
2837 }
2838
2839 if (i != nr_groups || nr != 0) {
2840 pr_debug("invalid group desc\n");
2841 goto out_free;
2842 }
2843
2844 ret = 0;
2845out_free:
2846 for (i = 0; i < nr_groups; i++)
2847 zfree(&desc[i].name);
2848 free(desc);
2849
2850 return ret;
2851}
2852
2853static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2854{
2855 struct perf_session *session;
2856 int err;
2857
2858 session = container_of(ff->ph, struct perf_session, header);
2859
2860 err = auxtrace_index__process(ff->fd, ff->size, session,
2861 ff->ph->needs_swap);
2862 if (err < 0)
2863 pr_err("Failed to process auxtrace index\n");
2864 return err;
2865}
2866
2867static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2868{
2869 struct cpu_cache_level *caches;
2870 u32 cnt, i, version;
2871
2872 if (do_read_u32(ff, &version))
2873 return -1;
2874
2875 if (version != 1)
2876 return -1;
2877
2878 if (do_read_u32(ff, &cnt))
2879 return -1;
2880
2881 caches = zalloc(sizeof(*caches) * cnt);
2882 if (!caches)
2883 return -1;
2884
2885 for (i = 0; i < cnt; i++) {
2886 struct cpu_cache_level c;
2887
2888 #define _R(v) \
2889 if (do_read_u32(ff, &c.v))\
2890 goto out_free_caches; \
2891
2892 _R(level)
2893 _R(line_size)
2894 _R(sets)
2895 _R(ways)
2896 #undef _R
2897
2898 #define _R(v) \
2899 c.v = do_read_string(ff); \
2900 if (!c.v) \
2901 goto out_free_caches;
2902
2903 _R(type)
2904 _R(size)
2905 _R(map)
2906 #undef _R
2907
2908 caches[i] = c;
2909 }
2910
2911 ff->ph->env.caches = caches;
2912 ff->ph->env.caches_cnt = cnt;
2913 return 0;
2914out_free_caches:
2915 free(caches);
2916 return -1;
2917}
2918
2919static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2920{
2921 struct perf_session *session;
2922 u64 first_sample_time, last_sample_time;
2923 int ret;
2924
2925 session = container_of(ff->ph, struct perf_session, header);
2926
2927 ret = do_read_u64(ff, &first_sample_time);
2928 if (ret)
2929 return -1;
2930
2931 ret = do_read_u64(ff, &last_sample_time);
2932 if (ret)
2933 return -1;
2934
2935 session->evlist->first_sample_time = first_sample_time;
2936 session->evlist->last_sample_time = last_sample_time;
2937 return 0;
2938}
2939
2940static int process_mem_topology(struct feat_fd *ff,
2941 void *data __maybe_unused)
2942{
2943 struct memory_node *nodes;
2944 u64 version, i, nr, bsize;
2945 int ret = -1;
2946
2947 if (do_read_u64(ff, &version))
2948 return -1;
2949
2950 if (version != 1)
2951 return -1;
2952
2953 if (do_read_u64(ff, &bsize))
2954 return -1;
2955
2956 if (do_read_u64(ff, &nr))
2957 return -1;
2958
2959 nodes = zalloc(sizeof(*nodes) * nr);
2960 if (!nodes)
2961 return -1;
2962
2963 for (i = 0; i < nr; i++) {
2964 struct memory_node n;
2965
2966 #define _R(v) \
2967 if (do_read_u64(ff, &n.v)) \
2968 goto out; \
2969
2970 _R(node)
2971 _R(size)
2972
2973 #undef _R
2974
2975 if (do_read_bitmap(ff, &n.set, &n.size))
2976 goto out;
2977
2978 nodes[i] = n;
2979 }
2980
2981 ff->ph->env.memory_bsize = bsize;
2982 ff->ph->env.memory_nodes = nodes;
2983 ff->ph->env.nr_memory_nodes = nr;
2984 ret = 0;
2985
2986out:
2987 if (ret)
2988 free(nodes);
2989 return ret;
2990}
2991
2992static int process_clockid(struct feat_fd *ff,
2993 void *data __maybe_unused)
2994{
2995 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2996 return -1;
2997
2998 return 0;
2999}
3000
3001static int process_clock_data(struct feat_fd *ff,
3002 void *_data __maybe_unused)
3003{
3004 u32 data32;
3005 u64 data64;
3006
3007 /* version */
3008 if (do_read_u32(ff, &data32))
3009 return -1;
3010
3011 if (data32 != 1)
3012 return -1;
3013
3014 /* clockid */
3015 if (do_read_u32(ff, &data32))
3016 return -1;
3017
3018 ff->ph->env.clock.clockid = data32;
3019
3020 /* TOD ref time */
3021 if (do_read_u64(ff, &data64))
3022 return -1;
3023
3024 ff->ph->env.clock.tod_ns = data64;
3025
3026 /* clockid ref time */
3027 if (do_read_u64(ff, &data64))
3028 return -1;
3029
3030 ff->ph->env.clock.clockid_ns = data64;
3031 ff->ph->env.clock.enabled = true;
3032 return 0;
3033}
3034
3035static int process_hybrid_topology(struct feat_fd *ff,
3036 void *data __maybe_unused)
3037{
3038 struct hybrid_node *nodes, *n;
3039 u32 nr, i;
3040
3041 /* nr nodes */
3042 if (do_read_u32(ff, &nr))
3043 return -1;
3044
3045 nodes = zalloc(sizeof(*nodes) * nr);
3046 if (!nodes)
3047 return -ENOMEM;
3048
3049 for (i = 0; i < nr; i++) {
3050 n = &nodes[i];
3051
3052 n->pmu_name = do_read_string(ff);
3053 if (!n->pmu_name)
3054 goto error;
3055
3056 n->cpus = do_read_string(ff);
3057 if (!n->cpus)
3058 goto error;
3059 }
3060
3061 ff->ph->env.nr_hybrid_nodes = nr;
3062 ff->ph->env.hybrid_nodes = nodes;
3063 return 0;
3064
3065error:
3066 for (i = 0; i < nr; i++) {
3067 free(nodes[i].pmu_name);
3068 free(nodes[i].cpus);
3069 }
3070
3071 free(nodes);
3072 return -1;
3073}
3074
3075static int process_dir_format(struct feat_fd *ff,
3076 void *_data __maybe_unused)
3077{
3078 struct perf_session *session;
3079 struct perf_data *data;
3080
3081 session = container_of(ff->ph, struct perf_session, header);
3082 data = session->data;
3083
3084 if (WARN_ON(!perf_data__is_dir(data)))
3085 return -1;
3086
3087 return do_read_u64(ff, &data->dir.version);
3088}
3089
3090#ifdef HAVE_LIBBPF_SUPPORT
3091static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3092{
3093 struct bpf_prog_info_node *info_node;
3094 struct perf_env *env = &ff->ph->env;
3095 struct perf_bpil *info_linear;
3096 u32 count, i;
3097 int err = -1;
3098
3099 if (ff->ph->needs_swap) {
3100 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3101 return 0;
3102 }
3103
3104 if (do_read_u32(ff, &count))
3105 return -1;
3106
3107 down_write(&env->bpf_progs.lock);
3108
3109 for (i = 0; i < count; ++i) {
3110 u32 info_len, data_len;
3111
3112 info_linear = NULL;
3113 info_node = NULL;
3114 if (do_read_u32(ff, &info_len))
3115 goto out;
3116 if (do_read_u32(ff, &data_len))
3117 goto out;
3118
3119 if (info_len > sizeof(struct bpf_prog_info)) {
3120 pr_warning("detected invalid bpf_prog_info\n");
3121 goto out;
3122 }
3123
3124 info_linear = malloc(sizeof(struct perf_bpil) +
3125 data_len);
3126 if (!info_linear)
3127 goto out;
3128 info_linear->info_len = sizeof(struct bpf_prog_info);
3129 info_linear->data_len = data_len;
3130 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3131 goto out;
3132 if (__do_read(ff, &info_linear->info, info_len))
3133 goto out;
3134 if (info_len < sizeof(struct bpf_prog_info))
3135 memset(((void *)(&info_linear->info)) + info_len, 0,
3136 sizeof(struct bpf_prog_info) - info_len);
3137
3138 if (__do_read(ff, info_linear->data, data_len))
3139 goto out;
3140
3141 info_node = malloc(sizeof(struct bpf_prog_info_node));
3142 if (!info_node)
3143 goto out;
3144
3145 /* after reading from file, translate offset to address */
3146 bpil_offs_to_addr(info_linear);
3147 info_node->info_linear = info_linear;
3148 perf_env__insert_bpf_prog_info(env, info_node);
3149 }
3150
3151 up_write(&env->bpf_progs.lock);
3152 return 0;
3153out:
3154 free(info_linear);
3155 free(info_node);
3156 up_write(&env->bpf_progs.lock);
3157 return err;
3158}
3159
3160static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3161{
3162 struct perf_env *env = &ff->ph->env;
3163 struct btf_node *node = NULL;
3164 u32 count, i;
3165 int err = -1;
3166
3167 if (ff->ph->needs_swap) {
3168 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3169 return 0;
3170 }
3171
3172 if (do_read_u32(ff, &count))
3173 return -1;
3174
3175 down_write(&env->bpf_progs.lock);
3176
3177 for (i = 0; i < count; ++i) {
3178 u32 id, data_size;
3179
3180 if (do_read_u32(ff, &id))
3181 goto out;
3182 if (do_read_u32(ff, &data_size))
3183 goto out;
3184
3185 node = malloc(sizeof(struct btf_node) + data_size);
3186 if (!node)
3187 goto out;
3188
3189 node->id = id;
3190 node->data_size = data_size;
3191
3192 if (__do_read(ff, node->data, data_size))
3193 goto out;
3194
3195 perf_env__insert_btf(env, node);
3196 node = NULL;
3197 }
3198
3199 err = 0;
3200out:
3201 up_write(&env->bpf_progs.lock);
3202 free(node);
3203 return err;
3204}
3205#endif // HAVE_LIBBPF_SUPPORT
3206
3207static int process_compressed(struct feat_fd *ff,
3208 void *data __maybe_unused)
3209{
3210 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3211 return -1;
3212
3213 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3214 return -1;
3215
3216 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3217 return -1;
3218
3219 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3220 return -1;
3221
3222 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3223 return -1;
3224
3225 return 0;
3226}
3227
3228static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3229 char ***caps, unsigned int *max_branches)
3230{
3231 char *name, *value, *ptr;
3232 u32 nr_pmu_caps, i;
3233
3234 *nr_caps = 0;
3235 *caps = NULL;
3236
3237 if (do_read_u32(ff, &nr_pmu_caps))
3238 return -1;
3239
3240 if (!nr_pmu_caps)
3241 return 0;
3242
3243 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3244 if (!*caps)
3245 return -1;
3246
3247 for (i = 0; i < nr_pmu_caps; i++) {
3248 name = do_read_string(ff);
3249 if (!name)
3250 goto error;
3251
3252 value = do_read_string(ff);
3253 if (!value)
3254 goto free_name;
3255
3256 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3257 goto free_value;
3258
3259 (*caps)[i] = ptr;
3260
3261 if (!strcmp(name, "branches"))
3262 *max_branches = atoi(value);
3263
3264 free(value);
3265 free(name);
3266 }
3267 *nr_caps = nr_pmu_caps;
3268 return 0;
3269
3270free_value:
3271 free(value);
3272free_name:
3273 free(name);
3274error:
3275 for (; i > 0; i--)
3276 free((*caps)[i - 1]);
3277 free(*caps);
3278 *caps = NULL;
3279 *nr_caps = 0;
3280 return -1;
3281}
3282
3283static int process_cpu_pmu_caps(struct feat_fd *ff,
3284 void *data __maybe_unused)
3285{
3286 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3287 &ff->ph->env.cpu_pmu_caps,
3288 &ff->ph->env.max_branches);
3289
3290 if (!ret && !ff->ph->env.cpu_pmu_caps)
3291 pr_debug("cpu pmu capabilities not available\n");
3292 return ret;
3293}
3294
3295static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3296{
3297 struct pmu_caps *pmu_caps;
3298 u32 nr_pmu, i;
3299 int ret;
3300 int j;
3301
3302 if (do_read_u32(ff, &nr_pmu))
3303 return -1;
3304
3305 if (!nr_pmu) {
3306 pr_debug("pmu capabilities not available\n");
3307 return 0;
3308 }
3309
3310 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3311 if (!pmu_caps)
3312 return -ENOMEM;
3313
3314 for (i = 0; i < nr_pmu; i++) {
3315 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3316 &pmu_caps[i].caps,
3317 &pmu_caps[i].max_branches);
3318 if (ret)
3319 goto err;
3320
3321 pmu_caps[i].pmu_name = do_read_string(ff);
3322 if (!pmu_caps[i].pmu_name) {
3323 ret = -1;
3324 goto err;
3325 }
3326 if (!pmu_caps[i].nr_caps) {
3327 pr_debug("%s pmu capabilities not available\n",
3328 pmu_caps[i].pmu_name);
3329 }
3330 }
3331
3332 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3333 ff->ph->env.pmu_caps = pmu_caps;
3334 return 0;
3335
3336err:
3337 for (i = 0; i < nr_pmu; i++) {
3338 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3339 free(pmu_caps[i].caps[j]);
3340 free(pmu_caps[i].caps);
3341 free(pmu_caps[i].pmu_name);
3342 }
3343
3344 free(pmu_caps);
3345 return ret;
3346}
3347
3348#define FEAT_OPR(n, func, __full_only) \
3349 [HEADER_##n] = { \
3350 .name = __stringify(n), \
3351 .write = write_##func, \
3352 .print = print_##func, \
3353 .full_only = __full_only, \
3354 .process = process_##func, \
3355 .synthesize = true \
3356 }
3357
3358#define FEAT_OPN(n, func, __full_only) \
3359 [HEADER_##n] = { \
3360 .name = __stringify(n), \
3361 .write = write_##func, \
3362 .print = print_##func, \
3363 .full_only = __full_only, \
3364 .process = process_##func \
3365 }
3366
3367/* feature_ops not implemented: */
3368#define print_tracing_data NULL
3369#define print_build_id NULL
3370
3371#define process_branch_stack NULL
3372#define process_stat NULL
3373
3374// Only used in util/synthetic-events.c
3375const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3376
3377const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3378#ifdef HAVE_LIBTRACEEVENT
3379 FEAT_OPN(TRACING_DATA, tracing_data, false),
3380#endif
3381 FEAT_OPN(BUILD_ID, build_id, false),
3382 FEAT_OPR(HOSTNAME, hostname, false),
3383 FEAT_OPR(OSRELEASE, osrelease, false),
3384 FEAT_OPR(VERSION, version, false),
3385 FEAT_OPR(ARCH, arch, false),
3386 FEAT_OPR(NRCPUS, nrcpus, false),
3387 FEAT_OPR(CPUDESC, cpudesc, false),
3388 FEAT_OPR(CPUID, cpuid, false),
3389 FEAT_OPR(TOTAL_MEM, total_mem, false),
3390 FEAT_OPR(EVENT_DESC, event_desc, false),
3391 FEAT_OPR(CMDLINE, cmdline, false),
3392 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3393 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3394 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3395 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3396 FEAT_OPR(GROUP_DESC, group_desc, false),
3397 FEAT_OPN(AUXTRACE, auxtrace, false),
3398 FEAT_OPN(STAT, stat, false),
3399 FEAT_OPN(CACHE, cache, true),
3400 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3401 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3402 FEAT_OPR(CLOCKID, clockid, false),
3403 FEAT_OPN(DIR_FORMAT, dir_format, false),
3404#ifdef HAVE_LIBBPF_SUPPORT
3405 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3406 FEAT_OPR(BPF_BTF, bpf_btf, false),
3407#endif
3408 FEAT_OPR(COMPRESSED, compressed, false),
3409 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3410 FEAT_OPR(CLOCK_DATA, clock_data, false),
3411 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3412 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3413};
3414
3415struct header_print_data {
3416 FILE *fp;
3417 bool full; /* extended list of headers */
3418};
3419
3420static int perf_file_section__fprintf_info(struct perf_file_section *section,
3421 struct perf_header *ph,
3422 int feat, int fd, void *data)
3423{
3424 struct header_print_data *hd = data;
3425 struct feat_fd ff;
3426
3427 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3428 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3429 "%d, continuing...\n", section->offset, feat);
3430 return 0;
3431 }
3432 if (feat >= HEADER_LAST_FEATURE) {
3433 pr_warning("unknown feature %d\n", feat);
3434 return 0;
3435 }
3436 if (!feat_ops[feat].print)
3437 return 0;
3438
3439 ff = (struct feat_fd) {
3440 .fd = fd,
3441 .ph = ph,
3442 };
3443
3444 if (!feat_ops[feat].full_only || hd->full)
3445 feat_ops[feat].print(&ff, hd->fp);
3446 else
3447 fprintf(hd->fp, "# %s info available, use -I to display\n",
3448 feat_ops[feat].name);
3449
3450 return 0;
3451}
3452
3453int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3454{
3455 struct header_print_data hd;
3456 struct perf_header *header = &session->header;
3457 int fd = perf_data__fd(session->data);
3458 struct stat st;
3459 time_t stctime;
3460 int ret, bit;
3461
3462 hd.fp = fp;
3463 hd.full = full;
3464
3465 ret = fstat(fd, &st);
3466 if (ret == -1)
3467 return -1;
3468
3469 stctime = st.st_mtime;
3470 fprintf(fp, "# captured on : %s", ctime(&stctime));
3471
3472 fprintf(fp, "# header version : %u\n", header->version);
3473 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3474 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3475 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3476
3477 perf_header__process_sections(header, fd, &hd,
3478 perf_file_section__fprintf_info);
3479
3480 if (session->data->is_pipe)
3481 return 0;
3482
3483 fprintf(fp, "# missing features: ");
3484 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3485 if (bit)
3486 fprintf(fp, "%s ", feat_ops[bit].name);
3487 }
3488
3489 fprintf(fp, "\n");
3490 return 0;
3491}
3492
3493struct header_fw {
3494 struct feat_writer fw;
3495 struct feat_fd *ff;
3496};
3497
3498static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3499{
3500 struct header_fw *h = container_of(fw, struct header_fw, fw);
3501
3502 return do_write(h->ff, buf, sz);
3503}
3504
3505static int do_write_feat(struct feat_fd *ff, int type,
3506 struct perf_file_section **p,
3507 struct evlist *evlist,
3508 struct feat_copier *fc)
3509{
3510 int err;
3511 int ret = 0;
3512
3513 if (perf_header__has_feat(ff->ph, type)) {
3514 if (!feat_ops[type].write)
3515 return -1;
3516
3517 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3518 return -1;
3519
3520 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3521
3522 /*
3523 * Hook to let perf inject copy features sections from the input
3524 * file.
3525 */
3526 if (fc && fc->copy) {
3527 struct header_fw h = {
3528 .fw.write = feat_writer_cb,
3529 .ff = ff,
3530 };
3531
3532 /* ->copy() returns 0 if the feature was not copied */
3533 err = fc->copy(fc, type, &h.fw);
3534 } else {
3535 err = 0;
3536 }
3537 if (!err)
3538 err = feat_ops[type].write(ff, evlist);
3539 if (err < 0) {
3540 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3541
3542 /* undo anything written */
3543 lseek(ff->fd, (*p)->offset, SEEK_SET);
3544
3545 return -1;
3546 }
3547 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3548 (*p)++;
3549 }
3550 return ret;
3551}
3552
3553static int perf_header__adds_write(struct perf_header *header,
3554 struct evlist *evlist, int fd,
3555 struct feat_copier *fc)
3556{
3557 int nr_sections;
3558 struct feat_fd ff;
3559 struct perf_file_section *feat_sec, *p;
3560 int sec_size;
3561 u64 sec_start;
3562 int feat;
3563 int err;
3564
3565 ff = (struct feat_fd){
3566 .fd = fd,
3567 .ph = header,
3568 };
3569
3570 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3571 if (!nr_sections)
3572 return 0;
3573
3574 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3575 if (feat_sec == NULL)
3576 return -ENOMEM;
3577
3578 sec_size = sizeof(*feat_sec) * nr_sections;
3579
3580 sec_start = header->feat_offset;
3581 lseek(fd, sec_start + sec_size, SEEK_SET);
3582
3583 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3584 if (do_write_feat(&ff, feat, &p, evlist, fc))
3585 perf_header__clear_feat(header, feat);
3586 }
3587
3588 lseek(fd, sec_start, SEEK_SET);
3589 /*
3590 * may write more than needed due to dropped feature, but
3591 * this is okay, reader will skip the missing entries
3592 */
3593 err = do_write(&ff, feat_sec, sec_size);
3594 if (err < 0)
3595 pr_debug("failed to write feature section\n");
3596 free(feat_sec);
3597 return err;
3598}
3599
3600int perf_header__write_pipe(int fd)
3601{
3602 struct perf_pipe_file_header f_header;
3603 struct feat_fd ff;
3604 int err;
3605
3606 ff = (struct feat_fd){ .fd = fd };
3607
3608 f_header = (struct perf_pipe_file_header){
3609 .magic = PERF_MAGIC,
3610 .size = sizeof(f_header),
3611 };
3612
3613 err = do_write(&ff, &f_header, sizeof(f_header));
3614 if (err < 0) {
3615 pr_debug("failed to write perf pipe header\n");
3616 return err;
3617 }
3618
3619 return 0;
3620}
3621
3622static int perf_session__do_write_header(struct perf_session *session,
3623 struct evlist *evlist,
3624 int fd, bool at_exit,
3625 struct feat_copier *fc)
3626{
3627 struct perf_file_header f_header;
3628 struct perf_file_attr f_attr;
3629 struct perf_header *header = &session->header;
3630 struct evsel *evsel;
3631 struct feat_fd ff;
3632 u64 attr_offset;
3633 int err;
3634
3635 ff = (struct feat_fd){ .fd = fd};
3636 lseek(fd, sizeof(f_header), SEEK_SET);
3637
3638 evlist__for_each_entry(session->evlist, evsel) {
3639 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3640 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3641 if (err < 0) {
3642 pr_debug("failed to write perf header\n");
3643 return err;
3644 }
3645 }
3646
3647 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3648
3649 evlist__for_each_entry(evlist, evsel) {
3650 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3651 /*
3652 * We are likely in "perf inject" and have read
3653 * from an older file. Update attr size so that
3654 * reader gets the right offset to the ids.
3655 */
3656 evsel->core.attr.size = sizeof(evsel->core.attr);
3657 }
3658 f_attr = (struct perf_file_attr){
3659 .attr = evsel->core.attr,
3660 .ids = {
3661 .offset = evsel->id_offset,
3662 .size = evsel->core.ids * sizeof(u64),
3663 }
3664 };
3665 err = do_write(&ff, &f_attr, sizeof(f_attr));
3666 if (err < 0) {
3667 pr_debug("failed to write perf header attribute\n");
3668 return err;
3669 }
3670 }
3671
3672 if (!header->data_offset)
3673 header->data_offset = lseek(fd, 0, SEEK_CUR);
3674 header->feat_offset = header->data_offset + header->data_size;
3675
3676 if (at_exit) {
3677 err = perf_header__adds_write(header, evlist, fd, fc);
3678 if (err < 0)
3679 return err;
3680 }
3681
3682 f_header = (struct perf_file_header){
3683 .magic = PERF_MAGIC,
3684 .size = sizeof(f_header),
3685 .attr_size = sizeof(f_attr),
3686 .attrs = {
3687 .offset = attr_offset,
3688 .size = evlist->core.nr_entries * sizeof(f_attr),
3689 },
3690 .data = {
3691 .offset = header->data_offset,
3692 .size = header->data_size,
3693 },
3694 /* event_types is ignored, store zeros */
3695 };
3696
3697 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3698
3699 lseek(fd, 0, SEEK_SET);
3700 err = do_write(&ff, &f_header, sizeof(f_header));
3701 if (err < 0) {
3702 pr_debug("failed to write perf header\n");
3703 return err;
3704 }
3705 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3706
3707 return 0;
3708}
3709
3710int perf_session__write_header(struct perf_session *session,
3711 struct evlist *evlist,
3712 int fd, bool at_exit)
3713{
3714 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3715}
3716
3717size_t perf_session__data_offset(const struct evlist *evlist)
3718{
3719 struct evsel *evsel;
3720 size_t data_offset;
3721
3722 data_offset = sizeof(struct perf_file_header);
3723 evlist__for_each_entry(evlist, evsel) {
3724 data_offset += evsel->core.ids * sizeof(u64);
3725 }
3726 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3727
3728 return data_offset;
3729}
3730
3731int perf_session__inject_header(struct perf_session *session,
3732 struct evlist *evlist,
3733 int fd,
3734 struct feat_copier *fc)
3735{
3736 return perf_session__do_write_header(session, evlist, fd, true, fc);
3737}
3738
3739static int perf_header__getbuffer64(struct perf_header *header,
3740 int fd, void *buf, size_t size)
3741{
3742 if (readn(fd, buf, size) <= 0)
3743 return -1;
3744
3745 if (header->needs_swap)
3746 mem_bswap_64(buf, size);
3747
3748 return 0;
3749}
3750
3751int perf_header__process_sections(struct perf_header *header, int fd,
3752 void *data,
3753 int (*process)(struct perf_file_section *section,
3754 struct perf_header *ph,
3755 int feat, int fd, void *data))
3756{
3757 struct perf_file_section *feat_sec, *sec;
3758 int nr_sections;
3759 int sec_size;
3760 int feat;
3761 int err;
3762
3763 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3764 if (!nr_sections)
3765 return 0;
3766
3767 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3768 if (!feat_sec)
3769 return -1;
3770
3771 sec_size = sizeof(*feat_sec) * nr_sections;
3772
3773 lseek(fd, header->feat_offset, SEEK_SET);
3774
3775 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3776 if (err < 0)
3777 goto out_free;
3778
3779 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3780 err = process(sec++, header, feat, fd, data);
3781 if (err < 0)
3782 goto out_free;
3783 }
3784 err = 0;
3785out_free:
3786 free(feat_sec);
3787 return err;
3788}
3789
3790static const int attr_file_abi_sizes[] = {
3791 [0] = PERF_ATTR_SIZE_VER0,
3792 [1] = PERF_ATTR_SIZE_VER1,
3793 [2] = PERF_ATTR_SIZE_VER2,
3794 [3] = PERF_ATTR_SIZE_VER3,
3795 [4] = PERF_ATTR_SIZE_VER4,
3796 0,
3797};
3798
3799/*
3800 * In the legacy file format, the magic number is not used to encode endianness.
3801 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3802 * on ABI revisions, we need to try all combinations for all endianness to
3803 * detect the endianness.
3804 */
3805static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3806{
3807 uint64_t ref_size, attr_size;
3808 int i;
3809
3810 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3811 ref_size = attr_file_abi_sizes[i]
3812 + sizeof(struct perf_file_section);
3813 if (hdr_sz != ref_size) {
3814 attr_size = bswap_64(hdr_sz);
3815 if (attr_size != ref_size)
3816 continue;
3817
3818 ph->needs_swap = true;
3819 }
3820 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3821 i,
3822 ph->needs_swap);
3823 return 0;
3824 }
3825 /* could not determine endianness */
3826 return -1;
3827}
3828
3829#define PERF_PIPE_HDR_VER0 16
3830
3831static const size_t attr_pipe_abi_sizes[] = {
3832 [0] = PERF_PIPE_HDR_VER0,
3833 0,
3834};
3835
3836/*
3837 * In the legacy pipe format, there is an implicit assumption that endianness
3838 * between host recording the samples, and host parsing the samples is the
3839 * same. This is not always the case given that the pipe output may always be
3840 * redirected into a file and analyzed on a different machine with possibly a
3841 * different endianness and perf_event ABI revisions in the perf tool itself.
3842 */
3843static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3844{
3845 u64 attr_size;
3846 int i;
3847
3848 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3849 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3850 attr_size = bswap_64(hdr_sz);
3851 if (attr_size != hdr_sz)
3852 continue;
3853
3854 ph->needs_swap = true;
3855 }
3856 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3857 return 0;
3858 }
3859 return -1;
3860}
3861
3862bool is_perf_magic(u64 magic)
3863{
3864 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3865 || magic == __perf_magic2
3866 || magic == __perf_magic2_sw)
3867 return true;
3868
3869 return false;
3870}
3871
3872static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3873 bool is_pipe, struct perf_header *ph)
3874{
3875 int ret;
3876
3877 /* check for legacy format */
3878 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3879 if (ret == 0) {
3880 ph->version = PERF_HEADER_VERSION_1;
3881 pr_debug("legacy perf.data format\n");
3882 if (is_pipe)
3883 return try_all_pipe_abis(hdr_sz, ph);
3884
3885 return try_all_file_abis(hdr_sz, ph);
3886 }
3887 /*
3888 * the new magic number serves two purposes:
3889 * - unique number to identify actual perf.data files
3890 * - encode endianness of file
3891 */
3892 ph->version = PERF_HEADER_VERSION_2;
3893
3894 /* check magic number with one endianness */
3895 if (magic == __perf_magic2)
3896 return 0;
3897
3898 /* check magic number with opposite endianness */
3899 if (magic != __perf_magic2_sw)
3900 return -1;
3901
3902 ph->needs_swap = true;
3903
3904 return 0;
3905}
3906
3907int perf_file_header__read(struct perf_file_header *header,
3908 struct perf_header *ph, int fd)
3909{
3910 ssize_t ret;
3911
3912 lseek(fd, 0, SEEK_SET);
3913
3914 ret = readn(fd, header, sizeof(*header));
3915 if (ret <= 0)
3916 return -1;
3917
3918 if (check_magic_endian(header->magic,
3919 header->attr_size, false, ph) < 0) {
3920 pr_debug("magic/endian check failed\n");
3921 return -1;
3922 }
3923
3924 if (ph->needs_swap) {
3925 mem_bswap_64(header, offsetof(struct perf_file_header,
3926 adds_features));
3927 }
3928
3929 if (header->size != sizeof(*header)) {
3930 /* Support the previous format */
3931 if (header->size == offsetof(typeof(*header), adds_features))
3932 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3933 else
3934 return -1;
3935 } else if (ph->needs_swap) {
3936 /*
3937 * feature bitmap is declared as an array of unsigned longs --
3938 * not good since its size can differ between the host that
3939 * generated the data file and the host analyzing the file.
3940 *
3941 * We need to handle endianness, but we don't know the size of
3942 * the unsigned long where the file was generated. Take a best
3943 * guess at determining it: try 64-bit swap first (ie., file
3944 * created on a 64-bit host), and check if the hostname feature
3945 * bit is set (this feature bit is forced on as of fbe96f2).
3946 * If the bit is not, undo the 64-bit swap and try a 32-bit
3947 * swap. If the hostname bit is still not set (e.g., older data
3948 * file), punt and fallback to the original behavior --
3949 * clearing all feature bits and setting buildid.
3950 */
3951 mem_bswap_64(&header->adds_features,
3952 BITS_TO_U64(HEADER_FEAT_BITS));
3953
3954 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3955 /* unswap as u64 */
3956 mem_bswap_64(&header->adds_features,
3957 BITS_TO_U64(HEADER_FEAT_BITS));
3958
3959 /* unswap as u32 */
3960 mem_bswap_32(&header->adds_features,
3961 BITS_TO_U32(HEADER_FEAT_BITS));
3962 }
3963
3964 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3965 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3966 __set_bit(HEADER_BUILD_ID, header->adds_features);
3967 }
3968 }
3969
3970 memcpy(&ph->adds_features, &header->adds_features,
3971 sizeof(ph->adds_features));
3972
3973 ph->data_offset = header->data.offset;
3974 ph->data_size = header->data.size;
3975 ph->feat_offset = header->data.offset + header->data.size;
3976 return 0;
3977}
3978
3979static int perf_file_section__process(struct perf_file_section *section,
3980 struct perf_header *ph,
3981 int feat, int fd, void *data)
3982{
3983 struct feat_fd fdd = {
3984 .fd = fd,
3985 .ph = ph,
3986 .size = section->size,
3987 .offset = section->offset,
3988 };
3989
3990 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3991 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3992 "%d, continuing...\n", section->offset, feat);
3993 return 0;
3994 }
3995
3996 if (feat >= HEADER_LAST_FEATURE) {
3997 pr_debug("unknown feature %d, continuing...\n", feat);
3998 return 0;
3999 }
4000
4001 if (!feat_ops[feat].process)
4002 return 0;
4003
4004 return feat_ops[feat].process(&fdd, data);
4005}
4006
4007static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4008 struct perf_header *ph,
4009 struct perf_data* data,
4010 bool repipe, int repipe_fd)
4011{
4012 struct feat_fd ff = {
4013 .fd = repipe_fd,
4014 .ph = ph,
4015 };
4016 ssize_t ret;
4017
4018 ret = perf_data__read(data, header, sizeof(*header));
4019 if (ret <= 0)
4020 return -1;
4021
4022 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4023 pr_debug("endian/magic failed\n");
4024 return -1;
4025 }
4026
4027 if (ph->needs_swap)
4028 header->size = bswap_64(header->size);
4029
4030 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4031 return -1;
4032
4033 return 0;
4034}
4035
4036static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4037{
4038 struct perf_header *header = &session->header;
4039 struct perf_pipe_file_header f_header;
4040
4041 if (perf_file_header__read_pipe(&f_header, header, session->data,
4042 session->repipe, repipe_fd) < 0) {
4043 pr_debug("incompatible file format\n");
4044 return -EINVAL;
4045 }
4046
4047 return f_header.size == sizeof(f_header) ? 0 : -1;
4048}
4049
4050static int read_attr(int fd, struct perf_header *ph,
4051 struct perf_file_attr *f_attr)
4052{
4053 struct perf_event_attr *attr = &f_attr->attr;
4054 size_t sz, left;
4055 size_t our_sz = sizeof(f_attr->attr);
4056 ssize_t ret;
4057
4058 memset(f_attr, 0, sizeof(*f_attr));
4059
4060 /* read minimal guaranteed structure */
4061 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4062 if (ret <= 0) {
4063 pr_debug("cannot read %d bytes of header attr\n",
4064 PERF_ATTR_SIZE_VER0);
4065 return -1;
4066 }
4067
4068 /* on file perf_event_attr size */
4069 sz = attr->size;
4070
4071 if (ph->needs_swap)
4072 sz = bswap_32(sz);
4073
4074 if (sz == 0) {
4075 /* assume ABI0 */
4076 sz = PERF_ATTR_SIZE_VER0;
4077 } else if (sz > our_sz) {
4078 pr_debug("file uses a more recent and unsupported ABI"
4079 " (%zu bytes extra)\n", sz - our_sz);
4080 return -1;
4081 }
4082 /* what we have not yet read and that we know about */
4083 left = sz - PERF_ATTR_SIZE_VER0;
4084 if (left) {
4085 void *ptr = attr;
4086 ptr += PERF_ATTR_SIZE_VER0;
4087
4088 ret = readn(fd, ptr, left);
4089 }
4090 /* read perf_file_section, ids are read in caller */
4091 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4092
4093 return ret <= 0 ? -1 : 0;
4094}
4095
4096#ifdef HAVE_LIBTRACEEVENT
4097static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4098{
4099 struct tep_event *event;
4100 char bf[128];
4101
4102 /* already prepared */
4103 if (evsel->tp_format)
4104 return 0;
4105
4106 if (pevent == NULL) {
4107 pr_debug("broken or missing trace data\n");
4108 return -1;
4109 }
4110
4111 event = tep_find_event(pevent, evsel->core.attr.config);
4112 if (event == NULL) {
4113 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4114 return -1;
4115 }
4116
4117 if (!evsel->name) {
4118 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4119 evsel->name = strdup(bf);
4120 if (evsel->name == NULL)
4121 return -1;
4122 }
4123
4124 evsel->tp_format = event;
4125 return 0;
4126}
4127
4128static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4129{
4130 struct evsel *pos;
4131
4132 evlist__for_each_entry(evlist, pos) {
4133 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4134 evsel__prepare_tracepoint_event(pos, pevent))
4135 return -1;
4136 }
4137
4138 return 0;
4139}
4140#endif
4141
4142int perf_session__read_header(struct perf_session *session, int repipe_fd)
4143{
4144 struct perf_data *data = session->data;
4145 struct perf_header *header = &session->header;
4146 struct perf_file_header f_header;
4147 struct perf_file_attr f_attr;
4148 u64 f_id;
4149 int nr_attrs, nr_ids, i, j, err;
4150 int fd = perf_data__fd(data);
4151
4152 session->evlist = evlist__new();
4153 if (session->evlist == NULL)
4154 return -ENOMEM;
4155
4156 session->evlist->env = &header->env;
4157 session->machines.host.env = &header->env;
4158
4159 /*
4160 * We can read 'pipe' data event from regular file,
4161 * check for the pipe header regardless of source.
4162 */
4163 err = perf_header__read_pipe(session, repipe_fd);
4164 if (!err || perf_data__is_pipe(data)) {
4165 data->is_pipe = true;
4166 return err;
4167 }
4168
4169 if (perf_file_header__read(&f_header, header, fd) < 0)
4170 return -EINVAL;
4171
4172 if (header->needs_swap && data->in_place_update) {
4173 pr_err("In-place update not supported when byte-swapping is required\n");
4174 return -EINVAL;
4175 }
4176
4177 /*
4178 * Sanity check that perf.data was written cleanly; data size is
4179 * initialized to 0 and updated only if the on_exit function is run.
4180 * If data size is still 0 then the file contains only partial
4181 * information. Just warn user and process it as much as it can.
4182 */
4183 if (f_header.data.size == 0) {
4184 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4185 "Was the 'perf record' command properly terminated?\n",
4186 data->file.path);
4187 }
4188
4189 if (f_header.attr_size == 0) {
4190 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4191 "Was the 'perf record' command properly terminated?\n",
4192 data->file.path);
4193 return -EINVAL;
4194 }
4195
4196 nr_attrs = f_header.attrs.size / f_header.attr_size;
4197 lseek(fd, f_header.attrs.offset, SEEK_SET);
4198
4199 for (i = 0; i < nr_attrs; i++) {
4200 struct evsel *evsel;
4201 off_t tmp;
4202
4203 if (read_attr(fd, header, &f_attr) < 0)
4204 goto out_errno;
4205
4206 if (header->needs_swap) {
4207 f_attr.ids.size = bswap_64(f_attr.ids.size);
4208 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4209 perf_event__attr_swap(&f_attr.attr);
4210 }
4211
4212 tmp = lseek(fd, 0, SEEK_CUR);
4213 evsel = evsel__new(&f_attr.attr);
4214
4215 if (evsel == NULL)
4216 goto out_delete_evlist;
4217
4218 evsel->needs_swap = header->needs_swap;
4219 /*
4220 * Do it before so that if perf_evsel__alloc_id fails, this
4221 * entry gets purged too at evlist__delete().
4222 */
4223 evlist__add(session->evlist, evsel);
4224
4225 nr_ids = f_attr.ids.size / sizeof(u64);
4226 /*
4227 * We don't have the cpu and thread maps on the header, so
4228 * for allocating the perf_sample_id table we fake 1 cpu and
4229 * hattr->ids threads.
4230 */
4231 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4232 goto out_delete_evlist;
4233
4234 lseek(fd, f_attr.ids.offset, SEEK_SET);
4235
4236 for (j = 0; j < nr_ids; j++) {
4237 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4238 goto out_errno;
4239
4240 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4241 }
4242
4243 lseek(fd, tmp, SEEK_SET);
4244 }
4245
4246#ifdef HAVE_LIBTRACEEVENT
4247 perf_header__process_sections(header, fd, &session->tevent,
4248 perf_file_section__process);
4249
4250 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4251 goto out_delete_evlist;
4252#else
4253 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4254#endif
4255
4256 return 0;
4257out_errno:
4258 return -errno;
4259
4260out_delete_evlist:
4261 evlist__delete(session->evlist);
4262 session->evlist = NULL;
4263 return -ENOMEM;
4264}
4265
4266int perf_event__process_feature(struct perf_session *session,
4267 union perf_event *event)
4268{
4269 struct perf_tool *tool = session->tool;
4270 struct feat_fd ff = { .fd = 0 };
4271 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4272 int type = fe->header.type;
4273 u64 feat = fe->feat_id;
4274 int ret = 0;
4275
4276 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4277 pr_warning("invalid record type %d in pipe-mode\n", type);
4278 return 0;
4279 }
4280 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4281 pr_warning("invalid record type %d in pipe-mode\n", type);
4282 return -1;
4283 }
4284
4285 if (!feat_ops[feat].process)
4286 return 0;
4287
4288 ff.buf = (void *)fe->data;
4289 ff.size = event->header.size - sizeof(*fe);
4290 ff.ph = &session->header;
4291
4292 if (feat_ops[feat].process(&ff, NULL)) {
4293 ret = -1;
4294 goto out;
4295 }
4296
4297 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4298 goto out;
4299
4300 if (!feat_ops[feat].full_only ||
4301 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4302 feat_ops[feat].print(&ff, stdout);
4303 } else {
4304 fprintf(stdout, "# %s info available, use -I to display\n",
4305 feat_ops[feat].name);
4306 }
4307out:
4308 free_event_desc(ff.events);
4309 return ret;
4310}
4311
4312size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4313{
4314 struct perf_record_event_update *ev = &event->event_update;
4315 struct perf_cpu_map *map;
4316 size_t ret;
4317
4318 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4319
4320 switch (ev->type) {
4321 case PERF_EVENT_UPDATE__SCALE:
4322 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4323 break;
4324 case PERF_EVENT_UPDATE__UNIT:
4325 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4326 break;
4327 case PERF_EVENT_UPDATE__NAME:
4328 ret += fprintf(fp, "... name: %s\n", ev->name);
4329 break;
4330 case PERF_EVENT_UPDATE__CPUS:
4331 ret += fprintf(fp, "... ");
4332
4333 map = cpu_map__new_data(&ev->cpus.cpus);
4334 if (map)
4335 ret += cpu_map__fprintf(map, fp);
4336 else
4337 ret += fprintf(fp, "failed to get cpus\n");
4338 break;
4339 default:
4340 ret += fprintf(fp, "... unknown type\n");
4341 break;
4342 }
4343
4344 return ret;
4345}
4346
4347int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4348 union perf_event *event,
4349 struct evlist **pevlist)
4350{
4351 u32 i, ids, n_ids;
4352 struct evsel *evsel;
4353 struct evlist *evlist = *pevlist;
4354
4355 if (evlist == NULL) {
4356 *pevlist = evlist = evlist__new();
4357 if (evlist == NULL)
4358 return -ENOMEM;
4359 }
4360
4361 evsel = evsel__new(&event->attr.attr);
4362 if (evsel == NULL)
4363 return -ENOMEM;
4364
4365 evlist__add(evlist, evsel);
4366
4367 ids = event->header.size;
4368 ids -= (void *)&event->attr.id - (void *)event;
4369 n_ids = ids / sizeof(u64);
4370 /*
4371 * We don't have the cpu and thread maps on the header, so
4372 * for allocating the perf_sample_id table we fake 1 cpu and
4373 * hattr->ids threads.
4374 */
4375 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4376 return -ENOMEM;
4377
4378 for (i = 0; i < n_ids; i++) {
4379 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4380 }
4381
4382 return 0;
4383}
4384
4385int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4386 union perf_event *event,
4387 struct evlist **pevlist)
4388{
4389 struct perf_record_event_update *ev = &event->event_update;
4390 struct evlist *evlist;
4391 struct evsel *evsel;
4392 struct perf_cpu_map *map;
4393
4394 if (dump_trace)
4395 perf_event__fprintf_event_update(event, stdout);
4396
4397 if (!pevlist || *pevlist == NULL)
4398 return -EINVAL;
4399
4400 evlist = *pevlist;
4401
4402 evsel = evlist__id2evsel(evlist, ev->id);
4403 if (evsel == NULL)
4404 return -EINVAL;
4405
4406 switch (ev->type) {
4407 case PERF_EVENT_UPDATE__UNIT:
4408 free((char *)evsel->unit);
4409 evsel->unit = strdup(ev->unit);
4410 break;
4411 case PERF_EVENT_UPDATE__NAME:
4412 free(evsel->name);
4413 evsel->name = strdup(ev->name);
4414 break;
4415 case PERF_EVENT_UPDATE__SCALE:
4416 evsel->scale = ev->scale.scale;
4417 break;
4418 case PERF_EVENT_UPDATE__CPUS:
4419 map = cpu_map__new_data(&ev->cpus.cpus);
4420 if (map) {
4421 perf_cpu_map__put(evsel->core.own_cpus);
4422 evsel->core.own_cpus = map;
4423 } else
4424 pr_err("failed to get event_update cpus\n");
4425 default:
4426 break;
4427 }
4428
4429 return 0;
4430}
4431
4432#ifdef HAVE_LIBTRACEEVENT
4433int perf_event__process_tracing_data(struct perf_session *session,
4434 union perf_event *event)
4435{
4436 ssize_t size_read, padding, size = event->tracing_data.size;
4437 int fd = perf_data__fd(session->data);
4438 char buf[BUFSIZ];
4439
4440 /*
4441 * The pipe fd is already in proper place and in any case
4442 * we can't move it, and we'd screw the case where we read
4443 * 'pipe' data from regular file. The trace_report reads
4444 * data from 'fd' so we need to set it directly behind the
4445 * event, where the tracing data starts.
4446 */
4447 if (!perf_data__is_pipe(session->data)) {
4448 off_t offset = lseek(fd, 0, SEEK_CUR);
4449
4450 /* setup for reading amidst mmap */
4451 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4452 SEEK_SET);
4453 }
4454
4455 size_read = trace_report(fd, &session->tevent,
4456 session->repipe);
4457 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4458
4459 if (readn(fd, buf, padding) < 0) {
4460 pr_err("%s: reading input file", __func__);
4461 return -1;
4462 }
4463 if (session->repipe) {
4464 int retw = write(STDOUT_FILENO, buf, padding);
4465 if (retw <= 0 || retw != padding) {
4466 pr_err("%s: repiping tracing data padding", __func__);
4467 return -1;
4468 }
4469 }
4470
4471 if (size_read + padding != size) {
4472 pr_err("%s: tracing data size mismatch", __func__);
4473 return -1;
4474 }
4475
4476 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4477
4478 return size_read + padding;
4479}
4480#endif
4481
4482int perf_event__process_build_id(struct perf_session *session,
4483 union perf_event *event)
4484{
4485 __event_process_build_id(&event->build_id,
4486 event->build_id.filename,
4487 session);
4488 return 0;
4489}
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49
50#include <linux/ctype.h>
51#include <internal/lib.h>
52
53/*
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
59 *
60 * we check for legacy (PERFFILE) format.
61 */
62static const char *__perf_magic1 = "PERFFILE";
63static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66#define PERF_MAGIC __perf_magic2
67
68const char perf_version_string[] = PERF_VERSION;
69
70struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
73};
74
75void perf_header__set_feat(struct perf_header *header, int feat)
76{
77 set_bit(feat, header->adds_features);
78}
79
80void perf_header__clear_feat(struct perf_header *header, int feat)
81{
82 clear_bit(feat, header->adds_features);
83}
84
85bool perf_header__has_feat(const struct perf_header *header, int feat)
86{
87 return test_bit(feat, header->adds_features);
88}
89
90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91{
92 ssize_t ret = writen(ff->fd, buf, size);
93
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
97}
98
99static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
100{
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
105
106 if (size + ff->offset > max_size)
107 return -E2BIG;
108
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
112
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
119 }
120
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
123
124 return 0;
125}
126
127/* Return: 0 if succeded, -ERR if failed. */
128int do_write(struct feat_fd *ff, const void *buf, size_t size)
129{
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
133}
134
135/* Return: 0 if succeded, -ERR if failed. */
136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137{
138 u64 *p = (u64 *) set;
139 int i, ret;
140
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
144
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
149 }
150
151 return 0;
152}
153
154/* Return: 0 if succeded, -ERR if failed. */
155int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
157{
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
160
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
163
164 return err;
165}
166
167#define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170/* Return: 0 if succeded, -ERR if failed. */
171static int do_write_string(struct feat_fd *ff, const char *str)
172{
173 u32 len, olen;
174 int ret;
175
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
178
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
183
184 return write_padded(ff, str, olen, len);
185}
186
187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188{
189 ssize_t ret = readn(ff->fd, addr, size);
190
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
194}
195
196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197{
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
200
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
203
204 return 0;
205
206}
207
208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209{
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
213}
214
215static int do_read_u32(struct feat_fd *ff, u32 *addr)
216{
217 int ret;
218
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
222
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
226}
227
228static int do_read_u64(struct feat_fd *ff, u64 *addr)
229{
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
239}
240
241static char *do_read_string(struct feat_fd *ff)
242{
243 u32 len;
244 char *buf;
245
246 if (do_read_u32(ff, &len))
247 return NULL;
248
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
252
253 if (!__do_read(ff, buf, len)) {
254 /*
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
258 */
259 return buf;
260 }
261
262 free(buf);
263 return NULL;
264}
265
266/* Return: 0 if succeded, -ERR if failed. */
267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268{
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
272
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
276
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
280
281 p = (u64 *) set;
282
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
288 }
289 }
290
291 *pset = set;
292 *psize = size;
293 return 0;
294}
295
296static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
298{
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
301
302 return read_tracing_data(ff->fd, &evlist->core.entries);
303}
304
305static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
307{
308 struct perf_session *session;
309 int err;
310
311 session = container_of(ff->ph, struct perf_session, header);
312
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
315
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
318
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
323 }
324 perf_session__cache_build_ids(session);
325
326 return 0;
327}
328
329static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
331{
332 struct utsname uts;
333 int ret;
334
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
338
339 return do_write_string(ff, uts.nodename);
340}
341
342static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344{
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.release);
353}
354
355static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357{
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.machine);
366}
367
368static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370{
371 return do_write_string(ff, perf_version_string);
372}
373
374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375{
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
382
383 if (!search)
384 return -1;
385
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
389
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
394 }
395
396 if (ret) {
397 ret = -1;
398 goto done;
399 }
400
401 s = buf;
402
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
409
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
419 }
420 p++;
421 }
422 ret = do_write_string(ff, s);
423done:
424 free(buf);
425 fclose(file);
426 return ret;
427}
428
429static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
431{
432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433#define CPUINFO_PROC { "cpu", }
434#elif defined(__s390__)
435#define CPUINFO_PROC { "vendor_id", }
436#elif defined(__sh__)
437#define CPUINFO_PROC { "cpu type", }
438#elif defined(__alpha__) || defined(__mips__)
439#define CPUINFO_PROC { "cpu model", }
440#elif defined(__arm__)
441#define CPUINFO_PROC { "model name", "Processor", }
442#elif defined(__arc__)
443#define CPUINFO_PROC { "Processor", }
444#elif defined(__xtensa__)
445#define CPUINFO_PROC { "core ID", }
446#else
447#define CPUINFO_PROC { "model name", }
448#endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450#undef CPUINFO_PROC
451 unsigned int i;
452
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
458 }
459 return -1;
460}
461
462
463static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
465{
466 long nr;
467 u32 nrc, nra;
468 int ret;
469
470 nrc = cpu__max_present_cpu();
471
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
475
476 nra = (u32)(nr & UINT_MAX);
477
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
481
482 return do_write(ff, &nra, sizeof(nra));
483}
484
485static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
487{
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
491
492 nre = evlist->core.nr_entries;
493
494 /*
495 * write number of events
496 */
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
500
501 /*
502 * size of perf_event_attr struct
503 */
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
508
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
513 /*
514 * write number of unique id per event
515 * there is one id per instance of an event
516 *
517 * copy into an nri to be independent of the
518 * type of ids,
519 */
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
524
525 /*
526 * write event string as passed on cmdline
527 */
528 ret = do_write_string(ff, perf_evsel__name(evsel));
529 if (ret < 0)
530 return ret;
531 /*
532 * write unique ids for this event
533 */
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
537 }
538 return 0;
539}
540
541static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
543{
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
546
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
549
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
552
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
556
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
560
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
565 }
566 return 0;
567}
568
569
570static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
572{
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
576
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
580
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
584
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
589 }
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
593
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
598 }
599
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
603
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
613 }
614
615 if (!tp->die_sib)
616 goto done;
617
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
621
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
626 }
627
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
633 }
634
635done:
636 cpu_topology__delete(tp);
637 return ret;
638}
639
640
641
642static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
644{
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
650
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
654
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
659 }
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
669}
670
671static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
673{
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
677
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
681
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
685
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
688
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
692
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
696
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
700
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
704 }
705
706 ret = 0;
707
708err:
709 numa_topology__delete(tp);
710 return ret;
711}
712
713/*
714 * File format:
715 *
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
723 */
724
725static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
727{
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
731
732 /*
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
735 */
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
740 }
741
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
745
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
749
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
753
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
757 }
758
759 return 0;
760}
761
762/*
763 * File format:
764 *
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
773 */
774static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
776{
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
780
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
784
785 evlist__for_each_entry(evlist, evsel) {
786 if (perf_evsel__is_group_leader(evsel) &&
787 evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806}
807
808/*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815{
816 return NULL;
817}
818
819/* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824{
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845}
846
847/*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852{
853 return -1;
854}
855
856static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858{
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867}
868
869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871{
872 return 0;
873}
874
875static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877{
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890}
891
892static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894{
895 return do_write(ff, &ff->ph->env.clockid_res_ns,
896 sizeof(ff->ph->env.clockid_res_ns));
897}
898
899static int write_dir_format(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901{
902 struct perf_session *session;
903 struct perf_data *data;
904
905 session = container_of(ff->ph, struct perf_session, header);
906 data = session->data;
907
908 if (WARN_ON(!perf_data__is_dir(data)))
909 return -1;
910
911 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912}
913
914#ifdef HAVE_LIBBPF_SUPPORT
915static int write_bpf_prog_info(struct feat_fd *ff,
916 struct evlist *evlist __maybe_unused)
917{
918 struct perf_env *env = &ff->ph->env;
919 struct rb_root *root;
920 struct rb_node *next;
921 int ret;
922
923 down_read(&env->bpf_progs.lock);
924
925 ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 sizeof(env->bpf_progs.infos_cnt));
927 if (ret < 0)
928 goto out;
929
930 root = &env->bpf_progs.infos;
931 next = rb_first(root);
932 while (next) {
933 struct bpf_prog_info_node *node;
934 size_t len;
935
936 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 next = rb_next(&node->rb_node);
938 len = sizeof(struct bpf_prog_info_linear) +
939 node->info_linear->data_len;
940
941 /* before writing to file, translate address to offset */
942 bpf_program__bpil_addr_to_offs(node->info_linear);
943 ret = do_write(ff, node->info_linear, len);
944 /*
945 * translate back to address even when do_write() fails,
946 * so that this function never changes the data.
947 */
948 bpf_program__bpil_offs_to_addr(node->info_linear);
949 if (ret < 0)
950 goto out;
951 }
952out:
953 up_read(&env->bpf_progs.lock);
954 return ret;
955}
956#else // HAVE_LIBBPF_SUPPORT
957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 struct evlist *evlist __maybe_unused)
959{
960 return 0;
961}
962#endif // HAVE_LIBBPF_SUPPORT
963
964static int write_bpf_btf(struct feat_fd *ff,
965 struct evlist *evlist __maybe_unused)
966{
967 struct perf_env *env = &ff->ph->env;
968 struct rb_root *root;
969 struct rb_node *next;
970 int ret;
971
972 down_read(&env->bpf_progs.lock);
973
974 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 sizeof(env->bpf_progs.btfs_cnt));
976
977 if (ret < 0)
978 goto out;
979
980 root = &env->bpf_progs.btfs;
981 next = rb_first(root);
982 while (next) {
983 struct btf_node *node;
984
985 node = rb_entry(next, struct btf_node, rb_node);
986 next = rb_next(&node->rb_node);
987 ret = do_write(ff, &node->id,
988 sizeof(u32) * 2 + node->data_size);
989 if (ret < 0)
990 goto out;
991 }
992out:
993 up_read(&env->bpf_progs.lock);
994 return ret;
995}
996
997static int cpu_cache_level__sort(const void *a, const void *b)
998{
999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002 return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007 if (a->level != b->level)
1008 return false;
1009
1010 if (a->line_size != b->line_size)
1011 return false;
1012
1013 if (a->sets != b->sets)
1014 return false;
1015
1016 if (a->ways != b->ways)
1017 return false;
1018
1019 if (strcmp(a->type, b->type))
1020 return false;
1021
1022 if (strcmp(a->size, b->size))
1023 return false;
1024
1025 if (strcmp(a->map, b->map))
1026 return false;
1027
1028 return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033 char path[PATH_MAX], file[PATH_MAX];
1034 struct stat st;
1035 size_t len;
1036
1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040 if (stat(file, &st))
1041 return 1;
1042
1043 scnprintf(file, PATH_MAX, "%s/level", path);
1044 if (sysfs__read_int(file, (int *) &cache->level))
1045 return -1;
1046
1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 if (sysfs__read_int(file, (int *) &cache->line_size))
1049 return -1;
1050
1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 if (sysfs__read_int(file, (int *) &cache->sets))
1053 return -1;
1054
1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 if (sysfs__read_int(file, (int *) &cache->ways))
1057 return -1;
1058
1059 scnprintf(file, PATH_MAX, "%s/type", path);
1060 if (sysfs__read_str(file, &cache->type, &len))
1061 return -1;
1062
1063 cache->type[len] = 0;
1064 cache->type = strim(cache->type);
1065
1066 scnprintf(file, PATH_MAX, "%s/size", path);
1067 if (sysfs__read_str(file, &cache->size, &len)) {
1068 zfree(&cache->type);
1069 return -1;
1070 }
1071
1072 cache->size[len] = 0;
1073 cache->size = strim(cache->size);
1074
1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 if (sysfs__read_str(file, &cache->map, &len)) {
1077 zfree(&cache->size);
1078 zfree(&cache->type);
1079 return -1;
1080 }
1081
1082 cache->map[len] = 0;
1083 cache->map = strim(cache->map);
1084 return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093{
1094 u32 i, cnt = 0;
1095 long ncpus;
1096 u32 nr, cpu;
1097 u16 level;
1098
1099 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 if (ncpus < 0)
1101 return -1;
1102
1103 nr = (u32)(ncpus & UINT_MAX);
1104
1105 for (cpu = 0; cpu < nr; cpu++) {
1106 for (level = 0; level < 10; level++) {
1107 struct cpu_cache_level c;
1108 int err;
1109
1110 err = cpu_cache_level__read(&c, cpu, level);
1111 if (err < 0)
1112 return err;
1113
1114 if (err == 1)
1115 break;
1116
1117 for (i = 0; i < cnt; i++) {
1118 if (cpu_cache_level__cmp(&c, &caches[i]))
1119 break;
1120 }
1121
1122 if (i == cnt)
1123 caches[cnt++] = c;
1124 else
1125 cpu_cache_level__free(&c);
1126
1127 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 goto out;
1129 }
1130 }
1131 out:
1132 *cntp = cnt;
1133 return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139 struct evlist *evlist __maybe_unused)
1140{
1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 struct cpu_cache_level caches[max_caches];
1143 u32 cnt = 0, i, version = 1;
1144 int ret;
1145
1146 ret = build_caches(caches, max_caches, &cnt);
1147 if (ret)
1148 goto out;
1149
1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152 ret = do_write(ff, &version, sizeof(u32));
1153 if (ret < 0)
1154 goto out;
1155
1156 ret = do_write(ff, &cnt, sizeof(u32));
1157 if (ret < 0)
1158 goto out;
1159
1160 for (i = 0; i < cnt; i++) {
1161 struct cpu_cache_level *c = &caches[i];
1162
1163 #define _W(v) \
1164 ret = do_write(ff, &c->v, sizeof(u32)); \
1165 if (ret < 0) \
1166 goto out;
1167
1168 _W(level)
1169 _W(line_size)
1170 _W(sets)
1171 _W(ways)
1172 #undef _W
1173
1174 #define _W(v) \
1175 ret = do_write_string(ff, (const char *) c->v); \
1176 if (ret < 0) \
1177 goto out;
1178
1179 _W(type)
1180 _W(size)
1181 _W(map)
1182 #undef _W
1183 }
1184
1185out:
1186 for (i = 0; i < cnt; i++)
1187 cpu_cache_level__free(&caches[i]);
1188 return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192 struct evlist *evlist __maybe_unused)
1193{
1194 return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198 struct evlist *evlist)
1199{
1200 int ret;
1201
1202 ret = do_write(ff, &evlist->first_sample_time,
1203 sizeof(evlist->first_sample_time));
1204 if (ret < 0)
1205 return ret;
1206
1207 return do_write(ff, &evlist->last_sample_time,
1208 sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214 unsigned int phys, size = 0;
1215 char path[PATH_MAX];
1216 struct dirent *ent;
1217 DIR *dir;
1218
1219#define for_each_memory(mem, dir) \
1220 while ((ent = readdir(dir))) \
1221 if (strcmp(ent->d_name, ".") && \
1222 strcmp(ent->d_name, "..") && \
1223 sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225 scnprintf(path, PATH_MAX,
1226 "%s/devices/system/node/node%lu",
1227 sysfs__mountpoint(), idx);
1228
1229 dir = opendir(path);
1230 if (!dir) {
1231 pr_warning("failed: cant' open memory sysfs data\n");
1232 return -1;
1233 }
1234
1235 for_each_memory(phys, dir) {
1236 size = max(phys, size);
1237 }
1238
1239 size++;
1240
1241 n->set = bitmap_alloc(size);
1242 if (!n->set) {
1243 closedir(dir);
1244 return -ENOMEM;
1245 }
1246
1247 n->node = idx;
1248 n->size = size;
1249
1250 rewinddir(dir);
1251
1252 for_each_memory(phys, dir) {
1253 set_bit(phys, n->set);
1254 }
1255
1256 closedir(dir);
1257 return 0;
1258}
1259
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262 const struct memory_node *na = a;
1263 const struct memory_node *nb = b;
1264
1265 return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270 char path[PATH_MAX];
1271 struct dirent *ent;
1272 DIR *dir;
1273 u64 cnt = 0;
1274 int ret = 0;
1275
1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 sysfs__mountpoint());
1278
1279 dir = opendir(path);
1280 if (!dir) {
1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 __func__, path);
1283 return -1;
1284 }
1285
1286 while (!ret && (ent = readdir(dir))) {
1287 unsigned int idx;
1288 int r;
1289
1290 if (!strcmp(ent->d_name, ".") ||
1291 !strcmp(ent->d_name, ".."))
1292 continue;
1293
1294 r = sscanf(ent->d_name, "node%u", &idx);
1295 if (r != 1)
1296 continue;
1297
1298 if (WARN_ONCE(cnt >= size,
1299 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300 closedir(dir);
1301 return -1;
1302 }
1303
1304 ret = memory_node__read(&nodes[cnt++], idx);
1305 }
1306
1307 *cntp = cnt;
1308 closedir(dir);
1309
1310 if (!ret)
1311 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312
1313 return ret;
1314}
1315
1316#define MAX_MEMORY_NODES 2000
1317
1318/*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 * 0 - version | for future changes
1323 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id | node index
1330 * 40 - size | size of bitmap
1331 * 48 - bitmap | bitmap of memory indexes that belongs to node
1332 */
1333static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334 struct evlist *evlist __maybe_unused)
1335{
1336 static struct memory_node nodes[MAX_MEMORY_NODES];
1337 u64 bsize, version = 1, i, nr;
1338 int ret;
1339
1340 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341 (unsigned long long *) &bsize);
1342 if (ret)
1343 return ret;
1344
1345 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346 if (ret)
1347 return ret;
1348
1349 ret = do_write(ff, &version, sizeof(version));
1350 if (ret < 0)
1351 goto out;
1352
1353 ret = do_write(ff, &bsize, sizeof(bsize));
1354 if (ret < 0)
1355 goto out;
1356
1357 ret = do_write(ff, &nr, sizeof(nr));
1358 if (ret < 0)
1359 goto out;
1360
1361 for (i = 0; i < nr; i++) {
1362 struct memory_node *n = &nodes[i];
1363
1364 #define _W(v) \
1365 ret = do_write(ff, &n->v, sizeof(n->v)); \
1366 if (ret < 0) \
1367 goto out;
1368
1369 _W(node)
1370 _W(size)
1371
1372 #undef _W
1373
1374 ret = do_write_bitmap(ff, n->set, n->size);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379out:
1380 return ret;
1381}
1382
1383static int write_compressed(struct feat_fd *ff __maybe_unused,
1384 struct evlist *evlist __maybe_unused)
1385{
1386 int ret;
1387
1388 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389 if (ret)
1390 return ret;
1391
1392 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393 if (ret)
1394 return ret;
1395
1396 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397 if (ret)
1398 return ret;
1399
1400 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401 if (ret)
1402 return ret;
1403
1404 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405}
1406
1407static void print_hostname(struct feat_fd *ff, FILE *fp)
1408{
1409 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410}
1411
1412static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413{
1414 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415}
1416
1417static void print_arch(struct feat_fd *ff, FILE *fp)
1418{
1419 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420}
1421
1422static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423{
1424 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425}
1426
1427static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428{
1429 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431}
1432
1433static void print_version(struct feat_fd *ff, FILE *fp)
1434{
1435 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436}
1437
1438static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439{
1440 int nr, i;
1441
1442 nr = ff->ph->env.nr_cmdline;
1443
1444 fprintf(fp, "# cmdline : ");
1445
1446 for (i = 0; i < nr; i++) {
1447 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448 if (!argv_i) {
1449 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450 } else {
1451 char *mem = argv_i;
1452 do {
1453 char *quote = strchr(argv_i, '\'');
1454 if (!quote)
1455 break;
1456 *quote++ = '\0';
1457 fprintf(fp, "%s\\\'", argv_i);
1458 argv_i = quote;
1459 } while (1);
1460 fprintf(fp, "%s ", argv_i);
1461 free(mem);
1462 }
1463 }
1464 fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469 struct perf_header *ph = ff->ph;
1470 int cpu_nr = ph->env.nr_cpus_avail;
1471 int nr, i;
1472 char *str;
1473
1474 nr = ph->env.nr_sibling_cores;
1475 str = ph->env.sibling_cores;
1476
1477 for (i = 0; i < nr; i++) {
1478 fprintf(fp, "# sibling sockets : %s\n", str);
1479 str += strlen(str) + 1;
1480 }
1481
1482 if (ph->env.nr_sibling_dies) {
1483 nr = ph->env.nr_sibling_dies;
1484 str = ph->env.sibling_dies;
1485
1486 for (i = 0; i < nr; i++) {
1487 fprintf(fp, "# sibling dies : %s\n", str);
1488 str += strlen(str) + 1;
1489 }
1490 }
1491
1492 nr = ph->env.nr_sibling_threads;
1493 str = ph->env.sibling_threads;
1494
1495 for (i = 0; i < nr; i++) {
1496 fprintf(fp, "# sibling threads : %s\n", str);
1497 str += strlen(str) + 1;
1498 }
1499
1500 if (ph->env.nr_sibling_dies) {
1501 if (ph->env.cpu != NULL) {
1502 for (i = 0; i < cpu_nr; i++)
1503 fprintf(fp, "# CPU %d: Core ID %d, "
1504 "Die ID %d, Socket ID %d\n",
1505 i, ph->env.cpu[i].core_id,
1506 ph->env.cpu[i].die_id,
1507 ph->env.cpu[i].socket_id);
1508 } else
1509 fprintf(fp, "# Core ID, Die ID and Socket ID "
1510 "information is not available\n");
1511 } else {
1512 if (ph->env.cpu != NULL) {
1513 for (i = 0; i < cpu_nr; i++)
1514 fprintf(fp, "# CPU %d: Core ID %d, "
1515 "Socket ID %d\n",
1516 i, ph->env.cpu[i].core_id,
1517 ph->env.cpu[i].socket_id);
1518 } else
1519 fprintf(fp, "# Core ID and Socket ID "
1520 "information is not available\n");
1521 }
1522}
1523
1524static void print_clockid(struct feat_fd *ff, FILE *fp)
1525{
1526 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527 ff->ph->env.clockid_res_ns * 1000);
1528}
1529
1530static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531{
1532 struct perf_session *session;
1533 struct perf_data *data;
1534
1535 session = container_of(ff->ph, struct perf_session, header);
1536 data = session->data;
1537
1538 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539}
1540
1541static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542{
1543 struct perf_env *env = &ff->ph->env;
1544 struct rb_root *root;
1545 struct rb_node *next;
1546
1547 down_read(&env->bpf_progs.lock);
1548
1549 root = &env->bpf_progs.infos;
1550 next = rb_first(root);
1551
1552 while (next) {
1553 struct bpf_prog_info_node *node;
1554
1555 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556 next = rb_next(&node->rb_node);
1557
1558 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559 env, fp);
1560 }
1561
1562 up_read(&env->bpf_progs.lock);
1563}
1564
1565static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566{
1567 struct perf_env *env = &ff->ph->env;
1568 struct rb_root *root;
1569 struct rb_node *next;
1570
1571 down_read(&env->bpf_progs.lock);
1572
1573 root = &env->bpf_progs.btfs;
1574 next = rb_first(root);
1575
1576 while (next) {
1577 struct btf_node *node;
1578
1579 node = rb_entry(next, struct btf_node, rb_node);
1580 next = rb_next(&node->rb_node);
1581 fprintf(fp, "# btf info of id %u\n", node->id);
1582 }
1583
1584 up_read(&env->bpf_progs.lock);
1585}
1586
1587static void free_event_desc(struct evsel *events)
1588{
1589 struct evsel *evsel;
1590
1591 if (!events)
1592 return;
1593
1594 for (evsel = events; evsel->core.attr.size; evsel++) {
1595 zfree(&evsel->name);
1596 zfree(&evsel->core.id);
1597 }
1598
1599 free(events);
1600}
1601
1602static struct evsel *read_event_desc(struct feat_fd *ff)
1603{
1604 struct evsel *evsel, *events = NULL;
1605 u64 *id;
1606 void *buf = NULL;
1607 u32 nre, sz, nr, i, j;
1608 size_t msz;
1609
1610 /* number of events */
1611 if (do_read_u32(ff, &nre))
1612 goto error;
1613
1614 if (do_read_u32(ff, &sz))
1615 goto error;
1616
1617 /* buffer to hold on file attr struct */
1618 buf = malloc(sz);
1619 if (!buf)
1620 goto error;
1621
1622 /* the last event terminates with evsel->core.attr.size == 0: */
1623 events = calloc(nre + 1, sizeof(*events));
1624 if (!events)
1625 goto error;
1626
1627 msz = sizeof(evsel->core.attr);
1628 if (sz < msz)
1629 msz = sz;
1630
1631 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632 evsel->idx = i;
1633
1634 /*
1635 * must read entire on-file attr struct to
1636 * sync up with layout.
1637 */
1638 if (__do_read(ff, buf, sz))
1639 goto error;
1640
1641 if (ff->ph->needs_swap)
1642 perf_event__attr_swap(buf);
1643
1644 memcpy(&evsel->core.attr, buf, msz);
1645
1646 if (do_read_u32(ff, &nr))
1647 goto error;
1648
1649 if (ff->ph->needs_swap)
1650 evsel->needs_swap = true;
1651
1652 evsel->name = do_read_string(ff);
1653 if (!evsel->name)
1654 goto error;
1655
1656 if (!nr)
1657 continue;
1658
1659 id = calloc(nr, sizeof(*id));
1660 if (!id)
1661 goto error;
1662 evsel->core.ids = nr;
1663 evsel->core.id = id;
1664
1665 for (j = 0 ; j < nr; j++) {
1666 if (do_read_u64(ff, id))
1667 goto error;
1668 id++;
1669 }
1670 }
1671out:
1672 free(buf);
1673 return events;
1674error:
1675 free_event_desc(events);
1676 events = NULL;
1677 goto out;
1678}
1679
1680static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681 void *priv __maybe_unused)
1682{
1683 return fprintf(fp, ", %s = %s", name, val);
1684}
1685
1686static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687{
1688 struct evsel *evsel, *events;
1689 u32 j;
1690 u64 *id;
1691
1692 if (ff->events)
1693 events = ff->events;
1694 else
1695 events = read_event_desc(ff);
1696
1697 if (!events) {
1698 fprintf(fp, "# event desc: not available or unable to read\n");
1699 return;
1700 }
1701
1702 for (evsel = events; evsel->core.attr.size; evsel++) {
1703 fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705 if (evsel->core.ids) {
1706 fprintf(fp, ", id = {");
1707 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708 if (j)
1709 fputc(',', fp);
1710 fprintf(fp, " %"PRIu64, *id);
1711 }
1712 fprintf(fp, " }");
1713 }
1714
1715 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717 fputc('\n', fp);
1718 }
1719
1720 free_event_desc(events);
1721 ff->events = NULL;
1722}
1723
1724static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725{
1726 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727}
1728
1729static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730{
1731 int i;
1732 struct numa_node *n;
1733
1734 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735 n = &ff->ph->env.numa_nodes[i];
1736
1737 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1738 " free = %"PRIu64" kB\n",
1739 n->node, n->mem_total, n->mem_free);
1740
1741 fprintf(fp, "# node%u cpu list : ", n->node);
1742 cpu_map__fprintf(n->map, fp);
1743 }
1744}
1745
1746static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747{
1748 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749}
1750
1751static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752{
1753 fprintf(fp, "# contains samples with branch stack\n");
1754}
1755
1756static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757{
1758 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759}
1760
1761static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762{
1763 fprintf(fp, "# contains stat data\n");
1764}
1765
1766static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767{
1768 int i;
1769
1770 fprintf(fp, "# CPU cache info:\n");
1771 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772 fprintf(fp, "# ");
1773 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774 }
1775}
1776
1777static void print_compressed(struct feat_fd *ff, FILE *fp)
1778{
1779 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782}
1783
1784static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785{
1786 const char *delimiter = "# pmu mappings: ";
1787 char *str, *tmp;
1788 u32 pmu_num;
1789 u32 type;
1790
1791 pmu_num = ff->ph->env.nr_pmu_mappings;
1792 if (!pmu_num) {
1793 fprintf(fp, "# pmu mappings: not available\n");
1794 return;
1795 }
1796
1797 str = ff->ph->env.pmu_mappings;
1798
1799 while (pmu_num) {
1800 type = strtoul(str, &tmp, 0);
1801 if (*tmp != ':')
1802 goto error;
1803
1804 str = tmp + 1;
1805 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807 delimiter = ", ";
1808 str += strlen(str) + 1;
1809 pmu_num--;
1810 }
1811
1812 fprintf(fp, "\n");
1813
1814 if (!pmu_num)
1815 return;
1816error:
1817 fprintf(fp, "# pmu mappings: unable to read\n");
1818}
1819
1820static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821{
1822 struct perf_session *session;
1823 struct evsel *evsel;
1824 u32 nr = 0;
1825
1826 session = container_of(ff->ph, struct perf_session, header);
1827
1828 evlist__for_each_entry(session->evlist, evsel) {
1829 if (perf_evsel__is_group_leader(evsel) &&
1830 evsel->core.nr_members > 1) {
1831 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832 perf_evsel__name(evsel));
1833
1834 nr = evsel->core.nr_members - 1;
1835 } else if (nr) {
1836 fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838 if (--nr == 0)
1839 fprintf(fp, "}\n");
1840 }
1841 }
1842}
1843
1844static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845{
1846 struct perf_session *session;
1847 char time_buf[32];
1848 double d;
1849
1850 session = container_of(ff->ph, struct perf_session, header);
1851
1852 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853 time_buf, sizeof(time_buf));
1854 fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857 time_buf, sizeof(time_buf));
1858 fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860 d = (double)(session->evlist->last_sample_time -
1861 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864}
1865
1866static void memory_node__fprintf(struct memory_node *n,
1867 unsigned long long bsize, FILE *fp)
1868{
1869 char buf_map[100], buf_size[50];
1870 unsigned long long size;
1871
1872 size = bsize * bitmap_weight(n->set, n->size);
1873 unit_number__scnprintf(buf_size, 50, size);
1874
1875 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877}
1878
1879static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880{
1881 struct memory_node *nodes;
1882 int i, nr;
1883
1884 nodes = ff->ph->env.memory_nodes;
1885 nr = ff->ph->env.nr_memory_nodes;
1886
1887 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888 nr, ff->ph->env.memory_bsize);
1889
1890 for (i = 0; i < nr; i++) {
1891 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892 }
1893}
1894
1895static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896 char *filename,
1897 struct perf_session *session)
1898{
1899 int err = -1;
1900 struct machine *machine;
1901 u16 cpumode;
1902 struct dso *dso;
1903 enum dso_kernel_type dso_type;
1904
1905 machine = perf_session__findnew_machine(session, bev->pid);
1906 if (!machine)
1907 goto out;
1908
1909 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911 switch (cpumode) {
1912 case PERF_RECORD_MISC_KERNEL:
1913 dso_type = DSO_TYPE_KERNEL;
1914 break;
1915 case PERF_RECORD_MISC_GUEST_KERNEL:
1916 dso_type = DSO_TYPE_GUEST_KERNEL;
1917 break;
1918 case PERF_RECORD_MISC_USER:
1919 case PERF_RECORD_MISC_GUEST_USER:
1920 dso_type = DSO_TYPE_USER;
1921 break;
1922 default:
1923 goto out;
1924 }
1925
1926 dso = machine__findnew_dso(machine, filename);
1927 if (dso != NULL) {
1928 char sbuild_id[SBUILD_ID_SIZE];
1929
1930 dso__set_build_id(dso, &bev->build_id);
1931
1932 if (dso_type != DSO_TYPE_USER) {
1933 struct kmod_path m = { .name = NULL, };
1934
1935 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936 dso__set_module_info(dso, &m, machine);
1937 else
1938 dso->kernel = dso_type;
1939
1940 free(m.name);
1941 }
1942
1943 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944 sbuild_id);
1945 pr_debug("build id event received for %s: %s\n",
1946 dso->long_name, sbuild_id);
1947 dso__put(dso);
1948 }
1949
1950 err = 0;
1951out:
1952 return err;
1953}
1954
1955static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956 int input, u64 offset, u64 size)
1957{
1958 struct perf_session *session = container_of(header, struct perf_session, header);
1959 struct {
1960 struct perf_event_header header;
1961 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962 char filename[0];
1963 } old_bev;
1964 struct perf_record_header_build_id bev;
1965 char filename[PATH_MAX];
1966 u64 limit = offset + size;
1967
1968 while (offset < limit) {
1969 ssize_t len;
1970
1971 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972 return -1;
1973
1974 if (header->needs_swap)
1975 perf_event_header__bswap(&old_bev.header);
1976
1977 len = old_bev.header.size - sizeof(old_bev);
1978 if (readn(input, filename, len) != len)
1979 return -1;
1980
1981 bev.header = old_bev.header;
1982
1983 /*
1984 * As the pid is the missing value, we need to fill
1985 * it properly. The header.misc value give us nice hint.
1986 */
1987 bev.pid = HOST_KERNEL_ID;
1988 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1991
1992 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993 __event_process_build_id(&bev, filename, session);
1994
1995 offset += bev.header.size;
1996 }
1997
1998 return 0;
1999}
2000
2001static int perf_header__read_build_ids(struct perf_header *header,
2002 int input, u64 offset, u64 size)
2003{
2004 struct perf_session *session = container_of(header, struct perf_session, header);
2005 struct perf_record_header_build_id bev;
2006 char filename[PATH_MAX];
2007 u64 limit = offset + size, orig_offset = offset;
2008 int err = -1;
2009
2010 while (offset < limit) {
2011 ssize_t len;
2012
2013 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014 goto out;
2015
2016 if (header->needs_swap)
2017 perf_event_header__bswap(&bev.header);
2018
2019 len = bev.header.size - sizeof(bev);
2020 if (readn(input, filename, len) != len)
2021 goto out;
2022 /*
2023 * The a1645ce1 changeset:
2024 *
2025 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026 *
2027 * Added a field to struct perf_record_header_build_id that broke the file
2028 * format.
2029 *
2030 * Since the kernel build-id is the first entry, process the
2031 * table using the old format if the well known
2032 * '[kernel.kallsyms]' string for the kernel build-id has the
2033 * first 4 characters chopped off (where the pid_t sits).
2034 */
2035 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037 return -1;
2038 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039 }
2040
2041 __event_process_build_id(&bev, filename, session);
2042
2043 offset += bev.header.size;
2044 }
2045 err = 0;
2046out:
2047 return err;
2048}
2049
2050/* Macro for features that simply need to read and store a string. */
2051#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053{\
2054 ff->ph->env.__feat_env = do_read_string(ff); \
2055 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056}
2057
2058FEAT_PROCESS_STR_FUN(hostname, hostname);
2059FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060FEAT_PROCESS_STR_FUN(version, version);
2061FEAT_PROCESS_STR_FUN(arch, arch);
2062FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
2065static int process_tracing_data(struct feat_fd *ff, void *data)
2066{
2067 ssize_t ret = trace_report(ff->fd, data, false);
2068
2069 return ret < 0 ? -1 : 0;
2070}
2071
2072static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073{
2074 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075 pr_debug("Failed to read buildids, continuing...\n");
2076 return 0;
2077}
2078
2079static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080{
2081 int ret;
2082 u32 nr_cpus_avail, nr_cpus_online;
2083
2084 ret = do_read_u32(ff, &nr_cpus_avail);
2085 if (ret)
2086 return ret;
2087
2088 ret = do_read_u32(ff, &nr_cpus_online);
2089 if (ret)
2090 return ret;
2091 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093 return 0;
2094}
2095
2096static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097{
2098 u64 total_mem;
2099 int ret;
2100
2101 ret = do_read_u64(ff, &total_mem);
2102 if (ret)
2103 return -1;
2104 ff->ph->env.total_mem = (unsigned long long)total_mem;
2105 return 0;
2106}
2107
2108static struct evsel *
2109perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110{
2111 struct evsel *evsel;
2112
2113 evlist__for_each_entry(evlist, evsel) {
2114 if (evsel->idx == idx)
2115 return evsel;
2116 }
2117
2118 return NULL;
2119}
2120
2121static void
2122perf_evlist__set_event_name(struct evlist *evlist,
2123 struct evsel *event)
2124{
2125 struct evsel *evsel;
2126
2127 if (!event->name)
2128 return;
2129
2130 evsel = perf_evlist__find_by_index(evlist, event->idx);
2131 if (!evsel)
2132 return;
2133
2134 if (evsel->name)
2135 return;
2136
2137 evsel->name = strdup(event->name);
2138}
2139
2140static int
2141process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142{
2143 struct perf_session *session;
2144 struct evsel *evsel, *events = read_event_desc(ff);
2145
2146 if (!events)
2147 return 0;
2148
2149 session = container_of(ff->ph, struct perf_session, header);
2150
2151 if (session->data->is_pipe) {
2152 /* Save events for reading later by print_event_desc,
2153 * since they can't be read again in pipe mode. */
2154 ff->events = events;
2155 }
2156
2157 for (evsel = events; evsel->core.attr.size; evsel++)
2158 perf_evlist__set_event_name(session->evlist, evsel);
2159
2160 if (!session->data->is_pipe)
2161 free_event_desc(events);
2162
2163 return 0;
2164}
2165
2166static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167{
2168 char *str, *cmdline = NULL, **argv = NULL;
2169 u32 nr, i, len = 0;
2170
2171 if (do_read_u32(ff, &nr))
2172 return -1;
2173
2174 ff->ph->env.nr_cmdline = nr;
2175
2176 cmdline = zalloc(ff->size + nr + 1);
2177 if (!cmdline)
2178 return -1;
2179
2180 argv = zalloc(sizeof(char *) * (nr + 1));
2181 if (!argv)
2182 goto error;
2183
2184 for (i = 0; i < nr; i++) {
2185 str = do_read_string(ff);
2186 if (!str)
2187 goto error;
2188
2189 argv[i] = cmdline + len;
2190 memcpy(argv[i], str, strlen(str) + 1);
2191 len += strlen(str) + 1;
2192 free(str);
2193 }
2194 ff->ph->env.cmdline = cmdline;
2195 ff->ph->env.cmdline_argv = (const char **) argv;
2196 return 0;
2197
2198error:
2199 free(argv);
2200 free(cmdline);
2201 return -1;
2202}
2203
2204static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205{
2206 u32 nr, i;
2207 char *str;
2208 struct strbuf sb;
2209 int cpu_nr = ff->ph->env.nr_cpus_avail;
2210 u64 size = 0;
2211 struct perf_header *ph = ff->ph;
2212 bool do_core_id_test = true;
2213
2214 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215 if (!ph->env.cpu)
2216 return -1;
2217
2218 if (do_read_u32(ff, &nr))
2219 goto free_cpu;
2220
2221 ph->env.nr_sibling_cores = nr;
2222 size += sizeof(u32);
2223 if (strbuf_init(&sb, 128) < 0)
2224 goto free_cpu;
2225
2226 for (i = 0; i < nr; i++) {
2227 str = do_read_string(ff);
2228 if (!str)
2229 goto error;
2230
2231 /* include a NULL character at the end */
2232 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233 goto error;
2234 size += string_size(str);
2235 free(str);
2236 }
2237 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239 if (do_read_u32(ff, &nr))
2240 return -1;
2241
2242 ph->env.nr_sibling_threads = nr;
2243 size += sizeof(u32);
2244
2245 for (i = 0; i < nr; i++) {
2246 str = do_read_string(ff);
2247 if (!str)
2248 goto error;
2249
2250 /* include a NULL character at the end */
2251 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252 goto error;
2253 size += string_size(str);
2254 free(str);
2255 }
2256 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258 /*
2259 * The header may be from old perf,
2260 * which doesn't include core id and socket id information.
2261 */
2262 if (ff->size <= size) {
2263 zfree(&ph->env.cpu);
2264 return 0;
2265 }
2266
2267 /* On s390 the socket_id number is not related to the numbers of cpus.
2268 * The socket_id number might be higher than the numbers of cpus.
2269 * This depends on the configuration.
2270 * AArch64 is the same.
2271 */
2272 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273 || !strncmp(ph->env.arch, "aarch64", 7)))
2274 do_core_id_test = false;
2275
2276 for (i = 0; i < (u32)cpu_nr; i++) {
2277 if (do_read_u32(ff, &nr))
2278 goto free_cpu;
2279
2280 ph->env.cpu[i].core_id = nr;
2281 size += sizeof(u32);
2282
2283 if (do_read_u32(ff, &nr))
2284 goto free_cpu;
2285
2286 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287 pr_debug("socket_id number is too big."
2288 "You may need to upgrade the perf tool.\n");
2289 goto free_cpu;
2290 }
2291
2292 ph->env.cpu[i].socket_id = nr;
2293 size += sizeof(u32);
2294 }
2295
2296 /*
2297 * The header may be from old perf,
2298 * which doesn't include die information.
2299 */
2300 if (ff->size <= size)
2301 return 0;
2302
2303 if (do_read_u32(ff, &nr))
2304 return -1;
2305
2306 ph->env.nr_sibling_dies = nr;
2307 size += sizeof(u32);
2308
2309 for (i = 0; i < nr; i++) {
2310 str = do_read_string(ff);
2311 if (!str)
2312 goto error;
2313
2314 /* include a NULL character at the end */
2315 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316 goto error;
2317 size += string_size(str);
2318 free(str);
2319 }
2320 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322 for (i = 0; i < (u32)cpu_nr; i++) {
2323 if (do_read_u32(ff, &nr))
2324 goto free_cpu;
2325
2326 ph->env.cpu[i].die_id = nr;
2327 }
2328
2329 return 0;
2330
2331error:
2332 strbuf_release(&sb);
2333free_cpu:
2334 zfree(&ph->env.cpu);
2335 return -1;
2336}
2337
2338static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339{
2340 struct numa_node *nodes, *n;
2341 u32 nr, i;
2342 char *str;
2343
2344 /* nr nodes */
2345 if (do_read_u32(ff, &nr))
2346 return -1;
2347
2348 nodes = zalloc(sizeof(*nodes) * nr);
2349 if (!nodes)
2350 return -ENOMEM;
2351
2352 for (i = 0; i < nr; i++) {
2353 n = &nodes[i];
2354
2355 /* node number */
2356 if (do_read_u32(ff, &n->node))
2357 goto error;
2358
2359 if (do_read_u64(ff, &n->mem_total))
2360 goto error;
2361
2362 if (do_read_u64(ff, &n->mem_free))
2363 goto error;
2364
2365 str = do_read_string(ff);
2366 if (!str)
2367 goto error;
2368
2369 n->map = perf_cpu_map__new(str);
2370 if (!n->map)
2371 goto error;
2372
2373 free(str);
2374 }
2375 ff->ph->env.nr_numa_nodes = nr;
2376 ff->ph->env.numa_nodes = nodes;
2377 return 0;
2378
2379error:
2380 free(nodes);
2381 return -1;
2382}
2383
2384static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385{
2386 char *name;
2387 u32 pmu_num;
2388 u32 type;
2389 struct strbuf sb;
2390
2391 if (do_read_u32(ff, &pmu_num))
2392 return -1;
2393
2394 if (!pmu_num) {
2395 pr_debug("pmu mappings not available\n");
2396 return 0;
2397 }
2398
2399 ff->ph->env.nr_pmu_mappings = pmu_num;
2400 if (strbuf_init(&sb, 128) < 0)
2401 return -1;
2402
2403 while (pmu_num) {
2404 if (do_read_u32(ff, &type))
2405 goto error;
2406
2407 name = do_read_string(ff);
2408 if (!name)
2409 goto error;
2410
2411 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412 goto error;
2413 /* include a NULL character at the end */
2414 if (strbuf_add(&sb, "", 1) < 0)
2415 goto error;
2416
2417 if (!strcmp(name, "msr"))
2418 ff->ph->env.msr_pmu_type = type;
2419
2420 free(name);
2421 pmu_num--;
2422 }
2423 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424 return 0;
2425
2426error:
2427 strbuf_release(&sb);
2428 return -1;
2429}
2430
2431static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433 size_t ret = -1;
2434 u32 i, nr, nr_groups;
2435 struct perf_session *session;
2436 struct evsel *evsel, *leader = NULL;
2437 struct group_desc {
2438 char *name;
2439 u32 leader_idx;
2440 u32 nr_members;
2441 } *desc;
2442
2443 if (do_read_u32(ff, &nr_groups))
2444 return -1;
2445
2446 ff->ph->env.nr_groups = nr_groups;
2447 if (!nr_groups) {
2448 pr_debug("group desc not available\n");
2449 return 0;
2450 }
2451
2452 desc = calloc(nr_groups, sizeof(*desc));
2453 if (!desc)
2454 return -1;
2455
2456 for (i = 0; i < nr_groups; i++) {
2457 desc[i].name = do_read_string(ff);
2458 if (!desc[i].name)
2459 goto out_free;
2460
2461 if (do_read_u32(ff, &desc[i].leader_idx))
2462 goto out_free;
2463
2464 if (do_read_u32(ff, &desc[i].nr_members))
2465 goto out_free;
2466 }
2467
2468 /*
2469 * Rebuild group relationship based on the group_desc
2470 */
2471 session = container_of(ff->ph, struct perf_session, header);
2472 session->evlist->nr_groups = nr_groups;
2473
2474 i = nr = 0;
2475 evlist__for_each_entry(session->evlist, evsel) {
2476 if (evsel->idx == (int) desc[i].leader_idx) {
2477 evsel->leader = evsel;
2478 /* {anon_group} is a dummy name */
2479 if (strcmp(desc[i].name, "{anon_group}")) {
2480 evsel->group_name = desc[i].name;
2481 desc[i].name = NULL;
2482 }
2483 evsel->core.nr_members = desc[i].nr_members;
2484
2485 if (i >= nr_groups || nr > 0) {
2486 pr_debug("invalid group desc\n");
2487 goto out_free;
2488 }
2489
2490 leader = evsel;
2491 nr = evsel->core.nr_members - 1;
2492 i++;
2493 } else if (nr) {
2494 /* This is a group member */
2495 evsel->leader = leader;
2496
2497 nr--;
2498 }
2499 }
2500
2501 if (i != nr_groups || nr != 0) {
2502 pr_debug("invalid group desc\n");
2503 goto out_free;
2504 }
2505
2506 ret = 0;
2507out_free:
2508 for (i = 0; i < nr_groups; i++)
2509 zfree(&desc[i].name);
2510 free(desc);
2511
2512 return ret;
2513}
2514
2515static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517 struct perf_session *session;
2518 int err;
2519
2520 session = container_of(ff->ph, struct perf_session, header);
2521
2522 err = auxtrace_index__process(ff->fd, ff->size, session,
2523 ff->ph->needs_swap);
2524 if (err < 0)
2525 pr_err("Failed to process auxtrace index\n");
2526 return err;
2527}
2528
2529static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530{
2531 struct cpu_cache_level *caches;
2532 u32 cnt, i, version;
2533
2534 if (do_read_u32(ff, &version))
2535 return -1;
2536
2537 if (version != 1)
2538 return -1;
2539
2540 if (do_read_u32(ff, &cnt))
2541 return -1;
2542
2543 caches = zalloc(sizeof(*caches) * cnt);
2544 if (!caches)
2545 return -1;
2546
2547 for (i = 0; i < cnt; i++) {
2548 struct cpu_cache_level c;
2549
2550 #define _R(v) \
2551 if (do_read_u32(ff, &c.v))\
2552 goto out_free_caches; \
2553
2554 _R(level)
2555 _R(line_size)
2556 _R(sets)
2557 _R(ways)
2558 #undef _R
2559
2560 #define _R(v) \
2561 c.v = do_read_string(ff); \
2562 if (!c.v) \
2563 goto out_free_caches;
2564
2565 _R(type)
2566 _R(size)
2567 _R(map)
2568 #undef _R
2569
2570 caches[i] = c;
2571 }
2572
2573 ff->ph->env.caches = caches;
2574 ff->ph->env.caches_cnt = cnt;
2575 return 0;
2576out_free_caches:
2577 free(caches);
2578 return -1;
2579}
2580
2581static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582{
2583 struct perf_session *session;
2584 u64 first_sample_time, last_sample_time;
2585 int ret;
2586
2587 session = container_of(ff->ph, struct perf_session, header);
2588
2589 ret = do_read_u64(ff, &first_sample_time);
2590 if (ret)
2591 return -1;
2592
2593 ret = do_read_u64(ff, &last_sample_time);
2594 if (ret)
2595 return -1;
2596
2597 session->evlist->first_sample_time = first_sample_time;
2598 session->evlist->last_sample_time = last_sample_time;
2599 return 0;
2600}
2601
2602static int process_mem_topology(struct feat_fd *ff,
2603 void *data __maybe_unused)
2604{
2605 struct memory_node *nodes;
2606 u64 version, i, nr, bsize;
2607 int ret = -1;
2608
2609 if (do_read_u64(ff, &version))
2610 return -1;
2611
2612 if (version != 1)
2613 return -1;
2614
2615 if (do_read_u64(ff, &bsize))
2616 return -1;
2617
2618 if (do_read_u64(ff, &nr))
2619 return -1;
2620
2621 nodes = zalloc(sizeof(*nodes) * nr);
2622 if (!nodes)
2623 return -1;
2624
2625 for (i = 0; i < nr; i++) {
2626 struct memory_node n;
2627
2628 #define _R(v) \
2629 if (do_read_u64(ff, &n.v)) \
2630 goto out; \
2631
2632 _R(node)
2633 _R(size)
2634
2635 #undef _R
2636
2637 if (do_read_bitmap(ff, &n.set, &n.size))
2638 goto out;
2639
2640 nodes[i] = n;
2641 }
2642
2643 ff->ph->env.memory_bsize = bsize;
2644 ff->ph->env.memory_nodes = nodes;
2645 ff->ph->env.nr_memory_nodes = nr;
2646 ret = 0;
2647
2648out:
2649 if (ret)
2650 free(nodes);
2651 return ret;
2652}
2653
2654static int process_clockid(struct feat_fd *ff,
2655 void *data __maybe_unused)
2656{
2657 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2658 return -1;
2659
2660 return 0;
2661}
2662
2663static int process_dir_format(struct feat_fd *ff,
2664 void *_data __maybe_unused)
2665{
2666 struct perf_session *session;
2667 struct perf_data *data;
2668
2669 session = container_of(ff->ph, struct perf_session, header);
2670 data = session->data;
2671
2672 if (WARN_ON(!perf_data__is_dir(data)))
2673 return -1;
2674
2675 return do_read_u64(ff, &data->dir.version);
2676}
2677
2678#ifdef HAVE_LIBBPF_SUPPORT
2679static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680{
2681 struct bpf_prog_info_linear *info_linear;
2682 struct bpf_prog_info_node *info_node;
2683 struct perf_env *env = &ff->ph->env;
2684 u32 count, i;
2685 int err = -1;
2686
2687 if (ff->ph->needs_swap) {
2688 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689 return 0;
2690 }
2691
2692 if (do_read_u32(ff, &count))
2693 return -1;
2694
2695 down_write(&env->bpf_progs.lock);
2696
2697 for (i = 0; i < count; ++i) {
2698 u32 info_len, data_len;
2699
2700 info_linear = NULL;
2701 info_node = NULL;
2702 if (do_read_u32(ff, &info_len))
2703 goto out;
2704 if (do_read_u32(ff, &data_len))
2705 goto out;
2706
2707 if (info_len > sizeof(struct bpf_prog_info)) {
2708 pr_warning("detected invalid bpf_prog_info\n");
2709 goto out;
2710 }
2711
2712 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713 data_len);
2714 if (!info_linear)
2715 goto out;
2716 info_linear->info_len = sizeof(struct bpf_prog_info);
2717 info_linear->data_len = data_len;
2718 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719 goto out;
2720 if (__do_read(ff, &info_linear->info, info_len))
2721 goto out;
2722 if (info_len < sizeof(struct bpf_prog_info))
2723 memset(((void *)(&info_linear->info)) + info_len, 0,
2724 sizeof(struct bpf_prog_info) - info_len);
2725
2726 if (__do_read(ff, info_linear->data, data_len))
2727 goto out;
2728
2729 info_node = malloc(sizeof(struct bpf_prog_info_node));
2730 if (!info_node)
2731 goto out;
2732
2733 /* after reading from file, translate offset to address */
2734 bpf_program__bpil_offs_to_addr(info_linear);
2735 info_node->info_linear = info_linear;
2736 perf_env__insert_bpf_prog_info(env, info_node);
2737 }
2738
2739 up_write(&env->bpf_progs.lock);
2740 return 0;
2741out:
2742 free(info_linear);
2743 free(info_node);
2744 up_write(&env->bpf_progs.lock);
2745 return err;
2746}
2747#else // HAVE_LIBBPF_SUPPORT
2748static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749{
2750 return 0;
2751}
2752#endif // HAVE_LIBBPF_SUPPORT
2753
2754static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755{
2756 struct perf_env *env = &ff->ph->env;
2757 struct btf_node *node = NULL;
2758 u32 count, i;
2759 int err = -1;
2760
2761 if (ff->ph->needs_swap) {
2762 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763 return 0;
2764 }
2765
2766 if (do_read_u32(ff, &count))
2767 return -1;
2768
2769 down_write(&env->bpf_progs.lock);
2770
2771 for (i = 0; i < count; ++i) {
2772 u32 id, data_size;
2773
2774 if (do_read_u32(ff, &id))
2775 goto out;
2776 if (do_read_u32(ff, &data_size))
2777 goto out;
2778
2779 node = malloc(sizeof(struct btf_node) + data_size);
2780 if (!node)
2781 goto out;
2782
2783 node->id = id;
2784 node->data_size = data_size;
2785
2786 if (__do_read(ff, node->data, data_size))
2787 goto out;
2788
2789 perf_env__insert_btf(env, node);
2790 node = NULL;
2791 }
2792
2793 err = 0;
2794out:
2795 up_write(&env->bpf_progs.lock);
2796 free(node);
2797 return err;
2798}
2799
2800static int process_compressed(struct feat_fd *ff,
2801 void *data __maybe_unused)
2802{
2803 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804 return -1;
2805
2806 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807 return -1;
2808
2809 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810 return -1;
2811
2812 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813 return -1;
2814
2815 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816 return -1;
2817
2818 return 0;
2819}
2820
2821#define FEAT_OPR(n, func, __full_only) \
2822 [HEADER_##n] = { \
2823 .name = __stringify(n), \
2824 .write = write_##func, \
2825 .print = print_##func, \
2826 .full_only = __full_only, \
2827 .process = process_##func, \
2828 .synthesize = true \
2829 }
2830
2831#define FEAT_OPN(n, func, __full_only) \
2832 [HEADER_##n] = { \
2833 .name = __stringify(n), \
2834 .write = write_##func, \
2835 .print = print_##func, \
2836 .full_only = __full_only, \
2837 .process = process_##func \
2838 }
2839
2840/* feature_ops not implemented: */
2841#define print_tracing_data NULL
2842#define print_build_id NULL
2843
2844#define process_branch_stack NULL
2845#define process_stat NULL
2846
2847// Only used in util/synthetic-events.c
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851 FEAT_OPN(TRACING_DATA, tracing_data, false),
2852 FEAT_OPN(BUILD_ID, build_id, false),
2853 FEAT_OPR(HOSTNAME, hostname, false),
2854 FEAT_OPR(OSRELEASE, osrelease, false),
2855 FEAT_OPR(VERSION, version, false),
2856 FEAT_OPR(ARCH, arch, false),
2857 FEAT_OPR(NRCPUS, nrcpus, false),
2858 FEAT_OPR(CPUDESC, cpudesc, false),
2859 FEAT_OPR(CPUID, cpuid, false),
2860 FEAT_OPR(TOTAL_MEM, total_mem, false),
2861 FEAT_OPR(EVENT_DESC, event_desc, false),
2862 FEAT_OPR(CMDLINE, cmdline, false),
2863 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2864 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2865 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2866 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2867 FEAT_OPR(GROUP_DESC, group_desc, false),
2868 FEAT_OPN(AUXTRACE, auxtrace, false),
2869 FEAT_OPN(STAT, stat, false),
2870 FEAT_OPN(CACHE, cache, true),
2871 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2872 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2873 FEAT_OPR(CLOCKID, clockid, false),
2874 FEAT_OPN(DIR_FORMAT, dir_format, false),
2875 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2876 FEAT_OPR(BPF_BTF, bpf_btf, false),
2877 FEAT_OPR(COMPRESSED, compressed, false),
2878};
2879
2880struct header_print_data {
2881 FILE *fp;
2882 bool full; /* extended list of headers */
2883};
2884
2885static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886 struct perf_header *ph,
2887 int feat, int fd, void *data)
2888{
2889 struct header_print_data *hd = data;
2890 struct feat_fd ff;
2891
2892 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894 "%d, continuing...\n", section->offset, feat);
2895 return 0;
2896 }
2897 if (feat >= HEADER_LAST_FEATURE) {
2898 pr_warning("unknown feature %d\n", feat);
2899 return 0;
2900 }
2901 if (!feat_ops[feat].print)
2902 return 0;
2903
2904 ff = (struct feat_fd) {
2905 .fd = fd,
2906 .ph = ph,
2907 };
2908
2909 if (!feat_ops[feat].full_only || hd->full)
2910 feat_ops[feat].print(&ff, hd->fp);
2911 else
2912 fprintf(hd->fp, "# %s info available, use -I to display\n",
2913 feat_ops[feat].name);
2914
2915 return 0;
2916}
2917
2918int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919{
2920 struct header_print_data hd;
2921 struct perf_header *header = &session->header;
2922 int fd = perf_data__fd(session->data);
2923 struct stat st;
2924 time_t stctime;
2925 int ret, bit;
2926
2927 hd.fp = fp;
2928 hd.full = full;
2929
2930 ret = fstat(fd, &st);
2931 if (ret == -1)
2932 return -1;
2933
2934 stctime = st.st_ctime;
2935 fprintf(fp, "# captured on : %s", ctime(&stctime));
2936
2937 fprintf(fp, "# header version : %u\n", header->version);
2938 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2939 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2940 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2941
2942 perf_header__process_sections(header, fd, &hd,
2943 perf_file_section__fprintf_info);
2944
2945 if (session->data->is_pipe)
2946 return 0;
2947
2948 fprintf(fp, "# missing features: ");
2949 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950 if (bit)
2951 fprintf(fp, "%s ", feat_ops[bit].name);
2952 }
2953
2954 fprintf(fp, "\n");
2955 return 0;
2956}
2957
2958static int do_write_feat(struct feat_fd *ff, int type,
2959 struct perf_file_section **p,
2960 struct evlist *evlist)
2961{
2962 int err;
2963 int ret = 0;
2964
2965 if (perf_header__has_feat(ff->ph, type)) {
2966 if (!feat_ops[type].write)
2967 return -1;
2968
2969 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970 return -1;
2971
2972 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974 err = feat_ops[type].write(ff, evlist);
2975 if (err < 0) {
2976 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978 /* undo anything written */
2979 lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981 return -1;
2982 }
2983 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984 (*p)++;
2985 }
2986 return ret;
2987}
2988
2989static int perf_header__adds_write(struct perf_header *header,
2990 struct evlist *evlist, int fd)
2991{
2992 int nr_sections;
2993 struct feat_fd ff;
2994 struct perf_file_section *feat_sec, *p;
2995 int sec_size;
2996 u64 sec_start;
2997 int feat;
2998 int err;
2999
3000 ff = (struct feat_fd){
3001 .fd = fd,
3002 .ph = header,
3003 };
3004
3005 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006 if (!nr_sections)
3007 return 0;
3008
3009 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010 if (feat_sec == NULL)
3011 return -ENOMEM;
3012
3013 sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015 sec_start = header->feat_offset;
3016 lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019 if (do_write_feat(&ff, feat, &p, evlist))
3020 perf_header__clear_feat(header, feat);
3021 }
3022
3023 lseek(fd, sec_start, SEEK_SET);
3024 /*
3025 * may write more than needed due to dropped feature, but
3026 * this is okay, reader will skip the missing entries
3027 */
3028 err = do_write(&ff, feat_sec, sec_size);
3029 if (err < 0)
3030 pr_debug("failed to write feature section\n");
3031 free(feat_sec);
3032 return err;
3033}
3034
3035int perf_header__write_pipe(int fd)
3036{
3037 struct perf_pipe_file_header f_header;
3038 struct feat_fd ff;
3039 int err;
3040
3041 ff = (struct feat_fd){ .fd = fd };
3042
3043 f_header = (struct perf_pipe_file_header){
3044 .magic = PERF_MAGIC,
3045 .size = sizeof(f_header),
3046 };
3047
3048 err = do_write(&ff, &f_header, sizeof(f_header));
3049 if (err < 0) {
3050 pr_debug("failed to write perf pipe header\n");
3051 return err;
3052 }
3053
3054 return 0;
3055}
3056
3057int perf_session__write_header(struct perf_session *session,
3058 struct evlist *evlist,
3059 int fd, bool at_exit)
3060{
3061 struct perf_file_header f_header;
3062 struct perf_file_attr f_attr;
3063 struct perf_header *header = &session->header;
3064 struct evsel *evsel;
3065 struct feat_fd ff;
3066 u64 attr_offset;
3067 int err;
3068
3069 ff = (struct feat_fd){ .fd = fd};
3070 lseek(fd, sizeof(f_header), SEEK_SET);
3071
3072 evlist__for_each_entry(session->evlist, evsel) {
3073 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075 if (err < 0) {
3076 pr_debug("failed to write perf header\n");
3077 return err;
3078 }
3079 }
3080
3081 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083 evlist__for_each_entry(evlist, evsel) {
3084 f_attr = (struct perf_file_attr){
3085 .attr = evsel->core.attr,
3086 .ids = {
3087 .offset = evsel->id_offset,
3088 .size = evsel->core.ids * sizeof(u64),
3089 }
3090 };
3091 err = do_write(&ff, &f_attr, sizeof(f_attr));
3092 if (err < 0) {
3093 pr_debug("failed to write perf header attribute\n");
3094 return err;
3095 }
3096 }
3097
3098 if (!header->data_offset)
3099 header->data_offset = lseek(fd, 0, SEEK_CUR);
3100 header->feat_offset = header->data_offset + header->data_size;
3101
3102 if (at_exit) {
3103 err = perf_header__adds_write(header, evlist, fd);
3104 if (err < 0)
3105 return err;
3106 }
3107
3108 f_header = (struct perf_file_header){
3109 .magic = PERF_MAGIC,
3110 .size = sizeof(f_header),
3111 .attr_size = sizeof(f_attr),
3112 .attrs = {
3113 .offset = attr_offset,
3114 .size = evlist->core.nr_entries * sizeof(f_attr),
3115 },
3116 .data = {
3117 .offset = header->data_offset,
3118 .size = header->data_size,
3119 },
3120 /* event_types is ignored, store zeros */
3121 };
3122
3123 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125 lseek(fd, 0, SEEK_SET);
3126 err = do_write(&ff, &f_header, sizeof(f_header));
3127 if (err < 0) {
3128 pr_debug("failed to write perf header\n");
3129 return err;
3130 }
3131 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132
3133 return 0;
3134}
3135
3136static int perf_header__getbuffer64(struct perf_header *header,
3137 int fd, void *buf, size_t size)
3138{
3139 if (readn(fd, buf, size) <= 0)
3140 return -1;
3141
3142 if (header->needs_swap)
3143 mem_bswap_64(buf, size);
3144
3145 return 0;
3146}
3147
3148int perf_header__process_sections(struct perf_header *header, int fd,
3149 void *data,
3150 int (*process)(struct perf_file_section *section,
3151 struct perf_header *ph,
3152 int feat, int fd, void *data))
3153{
3154 struct perf_file_section *feat_sec, *sec;
3155 int nr_sections;
3156 int sec_size;
3157 int feat;
3158 int err;
3159
3160 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161 if (!nr_sections)
3162 return 0;
3163
3164 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165 if (!feat_sec)
3166 return -1;
3167
3168 sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170 lseek(fd, header->feat_offset, SEEK_SET);
3171
3172 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173 if (err < 0)
3174 goto out_free;
3175
3176 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177 err = process(sec++, header, feat, fd, data);
3178 if (err < 0)
3179 goto out_free;
3180 }
3181 err = 0;
3182out_free:
3183 free(feat_sec);
3184 return err;
3185}
3186
3187static const int attr_file_abi_sizes[] = {
3188 [0] = PERF_ATTR_SIZE_VER0,
3189 [1] = PERF_ATTR_SIZE_VER1,
3190 [2] = PERF_ATTR_SIZE_VER2,
3191 [3] = PERF_ATTR_SIZE_VER3,
3192 [4] = PERF_ATTR_SIZE_VER4,
3193 0,
3194};
3195
3196/*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
3202static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203{
3204 uint64_t ref_size, attr_size;
3205 int i;
3206
3207 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208 ref_size = attr_file_abi_sizes[i]
3209 + sizeof(struct perf_file_section);
3210 if (hdr_sz != ref_size) {
3211 attr_size = bswap_64(hdr_sz);
3212 if (attr_size != ref_size)
3213 continue;
3214
3215 ph->needs_swap = true;
3216 }
3217 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218 i,
3219 ph->needs_swap);
3220 return 0;
3221 }
3222 /* could not determine endianness */
3223 return -1;
3224}
3225
3226#define PERF_PIPE_HDR_VER0 16
3227
3228static const size_t attr_pipe_abi_sizes[] = {
3229 [0] = PERF_PIPE_HDR_VER0,
3230 0,
3231};
3232
3233/*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
3240static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241{
3242 u64 attr_size;
3243 int i;
3244
3245 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247 attr_size = bswap_64(hdr_sz);
3248 if (attr_size != hdr_sz)
3249 continue;
3250
3251 ph->needs_swap = true;
3252 }
3253 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254 return 0;
3255 }
3256 return -1;
3257}
3258
3259bool is_perf_magic(u64 magic)
3260{
3261 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262 || magic == __perf_magic2
3263 || magic == __perf_magic2_sw)
3264 return true;
3265
3266 return false;
3267}
3268
3269static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270 bool is_pipe, struct perf_header *ph)
3271{
3272 int ret;
3273
3274 /* check for legacy format */
3275 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276 if (ret == 0) {
3277 ph->version = PERF_HEADER_VERSION_1;
3278 pr_debug("legacy perf.data format\n");
3279 if (is_pipe)
3280 return try_all_pipe_abis(hdr_sz, ph);
3281
3282 return try_all_file_abis(hdr_sz, ph);
3283 }
3284 /*
3285 * the new magic number serves two purposes:
3286 * - unique number to identify actual perf.data files
3287 * - encode endianness of file
3288 */
3289 ph->version = PERF_HEADER_VERSION_2;
3290
3291 /* check magic number with one endianness */
3292 if (magic == __perf_magic2)
3293 return 0;
3294
3295 /* check magic number with opposite endianness */
3296 if (magic != __perf_magic2_sw)
3297 return -1;
3298
3299 ph->needs_swap = true;
3300
3301 return 0;
3302}
3303
3304int perf_file_header__read(struct perf_file_header *header,
3305 struct perf_header *ph, int fd)
3306{
3307 ssize_t ret;
3308
3309 lseek(fd, 0, SEEK_SET);
3310
3311 ret = readn(fd, header, sizeof(*header));
3312 if (ret <= 0)
3313 return -1;
3314
3315 if (check_magic_endian(header->magic,
3316 header->attr_size, false, ph) < 0) {
3317 pr_debug("magic/endian check failed\n");
3318 return -1;
3319 }
3320
3321 if (ph->needs_swap) {
3322 mem_bswap_64(header, offsetof(struct perf_file_header,
3323 adds_features));
3324 }
3325
3326 if (header->size != sizeof(*header)) {
3327 /* Support the previous format */
3328 if (header->size == offsetof(typeof(*header), adds_features))
3329 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330 else
3331 return -1;
3332 } else if (ph->needs_swap) {
3333 /*
3334 * feature bitmap is declared as an array of unsigned longs --
3335 * not good since its size can differ between the host that
3336 * generated the data file and the host analyzing the file.
3337 *
3338 * We need to handle endianness, but we don't know the size of
3339 * the unsigned long where the file was generated. Take a best
3340 * guess at determining it: try 64-bit swap first (ie., file
3341 * created on a 64-bit host), and check if the hostname feature
3342 * bit is set (this feature bit is forced on as of fbe96f2).
3343 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344 * swap. If the hostname bit is still not set (e.g., older data
3345 * file), punt and fallback to the original behavior --
3346 * clearing all feature bits and setting buildid.
3347 */
3348 mem_bswap_64(&header->adds_features,
3349 BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 /* unswap as u64 */
3353 mem_bswap_64(&header->adds_features,
3354 BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356 /* unswap as u32 */
3357 mem_bswap_32(&header->adds_features,
3358 BITS_TO_U32(HEADER_FEAT_BITS));
3359 }
3360
3361 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363 set_bit(HEADER_BUILD_ID, header->adds_features);
3364 }
3365 }
3366
3367 memcpy(&ph->adds_features, &header->adds_features,
3368 sizeof(ph->adds_features));
3369
3370 ph->data_offset = header->data.offset;
3371 ph->data_size = header->data.size;
3372 ph->feat_offset = header->data.offset + header->data.size;
3373 return 0;
3374}
3375
3376static int perf_file_section__process(struct perf_file_section *section,
3377 struct perf_header *ph,
3378 int feat, int fd, void *data)
3379{
3380 struct feat_fd fdd = {
3381 .fd = fd,
3382 .ph = ph,
3383 .size = section->size,
3384 .offset = section->offset,
3385 };
3386
3387 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389 "%d, continuing...\n", section->offset, feat);
3390 return 0;
3391 }
3392
3393 if (feat >= HEADER_LAST_FEATURE) {
3394 pr_debug("unknown feature %d, continuing...\n", feat);
3395 return 0;
3396 }
3397
3398 if (!feat_ops[feat].process)
3399 return 0;
3400
3401 return feat_ops[feat].process(&fdd, data);
3402}
3403
3404static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405 struct perf_header *ph, int fd,
3406 bool repipe)
3407{
3408 struct feat_fd ff = {
3409 .fd = STDOUT_FILENO,
3410 .ph = ph,
3411 };
3412 ssize_t ret;
3413
3414 ret = readn(fd, header, sizeof(*header));
3415 if (ret <= 0)
3416 return -1;
3417
3418 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419 pr_debug("endian/magic failed\n");
3420 return -1;
3421 }
3422
3423 if (ph->needs_swap)
3424 header->size = bswap_64(header->size);
3425
3426 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427 return -1;
3428
3429 return 0;
3430}
3431
3432static int perf_header__read_pipe(struct perf_session *session)
3433{
3434 struct perf_header *header = &session->header;
3435 struct perf_pipe_file_header f_header;
3436
3437 if (perf_file_header__read_pipe(&f_header, header,
3438 perf_data__fd(session->data),
3439 session->repipe) < 0) {
3440 pr_debug("incompatible file format\n");
3441 return -EINVAL;
3442 }
3443
3444 return 0;
3445}
3446
3447static int read_attr(int fd, struct perf_header *ph,
3448 struct perf_file_attr *f_attr)
3449{
3450 struct perf_event_attr *attr = &f_attr->attr;
3451 size_t sz, left;
3452 size_t our_sz = sizeof(f_attr->attr);
3453 ssize_t ret;
3454
3455 memset(f_attr, 0, sizeof(*f_attr));
3456
3457 /* read minimal guaranteed structure */
3458 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459 if (ret <= 0) {
3460 pr_debug("cannot read %d bytes of header attr\n",
3461 PERF_ATTR_SIZE_VER0);
3462 return -1;
3463 }
3464
3465 /* on file perf_event_attr size */
3466 sz = attr->size;
3467
3468 if (ph->needs_swap)
3469 sz = bswap_32(sz);
3470
3471 if (sz == 0) {
3472 /* assume ABI0 */
3473 sz = PERF_ATTR_SIZE_VER0;
3474 } else if (sz > our_sz) {
3475 pr_debug("file uses a more recent and unsupported ABI"
3476 " (%zu bytes extra)\n", sz - our_sz);
3477 return -1;
3478 }
3479 /* what we have not yet read and that we know about */
3480 left = sz - PERF_ATTR_SIZE_VER0;
3481 if (left) {
3482 void *ptr = attr;
3483 ptr += PERF_ATTR_SIZE_VER0;
3484
3485 ret = readn(fd, ptr, left);
3486 }
3487 /* read perf_file_section, ids are read in caller */
3488 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490 return ret <= 0 ? -1 : 0;
3491}
3492
3493static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494 struct tep_handle *pevent)
3495{
3496 struct tep_event *event;
3497 char bf[128];
3498
3499 /* already prepared */
3500 if (evsel->tp_format)
3501 return 0;
3502
3503 if (pevent == NULL) {
3504 pr_debug("broken or missing trace data\n");
3505 return -1;
3506 }
3507
3508 event = tep_find_event(pevent, evsel->core.attr.config);
3509 if (event == NULL) {
3510 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511 return -1;
3512 }
3513
3514 if (!evsel->name) {
3515 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516 evsel->name = strdup(bf);
3517 if (evsel->name == NULL)
3518 return -1;
3519 }
3520
3521 evsel->tp_format = event;
3522 return 0;
3523}
3524
3525static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526 struct tep_handle *pevent)
3527{
3528 struct evsel *pos;
3529
3530 evlist__for_each_entry(evlist, pos) {
3531 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532 perf_evsel__prepare_tracepoint_event(pos, pevent))
3533 return -1;
3534 }
3535
3536 return 0;
3537}
3538
3539int perf_session__read_header(struct perf_session *session)
3540{
3541 struct perf_data *data = session->data;
3542 struct perf_header *header = &session->header;
3543 struct perf_file_header f_header;
3544 struct perf_file_attr f_attr;
3545 u64 f_id;
3546 int nr_attrs, nr_ids, i, j;
3547 int fd = perf_data__fd(data);
3548
3549 session->evlist = evlist__new();
3550 if (session->evlist == NULL)
3551 return -ENOMEM;
3552
3553 session->evlist->env = &header->env;
3554 session->machines.host.env = &header->env;
3555 if (perf_data__is_pipe(data))
3556 return perf_header__read_pipe(session);
3557
3558 if (perf_file_header__read(&f_header, header, fd) < 0)
3559 return -EINVAL;
3560
3561 /*
3562 * Sanity check that perf.data was written cleanly; data size is
3563 * initialized to 0 and updated only if the on_exit function is run.
3564 * If data size is still 0 then the file contains only partial
3565 * information. Just warn user and process it as much as it can.
3566 */
3567 if (f_header.data.size == 0) {
3568 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569 "Was the 'perf record' command properly terminated?\n",
3570 data->file.path);
3571 }
3572
3573 if (f_header.attr_size == 0) {
3574 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575 "Was the 'perf record' command properly terminated?\n",
3576 data->file.path);
3577 return -EINVAL;
3578 }
3579
3580 nr_attrs = f_header.attrs.size / f_header.attr_size;
3581 lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583 for (i = 0; i < nr_attrs; i++) {
3584 struct evsel *evsel;
3585 off_t tmp;
3586
3587 if (read_attr(fd, header, &f_attr) < 0)
3588 goto out_errno;
3589
3590 if (header->needs_swap) {
3591 f_attr.ids.size = bswap_64(f_attr.ids.size);
3592 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593 perf_event__attr_swap(&f_attr.attr);
3594 }
3595
3596 tmp = lseek(fd, 0, SEEK_CUR);
3597 evsel = evsel__new(&f_attr.attr);
3598
3599 if (evsel == NULL)
3600 goto out_delete_evlist;
3601
3602 evsel->needs_swap = header->needs_swap;
3603 /*
3604 * Do it before so that if perf_evsel__alloc_id fails, this
3605 * entry gets purged too at evlist__delete().
3606 */
3607 evlist__add(session->evlist, evsel);
3608
3609 nr_ids = f_attr.ids.size / sizeof(u64);
3610 /*
3611 * We don't have the cpu and thread maps on the header, so
3612 * for allocating the perf_sample_id table we fake 1 cpu and
3613 * hattr->ids threads.
3614 */
3615 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616 goto out_delete_evlist;
3617
3618 lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620 for (j = 0; j < nr_ids; j++) {
3621 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622 goto out_errno;
3623
3624 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625 }
3626
3627 lseek(fd, tmp, SEEK_SET);
3628 }
3629
3630 perf_header__process_sections(header, fd, &session->tevent,
3631 perf_file_section__process);
3632
3633 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634 session->tevent.pevent))
3635 goto out_delete_evlist;
3636
3637 return 0;
3638out_errno:
3639 return -errno;
3640
3641out_delete_evlist:
3642 evlist__delete(session->evlist);
3643 session->evlist = NULL;
3644 return -ENOMEM;
3645}
3646
3647int perf_event__process_feature(struct perf_session *session,
3648 union perf_event *event)
3649{
3650 struct perf_tool *tool = session->tool;
3651 struct feat_fd ff = { .fd = 0 };
3652 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653 int type = fe->header.type;
3654 u64 feat = fe->feat_id;
3655
3656 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657 pr_warning("invalid record type %d in pipe-mode\n", type);
3658 return 0;
3659 }
3660 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661 pr_warning("invalid record type %d in pipe-mode\n", type);
3662 return -1;
3663 }
3664
3665 if (!feat_ops[feat].process)
3666 return 0;
3667
3668 ff.buf = (void *)fe->data;
3669 ff.size = event->header.size - sizeof(*fe);
3670 ff.ph = &session->header;
3671
3672 if (feat_ops[feat].process(&ff, NULL))
3673 return -1;
3674
3675 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676 return 0;
3677
3678 if (!feat_ops[feat].full_only ||
3679 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680 feat_ops[feat].print(&ff, stdout);
3681 } else {
3682 fprintf(stdout, "# %s info available, use -I to display\n",
3683 feat_ops[feat].name);
3684 }
3685
3686 return 0;
3687}
3688
3689size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690{
3691 struct perf_record_event_update *ev = &event->event_update;
3692 struct perf_record_event_update_scale *ev_scale;
3693 struct perf_record_event_update_cpus *ev_cpus;
3694 struct perf_cpu_map *map;
3695 size_t ret;
3696
3697 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3698
3699 switch (ev->type) {
3700 case PERF_EVENT_UPDATE__SCALE:
3701 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703 break;
3704 case PERF_EVENT_UPDATE__UNIT:
3705 ret += fprintf(fp, "... unit: %s\n", ev->data);
3706 break;
3707 case PERF_EVENT_UPDATE__NAME:
3708 ret += fprintf(fp, "... name: %s\n", ev->data);
3709 break;
3710 case PERF_EVENT_UPDATE__CPUS:
3711 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712 ret += fprintf(fp, "... ");
3713
3714 map = cpu_map__new_data(&ev_cpus->cpus);
3715 if (map)
3716 ret += cpu_map__fprintf(map, fp);
3717 else
3718 ret += fprintf(fp, "failed to get cpus\n");
3719 break;
3720 default:
3721 ret += fprintf(fp, "... unknown type\n");
3722 break;
3723 }
3724
3725 return ret;
3726}
3727
3728int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729 union perf_event *event,
3730 struct evlist **pevlist)
3731{
3732 u32 i, ids, n_ids;
3733 struct evsel *evsel;
3734 struct evlist *evlist = *pevlist;
3735
3736 if (evlist == NULL) {
3737 *pevlist = evlist = evlist__new();
3738 if (evlist == NULL)
3739 return -ENOMEM;
3740 }
3741
3742 evsel = evsel__new(&event->attr.attr);
3743 if (evsel == NULL)
3744 return -ENOMEM;
3745
3746 evlist__add(evlist, evsel);
3747
3748 ids = event->header.size;
3749 ids -= (void *)&event->attr.id - (void *)event;
3750 n_ids = ids / sizeof(u64);
3751 /*
3752 * We don't have the cpu and thread maps on the header, so
3753 * for allocating the perf_sample_id table we fake 1 cpu and
3754 * hattr->ids threads.
3755 */
3756 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757 return -ENOMEM;
3758
3759 for (i = 0; i < n_ids; i++) {
3760 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761 }
3762
3763 return 0;
3764}
3765
3766int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767 union perf_event *event,
3768 struct evlist **pevlist)
3769{
3770 struct perf_record_event_update *ev = &event->event_update;
3771 struct perf_record_event_update_scale *ev_scale;
3772 struct perf_record_event_update_cpus *ev_cpus;
3773 struct evlist *evlist;
3774 struct evsel *evsel;
3775 struct perf_cpu_map *map;
3776
3777 if (!pevlist || *pevlist == NULL)
3778 return -EINVAL;
3779
3780 evlist = *pevlist;
3781
3782 evsel = perf_evlist__id2evsel(evlist, ev->id);
3783 if (evsel == NULL)
3784 return -EINVAL;
3785
3786 switch (ev->type) {
3787 case PERF_EVENT_UPDATE__UNIT:
3788 evsel->unit = strdup(ev->data);
3789 break;
3790 case PERF_EVENT_UPDATE__NAME:
3791 evsel->name = strdup(ev->data);
3792 break;
3793 case PERF_EVENT_UPDATE__SCALE:
3794 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795 evsel->scale = ev_scale->scale;
3796 break;
3797 case PERF_EVENT_UPDATE__CPUS:
3798 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800 map = cpu_map__new_data(&ev_cpus->cpus);
3801 if (map)
3802 evsel->core.own_cpus = map;
3803 else
3804 pr_err("failed to get event_update cpus\n");
3805 default:
3806 break;
3807 }
3808
3809 return 0;
3810}
3811
3812int perf_event__process_tracing_data(struct perf_session *session,
3813 union perf_event *event)
3814{
3815 ssize_t size_read, padding, size = event->tracing_data.size;
3816 int fd = perf_data__fd(session->data);
3817 off_t offset = lseek(fd, 0, SEEK_CUR);
3818 char buf[BUFSIZ];
3819
3820 /* setup for reading amidst mmap */
3821 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822 SEEK_SET);
3823
3824 size_read = trace_report(fd, &session->tevent,
3825 session->repipe);
3826 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828 if (readn(fd, buf, padding) < 0) {
3829 pr_err("%s: reading input file", __func__);
3830 return -1;
3831 }
3832 if (session->repipe) {
3833 int retw = write(STDOUT_FILENO, buf, padding);
3834 if (retw <= 0 || retw != padding) {
3835 pr_err("%s: repiping tracing data padding", __func__);
3836 return -1;
3837 }
3838 }
3839
3840 if (size_read + padding != size) {
3841 pr_err("%s: tracing data size mismatch", __func__);
3842 return -1;
3843 }
3844
3845 perf_evlist__prepare_tracepoint_events(session->evlist,
3846 session->tevent.pevent);
3847
3848 return size_read + padding;
3849}
3850
3851int perf_event__process_build_id(struct perf_session *session,
3852 union perf_event *event)
3853{
3854 __event_process_build_id(&event->build_id,
3855 event->build_id.filename,
3856 session);
3857 return 0;
3858}